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ABSTRACT. Gigacycle fatigue properties of materials are strongly affected by the specimen risk volume (volume 
of material subjected to a stress amplitude larger than the 90% of the maximum stress). Gigacycle fatigue tests, 
performed with ultrasonic fatigue testing machines, are commonly carried out by using hourglass shaped 
specimens with a small risk volume. The adoption of traditional dog-bone specimens allows for increasing the 
risk volume, even if the increment is quite limited. In order to obtain larger risk volumes, a new specimen shape 
is proposed (Gaussian specimen). The dog-bone and the Gaussian specimens are compared through Finite 
Element Analyses and the numerical results are validated experimentally by means of strain gages 
measurements. The range of applicability of the two different specimens in terms of available risk volume and 
stress concentration effects due to the cross section variation is determined.  
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INTRODUCTION 
 

n recent years, the interest in gigacycle fatigue behaviour of metallic materials (up to 1010 cycles) is significantly 
increased. Design requirements in specific industrial fields (aerospace, mechanical and energy industry) for structural 
components characterized by even larger fatigue lives (gigacycle fatigue) lead to a more detailed investigation on 

material properties in the gigacycle regime. 
Experimental results, obtained by using testing machines working in resonance conditions and capable of reaching a 
loading frequency equal to 20 kHz (ultrasound), have shown that specimens may fail also at levels of stress amplitude 
below the conventional fatigue limit [1-3]. When specimens are subjected to stress amplitudes below the conventional 
fatigue limit, failures are generally due to cracks which nucleate internally from inclusions or defects; whereas when 
specimens are subjected to stress amplitudes above the conventional fatigue limit, failures are generally due to cracks 
which nucleate from the surface of the specimen. Recently, models able to take into account these two different modes of 
failure have been proposed in the literature [4-6]. 
In case of internal crack nucleation, fatigue strength decreases when the specimen size increases. As reported in [7-9], the 
decrement in fatigue strength is physically justifiable by considering the probability of finding inclusions causing failure 
when the risk volume (volume of material subjected to a stress amplitude above the 90% of the maximal stress [7]) 
increases. 
Since experimental tests are carried out almost entirely by means of ultrasonic fatigue testing machines, the specimen size 
and the consequent specimen risk volume are imposed by resonance condition and are generally significantly limited. 
Experimental tests exploring the gigacycle fatigue properties of materials have been generally carried out by using 
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hourglass shaped specimens with a small diameter (3-6 mm) and a small risk volume. In order to increase the risk volume, 
dog-bone shaped specimens have been adopted in [7-9]. However, the risk volume of tested specimens (maximum 1000 
mm3) is significantly limited due to the non uniform stress distribution along the specimen length with constant cross 
section. 
The paper proposes a new specimen shape (Gaussian specimen) for gigacycle fatigue tests: wave propagation equations 
are analytically solved in order to obtain a specimen shape characterized by a uniform stress distribution on an extended 
specimen length and, as a consequence, by a larger risk volume. Dog-bone and Gaussian specimens with different risk 
volumes are compared through Finite Element Analyses and the range of applicability of the two different specimens in 
terms of available risk volume is determined. The stress concentration effect due to cross section variation in the 
specimens is also taken into account in the analyses. Finally, the stress distribution of a dog-bone and a Gaussian 
specimen with a theoretical risk volume of 5000 mm3 is experimentally validated through strain gage measurements. 
 
 
SPECIMEN DESIGN 
 

pecimens adopted for ultrasonic fatigue tests are designed on the basis of equations for wave propagation in an 
elastic material with the specimen modelled as a one dimension linear elastic body. Stresses are considered 
uniformly distributed on the cross section and transverse displacements are considered as negligible if compared to 

longitudinal displacements. In this respect, the displacement amplitude along the specimen, � �u z , can be obtained by 
solving the Webster’s equation for a plane wave: 
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� � � , being f  the resonance frequency, and �  and 

dE  the specimen material density and dynamic elastic modulus respectively. By inverting and integrating Eq. 1, the 
specimen cross-section variation for an imposed displacement � �u z  is expressed by the following Equation: 
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where 0S  is a constant of integration depending on the boundary conditions. In order to obtain a uniform stress 
distribution along the specimen, the displacement distribution must be linear: 
  

