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Interconnects: showcase 
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Interconnects: showcase 

Courtesy D. Kaller, IBM Boeblingen, Germany 
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Signal Integrity 

No coupling 

With coupling 
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The objective 
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Scattering variables 
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Scattering network functions 

)(1 sA
+ 

12A

0R

+ 

22A

0R

)(2 sA

)(1 sB )(2 sB



























2

1

2221

1211

2

1

)()(

)()(

A

A

sSsS

sSsS

B

B

Scattering matrix  

main output of field solvers (at finite frequencies) 



10/9/2013 

7 

S.Grivet-Talocia, “Macromodeling and its Applications for Signal and Power Integrity”, 8-Oct-2013, Intel, Munich 

Connecting terminations 
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Nonlinear terminations 
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Discretizing convolution 
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An example: CPU-I/O channel 
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Direct convolution 
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Direct convolution 
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Direct circuit simulation 
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Model Order Reduction 
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Black-Box Macromodeling 
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Rational function fitting: why? 

Any lumped circuit has rational 

frequency responses (poles-residues, 

poles-zeros, ratio of polynomials) 
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Rational function fitting: why? 

Any lumped circuit has rational 

frequency responses (poles-residues, 

poles-zeros, ratio of polynomials) 
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State-space realizations 
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State-space realizations 
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SPICE synthesis 
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Recursive convolution 
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Macromodel implementations 

1. Synthesize an equivalent circuit in SPICE format 

No access to SPICE kernel  

Must use standard circuit elements 

2. Direct SPICE implementation via recursive convolution 

Laplace element, most efficient 

3. Other languages for mixed-signal analyses 

Verilog-AMS, VHDL-AMS, … 

Equation-based 

Example: board with 13 ports 

 

CPU time 

Standard convolution 389 seconds 

Equivalent circuit 180 seconds 

Recursive convolution 5.8 seconds 
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Rational curve fitting 
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Vector Fitting 
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Vector Fitting 
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Stripline + launches 

Data: measured S-parameters 
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Stripline + launches 

Macromodel: 60 poles 
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LGA via field (20 ports) 
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High-speed connector, measured 
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Advanced VF formulations 

Time-domain Vector Fitting 
Processes time samples instead of frequency samples 

Orthonormal Vector Fitting 
Further improvement in matrix conditioning using orthonormal rational functions 

Z-domain (orthonormal) Vector Fitting 
Works on discrete-time/frequency systems 

Fast Vector Fitting 
Uses smart QR decomposition (compressions) for systems with many ports 

Eigenvalue-based Vector Fitting 
Possibly with relative error minimization, for improved robustness 

Multivariate/Parameterized Vector Fitting 
Allows closed-form inclusion of geometry-material parameters in the macromodel 
equations 

Delayed Vector Fitting 
Uses modified basis functions for representing propagation delays in closed form 

Parallel Vector Fitting 
For multicore hardware architectures: close to ideal speedups, almost real-time 
modeling 
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37 

Parallel VF for multicore platforms 

Ports Samples Order 
CPU Time 

1 core 

CPU Time 

16 cores 
Speedup 

83 1228 30 196.08 14.36 13.7 X 

48 690 26 28.32 2.10 13.5 X 

56 1001 50 139.18 11.18 12.4 X 

160 101 6 6.78 1.07 6.3 X 

167 27 12 7.11 0.96 7.4 X 

34 570 64 42.82 3.60 11.9 X 
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Passivity: why? 
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Passivity conditions (scattering) 
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Guarantees real-valued impulse response. 

Always assumed by construction 

Energy condition: structure must not amplify signals. 

Sometimes called simply “passivity” condition 

No anticipatory behavior in time-domain. 

Note: causality is a prerequisite for passivity! 

Guaranteed if macromodel is stable. 
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Not all S-parameter models should be passive 

Small-signal characterization 

of a FET-based amplifier 

S.Grivet-Talocia, “Macromodeling and its Applications for Signal and Power Integrity”, 8-Oct-2013, Intel, Munich 

Passivity violations: why? 

