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Abstract

Gene Regulatory Networks (GRNs) model some of the mechanisms that regulate gene expression. Among the com-
putational approaches available to model and study GNRs, Boolean Network (BN) emerged as very successful to better
understand both the structural and dynamical properties of GRNs. Nevertheless, the most widely used models based
on BNs do not include any post-transcriptional regulation mechanism. Since miRNAs have been proved to play an im-
portant regulatory role, in this paper we show how the post-transcriptional regulation mechanism mediated by miRNAs
has been included in an enhanced BN-based model. We resort to the miR-7 in two Drosophila cell fate determination
networks to verify the effectiveness of miRNAs modeling in BNs, by implementing it in our tool for the analysis of
Boolean Networks.

Keywords: miRNA, Gene Regulatory Networks, post-transcriptional regulation, Boolean Networks, Complex Systems,
Network Analysis

1. Introduction

The genome of an organism plays a crucial role in reg-
ulating several cellular processes. With few exceptions,
every cell in an organism contains the same genetic mate-
rial. This implies that, after sequencing the whole genome
of several living organisms [1], and after knowing the func-
tional meaning of thousands of proteins encoded by these
genomes [2], one of the principal remaining challenges is to
understand the mechanisms that regulate gene expression
within the genome [3].

The regulation of gene expression is achieved through
genetic regulatory systems organized in networks of inter-
actions between genes, proteins and other cellular compo-
nents. In order to understand complex genetic regulatory
networks, a concerted effort among experiments, model-
ing, and theory is required. In particular, researchers re-
quire automated formal modeling techniques and appro-
priate analysis tools.

Several computational approaches have been proposed
and developed in literature ([4] and further references
therein) to model Gene Regulatory Networks (GRNs).
They include partial/ordinary differential equations [5, 6],
linear models [7], Bayesian networks [8, 9], Boolean net-
works [10, 11] and Petri nets [12]. They can be divided into
two groups: 1) discrete-state models and 2) continuous-
state models. Discrete-state models assign a small num-
ber of discrete states to each node of the network, avoiding
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intermediate expression levels. Regulatory interactions be-
tween nodes are described by logical functions. Bayesian
networks, Boolean networks, and Petri nets belong to this
group. Instead, continuous-state models, assume the state
of each node of the network to be a continuous function in
time of the expression of the input components. Its evo-
lution is modeled resorting to differential rate equations.
Partial differential equations, (nonlinear) ordinary differ-
ential equations, and linear models belong to this group.
Their main limitation consists in the difficulty of properly
modeling all biochemical reactions governing the interac-
tion among the nodes of the network.

Boolean Networks (BN), introduced by Kauffman [10],
have been proved successful in modeling real regulatory
networks (e.g., see [13, 14, 15, 16, 17, 18]). In a BN the
state of a biochemical entity, i.e., a gene, is described by
a Boolean variable. The transition from one state to an-
other state is computed by means of a Boolean function
of the states of other genes in the network. Transitions
between states are deterministic, which means that, given
an initial state, the next state is always the same. Al-
though the approach seems to set a strong simplification
compared to reality, BNs enable to study high-level prop-
erties of complex networks (e.g., robustness to background
noise, behavior under different initial conditions, etc.).

Recent researches suggest that several realistic biological
problems may be analyzed resorting to the BN formalism.
In this cases, BNs allow for a simulation of a real biolog-
ical GRN’s dynamic behavior (e.g., the Drosophila case),
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emphasizing the functional relevance of the resulting net-
work topology [19]. Biologist are thus able to characterize
the network and evaluate its dynamics, identifying topo-
logical elements such as feedback circuits, i.e., cascades of
regulatory interactions, negative circuits that buffer gene
effects, and positive circuits that may constitute develop-
mental switches enabling alternative developmental path-
ways [20, 21]. Moreover, it is possible to study properties
of the biological GRN by computing and analyzing the at-
tractors of the network. An attractor is a single state or
a set of states towards which a system tends to converge
over time [22, 23].

Most published BN based models focus on high-level
gene/gene or gene/protein interactions, neglecting post-
transcriptional regulatory activities carried out by small
non-coding RNA sequences, such as micro RNA (miRNA).

In this paper we discuss how miRNAs and post-
transcriptional regulatory interactions can be modeled
resorting to BNs. The proposed BN based post-
transcriptional model has been implemented in a software
tool able to simulate a BN and to compute the attractors
of the network taking into account post-transcriptional ac-
tivities [24].

We exploited the developed model and the related tool
to analyze two real networks related to Drosophila taken
from [25]. Results obtained from the network analysis have
been then compared with experimental results discussed in
[25] to show the capability of the proposed model to pro-
vide interesting insights related to the modeled biological
process.