� � � �3u z A kz B� � �           (3) 
 

where � �3u z  denotes the displacement amplitude in part 3 of the Gaussian specimen (Fig. 1) and A  and B  are constant 

coefficients. Boundary conditions for ultrasonic specimens require � �3 3 0u L � , where 3L  is half of the total length of 

part 3 of the specimen (Fig. 1). The constant of integration 0S  is obtained considering that � � 2
20 / 4�s D��  for 0z �  

(Fig. 1) and Eq. 2 becomes:  
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Figure 1: Gaussian specimen. 
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Therefore, according to Eq. 4, the specimen cross-section that leads to a uniform stress distribution entails the typical 
Gaussian shape. 
The total volume of the Gaussian specimen part (i.e., the theoretical risk volume theoV ) can be computed by integrating 
the cross-section of specimen part 3 with respect to z  from 0  to 3L  and multiplying it by two: 
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where � ��erf �  denotes the Error Function (i.e., � �
2
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	� � 
 ). Eq. 5 allows to compute the length 3L  for the 

desired risk volume, specimen material (i.e., for a chosen value of k ) and for the diameter 2D . Part 3 of the specimen is 
thus completely designed, since 2D , 3L  and k  uniquely define the Gaussian specimen part. 
In order to determine specimen lengths 1L  and 2L , equations for wave propagation along a straight and catenoidal 
specimen profile [1], respectively part 1 and part 2 of the specimen (Fig. 1), are solved. The boundary conditions require 
to have maximum displacement amplitude equal to inU  at the interface between the horn and the specimen (i.e., at 

� �1 2z L L� 	 � ), continuity of displacement and strain amplitude at the interface between part 1 and part 2 (i.e., at 

2z L� 	 ) and at the interface between part 2 and part 3 (i.e., at 0z � ) of the specimen. 
A further boundary condition concerning the required stress amplitude in the risk volume is taken into account. Let define 
the stress amplification factor of the specimen, M� , as the ratio between the constant stress amplitude in the Gaussian 
specimen part, � , and the maximum stress amplitude in part 1 of the specimen [1], 1�  (i.e., 

� �1/ / d inM E kU� � � �� � ). According to the assumption of linear elasticity and introducing the boundary conditions, 
the stress amplification factor can be expressed as: 
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where 1 2/N D D� , being 1D  the diameter of the cylindrical part (part 1 in Fig. 1), � � � �2 2
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According to Eq. 6 and Eq. 7 and for a given value of 3kL , both M�  and 1kL  depend on the diameter ratio N  and on 
the adimensionalized variable 2kL . Therefore for a chosen resonance frequency, specimen material, diameter ratio N  
and inU  value, the lengths 2L  and 1L  giving a stress amplitude equal to �  in the Gaussian specimen part are obtained 
and specimen geometry is thus completely defined. 
 
 
FINITE ELEMENT ANALYSIS: ACTUAL RISK VOLUME AND STRESS CONCENTRATION EVALUATION 
 

og-bone and Gaussian specimens with different theoretical risk volumes are tested through Finite Element 
Analyses (FEA) by using the commercial finite element program ANSYS. Half of the specimen geometrical 
model is considered in each analysis due to its symmetry and eight-node quadrilateral elements (plane 82) with 

the axisymmetric option are used for the finite element models. The numerical models count for a number of elements 
ranging from 21200  to 53700  elements. A suitable fillet radius between specimen parts 2 and 3 is considered for the 
Gaussian specimen model. 
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Dog-bone and Gaussian specimens are designed considering steel ( 206�GPadE � , 0.29� �  and 37800�kg / m� � ), a 
resonance frequency of 20�kHz  (ultrasonic testing machine working frequency), a diameter 1D  equal to 20�mm  and a 
length 2L  equal to 10.2�mm  (almost equal to the value adopted in [7-9]). The theoretical risk volume is varied by steps of 

31000�mm : the range considered is within 32000�mm  and the maximum theoretical risk volume allowing for an 
amplification factor M�  larger than 1.05 . The analysis is repeated considering three different diameter ratios N : 1.6 , 2  
and 2.5 . Fig. 2 reports the typical mesh adopted for the dog-bone and the Gaussian specimen models; the enlargements 
show the dimensions of the elements at the transition between part 2 and part 3 of the specimen. 
 

