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ABSTRACT

This study describes an experimental analysis of energy dissipation due to damping sources in microstructures and micro-
electromechanical systems (MEMS) components using interferometric microscopy techniques. Viscous damping caused by the
surrounding air (squeeze film damping) and material damping are measured using variable geome-trical parameters of samples and
under different environmental conditions. The equip-ment included a self-made climatic chamber which was used to modify the
surrounding air pressure. Results show the relationship between damping coefficients and sample geometry caused by variation in
airflow resistance and the relationship between quality factor and air pressure. The experimental results will provide a useful data
source for validating analytic models and calibrating simulations. A thorough discussion about interferometry applied to
experimental mechanics of MEMS will also contribute to the reduction of the knowledge gap between specialists in optical methods
and microsystem designers.

1. Introduction

In the past two decades, a large diffusion of microstructures, related design strategies and technological building
processes has been observed in a number of devices and systems addressed to many application fields. These applications,
within the micro-electromechanical systems (MEMS) technology, include sensing devices (pressure sensors, inertial sensors,
etc.), thermal and capacitive actuators, optical devices (mirrors, switches), transceivers, radiofrequency components
(varactors, resonators, filters, etc.), biomedical microsystems and energy harvesters with more complicated layouts and
efficient performances progressively emerging.

The design of microsystems is strongly complicated by the multidisciplinary competencies that involve the analysis and
the modeling of crossed interactions between the microstructure and many other domains (electric, magnetic, thermal,
fluidic, etc.). The study of energetic dissipations in microstructures, in particular, is one of the most crucial aspects of the
design activity; a proof of this is the strong effort of researchers to formulate compact models and numerical simulations
that are able to predict accurately the damping coefficients in different operating conditions. The proper control of the
dissipated energy has relevant implications in the dynamic behavior, quality factor, and efficiency of the microsystem; these
aspects are directly related to the sensitivity of the sensors, the precision of the actuators, the noise of the transceivers, and
the efficiency and tunability of the energy harvesters, among others.
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Despite the large variability in geometry, shape, and size of microstructures, some features, such as oscillating parts
derived from the classic beam or plate, are quite common. Additionally, perforations are widely used in vibrating
microcomponents because of technological process constraints (as sacrificial layer release) and to modulate fluid flows.
Vibrating microstructures are subjected to viscous interactions with the surrounding fluid that is generally the primary
source of energy dissipation; the environment is generally filled with air at variable pressures, although structures vibrating
in liquids are also present in some applications. The air surrounding the vibrating microstructure is responsible for elastic,
conservative, and viscous dissipative effects; studying the characterization of the gas flow and the forces exerted on the
structure was the goal of many previous theoretical and experimental studies.

The modeling strategies developed in the literature to calculate viscous damping are based on the prediction of the fluid
flow in the gaps and holes, the fluid pressure, and the elastic and dissipative fluid force components. The approaches
adopted in the literature can be divided into analytic or compact [1-7] and numerical models [8-15] based on simulations of
the discretized coupled-field system, for example, with FEM tools.

For measurements of damping and stiffness coefficients in microstructures, different strategies can be used [16-23].
Through the measurements of the displacement in the time domain, for instance, the decay curve of the system response to a
step force directly provides the value of damping at resonance. Alternatively, the area defined by the force-displacement
hysteresis curve, which is directly proportional to the energy dissipated per cycle, can be used for the damping coefficient
calculation [24]. Other typologies of experimental strategies are associated with measurements in the frequency domain,
such as the half-power method applied to the frequency response function (FRF) of the system at —3 dB power level with
respect to the peak.

Another source of energy dissipation in microstructures is represented by the structural damping associated with the
solid material of the components subjected to deformation [25-27]. These dissipations are proportional to the strain
experienced by the material and are relatively high in some structural components such as elastic suspensions, linear
springs, membranes, and other deformed parts. The structural damping distribution is very sensitive to the modal-deformed
shape of the microstructure and the type of material. Previous works presented by the author reported experimental results
of energy dissipation in terms of quality factor and damping coefficient [28,29], accompanied by the validation of results
through multiphysics FEM simulations. However, the procedure adopted did not allow separating the contributions of
viscous and material damping because only the global damping coefficient was detectable.

The goal of this work is to provide contributions in the experimental characterization of energy dissipation in
microstructures through the optical strategy. The interferometric microscopy theory is presented from the viewpoint of
microstructural analysis and is related to the conversion algorithms implemented on the most diffused microscopes. The
explanation of interferometry and the influent parameters dedicated to this specific field of experimental mechanics will
contribute to reduce the gap between specialists in optical methods and microsystem designers. Furthermore, the collection
of experimental results in the field of MEMS damping will represent a valid source of information, for instance, for
researchers needing to validate new analytic models or calibrate numerical simulations addressed to complicated
geometries.

In this work, the measurement of damping in microstructures is based on the methodological approach of FRF detection
in the frequency domain and the half-power method. The experimental strategy used is the optical interferometry: two light
beams are pointed on the sample, and the light intensity of the interference beam is associated with a displacement
coordinate by means of a dedicated conversion algorithm. The measurements at variable air pressures are conducted with
an original climatic chamber that is designed and fabricated for this purpose.

The samples used are polysilicon and gold microstructures with capacitive actuation, including a perforated membrane
with variable shapes and sizes, supported by four beams working as elastic suspensions; the dimensions of the samples are
treated as parametric variables to investigate their influence on the damping coefficient variation. For the tests in the
climatic chamber, the samples are preliminarily subjected to the wire-bonding process to permit electric supply of
microstructures. Differently from previous works of the author, the present measurements at low air pressure allow
reduction of the contribution of viscous damping and accurate estimation of the dissipations associated with damping
inside the material.

2. Experimental methodology

The experimental characterization of the microstructure dynamic response is the preliminary step of the damping
measurement. For tests at low air pressure conditions, the climatic chamber described in the next sections is used; this
measurement methodology was able to detect the position of the sample situated inside the chamber from the outside
through a special optically compensated glass, allowing complete contactless detection.

