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Pupil is controlled by the autonomous nervous system (ANS). It shows complex movements and changes of size even in conditions
of constant stimulation. The possibility of extracting information on ANS by processing data recorded during a short experiment
using a low cost system for pupil investigation is studied. Moreover, the significance of nonlinear information contained in
the pupillogram is investigated. We examined 13 healthy subjects in different stationary conditions, considering habitual dental
occlusion (HDO) as a weak stimulation of the ANS with respect to the maintenance of the rest position (RP) of the jaw. Images
of pupil captured by infrared cameras were processed to estimate position and size on each frame. From such time series, we
extracted linear indexes (e.g., average size, average displacement, and spectral parameters) and nonlinear information using
recurrence quantification analysis (RQA). Data were classified using multilayer perceptrons and support vector machines trained
using different sets of input indexes: the best performance in classification was obtained including nonlinear indexes in the input
features. These results indicate that RQA nonlinear indexes provide additional information on pupil dynamics with respect to
linear descriptors, allowing the discrimination of even a slight stimulation of the ANS. Their use in the investigation of pathology
is suggested.

1. Introduction

The dynamics of the pupil shows apparently random move-
ments and changes of size, even in constant conditions of
light and visual stimulus. This complex behaviour reflects
the action of the autonomous nervous system (ANS) [1]. The
study of stress related pathologies is promoting the devel-
opment of low cost devices for monitoring the physiological
systems controlled by theANS [2, 3] and the study ofmethods
to process images captured from pupil [4].

The contraction and dilation of the pupil are controlled
by the two branches of the ANS, specifically by the sym-
pathetic nerve centre (Budge’s ciliospinalis centre) and the
parasympathetic centre (Edinger-Westphal Nucleus). They
promote pupil dilation (mydriasis) and constriction (miosis),
respectively.

The oscillation of pupil size varies according to subjective
characteristics or to the properties of light stimulation,

but the spontaneous oscillation frequency was found to be
independent of age, sex, intensity of light, and time of day [5].

Under conditions of constant light and vision, some
frequencies of oscillation are coupled among various systems
affected by the control of the ANS (e.g., cardiovascular and
respiratory systems) [6, 7]. The pupil is part of this group of
systems, sharing some of the common rhythms [8–12].

The interest, therefore, for the study of spontaneous
erratic dynamics of pupil comes from the possibility to
monitor in a simple, direct, and easily accessible way the
physiological state of the ANS. In this regard, studies have
been conducted to investigate the physiology of this system
and its involvement in the course of diseases of the ANS [13–
17].

Most of the studies considered the dynamics of pupil
as linear and steady, so that classical Fourier analysis could
be applied [7]. Nevertheless, the presence of nonstationary
dynamics in the behaviour of pupil oscillations has been
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reported in a few studies [18, 19]. The complex dynamics of
the signal suggested the necessity to study this system using
nonlinear analysis techniques [20]. However, the analysis of
spontaneous pupil oscillations by nonlinear techniques has
not been deepened in the literature yet.

Recurrence Quantification Analysis (RQA) is a specific
nonlinear technique which was introduced to study the non-
linear dynamics of various natural and artificial systems [21],
including biological signals [21–27]. One of the advantages of
this technique is the ability to analyze relatively short time
series of nonlinear data [28].

The purpose of this study is to assess the applicability
of RQA to process spontaneous oscillations of the pupil,
recorded by a low cost system during short experiments (ade-
quate for a clinical monitoring) in specific conditions of the
ANS. Two different stimulations of the ANS are considered:
the first is constant light, which is considered as a strong
stimulation, deeply affecting pupil dynamics; the second is
habitual dental occlusion (HDO) (see Section 2.3), which is
expected to elicit a weak response of the ANS [29].The ability
of different linear and nonlinear indexes in discriminating
different conditions (in particular, the sensitivity to the weak
stimulation by HDO) is tested using statistical analysis and
multi-index classification.

2. Materials and Methods

2.1. Instrumentation. Images of the pupils were acquired by
the Oculus system (Inventis SRL, Padova, Italy), using two
infrared CCD cameras (resolution 720 × 576 pixels, 256 grey
levels) mounted on a light helmet (1.5 kg), with sampling
frequency of 25 frame/s. The eyes were illuminated with
an infrared diode with 880 nm of wave length; moreover,
during experiments on pupil dynamics under constant light
conditions, illuminationwas provided by green LEDs (one for
each eye)with 540 nmofwave length and intensity of 1.5mcd.

