POLITECNICO DI TORINO
Repository ISTITUZIONALE

HEAP: A Highly Efficient Adaptive multi-Processor framework

Original

HEAP: A Highly Efficient Adaptive multi-Processor framework / Lavagno, Luciano; Lazarescu, MIHAI TEODOR; loannis,
Papaefstathiou; Andreas, Brokalakis; Johan, Walters; Bart, Kienhuis; Florian, Schéafer. - In: MICROPROCESSORS AND
MICROSYSTEMS. - ISSN 0141-9331. - ELETTRONICO. - 37:8(2013), pp. 1050-1062. [10.1016/j.micpro.2013.07.003]

Availability:
This version is available at: 11583/2514885 since: 2020-10-22T14:47:00Z

Publisher:
Elsevier BV:PO Box 211, 1000 AE Amsterdam Netherlands:011 31 20 4853757, 011 31 20 4853642, 011

Published
DOI:10.1016/j.micpro.2013.07.003

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
Elsevier postprint/Author's Accepted Manuscript

© 2013. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.micpro.2013.07.003

(Article begins on next page)

30 June 2024

HEAP: a Highly Efficient Adaptive multi-Processaamework

Luciano Lavagny Mihai T. Lazarescu loannis PapaefstathiguAndreas Brokalakfs
Johan Walters Bart Kienhuig, Florian Schafér

'Department of Electronics, Politecnico di Torinayrifio, Italy
ZSyneIixis Solutions Ltd, Greece
*Compaan Design, Netherlands
*FS Result GmbH, Germany

Abstract

Writing parallel code is difficult, especially when starting from a sequential reference implementation. Our research
efforts, as demonstrated in this paper, face this challenge directly by providing an innovative toolset that helps software
developers profile and parallelize an existing sequential implementation, by exploiting top-level pipeine-style parallelism.
The innovation of our approach is based on the facts that a) we use both automatic and profiling-driven estimates of the
available parallelism, b) we refine those estimates using metric-driven verification techniques, and c) we support dynamic
recovery of excessively optimistic parallelization. The proposed toolset has been utilized to find an efficient paralld code
organization for a number of real-world representative applications, and a version of the toolset is provided in an open-
source manner.

Keywords: software parallelization, parall€elization tools, trace-based data dependency analysis, data dependency analysis,
parall€elization verification, automatic parallelization

1. Introduction

Writing parallel programs has traditionally beemsidered a difficult task, even when parallelisntaiken into account
from the beginning. Moreover there is an urgentdneeparallelize the massive amounts of legacy eetigli code so as to
increase its performance on processors and sydtemhsefocus from single-thread acceleration tadasing the overall
throughput. Automated software parallelization basn tackled extensively at the instruction level lbop level, which are
appropriate for VLIW and vector processors. Howewaly some past work, namely the Compaan apprfidchas actively
sought parallelization opportunities at ttask level, which are most appropriate for modern medtie processors. A main
limitation of the latter techniques is that sotfaey required loops enclosing the main computatibottienecks to have very
simple internal control (no early exit, limited ggut for conditionals, etc.), and data access patévery limited use of
pointers, only affine array indices, etc.)

The HEAP project faces these challenges directydéveloping an innovative toolset that helps safevdevelopers
profile and parallelize existing sequential implernations by exploiting top-level pipeline-style atelism. It synergistically
uses and extends with respect to past work:

1. The above mentioned Compaan approach [1], [2],nebete to support a significantly larger set of cointr
structures (as detailed in Section 3), to providematic parallelization capabilities based on &aiinpile-time
dataflow analysis on eeduced scope of the application with @aeduced complexity (in HEAP referred to as the
pessimistic approach).

2. A novel approach, related to [3] and [4] and ddxatiin Section 4, which usesin-time, full scope data-
dependency tracing and sophisticated graph vistaiz techniques to enable the code developer to
optimistically find the besmanual parallelization opportunities.

3. Coverage analysis and runtime tracing, as desciib&kction5, to help the developer verify the manually or
automatically parallelized code.

The HEAP project also covers the multi-core compuatehitecture side, by providing innovative cadwherency
strategies, described in [5]. They exploit theadatcess information provided by the parallelizatmols mentioned above to
provide improved performance at a dramatically cedicost with respect to current directory-basethous.

The key observation that allows such an improverigetitat explicit classification (e.g., by meansaddpecific encoding
of some bits of the address) of each load or stereperating on private or shared data leads txtefé use of a write-
through policy for shared data, and of a write-bpokcy for private data. Since all communicationtihe parallel model of

computation considered in this paper, namely Katotéss Networks (KPNs [6]), is via single-readegk-writer FIFOs,
this classification can be readily performed. hrtjgular, all local process variables are privatbijle all FIFO variables
(indices and buffers) are shared. Since most oflfia accesses are on private data, the moreeetffiairite-back policy can
be applied for a majority of the accesses, thusigig the claimed cache performance and cost gains

Note that the HEAP approachrist limited to a KPN-style parallelism. Only the automated parallelization path uses it,
while manual parallelization (helped by the toatscribed in the rest of this paper) can use ang sfyparallel code writing.
In this paper, we will consider KPNs because theyituitive and, thanks to their deterministic &eilor independent of the
execution timing and schedule, they make manuallleication easier and less error-prone.

2. Related Work

Code parallelization is one of the most widely g#ddopics in compilers for parallel machines sittee 1970's. Most of
the work so far has focused on the identificatibearle sections within innermost loops (Fortran™do“for” and “while”
in C) which can be executed fully in parallel (“dii*) due to the lack of dependencies, or on a aeabachine, or as a
software pipeline [7], [8], [9]. However, the ldwd parallelism that can be identified using thésghniques is very limited,
since it can be significant only for special apations (physics, fluid dynamics, structure engimggr and cannot fully
exploit the current architectures dominantly usatgfiming and multi-media applications.