Optical detection strategies offer many advantages for investigating MEMS dynamics. These strategies provide a large
measurement field suitable for millimeter-sized structures accompanied by high spatial resolution. They preserve device
integrity because of the contactless nature of measurement (even sample heating can be prevented by using low-power
density of the light source); then, optical measurements allow both static detections for evaluating 1D, 2D, and 3D profiles
and dynamic detections for capturing modal shapes and vibration spectra. Finally, optical methods can be applied directly
on the sample surface without preliminary treatments and have low sensitivity to environmental disturbances like
temperature floating or airflows. Furthermore, contactless measures are necessary when using electrical probes to supply



the devices, or the detection must be conducted through the glass of a climatic chamber. These cases require additional
special long-distance objectives [30].

In static analyses, optical techniques are generally divided into two groups: techniques based on single-point detection
combined with the translation of the detector (scanning-point profilometers) and techniques based on detector arrays for
simultaneous measurement of many points (full-field profilometers), which are more suitable for 3D profiling. Microscopic
interferometry allows vertical resolution down to 0.1 nm and lateral resolution in the submicron range [31]. Most of
the drawbacks of interferometric techniques (limited detectable step height, material reflection properties, and
limitation of vertical range imposed by objective depth of focus) can be easily overcome by using white light instead of
monochromatic light: multiple wavelengths can be optically separated to perform parallel detections with improved
measurement range and disturbance insensitivity. Furthermore, the influence of mechanical drift on the measurement can
be drastically reduced by fast detections based on phase modulation. The full-field detection using interferometry is
available through overlapping techniques consisting in merging several portions of the profile to obtain a large full image
of the specimen.

Alternative full-field techniques are widely used in mechanical engineering, such as holographic interferometry, digital
holography (DH), and electronic speckle pattern interferometry (ESPI); in these cases, however, the interference is generated
from the light reflected or scattered by the sample surface, and a minimum value of the roughness is needed to get the
required sensitivity threshold. Unfortunately, in MEMS structures, most surfaces are smooth, and the intensity of scattered
light is too weak, suggesting that the application of these strategies is limited to few cases.

In dynamic measurement field, the microscopic interferometry detects the sample vibration from the variation of the
contrast among interference fringes and offers relevant advantages [32-34]. For instance, it allows full-field target detection,
provides considerably high resolution of detectable displacement (less than 1 nm), and allows fast detection of vibration
spectra by sweeping actuation frequency. Other strategies are available, among which, laser Doppler and laser deflection are
the most diffused; the first one measures the phase (or the optical frequency) shift induced by the Doppler effect on the
light beam reflected by the sample surface, and the last one measures the angular variation of the same reflected beam
during sample vibration. Although these approaches are well established in MEMS and widely used in this field, they have
some drawbacks: laser Doppler requires considerable time consumption to perform the complete surface scanning, and the
laser deflection method exhibits strong sensitivity between the detected displacement and the local slope variation.
In addition, it requires complicated setups with high-aperture optics for focusing and detecting the reflected spot.

For the reasons mentioned, optical interferometry was selected for this experimental investigation and especially
because of the suitability for dynamic out-of-plane measurements, the high sensitivity (in the order of light wavelength),
the insensitivity to mechanical drift and environmental disturbances, and the possibility of implementing automatic
scanning with considerable shortening of detection time.

2.1. Optical interferometry applied to microstructures

Two light beams are directed to the same point of the sample surface, and an interference light beam is produced.
The intensity of the interference light beam depends on the phase shift between the two original beams at the time of
collision, which is the function of their paths. The optical interferometric experimental technique is based on the possibility
of converting the intensity of the interference light to the optical path difference (OPD) between the two original beams
(namely, the arms of the interferometer) and, finally, to the position of the target point, corresponding to the sample surface.

By considering the two light wave sources described by the following equations:

Ey =Eqp sin(wt—g¢,) (1)
Ey = Eyp sin(wt—g,), (2)

the optical interference generates the wave:
E = Ey sin(wt-9), (3)

where E; is the oscillation amplitude, ¢; is the phase angle of source beams at the interference point, ¢ is the phase angle of
the interference beam, and o is the angular frequency. Through simple calculations, the following relation between the
amplitudes of the interference wave and the original light waves is obtained:

Eo = \/E3o + E3o + 2E10E20 COS(g1—12) (4)

This shows that the interference wave amplitude depends on the phase difference between the source waves at the
interference point. The theoretical equation expressing the phase angle of interference beam as function of the phase angles
of the source beams is

(5)

Eqp sin E5p sin
8:arctan< 10 SINgq + E30 472)'

Eqo cosgq + Eyp cosg,

The optical interference can be generated only from the interaction of coherent light beams; usually, in traditional optical
devices, it is generated by the same source to provide them the same frequency. A simple application of light interference to
measurements is schematically represented in Fig. 1. The light wave coming from source (1) is separated into two beams (2,
3)
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Fig. 1. Optical interferometer working principle.

by the beam splitter (e.g., a half-silvered mirror) and directed to a couple of separate mirrors. After reflection, the beams (4, 5)
rejoin themselves prior to being captured by a detector (6). One of the mirrors is movable and allows varying the travel length
of the corresponding light beam, producing an OPD between the two arms of the interferometer. The reported scheme also
includes a compensator plate: the beam splitter causes a variation of the light travel length on the first arm of the
interferometer because of refractive effects. Thus, it is necessary to induce the same variation on the second arm to preserve
the coherence between light beams. This function is carried out by the compensator plate that, having the same optical and
geometrical properties of the splitter, replicates the same light refractions even on the second arm.

The quantitative detection of light waves can be performed by many different light sensors (e.g., photocells) that
commonly are able to read its intensity, making this parameter relevant for interferometric techniques. In the case of source
light beams with the same amplitude (Eg =E»¢), the light intensity I:E,?o of the interference beam can be derived directly
from Eq. (4). Considering the relation Ap=(27Ax)/4 between the phase shift and the OPD (see Appendix A), the light intensity
is expressed by the following equation:

I =4E3 cos? (”TAX> (6)

where 1 is the wavelength, and Ax is the OPD between the sources. In this condition, from Eq. (5), the following can be easily
derived: 9=(¢p1+¢2)/2.