2.2. Experimental Setup. The subjects were lying supine on a
bed for clinical examination. The environment was kept at a
constant temperature of 21∘C and with relative humidity of
50%. Causes of alarm (fixed and mobile phones, speakers,
bells, etc.) were excluded.The recording sessionwas preceded
by 3 minutes of environmental adaptation of the subject.
Then, the helmet was applied and was maintained until the
end of the recording without further handling.

The correct procedure and execution of tests was first
explained to the subject. Then, some brief tests were pro-
posed, in order to be sure that the instructions were well
understood. This phase took about 2 minutes.

Two operators assisted the subjects during the experi-
ments. The first took care of the subject (pretest and test
instructions, helmet handling, check on the correctness of
execution), and the second controlled data acquisition.

2.3. Experiments. Biocular, one minute long acquisitions
were obtained from 13 young, healthy subjects (aged 27.1 ±
6.9; 5 females, 8 males). The tonic adapted size of the

two pupils was investigated in darkness and constant light
conditions. In light condition, the subjects directed the gaze
toward the green LEDs till they obtained the fusion of the
two different LEDs. In darkness, subjects were asked to keep
the eyes straight ahead. Different stationary conditions were
considered, which require a different involvement of the
sympathetic and parasympathetic control: neutral position
of the jaw (rest position: RP) and HDO. HDO is the full
contact of the two dental arches. It is achieved spontaneously
during swallowing when the teeth of the jaw and the teeth
of the maxilla fit through the respective contact surface.
This dental occlusion is also habitual because it is obtained
spontaneously and routinely each time an individual decides
to close the teeth in complete and full contact with each other.
During dental occlusion, the effect of muscle fatigue (which
would elicit the autonomic system) was excluded by avoiding
prolonged teeth clenching. Attention was paid to check the
activity of mimic muscles (reflecting a possible erroneous
occlusion).

RP and HDO were investigated both in light and in
darkness, so that four experiments were performed for each
subject.The tests were carried out according to a randomized
sequence, in order to avoid cumulative effects. One minute
of rest was inserted between consecutive tests. During such
an interval, the subject’s eyes were closed. Subsequently, the
subject opened the eyes and, after 30 seconds of adaptation,
the following specific test started.

2.4. Time Series Extraction. Thepupil of each eye was tracked
identifying it with the region growing algorithm, which
guarantees that a connected region is identified starting from
the darkest point in the image. Such a point was selected
close to the centre of the pupil identified from the previous
image, in order to be sure to exclude other dark portions of
the frames (e.g., an eyelash).The border of the identified pupil
region was then computed and, finally, it was interpolated
with a circle using the analytical method proposed in [30].

Pupil size was computed as the sum of pixels identified
by the region growing algorithm. Pupil position was given by
the centre of the interpolating circle.

Possible mistakes of the processing algorithmwere deter-
mined by noisy frames or blinks (even if the subjects were
asked to keep the eyes open during the 60 s acquisitions).
Such mistakes (less than 0.5% of frames for all considered
videos) determined rapid, not physiological variations of the
estimated dimension and motion of the pupil, so that they
could be automatically identified and removed (by cubic
interpolation). This filtering is not expected to affect the
signals, as the bandwidth of pupil size and movement (if
microsaccades are neglected) is lower than a few Hz.

Images from both eyes were processed to extract the
size and the position of the two pupils. The mean size and
the mean position (averaging across the two pupils) were
considered for further processing.

2.5. Time Series Embedding. The estimated pupil area was
considered as a time series extracted from a deterministic
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physiological system. Suppose that such a system can be
described by a set of complicated, unknown deterministic
rules as

𝑑�⃗�

𝑑𝑡

= �⃗� (�⃗�, 𝑡) , (1)

where �⃗� is the vector of state variables of the system and
�⃗� is a set of functions called the vector field, defining the
evolution of the state variables in time. If the system works
in stationary conditions, we can expect that the vector field is
not an explicit function of time (i.e., the same deterministic
rules are used to control the size of the pupil over time). In
such a case, the system is said to be autonomous:

𝑑�⃗�

𝑑𝑡

= �⃗� (�⃗�) . (2)

The estimated pupil size can be considered as a time series
𝑦(𝑡) extracted from the system through a measure, which
can be modelled by an unknown function 𝑔(⋅) of the state
variables

𝑦 (𝑡) = 𝑔 (�⃗� (𝑡)) . (3)

The methods of time series embedding [31] were used.
Given the single measured time series, multiple information
is obtained by considering time delayed versions of the data