On the other hand, there is a strong need for tgaba which can help the developer to manuallyiti@mtan application,
going beyond the limitations of automated analydt@r example, we would like to work at the “majorogram level (as
opposed to the innermost loop level) [10], [11].

One of the most effective automated approachearsavhich is part of the background research of fiioposal and will
provide us with the “lower bound” to the amountpairallelism, is the Compaan project run at the Brsity of Leiden [1]
which is being commercialized by Compaan Designhe TCompaan approach focuses on Static Affine Nektexp
Programs (SANLP), which use affine loop bounds iadéx expressions on non-aliased data. Origirtaytechnology was
based on Matlab syntax as input specification amceatly it is based on 1SO C.

A similar approach, but oriented to the discoveiparallelism in the outermost loops, is used kg BHCO high-level
synthesis software, currently commercialized bydpgys [11].

Another similar technique, proposed recently by Aasanghe and others, provides the basic idea dfupyeer bound” to
the discovery of parallelism [12]. In HEAP, we kaaxtended it by providing further techniques, dase data compression
and advanced visualization, to show the very lang@unt of data that can be provided by a full detee of, e.g., a large
video encoding or decoding technique.

Several compilation and debugging tools, often thase proprietary extensions of the C language, relse been
proposed by dominant industrial players. For eXamppple introduced recently the Grand Centrahtetogy based on
OpenCL, a newly developed programming language pdtential scope is parallelization of C-like paagming languages
for execution on graphics processors. NVidia psggbthe CUDA language, very similar to OpenCL, \Wwhien be used to
translate sequential C code into parallel threhdsdan be run on NVidia's GPUs and Stream is AMDrslar offering.

The recently announced Prism tool from criticalBtaekles the same problem of legacy sequential padallelization.
It essentially predicts the application performaooéer different thread decompositions, and theesponding inter-thread
dependencies. Like in our case, its assessmgaralflelization opportunities is bound by the gtyatif the testbench used.

3. Static array-based data dependency analysis

This section provides a short overview of how thempaan compiler [1] performs its data dependen@jyais and
identifies sections of code which can be safelycated as concurrent Kahn Process Network (KPN [B])KPNs, processes
are allowed to communicate only via single-readegls-writer FIFO queues with blocking read semesjtithus ensuring
deterministic behavior by construction, regardigfsthe execution timing.

Compaan's exact dataflow analysis operates atrtwegure level (reduced scope) and performs ityysiseon C code
that adheres to the reduced complexity of StatimAfNested Loop Programs (SANLP). The Compaanpi@mconverts a
SANLP into an efficiently pipelined KPN. The morepetitive the original program, the more effectthe Compaan
approach is. Especially applications in the donwdinideo, telecom and imaging can be easily fitie SANLP format.
This provides a productive approach to converteataggplications into multithreaded, streaming imp@atations.

Within SANLP, control flow decisions and data acceatterns depend on compile-time known values,static affine
expressions. Therefore, a SANLP comprises theviatig:

* C loops equivalent to the forfor (it = el; it < e2; it += e3) {...} whereit is the integer
iterator,el, e2 are static affine (loop invariant) expressions aBds a constant.

« if-then-else statements in the foif({!] el [<, <=, ==, >=, >, |, & e2) {...} else {...}
whereel, e2 are static affine expressions, i.e., all boolegressions based on static affine values.
e Statements that read, write and compute locallyaded unaliased scalassand/or unaliased multi-dimensional

arraysa[] ,b[][] s CLI] ... indexed with expressions that are static affike statement can
consist of procedure calls and standard unaryr@ariC operators.
Expressions of the fornte*it o+ci*it ;... +¢ ;*it ;+c are static affine iEq, c 1, ..., C ;, C are constants and
it o,it 4,...,it ; are one of the following:

» Static affine nested loop iterators

* Run-time constants

« One of the following pseudo-linear expressions, nelsés static affine and is constant:
s%c

sle

div_floor(s, c)

div_ceil(s, c)

max(s, s)

min(s, s)

All code outside the procedures analyzed by the Compaan compiles dot need to be SANLP. Data dependencies
between proceduresiled by the SANLP need to be explicit through theirdiion arguments, rather than sharing any global
data.

For example, let us consider the following SANL gmam:

int a[10], b[10][10];

for (inti=0;i<10; i++) {

a[i] = Function();

for (intj =i; j < 10; j++) {
b[il[i] = Function2(a[il);

}

}

This example shows first the definition of the grvariablesa[] andb[][] . This is followed by two nested loops with
two enclosed function calls. The for-loops define loop iterators andj . The function calFunctionl is placed before
the inner for-loop, which results in a non-perfaested loop. Compaan can handle such non-peréstedh loops. In the
example, all exchanges of data between the functdls are through the arrag andb[][] . The indexing of the arrays
is expressed in linear combinations of the loopattasi andj. Actual computations are hidden by the functions
Functionl1() andFunction2()

Given a SANLP, Compaan can analyze the data depeigdebetween any pair of statements using theyrdescribed
in [2], and also show them graphically using itsIGa$ shown ifFigure 1

O O0Oo0OOo0o

o

#pragma compaan_procedure accumulatorzd
void accumulator2dishort data_in[MAX I][MaX 1], // 18 bat
int data_out[max_J1) { // 22 b1t
int 1i;
int j;
short almax_I1[mMax_J1;
int sum[max_J1; // Partial sum

// Initialize the partial sum

for (j =0; J <=MAX J; 7 =3 + 1) {
suml11 = ©;

s

/4 Stream in dafewin and accumulate
for (1 =0; 1 <« MAXER:31 =1 + 1)
for (j = 0; j <Max'35 j = /% ¥
alillj] = data_in[i]f4l;
accumula EMalil[j1], sum[3]1, &sum[j1);
+
g

