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A NOTE ON INTEGER POLYNOMIALS WITH SMALL INTEGRALS

DANILO BAZZANELLA

Abstract. The smart method of Gelfond–Shnirelman–Nair allows to obtain in elemen-
tary way a lower bound for the prime counting function π(x) in terms of integrals of

suitable integer polynomials. In this paper we studied the properties of the class of

integer polynomials relevant for the method.

This is the authors’ post-print version of an article published on Acta Math. Hungar.
(2013), DOI:10.1007/s10474-013-0326-8.1

1. introduction

Let π(x) be the number of primes not exceeding x. The Prime Number Theorem (PNT),
independently proved in 1896 by Hadamard and the de la Vallée Poussin, states that

π(N) ∼ N

logN
N → +∞.

In 1851, Chebyshev [6] made the first step towards the PNT by proving that, given ε > 0,

(c1 − ε)
N

logN
≤ π(N) ≤ (c2 + ε)

N

logN

where c1 = log(21/231/351/5/301/30), c2 = 6c1/5 and N is sufficiently large. This result
was proved using an elementary approaches, i.e. without use of complex analysis and the
Riemann zeta function. A survey of elementary methods in the study of the distribution of
prime numbers may be found in Diamond [7].

In 1936 Gelfond and Shnirelman, see Gelfond’s editorial remarks in the 1944 edition of
Chebyshev’s Collected Works [6, pag. 287–288], proposed a new elementary and clever
method for deriving a lower bound for the prime-counting functions π(x) and ψ(x). In 1982
the Gelfond-Shnirelman method was rediscovered and developed by Nair, see [9] and [10].
The method of Gelfond–Shnirelman–Nair allows to obtain in elementary way a lower bound
for π(x) in terms of integrals of suitable integer polynomials and runs as follows.
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Let dN denote the least common multiple of the integers 1, 2, . . . , N and observe that

dN ≤
∏
p≤N

plogN/ log p,

where p belongs to the set of prime numbers. Taking the logarithm of both sides gives

log dN ≤ log

∏
p≤N

plogN/ log p

 =
∑
p≤N

log
(
plogN/ log p

)
= π(N) logN

and then

(1) π(N) ≥ log dN
logN

.

From this we can obtain a lower bound for the prime counting function π(N) from a lower
bound for the least common multiple dN . An elementary and smart way to proceed is to
consider a polynomial with integral coefficients

P (x) =

N−1∑
n=0

anx
n

and let

I(P ) =

∫ 1

0

P (x) dx =

N−1∑
n=0

an
n+ 1

.

Since I(P ) is a rational number whose denominator divides dN , we see that I(P )dN is an
integer, and hence if I(P ) 6= 0 we have

dN |I(P )| ≥ 1

and then

dN ≥
1

|I(P )|
.

Form the above and (1) we get

(2) π(N) ≥ log (1/|I(P )|)
logN

.

The easiest way to proceed is to bound the absolute value of the integral I(P )

(3) |I(P )| =
∣∣∣∣∫ 1

0

P (x) dx

∣∣∣∣ ≤ ∫ 1

0

|P (x)|dx

and

(4)

∫ 1

0

|P (x)|dx ≤ max
0≤x≤1

|P (x)| = ||P ||[0,1],

obtaining

π(N) ≥
log
(
1/||P ||[0,1]

)
logN

.
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If we could find a sequence of integer polynomials pn, of degree n, with sufficiently small
supremum norms such that

lim
n→+∞

log
(
||pn||−1/n[0,1]

)
= lim

n→+∞
− 1

n
log ||pn||[0,1] = 1,

we can obtain the best possible lower bound consistent with the Prime Number Theorem.
This motivates the study of the integer polynomials PN (x) and the quantities CN such

that
||PN ||[0,1] = min

P (x)∈Z[x]
deg(P )=N,||P ||[0,1]>0

||P ||[0,1]

and

CN = − 1

N
log ||PN ||[0,1],

the so-called integer Chebyshev problem. Much is known about PN (x) and CN . It was
proved by Snirelman, see [11], that the sequence CN converges to a limit C. Borwein
and Erdélyi [5] showed that C ∈ (0.85866, 0.86577) and the lower bound was improved
by Flammang [8] to 0.85912. The best known result to date, due to Pritsker [12], is that
C ∈ (0.85991, 0.86441). See also [1], [2], [3], [4], [5] and [14].

