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1. Introduction

The numerical solution of partial differential equations (PDEs)
can be performed by means of two strategies: (1) the solution is 
approximated in each sub-domain in which the whole computa-
tional domain is divided and, successively, the solutions belonging 
to adjacent sub-domains are joined together along the interfaces in 
order to guarantee the continuity; (2) the solution derives from the 
overlapping of global functions, i.e. functions defined in the whole 
domain. Due to the feature of the former strategy, the convergence 
rate depends on the dimension of the sub-domains, represented by 
a characteristic length, raise to pth power, being p the polynomial 
degree of the approximation assumed in the sub-domain. On the 
contrary, the use of global approximation ensures an exponential 
convergence rate which is desirable when high accuracy has to be 
reached.

The finite element method [1] and the finite difference one [2] 
are only two examples of approximate solution techniques belong-
ing to the first category, whereas spectral methods [3] and the ra-
dial basis function collocation method [4,5] belong to the second 
category. The possibility to solve PDEs in geometrically complex 
domains represents an important feature of a numerical technique: 
the finite element method, with an adequate mesh, is able to work 
in such geometries, whereas among all the global approximation
methods, only the radial basis functions collocation method can 
treat irregular domains, since no special requirements on the 
boundary conditions are needed. In virtue of the exponential con-
vergence rate and the possibility to solve PDEs on complex do-
mains, the radial basis functions collocation method has enjoyed 
considerable success in recent years and is increasingly applied in 
many fields as an alternative to the traditional solution tools.

In the structural analysis, several decades have been devoted to 
the development and implementation of the finite element method 
that has been used with great success in most practical engineering 
problems related to solids and structures. Although this success, in 
the last years some limitations that affect the finite element meth-
od become evident [6]. An investigation reveals the mesh as the 
main reason of these limitations. Thus, the interest towards meth-
ods not requiring any mesh, that is the so-called Meshless meth-
ods, becomes stronger.

The radial basis functions collocation method does not require a 
mesh to solve the PDEs but only a set of nodes arbitrarily scattered 
inside the domain and along its boundaries. Thus, the Meshless 
methods cover also the radial basis functions collocation method. 
According to the latter, the strong-form of the governing equations 
and boundary conditions are directly discretized at the field nodes 
using simple collocation technique to obtain a set of discretized 
system equations. The reader is referred to Refs. [6,7] for a detailed 
description.

There are different types of radial basis functions (RBF) [8] but, 
among these, the Hardy’s multiquadratic was ranked the best in 
accuracy and convergence. Due to the attractive potentialities of 
the multiquadratic radial basis function (MQ-RBF), in [9] a deep
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investigation concerning the theoretical and numerical aspects in-
volved in the numerical solution of PDEs by means of the MQ-RBF is 
developed. However, despite MQ-RBF’s excellent performance, it 
contains an user defined shape parameter, c, which affects the sta-
bility and accuracy of the solution [9]. Thus, the value of the shape 
parameter has to be selected carefully.

The choice of a suitable value of the shape parameter is still an
open problem in research: no mathematical theory has been devel-
op yet to rule the selection of an adequate value but several pro-
posals are available in the open literature.

Generally speaking, three types of approaches are available: (1) 
models that estimate a single value of the shape parameter, as-
sumed constant in the whole domain; (2) models that formulate a 
variable shape parameter strategy, i.e. compute different values of 
the shape parameter for each node in the domain according to an 
established relation or an optimization algorithm; (3) ap-proaches 
that bypass the problem of the optimal shape parameter selection 
by reducing its influence on the stability of the method.

Considering the first type of approach, the models of Fasshauer 
[10], Franke [11], and Hardy [12] are well known. According to 
them, the optimal value of the shape parameter depends only on 
the number of the nodes scattered in the domain, thus they pro-
vide formulas that establish such a relation. In his investigation, 
Rippa [13] realized that the optimal value of the shape parameter 
does not depend only on the number of nodes but also on several 
features whose effects cannot be included in a formula. Thus, an 
algorithm based on a statistical technique (i.e. the Leave-one-out-
cross-validation, LOOCV) and able to take into account all the 
parameters was developed. In agreement with the Rippa’ conclu-
sions, Gherlone et al. [14] developed an algorithm for the optimal 
shape parameter selection based on a convergence analysis.