// Copy the last partial sufi 2 -Skream out
for (j =0; § =Max J; 4 =3 + 1) {
data_out[j] =sumljl;
}
¥

Figure 1. Data dependencies overlayed on source lmp@ompaan GUI

For example, given the following code:
void accumulator2d(

short data_in[MAX_I][MAX_J],

int data_out[MAX_J])

{
inti, j;
short a[MAX_I[MAX_J];
int sum[MAX_J]; /I Partial sum

Il Initialize the sum array
for(=0;j<MAX_J;j=j+1){
suml[j] = 0;

}

/I Stream in data_in and accumulate
for(i=0;i<MAX_I;i=i+1){
for(j=0;j<MAX_ J;j=j+1){
a[i][j] = data_in[i][j];
accumula (a[i][j],sum[j],&sum[j]);
}
}

/I Copy the partial sums and stream out

for(j=0;j<MAX_J;j=j+1){
data_out[j] = sum[j];

}

}

Compaan derives for this single-threaded, globahorg code the KPN described in Figure 2. Eachexeirt the graph
represents a statement in the source code antevifthplemented as a separate thread. The datadipzes (expressed as
edges) are converted into FIFO communication cHannéhe Compaan compiler automatically producédal for each
SANLP and implements the KPN on a multithreadedrenment based on pthreads or Intel Thread Build@larks (TBB).

(o0
data o
< proc2

Figure 2. Example of KPN for theaccurnul at or 2d function

4. Dynamic trace-based data dependency analysis

Static analysis techniques, as argued in the pueviection, can help the developer automaticalhpligdize data-
intensive code, with limited support for controtusttures or memory access modes beyond affine éadidthin uniform
vectors. While many embedded applications fab ihis category, there is a large amount of legadiware which includes
a significant amount of control and decisions, ggsipointers and dynamic memory allocation inteigiv

The HEAP optimistic software parallelization todl$eas been developed specifically to address #i®ral class of
applications. It can be applied to any sequefinguage code and helps the software developgnofile and parallelize
it by exploiting top-level pipeline-style parallefn.

The parallelized code considered in this papery(fonl the sake of easier illustration, as mentioabdve) uses the KPN
model of computation as the code produced autoslbtiby the tools described in Section 3. This elodnsures
deterministic behavior with arbitrary parallel pess execution times, i.e., completely avoiding datzs, in order to ease
the verification task discussed in Section 5. Nb# even though in general the deadlock-freewgabdity of a KPN model
in finite memory is undecidable, a KPN derived frtm parallelization of an existing reference setjatimplementation is
guaranteed to be schedulable.

The sequential code is manually split (as illugilain Section 6) into multiple sequential procedbes are assigned to
parallel resources of the architecture and use FElfr@nels for inter-process communication.

The HEAP toolset flow, shown in Figure 3 is divided four stages: (I) source instrumentation, (Ulntime trace
collection and compaction, (Ill) trace data vismation and analysis, and (IV) manual source codallpéization. Each
stage is driven by one or more of the toolset camepts: the CIL-based C source annotator, the exectracer library, the
ZGR viewer-based trace data graphical visualizad an IDE for project development, toolset inteigratand cross-
reference between the visualizer and the source. cod

Sequential C
Source

'

Automatic
Annotation

Trace Library <=» Execu!tlon <+ Input Data
Tracing

. ¥

Trace Data

118 ZGR Viewer < Visudlization, i a e Blocks IDE
Analysis

,,, *

Manual
Parallelization

V. v
Parallel C
Source

<— Code::Blocks IDE

CIL —rp

=—» Code::Blocks IDE

Figure 3. The HEAP optimistic software paral lelizati on tool set flow.

In the first stage, the CIL-based [13] source cadeotator automatically analyzes and rewrites tiginal C source to
add the run-time calls to the tracer library APAttare needed for a proper tracing at run-timeénefggrogram execution and
the data dependencies.

In the next stage, the instrumented program is deahdinked with the tracer library and executeihg an input data set
provided by the developer. The data set shoulddbected tamaximize the discovered dynamic data dependencies by
exercising as many statement-to-statement datandepeies as possible. The execution data are atitathy collected and
compacted by the tracer library functions during thin and saved at the end for display and anatysie following stage.

Basically, the tool operation consists of the asigioin at run time of several execution data, sashthe execution
frequencies and data dependencies between progsamdtions, as shown in Figure 4.

a=Db+c /* instruction ID: 10 =/
X =y + z /% instruction ID: 100 */
r=x+a /% instruction ID: 1000 =%/
M M &a &x &r
emo ap:
y P <attr> <attr> <attr>
- . . 10 100 1000
Write Instruction List:
<attr> <attr> <attr>
Data Dependency Map: 8x x| <attr>
&a ‘a’ | <attr>

Figure 4. Basic operation of the data dependency tracing tool.

This is achieved by annotating the C source witlh dapendency profiling API calls, as follows:

¢ heap_enter_function(char *funcName, int sourceLine, ...) and
heap_exit_function(char *name, int sourcelLine, ...) used to trace the call stack.
¢ heap_declare(char *varName, int sourceLine, void *a ddress, ...) and
heap_alloc(int sourceLine, void* address, ...) that are used to trace the address of static,

automatic and dynamically allocated variables. tRerfirst two categories, the name is the same g source
code. For the latter category, the name is dynaltgigenerated upon every execution of the membogation
call (based on the source code line where it ogcurs
« heap_read(int sourcelLine, void *address, ...) andheap_write(int sourceLine,
void *address, ...) that are used to trace at run time the reads aitelsvio an address performed by a
statement.
Note that the tracing techniqgue completely solbesdliasing issue. For example, assume that thoeving source code:
1. int a, *b;
2. a=2;
3: b=2¢&a;
4: ... =*Db;
is annotated as follovis
int a, *b;
heap_declare("a", 1, &a);
heap_declare("b", 1, &b);

a=2;
heap_write(2, &a);

/I heap_read(3, &&a);
b = &a;
heap_write(3, &b);

heap_read(4, b);
R o8

The dependency is correctly identified as goingnflme 2 to line 4 of the original code, throughrighlea. Line 3 does
not generate any read dependency séieés effectively a constant at that point of the €@hd&b is not read any further in
the code fragment.