The averaged expression of the light intensity resulting from Eq. (6) is calculated on the time interval needed to cover the
travel Ax (i.e., the OPD) by the surface of the vibrating sample. This interval is many times shorter than the oscillation period,
and the OPD is many times smaller than the sample oscillation amplitude. This assures the desired sensitivity on the
evaluation of displacement through the measurement of the light intensity by the detector.

Eq. (6) describes the basic function of the measurement devices having the optical interference as the working principle;
the common solution is to keep one the mirrors constant and correlate the other one with the sample surface. When the
specimen is moving, the intensity of the interference wave varies according to the amount of the displacement;
alternatively, when the specimen surface is affected by profile irregularities, for instance, because of superficial roughness
or shape topology, the interference light intensity varies along the surface.

The light intensity is measured by the detector; in the actual setting, it is represented by a charge-coupled device (CCD)
camera, and the image resolution is increased by coupling a microscope to the interferometer.

The microscope coupled to the interferometer has the effect of introducing a magnification of the captured image, which
must be included in the conversion algorithm. By introducing a couple of coordinates x,y to identify each point (or pixel) on
the detector surface and the magnification factor G of the microscope, Eq. (6) can be written in the final form (see Appendix

A)
(XY Xy 4z AX((X/G).(/G) (X y
166.9) =L (-2 {1 4 C(G,G,Ax)cos{ e 0 (5 ) . (7)
where Iy, is the ambient light intensity, (x/G, y/G) are the coordinates of the specimen surface corrected with the
magnification of the microscope, and fis the correction factor dependent on the objective aperture. The wavelength 1 has been
changed to 1, representing the average wavelength of the light spectrum because, generally, it is not possible to detect a
perfectly monochromatic light beam in real conditions. The coefficient

Tamb—Imi
C= amIb min (8)
amb

represents the fringe contrast, where I, is the minimum light intensity.
The period of the reported function, corresponding to the period of interferometric fringes, is

_Am(141)
T="o, (9)



The values of the variables I, C, @2, and Ax are dependent on the position on the sample surface and are influenced by
the inhomogeneity of the ambient light and the optical properties of surface materials. Therefore, the value of C can be
influenced by the OPD if shape discontinuities of the surface are comparable to the microscopic depth of field or to the
coherence length of the light source.

In the dynamic tests needed for evaluating the damping coefficients, the sample is subjected to alternate motion; in this
case, the OPD is defined as a function of the specimen surface displacement as described in Appendix A. Common light
sensors are able to measure the light intensity on each pixel as the average over a determined time interval Ty (usually some
centimes of a second). This average intensity I, can be expressed with the integral of the dynamic light intensity (Eq. (A20))
over the time Ty divided by the same time interval, giving the following equation:

In%.9) =L |1+ ol (52 cos (250 1 2 ) |, (10)
}vma lma

where Axg is the average position of the sample, a is the amplitude of oscillation, and J, is the 0-order Bessel function

containing information about the displacement of the sample. Eq. (10) represents the algorithm used by the microscope to

convert the light intensity detected by the light sensor to the sample dynamic displacement. This conversion equation is

suitable to measure the real-time FRF of the system under analysis [33,34]. From Eq. (10), it is seen that the maximum

difference between the measured light intensity and the ambient light intensity is reached when the equation is

CoS(4nAXg/Ama + Ap) = + 1. 11

This consideration is useful to set properly the experimental measurements: by calibrating the sample static position,
interference fringes having the maximum and the minimum values of intensity can be obtained in dynamic conditions; the
described procedure increases the contrast between two adjacent fringes and improves the resolution of the measurement.

2.2. Half-power method for damping estimation

The algorithm described in the previous section is applied to the interferometric microscope for converting the light
intensity measured on the sample surface to oscillation amplitude when a sinusoidal excitation force is applied. The
detection camera points on a few pixels and registers the light intensity variation during the oscillation cycle; after the
conversion, the oscillation amplitude is obtained and stored. The same measurement is repeated at variable frequencies of
excitation within a certain range that includes the sample resonance (sine sweep); finally, the FRF is obtained by plotting the
sequence of measured amplitudes.

The half-power method is used to calculate the global damping coefficient of the microstructure from the experimental
FRF. First, the measured response function in the frequency domain is interpolated by means of the sixth-order polynomial
h(f); the maximum value of the function is then determined and used to compute the half-power level of the microstructure
response corresponding to -3 dB decay from the peak. The half-power is

max[h(f)]
) 12
73 (12)
Corresponding to the half-power level, the two half-power frequencies, namely, f' and f", are identified as represented in
Fig. 2. They define the half-power bandwidth expressed by the following equation:
Af =f"f =2tf,, (13)

where ¢ is the global damping ratio and f;, is the resonance frequency. FRF refers to the vibrating microstructures under the
influence of the surrounding air and material dissipations; thus, the measured damping includes both viscous and structural

(h(H))-3 ag =

max[h(f)] -----z4c-----

h(Mlagg =-f---1---%--

frequency response function

i th

frequency

Fig. 2. Half-power method applied to the FRF.



components. The experimental quality factor of the microstructure can be estimated as

_fa
Q= A (14)
Both the half-power bandwidth and the resonance frequency can be measured directly on the FRF; therefore, the
damping ratio and the quality factor are easily obtained from Eqs. (13) and (14), respectively.
Then, the damping coefficient can be calculated by the following equation:

c=2mg¢2xf ), (15)

where m is the modal mass participating in the resonance considered. For the samples used in this work, the modal mass
can be approximated to the mass of the central plate. Alternatively, for more complicated geometries, the exact value of the
modal mass can be estimated, for instance, by using a finite element method (FEM) numerical model. Furthermore, this
method also allows the estimation of the global dynamic stiffness of the microstructure by the simple relation:

k =mQ2xf,)>. (16)

Alternative methods can be used for extracting the damping coefficient, for instance, by measuring the phase shift
between the actuation force and the displacement response of the structure; in this case, measurements in the time domain
are needed, and the cited parameters must be measured simultaneously. Instead, the method used in this study considers
the experimental results coming directly from the optical measurement, which are the amplitude of resonance peak
measured in the frequency domain and its attenuated value (half-power).