Therefore, following this line, we can get a lower bound in the form

π(N) ≥ C N

logN
,

only for constant C less than 0.87, which is quite far from what is expected by the PNT.
In order to avoid the trouble above, in this paper we deal with the problem in a different

way. From the definition of I(P ) we have that

|I(P )| =
∣∣∣∣∫ 1

0

P (x) dx

∣∣∣∣ =

∣∣∣∣∣
N−1∑
n=0

an
n+ 1

∣∣∣∣∣ =
1

dN

∣∣∣∣∣
N−1∑
n=0

dN
n+ 1

an

∣∣∣∣∣ .
Since dN/(n+ 1) and an are integers for every n = 0, 1, . . . N1, we have that∣∣∣∣∣

N−1∑
n=0

dN
n+ 1

an

∣∣∣∣∣
is an integer and then the small positive value of |I(P )| is 1/dN and it is reached if

N−1∑
n=0

dN
n+ 1

an = ±1.

Without loss of generality we can deal with the linear diophantine equation

N−1∑
n=0

dN
n+ 1

xn = 1

with integer coefficients dN/(n+1). Observing that the integer coefficients dN , dN/2, . . . , dN/N
are relatively prime, we obtain that for every N there exists at least one polynomial of de-
gree N − 1 such that I(P ) = 1/dN . Note that the set of the integer polynomials of fixed
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degree with integral on [0, 1] equal to zero is a vector space and then the set of the integer
polynomials of fixed degree with integrals on [0, 1] equal to a constant is an affine space.
This leads to define the following affine space of the polynomials with positive and minimal
integral on [0, 1].

Definition. Let SN = {P (x) ∈ Z[x],deg(P ) = N − 1, I(P ) = 1/dN}

In this paper we studied the properties of such a class of integer polynomials.

Acknowledgement. We would like to thank Professors E. Serra and P. Tilli for the long
conversations we had on this subject.

2. Some properties of the set SN

In the set SN there are integer polynomials with many of the first coefficients equal to
zero, and then with x = 0 as a root of great degree.

Theorem 1. For every N , there exists an integer polynomial

P (x) =

N−1∑
n=K(N)

anx
n ∈ SN

with

K(N) ∼ N

2
.

Proof. As usual, (a1, a2, ..., aj) denotes the greatest common divisor of the integers a1, a2 . . . , aj .
We start to observe that if we have(

dN
k
,
dN
k + 1

, . . . ,
dN
N

)
= 1,

for a fixed natural k, it follows that(
dN
i
,
dN
i+ 1

, . . . ,
dN
N

)
= 1,

for every 1 ≤ i ≤ k and for the same reason if we have(
dN
k
,
dN
k + 1

, . . . ,
dN
N

)
> 1,

for a fixed natural k, it follows that(
dN
i
,
dN
i+ 1

, . . . ,
dN
N

)
> 1,

for every k ≤ i ≤ N . This allows to define K(N) as the natural number such that

(5)

(
dN

K(N) + 1
,

dN
K(N) + 2

, . . . ,
dN
N

)
= 1
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and

(6)

(
dN

K(N) + 2
,

dN
K(N) + 3

, . . . ,
dN
N

)
> 1.

From (5) it follows that the linear diophantine equation

N−1∑
n=K(N)

dN
n+ 1

xn = 1

has solutions and this implies that there exists an integer polynomial

P (x) =

N−1∑
n=K(N)

anx
n ∈ SN .

Now we prove that

(7) K(N) = min
{
pm : p prime ,m ≥ 1, pm > N/2

}
− 1

Let q = pm such that N/2 < q = pm < N . q ≤ N implies q/dN and then(
dN
q + 1

,
dN
q + 2

, . . . ,
dN
N

)
≥ p,

since every natural number between q + 1 and N has strictly less then m factors p in his
prime decomposition. This prove

(8) K(N) ≤ min
{
pm : p prime ,m ≥ 1, pm > N/2

}
− 1.

On the other hand, by the definition of K(N), we have(
dN

K(N) + 2
,

dN
K(N) + 3

, . . . ,
dN
N

)
> 1

which implies that there exists a prime number p such that

p| dN
K(N) + 2

, p| dN
K(N) + 3

, . . . , p|dN
N
.