The processing of the API calls at run-time resuftshe collection of data dependencies, each nipka pair of
(producer_statement, consumer_statement) as shown in Figure 4. The link is annotated i name (and index in case of
arrays) of the source variable through which theetielency occurs, to help the designer reasonrimstef source names.

The large amount of trace data and execution statisollected are displayed as a graph in thel thiage of the HEAP
toolset flow (see Figure 5). The format and theggrovided facilitate the designer search foapelization opportunities,

! For the sake of simplicity we consider a very@rsource line identification mechanism hererellity, the
annotator uses both the line number and the sdilzagame to identify source code locations.

e.g., pairs of statements or functions with unediional data dependencies that can be executpdrailel as stages of a
coarse-grained task pipeline.

Each node of the graph corresponds to data progessithe original source (a statement, a functama collapsed call
stack), and every arc corresponds to a set of aslelsg(labeled with the declared variable nameygfieable) written by the
source node and read by the sink node.

The full data dependency graph is usually very desmp To simplify its exploration and analysis, tREAP toolset
Graphical User Interface provides sophisticatedharisms, such as:

1. collapse graph nodes at the block and functionl Ig\ee, all the nodes belonging to a block or fiime become a
single node, with all dependencies correspondiaghumulated). Figure 6 shows an example of fundgweel
collapsing.

2. accumulate dependencies into caller nodes, likggghief tool does for execution times. In this mode, data
dependencies between statements of called fundfproperly uniquified based on the call tree) dtetauted to
the callers when the developer requests so.

3. focus on a function (as will be shown in SectioraB)l walk over the statements that read data peatog other

graph nodes and write data consumed by other gragés.

Function Fold (0%) . Function Fold (0%)

\ AN
image.c:158 image.c:1644 \
decode_slice().152 /,/ \ cabac_new_slice().155 /,/j
[£22i7.48] [f22iy.4b]
Function Fold (0.1%)
image.c:1643
init_contexts().153 . Extenc!ed
[£22iw.49] information
on nodes
and their
call stacks
- is available
Function Fold (69.06%)
The mOSt A I,Mi - Function fold
IntenSIVG L|L‘U\alc%)lk.‘i\llyu).156 Load: 69.06%
processing “3:‘\‘\4“" Function: decode_one_slice(Q
and data Call stack ID 156:

tranSferS are 3: decode_one_sliceQ.156
0 0 decode_slice(Q.152
highlighted

2:
1: decode_one_frame Q.13
0: mainO.1

File:1ine: image.c:1655

Function Fold (0%)
Idecod.c:323
decode_one_frame().13
[f22iv.d]

Figure 5. The graph displays program processing el ements as nodes and their data dependencies as directed edges.
Extended information can be obtained for each element.

5. Parallelization verification

The methodology used for verification of the opstit parallelization described above is based artations added to
both the initial sequential (“golden”) version detprogram and to the automatically or manuallalelized version. Note
that also in case of automated parallelization,ctlis correct by construction, verification is dabie in order to discover
and correct tool bugs.

The annotations produce at runtime a log file timattains data about the program execution thdteis analyzed by the
analysis tool. The annotation statements are peavidy a verification API library. The places whergarallelization tool
(or a human developer) changes the code to splipthgram into multiple parallel sections are tame places where the
annotation API calls need to be added in orderaktthe program state before and after a pasdigtion. Consequently, the
information required to parallelize a program iffisient to also add the annotations.

Coverage analysis is performed by checking whethary checkpoint in the program has been encouhtdfea
checkpoint is encountered, the surrounding codébar executed. By placing a checkpoint in eveapth of the code, this
allows to verify that all branches have been eatuin order to perform that check, the analysi$ tequires the checkpoint
API calls in the program code, a structure fileigivthe analyzer a list of all checkpoints and pagsnultiple resulting log
files to check. The latter might be required beeadepending on the program structure it might mopdssible to visit every
branch of a program with a single run -- especitlirror conditions are to be checked. In thisegas successful standard
run plus several runs to cover corner cases mighequired to achieve full coverage. In these ¢amatiple log files can be
provided to the analysis tool and coverage wilthkeulated over all of them.

The following steps need to be performed in oraewerify the parallelized version and the sequéntasion of a
program:

e segmenting the program-- dividing the program into logical areas (eaclrgly parallel or sequential) by
adding the corresponding API calls,

¢ dumping data -- adding API calls to the program to dump theuingnd output data for later comparison,

e annotating the program -- adding API calls to identify checkpoints, asiegrs and so on,

« compiling and running -- this will produce the required coverage and pduata,

« analyzing the results -- running the analysis titth the previously obtained log files as inputs.