�⃗� (𝑡) =

[
[
[
[

[

𝑦 (𝑡)

𝑦 (𝑡 − 𝜏)

...
𝑦 (𝑡 − (𝑚 − 1) 𝜏)

]
]
]
]

]

, (4)

where 𝜏 is a timedelay chosen in order that different functions
in the vector �⃗�(𝑡) contain different information and the
number 𝑚 of elements of the vector is called the embedding
dimension. The vector �⃗�(𝑡) can be considered as a trajectory
(parameterized by the time variable 𝑡) embedded in a space of
dimension 𝑚 (phase space). The time delay 𝜏 was estimated
considering the mutual information between the recorded
time series and the delayed one as

MI (𝜏) = ∫
𝑈

∫

𝑉

𝑝
𝑈𝑉
(𝑢, V) ln(

𝑝
𝑈𝑉
(𝑢, V)

𝑝
𝑈
(𝑢) 𝑝
𝑉
(V)
) 𝑑𝑢 𝑑V, (5)

where the time series 𝑦(𝑡) and 𝑦(𝑡 − 𝜏) are considered as
random variables𝑈 and𝑉, respectively, with joint probability
density𝑝

𝑈𝑉
(𝑢, V) andmarginal probabilities𝑝

𝑈
(𝑢) and𝑝

𝑉
(V),

respectively. For subsequent analysis, we considered the time
delay corresponding to a 90%decrease ofmutual information
between the maximal value at 𝜏 = 0 and a reference minimal
value (i.e., the average value for large time delays, 100 < 𝜏 <
200measured in samples).

In order to choose the proper embedding dimension,
Cao’s method [32] was used. It is based on the number of
points of the trajectory described by the vector in (4), which
are neighbours of other points of the trajectory itself. When

the trajectory returns in the vicinity of a point which was
passed through before, we say that the system undergoes a
recurrence. Notice that the correct estimation of a recurrence
is of paramount importance for RQA. When increasing the
embedding dimension (adding one element to the vector
describing the trajectory), neighbouring points which are
close only due to the projection of the trajectory in a
low dimensional space (false near neighbours) may turn
away. Thus, the number of neighbouring points decreases by
increasing the embedding dimension, till false neighbours are
present. Real neighbours remain close to each other when
increasing further the embedding dimension. Thus, inves-
tigating the curve indicating the number of neighbours for
different embedding dimensions, it is possible to determine
the dimension of the space in which the trajectory in (4)
is embedded. Specifically, Cao’s method [32] considers the
following function of the embedding dimension:

𝐸1 (𝑚) =

𝐸 (𝑚 + 1)

𝐸 (𝑚)

,

where 𝐸 (𝑚) = 1

𝑁 − 𝑚𝜏

𝑁−𝑚𝜏

∑

𝑖=1





𝑦
𝑖
(𝑚 + 1) − 𝑦

𝑛(𝑖,𝑚)
(𝑚 + 1)










𝑦
𝑖
(𝑚) − 𝑦

𝑛(𝑖,𝑚)
(𝑚)





,

(6)

where ‖ ⋅ ‖ is the absolute distance norm, 𝑦
𝑖
(𝑚) is the

𝑖th reconstructed vector with embedding dimension 𝑚, and
𝑦
𝑛(𝑖,𝑚)
(𝑚) is the nearest neighbour of 𝑦

𝑖
(𝑚) in the 𝑚-

dimensional reconstructed phase space. The function 𝐸1(𝑚)
saturates when the correct dimension of the phase space is
considered. Thus, such a function has a knee (i.e., a point of
maximum curvature), separating a region of increase from a
plateau. To estimate automatically the position of the knee,
the following procedure was applied. Given a number 𝑁
of tested embedding dimensions, the first (𝑁–𝑀) values of
𝐸1(𝑚) (with 1 < 𝑀 < 𝑁) were interpolated by a line, the
remaining 𝑀 values by another line. In this way, for each
value of𝑀, the function was approximated by two lines. The
value of𝑀 providing the minimum mean square error was
considered as corresponding to the knee.

The embedding dimension provides an indication of the
number of (unknown) state variables of the (unknown) set
of deterministic rules describing the dynamics of the system
(indicating the complexity of the system). All signals were
characterized by a time delay close to 10 and an embedding
dimension close to 6. These two values were fixed for all
signals, in order to keep the same processing parameters.

2.6. Recurrence Quantification Analysis. Recurrence quanti-
fication analysis (RQA) is a nonlinear technique providing
quantitative indexes related to the number and duration
of recurrences of the trajectory of a dynamical system in
the phase space. The size of the pupil was considered as a
trajectory after applying the time series embedding method
described in Section 2.5; the movement of the centre of the
pupil was considered as a two-dimensional trajectory.