As stated above, the MQ-RBF collocation method experiences an 
exponential convergence rate according to which the accuracy of 
the solution improves by increasing the shape parameter 
[9,13,15,16]. Unfortunately, by increasing the value of the shape 
parameter, the problem becomes more and more ill-posed until 
the accuracy of the solution breaks down [9]. A way to alleviate 
this problem is to use a variable shape parameter strategy [9,15], 
that is a value of the shape parameter different from a node to an-
other one. Following a variable shape parameter strategy, higher 
values of c can be used without incurring in lack of accuracy due 
to the ill-conditioning of the collocation matrix but this is not pos-
sible for every value of the shape parameter. In the open literature, 
an exponential strategy [4,5], a trigonometric [17], a linear and a 
random [16] one have been proposed. It is worth to note that all 
these variations are arbitrary and neither theoretical nor numerical 
considerations could suggest how the variation should be.

On the contrary, in [15] an optimization algorithm for the shape 
parameter selection is developed. In each node, an optimal shape 
parameter is computed by means of an optimization process per-
formed by means of a genetic algorithm. The optimization tries 
to minimize a cost function that shows a series of local minima 
in the range of the shape parameter values considered, thus a ge-
netic algorithm is required in order to catch the global minimum.

Increasing the value of the shape parameter the accuracy grows 
up but, at the same time, the condition number of the collocation 
matrix raises. The variable shape parameter strategy allows one to 
use, before the accuracy breaks down, values of c that are higher 
than those used with a constant value strategy. Nevertheless, 
numerical problems are only delayed. A way to definitely over-
come the incurring ill-conditioning of the matrix by increasing the 
shape parameter, is to remove, in a certain way, the relation-ship 
between the shape parameter and the condition number of the 
collocation matrix. Fornberg [18] developed a strategy to pre-serve 
the stability and the accuracy of the solution for every value of the 
shape parameter used in the radial basis functions. The key
feature of his method is to consider the approximate solution,
which depends on c, as a function of a complex variable, thus
extending the value of the shape parameter also to the complex
plane.

In the last years, several applications of the RBF collocation 
method in the structural analysis have been proposed. In [14,19–
23] static, dynamic and stability analyses of multilayered compos-
ite and sandwich plates are performed.

Having in mind the structural applications, in the present paper
a novel procedure for the shape parameter selection in radial basis
function is developed. The algorithm assumes a constant value of c
in the whole domain and computes it through a minimization of a
cost function. It is worth to note that here, contrary to the other
algorithms, the cost function is selected on the basis of physical
considerations relative to the problem to be solved. Specifically,
we suggest an energetically consistent approach for estimating
the optimal shape parameter, i.e., an approach based on the Princi-
ple of Minimum of Total Potential Energy. In order to validate the
accuracy and stability of the proposed approach, numerical results
are presented and compared with the ones available in the open
literature. In particular, a simply supported multilayered compos-
ite plate subjected to bi-sinusoidal transversal pressure load is ana-
lyzed using the First-order Shear Deformation Theory coupled with
the radial basis functions collocation method with different choices
of the optimal shape parameter. Comparisons reveal that the pres-
ent algorithm ensures very accurate results, better than those esti-
mated by means of other models.

Finally, it is worth to note that the present algorithm could be
generalized to other fields once the adequate cost function that
rules the problem is identified.

2. The unsymmetric radial basis functions collocation method

In this paper, the Kansa’s Unsymmetric Collocation Method
[4,5,19] is adopted. Consider a boundary value problem defined by

DuðxÞ ¼ sðxÞ; in X ð1Þ
BuðxÞ ¼ f ðxÞ;on @X ð2Þ

where X is the problem domain, oX its boundary, and the operators
D and B are linear partial differential operators in X and on oX,
respectively. Points xi (i = 1, . . . , N) in X are identified by
(i = 1, . . . , NI) while those on oX by (i = NI + 1, . . . , NI + NB = N).

The solution u(x) may be approximated by using the following
RBF-based interpolation

~uðxÞ ¼
XN

i¼1

ai/iðjjx� xijj; cÞ ð3Þ

where /i is the radial basis function (RBF) centered at xi. The RBF
considered in this paper is the multiquadratic (MQ) one, which as-
sumes the following expression

/iðxÞ ¼ ðjjx� xijj2 þ c2Þ
1=2

ð4Þ

where kx � xik is the Euclidean norm and c the user-defined shape 
parameter, whose numerical value strongly influences the numeri-
cal accuracy and stability of the algorithm, as discussed in Section 
2.1.

