
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Moving Applications from the Host to the Network:
Experiences, Challenges and Findings / Cerrato, Ivano; Pramotton, M.; Risso, FULVIO GIOVANNI OTTAVIO. -
STAMPA. - (2013), pp. 744-749. (Intervento presentato al convegno IEEE International Conference on Communications
2013 (IEEE ICC'13) - 1st International Workshop on Mobile Cloud Networking and Services (MCN) tenutosi a Budapest
(Hungary) nel June 2013) [10.1109/ICCW.2013.6649332].

Original

Moving Applications from the Host to the Network:
Experiences, Challenges and Findings

Publisher:

Published
DOI:10.1109/ICCW.2013.6649332

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2518555 since:

IEEE

Moving Applications from the Host to the Network:
Experiences, Challenges and Findings

Ivano Cerrato, Marco Pramotton and Fulvio Risso
Department of Control and Computer Engineering, Politecnico di Torino

Corso Duca degli Abruzzi 24, 10129 Torino, Italy
E-mail: {name.surname}@polito.it

Abstract—Some recent works propose to extend network
devices (e.g., routers) with the possibility to execute additional
user-provisioned software operating on the data-plane. This
enables network devices to be enriched with new functionalities,
potentially decided at run-time directly by the end users. This
paper focuses on one of such programmable routing platform and
presents our experience in developing new software (namely, a
parental control service) in that environment. In addition, we
describe also two extensions to our platform that were needed to
accommodate the necessity of our applications.

I. INTRODUCTION

The end-to-end principle, one of the pillars of the original
Internet, is increasingly challenged by the presence of many
middleboxes that manipulate network traffic, such as for secu-
rity or traffic optimization purposes. In fact, a recent study [1]
demonstrates that the applications that can modify the traffic in
transit (such as application-layer firewalls, intrusion detection
systems, transparent caching, WAN accelerators, and more)
are quite common in many network paths.

In a recent work [2] we proposed a prototype of edge
router that allows to customize the data-plane of the network,
by allowing third parties (e.g., end users, application service
providers, network service providers) to install their own
applications operating on the packets traversing the router
itself. This way the router is no longer limited to forward
the traffic, but it can inspect and potentially modify all the
packets in transit and it can export a sort of dedicated execution
environment to the applications that require those features.
This model could simplify the network operations, as the
dedicated middleboxes mentioned above could become a set
of software images installed on the network edge router.

This paper aims at validating the potentialities of our routing
platform from the point of view of the final developer and it
presents our experience in developing a complex application-
layer service. First, it describes the programming architecture
of our prototype, showing the main functions offered to the
programmer and a brief overview of the API. Second, it
presents our experience in implementing a complex service
on our architecture, namely a parental control, and shows a
preliminary characterization of its performance. The parental
control was chosen because it represents a service that can
take many advantages from the possibility to be executed
in the network instead of in user devices. In fact, by being
executed on an edge router, the parental control is able

to inspect all the traffic to/from the users that need to be
protected (e.g., kids), regardless of the device their are using
to connect to the Internet, as well as their access network
(e.g., domestic WLAN, 4G, etc.). Furthermore, our prototype
will allow to safely share the same physical device (e.g., a
tablet) among many users (e.g., kids, parents), as the network
is able to recognize the users and install the proper applications
operating on their traffic.

This paper is structured as follows. Section II presents the
related work, focusing on both programmable routers and
parental control services. Section III summarizes the main
concepts of our programmable router and it presents the new
extension that were needed to implement the service we had in
mind. Section IV presents the programming architecture and
an overview of the exported API, while Section V describes
our parental control service. Finally, Section VI shows some
numbers that come from the deployment of the parental control
service and Section VII draws some conclusive remarks.