All variables provided by RQA are based on the recur-
rence plot, which is a binary recurrence map obtained by
assigning value 1 to the entry (𝑖, 𝑗) if the Euclidean distance
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between the 𝑖th and the 𝑗th point along the trajectory is
smaller than a threshold (in which case there is a recurrence
of the trajectory) and value 0 otherwise. In this paper, the
threshold is chosen to be

th = ((6𝜎)
𝑚

10
4

)

1/𝑚

, (7)

where 𝜎 is the standard deviation of the signal. This choice
was selected after a fine tuning based on a subset of signals. It
can be interpreted as follows: 6𝜎 is considered as the essential
range of the signal (assumed to vary around its mean plus or
minus 3 times its standard deviation) and (6𝜎)𝑚 is an estimate
of the volume of the region spanned by the trajectory in the
𝑚-dimensional phase space. Such a region is divided into
104 small portions and the threshold th can be considered
as the diameter of such small regions sampling the hyper-
volume spanned by the trajectory. To exclude neighbouring
points which are close in time, the minimum time interval
(Theiler window, [31]) between different points considered in
the recurrence plot was 10.

2.7. Linear and Nonlinear Indexes. The mean size of the
pupil was considered as a linear index characterizing pupil
dynamics. Moreover, the amplitudes of the movements in the
𝑥 or 𝑦 directions were measured by their standard deviations
(STD).

Important linear indexes were extracted using Fourier
analysis. Mean frequency (MNF) was computed from the
Fourier spectrum of pupil size and movement along the 𝑥
or 𝑦 directions. As further spectral indexes, the percentages
of energy of the spectrum of pupil size in the ranges 0.04–
0.15Hz (𝐹Low) and 0.15–0.5Hz (𝐹High) were computed [10].

Nonlinear indexes were extracted from the recurrence
map. Different indexes can be considered [21], but here we
focus only on the two ones which are mostly used in the
literature. The recurrence rate is the density of recurrence
points

RR = 1
𝑁
2

𝑁

∑

𝑖,𝑗=1

𝑅 (𝑖, 𝑗) , (8)

where𝑁 is the number of entries of the recurrence map 𝑅.
The second considered index is the percentage of deter-

minism, defined as the percentage of recurrence points
forming diagonal lines in the recurrence plot of minimal
length 𝐿min (equal to 2 in this work) as

DET =
∑
𝑁

𝑙=𝐿min
𝑙𝑃 (𝑙)

∑
𝑁

𝑖,𝑗=1

𝑅 (𝑖, 𝑗)

, (9)

where 𝑃(𝑙) is the frequency distribution of the lengths of the
diagonal lines.Thedeterminism is related to the predictability
of the system (as the length of diagonal lines in the recurrence
plot indicates how long neighbouring points remain close)

and to Lyapunov exponents (time constants of exponential
divergence of close trajectories of a chaotic system [31]).

2.8. Signal Processing. The two-sided Wilcoxon signed rank
test (considering paired data with Bonferroni correction)
was applied to investigate differences between couples of
conditions of interest: RP (or HDO) in light compared to RP
(or HDO) in darkness, RP compared to HDO, in light or in
darkness. The significance level was set to 𝑃 < 0.05.

Paired statistical analysis makes use of a single index to
discriminate between different conditions, but it uses the
information that data are paired. A second test was based
on checking the discrimination capability of sets of indexes,
neglecting the information that data are paired. Different
multilayer perceptrons (MLP) and support vector machines
(SVM)were trained [33] to learn how to classify RP andHDO
conditions (in light or darkness), given the indexes extracted
from the data (discriminating light and darkness conditions
was not considered, as it is trivial). The classification was
performed using all possible sets of 3, 4, or 5 input indexes
(with less than 3 indexes, the errors were always large, about
50%; using more than 5 indexes would not be correct, due to
the small set of data).

A set of MLP was considered with a single hidden layer
(with neurons with hyperbolic tangent activation function)
and a single output neuron (with logistic activation function).
The number of hidden neurons was varied between 4 and 20.
Each network was trained on a subset of 20 data (training set)
using the quasi-Newton algorithm for a number of iterations
between 2 and 500. The MLP with the best generalization to
a subset of 5 data (validation set) was chosen to estimate a
single test sample (approximating the output to the closest
integer to determine the estimated class).The classification of
the same test sample was estimated 9 times, considering the
optimal MLP trained and validated on different, randomly
chosen, training and validation sets.The class that was chosen
the majority number of times was finally considered as the
classification of the test sample.