3. Experimental instrumentation
3.1. Climatic chamber design and building

The climatic chamber represented in Fig. 3 has been designed and fabricated to conduct the measurements at low air
pressures. The central cylindrical base and the cover of the chamber are made of steel; the adhesion of the cover is assured by
six screws and a rubber seal. The dimensions of the internal volume are 80 mm (base diameter) and 76 mm (height), and the
thickness of the lateral wall is 35 mm. The high thickness of the wall and the base can increase the mass of the chamber to
reduce the effects of vibrations generated by the vacuum pump. A movable stage (diameter, 43 mm) that is able to translate
in the vertical direction and tilt is provided in the chamber; it is supported by four elastic springs and is used to support and
orient the samples. The tilting angle of the stage can be varied through the rotation of the regulation screws. A glass plate
(diameter, 35 mm; thickness, 1.75 mm) that is compensated for the interferometric microscope is situated at the center of
the cover to allow the optical detection of samples with the microscope objective situated outside the chamber. The climatic
chamber is equipped with four pipe connections DN40, which are used to connect the vacuum pump, pressure Sensor,
microflow leak valve, and DB9 port (Fig. 4a) for the electric supply of samples. The vacuum pump Alcatel Drytel 1025 AS has
been used; it is based on two separate stages: an alternative membrane pump for the low vacuum and a turbomolecular
pump for the high vacuum (7.5 1/s nominal flow rate, 103-10~% mbar pressure range). The pump is connected to the chamber
through a 1-m-long flexible pipe that is able to dissipate the vibrations. A manual gate valve (VAT 01.2) has been added to
the chamber inlet to isolate its internal volume from the flexible pipe when the pump is turned off.

The pressure level in the chamber can be adjusted by acting on a microflow leak valve (1 x 10° mbar I/s tightness) that
introduces a very small regulated airflow from the ambient.

The climatic chamber has been designed also for controlling the temperature of the microstructures under investigation;
this is possible through a Peltier cell situated on the internal movable stage and supplied by a DC voltage. The temperature
can be varied within the range —20 to 100 °C. A PT100 temperature sensor is situated on the Peltier cell to provide the
feedback signal for the temperature control (Fig. 4b).

(a) (b)

movable
stage

internal volume

Fig. 3. Climatic chamber for tests in environments with controlled pressure and temperature: 3D drawing (a) and cross-section schematics (b).
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Fig. 5. Complete experimental setup, including vacuum chamber, airflow controllers, voltage supply, and interferometric microscope.

The electric supply is provided to the samples by wires through the DB9 port. The same DB9 port is used to supply the
Peltier cell and the PT100 temperature sensor when they are used for the tests. The pressure sensor Pirani-Penning ACC2009
(103-5 x 102 mbar measurement range, 30 percent accuracy, 5 percent repeatability) is used to control the air pressure
inside the chamber. The complete experimental setup for environmental controlled tests is reported in Fig. 5, where the
climatic chamber, microscope Mirau objective, pressure sensor, samples' electric supply, airflow valves, and flexible pipe
connected to the pump are visible.

3.2. The interferometric microscope

The measurements are conducted with the interferometric microscope ZoomSurf 3D (Fogale Nanotech). The conversion
algorithm described in Section 2.1 can be used for static and dynamic tests. In the first case, the instrument works as an
optical profilometer; the surface of many different materials (metals; polymers; semiconductors; biological; thin
transparent layers such as varnishes, plastics, and glasses; etc.) can be analyzed also by merging several detections.
Statistical analyses of surface roughness can be performed, and by means of the software for image processing, the quasi-
static deformation of samples is measured through a series of successive detections. In case of dynamic tests, the microscope
is suitable for measuring the real-time FRF of microstructures and detecting the modal deformed shape by means of
stroboscopic light; in this last case, a series of successive images of the deformed sample are captured and then used to
reproduce the modal displacements at low velocity.

For dynamic measurements, the red monochromatic light source is preferred to generate interferometric fringes with
variable light intensity and constant amplitude. The measurement of the phase shifting of interference fringes is the basic
principle of the technique called “phase shifting interferometry,” which allows rapid measurements of microstructures in
motion, as well as etching controls, micromachining processes monitoring, and optical component characterization. Because
of its intrinsic incoherent nature, the polychromatic white light source determines the rapid decay of fringe intensity and
thickness. The “white light interferometry” technique is based on the localization of the maximum fringe contrast area and
is used for the static superficial profile measurements of large and irregular components.



The optics mounted on the microscope are able to perform profile measurements from a minimum area of 100 x 100 pm?
to a maximum area of 2x 2 mm? The setting used in the measurements includes the Mirau objective with 20 x
magnification factor that provides 0.6 pm lateral and 0.1 nm vertical resolutions. The maximum detectable height difference
(i.e., the thickness of vertical steps) in a single measurement is 400 pm; the samples are situated on a stage that is
electrically moved in the x,y plane and is able to support a maximum weight of 5 kg. The same stage is used to host the
climatic chamber when measurements in a controlled environment are performed. The objective moves along the z-axis
and can cover the distance of 250 mm. The stage slope can be changed by means of mechanical screws to adjust the
orientation and the thickness of fringes. Through the software, it is possible to modify some optical parameters such as the
objective magnification factor (G) and the reflection coefficient of the reference mirror. A dedicated function allows
recognition of the portions of the specimen that are excessively sloped and the parts covered by a layer of dust and excludes
them from the evaluation. The excitation voltage for dynamic tests is provided by the embedded generator in the range of
0-200V at frequencies of up to 2 MHz.