Collocation with the boundary data at the boundary points and
with field equations at the interior points lead to

XN

i¼1

aiD/iðjjxj � xijj; cÞ ¼ sðxjÞ; j ¼ 1; . . . ;NI ð5Þ

XN

i¼1

aiB/iðjjxj � xijj; cÞ ¼ f ðxjÞ; j ¼ NI þ 1; . . . ;NI þ NB ð6Þ



 

Table 1
Shape parameter selection methods. Here d represents the
average distance between nodes, D is the diameter of the
minimal circle enclosing all data points, while N is the
number of nodes.

Refs. Shape parameter, c

Fasshauer [10] c ¼ 2=
ffiffiffiffi
N
p

Franke [11] c ¼ 1:25D=
ffiffiffiffi
N
p

Hardy [12] c = 0.815d
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Fig. 1. Coordinate reference system, plate geometry and kinematic variables.
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where f(xj) and s(xj) are the prescribed values at the boundary
nodes and the function values at the interior nodes, respectively.
In matrix compact form, Eqs. (5) and (6) read

½L�fag �
D/

B/

� �
fag ¼

s

f

� �
ð7Þ

with an unsymmetric collocation matrix [L] consisting of known 
coefficients. The solution of the system (7) gives the unknown vec-
tor {a}.

2.1. Methods for shape parameter selection

The accuracy of the solution of Eq. (7) and the well-conditioning 
of matrix [L] depend on c. In a number of numerical methods that 
use global shape functions, such as the MQ-RBF, it has been ob-
served [9] that, as the basis functions become flatter and flatter, the 
accuracy of the solution improves. This may be obtained increasing 
the value of c, since /i would become, in the limit, a con-stant 
function of x (see Eq. (4)). On the other hand, increasing the value of 
c also leads to a growth of the condition number of the ma-trix [L] 
which makes the problem ill-conditioned [9]. In this situa-tion, the 
round off error dominates and the solution becomes unstable; at 
that point, the accuracy breaks down.

Focusing on the approaches that assume a constant value of the 
shape parameter in the whole domain, Table 1 summarizes some 
of the methods proposed in the literature for the shape parameter 
calculation.

It is worth to note that all the models quoted in Table 1 are re-
lated exclusively with the number of nodes in the grid and with the 
distance between them. However, according to Rippa [13], the 
shape parameter should depend on many others factors, such as: 
the distribution of grid points, the condition number of the matrix 
[L], the computer precision and the interpolation function, /.

Motivated by these observations, Rippa [13] proposed an algo-
rithm searching for an optimal value of the shape parameter. This 
algorithm minimizes a cost function that imitates the behavior of 
the root-mean square error between the numerical solution and 
the exact one. According to [13], the cost function is given by the 
norm of an error vector E(c) with components

EiðcÞ ¼
ai

L�1
ii

ð8Þ

where ai is the ith component of the vector {a} and L�1 is the ith diag-ii

onal element of the inverse of the collocation matrix (Eq. (7)). Thus,
the optimal value of the shape parameter is considered as the one
which minimizes the cost function E(c). Special attention must be
paid to the interval inside which searching for the optimal c; i n
[24] it is suggested to inspect the cost function on a large interval
and then select a smaller one; this procedure is very time consuming. 

Gherlone et al. [14] have recently developed an alternative algo-
rithm for selecting the optimal value of c which takes into account 
all those factors considered by Rippa [13]. The approach proposed
in [14] chooses the value of c that ensures the fastest rate of conver-
gence. The rate of convergence is computed only for the control var-
iable (in [14] the maximum displacement has been considered) and 
is a quantity estimated using the solution of the problem obtained
with different values of c and N. For further details, see Ref. [14].

2.2. The novel algorithm for the choice of the shape parameter

The algorithm proposed in this paper is based on the Principle
of the Minimum of the Total Potential Energy.

Consider a linear elastic laminated plate of uniform thickness h
with NL perfectly bonded orthotropic layers. Points of the plate are
located by the orthogonal Cartesian coordinates (x, y, z); the
through-the-thickness coordinate is z e [�h/2, h/2], with z = 0 iden-
tifying the middle reference plane, or midplane, and the in-plane
coordinates, (x, y), cover the bi-dimensional space [0, a]� [0, b].