Data from measurement 
Improper calibration and de-embedding, human mistakes 

Measurement noise 

Data from simulation 
Poor meshing 

Inaccurate solver 

Bad models or assumptions on material properties 

Poor data post-processing algorithms 

Putting together results from two solvers 

Macromodel 
Approximation errors in Vector Fitting 

May be critical out-of-band, where no data sample is 
available 
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Checking passivity (scattering) 

    ,)(ofvaluessingular 1S j

Several techniques can be used 

Frequency sweep test: most straightforward 

• Choose a set of frequency samples 

• Compute S and its singular values, and check 

• Time-consuming for large models 

• May give wrong answers due to poor sampling 
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Checking passivity 

Eigenvalues of Hamiltonian matrix 
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Checking passivity 
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Passivity enforcement 









aDxCb

aBxAx

• Generate a new passive macromodel 

• Apply small correction to preserve accuracy 

• original dataset should be passive 

• original macromodel should be accurate 

• (usually) preserve poles 









aDxΔCCb

aBxAx

)(



BAIΔCΔS
1)(  s
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Model Perturbation 
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Singular values of S 
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bRw

ywQ

w 2||||min

Few and simple constraints 

 

Convex: robust solution 

accuracy 

passivity 

S.Grivet-Talocia, “Macromodeling and its Applications for Signal and Power Integrity”, 8-Oct-2013, Intel, Munich 

Example: 28-port package 
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Example: 28-port package 
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The GIGO rule 

Perfect tool 

Garbage In Garbage Out 
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Data qualification 

)j( H

EM simulation 

Measurement 

Macro 

modeling 
Simulation 

High-speed interconnects design via macromodels 

“Good” frequency data  OK! 

GOOD 

DATA 
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Data qualification 

)j( H

EM simulation 

Measurement 

Macro 

modeling 
Simulation 

“Bad” frequency data  FAILURE 

 

BAD 

DATA 

High-speed interconnects design via macromodels 
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Data qualification 

)j( H

EM simulation 

Measurement 

Macro 

modeling 
Simulation 

“Bad” frequency data  FAILURE 

 

• passivity violations 

• causality violations 

BAD 

DATA 

Even macromodel 

generation may fail! 

High-speed interconnects design via macromodels 
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An example 

Fitting dramatically fails! 

NON-CAUSAL 

DATA 

EM simulation 

Vector Fitting 
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An example 

Three coupled lines 

 

 

Vector fitting fails... 

because of 

causality violations! 

Even if the number 

of poles is increased 

up to 50, error does 

not decrease! 
Courtesy of IdemWorks s.r.l. 

S.Grivet-Talocia, “Macromodeling and its Applications for Signal and Power Integrity”, 8-Oct-2013, Intel, Munich 

An example 

Vector Fitting fails 

because of 

causality 

violations! 

Data from 

frequency domain 

simulation. 

Building model New using FDVF 

Performing FDVF Model Generation ... 

Iteration 1 

Warning: flipped real pole 

Warning: flipped real pole 

Warning: flipped real pole 

Warning: flipped real pole 

  RMS Error: 0.00498987   Max Dev: 0.0122055 

 

.... [snip] .... 

 

Iteration 15 

Warning: flipped real pole 

Warning: flipped real pole 

Warning: flipped real pole 

Warning: flipped real pole 

  RMS Error: 0.00385667   Max Dev: 0.0100463 

End of FDVF Model generation 
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Data qualification 

)j( H

GOOD 

DATA 

For successful macromodeling... 

)j( H

? 
Data 

qualification  

• Passivity check on raw data 

• Causality check on raw data 
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Causality and dispersion relations 

time 

IN 

OUT 

time 

)( jH
IN OUT 

Time-domain Frequency-domain 

Kramers-Krönig dispersion 

relations 

Hilbert transform 
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Any physical system 

cannot predict future! 

This check now available in EDA tools 
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A case study: coupled Signal/Power Integrity 

This case study courtesy of 

Georgia Institute of Technology, Atlanta GA, USA 

E-System Design, Inc. 

Provided field solver Sphinx 

Politecnico di Torino 

IdemWorks s.r.l. 

Provided passive macromodeling tool IdEM 

www.idemworks.com 

www.e-systemdesign.com E-System Design 

S.Grivet-Talocia, “Macromodeling and its Applications for Signal and Power Integrity”, 8-Oct-2013, Intel, Munich 

Board cross-section 
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Layers L2 and L3 

L2 L3 

S.Grivet-Talocia, “Macromodeling and its Applications for Signal and Power Integrity”, 8-Oct-2013, Intel, Munich 

Port locations: L3 (Ref: L2) ports 1,7; 2,3; 8,9 
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Port locations: L4 (Ref: L5) ports 10,11 