An example of the annotations on the inigedjuential version of a hypothetical program (closely resembling Iasic
structure of the ray tracing application describbethe next Section) is as follows:

int input[SIZE];

int output = 0;

/l'initialize input

/I dump input and start parallel tracing
heap_report_data("area_1", "in", input);
heap_report_start_parallel("area_1");
/I Iterate to perform some computation
for (i=0;i<10; i++) {
char task_name[32];
sprintf(task_name, "task_%i", i);

heap_report_start_task(task_name);
... = input[i];
/I Do some work

result = ...
/I Gather the result.
output += result;
heap_report_end_task(task_name);
}
/I end of area
heap_report_end_parallel("area_1");
/I dump output
heap_report_data("area_1", "out", output);

An example of the annotations on theeallel version of the same code is as follows:
int input[SIZE];

int output = 0;

/l'initialize input

/I dump input and start parallel tracing

heap_report_data("area_1", "in", input);

heap_report_start_parallel("area_1");

/I scatter and gather the data

for (i=0;i < SIZE; i++) {
FIFOIN[i].put(input[i]);

}
for (i=0;i<10; i++) {
output += FIFOoult[i].get();

/l end of area
heap_report_end_parallel("area_1");

/l dump output
heap_report_data("area_1", "out", output);

}}.function executed by the i-th process
void process_func(int i)

{
sprintf(task_name, "task_%i", i);
heap_report_start_task(task_name);
... = FIFQinli].get();
/l do work
result = ...
FIFOout[i].put(result);
heap_report_end_task(task_name);
}

This example illustrates all previously mentiongdps. The execution of both versions of the codeegges both
unordered checkpoints (starting and ending of dasksl data tracing points, which help identifyingspible incorrect
parallelization results, due to human or tool esror

6. An example: parallelizing a ray tracing application

In the following we will present the use of the HEAoolset for the parallelization of a real lifey taacing application.
Ray tracing algorithms mimic the visual processshyulating light rays from light sources, to obgdb the eye, and are a
widely known as “embarrassing parallel” applicaton

However, parallelizing an existing sequential inmpémtationwithout any prior knowledge of the software and guided
only by a classical source code profiler can baunting task. In the following we will present tiige of the toolset for both
top-down and bottom-up searches of parallelizatigportunities and experimental results.

6. 1. Exploration for “doall” parallelization opportuniti es

The Graphical User Interface (GUI) of the HEAP smilalways starts by presenting a single Data Diepeary Graph
(DDG) node that corresponds to timain function and folds all program data flow within(gee Figure 6). The detailed
information about this node presented in the popvinglow includes the percentage of estimated ei@ttime spent in this
function and its callees, its position in the csthck, and its source code reference. To helpddweloper in program
exploration, the GUI also provides commands toddliyevisualize the source code corresponding tdéode in a pop-up
or to highlight the source line in the editor oé ttompanion IDE.

Function fold
Load: 1008
Function: maini

Call stack ID 1:
0: maing. 1

File:1ine: shome iihai ‘projectssheapsdemos/ray tracer/raytracer.c: 56

Figure6. Initial view of the HEAP GUI displaying all program call stacks and data flows folded under the mai n function.

The search for parallelization opportunities st this top level view with:

« a progressive expansion of the nodes whose higbligbolors indicate that they include the largetfoms of
the program execution time, and
e an analysis of the most important data flows tlwainect them.

The color intensity of both nodes (representing jgotations) and edges (representing the data traniséween them)
offers a coarse but very efficient guide towardspharts of the program that may benefit most framalbelization. The GUI
can also present accurate information about thaesiés of interest in pop-up windows.

Figure 7 shows the unfolding of thmain function, where it is immediately apparent thatsinaf the program execution
time is spent in th&®ender function and its callees. However, many otheresodppear in this unfold that carry too little
execution weight to be interesting for the seamhpiarallelization opportunities (such as functiémsdata initialization or
for checking the command line switches). To préwgaph cluttering, these elements can be excldiaed this and all
subsequent unfolds using a special graph re-rawattion of the GUI. Graph re-rooting sets the gelgéaode, usually a
computational bottleneck on which the developerta/émfocus, as the new root, exactly as masn in Figure 6.

Function Fold (0%)
raytracer.c:106

AddObijectToScene(). 10

[fle0.a]

Function Fold

raytracer.c:
ResetStats().8

[fle7.8]

Function Fold (0%)
raytracer.c:222

" Function Fold (0%)
raytracer.c:76
Parse Args().2

[f1dy.2]

GetStat().279
[f1e3.7r]

Function Fold (0%)
raytracer.c:206
ReleaselmageBuffer().277
[flel.7p]

(0%) Function Fold (0%)
87 raytracer.c:95
SetVec3().9
[f1e6.9]

Function Fold (99.99%)

raytracer.c:201

Render().18
[f1du.i]

Function Fold (0%)
raytracer.c:227
GetRayID().280
[f1dt.7s]

Function Fold (0%)
raytracer.c:56
main(). 1
[f1e8.1]

" Function Fold (0%)
raytracer.c:138
SetQuadVertex().11
[f1dw.b]

Function Fold (0%)
raytracer.c:209
PrintLog().278

Function Fold (0%)
raytracer.c:79
AllocateImageBuffer().5
[fle5.5]

Function Fold (0%)
raytracer.c:142
SetupQuad().13
[fldv.d]

Function Fold (0%)
raytracer.c:205
SaveRawImage().276
[f1dz.70]

Function Fold (0.01%)
raytracer.c:204
Savelmage().275
[f1dx.7n]

Figure7. First level expansion of the mai n call stack.

The graph re-rooted on tender node and subsequently unfolded is shown in Fi§urRe-rooting restricts the
display to the statements within tRender function, or those called by it.

Folded function Folded function

raytracer.c:201 raytracer.c:703
Render().18 PrintLog().274
[f22t.i] [f22s.7m]
scene[4], —
image[4]
c,
scene[4],

Y,
image[4],
X

scene,
*samplingGrid

Folded function
raytracer.c:701

RenderPixel().21
[f22q.1]

Figure 8. Render Pi xel asadoall parall€elization candidate.