According to the First Order Shear Deformation Theory (FSDT)
[25], the displacement components along the coordinate axes are 
expressed as

uxðx; y; zÞ ¼ u0ðx; yÞ þ z/xðx; yÞ
uyðx; y; zÞ ¼ v0ðx; yÞ þ z/yðx; yÞ
uzðx; y; zÞ ¼ w0ðx; yÞ

8><
>: ð9Þ

here u0, v0 and w0 are the displacements of a point on the reference 
surface, and /x and /y are the rotations of the transverse normal 
about the y-axis and x-axis, respectively (see Fig. 1).

Consistent with the kinematic assumptions in Eq. (9), the FSDT 
accounts for transverse shear deformation, whereas the transverse 
normal deformations are neglected. Correspondingly, the linear in-
plane and transverse shear strains are

exx ¼ u0;x þ z/x;x

eyy ¼ v0;y þ z/y;y

cxy ¼ u0;y þ v0;x þ zð/x;y þ /y;xÞ
cxz ¼ w0;x þ /x

cyz ¼ w0;y þ /y

ð10Þ

The generalized Hooke’ law for the kth orthotropic lamina,
whose principal material directions are arbitrary with respect to
the midplane reference coordinates, is written as

rxx

ryy

sxy

sxz

syz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ðkÞ

¼

Q11 Q12 Q 16 0 0
Q12 Q22 Q 26 0 0
Q16 Q26 Q 66 0 0

0 0 0 Q 44 Q 45

0 0 0 Q 45 Q 55

2
6666664

3
7777775

ðkÞ exx

eyy

cxy

cxz

cyz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð11Þ

where Q ðkÞij are the transformed elastic stiffness coefficients relative
to the plane-stress condition that ignores the transverse-normal
stress. The expressions for these coefficients in terms of the elastic
moduli corresponding to the material coordinates can be found in
[26].
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According to the FSDT kinematic assumptions and the defini-
tion of the linear strain tensor components (Eq. (10)), the constitu-
tive equations relating the resultant forces and moments to the
linear strain measures are

Nx

Ny

Nxy

8><
>:

9>=
>; ¼ ½A�

u0;x

v0;y

u0;y þ v0;x

8><
>:

9>=
>;þ ½B�

/x;x

/y;y

/x;y þ /y;x

8><
>:

9>=
>; ð12Þ

Mx

My

Mxy

8><
>:

9>=
>; ¼ ½B�

u0;x

v0;y

u0;y þ v0;x

8><
>:

9>=
>;þ ½D�

/x;x

/y;y

/x;y þ /y;x

8><
>:

9>=
>; ð13Þ

Qx

Q y

� �
¼ k½AT �

/x þw0;x

/y þw0;y

( )
ð14Þ

where Nx, Nxy, Ny are the in-plane stress resultants, Qx, Qy the trans-
verse shear stress resultants, Mx, Mxy, My the bending moments,
[A], [B], [D], [AT] the usual membrane, coupling, bending and trans-
verse shear stiffness matrices, (see [26] page 128,138,139). Due to 
the piecewise constant through-the-thickness transverse shear 
strains distribution, the FSDT needs of a shear correction factor, k, 
necessary to take into account for the actual transverse shear stres-
ses distribution along the thickness direction. According to the 
stacking sequence and the in-plane dimension, the shear correction 
factor in the xz-plane, kxz, could be different from that in the yz-
plane, kyz. In the present paper, it has been assumed that kxz = kyz = -
k, in order to make the treatment easier. Several methods are avail-
able for computing the shear correction factors of multilayered 
composite and sandwich plates, readers interested to this aspect 
may refer to Refs. [27,28]. Moreover, a straightforward shear correc-
tion factors estimation procedure is suggested in [19].

Consider a symmetric and cross-ply laminate subjected only to
a transverse pressure �qðx; yÞ; in this case, the equations governing
the transverse behavior are uncoupled from those governing the
in-plane behavior and read as

D11
@2/x
@x2 þ D66

@2/x
@y2 þ ðD12 þ D66Þ @

2/y

@x@y � kA44 /x þ @w
@x

� �
¼ 0

D22
@2/y

@y2 þ D66
@2/y

@x2 þ ðD12 þ D66Þ @
2/x
@x@y � kA55 /y þ @w

@y

	 

¼ 0

kA44
@/x
@x þ @2w

@x2

	 

þ kA55

@/y

@y þ @2w
@y2

	 

þ �qðx; yÞ ¼ 0

8>>>><
>>>>:

ð15Þ

The total potential energy of the plate subjected to transverse pres-
sure �qðx; yÞ is

P¼1
2

Z h=2

�h=2

Z a

0

Z b

0
frgTfegdxdydz�

Z a

0

Z b

0

�qðx;yÞwðx;yÞdxdy ð16Þ

where the stress and strain vectors are {r}T = {rxx, ryy, sxy, sxz, syz},
{e}T = {exx, eyy, cxy, cxz, cyz}.