2. Background

Modeling general aspects of GRNs, such as genes’ inter-
actions, dates back to the end of 1960s. In [10], Kauffman
considered an idealized representation of a typical gene
network. The assumption is that genes are equivalent en-
tities, and their interaction forms a directed graph in which
each gene receives inputs from a fixed number of selected
genes. The set of entities populating the network has been
recently extended including gene products (e.g., proteins)
by [18]. The state of each regulatory entity, i.e., a gene or
a protein, is represented as a Boolean value, either 1, indi-
cating the presence of the entity (e.g., a gene is expressed),
or 0 indicating its absence (e.g., a gene is not expressed).

Given a set of N entities, the state of the GRN is rep-
resented by a Boolean vector X̂ = [x1, · · · , xN ], leading
to a state space of 2N states. Each component xi of X̂ is

described using a Boolean function fi (xi = fi

(
X̂
)

).

To make the model computationally acceptable, the f
behavior of a BN is usually simulated in a synchronous
way, i.e., all entities of the network update their state to-
gether [13, 26]:

X̂t+1 = F̂
(
X̂t

)
(1)

where X̂t+1 is the next GRN state and F̂ is the vector
of all functions fi that map the transition of a single entity
from the current state to the next one.

During the simulation of the network dynamics, an ini-
tialization state sets all nodes of the network to a known
configuration. The network state is then continuously up-
dated by repeatedly evaluating all boolean functions de-
scribing the network until a steady state or a state cycle is
reached. The sequence of states traversed by a BN during
the simulation of its dynamics forms a trajectory of the
system, while the final steady state or the final state cycle
of the trajectory form a point or a cyclic attractor, respec-
tively. Each network is associated with a set of point and
cyclic attractors, depending on its dynamics on different
initialization states. In case of a point attractor, the sys-
tem’s state freezes whenever the network enters the attrac-
tor, and it is unable to perform further transitions unless
external perturbations are applied. Differently, cyclic at-
tractors show a cyclic behavior of the system. Once a tra-
jectory falls into one of the states belonging the attractor,
the system keeps cyclically moving among the attractor’s
states.

To properly study the network dynamics all possible ini-
tialization states should be simulated. The set of initial
states leading to an attractor is called basin of attraction
[27]. Attractor’s properties (length of cyclic attractors,
basins dimensionality, trajectory lengths, etc.) are com-
monly studied in order to infer high-level properties of a
GRN [18, 27].

Figure 1a gives a simple example of a BN. It contains
three entities (e.g., x1, x2, x3) whose next state functions
are defined as follows:

xt+1
1 = ¬xt3

xt+1
2 = xt1 ∧ xt3
xt+1

3 = xt2

Figure 1b shows the state space of this network. Each
node represents a possible network state whereas edges
represent legal state transitions for the network.

3. Models and Methods

3.1. Extending the Gene Protein/Product Boolean Net-
work Model

Functional studies indicate that miRNAs participate in
the regulation of almost every investigated cellular process
like, for instance, cell metabolism, signal transduction, cell
differentiation, cell fates and so on [28, 29, 30]. miRNAs
regulate gene expression post-transcriptionally by inter-
fering either with a target mRNA’s translation or stabil-
ity [31]. Moreover, further studies show that they can
modulate mRNA-protein interactions, and suppress pro-
tein synthesis, although the mechanistic details are still
poorly understood.

The interaction between mRNAs and proteins is well
modeled by the Gene Protein/Product Boolean Network
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Figure 1: Example of a simple boolean network involving three genes
(x1, x2 and x3) together with the related space state.

x1

x2

x3

(a) The boolean network represented as a directed graph. Each
node of the graph represents a gene while arcs represents gene
interactions.
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(b) The state space of the network represented as a directed
graph where each node represents a state of the network while
arcs represent valid state transitions.

(GPBN) model proposed by Graudenzi et al. in [18], which
is a generalization of the classical RBN model. In a GPBN,
gene to gene interactions are mediated by the synthesis of
proteins and other products. However post-transcriptional
regulation carried out by miRNAs is still not fully consid-
ered. Figure 2 depicts a very simple example of GRN mod-
eling a cellular regulatory activity that includes all entities
that need to be considered in order to extend the GPBN
model to include post-transcriptional regulation mecha-
nisms. According to the example, G1 and G2 are tran-
scribed into two mRNA molecules (mRNA1 and mRNA2);
P1 and P2 are the resulting proteins. P2 works as an up-
stream promoter of gene G3, i.e., G2 is a transcription
factor of gene G3. miRNA1 (still a product of G1) acts
as a post-transcriptional repressor of mRNA2, which re-
sults in a translational repression of P2 and therefore in
an inhibition effect on gene G3.