Similarly, different sets of data were used to train an SVM
to perform a binary classification, discriminating between
RP and HDO conditions. As the classes were not linearly
separable, the input space was mapped into a feature space
using a polynomial kernel. The order of the kernel was
chosen in the range of 2–8 as that guaranteeing the best
generalisation on a subset of 5 unseeing data (validation set)
after training of a subset of 20 data (with 8 random choices of
training and validation set).The selected SVMwas then used
to classify the single test data left out.

The procedure was repeated for both MLP and SVM
classifiers considering as test sample each of the 26 data (RP
and HDO conditions, in light or darkness), with a leave-one-
out approach.The discrepancy between estimated and actual
class was used to quantify the goodness of a specific choice of
input features in discriminating data collected in RP orHDO.

The indexes allowing best classification in the leave-one-
out test were further used as inputs for classifiers applied
to more than a single test sample. The classifiers were again
optimized on training and validation sets (using all data
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Figure 1: Example of detection and preliminary processing of data. (a) Detection system. (b) Example of processing of a single frame of the
video captured by one of the two cameras of the system.The boundary of the pupil is identified and interpolated with a circle. (c) Area of the
pupil as a function of time.

excluding those used for test) and then applied to estimate
the RP or HDO conditions of unseen 2–6 test data.

3. Results

Figure 1 shows a representation of the experimental protocol
and data preliminary processing. The detection system is
shown in Figure 1(a). Two infrared cameras capture images
from the eyes when stimulated by a green LED (light con-
ditions) or when they are only illuminated by infrared light
(darkness condition). A single frame of the video captured by
one of the two cameras of the system is shown in Figure 1(b).
The pupil is identified by the region growing algorithm. The
boundary is then estimated (and interpolated by a circle,
to compute the movements of pupil; see Section 2.4). The
pupil area was computed for each frame as the number of
pixels covering it and represented as a function of time in
Figure 1(c).

Figure 2 shows an example of processing of a pupil size
time series recorded from a subject in stationary conditions.
The estimated time series is shown in Figure 2(a). Data are
normalised, removing themean and dividing by the standard
deviation. The extraction of some linear and nonlinear
indexes are shown in Figures 2(b) and 2(c), respectively.
Linear indexes from Fourier analysis are obtained from the
power spectrum (both the spectrum and the estimation by
the Yule-Walker autoregressive algorithm [34] are shown;

the power spectrum provided by FFT was used in this
paper to estimate the considered linear spectral indexes).
Nonlinear indexes (RR and DET) are extracted from the
recurrence plot, which is shown in Figure 2(c). The number
of black points (indicating recurrences) and their distribution
along diagonals provide a visual indication of recurrence and
determinism of the data. Note that the recurrence plot is
symmetric with respect to the diagonal, by definition. The
black points are distributed close to the diagonal on the
bottom-left portion, indicating an initial transient. On the
upper-right region, black points are more diffused, reflecting
the pseudoperiodicity of the data.

Figure 3 shows an example of processing of pupil move-
ment signals recorded from a single subject in light and
darkness stationary conditions. Notice that movements are
broader in darkness. The recurrence plot is shown and
nonlinear RQA indexes are indicated. Recurrence rate and
determinism are very low, indicating that eye movements are
erratic.

Table 1 provides mean and standard deviation of all
indexes. Table 2 indicates the result of the statistical paired
test for the significance of differences between interesting
conditions. Discriminating between light and darkness con-
dition is surely possible. Discriminating between RP and
HDO conditions from pupil dynamics is more difficult, as
the stimulation of the ANS during HDO is weak. Statistical
analysis of paired data suggests that the two conditions can
be discriminated by a few indexes only in dark conditions,



6 BioMed Research International

Table 1: Mean ± standard deviation of indexes.

