POLITECNICO DI TORINO Repository ISTITUZIONALE

Macromodelling and its Applications to Signal and Power Integrity

Original

Macromodelling and its Applications to Signal and Power Integrity / GRIVET TALOCIA, Stefano. - ELETTRONICO. - (2013), pp. 1-42.

Availability: This version is available at: 11583/2516695 since:

Publisher:

Published DOI:

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)

S.Grivet-Talocia, "Macromodeling and its Applications for Signal and Power Integrity", 8-Oct-2013, Intel, Munich
Advanced VF formulations
 Time-domain Vector Fitting Processes time samples instead of frequency samples Orthonormal Vector Fitting Further improvement in matrix conditioning using orthonormal rational functions Z-domain (orthonormal) Vector Fitting Works on discrete-time/frequency systems Fast Vector Fitting Uses smart QR decomposition (compressions) for systems with many ports Eigenvalue-based Vector Fitting Possibly with relative error minimization, for improved robustness Multivariate/Parameterized Vector Fitting Allows closed-form inclusion of geometry-material parameters in the macromodel equations Delayed Vector Fitting Uses modified basis functions for representing propagation delays in closed form Parallel Vector Fitting For multicore hardware architectures: close to ideal speedups, almost real-time modeling

S.Gri	vet-Talocia, "M	acromodeling and	its Applications for	or Signal and Pow	er Integrity", 8-Oct-2013,	Intel, Munich
		Parall	el VF fo	r multic	ore platfor	ms
	Ports	Samples	Order	CPU Time 1 core	CPU Time 16 cores	Speedup
	83	1228	30	196.08	14.36	13.7 X
	48	690	26	28.32	2.10	13.5 X
	56	1001	50	139.18	11.18	12.4 X
	160	101	6	6.78	1.07	6.3 X
	167	27	12	7.11	0.96	7.4 X
	34	570	64	42.82	3.60	11.9 X
	POLITECNICO DI			37		emc grou

Scale-Table 2, Wateronoodeling and its Applications for Signal and Power Integrity 2-Oct-2013, Intell Multiple Signal and Power Integrity 2-Oct-2013, Intell Multiple Signal and Power Integrity 2-Oct-2013, Intell Multiple Signal Action and Signal Action action and Signal Action action

<pre>Data from frequency domain imulation.</pre> Building model New using FDVF Performing FDVF Model Generation Iteration 1 Warning: flipped real pole Warning: flipped real pole Warning: flipped real pole Warning: flipped real pole Marning: flipped real pole	S.Grivet-Talocia, "Macromodeling and its Applications for Signal and Power Integrity", 8-Oct-2013, Intel, Munich										
Pata from frequency domain simulation.Building model New using FDVF Performing FDVF Model GenerationUteration 1 Warning: flipped real pole Warning: flipped real pole Warning: flipped real pole Warning: flipped real pole Warning: flipped real pole Max Dev: 0.0122055Vector Fitting fails because of causality violations!Marning: flipped real pole Warning: flipped real pole Warning: flipped real pole Max Dev: 0.0100463 End of FDVF Model generation	An example										
Data from frequency domain simulation.Building model New using FDVF Performing FDVF Model GenerationUteration 1 Warning: flipped real pole Warning: flipped real pole Warning: flipped real pole Warning: flipped real pole RMS Error: 0.00498987 Max Dev: 0.0122055Vector Fitting fails because of causality violations!Heration 15 Warning: flipped real pole Warning: flipped real pole		All example									
Vector Fitting fails because of causality violations!Iteration 15Warning: flipped real pole Warning: flipped real pole Warning: flipped real pole RMS Error: 0.00385667 End of FDVF Model generation	Data from frequency domain simulation.	Building model New using FDVF Performing FDVF Model Generation Iteration 1 Warning: flipped real pole Warning: flipped real pole Warning: flipped real pole RMS Error: 0.00498987 Max Dev: 0.0122055 [snip]									
	Vector Fitting fails because of causality violations!	<pre>Iteration 15 Warning: flipped real pole Warning: flipped real pole Warning: flipped real pole Warning: flipped real pole RMS Error: 0.00385667 Max Dev: 0.0100463 End of FDVF Model generation</pre>									

			-			_						
			E	soard		cro	SS-S	ect	ION			
🌠 Lay	out Cross Secti	ion										
Cross	Section											
								D 11 - 11			L au : u d	1.00
	Subclass Name	Type		Material		Thickness (MIL)	Conductivity (mbo/cm)	Dielectric	Loss	Artwork	Shield	Width (MIL)
		SUDEACE	-	AID	-	((27	0			
	TOP	CONDUCTOR		COPPER		1.25	595900	3.7	0			5.000
3	10	DIELECTRIC	-	FB-4	-	28	333800	3.7	0.035			3.000
4	L2	PLANE	-	COPPER	-	0.7	595900	3.7	0			
5		DIELECTRIC	•	FB-4	-	2.8	0	3.7	0.035			
6	L3	CONDUCTOR	•	COPPER	-	0.7	595900	3.7	0			5.000
7		DIELECTRIC	-	FB-4	*	6	0	3.7	0.035			
8	L4	CONDUCTOR	•	COPPER	-	0.7	595900	3.7	0			5.000
9	(DIELECTRIC	-	FR-4	-	3.6	0	3.7	0.035			
10	L5	PLANE	•	COPPER	-	1.2	595900	3.7	0		×	
11		DIELECTRIC	÷	FR-4	•	3.5	0	3.7	0.035		-	
12	L6	PLANE	-	CUPPER	*	1.2	595900	3.7	0.005		×	
13	164	FLANE	÷	CODDED	-	12	EGEGOO	3.7	0.035			
15	LON	DIFLECTRIC		FB.4	·	1.2	555500	3.7	0.035			
16	L7A	PLANE	•	COPPER	-	12	595900	4.5	0.000		8	
17		DIELECTRIC	•	FB-4	-	2	0	3.7	0.035		_	
18	L7		•	COPPER	-	1.2	595900	3.7	0		×	
19		DIELECTRIC	•	FB-4	*	3.5	0	3.7	0.035			
20	L8	PLANE	-	COPPER	-	1.2	595900	3.7	0		×	
21		DIELECTRIC	•	FB-4	-	3.6	0	3.7	0.035			
22	L9	CONDUCTOR	-	COPPER	-	0.7	595900	3.7	0			5.000
23	110	DIELECTRIC	-	FB-4	-	6	0	3.7	0.035			5.000
24	LIU	DISLECTRIC	÷	ED 4	H	0.7	595900	3.7	0.025			5.000
20	111	PLANE	÷	COPPER	÷	0.7	595900	3.7	0.030		R	
20	en .	DIFLECTRIC	÷	FB-4	-	28	333300 0	3.7	0.035			
28	BOTTOM	CONDUCTOR	-	COPPER	-	1.25	595900	3.7	0			5.000
		SURFACE		AIR				3.7	0	_		
29												