To properly model this post-transcriptional interaction,
following the GPBN principles, we extended the interac-
tion between genes (G1 and G2 of the example) by explic-
itly introducing their related products (as previously done
for continuous models [32, 33]), thus, including miRNA1
as a product of G1.

Figure 3 shows an extended BN representing the pro-
posed regulatory example. For the sake of simplicity, the
translational process that leads to the protein production,
starting from the related mRNA molecule, has not been
explicitly modeled. Nevertheless, if necessary, the model
can be easily extended by adding all actors required to
precisely modeling all processes. Networks nodes are de-
picted with different symbols to identify: (1) genes (circu-
lar nodes), (2) mRNA Protein pairs (rectangular nodes),
and (3) miRNA (rhomboidal nodes).

G1 G2 G3

mRNA1_P1

miRNA1 mRNA2_P2

mRNA_P1 = G1

miRNA1 = G1

G3=mRNA2_P2

mRNA2_P2= G2 � (¬ miRNA1)

C1 = mRNA1_P1 � (¬ G1)
C2 = miRNA1 � (¬ G1)
C3 = mRNA2_P2 � (¬ G2)

Figure 3: Boolean network model of the GRN proposed in Figure 2
including explicit modeling of post-transcriptional regulatory activ-
ity.

In order to properly model the post-transcriptional reg-
ulation mechanisms, the set of boolean functions of each
transcriptional product targeted by a miRNA (e.g., the
mRNA2 P2 node) must be carefully designed. Post-
transcriptional regulation acts at mRNA level, hence, con-
sidering the final protein production, it has higher priority
compared to gene expression activity. In terms of Boolean
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Figure 2: Example of a GRN involving post-transcriptional mechanisms.

functions, this can be modeled by placing the miRNA ex-
pression state in Boolean AND with the mRNA expression
state.

When introducing gene products such as proteins and
miRNAs in a BN model, the synthesis and decay times
for a given product must be taken into account. In our
model, we considered an unitary synthesis and decay time
for all entities according to the GPBN model. Therefore,
the change of state of a gene at time t influences all its
products at time t+ 1.

Although the introduction of miRNA entities into
the BN makes it possible to account for their post-
transcriptional activity into the dynamics of the sys-
tem, it is not enough to properly model the whole post-
transcriptional activity. If not properly constrained, users
may select initialization states for the simulation of the
network (that can now include combinations of genes and

products) that may be biologically not valid. To deal with
illegal states, the description of the BN is expanded, in-
cluding a set of conditions identifying all illegal states of
the network. Once a biologically valid initialization state
is selected, if well designed, the network itself will avoid
to evolve into biological illegal states. In Figure 3 these
conditions are represented by the Boolean equations C1,
C2, and C3. Every time an initial state of the network
is considered the three conditions must be evaluated. A
state is considered legal if all conditions return zero, illegal
otherwise. As an example, let us consider G1 and the re-
lated protein mRNA1 P1. The protein can be synthesized
only if the related gene has been expressed. So, any state
in which mRNA1 P1 is equal to 1 (expressed), while G1
is equal to 0 (not expressed) is actually an illegal state.
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3.2. Including the model into the Boolean Network Toolkit

We implemented the GRN model presented in Section
3.1 into a software tool able to analyze the network dynam-
ics by computing the network attractors [24]. The actual
implementation is based on the Boolean Network Toolkit
(BNT) presented in [26]. The BNT implements the BN
direct graph using adjacent lists to optimize access speed
and reduce memory allocation. The core is entirely built
upon the BOOST C++ Library [34], which provides very
efficient and cross platform libraries.

Algorithm 1 shows the overall attractors search process
that is an iterative process involving probes iterations.
Probes is the number of initial states from which the net-
work is simulated to identify its attractors. Whenever
the number N of network nodes leads to a state space
too large to be exhaustively analyzed, it is possible to
keep the computation time under control by selecting a
reduced set of randomly or user selected initial states for
the network. At each iteration, a candidate initial state
is selected and its validity against the transcriptional and
post-transcriptional constraints is checked. If the state is
legal, the network dynamic is simulated to search for an
attractor on the selected trajectory.

Data: the Gene Regulatory Network
Result: a Set which contains the attractors
input : probes the number of initial condition to test

forall the probes do
σ ← generateRandomState;
isV alid← isValidBooleanState(σ,C);

if isV alid = true then
anAttractor ← findAttractor(σ);
grnAttractorSet.add(anAttractor);

else
continue;

Algorithm 1: GRN attractors searching algorithm.