 
                                                        (a)                                                                                              (b) 
 

Figure 2: Typical mesh for the specimen models: (a) dog-bone specimen; (b) Gaussian specimen. 
 
The actual risk volume and the stress concentration factor are considered in each analysis. According to [10], the actual 
risk volume ( realV ) is the volume of material subjected to a stress amplitude larger than the 96%  of the maximum stress 
reached in specimen part 3. In order to evaluate the stress concentration effects, the stress concentration factor tK  is 
conservatively considered in place of the fatigue strength reduction factor fK . For tK  computation, the nominal stress 
amplitude is considered equal to the maximum stress reached in specimen part 3 along the longitudinal axes. 
Fig. 3 shows the actual risk volume variation of both types of specimen with respect to the length 3L . According to Fig. 

3, the maximum actual risk volume attainable using dog-bone specimens is smaller than 33000�mm . An increment of the 
length with constant cross section gives no effect in the 3 considered case, since the actual risk volume does not change. 
Gaussian specimens permit to reach larger actual risk volume, up to 38450�mm  with a diameter ratio of 1.6 . The actual 
risk volume increases with the length 3L . As expected, for both types of specimen, a small diameter ratio ( 1.6N � ) 
permits to obtain the largest actual risk volume. 
 

� �� �� �� �� �� �� �� ��
����

����

����

����

����

����

	���


���

����

L3�[mm]

V r
ea
l�[
m
m
3 ]

 

 

N=1.6
N=2
N=2.5

Dog�bone

Gaussian

 
Figure 3: realV  of dog-bone and Gaussian specimens with respect to the length 3L . 
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Fig. 4 reports the percent ratio between the actual risk volume and the theoretical risk volume with respect to the length 
3L . According to Fig. 4 and considering dog-bone specimens, the efficiency is high (above 90% )  for values of length 

3L  smaller than 15�mm , while it decreases (up to 25% ) when the length 3L  increases. Differently, when considering the 
Gaussian specimen, the efficiency is almost constant (above 90% ).  
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Figure 4: Percent ratio /real theorV V  in dog-bone and Gaussian specimens with respect to the length 3L . 

 
Finally, the stress concentration factor is taken into consideration. Fig. 5 shows the variation of tK  with respect to the 
length 3L . According to Fig. 5, the Gaussian specimens show larger tK  values. Considering dog-bone specimens, there is 
no stress concentration for 3L  larger than 25�mm . Indeed the stress amplitude significantly decreases in specimen part 3 
as the length 3L  increases. As a consequence, the maximum stress reached at the transition between parts 2 and 3 of the 
specimen is smaller or equal to the stress reached at the specimen mid-section. 
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Figure 5: Stress concentration factor of dog-bone and Gaussian specimens with respect to the length 3L . 

 
The tK  values of the Gaussian specimens are smaller than 1.15 . Taking into account the largest diameter ratio 
( 2.5N � ), the tK  value reduces up to 1.12 . At the transition between part 2 and part 3 of the specimen, two 
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concomitant stress concentrations are present: the first one is due to the shoulder fillet in specimen part 2 and the second 
one is due to the sharp geometrical transition between part 2 and part 3 of the specimen. The resulting tK  value is due to 
the interaction between the two stress concentrations. It is well-known that the stress concentration due to the shoulder 
fillet increases with N ; finite element analyses carried out on the sharp geometrical transition at the interface showed that 

the stress concentration increases with the difference between 3D  and 2D , being 

2
3

21
3 2 1

kL
DD D e
N

� �
 �
� �

� �
 �	 � 	
 �
� �

. To sum up, 

if N  increases, then the stress concentration due to the shoulder fillet increases, while the stress concentration factor due 
to the sharp transition decreases. As shown in Fig. 5, in case of 2.5N � , the decrement in the stress concentration due to 
the sharp transition outperforms the increment in the stress concentration due to the shoulder fillet. 
A larger reduction of the stress concentration factor can be obtained by increasing the length 2L . In this respect, a proper 
choice of the length 2L  and of the diameter ratio allows to design specimens with large actual risk volume and limited tK  
value. For instance, a diameter ratio equal to 1.33  and a length 2L  equal to 17.2�mm  allows for an actual risk volume 

larger than 35000�mm  and a tK  equal to 1.06 . 