Index RP RP HDO HDO
Darkness Light Darkness Light

Size (pixel) 7020 ± 1484 3751 ± 1808 7139 ± 2373 4047 ± 1608

MNF (Hz) 0.337 ± 0.246 0.239 ± 0.059 0.314 ± 0.197 0.231 ± 0.091

𝐹Low (%) 27.2 ± 12.1 19.6 ± 8.2 24.4 ± 11.9 20.8 ± 15.7

𝐹High (%) 16.9 ± 7.9 19.2 ± 10.5 17.8 ± 8.6 18.5 ± 8.4

MNF
𝑥

(Hz) 0.165 ± 0.061 0.298 ± 0.142 0.204 ± 0.123 0.264 ± 0.172

MNF
𝑦

(Hz) 0.225 ± 0.101 0.452 ± 0.270 0.249 ± 0.167 0.490 ± 0.256

STD
𝑥

(pixel) 8.518 ± 3.914 3.675 ± 4.695 6.657 ± 3.592 3.255 ± 1.740

STD
𝑦

(pixel) 5.134 ± 3.602 3.732 ± 4.069 4.850 ± 2.729 2.843 ± 2.525

RR (%) 25.2 ± 19.9 8.9 ± 6.8 12.4 ± 10.2 7.9 ± 3.6

DET (%) 87.5 ± 19.7 87.6 ± 7.5 77.9 ± 19.9 89.6 ± 5.6

RR
𝑥𝑦

(%) 2.7 ± 6.0 4.3 ± 11.8 2.8 ± 6.0 1.2 ± 0.9

DET
𝑥𝑦

(%) 16.7 ± 24.0 22.5 ± 22.6 15.8 ± 24.0 14.7 ± 7.8
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Figure 2: Example of processing of a pupil size time series recorded from a subject in stationary conditions. Normalized data are shown in
(a). The extraction of some linear and nonlinear indexes is shown in (b) and (c), respectively (each point in (c) indicates a recurrence).
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Figure 3: Example of nonlinear processing of pupil movements during (a-c) light and (b-d) darkness condition, recorded from the same
subject in RP.

whereas the distinction in light is fairly difficult. As men-
tioned in Section 1, this is in line with our expectations, as
light is a much stronger stimulation than changing slightly
the position of the jaw, so that it obscures the effect of the
latter.

Tables 3 and 4 show the result of the multi-index clas-
sification by MLPs and SVMs of RP and HDO, in light and
darkness condition, respectively. Again, in light condition,
the classification is very difficult (with better performance
using SVMs).WithMLPs, only a few choices of input features

allow obtaining a classification error lower than that of a
random classifier (for which 50% error is expected). With
SVMs, best classifiers have about 30%of errors.Moreover, the
classifier does not benefit from includingmore input features,
indicating that an additional input provides more noise than
information.

When signals are detected in dark conditions, classifica-
tion is possible. Performances increase slightly by providing
more input features with MLPs, whereas they are constant
with SVMs. The extent of the vertical movement of the eye
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Table 2: Two-sided Wilcoxon signed rank test (𝑃 values).

Index RP light versus
darkness

RP versus HDO
(light)

RP versus HDO
(dark)

HDO darkness
versus light

Size (pixel) 0.00001 0.36 0.051 0.00001
MNF (Hz) 0.032 0.24 0.41 0.05
𝐹Low (%) 0.057 0.15 0.048 0.003
𝐹High (%) 0.21 0.55 0.23 0.032
MNF

𝑥

(Hz) 0.020 0.75 0.06 0.93
MNF

𝑦

(Hz) 0.007 0.061 0.84 0.00007
STD
𝑥

(pixel) 0.001 0.17 0.11 0.001
STD
𝑦

(pixel) 0.071 0.12 0.037 0.0001
RR (%) 0.0002 0.15 0.010 0.006
DET (%) 0.85 0.22 0.007 0.003
RR
𝑥𝑦

(%) 0.79 0.11 0.25 0.73
DET
𝑥𝑦

(%) 0.17 0.019 0.54 0.09
bold italic numbers correspond to significant differences.

Table 3: Classification of RP and HDO in light conditions.

RP versus HDO in
light conditions

MLP SVM
Input indexes Error Input indexes Error

3 inputs MNF 𝐹Low MNF
𝑦

46.2% RR MNFMNF
𝑦

26.9%

4 inputs Size MNF 𝐹Low STD
𝑥

RR DET 𝐹Low STD
𝑦

46.2% RR MNF 𝐹Low STD
𝑥

34.6%

5 inputs RR DET MNF 𝐹Low STD
𝑥

50% DET MNF 𝐹Low MNF
𝑦

STD
𝑦

34.6%
Set of input features (with 3, 4, or 5 inputs) providing best classification of RP and HDO in light.

(measured by STD
𝑦
) and themean size are the features which

are most included in the best sets of input indexes, both
considering MLPs and SVMs. Nonlinear indexes extracted
by RQA from pupil size time series are always included. In
particular, both RR and DET are selected in the optimal
sets of 4 and 5 input sets using MLPs, together with the
above mentioned features (size and STD

𝑦
), indicating the

importance of including the considered nonlinear informa-
tion to improve classification (reflecting a better description
and characterization of pupil dynamics).