In case of measurements with the climatic chamber, the special 20 x LWD Mirau objective (0.28 numerical aperture,
12.5 mm working distance) is used; this objective allows the manual compensation of the presence of the additional glass
situated on top of the chamber that modifies the optical paths along the two arms of the interferometer. The compensation
is necessary to produce the optical interference (and the interference fringes) on the sample surface situated inside the
climatic chamber.

4. Microstructure samples

The samples of the microstructures are represented by a central plate with square holes and four lateral supporting
springs. Shape, size, and material are variable among the samples; they can be divided into two types: square plates
made with electroplated gold and rectangular plates made with electroplated gold or polysilicon. The microstructures are

Fig. 6. Square plate samples (typology I): geometrical parameters (a) and optical image of samples 1.25 (b), .26 (c), 1.27 (d), and 1.28 (e). The active window
reference for the optical detection of displacement is reported at the center of each structure.



actuated by an electrostatic force in the vertical out-of-plane direction through the counterelectrode situated on the
substrate below the suspended plate. The nominal material properties of electroplated gold and polysilicon are as follows:
Young's modulus E;=98.5 GPa, and E,= 147 GPa; Poisson's ratios v;=0.42, and v,=0.21; densities py=19.32 x 10~'° kg/um?,
and pp=2 x 107"° kg/um?>.

The square plates (typology I) have the geometry introduced in [14] and reported in Fig. 6a. The plate-side length (a), the
hole-side length (sp), and the number of holes (M x M) are the variable parameters; the nominal thickness of the plate is
h.=6.3 pm, and the air gap height is h=3.0 pm. The average measured length (Lg) and width (W3) of the supporting springs
are 96.66 and 12.88 pm, respectively, and their average thickness is 2.606 pm. The optical images of some samples (1.25-1.28)
belonging to typology I are shown in Fig. 6b—e, where the hole size parameter variation is clearly visible among the variants
and where the active window for the optical detection of displacement is reported.

The dimensions of the samples (typology I) are reported in Table 1, together with the total number of holes, M x M.

The dimensions indicated have been measured by a microscope with the static interferometric technique; the tolerances of
the reported values correspond to the sensitivity error given by the microscope resolution (horizontal, 0.6 um; vertical,
0.1 nm). The distance between two adjacent holes (s;) and that between the peripheral holes and the plate border (s,) can
be calculated with the following relations:

__a S _
=i =12 (17)

Si

The geometry of rectangular plate samples (typology II) built in gold and polysilicon was introduced in [28,29],
respectively. The nominal plate thicknesses h. of gold and polysilicon microstructures are 6.3 and 15 pm, respectively, and
the nominal air gap thicknesses h are 3 and 1.6 um, respectively.

The geometry and shape of samples belonging to typology II are represented in Fig. 7a, and the optical images of gold and
polysilicon microstructures are also reported (Fig. 7b and c). These images also include the active window for the optical
detection of displacement.

The dimensions of samples (typology II) are listed in Table 2, and the number of holes present along the longer (M) and
the shorter (N) sides of the plate is also indicated. The average measured dimensions of the supporting beams are
Lg=96.08 pm (length), Wp=13.52 pm (width), and 2.620 pm (thickness) for rectangular gold structures and Lg=122.90 pm
(length), Wg=3.92 pm (width), and 15.063 pm (thickness) for polysilicon structures. The dimensions indicated have been
measured by a microscope with the static interferometric technique and are affected by the tolerances previously reported.
The distance between two adjacent holes (s;) and the distance between the peripheral holes and the plate border (s,) can be

Table 1
Dimensions of samples with gold square plate (typology I).

Sample Plate side a [pm] Holes side s [pm] Number of holes M x M Plate thickness h; [pum]
11 55.91 7.20 4 6.297
12 55.07 9.31 6.291
13 55.70 10.70 6.302
1.4 55.89 12.59 6.322
L5 76.25 7.18 9 6.311
1.6 76.40 9.29 6.303
1.7 76.47 10.68 6.311
1.8 76.41 12.62 6.299
1.9 96.45 7.21 16 6.309
1.10 96.51 9.31 6.298
L11 96.33 10.68 6.307
112 96.12 12.61 6.296
113 11547 7.21 25 6.304
114 115.42 9.31 6.275
115 115.39 10.71 6.298
116 115.74 12.60 6.302
117 137.14 7.21 36 6.307
118 137.08 9.31 6.296
1.19 137.13 10.68 6.332
1.20 137.11 12.61 6.286
1.21 157.31 718 49 6.303
122 157.28 9.29 6.278
1.23 157.63 10.69 6.285
1.24 157.13 12.59 6.285
1.25 185.96 7.19 64 6.312
1.26 185.28 9.33 6.321
1.27 185.97 10.70 6.287

1.28 185.13 12.58 6.297
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Fig. 7. Rectangular plate samples (typology II): geometrical parameters (a) and optical image of gold I1.5 (b) and 11.6 (c) and polysilicon I1.11 (d) and 1112 (e)
variants. The active window reference for the optical detection of displacement is reported at the center of each structure.

Table 2
Dimensions of samples with gold and polysilicon rectangular plate (typology II).