The isValidBooleanState function (see Algorithm 2) per-
forms the initial state validity check. Given the initial state
to analyze and the set of constraints as input, this function
evaluates the state against each constraint. If at least one
of the constraints is true, it means the given state is not
valid and it needs to be discarded. Otherwise, a true value
is returned.

Eventually, the tool exports all result of the network
analysis (e.g., attractors, state space, trajectories, etc.)
using the XGMML format, which is ready to be visual-
ized and further analyzed with visualization tools such as
Cytoscape [35].

4. Results and Discussion

We tested our model against two real networks dis-
cussed in [25]. Both networks analyze the role of miR-7

Result: if the state is admissible or not
input : X the state to check
input : stateConstraintSet the collection of

constraints for the given network
output: true if the state being checked is admissible
output: false otherwise

notValid ← false;
foreach anInvalidSchema in stateConstraintSet do

notValid ← isValid OR anInvalidSchema (X) ;

if notValid = true then
return false ;

else
return true ;

Algorithm 2: Algorithm for checking the validity of
an initial state.

in Drosophila. The two networks have been modeled re-
sorting to the proposed BN post-transcriptional model and
then analyzed by computing the exhaustive set of attrac-
tors and trajectories. Results obtained from the network
analysis have been finally compared with the results re-
ported in [36] that hypothesize a stabilizing role of miR-7
against perturbations that would change the cell fate in
terms of development. This comparison provides an inter-
esting example of the type of analysis and results that the
proposed model is able to support.

The simulated networks described using the input
formalism of our tool, as well as all outputs produced
from the network analysis in standard XGMML for-
mat have been provided as additional material to
this paper 2 .Moreover the source code of the tool
used for the analysis, as well as a legacy Cytoscape
plugin that can be used to visualize the outputs pro-
duced by the tool can be freely downloaded at http:

//www.testgroup.polito.it/index.php/bio-menu-tools/

item/208-boolean-regulatory-network-simulator.

4.1. Networks description

The two considered GRNs that regulate the determi-
nation of photoreceptor cells, proprioceptor organs, and
olfactory organs in Drosophila are:

1. Photoreceptor determination network (Figure 4a): in
this network miR-7 acts in a coherent feed-forward
loop cooperating with Pnt-P1 in silencing YAN to
create stability against fluctuations of Pnt-P1. This
behavior is common for guaranteeing that a cell’s fate
change is not spontaneously induced or reverted [37],
admitting only oriented transitions from the state
YAN ON to the state YAN OFF in which YAN itself

2We have been unable to submit the supplemental material
through the EES submission system. For the review process, this
material is therefore available at the following URL: http://orion.
polito.it/tmp/JOCS-D-13-00019-AdditionalMaterial.zip.
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Notch EGFR

SUH ERK

YAN

PHYL

TTK69

mir-7
TTK88

Pnt-P1

(a) GRN controlling the photoreceptor determination in
Drosophila as published in [25].

Notch EGFR

EsplC

ATO

Sensemir-7

Pnt-P1

(b) GRN controlling the SOP determination in Drosophila as
published in [25].

Figure 4: Gene regulatory networks controlling photoreceptor de-
termination and SOP determination in Drosophila as published in
[25]

is fully degraded. After YAN degradation, possible
Pnt-P1 fluctuations will not lead to further YAN ON
states.

2. Sensory organ precursor (SOP) determination net-
work (Figure 4b): in this network mir-7 belongs to
an incoherent feed-forward loop. This type of net-
work motif leads to an accelerated and transient pulse
to downstream genes expression [38]. The overall ef-
fect is a network in which fluctuating peaks of Atonal
(ATO) would result in transient pulses of ATO re-
pression by EsplC. Vice versa the sustained increase
of ATO would result in sustained repression of EsplC
by miR-7 and a corresponding stabilization of ATO
[25].

4.2. Network modeling and attractor analysis

Both networks presented in Figure 4 have been par-
tially redesigned in order to fit our extended GPBN model
in which miRNAs target proteins nodes and miRNAs are
produced thanks to the expression of the related hosting

genes. Figure 5 graphically shows the basic rule exploited
during the BN post-transcriptional redesign process. Ac-
cording to [20], if the transcription/translation is active,
mRNAs/proteins are synthesized in a one time step. Thus,
if the network includes a miRNA node targeting a gene,
a new protein node must be inserted in the network. The
protein node must be connected to the parent gene node
and targeted by the miRNA. Also all gene products (out-
going edges) must be re-arranged accordingly. These ex-
tensions respect the assumption that both transcription
factors and proteins undergoing post-transcriptional mod-
ifications decay in a one time step if their mRNAs are not
present [20]. Finally, also the miRNA host gene (if not
present) must be explicitly inserted in the network.

miRNA G1_mRNA_P

G1

G2

miRNA

G1

G2

G2_mRNA_P

miRNA_g

Figure 5: Transformation rules of a traditional boolean network to
account for post-transcriptional activities

While this redesign phase has been performed manually
on-going work is being carried out to make it automatic
within our simulation tool.