Based on FSDT, Gherlone et al. [14] presented the results, sum-
marized in Table 2, for a simply supported multilayered composite 
square plate subjected to a bisinusoidal transversal pressure, com-
paring the solution obtained with different choices of the shape 
parameter in order to assess the different models present in liter-
ature. Using Eq. (16) it is possible to compute the Total Potential 
Energy for each solution present in Table 2 and compare the latter 
with that of the exact solution. The result is displayed in Table 3.

The results collected in Table 2, coupled with those of Table 3, 
show that the best solution, among the approximated ones, is that 
which reaches the minimum value of the Total Potential Energy. 
From this observation, it is possible to argue that a useful cost 
function for the shape parameter selection algorithm could be the 
Total Potential Energy itself, i.e., the optimal value of the shape 
parameter is that which ensures the minimum Total Potential En-
ergy. Thus, as in Rippa [13] and Gherlone et al. [14], we define an
interval inside which finding the optimal value of c and, by means 
of an iterative procedure, for each value of c in the user defined 
interval, solve the boundary value problem of Eq. (7). For each 
solution, the Total Potential Energy is computed: when the mini-
mum is reached, the shape parameter which corresponds to that 
solution is the best one in an energetic sense.

The flow chart in Fig. 2 explains the iterative procedure fol-
lowed by the present algorithm.

In order to compute the total potential energy P, the algorithm 
requires to perform a numerical integration: in this paper, the 
Gauss quadrature scheme has been applied. The domain has been 
divided into cells, nq for each side; for each cell a 2 � 2, 3 � 3 and 4 
� 4 quadrature scheme has been used. Thus the numerical inte-
gration scheme requires defining a suitable number of quadrature 
cells and a right number of quadrature nodes in each cell in order to 
reduce the error due to numerical integration. In this way, the 
number of parameters that has to be selected by the user increases. 
In Fig. 3 there is a typical domain subdivision on quadrature cells; 
inside each cell a 2 � 2 quadrature scheme is used.

3. Static analysis of composite laminated plates using a
Meshless solution approach

Let us now apply the RBF collocation method and the FSDT to
the static analysis of a symmetric rectangular panel occupying
the region [0, a] � [0, b] � [�h/2, h/2]. Firstly, N nodes are distrib-
uted arbitrary on the plate domain: the nodes inside the plate do-
main are numbered with j = 1, . . . , NI whereas the ones placed on
the boundary with j = NI + 1, . . . , NI + NB = N. The kinematic un-
knowns may be written as

w

/x

/y

8><
>:

9>=
>; ¼

XN

i¼1

ai

bi

ci

8><
>:

9>=
>;/iðxÞ ð17Þ

where /i(x) represents the ith radial basis function (Eq. (4)) and (ai, 
bi, ci) are the ith kinematic unknown coefficients of the approxima-
tion. Substitution of Eq. (17) into Eqs. (15) is done for the NI nodes 
inside the plate domain

D11

XN

i¼1

bi/i;xxðxjÞ þ D66

XN

i¼1

bi/i;yyðxjÞ þ ðD12 þ D66Þ
XN

i¼1

ci/i;xyðxjÞ

� kA44

XN

i¼1

bi/iðxjÞ þ
XN

i¼1

ai/i;xðxjÞ
!
¼ 0 ð18Þ

D22

XN

i¼1

ci/i;yyðxjÞ þ D66

XN

i¼1

ci/i;xxðxjÞ þ ðD12 þ D66Þ
XN

i¼1

bi/i;xyðxjÞ

� kA55

XN

i¼1

ci/iðxjÞ þ
XN

i¼1

ai/i;yðxjÞ
!
¼ 0 ð19Þ

kA44

XN

i¼1

bi/i;xðxjÞ þ
XN

i¼1

ai/i;xxðxjÞ
!