Sample Plate length a [pm] Plate width b [um] Holes side so [pm] Number of holes M x N Plate thickness h. [pm]

Gold samples

111 376.13 96.66 7.21 18 x4 6.298
1.2 376.47 96.50 9.29 18 x4 6.303
1.3 376.81 96.63 10.69 18 x4 6.257
1.4 376.47 96.61 12.60 18 x4 6.323
1.5 376.44 156.94 7.21 18x7 6.302
1.6 376.13 276.98 7.20 18x 13 6.312
Polysilicon samples

1.7 3724 66.4 5.0 36 x6 15.012
1.8 363.9 63.9 6.1 36 x6 15.023
1.9 373.8 64.8 7.3 36 x6 14.972
1.10 369.5 64.5 7.9 36 x6 15.003
L1 363.8 123.8 6.2 36 x12 14.989
1112 363.8 243.8 6.2 36 x24 15.006

calculated using Eq. (17) or the following relations, written for the short side of the plate:

b So .
si_N—_H—T, i=1,2 (18)
According to the results of previous studies [35], the first deformed shape of all the samples tested consists of the flexural
deflection of lateral springs and the quasi-rigid displacement of the central plate in the vertical direction. The

microfabrication
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Fig. 8. Wire-bonded samples for tests into the climatic chamber: bonded dice (a) and microscopic detail of wires bonded on gold pads (b).

tolerances affecting the geometrical dimensions of the samples may induce small tilting angles of the plate during
oscillation. However, the modeling of air damping by means of analytical models presented in [29], which assumes
uniform air gap thickness, provided results in good agreement with experiments, suggesting that tilting angles of the plate
are negligible. The structural displacement in the time domain when the samples are subjected to alternate voltage
supply is almost perfectly sinusoidal, as confirmed by the measurements conducted with the laser Doppler technique in
[36] on the same structures. This property of the samples confirms the applicability of the measurement setting described
and the effectiveness of the method used to process the experimental data.

For tests at ambient air pressure, the microstructures are supplied with conductive probes applied to the square contact
pads situated near the samples and visible in the reported images. For tests at low air pressure, the electric actuation is
carried into the climatic chamber by means of electric wires passing through the DB9 port and connected to the samples,
which are previously subjected to the wire-bonding process, as shown in Fig. 8.

5. Results
5.1. Air damping at ambient pressure

The results of experimental measurements of resonance frequency, half-power bandwidth, damping coefficients, and
damping ratio are listed in Tables 3 and 4 for the samples of typologies I (square plates) and II (rectangular plates),
respectively, at ambient air pressure conditions.

Two types of errors affect the measured values of damping coefficients and quality factor; the errors are related to the
experimental procedure used and the microscope resolution. The first source of error depends on the frequency step of the
discretized sine sweep used to excite the microstructure. The second source of error is related to the sensitivity of the
interferometric microscope in the vertical direction for the evaluation of the out-of-plane dynamic oscillation amplitude.

Some experimental FRFs are presented in Fig. 9 as examples. The measured resonance frequencies are reported in Fig. 10
for the gold and the polysilicon microstructures; the influence of plate-side length and hole dimensions on resonance
frequency is clearly shown in Figs. 11 and 12.

5.2. Air damping at low pressure

The damping coefficient of test structure 1.17, which belongs to typology I (gold square plates), has been measured at
variable air pressures by means of the climatic chamber. The experimental methodology applied is the same as the one
previously described for the tests at ambient pressure, and the measurement error analysis and the settings of sine sweep
excitation are still valid. Through the climatic chamber, the measures have been performed at static air pressures variable
from the ambient pressure down to 1.26 mbar, corresponding to low vacuum conditions. The results are listed in Table 5. As
a consequence of air rarefaction, the viscous dissipations of air are reduced, and the resonance peak becomes sharper as the
pressure lowers. The changes in dynamic response are also proven by the quality factor increase and the half-power
bandwidth (Af,) reduction accompanying the pressure drop. The dynamic response variation due to the different air
pressures of the environment is shown in Fig. 13, which displays the FRF of sample 1.17 when the pressure is progressively
reduced. The sharpness of the resonance peak increases considerably at low pressures, indicating the lower influence of
viscous damping. The variations of the damping coefficient and the quality factor are reported in Fig. 14. The results show
that reducing the pressure from ambient to 1.26 mbar increases the quality factor by about 10 times. The interpolation of the
experimental results shows the asymptotic trend of the damping coefficient for low pressures. The residual damping at the
lowest pressures is the component of dissipations depending on the material and on the structure itself (anchor losses,
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Table 3
Measured values of resonance frequency, half-power bandwidth, damping coefficient, and damping ratio (100 x ) of samples with gold square plate
(typology I).

Sample Resonance frequency Half-power Plate mass Damping coefficient Damping ratio
fa [kHz] bandwidth Af [kHz] m [kg 10719] ¢ [Ns 107%/m] ¢ [%]
11 71.04 0.7389 3.551 1.648 0.520
1.2 74.54 0.7143 3.265 1.465 0.479
1.3 76.67 0.4998 3.220 1.011 0.326
1.4 79.21 0.3984 3.041 0.761 0.251
1.5 58.16 0.6172 6.523 2.530 0.531
1.6 59.65 0.6103 6.162 2.363 0.512
1.7 61.57 0.5264 5.878 1.944 0.427
1.8 63.58 0.3888 5.361 1.310 0.306
1.9 47.78 0.8296 10.325 5.382 0.868
1.10 48.76 0.6486 9.646 3.931 0.665
L1 50.69 0.5260 9.083 3.002 0.519
112 54.06 0.5487 8.144 2.808 0.508
113 41.27 0.8823 14.656 8.125 1.069
1.14 42.28 0.6353 13.523 5.398 0.702
1.15 43.80 0.5170 12.712 4129 0.590
1.16 45.66 0.5607 11.478 4.044 0.614
1.17 34.17 0.7733 20.637 10.027 1.131
1.18 35.03 0.5770 19.062 6.911 0.824
1.19 36.61 0.5239 17.981 5.919 0.716
1.20 39.72 0.5541 15.879 5.528 0.698
1.21 29.82 0.8886 27.059 15.107 1.490
1.22 29.86 0.6305 24.874 9.854 1.056
1.23 31.00 0.5939 23.372 8.721 0.958
1.24 33.60 0.5833 20.549 7.531 0.868
1.25 22.04 0.7785 38.136 18.654 1.766
1.26 25.36 0.5913 35.119 13.048 1.166
1.27 26.28 0.5592 33.108 11.633 1.064
1.28 28.13 0.5584 29.374 10.306 0.992
Table 4

Measured values of resonance frequency, half-power bandwidth, damping coefficient, and damping ratio (100 x ) of samples with gold and polysilicon
rectangular plate (typology II).