Figure 6a and Figure 7a show the redesigned networks
considered in our analysis. It is worth to point out here
that there is no evidence in [39] regarding the way genes
cooperate in enhancing/silencing their products. In order
to take into account different options two variants of each
network have been considered assuming that:

• a gene is expressed when all its parent nodes are con-
currently expressed (ON): this condition models en-
hancer complexes composed by multiple proteins that
cooperate together. Resulting boolean functions de-
scribe this condition as a set of terms computed by
the ∧ operator.

• a gene is expressed when at least one of its parent
nodes is expressed (ON): this represents the behavior
of multiple transcription factors that autonomously
induce the expression of their targets. Resulting
boolean functions describe this condition as a set of
terms computed by the ∨ operator.

In both networks, these two options have been mod-
eled by introducing the generic Boolean operator < op >∈
{∧,∨}.

Moreover, in order to highlight the contribution of miR-
7 to the behavior of the network, we compared the two
variants of the redesigned networks reported in Figure 6a
and Figure 7a, with two equivalent networks in which the
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Notch EGFR

SUH ERK

YAN

PHYL

TTK69

mir-7

TTK88

Pnt-P1

Pnt-P1_P

ERK_PSUH_P

PHYL_P

TTK69_P TTK88_P

YAN_P

mir-7_g

ERK = EGFR

ERK_P = ERK

Pnt-P1 = ERK_P

Pnt-P1_P = Pnt-P1

PHYL =(¬ YAN_P)

PHYL_P = PHYL

TTK88 =(¬ PHYL_P)

TTK88_P = TTK88

SUH = Notch

SUH_P = SUH

YAN = (¬ ERK_P)  <op> 
(¬ Pnt-P1_P) <op> SUH_P

YAN_P = YAN  <op> (¬ mir-7)

mir-7 = mir-7_g

mir-7_g =( ¬ YAN_P) <op> 
(¬ TTK69_P) <op> Pnt-P1_P

TTK69 =(¬ PHYL_P)

TTK69_P = TTK69

Constraint:
C1 = YAN_P ∧ (¬ YAN) 
C2 = Pnt-P1_P ∧ (¬ Pnt-P1) 
C3 = TTK88_P ∧ (¬ TTK88) 
C4 = TTK69_P ∧ (¬ TTK69) 
C5 = PHYL_P ∧ (¬ PHYL) 
C6 = mir-7 ∧ (¬ mir-7_G) 

(a) Photoreceptor determination network with miR-7 present.

Notch EGFR

SUH ERK

YAN

PHYL

TTK69 TTK88

Pnt-P1

Pnt-P1_P

ERK_PSUH_P

PHYL_P

TTK69_P TTK88_P

YAN_P

ERK = EGFR

ERK_P = ERK

Pnt-P1 = ERK_P

Pnt-P1_P = Pnt-P1

PHYL =(¬ YAN_P)

PHYL_P = PHYL

TTK88 =(¬ PHYL_P)

TTK88_P = TTK88

SUH = Notch

SUH_P = SUH

YAN = (¬ ERK_P)  <op>
(¬ Pnt-P1_P) <op> SUH_P

YAN_P = YAN  

TTK69 =(¬ PHYL_P)

TTK69_P = TTK69

Constraint:
C1 = YAN_P ∧ ¬YAN 
C2 = Pnt-P1_P ∧ ¬Pnt-P1 
C3 = TTK88_P ∧ ¬TTK88 
C4 = TTK69_P ∧ ¬TTK69 
C5 = PHYL_P ∧ ¬PHYL 

(b) Photoreceptor determination network with miR-7 absent.

Figure 6: Boolean network modelling the GRN responsible for Pho-
toreceptor Determination in Drosophila presented in Figure 4a. The
network has been redesigned in order to model post-transcriptional
activity considering both the presence and the absence of miR-7. The
network includes the generic Boolean operator < op >∈ {∧,∨} that
enables to consider different options in the way regulation activity is
performed.

miR-7 node and related edges have been removed (Fig-
ure 6b and Figure 7b).