þ kA55

XN

i¼1

ci/i;yðxjÞ þ
XN

i¼1

ai/i;yyðxjÞ
!
þ �qðxjÞ ¼ 0 ð20Þ

Boundary conditions are satisfied on the NB nodes located on
the plate edges. For a rectangular plate simply supported on all
edges, the boundary conditions are

x ¼ 0; a : w ¼ /y ¼ Mx ¼ 0

y ¼ 0; b : w ¼ /x ¼ My ¼ 0
ð21Þ

For example, the boundary condition on the bending moments (21) 
will be written as follows when using the approximation (17)



Table 2
Results for a simply supported laminated composite square plate subjected to sinusoidal pressure (see [14]).

a/h Method �w �rxx �ryy �sxz copt

10 FSDT exact 0.6628 0.4989 0.3615 0.3181
RoC [14] 0.6623 0.4986 0.3612 0.3056 0.1600
Fasshauer 0.6651 0.5021 0.3628 0.3215 0.1168
Franke 0.6765 0.5465 0.3688 1.6316 0.0620
Hardy 0.6812 0.5310 0.3712 0.8263 0.0584
Rippa 0.6620 0.4983 0.3611 0.3046 0.1699

20 FSDT exact 0.4912 0.5273 0.2957 0.3332
RoC [14] 0.4916 0.5285 0.2957 0.3245 0.1750
Fasshauer 0.4986 0.5360 0.2982 0.3499 0.1168
Franke 0.5222 0.5629 0.3082 0.8994 0.0620
Hardy 0.5254 0.5668 0.3100 1.0642 0.0584
Rippa 0.5158 0.5541 0.3055 0.2318 0.0723

100 FSDT exact 0.4337 0.5382 0.2705 0.3390
RoC [14] 0.4611 0.5674 0.2800 0.4458 0.1950
Fasshauer 0.6032 0.7191 0.3247 0.7997 0.1168
Franke 7.9090 8.8313 1.8805 9.5939 0.0620
Hardy 37.8063 42.0710 7.6575 42.9480 0.0584
Rippa 0.5246 0.6348 0.3017 0.6270 0.1406

Table 3
Total Potential Energy for solutions obtained with different choices of the shape 
parameter (Table 2).

Method a/h = 10 a/h = 20 a/h = 100

FSDT exact 5.47e�11 3.20e�10 3.50e�08
RoC [14] 2.19e�10 1.29e�09 1.54e�07
Fasshauer 2.20e�10 1.31e�09 2.34e�07
Franke 2.30e�10 1.41e�09 3.07e�05
Hardy 2.28e�10 1.42e�09 6.38e�04
Rippa 2.19e�10 1.38e�09 1.87e�07
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Fig. 2. The flow chart represents the iterative procedure. The interval I is the user-
defined one inside which finding the optimal shape parameter.
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Fig. 3. Numerical integration. The dot lines represents the boundary of quadrature
cells whereas the cross markers are the Gauss’ quadrature points.
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Mx ¼ D11

XN

i¼1

bi/i;xðxjÞ þ D12

XN

i¼1

ci/i;yðxjÞ ¼ 0

j ¼ NI þ 1; . . . ;NJ and j ¼ NJ þ 1; . . . ;NL

My ¼ D12

XN

i¼1

bi/i;xðxpÞ þ D22

XN

i¼1

ci/i;yðxpÞ ¼ 0

p ¼ NL þ 1; . . . ;NM and p ¼ NM þ 1; . . . ;NN ¼ N

ð22Þ
where nodes numbered from NI + 1 to NJ and from NJ + 1 to NL are
those placed on the boundary x = 0 and x = a, respectively. In a sim-
ilar manner, nodes numbered from NL + 1 to NM and from NM + 1 to
NN, are those placed on the edge with y = 0 and y = b, respectively.
Table 4
Mechanical properties of unidirectional lamina.