Sample Resonance Half-power Plate mass Damping coefficient Damping ratio
frequency f, [kHz] bandwidth Af [kHz] m [kg 107'7] ¢ [Ns 107%/m] ¢ %)

Gold samples

11 20.25 1.1278 39.684 28.121 2.786
1.2 20.70 0.8652 36.673 19.936 2.090
.3 20.98 0.5022 34.069 10.750 1.197
1.4 21.92 0.3847 30.467 7.364 0.878
1.5 17.00 1.2793 63.956 51.408 3.762
1.6 13.61 2.3788 112.253 167.778 8.741
Polysilicon samples

1.7 201.64 11.037 5.803 40.241 0.173
1.8 204.33 5.728 4.572 16.454 0.139
1.9 211.01 3.490 3.806 8.347 0.119
.10 222.28 3.397 3.106 6.630 0.100
IL.11 173.90 6.071 8.523 32.513 0.219
.12 138.56 5.496 16.651 57.501 0.340

thermoelastic damping, etc.), and it is almost independent of the viscous dissipations of air, the amount of which is given by
rarefied gas theories.

5.3. Experimental uncertainty

Two types of errors affect the measured values of damping coefficient; they depend on the testing procedure and the
experimental setup. The FRF is measured by increasing the actuation frequency in steps of 10 Hz that provide response
curves composed of discrete measured points in the frequency domain; the step width corresponds to the accuracy of the
resonance frequency measurement. The second error source is represented by the interferometric microscope sensitivity in
detecting vertical motions of the samples; however, its value is nominally 0.1 nm, which is three orders of magnitude lower
than the measured oscillation amplitudes and is reasonably negligible. The global error on the quality factor measurements
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Fig. 9. Experimental FRF of some microstructures; the sample numbers are reported above each curve.

@) go
< 80 1.1-1.4
T
X 704
& e+ 1.5-1.8
g 5 1.9-1.12
g '7 N —————Y L kR [
ﬁ 401 & S . ——ela7H20
S | e 121124
s 30 E/_‘_/,/. 1.25-1.28
§ 201% = o— —o [1.1-11.4
9] © :
2 104 1.6

0 ————

7 75 8 85 9 95 10 105 11 115 12 125 13 135
hole side (um)

225 A O—_—O”/O/o 11.7-11.10
200 A

175 A o .11

—

O

~
N
[$))
o

° 1112

resonance frequency (kHz)
B

0 T T T T T T T
4.5 5 5.5 6 6.5 7 7.5 8 8.5

hole side (um)

Fig. 10. Measured values of resonance frequency of gold (a) and polysilicon (b) microstructures related to plate and hole dimensions. The black dots refer to
typology I (square) and white dots to typology II (rectangular); the sample number is reported near each mark.



14

(@) 30
= 114114
25
20
1.25-1.28
154 1.21-1.24

104 1.17-1.20

113-1.16 ‘\’\’\‘
5 1ol é\.’\.——.‘.
1.5-1.8
114 %

6 65 7 75 8 85 9 95 10 105 11 115 12 125 13
hole side (um)

damping coefficient (Ns10-6/m

(b) 70
E 60
Y o 112
[2] 50_
§ 11741110
3 407
[}
= o
£ 301 1111
o
[$]
o 20 -
<
o
€ 10
®©
©
0 ; ; ; . ; .

45 5 55 6 6.5 7 7.5 8 8.5
hole side (um)

Fig. 11. Measured values of damping coefficient of gold (a) and polysilicon (b) microstructures related to plate and hole dimensions. The black dots refer to
typology I (square) and white dots to typology II (rectangular); the sample number is reported near each mark.

(a) 200

1.1-1.4
180 A
160 A 1.5-1.8
140 4
120 A
100 A 1.9-1.12

80 A

60 A

40 +

201 s—;

I it i IS

7 75 8 85 9 95 10 105 11 115 12 125 13 13.5
hole side (um)

quality factor

11.1-11.4

5

(b) 600

11.7-11.10
500 H

400 A

300 -

o .11

quality factor

200 A

° 112
100 A

0 T T T T
4.5 5 55 6 6.5 7 7.5 8 8.5

hole side (um)

Fig. 12. Measured values of quality factor of gold (a) and polysilicon (b) microstructures related to plate and hole dimensions. The black dots refer to
typology I (square) and white dots to typology II (rectangular); the sample number is reported near each mark.



Table 5

Measured values of resonance frequency, half-power bandwidth, damping coefficient, and damping ratio (100 x ) of sample 1.17 at low air pressures.
The mass of the central plate is 20.637 x 107'% kg.

15

Pressure [mbar]

Resonance frequency f, [kHz]

Half-power bandwidth Af,, [kHz]

Damping coefficient ¢ [N's 10-%/m]

Damping ratio ¢ [%]

1.26 30.42 0.0892 1157 0.147
271 30.41 0.0821 1.065 0.135
7.65 30.47 0.1548 2.007 0.254
14.67 30.46 0.1543 2.001 0.253
100.10 30.44 0.4258 5.521 0.699
251.48 30.60 0.9233 11.972 1.509
1081.41 30.58 0.9487 12.301 1.551
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Fig. 13. Measured FRF of sample 1.17 at the different values of environmental air pressures indicated near each curve (unit mbar).
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is estimated in the range between 2.23 and 4.91 percent for gold square samples, between 0.91 and 5.24 percent for
rectangular gold samples, and between 0.19 and 0.59 percent for rectangular silicon samples.

6. Conclusion

The optical interferometric technique applied to microstructural experimental analysis produces highly precise
detections of the displacement in dynamic conditions. The development of a dedicated algorithm for applying the light
interference to microscopy has been discussed with the goal of relating the measured light intensity of fringes to the instant
sample position. The experimental setting is completed with the building of the climatic chamber suitable for lowering the
environmental air pressure for measurements in rarefied atmosphere. The damping coefficient was estimated through the
experimental FRF by means of the half-power method and the measured true geometric dimensions of samples. Samples
were designed, built, and prepared for tests with the wire-bonding technique. The parametric variants built allowed
investigation of the influence of geometry on viscous dissipations because of the fluid.