II. RELATED WORK

This work is based on the programmable router presented
in [2] and briefly summarized in Section III, which enables
third parties to install their own applications operating on the
data-plane of the node itself. The idea of a programmable
network router has been explored in many papers; perhaps [3]
represents the closest idea to our proposal. In fact, [3] proposes
a minimal network operating system based on the Click
modular router software [4], but is more oriented to network
providers and it does not allow applications coming from
end users to be deployed on the device. In our case, we
emphasize the possibility for end-users to relocate their data-
plane applications from user terminals to the network, so
that applications themselves can operate independently of the
physical device (and its operating system) in use; furthermore,
those applications do not consume memory and CPU cycles
on the user terminals, which favors particularly mobile devices
with strict constraints in terms of power consumption.

To validate the programmable router, we chose to develop
a parental control service; even if many implementations of
this application already exist (installed on user terminals, but
also deployed within the network, i.e., on routers and proxy
servers), they all suffer of several limitations. Applications
such as Net Nanny [5], safeeyes [6] and Davide.it [7] are
installed on host devices, and they may not be able to properly

protect kids because of the many different devices owned
by each person. In fact, parental controls could operate in
different ways and/or offer different degrees of protection on
different devices and, in some cases, they may not even exist
on some platforms. Among the router-based solutions, we can
cite manufacturers like Cisco [8] and Netgear [9], which offer
parental control services running on their devices. However,
these applications are poorly customizable and implement only
the features decided by the manufacturers themselves. Users
cannot upgrade the service with new features and have to wait
for the manufacturer to implement them. Other solutions are
based on a proxy server, such as DansGuardian [10]. In this
case the web browser on the user terminal must be configured
to send all requests to the proxy where the parental control
application is running, rather than directly to the destination
web server. However, this configuration on the client terminal
can be easily bypassed by reconfiguring the application in
order to access the Internet directly. Furthermore, this solution
is limited to the protection from threats coming from web
traffic. Finally, we can cite services that filter DNS requests
(e.g., OpenDNS [11]), which cannot block applications that do
not use the DNS such as instant messaging and others.

We believe that our parental control service installed on
the edge router has many advantages compared to previous
solutions. First, it is able to protect kids regardless of the
physical device they use to connect to the Internet, as well as to
recognize the user connected to the network and act differently
according to his profile. Second, it enables a fine tuning of
the service by allowing end users to install the applications
they want, e.g., with additional or more advanced capabilities.
Third, it is able to protect children independently from the
applications they use, as it operates on all the network traffic.
Finally, it has the potential to protect minors independently
from the location they connect to the Internet. In fact, our
system requires the user to go through an authentication phase
before being able to connect to the network, which allows the
system to detect the user identity and to install exactly the
applications associated to that user.

III. THE PROGRAMMABLE EDGE ROUTER

This section summarizes the main concepts of the pro-
grammable edge router [2] and presents the new extensions
related to the remote execution environment and the storage
service. The main modules of the router are shown in Figure
1, which also provides an overall view of the entire system.

In our router the network is split in multiple slices, each
one associated with a different user. This way, a user can
install and manage data-plane applications operating only on
his slice, i.e., on packets coming from or directed to its MAC
address, without impacting on the services requested by other
entities. Each slice is mapped to a different Private Execution
Environment (PEX), a sort of virtual machine dedicated to
the specific user. This execution environment exports a set of
functions (detailed in Section IV) that can be used to build
applications (written in Java), hence enabling them to operate
on the traffic of that user. In fact, those applications will be

Network
traffic

Network
traffic

Private Execution
Environment 1

Private Execution
Environment N

Virtualization Framework

Switching Plane

...

Remote Storage Service

Internet
Network

edge router

Network
edge router

Remote Execution
Environment

Management
Server

Fig. 1. Overview of the entire system.

called sequentially on user’s packets; if an application modifies
the content of a packet, all the following ones will receive the
modified payload. Each user is enabled to install his preferred
applications on his slice and to decide the calling order.
Furthermore, some users (e.g., parents) have the additional
privilege to install hidden applications on other slices (e.g.,
the ones of their kids), in order to guarantee some specific
services on the traffic of those users. Finally, a new PEX is
created when the router detects a new user connected to it,
upon redirecting his traffic to a captive portal and asking the
user to provide his credentials.