EL GLT mLT GTT

25ET 0.5ET 0.25 0.2ET



Table 5
Results for a simply supported laminated composite square plate subjected to sinusoidal pressure. The interval I inside which finding the optimal shape parameter is set to be
[0.1,0.2].

a/h Method �w �rxx �ryy �sxz copt Energy

10 FSDT exact 0.6628 0.4989 0.3615 0.3181 5.47e�11
Energy 0.6624 0.4990 0.3614 0.3074 0.1500 2.19e�10
RoC [14] 0.6623 0.4986 0.3612 0.3056 0.1600 2.19e�10
Fasshauer 0.6651 0.5021 0.3628 0.3215 0.1168 2.20e�10
Franke 0.6765 0.5465 0.3688 1.6316 0.0620 2.30e�10
Hardy 0.6812 0.5310 0.3712 0.8263 0.0584 2.28e�10
Rippa 0.6620 0.4983 0.3611 0.3046 0.1699 2.19e�10

20 FSDT exact 0.4912 0.5273 0.2957 0.3332 3.20e�10
Energy 0.4911 0.5282 0.2954 0.3238 0.1822 1.29e�09
RoC [14] 0.4916 0.5285 0.2957 0.3245 0.1750 1.29e�09
Fasshauer 0.4986 0.5360 0.2982 0.3499 0.1168 1.31e�09
Franke 0.5222 0.5629 0.3082 0.8994 0.0620 1.41e�09
Hardy 0.5254 0.5668 0.3100 1.0642 0.0584 1.42e�09
Rippa 0.5158 0.5541 0.3055 0.2318 0.0723 1.38e�09

100 FSDT exact 0.4337 0.5382 0.2705 0.3390 3.50e�08
Energy 0.4586 0.5659 0.2798 0.4403 0.1979 1.54e�07
RoC [14] 0.4611 0.5674 0.2800 0.4458 0.1950 1.54e�07
Fasshauer 0.6032 0.7191 0.3247 0.7997 0.1168 2.34e�07
Franke 7.9090 8.8313 1.8805 9.5939 0.0620 3.07e�05
Hardy 37.8063 42.0710 7.6575 42.9480 0.0584 6.38e�04
Rippa 0.5246 0.6348 0.3017 0.6270 0.1406 1.87e�07
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Considering the 3NI equilibrium Eqs. (18)–(20) together with the 
boundary conditions based on Eq. (21), a linear system in terms of 
the unknown coefficients (ai, bi, ci) is obtained.

4. Numerical results

In order to demonstrate the accuracy of the proposed approach
in the shape parameter estimation, numerical results pertaining
elasto-static deformation of multilayer laminated composite plate
are presented and compared with those obtained with different
choices of the shape parameter and with analytical FSDT solution.

A symmetric cross-ply composite plate, simply supported on all
the edges and subjected to a bi-sinusoidal pressure, �qðx; yÞ ¼ q0 sin
ðpx=aÞ sinðpy=bÞ is considered. The layers have the same thickness
and the stacking sequence is (0�/90�/90�/0�). Material mechanical
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Fig. 4. Relative error on maximum displacement between the FSDT exact solution
and the RBF solution with different shape parameters.
properties of the unidirectional lamina are reported in non-
dimen-sional form in Table 4.

Analyses will be conducted using k = 5/6, although authors are
conscious that this value could be not the best choice for this lam-
inate. Because the purpose of the paper is to assess the accuracy
and reliability of the algorithm for the selection of parameter c,
the use of a not suitable shear correction factor is not an issue, pro-
vided that comparisons with analytical solution are made under
the same conditions, in particular with the same k.

Numerical results are obtained using a 17 � 17 regular grid and
different value of the span-to-thickness ratio, a/h.

Table 5 shows the results obtained using the present approach 
(FSDT solved with the MQ-RBF collocation method and the energy-
based shape parameter selection algorithm, denoted as Energy) 
and the exact FSDT solution. Furthermore, Table 5 compares
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Fig. 5. Relative error on �rxx between the FSDT exact solution and the RBF solution
with different shape parameters.
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solutions obtained using the MQ-RBF collocation method and the 
shape parameter estimated by means of the models reviewed in 
Section 2.1 and the algorithm presented by the authors in [14], de-
noted as RoC (the acronym stands for Rate of Convergence), and 
the one suggested by Rippa [13]. The transverse shear stresses have 
been estimated integrating the equilibrium equations. Stresses and 
displacements are given in the following non-dimensional form

�w ¼ 102 wmaxh3ET

q0a4
�rxx ¼

rxxða=2; b=2;h=2Þh2

q0a2

�ryy ¼
ryyða=2; b=2;h=2Þh2

q0a2
�sxz ¼

sxzð0; b=2;0Þh2

q0a
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Fig. 7. Relative error on �sxz between the FSDT exact solution and the RBF solution
with different shape parameters.
In order to make the comparison easier, Fig. 4 gives the log–log 
plot of the relative error between the maximum displacement esti-
mated by means the FSDT exact solution and the others collected 
in Table 5. The same comparison, now on the stresses, is made in 
Figs. 5–7.