We analyzed each network using our tool, collecting all
attractors, trajectories and basins of attraction. Interest-
ingly, the two options introduced by the < op > operator
leaded to different behaviors of the network, which still
maintains the same topology. In each simulation the ex-
haustive set of initial states has been analyzed with a rea-
sonable average computation time (˜20-30 msec to analyze
each network).

The next sections discuss results obtained from the net-
work analysis. The considered networks have been sim-
ulated under several assumptions in order to better un-
derstand the properties of the computed attractors, along
with the role of miR-7 in the network.

4.2.1. Photoreceptor determination network

Due to the network topology, miR-7 is expected to co-
operate with ERK and Pnt-P1 in maintaining the network
steady against YAN fluctuations.

Given this premise, the comparison of the network at-
tractors between the network with miR-7 (Figure 6a) and
the one without miR-7 (Figure 6b), does not show any
difference when the < op >= ∧ option is selected. The
set of common attractors with and without miR-7 is re-
ported in Table ??. In fact, the mandatory concurring
presence of all silencers of YAN somehow masks the role
of the miRNA. This is not surprising because, based on
their discrete nature, BNs perform a qualitative analysis
instead of measuring the gene expression rate from a quan-
titative perspective. This simplification makes the analysis
of complex network feasible, but it possibly masks certain
configurations and their intermediate equilibrium. In this
scenario, the antagonist roles of Pnt-P1 and miR-7 con-
cur in preserving the expected pathway behavior (e.g., the
complete degradation of YAN ), possibly masking the miR-
7 fine tuning effect.

Things change when the network is analyzed under the
< op >= ∨ option. In this case, the tool returns 3 point
attractors common in both the network with miR-7 (Fig-
ure 6a) and the one without miR-7 (Figure 6b) plus a
set of specific attractors. The set of common attractors is
reported in Table ??. These attractors are not discussed
here since they do not show any difference between the two
considered networks. We identified three point attractors
specific of the network with miR-7 and one point attractor
specific of the network without miR-7 :

• Attractors of the network with miR-7 (see Table 1):
the 3 attractors confirm the expression of miR-7 and
the expected degradation of the YAN protein. Inter-
estingly, the three attractors show the suppression of
YAN P by the miRNA, with no regards to the ex-
pression of the signaling genes (Notch, EGFR), and
the YAN ’s antagonists (ERK, Pnt-P1 ).

• Attractors of the network without miR-7 (see Ta-
ble ??): the point attractor shows no degradation

7



Notch EGFR

EsplC

ATO

Sense

mir-7

Pnt-P1

Pnt-P1_PEsplC_P

Sense_P

ATO_P

mir-7_g

Pnt-P1 = EGFR

Pnt-P1_P = Pnt-P1

EsplC = ATO_P <op> Notch

EsplC_P =(¬ mir-7) <op> EsplC

mir-7 = mir-7_g
ATO = Pnt-P1_P <op> (¬ EsplC_P) <op> 
Sense_P

mir-7_g = ATO_P

ATO_P = ATO

Sense =(¬ ATO_P)

Sense_P = Sense

Constraint:
C1 = EsplC_P ∧ (¬ EsplC) 
C2 = Pnt-P1_P ∧ (¬ Pnt-P1) 
C3 = ATO_P ∧ (¬ ATO) 
C4 = Sense_P ∧ (¬ Sense) 
C5 = mir-7 ∧ (¬ mir-7_G) 

(a) SOP determination network with miR-7 present.
Notch EGFR

EsplC

ATO

Sense

Pnt-P1

Pnt-P1_PEsplC_P

Sense_P

ATO_P

Pnt-P1 = EGFR

Pnt-P1_P = Pnt-P1

EsplC = ATO_P <op> Notch

EsplC_P = (¬ mir-7) <op> EsplC

ATO = Pnt-P1_P <op> (¬ EsplC_P) <op> 
Sense_P

ATO_P = ATO

Sense =(¬  ATO_P)

Sense_P = Sense

Constraint:
C1 = EsplC_P ∧ (¬ EsplC) 
C2 = Pnt-P1_P ∧ (¬ Pnt-P1) 
C3 = ATO_P ∧ (¬ ATO) 
C4 = Sense_P ∧ (¬ Sense) 

(b) SOP determination network with miR-7 absent.

Figure 7: Boolean network modeling the GRN responsible for Sen-
sory Organ Precursor (SOP) Determination in Drosophila presented
in Figure 4b. The network has been redesigned in order to model
post-transcriptional activity considering both the presence and the
absence of miR-7. The network includes the generic Boolean opera-
tor < op >∈ {∧,∨} that enables to consider different options in the
way regulation activity is performed.

of the YAN protein even if both YAN ’s antagonists
(ERK, Pnt-P1 ) are expressed. The ectopic expression
of YAN P may confirm the regulatory role of miR-7
for the network’s stabilization.