This work has the aim of conjugating the different competencies of microsystem designers with those of specialists in
optical experimental methods, through the detailed explanation of interferometric microscopy parameters on micro-
structural dynamics analysis. Furthermore, the experimental results from measurements on parameterized geometries will
represent a useful database for modeling activities in the field of MEMS damping.

Appendix A

By assuming that the two sources of beams described by Eqgs. (1) and (2) have the same amplitude, which is
E10 = Ez0 =Ejp, (A1)

then the interference wave amplitude becomes

Eo = \/2E3[1 + cos(py o)l (A2)

By using the trigonometric relation (1+cos a)/2=cos*(a/2), the last equation can be written as

_ 2 2 (P1—92
E0_1/4E,0cos( . ) (A3)

This expression gives the interference wave amplitude produced by the interaction of two coherent light waves with the
same amplitude E;o and with the instant phase angles ¢, and ¢,. The wave amplitude is related to the light intensity I by the
equation: I :E,-zo. The quantitative detection of light waves can be performed by many different light sensors (e.g., photocells)
that are commonly able to read its intensity, making this parameter relevant for interferometric techniques.

When the wave light propagates, the 2z phase angle corresponds to the wave path 4, where 4 is the wavelength; then, the
generic displacement Ax and the correspondent phase angle variation are related by the following proportionality:

AX:Ap=21:2x. (A4)

Then, the phase shift between the two source waves at the time of collision is directly dependent on their optical paths;
if Ax is the optical path difference between the two arms of the interferometer, their phase shift is

2rAX
P1—¢2=A0gp= ”/1 (A5)
and the light intensity of the interference beam is
= 4E2 cos? (”TAX) , (A6)

which corresponds to Eq. (6). The last relation shows that the interference wave intensity becomes equal to zero (destructive
interference) when

X _nl n=135,. (A7)
while it reaches its maximum level (constructive interference) when
”%:nn, n=0,2.4,.. (A8)
The first case corresponds to the OPD
Ax:n%, n=1,35,.. (A9)

and the second case to the OPD
Ax=ni, n=1,3,5 ... (A10)
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Starting from Eq. (A2), it is possible to define the intensity as
1=2E[1 + cos(p1=¢2)] (A11)

that can be represented as a generic wave function depending on the phase shift; the visible effect of this function is a
sequence of areas, namely, interference fringes, where the light intensity varies as a sinus. The intensity function can be
expressed as a sinus variation around the average intensity: by indicating with I,.x and Iy, the maximum and the
minimum light intensities, respectively, it results in

I— Imax ;_ Imin 4 (Irnax ‘2|‘ Iinin —Imin>COS((,01—(ﬂ2), (A12)

where the average intensity can be identified with the ambient light intensity:

Lamp = w (A13)
By combining Eqs. (A12) and (A13), the intensity becomes
I'=Iymp[1 + C cos(p )], (A14)
where the coefficient
¢ = Lamb=lmin (A15)
Limb

represents the fringe contrast. After modifying Eq. (A14) in the following form:
I'=Limp[1 + Ccos{2(p1—¢2)—(@1—¢)}], (A16)
the OPD expressed by Eq. (A5) can be introduced to obtain

4zA
I=IL {1 +Ccos{”T"+(p2—¢1H, (A17)

which is the basic form of the algorithm used by the interferometer to relate the OPD to the light intensity detected in static
conditions. By introducing a couple of coordinates x,y to identify each pixel on the detector surface and the magnification
factor G of the microscope, Eq. (A17) can be written in the final form:

_ Xy y 4zAx(x/G, y/G) X Y\
lx.y) = Lo (G ) {1 +C(ggrax)eo { mian ey (A18)
corresponding to Eq. (7), where (x/G, y/G) are the coordinates of the specimen surface corrected with the magnification of
the microscope and fis the correction factor dependent on the objective aperture. The wavelength 1 has been changed to 4,
representing the average wavelength of the light spectrum.

In case of alternate motion, the OPD is defined as a function of the specimen surface displacement as

AX(G é) A"O(g JG/> ”‘(G G)Sm{wt+9<G é)} (A19)

where AXxg is the average position of the sample, a is the amplitude of oscillation, » is the angular frequency of the driving
force exciting the sample, and @ is the phase angle between the excitation force and the specimen displacement. By
introducing the expression of Eq. (A19) into Eq. (A17) that describes the light intensity variation in static conditions, the
following relation is obtained:

Ix,y,0) =Iimp {1 + C(AX)cos <4ZAX0 >Jo (47[(1)}

=2I,mpC(AX)sin (4’;&( )jl ( )sm(wt + 0)

+2I,mp C(AX)COS (47; ) > ]2,<< )cos(Zk(wt +0))

k=1

—2I,mp C(AX)sin (43AX0 + Aqa) Z Jors1 ( a) sin((2k + 1)(wt + ©)) (A20)

The relation expressed by Eq. (A20) represents the variation of light intensity in dynamic conditions, where
Ama :/1m(‘l +f), (AZ])
and J; are the Bessel functions of order i. Under the hypothesis of oscillation amplitudes being much lower than the objective
depth of field and the coherence length, the dependence of C on the OPD can be neglected:
C(Ax)=C(Axp). (A22)
Common light sensors are able to measure the light intensity on each pixel as the average over a determined time
interval Ty (several centimes of a second). This averaged intensity I,;, can be expressed with the integral of Eq. (A20) over the
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time To divided by the same time interval:

T
Im(X,y) = Tlorffinm /0 * Ik, y, dt: (A23)

by combining Egs. (A20) and (A23), the following is obtained:

Im(X,y) = Limp {1 + C(AXo)]g <4La> cos <4EAXO + Aqo)} . (A24)

j’11’[(1 ma

Dynamic Eq. (A24), corresponding to Eq. (10), is the algorithm used by the microscope to convert the light intensity
detected by the light sensor to the dynamic displacement of the sample.
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