The logical architecture of the router, depicted in Figure 1,
includes three main components. The Private Execution En-
vironment executes the user applications and receives/sends
the traffic from/to the Virtualization Framework. This com-
ponent is in charge of virtualizing the router, which enables the
PEX to operate such as it is the only container running on the
node itself. For instance, the Virtualization Framework enables
the slicing and redirects the incoming traffic to the PEX of
all the slices the packet belongs to. Finally, the Switching
Plane is in charge of sending/receiving packets to/from the
Virtualization Framework, and of handling the transmission
of the traffic to/from the physical ports of the router. This
component may be replaced by a real router connected to the
other components through an OpenFlow [12] connection.

Moreover, a Management Server exists that is in charge
of keeping the user database and handling a part of the
authentication process. In general, this entity coordinates the
entire set of edge routers; in fact, it contains also the list of
applications to be installed, together with other information
needed to manage the system.

When we started writing some more complete applications
for our router, we recognized that the architecture presented
so far was missing some important features. For instance, we
felt we needed at least a basic version of a remote storage
service and a remote execution environment, whose current
implementations are detailed in the following.

A. Storage Service

One of the applications we developed for our parental
control service is a DNSFilter module (detailed in Section V),

Intra process
communication

Authentication Manager

HTTP traffic

RESTO

App1 AppN

User 1

…

App1 AppN

User N

… …

Resource Manager

Persistent Data

Network

Fig. 2. Internal view of the Storage Service.

which basically filters DNS requests and rejects those that
refer to names included in a forbidden list. While at the
beginning we included the blacklist in the application itself,
we recognized that it was much better to store that information
on a remote storage. In general, applications may need to
store persistent data, such as state information or configuration
parameters that must be preserved across multiple execution
of the same service. In the current system, the applications
running on the router had only the “volatile” storage provided
by the variables that are defined in the application itself.

As a consequence, we added a Remote Storage Ser-
vice (RESTO), whose internal architecture is depicted in
Figure 2. The Storage Service includes the Authentication
Manager, i.e., the component that authenticates the couple
user/application (more details in Section III-C) and the Re-
source Manager, which is responsible for reading/writing
data upon requests from applications, as well as for deleting
information when its owner is uninstalled. The RESTO service
organizes the data in a tree based on the application that
generated it and on the user who is executing that application
in his own PEX. Vice versa, multiple instances of the same
application running on different PEXs associated with the
same user (e.g., a user connected to the network through a
smartphone and a laptop) share the same data; the implementa-
tion of different storage areas for those instances are under the
responsibility of the programmer. The “remote” characteristic
of the service enables applications to access their persistent
data independently from the physical router they are running
on, and it enables that data to be accessed also from other
parties (e.g., other services residing in the cloud).

The RESTO module is deeply integrated with the rest of the
platform and it allows programmers to read/write data with
simple primitives, while other issues (such as the authenti-
cation process, which guarantees that a user can write/read
only his data) are under the responsibility of the system and
are transparent to the programmer. The system takes also care
of cleaning up the data associated to a given application/user
when that application is removed from the user and hence
does not longer belong to the PEX associated to his slice. It
is worth noting that we do not force programmers to exploit
the RESTO; in fact, they are still enabled to save their data
wherever they want. This way, however, they must address by

Intra process
communication

Authentication Manager

HTTP traffic
to/from
the servlets

…

Storage Manager

REX

HTTP traffic
generated by the
Storage Manager

Network

Service
Application 1

Service
Application N

Fig. 3. Exploded view of a REX.

themselves all the issues already solved by our platform.