Of particular interest are the calls originating RenderPixel that account for most of the program execution
(99.78%). The function is called within a nesBdbops, as shown iRigure 9 and the data dependency edges show limited
dependencies outside tRenderPixel node.

c < numClusters; c++)

% 0; yv < blockSize; y++)

for(x = 0; x < blockSize; x++)
RenderPixel (scene, x, y, image, c);

for (c =0
for (

|~

Figure 9. Worker call ilRender function.

Another functionality of the GUI, namely displayimgly the immediate data dependencies of a funatioloop body,
helps to analyze in detail the data dependenciasholde which has been chosen as a parallelizegiogidate, and to rewrite
the code in parallel form (e.g. by adding OpenMRaations, as discussed below). Figure 10 showsldpendencies of
RenderPixel which are either data produced outside the functiod consumed inside it (inbound data dependéenaies
data produced by the function and consumed outis{datbound data dependencies).

ResetStats().8

Statement (0%)
raytracer.c:1119

ResetStats().8 All
[n190.8]
g_statCounter
Statement (0.03%) Statement (0.02%) Statement (0.39%) Statement (0.19%) Statement (0%) St
raytracer.c:1110 raytracer.c:1110 raytracer.c:1110 raytracer.c:1110 raytracer.c:301 Ié
UpdateStat().90 UpdateStat().77 UpdateStat().54 UpdateStat().32 WritePixel().97 W
[n18u.2i] [n18u.25] [n18u.1i] [n18u.w] [ngn.2p]
g_statCounter in
GetStat().279 Sa
Statement (0%) Statement (0%) St
raytracer.c:1105 raytracer.c:325 Ié
GetStat().279 Savelmage().275 Sa
[n18r.71] [nhz.7n]

Figure 10. Detail of the data dependency view for Render Pi xel

To facilitate the exploration, the dependency viswrganized in 5 layers as follows:
« the top layer displays the statement nodes (grobgéddnctions) that produce the inbound data depeciés;
« the following layer presents the inbound data ddpanies as parallelogram-shaped boxes, cross-linkid
their source code declarations;
« the middle layer contains all the statement nodeth® function that consume or produce the functiata
dependencies;
« the next layer displays the outbound data depemeenc
« the bottom layer displays the statement nodesctregume the outbound data dependencies.
Using this view, we identified the input and outpl#pendencies oRenderPixel that we used to write a parallel
version of the ray tracer application, using thedill paradigm to implement the loops mentionedwhdhat is presented in
Section 6.3.

6. 2. Exploration for “pipeline” parallelization opportun ities

It is also possible to use the same GUI capalslitieexplore another parallelization paradigm, rigitiee creation of a
pipeline, in the form of a Directed Acyclic Taskaph. We can consider, for example, the graph fragmsteown in Figure
11, which shows the data dependencies at a deeparih the call stack with respect to those caergid above. The DDG
here clearly shows a unidirectional data flow tlgtoisome functions, namelgtersectObject , intersectQuad
and intersectSphere . This provides the developer with the necessarisabout where to focus the parallelization
efforts, i.e., on loops involving these functionsThese unidirectional data dependencies clearlntiiyethe stateless
paralleizable computations.

NEANES
rimaryRay \ \\

I\ f
\ \
primaryRay, \
primaryRaly,
samp\eLocationOwac en N
\ 4

[alist of 24]

4+

AL N

rayld],
[a list of 24] ray[d],
ray[4]
\ guad(4],
| quad}4], main_only.c:intersectSphere():808-841 main_only.c:intersectQuad(): 518-548
\quad(4]
\
] ray[4],
\ ray[j]'
\ | ol
quad|4], [a list of 29] [a list of 24] '
\ quad(s]
|

|a list of 18]

ray[4],

ray(4],
rayl4],
ray(d]
q\
Y\‘

main_only & GetPointOnRay() 556-563
\ \

main_onty.c:0ot() 1160-1162

Figure 11. Data dependency traces around the intersectObjectunction of the ray tracer.

Specifically, a quick source code inspection shthasintersectObject
essentially the following code structure:

is called in exactly two contexts, with
RT_Object *obj = (RT_Object *)scene->m_firstObjec
while (obj != NULL) {

localData.m_distance = RT_MAX_FLOAT;
localData.m_hitFlag = 0O;

localData.m_hitObject = NULL;

if (intersectObject(obj, ray, caster, &localDat

a)==1)
if (localData.m_distance < data->m_distance)
*data = localData;

obj = obj->m_next;

}

int intersectObject(const RT_Object *obj,
const RT_Ray *ray,
const RT_Object *caster,
RT_IntersectionData *data)

{

In this case, the choice of parallelizatieren without a prior knowledge of the application is quite obvious. One can
create a pool of worker tasks, each implementiragtx the same functionality, namely a calintersectObject with
obj ,ray andcaster as inputs, antbcalData as output.
Note that even though the inputsitbersectObject areconst pointers, there is no guarantee that they are only
used as inputs, since both C and C++ notorioudlywato cast awayconst -ness and subsequentlpdate the data
structures. Regardless, the HEAP toolset datdl@radlows the precise identification (within thimitation of the execution
paths driven by the provided input data, of coutdeyhich pointers are accessed as inputs and tautpn this specific case,
a more detailed inspection of the profiling data ba performed using the tools provided by the HEddtset graphical user
interface to ascertain that the inputs are indedylr@ad and the output is only written.