In order to better underline the contribution of nonlinear
information, the maximum performances obtained using
only linear indexes were as follows: 42% and 38% of error
using 3 inputs with MLP and SVM, respectively; 42% and
34% of error using 4 inputs withMLP and SVM, respectively;
46% and 42% of error using 5 inputs with MLP and SVM,
respectively. The errors are very high, close to those of
random classifiers.

Moreover, all performances of classifiers including a
specific index were considered to get a deeper insight into
which information allowed to get lower errors in the average.
Considering MLP classifiers with 3 or 4 or 5 inputs, DET
was always the index obtaining in the average less misclas-
sifications, followed by RR and STD

𝑦
. Considering SVM

classifiers, DET was the index most included in optimal 3
inputs classifiers, whereas MNF allowed to get maximum
average performances with 4 and 5 inputs (followed by RR,
DET, and STD

𝑦
).

Finally, the best classifiers in dark conditions (the 6
classifiers in Table 4) were used to classify a set of test data,
instead of a single value. Each classifier was trained and
validated on a portion of data (randomly chosen for 20 times)
and tested on the remaining data, which was a set of 2–
6 samples. The mean error was quite high, in the range
of 20%–30% for MLP and 30%–50% for SVM. The error
was increasing as the number of samples to be classified
increased (and, as a consequence, as the number of training
data decreased).

4. Discussion

This work aimed to investigate the ANS, through the char-
acterization of the dynamics of the oscillations of the pupil
of healthy adults in stationary conditions. A simple and
noninvasive method is proposed. Sophisticated systems are
available for the investigation of pupil dynamics [35]: high
resolution cameras (about 1 megapixels) with around 0.5–
1 kHz of sampling frequency even allow for the accurate
investigation of microsaccadic movements [36]. The pupillo-
gram is here investigated using a low cost recording system
(less than 5.000 euro versus up to 40.000 euro needed
for sophisticated devices [37]). Moreover, short experiments
were conducted (1 minute long, compatible for a clinical
investigation). The low sampling frequency and resolution
(in terms of number of pixels) precluded the possibility of
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Table 4: Classification of RP and HDO in darkness conditions.

RP versus HDO in
light conditions

MLP SVM
Input indexes Error Input indexes Error

3 inputs Size DET STD
𝑦

19.2% RR MNFMNF
𝑦

26.9%
4 inputs Size RR DET STD

𝑦

19.2% Size DET MNF STDy 26.9%
5 inputs Size RR DET 𝐹Low STD

𝑦

15.4% Size DET MNFMNF
𝑦

STD
𝑦

26.9%
Set of input features (with 3, 4, or 5 inputs) providing best classification of RP and HDO in darkness.

investigating fine details of pupil dynamics, like microsac-
cades. Nevertheless, the size and position of the pupil could
be estimated and the indexes extracted from such time series
allowed to identify with some confidence the conditions of
stimulation of the ANS, even when the stimulus was very low.
The HDO is proposed as a weak stimulus of the sympathetic
system. In this work, we were able to distinguish it from
the RP condition considering data recorded in darkness and
using appropriate (linear and nonlinear) descriptors.

In stationary stimulation conditions, we assume that the
physiological system is autonomous (the vector field deter-
mining the dynamics of the state variables of the system is
constant in time; see Section 2.5). We can expect that, in such
conditions, a sort of stationarity characterizes the time series.
Nevertheless, we expect that the statistical properties of the
pupillogram are neither constant in time nor simply peri-
odic. Indeed, the ANS controls other physiological systems
which show nonlinear behaviour; for example, the heart rate,
which may display complex nonlinear dynamics, including
deterministic chaos [38].Thus, even pupil dynamics could be
determined by nonlinear deterministic rules determining a
nonlinear and chaotic behaviour. The analysis of recurrences
of the dynamics is important to assess a nonlinear and
possibly chaotic behaviour, so that we considered RQA.

Obviously, a primary stimulus affecting pupil dynamics
is light, which determines a large variation of most of the
indexes that we recorded from pupillogram. For example,
reduction of pupil size and of the range of movements
were observed comparing data recorded in light with those
acquired in darkness conditions.Moreover, each event (phys-
ical or mental), which is able to determine muscle activation
or mental arousal, elicits a response of the sympathetic
component of the ANS which involves an increase in pupil
size [39]. Our results confirm this indication under darkness
condition, showing that the HDO is to be considered as a
physiological activation of the sympathetic component of the
ANS.