B. Remote Execution Environment

The DNSFilter module mentioned before showed another
problem. As the list of forbidden sites was rather large and
was consuming a huge amount of memory on the router, it
would be better to split the application into a router part, with
a short list, and a server part, which keeps the full list and that
is invoked upon demand. This suggested us that there may be
a class of applications that can be split in multiple portions
hosted on different locations, such as a part running on the
router and another running on a remote server.

While, in line of principle, the programmer can implement
this splitting by setting up a remote application service and
modify the application running on the router in order to access
to that service, we decided to offer him another possibility that
looks more integrated with our solution. Then, we defined
a Remote Execution Environment (REX), a module that
can host the “server” part of applications and that can offer
some standard functions to the programmer. This module,
whose architecture is shown in Figure 3, provides a Java-
based execution environment very similar to the PEX, and also
the exported API has similarities with the one present in that
module. For instance, obviously no primitives are available for
reading/modifying network packets, but others (e.g., the API
for accessing the RESTO service) are the same in both the
REX and PEX environments.

Finally, the REX programming environment hides both
the communication between the code executed on the router
and the one running in the remote environment, and all the
authentication/authorization issues.

C. Communication and authentication

Programmers access the REX and the RESTO through
an API that hides both the details of the communication
(which occurs through HTTP) and the authentication process.
With respect to the authentication, the Management Server
randomly generates a secret key when the user logs in, which
is shared between the user’s PEX, RESTO and REX services.
This secret allows the remote components to identify the user
and the application when they receive a request from the PEX.

In fact, we insert in the HTTP requests information such
as the username of the user who is running the application
that requested the service, the application name identifying
the application that makes the request, a PEX identifier
that uniquely identifies the PEX in which the application

Intra process
communication

Packets
generated by
the API

PEX

App1

Network Node Virtualization Framework

PEX Runtime

Packets in transit
in the router

Config.
Interface

App2

Remote App.
Interface

Storage
Interface

Packet Dispatcher
Config.

Manager

Fig. 4. Exploded view of a PEX hosting two applications.

is running, the router identifier that uniquely identifies the
application as being executed on a given router. Finally, part
of those information and the secret key mentioned before are
given as input to the sha-256 algorithm in order to generate
an unique signature that will be used by the remote party as
authentication key.

It is worth noting that all these parameters are under the
control of the PEX and are not visible by the application. As
we suppose that the PEX is trusted (while the user-provider
code running in it may not), we can safely assume that those
parameters are enough to guarantee the proper interaction with
the remote services, at least in our prototype. In fact, when an
HTTP message reaches the remote service, the authentication
module is able to recognize the user / application / instance
of application that asked for the service. Then, it forwards the
request to the proper service handler, being it a storage module
or a service in the REX.

IV. PROGRAMMING THE PEX

This section describes the programming architecture of the
PEX, by detailing the various components depicted in Figure
4 and by providing an overview of the exported API.

A. Callbacks

As the PEX exports an event-driven programming model,
an application is requested to implement a set of callbacks
that are called when specific events occur. In particular,
OnStartUp and OnShutDown must contain the code that
has to be executed when the application is started/stopped as a
consequence of user’s commands. OnReceivedPacket is
instead called when a new packet is available in the system
and needs to be processed. In this case, the program receives
the packet and a set of metadata such as the physical port of
the router on which that packet was received. This method
must return DROP or CONTINUE, depending on whether the
packet must be discarded or it can be forwarded to the next
recipient, which can be either the application that follows in
the same PEX or the Virtualization Framework, in case that
the application was the last one in that PEX.

B. PEX Runtime

The PEX runtime creates the environment on which ap-
plications are executed, and it is derived from the Beacon

OpenFlow controller [13]. It includes several modules that
can be exploited by applications through the proper API (e.g.,
the interface toward the REX/RESTO services), the packet
dispatcher and the interface toward the Virtualization Frame-
work. Particularly, the latter receives the packets encapsulated
in the OpenFlow protocol from the network and it sends the
raw data (without OpenFlow headers) to the user applications.
The opposite process is implemented when packets have to
be returned back to the network. Finally, the Configuration
Manager implements a set of REST services that enable users
to (i) install/uninstall applications, (ii) change their calling
order and (iii) start/stop applications already installed.