4.2.2. SOP determination network

The topology of the SOP determination network sug-
gests two behaviors: 1) transient pulses of downstream
genes expression, 2) specific polarization of upstream genes
that leads to the stabilization of the entire network.

Let us first consider the network attractors under the
< op >= ∧ assumption. The network with miR-7 (Fig-
ure 7a) and the one without miR-7 (Figure 7b) manifest
a set of five point and four common cyclic attractors (re-
ported in Table ??). In all of them, EsplC and its pro-
tein are suppressed, regardless the state of Notch. In fact,
the suppression of EsplC is an obvious outcome because it
needs the simultaneous expression of both Notch and ATO
(since they are joined with the < op >= ∧). The Notch
silencing also leads to a similar result in the set of common
cyclic attractors: all of them show transient pulses of ATO
only when the Notch chain is turned OFF.

Moreover, the network with miR-7 introduces one spe-
cific point attractor (see Table ??). The point attractor
leads to the complete degradation of EsplC P, while Es-
plC, miR-7 and ATO are still expressed. Since only the
EsplC protein is silenced whilst its encoding gene remains
expressed, this attractor confirms the regulatory role of
the miRNA.

Instead, when considering the < op >= ∨ assumption,
the network with miR-7 (Figure 7a) and the one without
miR-7 (Figure 7b) manifest two common point attractors
only. They show two outcomes compatible with expectan-
cies in [39]: i) when Notch is ON and EGFR is OFF,
miR-7 is also OFF, avoiding the silencing of EsplC P ; ii)
when both Notch and EGFR are ON, miR-7 is expressed,
correctly degrading EsplC P. The analysis of the basins
of common attractors provides additional information to
understand these two behaviors: the size of each basin
decreases when miR-7 is introduced within the network,
supporting the hypothesis that the presence of the miRNA
makes the network less prone to enter in one of the com-
mon attractors.

Together with the common attractors (see Table ??) the
network also includes now a set of specific attractors:

• Attractors of the network with miR-7 (see Table ??):
the set of attractors is composed of three point attrac-
tors. All of them show the expected stabilization of
the network. The sustained expression of ATO and
miR-7 causes the degradation of EsplC P, regardless
the fact that EGFR and Notch are expressed or not.

• Attractors of the network without miR-7 (see Ta-
ble ??): The three point attractors show the same
pattern of expression: ATO, ATO P, EsplC, and Es-
plC P are always turned ON, regardless of the expres-
sion of both EGFR and Notch. The ATO expression
seems only regulated by Sense because it remains still
turned ON even if its signaling chain is turned OFF.
Looking at the set of four cyclic attractors, all of them
share the degradation of EGFR and the expression of
Notch. This condition leads to the expression of both
EsplC and EsplC P, unexpected in [39]. The pulses
of ATO are only driven by the buffer effect of Sense.

For this network only, it can be easily noticed that the
< op >= ∨ option produces results that are more coherent
with experimental findings reported in the literature.

Overall, given the different attractors obtained with the
< op >= ∨ and < op >= ∧ operators, this preliminary
work highlights how the description of the boolean func-
tion of any given node plays a crucial role when dealing
with GRNs: a better estimate of the operator should even-
tually lead to a more reliable set of attractors.

5. Conclusions

In this paper we discussed an extended BN model to
account for post-transcriptional regulation in GRN simu-
lation. Thanks to this extended model, we discussed the
set of attractors of two biologically confirmed networks,
focusing on the regulatory role of miR-7. Attractors have
been compared with networks in which the miRNA was re-
moved. The central role of the miRNA for increasing the
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network stability has been highlighted in both the net-
works, confirming the cooperative stabilizing role of miR-
7.

The enhanced BN model presented in this paper is only
a first step towards a more realistic analysis of the high-
level functional and topological characteristics of GRNs.
Resorting to the tool facilities, the dynamics of real net-
works can be analyzed. Thanks to the extended model
that includes post-transcriptional regulations, not only the
network simulation can be more reliable, but also it can
offer new insights on the role of miRNAs from a func-
tional perspective, and this improves the current state-of-
the-art, which mostly focuses on high-level gene/gene or
gene/protein interactions, neglecting post-transcriptional
regulations.