Assuming a FIFO-based KPN structure for parallélizaand assuming a goal of N-way parallelizatimmmatch the
parallelism of an N-way core, the code above cachamged to the following form:

FIFO(RT_Object) objIn[N];

FIFO(RT_Ray) rayIn[N];

FIFO(RT_Caster) casterIn[N];

FIFO(RT_InterSectionData) dataOut[N];

FIFO(int) resultOut[N];
RT_Object* obj = (RT_Object*)scene->m_firstObject ;

while (obj != NULL) {
/I Scatter outputs
for (i=j=0; obj != NULL && i < N; i++, j++) {
objIn[i].put(*obj);
rayln[i].put(*ray);
casterIn[i].put(*caster);

obj = obj->m_next;

/I Gather inputs
for (i=0;i<j i++){
localData = dataOut[i].get();
if (resultOut[i].get() == 1)
if (localData.m_distance < data->m_distance)
*data = localData;

}
}

void intersectObjectProcess(int i)

while (1) {
RT_Object *obj = objIn[i].get();
RT_Ray *ray = raylIn]i].get();
RT_Object *caster = casterIn]i].get();
int result;
RT_InterSectionData localData;

localData.m_distance = RT_MAX_FLOAT;
localData.m_hitFlag = O;
localData.m_hitObject = NULL;
result =
intersectObject(obj, ray, caster, &localData) ;

resultOut[i].put(result);
dataOut[i].put(localData);

}
}
In the above code snippet, we assume that themargiystem creaté$concurrent processes, each executing the code of
the functionintersectObjectProcess , each with a different value offrom0 toN-1.

It is worth noting about this parallelization that:

e can be obtained very quickl{fhe entire process, including the debugging, took less than two hours for a
programmer with no previous knowl edge of the ray tracing application.
« is guaranteed to be correxstlong as the only communication occurs via the FIFO queues.

The latter can be observed by analyzing the datartéency information, but of course can never lEanteed, because
it may be violated along some execution paths whiehe not traversed due to a limitation of the ingata provided to the
profiler.

The Compaan tool parallelized the ray tracing aapion by choosing a different procedure, after s@aode rewriting in
order to improve its automated parallelism discgvefrhe Compaan parallelization is for a loop perfed over all shadow
rays, while the manual parallelization presenteavalis for a loop performed over objects.

6. 3. Experimental results

Section 6.1 discovered a suitable parallelizatippastunity in the call of thd&kenderPixel function and a detail
analysis of its immediate data dependencies. WMithinformation we were able to write a paralletsion of the ray tracer
application using two methods:

1. OpenMP annotations (as implemented by the GCC dempand
2. POSIX threads (pthreads) with manual synchroninatio
The code irFigure 9is parallelized for OpenMP as follows:
#pragma omp for private(c, X, y) schedule(static)
for (c = 0; ¢ < numClusters; c++)
for(y = 0; y < blockSize; y++)
for(x = 0; x < blockSize; x++)
RenderPixel(scene, x, y, image, c);
where all data dependencies not declgmiehte are consideredhared and a static schedule means that all iterations of
the outermost loop are divided between the workegads at compile time and each worker thread exiicute only its
predefined segment of iterations. A dynamic schedssigns to each worker thread a new loop iteradis soon as the
thread is available to perform more work. Thisrapgh, just like the KPN approach used by Compean,be used with
loops whose bounds cannot be defined at compile. tim

The pthread version was implemented using a simgaroach, but using explicit synchronization iagt®f OpenMP
pragmas. A worker function was defined as follows:

void *RenderPixel_wrapper(void *thr_data)

struct thr_data_s *td = (struct thr_data_s *)thr_ data;
uint32_tc, x, y;

for (c = td->c_start; c < td->c_stop; c++)
for (y = 0; y < td->blockSize; y++)
for (x = 0; x < td->blockSize; x++)
RenderPixel(td->scene,x,y,td->image,c);

return NULL;
}

and the workers were instantiated as threads tketuée this function, receiving the appropriateapzeters using the
thr_data structure.

Figure 12 compares the performance of a first pizdtion attempt on a desktop PC with 4 coredhvain Amdahl’s
law-derived maximum speedup close to 4X).

1.20
1.00

0.80

0.60
0.40
0.20
0.00

Serial OMP static OMP dynamic Pthreads

Speedup to serial

Parallelization type

Figure 12. Execution time for different parallel versions of the ray tracer program compared with the original serial version.

As can be seen, all parallelized versions run stalvan the serial version. One of the reasonsHerdlowdown was
identified to be the false sharing occurring on e@hared variables of the ray tracer program.

False sharing is an architectural effect that caupin shared memory multiprocessor systems wdtiecent caches. As
the data status in the caches is maintained atltdoi (or line) level, a write by any of the thdsato a variable in a block
will invalidate all copies of the block in the otheaches, thus forcing a synchronization throughrttain memory. All
threads accessing even unrelated variables in [tk lare blocked for the duration of the synchraticn leading to a
significant slowdown.

In the ray tracing application we found that a sdaarray of 4 global counters may lead to this jgmmb To prevent false
sharing, we ensured that each counter is locateddifferent share block, by spacing them aparatthe size of a cache
block of the target architecture. The speeduplteane shown in Figure 13, and now all parallelizersions run faster than
the serial version. Wther investigations of these effects can thempdrormed using more traditional tools that
have not been developed specifically in the HEA®jgat, such as Intel VTune or OProfile.

1.8
1.6

1.4
1.2

1
0.8
0.6
0.4
0.2

0

Serial OMP static OMP dynamic Pthreads

Parallelization type

Speedup to serial

Figure 13. Execution time of the ray tracer program optimized for parallel execution.

Note that the parallelization attempts using cogrsénstatic OpenMP and Pthreads schedules achieve less sptwatup
those usingdynamic scheduling, although the latter has more run-towerhead. This is because the workload of each
iteration of the parallelized loop is not balancasl shown ifFigure 14.

70 T T
: Thread 0

. Thread 1 - - - -
60 - 7 Thread 2 - 7
/ Thread 3 —-—-—
50 ‘/. . e =
» :
~ 40 -
o /
o /
o i
= 30 ' B
© ‘
2 /
20 . _
10 = R 4
0 i i [e
400 600 800 1000 1200

Iteration
Figure 14. Time per iteration for ray tracer application parallelized using OpenMP static scheduling.