C. Packet Dispatcher

The Packet Dispatcher is the component in charge
of delivering packets to the applications by calling their
OnReceivePacket handler each time that a new packet
reaches the PEX. This module can dynamically add/remove
new applications in the calling stack of the PEX. As appli-
cations can be associated to different privileges (e.g., packets
can be received in read-only mode), the GetPrivileges
method allows them to know their privileges and act ac-
cordingly. Since an application may ignore this information
and perform illegal actions, this module also implements
techniques to ensure that privileges cannot be violated. Finally,
the Packet Dispatcher exports the RegisterFilter and
UnregisterFilter methods, which enable applications to
receive only the packets matching a given filter (e.g., HTTP
traffic); however, an efficient implementation of this function
is left to future work.

D. Storage Interface

The Storage Interface implements the communication to
the RESTO mainly through the intuitive SaveData and
ReadData methods. Data to be stored must be Java objects
implementing the interface Serializable, or also Java
primitive data types such as int and float; this way, the
system is able to manage any kind of data, even objects defined
by programmers. Optionally, data can be stored with some
additional metadata such as the timestamp in which the data
was modified, and the responsible of that change (in terms of
PEX identifier and Router identifier). In order to manage the
concurrent access to data, the Storage Manager also exports the
LockResource and UnlockResource methods, which
can be used to implement atomic modification on that data
even in presence of multiple running applications associated
to that user, e.g., in case multiple terminals associated to the
same user are connected to the network. Finally, this interface
implements all the mechanisms required for remotely authen-
ticate the user on the RESTO, as explained in Section III-C.

E. Remote Application Interface

Similarly to the previous component, the Remote Applica-
tion Interface handles the interaction with services hosted
in the REX. This module exports the simple Get, Post,
Put and Delete methods, which derive from the HTTP

methods defined in a REST interface. Those methods create
the appropriate HTTP request for the resource specified as a
parameter and return to the application the HTTP response
coming from the remote service. The remote URL is partially
created automatically by the PEX (e.g., the application name),
while other information are set by the application (e.g., the part
identifying the resource and the additional parameters that may
be needed). Also in this case this component hides the entire
authentication process to the applications.

F. Application Management Interface

The Application Management Interface enables
each application to implement the primitives that can
be used to configure or monitor the service from
the external world. In fact, each application can be
reached by the slice owner by typing the standard URL
http://config.ctrl/application_name/. The
system will check the request for permissions, then redirects
it to the REST services exported by applications. It is worth
noting that both the semantic and the syntax of the data
exchange is completely application-dependent.

V. PARENTAL CONTROL

The parental control service developed on top of our pro-
grammable platform consists of the following applications.

GSafe exploits the Google safe search [14] feature of the
Google search engine to filter harmful contents. When active,
GSafe enables the safe search by changing the URL in all the
HTTP GET messages towards Google and related to a search.
In particular, the URL is extended with safe=active or
safe=strict, depending on the selected level of protec-
tion specified in the configuration parameters. Currently, the
implementation can operate only on packets that (after the
modification) do not exceed the MTU. We plan to introduce a
stream reassembly function in the API in the future, in order
to enable programmers to avoid this issue and then to allow
them to operate also on messages in addition to packets.

DNSFilter is an application that prevents children from
reaching disturbing websites whose URLs are included into
a blacklist. As URLs are organized by topic (e.g., porn, drug,
etc.), a configuration parameter (visible to parents) can be
used to enable/disable one or more sections. We implement
this application both in a monolithic version, entirely running
on the PEX, and in a split version in which DNS packets
are received by the application on the router, checked against
a small cache, and in case of miss the request is redirected
to a remote service on the REX. Based on the result of the
check, the application can drop the DNS message, or let it go
on its way. In addition, DNSFilter gathers all the DNS names
translated, in order to allow parents, through the web interface,
to inspect which sites were accessed by their children.