Let m = max{i : pi|dN} and therefore pm ≤ N . From this follows

pm 6 |(K(N) + 2), pm 6 |(K(N) + 3), . . . , pm 6 |N
and then

(9) K(N) ≥ min
{
pm : p prime ,m ≥ 1, pm > N/2

}
− 1.

From (8) and (9) it follows (7). Now the difference between K(N) and N/2 can be bound
by the maximum of the difference between consecutive elements of the set {pm ≤ N :
p prime ,m ≥ 1}, which is less than the maximum of the difference between consecutive
primes less than N . This allow to write

K(N) =
N

2
+O(N7/12+ε),

for every ε > 0, which concludes the proof of the theorem. �
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Corollary 2. For every N , there exists an integer polynomial P (x) ∈ SN with x = 1 as a
root of degree K(N) and

K(N) ∼ N

2
.

Proof. The corollary follows immediately from the Theorem 1, observing that the change
of variable x→ (1− x) don’t change the absolute value of the integral I(P ). �

The second result is about the number of roots and the number of changes of sign of the
integer polynomials in SN .

Theorem 3. For all even N , there exists an integer polynomial P (x) ∈ SN with N − 1
roots on (0, 1) and N − 1 changes of sign.

Proof. Let N even number and R(x) = (Nx − 1)(Nx − 2) · · · (Nx − (N − 1)). R(x) is a
polynomial with integer coefficients of degree N − 1, has N − 1 roots on (0, 1), (N − 2)/2
local maxima, (N − 2)/2 local minima and

I(R) =

∫ 1

0

R(x) dx = 0,

since the symmetry of the function. Let P (x) a fixed polynomial in SN , k ∈ Z and Qk(x) =
P (x) + kR(x). For every k ∈ Z we have I(Qk) = I(P ) = 1/dN and then Qk(x) ∈ SN . For
every N there exists a constant k such that Qk(x) has N − 1 roots on (0, 1) and N − 1
changes of sign. �

Corollary 4. For every N , there exists an integer polynomial P (x) ∈ SN with at least
N − 2 roots on (0, 1) and N − 2 changes of sign.

On the other side we can prove that in the set SN there are also integer polynomials
with at most one root and one change of sign.

Theorem 5. For every N , there exists an integer polynomial P (x) ∈ SN with at most one
root on (0, 1) and at most one change of sign on (0, 1).

Proof. Let P (x) a fixed polynomial in SN , k ∈ Z and Qk(x) = P (x) + k(2x − 1). For
every k ∈ Z we have I(Qk) = I(P ) = 1/dN and then Qk(x) ∈ SN . Now we observe that
Qk(0) = P (0)− k, Qk(1) = P (1) + k and Q′k(x) = P ′(x) + 2k for every x ∈ [0, 1].

For every N there exists a constant k such that Qk(0) < 0, Qk(1) > 0 and Q′k(x) > 0 for
every x ∈ [0, 1] and this implies that the polynomial Qk(x) has exactly one root and one
change of sign on (0, 1). �

3. Open problem

In the standard method of Gelfond–Shnirelman–Nair we bound the absolute value of the
integral

(10) |I(P )| =
∣∣∣∣∫ 1

0

P (x) dx

∣∣∣∣ ≤ ∫ 1

0

|P (x)|dx
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and then

(11)

∫ 1

0

|P (x)|dx ≤ max
0≤x≤1

|P (x)| = ||P ||[0,1],

to obtain

π(N) ≥
log
(
1/||P ||[0,1]

)
logN

.

As observed in the introduction, following this line we can get a lower bound in the form

π(N) ≥ C N

logN
,

only for constant C much less than 1. It is not clear if this is only a consequence of the use
of supremum norm on the interval [0, 1] in (11) or if the inequality (10) is also involved.

If the set SN contains polynomials of constant sign in (0, 1) for all N , or at least for
infinite values of N , the limit of the method would be only due to the inequality (11).

It is simple to verify that for very small values of N these positive polynomials exist.
For S3, deg(P ) = 2 and d3 = 6, we have the positive polynomial P (x) = x(1 − x) and for
S4, deg(P ) = 3 and d3 = 12, we have the positive polynomial P (x) = x2(1 − x). For SN

with greater values of N is not simple to determine what happens, and this leads to the
following question.

Problem: for every N , or at least for infinite values of N, there exists an integer poly-
nomial P (x) ∈ SN such that P (x) ≥ 0 ?
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