Thread 1 has a workload about 20 times larger theead 3, because it completes its 256 loop it@matin 62 seconds,
versus about 3 seconds for thread 3. Dynamic stingdavoids this underutilization of resourcesasgigning a new task to
threads as soon as they become idle. The Openddie sthedule reaches a similar level of efficieifcthe scheduler

granularity is reduced from 256 to 10 iterations theead (while dynamic scheduling associates #agfad with 1 iteration),

for instance.

7. Conclusions and future work

This ray tracing application case study shows hoevHEAP approach can be used to discover multigtallglization
opportunities, leaving to the developer the choicehich suits best the underlying multi-core atebiure.

This paper described a flexible multi-paradigm apph to the very difficult task of software parbflation. We
discussed how potential parallelism can be idextiBtarting both from a formal automated analy$iaray indices within
loops and from a data dependency execution profilee explained how both the code changes requoeapply the first
approach and the manual parallelization changesireztiby the second approach can be verified biyguai metric-driven
approach.

Finally, we illustrated with a simple but realisgégample, a ray tracing application, how differpatallelization options
can be obtained and quickly explored with the HEsdproach. Several parallelization techniques wememented and
their performance was compared with that of théakgersion. The inefficiencies were analyzed aodrelated with the
application structure and the complexity of théktas

It is also worth noting that the Compaan compiken greatly benefit from the HEAP profiler. The uséthe Compaan
compiler will need to do an educated guess on whith to rewrite. Typically, these are computeinsive parts which
already resemble SANLP, but the HEAP profiler megvile useful information on:

» where the compute intensive procedures are;

« whether there are no data dependencies otherhhaugh procedure arguments;
« whether procedure inputs and outputs are trulyiased;

« whether procedure inputs are truly read-only aniguts are write-only.

Future work will include (1) more extensive expegimation, using other real life applications wille tanalysis of the
actual speedup obtained by parallelization (2)ebettipport for the designer in the analysis oftthee data, and (3) support
for automatic rewrite of the code for parallelipati

8. Acknowledgments

This work is supported by the European Commisgicthé context of the FP7 HEAP project (#247615he Tay tracing
application described in this paper has been kipdbyided by ST Microelectronics within the HEARofarct.

References

[1] Compaan Design. BV, 2012. See http://www.compadgadeom/.

[2] B. Kienhuis, E. Rijpkema, and E. F. Deprettere, ffaan: deriving process networks from matlab fobetded signal processing
architectures,” in Proceedings of the Eighth Ind¢ional Workshop on Hardware/Software Codesign;18pl17, 2000.

[3] W. Thies, V. Chandrasekhar, and S. P. Amarasintheractical approach to exploiting coarse-grainggeline parallelism in c
programs,” in 40th Annual |EEE/ACM International rB8gosium on Microarchitecture, pp. 356-369, 2007.
http://www.altera.com/corporate/news_room/rele@gsst/products/rropencl.html?GSA_pos=5&WT.oss_r=1&WT.0ss=OpenCL

[4] J.-Y. Mignolet, R. Baert, T. J. Ashby, P. Avasare;0. Jang, and J. C. Son, “Mpa: Parallelizing gpligation onto a multicore
platform made easy,” IEEE Micro, vol. 29, no. 3, Bf—39, 2009.

[5] S. Kaxiras and G. Keramidas, “Sarc coherence: iggalirectory cache coherence in performance ancepbWEEE Micro, vol. 30,
no. 5, pp. 54-65, 2010.

[6] G. Kahn, “The semantics of a simple language foalfg programming,” in Proceedings of IFIP Congresug. 1974,

[7] D.F.Bacon, S. L. Graham, and O. J. Sharp, “Canpiansformations for high-performance computicgzM Comput. Surv., vol.
26, pp. 345-420, Dec. 1994.

[8] R.P.Wilson, R. S. French, C. S. Wilson, S. P. fasmghe, J. M.Anderson, S. W. K. Tjiang, S.-W.d,i€.-W. Tseng, M. W. Hall,
M. S. Lam, and J. L. Hennessy, “Suif: an infrasinoe for research on parallelizing and optimizignpilers,” SIGPLAN Not., vol.
29, pp. 31-37, Dec. 1994,

[9] V.H.Allan, R. B. Jones, R. M. Lee, and S. J. All&Software pipelining,” ACM Comput. Surv., vol72pp. 367432, Sept. 1995.

[10]D. Culler, A. Dusseau, S. Goldstein, A. KrishnarhyrtS. Lumetta, T. von Eicken, and K. Yelick, “Péprogramming in split-c,”
in Supercomputing '93. Proceedings, pp. 262 — 888, 1993.

[11]V. Kathall, S. Aditya, R. Schreiber, B. RamakrishRau, D. Cronquist, and M. Sivaraman, “Pico: autidcadly designing custom
computers,” Computer, vol. 35, pp. 39 — 47, se200

[12]W. Thies, V. Chandrasekhar, and S. Amarasingheptéctical approach to exploiting coarse-grainecelig parallelism in c
programs,” in Microarchitecture, 2007. MICRO 20@0th Annual IEEE/ACM International Symposium on, Bp6 —369, dec. 2007.

[13]G. C. Necula, S. Mcpeak, S. P. Rahul, and W. Weifi@t.: Intermediate language and tools for anayaid transformation of C
programs,” in Int'l Conference on Compiler Constiai, pp. 213-228, 2002.

[14]W. J. Bolosky and M. L. Scott, “False sharing ateldffect on shared memory performance,” in USEISiystems on USENIX
Experiences with Distributed and Multiprocessort8ys - Volume 4, Sedms’93,