TimePeriod can block the access to the Internet during a
given time slot, as well as it can limit the amount of time for
which kids can be logged in into the system. For instance, a
child could be enabled to surf the network only from 2 pm to
9 pm; in addition, he could be allowed to spend no more than

two hours per day on the Internet. Similarly to the previous
applications, TimePeriod exports a web interface that enables
parents to configure the application itself.

Finally, SkypeBlocker is able to identify and discard the
Skype traffic according to the signature defined in nDPI [15].

All these applications exploit the RESTO in order to store
the configuration parameters selected by the parents.

VI. VALIDATION

This section validates our platform and parental control
service through different categories of test. The test set up
consists in a Fast Ethernet network that includes a user
laptop directly connected the programmable router; a set of
servers implementing the DNS server, RESTO, REX and the
management server are directly connected to the router. All the
servers are workstations with an Intel Core2 processor (Q8400
at 2.66MHz), the router runs an Intel i5 3450S at 2.8GHz,
while the laptop is a Intel Core2 P8700 at 2.53 GHz. All the
machines have 4GB RAM and a 7200rpm hard disk in the
range 250-320 GBytes; moreover, they were preloaded with
the Linux Debian 7 operating system running at 64 bits.

A. Starting the PEX

This test measures the time required to activate the PEX
environment upon the receipt of a successful login from a
new user. When the system authenticates the user through the
captive portal, it starts a new PEX on that edge router and
it activates all the applications associated to that user. This
process includes several steps summarized in the top part of
Figure 5, such as the time required to check the user credential
in the management server, the time needed to configure the
environment to host a new PEX, the time needed to start a new
PEX with all the requested applications, and finally the time
needed to create the slice for the user and map this to the newly
created PEX. Although we agree that our implementation can
be improved, everything completes in less than 5 seconds in
our operating conditions. Particularly, the time required to
start each application (which requires downloading it from
the management server, injecting it in the existing PEX, and
starting it) is negligible compared to that needed to completely
activate the execution environment. In fact, the worst time we
get refers to the DNSFilter application, which completes this
process in 195 ms. Furthermore, many tasks such as installing
applications are launched in parallel, contributing to keep the
overall duration low.

B. Accessing the RESTO

This test shows the latency introduced when an application
uses the RESTO. In order to obtain this time, we wrote a
simple program that saves and reads resources of different
sizes to/from the storage service each time a packet is received.
Our numbers take into account the worst condition as we read
resources that were not in the cache of the RESTO.

The application was repeated thousand times and the num-
bers were averaged in order to obtain the results shown
in Table I. As expected, readings are always slower than

Login request
from user

1910 ms

User is authenticated

User’s PEX is created
User’s slice is created and
mapped to the User’s PEX

User’s PEX and his applications
are running

TimePeriod

271 ms 1317 ms

5 ms
 Application downloaded
 Application installed
 Application started

184 ms

1443 ms

2 ms 4 ms

GSafe

3 ms 6 ms

DNSFilter

10 ms

1 ms

1 ms

SkypeBlocker

1 ms

9 ms 14 ms

Fig. 5. Starting a PEX with four applications.

TABLE I
LATENCY IN ACCESSING THE RESTO.

10B 100B 1KB 10KB 100KB

write [ms] 3.49 4.27 6.15 17.25 129.61
read [ms] 2,29 3,24 4,29 14,24 115,59

writings, and the latency grows with the size of the managed
resource. Numbers confirm also that the RESTO service is
most appropriate for applications that need occasional access
(e.g., to store/load configuration parameters), while it may not
be appropriate for an application that requires an access to this
service each time a new packet is received.