S.Grivet-Talocia, “Macromodeling and its Applications for Signal and Power Integrity”, 8-Oct-2013, Intel, Munich 

Power ports: L2 (Ref: L5) ports 12,13 

Port 13 

Port 12 
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Macromodel vs S-parameters 

S.Grivet-Talocia, “Macromodeling and its Applications for Signal and Power Integrity”, 8-Oct-2013, Intel, Munich 

SPICE: excitation on signal lines 

http://it.dreamstime.com/lente-dingrandimento-thumb311233.jpg
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Response on a signal line, 1.3GHz 

S.Grivet-Talocia, “Macromodeling and its Applications for Signal and Power Integrity”, 8-Oct-2013, Intel, Munich 

Coupling to power ports, 1.3GHz 
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Xtalk and substrate coupling, 1.3GHz 

S.Grivet-Talocia, “Macromodeling and its Applications for Signal and Power Integrity”, 8-Oct-2013, Intel, Munich 

SPICE: excitation on PDN (core switching) 
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Decoupling capacitors 

Cap 3 (C=1nF,R=10mOhm, L=14.97pH) 

 

Cap 1 (C=1nF,R=10mOhm, L=51.65pH) 

 

Cap 4 (C=1nF,R=10mOhm, L=14.97pH) 

 

Cap 2 (C=1nF,R=10mOhm, L=51.65pH) 

 

Port 12 

 

Port 13 

 

S.Grivet-Talocia, “Macromodeling and its Applications for Signal and Power Integrity”, 8-Oct-2013, Intel, Munich 

PDN response 

Port 13: With and Without Caps 
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Eye diagram simulation: setup 

S.Grivet-Talocia, “Macromodeling and its Applications for Signal and Power Integrity”, 8-Oct-2013, Intel, Munich 

Eye diagram results, 2.6 Gb/s 

Single active line 

+ aggressors 

+ core switching 

No decoupling caps With decoupling caps 
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Outline 

Simulation of terminated interconnects 

Transient analysis 

Black-box passive macromodeling 

An application example 

Current work and future developments 

Macromodeling for RF and AMS systems 

Small-signal (parameterized) reduced-order modeling 

Noise-compliant synthesis 

Conclusions  

 

 

S.Grivet-Talocia, “Macromodeling and its Applications for Signal and Power Integrity”, 8-Oct-2013, Intel, Munich 

Small-signal reduced-order macromodeling 

Pre-tapeout Signal and Power Integrity verification 

Strongly required but time consuming due to complexity 

Devices and Circuit Blocks (CB) are nonlinear 

Local linearity assumption 

Many components in AMS and RF transceivers are designed  

to operate nearly linearly under proper biasing conditions 

Behavioral Models can replace large device-level CB 

Must preserve critical parasitic interference effects 

Must enable fast Spice simulations also for complex designs 

Must be numerically stable, robust and efficient 

Must reproduce correct DC biasing conditions 

76 
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Linearized macromodels and DC correction 

77 
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Parameterized LTFM models 
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Real test case 

Multitone disturbance on LDO’s  Vdd: 

200 us transient analysis 

Transitor level -> ~ 10 h 

LTFM model -> ~ 8 min 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
-3

1.23

1.24

1.25

LDO transient

In
p
u
t 

V
re

f [
V

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
-3

1.128

1.13

time [ms]

O
u
tp

u
t 

V
d
 [

V
]

 

 

Linear

Transitor level

DC corrected linear
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Noise from circuits 
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RC interconnect example 



10/9/2013 

41 

S.Grivet-Talocia, “Macromodeling and its Applications for Signal and Power Integrity”, 8-Oct-2013, Intel, Munich 

Noise compliant synthesis 
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General noise compliant RLCT synthesis 
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Sp

RCCS

RLCT

LC-tank coil of a single-coil DCO, noise results 

4 different RLCT “classical” synthesis methods 

Synthesis’ complexity: 

 

Noise compliant:  

O(n2p2)    
 

Not noise compliant: 

O(np2)      
n: model order 

p: number of ports 
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Conclusions 

Application example shows 
Need for coupled Signal/Power Integrity analysis 

Need for transient analysis 

Need for accurate and efficient Signal/Power models 

Macromodeling 
Provides excellent solution for model extraction 

Computes compact models from 

Direct measurements 

Time or frequency domain full-wave simulation results 

Based on rational approximation of system transfer functions 

Requires passivity verification and enforcement 

Requires “good” data to start with 

Enables fast transient system-level simulation 