Finally, the adoption of dog-bone specimens is appropriate for small risk volumes (smaller than 33000�mm ). Gaussian 
specimens must be adopted for large risk volumes. The length 2L  and the diameter ratio must be properly chosen in 
order to reduce the stress concentration effects. 
 
 
EXPERIMENTAL VALIDATION 
 

he stress distribution in the two specimen types is experimentally validated through strain gage measurements. A 
dog-bone and a Gaussian specimen with a theoretical risk volume of 35000�mm , diameter ratio 2N �  
( 1 20�mmD � ) and 2L  equal to 10.2�mm  are produced in AISI 1040 carbon steel. Three T-rosettes strain gages 

(HBM 1-XY31-1.5/350), each with two strain gages connected at half bridge, are used for the evaluation of strain values 
at the specimen surface. For both specimens, the rosettes are bonded along the specimen central part: the first rosette is 
bonded at the specimen mid-section, the second rosette at the 70% of 3L  and the third rosette at the 85% of 3L . Fig. 6 
shows the specimens after the application of the rosettes. 
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Figure 6: Specimens after application of strain gage rosettes: (a) dog-bone shaped specimen; (b) Gaussian specimen. 
 
A strain gage amplifier (EL-SGA-2/B by Elsys AG) is used for the completion of the Wheatstone bridge of each rosette 
and for the amplification of the signal. The measurement is acquired at a sample rate of 600 kHz by a National 
Instruments data acquisition card (PCIe-6363). 
An ultrasonic testing machine for fully reversed tension compression tests developed by the authors [11] is used for the 
test: specimens are subjected to load cycles for 3 seconds. Fig. 7 and 8 show the stress measured at each point normalized 
by the value detected at the specimen mid-section, center� .  
The acquired signals are fitted with a sine function (for each case, the correlation coefficient is larger than 99.99% and the 
mean value is equal to zero). As shown in Fig. 7 and 8, the stress amplitude distribution is not uniform for the dog-bone 
shaped specimen while it is almost uniform for the Gaussian specimen.  
Tab. 1 reports a comparison between the stress variation obtained with the finite element analysis (FEA) and the 
experimental test. According to Tab. 1, the FEA results are included in the experimental confidence intervals. Therefore, 
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it can be concluded that no significant statistical difference exists between FEA and experimental results. It is worth to 
note that, for the Gaussian specimen, the values larger than the 100% indicate a maximum stress amplitude not reached at 
the specimen mid-section. 
 

 
     (a) 

 
     (b) 

 

Figure 7: Stress variation measured by strain gage rosettes bonded to the dog-bone shaped specimen: (a) rosette at 70% of 3L ; (b) 
rosette at 85% of 3L . 
 

 
(a) 

 
(b) 

Figure 8: Stress variation measured by strain gage rosettes bonded to the Gaussian specimen: (a) rosette at 70% of 3L ; (b) rosette at 
85% of 3L . 
 

Analysis type 
 3/ 70�z L  %   3/ 85�z L  %  

Dog-bone Gaussian Dog-bone Gaussian 

Finite Element  85.8�%   100.�0%   80.2�%   100.2�%  

Experimental 
(95 % confidence 
interval) 

 � �85.4;86.5 �%   � �99.6;100.8 �%   � �80.1;81.4 �%   � �100.0;101.1 �%  

Note: Confidence intervals are obtained from 180 tests; for each experimental test, stress amplitude is evaluated with a minimum of 1000 data 
points. 

 

Table 1: Comparison between numerical and experimental results: values of the center� / �  percent ratio. 
 
 
CONCLUSIONS 
 

he proposed Gaussian shape allows to obtain specimens characterized by a very large risk volume. Dog-bone and 
Gaussian specimens are compared through a Finite Element Analysis. The finite element models are 
experimentally validated by means of strain gages measurements. T 
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The results show that dog-bone specimens are appropriate only for small risk volumes, while the Gaussian shape allows to 
design specimens with larger risk volumes (up to 38500�mm ).  
The stress concentration effect due to the cross section variation along the specimen is also taken into account. Stress 
concentration factor is limited for dog-bone specimen. Gaussian specimen shows larger stress concentration factors; an 
appropriate choice of the length 2L  and of the diameter ratio N  allows to design Gaussian specimens with large risk 
volume and tK  values equal or even smaller than that of the traditional dog-bone specimens. 
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