C. Exploiting the REX

This test evaluates the impact of the REX in terms of
memory saving on the edge router and of latency. For this
purpose, we run both the monolithic and the split flavors of
the DNSFilter.

Since the split application does no longer use the black-
list within the PEX, the memory consumption at the router
decreases considerably: 141MB with the monolithic version,
against 24MB with the split application. On the other hand,
time needed to serve the DNS request increased from 1.4ms to
7.8ms, due to the additional steps (e.g., creating and sending
the HTTP request, etc.) required to obtain the answer. These
results were obtained by averaging numbers coming from
thousand queries toward the local DNS server set up in our
network, which was configured to answer to all the queries
without forwarding them to the Internet, hence avoiding any
issue not under our control.

VII. CONCLUSIONS

This paper presents our experience in developing a parental
control service for the programmable router we presented
in [2]. This work allowed to test, with the eyes of the final

developer, the validity of our platform. In fact, we felt the
necessity to extend the programmable environment in order to
accommodate some additional requirements of our application,
which have not been foreseen in our original prototype. In
particular, we added the Remote Storage Service (RESTO),
which enables applications to save their persistent data, i.e., in-
formation that must be maintained among different executions
of the applications themselves. Experimental results shows that
an occasionally access to the RESTO (e.g., reading/writing
configuration parameters) does not significantly reduce the
performance of applications. We also defined the Remote
Execution Environment (REX), which enables applications
to exploit a remote service on the web for their purposes.
Thanks to the REX, we were able to partition applications
into an “edge” and a “cloud” portion, hence reducing the
hardware requirements on the edge node (e.g., in terms of
memory consumption), although at the cost of introducing
some additional latency in the applications.

In future, we plan to extend the services offered by our
platform, and to improve the API it exports to application
developers. New services may include, among the others, the
support for encrypted traffic and the transparent handling of
application-level messages. This way, programmers can focus
on the logic of their applications, instead of on these low level
(and tedious), but often necessary, tasks.

REFERENCES

[1] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and
H. Tokuda, “Is it still possible to extend tcp?” in Proceedings of the
2011 ACM SIGCOMM conference on Internet measurement conference,
ser. IMC ’11. New York, NY, USA: ACM, 2011, pp. 181–194.

[2] F. Risso and I. Cerrato, “Customizing data-plane processing in edge
routers,” in Proceedings of the European Workshop on Software Defined
Networking (EWSDN), 2012, pp. 114–120.

[3] M. Ahmed, F. Huici, and A. Jahanpanah, “Enabling dynamic network
processing with clickos,” in SIGCOMM, 2012, pp. 293–294.

[4] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek, “The click
modular router,” in Proceedings of the seventeenth ACM symposium on
Operating systems principles, ser. SOSP ’99, 1999, pp. 217–231.

[5] ContentWatch. Net nanny. Stable release: 6.5 (Windows) 2.0 (Mac).
[Online]. Available: http://www.netnanny.com

[6] McAfee. safeeyes. [Online]. Available:
http://www.internetsafety.com/safe-eyes-parental-control-software-
affiliate.php

[7] Davide.it. [Online]. Available: http://www.davide.it/
[8] Cisco systems. [Online]. Available: http://homesupport.cisco.com/en-

us/support/ccc/PARENTALCONTROLS
[9] Netgear. Live parental controls. [Online]. Available:

http://www.netgear.com/lpc
[10] D. Barron. (2011, Aug) Dansguardian. Stable release 2.12.0.0. [Online].

Available: http://dansguardian.org
[11] Opendns. [Online]. Available: http://www.opendns.com/parental-

controls
[12] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Mar. 2008.

[13] D. Erickson. (2012, Apr) The beacon openflow controller. [Online].
Available: http://www.beaconcontroller.net

[14] Google. Google safe search. [Online]. Available:
http://support.google.com/websearch/bin/answer.py?hl=en&answer=510

[15] (2012, Apr) ndpi. [Online]. Available:
http://www.ntop.org/products/ndpi/