Many biological signals are characterized in stationary
conditions by fluctuations in time of their absolute values
which often have nonlinear characteristics. These fluctua-
tions have been studied by parameters derived from RQA
(as RR and DET). Some studies showed that, in healthy
subjects,more demanding physiological performance implies
a reduction of determinism of signals reflecting the control
of ANS (see e.g., [40]). On the contrary, in pathological
conditions or aging, the dynamics of biological signals
showed lower complexity and an increase in determinism
[27]. In agreement with the aforementioned works, our data

indicate that, under physiological conditions, autonomic and
neuromuscular systems that control the dynamics of the pupil
and ocular mobility respond simultaneously, although they
are not necessarily correlated, in response to occlusion and
light. Nonlinear parameters show a reduction of RR and
DET, while, at the same time, there is an increase of the
MNF of pupil oscillations and movements. Moreover, the
dynamics of pupil oscillations in darkness showa reduction of
the percentage energy of low frequency components (𝐹Low),
probably related to a change of the rate of breath, that raises
in conditions of increased stress [19].

Taken together, darkness data suggest that occlusal con-
tact involves physiological activation of the sympathetic
branch of the ANS (pupil dilation, reduced values of DET and
RR, reduction of low frequency components) and the oculo-
motor system (reduction of DET

𝑥𝑦
, increased frequency of

the movements, and simultaneous reduction of the excur-
sion).This might suggest, as a speculative, a role in arousal of
dental occlusion in preparation for general responses of the
body.

Statistical analysis of linear and nonlinear indexes indi-
cated significant average variations consistentwith our expec-
tations and with literature. As a further step, individual
investigation was here performed testing the possibility of
characterizing the single signal, without considering paired
recordings. We were specifically interested in discriminating
between RP and HDO, which determines a slight stimulus
to ANS. More indexes were needed to get acceptable perfor-
mances in the discrimination of the two conditions. Here,
it is important to understand if nonlinear indexes provide
additional information on pupil dynamics with respect to
linear ones. We tested the importance of the indexes by
studying the performances in the classification of RP and
HDO on the basis of them.We found that the discrimination
of the two conditions is simpler by considering data recorded
in darkness. Probably, light is a too strong stimulus to theANS
with respect to HDO. Optimal performance of classification
in darkness condition was obtained including nonlinear
information in the set of features, which also enclose the
mean size and the vertical displacement, as linear descriptors.

Finally, our data suggest that the dynamics of sponta-
neous pupil size oscillation and of eye movement indicate
the physiological response of ANS to “stress” conditions, such
as HDO and stationary lighting. In the first case especially,
if our data will be confirmed, the investigation of RQA
indexes from pupillometry could be a simple, fast, and
noninvasive method to study disorders related to dysreg-
ulation of the ANS. For example, patients suffering from
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TemporoMandibular Dysfunction (TMD) show impairment
of ANS balance between sympathetic and parasympathetic
path and dental occlusal contact could trigger chronic pain
[41, 42]. Preliminary results obtained by our group using
linear analysis of pupillometry indicate that the adrenergic
function is dysregulated in patients with TMD [29]. This
paper indicates that nonlinear information is additional to
that provided by linear indexes and allows to improve the
characterization of pupil dynamics. Work is in progress to
assess the variation of RQA indexes in healthy subjects
and in patients under different conditions. For example, a
preliminary study indicated the possibility of discriminating
patients (TMD or patients with obstructive sleep apnea
syndrome, OSAS) from a control group investigating linear
and RQA pupil indexes [43].

Here, we focused only on nonlinear indexes extracted
from RQA. Such indexes are related to other nonlinear
information: RR is related to many nonlinear indexes, which
are usually based on the study of recurrences (e.g., correlation
dimension and fractal dimension [31]); DET indicates how
much nearby trajectories stay close to each other and is
related to Lyapunov exponents. However, the use of other
nonlinear indexes (e.g., fractal dimension or entropy) could
provide additional information on pupil dynamics and is
suggested for future studies.

5. Conclusions

Thepupillogram reflects the state of the autonomous nervous
system (ANS). A simple, short, low cost experiment (ade-
quate for a clinical setting) is proposed, based on the inves-
tigation of pupil dynamics in darkness with the jaw in rest
position (RP) or during a habitual dental occlusion (HDO).
The joint analysis of linear and RQA indexes extracted
from the pupillogram is sensitive enough to discriminate
between these two conditions, determining weakly different
stimulations of the ANS.
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