Figs. 4–7 make clear as the Energy method ensures very accu-
rate results if compared with those obtained by means of other ap-
proaches. In Fig. 8, the trend of the Total Potential Energy versus 
the shape parameter is showed: the algorithm is able to catch very 
well the minimum of the Total Potential Energy so reaching very 
accurate results.

From the numerical point of view, the integration has been per-
formed with different numbers of cells and different numbers of
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Fig. 9. Relative error versus the number of nodes along the span for the problem of
laminated composite plate with span-to-thickness ratio a/h = 100.



Fig. 10. Condition number of the collocation matrix for the problem of laminated composite plate with a/h = 4; n stands for the number of nodes along x-direction. The figure
on the right is a zoomed view of figure on the left.
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quadrature nodes for cell, in order to assess the convergence 
behavior of the method with respect to the integration parameters. 
From the numerical investigations performed, the results obtained 
with a 2 � 2, 3 � 3 o r  4 � 4 quadrature nodes for cell are very 
close to each others, while the influence of the number of 
quadrature cells is poor. In order to investigate the convergence 
behavior of the algorithm when increasing the number of nodes, in 
Fig. 9 the relative error on the maximum deflection computed by 
using the proposed algorithm with respect to the exact solution, is 
plotted versus the number of nodes located along the span. As it 
results from Fig. 9, the algorithm behaves in a convergent manner 
increas-ing the number of nodes until n = 21; from that point, the 
relative error increases if compared with that computed using n = 
19. This could be explained by the effect of the nodes number on 
the con-dition number, as discussed below.

It is known [29] that there exists a trade-off principle according 
to which a high accuracy can be reached only at the cost of a low 
numerical stability or vice versa. This means that the use of a high 
value of the shape parameter leads to an accurate solution but also 
to a huge condition number of the collocation matrix [L] of Eq. (7), 
causing a low numerical stability. In Fig. 10, the condition number 
is plotted versus the shape parameter: the relation between them 
is of exponential type, with the exponent depending on the num-
ber of nodes n along the x-direction of the plate (in the numerical 
tests performed, n is also the number of nodes along the y-direc-
tion), that is

CondðLÞ � eaðnÞc; aðnÞ � n ð23Þ

It is interesting to stress that the present algorithm is able to
estimate a value of the shape parameter, in general higher than
that computed by means of other algorithms, but falling in the re-
gion of numerical stability thus ensuring a solution more accurate
than that reached by means of other algorithms.

5. Conclusions

The accuracy of the multiquadratic radial basis functions collo-
cation method in predicting global and local response of multilayer
laminated composite plates is strongly affected by the shape
parameter, an user-defined value that control the shape of the ra-
dial basis functions. This requires finding an optimal value of the
shape parameter in order to obtain physically consistent solutions.
The selection of an adequate value of the shape parameter is still
an open problem in research: no mathematical theories are yet
available, but several suggestions are promoted in the open litera-
ture. None of these models or algorithms focus on physical issues
of the problem, but all are somehow based on mathematical or
numerical aspects of the radial basis functions interpolation. Hav-
ing in mind the applications to the structural problems, in this pa-
per, a novel algorithm for the shape parameter selection in radial
basis functions collocation method is suggested based on the Prin-
ciple of Minimum of Total Potential Energy: the optimal value of
the shape parameter is that which ensures the minimum value of
the Total Potential Energy (the cost function). Contrary to the other
models, the present proposal is energetically consistent, thus
focusing on the physics of the problem rather than on the numer-
ical issues.

The accuracy of the present algorithm is assessed on the prob-
lem of static deformation of rectangular, simply supported on all
edges, multilayer laminated plate subjected to a bi-sinusoidal pres-
sure. For different values of the span-to-thickness ratio, the solu-
tion obtained by means of the present algorithm is compared
with those computed through other models or algorithms available
in literature.

The Energy method presented in this paper appears to be very
accurate ensuring better results than those obtained with other
methods and sometimes also better than those estimated by
means of the previous algorithm proposed by the same authors.
Moreover, being linked to the physics of the problem, the present
approach could be applied in other fields once the appropriate cost
function that rules the problem is selected. Thus, the present algo-
rithm does not lack of generalization.
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