Due to its discrete nature, the BN model may still
neglect some regulatory fine adjustments. However, the
largest number of the computed attractors, now including
miRNAs, still represents meaningful states of the network.
The simple glimpse into the complexity of the network dy-
namics, that the toolkit is able to provide, could be used
not only as a validation of in vitro experiments, but as a
real System Biology tool able to rise new questions and
drive new experiments.
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Additional files

• PhD w mirna AND results.zip: Photoreceptor determination
network with miR-7 present and < op >= ∧ option analysis and
simulation results.

• PhD w mirna AND.net: Photoreceptor determination network
with miR-7 present and < op >= ∧ option description file.

• PhD w mirna OR results.zip: Photoreceptor determination
network with miR-7 present and < op >= ∨ option analysis and
simulation results.

• PhD w mirna OR.net: Photoreceptor determination network
with miR-7 present and < op >= ∨ option description file.

• PhD w mirna.constraints: Photoreceptor determination net-
work with miR-7 present constraint file to be used both for simu-
lation with < op >= ∧ and < op >= ∨ options.

• PhD wo mirna AND results.zip: Photoreceptor determination
network without miR-7 present and < op >= ∧ option analysis
and simulation results.

• PhD wo mirna AND.net: Photoreceptor determination net-
work without miR-7 present and < op >= ∧ option description
file.

• PhD wo mirna OR results.zip: Photoreceptor determination
network without miR-7 present and < op >= ∨ option analysis
and simulation results.

• PhD wo mirna OR.net: Photoreceptor determination network
without miR-7 present and < op >= ∨ option description file.

• PhD wo mirna.constraints: Photoreceptor determination net-
work without miR-7 present constraint file to be used both for
simulation with < op >= ∧ and < op >= ∨ options.

• SOP w mirna AND results.zip: SOP determination network
with miR-7 present and < op >= ∧ option analysis and simu-
lation results.

• SOP w mirna AND.net: SOP determination network with
miR-7 present and < op >= ∧ option description file.

• SOP w mirna OR results.zip: SOP determination network
with miR-7 present and < op >= ∨ option analysis and simu-
lation results.

• SOP w mirna OR.net: SOP determination network with miR-7
present and < op >= ∨ option description file.

• SOP w mirna.constraints: SOP determination network with
miR-7 present constraint file to be used both for simulation with
< op >= ∧ and < op >= ∨ options.

• SOP wo mirna AND results.zip: SOP determination network
without miR-7 present and < op >= ∧ option analysis and simu-
lation results.

• SOP wo mirna AND.net: SOP determination network without
miR-7 present and < op >= ∧ option description file.

• SOP wo mirna OR results.zip: SOP determination network
without miR-7 present and < op >= ∨ option analysis and simu-
lation results.

• SOP wo mirna OR.net: SOP determination network without
miR-7 present and < op >= ∨ option description file.

• SOP wo mirna.constraints: SOP determination network with-
out miR-7 present constraint file to be used both for simulation
with < op >= ∧ and < op >= ∨ options.
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A1 mir-7 G mir-7 Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO

Table 5: Unique attractors for SOP Determination Network using the operator < op >= ∧ with miR-7. The Table shows 1 point attractor.
Bold/Green labels indicate ON nodes, whereas Italic/Red labels indicate OFF nodes.

A1 Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO

A2 Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO

A3 Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO

A4 Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO

A5 Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO

A6
Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO

Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO

A7

Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO
Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO
Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO
Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO

A8

Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO
Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO
Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO
Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO

A9

Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO
Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO
Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO

Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO

Table 6: Common attractors for SOP Determination Network using the operator < op >= ∧. The Table shows 5 point attractors and 4 cyclic
attractors. Bold/Green labels indicate ON nodes, whereas Italic/Red labels indicate OFF nodes.

A1 mir-7 G mir-7 Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO

A2 mir-7 G mir-7 Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO

A3 mir-7 G mir-7 Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO

Table 7: Unique attractors for SOP Determination Network using the operator < op >= ∨ with miR-7. The Table shows 3 point attractors.
Bold/Green labels indicate ON nodes, whereas Italic/Red labels indicate OFF nodes.

A1 Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO

A2 Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO

A3 Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO

A4
Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO

Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO

A5

Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO
Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO
Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO

Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO

A6

Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO
Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO

Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO
Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO

A7

Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO
Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO
Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO
Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO

Table 8: Unique attractors for SOP Determination Network using the operator < op >= ∨ without miR-7. The Table shows 3 point attractors
and 4 cyclic attractors. Bold/Green labels indicate ON nodes, whereas Italic/Red labels indicate OFF nodes.

A1 Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO

A2 Sense P Sense Pnt-P1 P Pnt-P1 Notch EsplC P EsplC EGFR ATO P ATO

Table 9: Common attractors for SOP Determination Network using the operator < op >= ∨. The Table shows 2 point attractors. Bold/Green
labels indicate ON nodes, whereas Italic/Red labels indicate OFF nodes.
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