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Abstract

Generalized itemset mining is an established data mining technique that

focuses on discovering high-level correlations among large databases. By

exploiting a taxonomy built over the data items, items are aggregated into

higher level concepts and, thus, data correlations at different abstraction

levels can be discovered. However, since a large number of patterns can be

extracted, the result of the mining process is often not easily manageable by

domain experts.

We propose a novel approach to discovering a compact subset of gener-

alized itemsets from structured data. To guarantee model conciseness and

readability, a set of itemsets that has a common generalization is generated

only when its cardinality is so small that its manual inspection is practically

feasible. Furthermore, generalizations are generated only when their knowl-

edge is covered by a large number of low-level descendant itemsets, and the

generalizations are worth considering in place of their many low-level descen-

dants only in these cases.
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Experiments performed on synthetic, benchmark, and real data taken

from a mobile application scenario demonstrate the effectiveness and effi-

ciency of the proposed approach.

Keywords: Data Mining and knowledge discovery, Generalized itemset

mining, Mobile data analysis

1. Introduction

Frequent generalized itemset mining is an exploratory data mining tech-

nique that focuses on discovering recurrent high-level correlations that are

hidden in large databases. A pioneering work in this research field has been

presented in [3]. This contribution extends the traditional itemset mining

problem, which was first introduced in [1] in the context of market basket

analysis, to addressing data that have been enriched with taxonomies (i.e.,

is-a hierarchies). Specifically, to discover data correlations at different ab-

straction levels, a taxonomy is used to aggregate low-level data items (e.g.,

market basket items) into higher level concepts (e.g., item categories), called

generalized items. Frequent generalized itemsets are sets of items or gener-

alized items for which the frequency of occurrence (support) in the analyzed

data is above a given threshold.

In recent years, frequent generalized itemsets have successfully been adopted

to analyze data that arises from diverse application domains (e.g., context-

aware data analysis [9, 14, 34], network traffic analysis [6, 8]). As a drawback,

many frequent itemset mining approaches have been challenged because of

the low manageability of the generated models. In fact, the result of the

mining process using real-world data is usually a large set of patterns that
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is neither practical to manage nor easy for domain experts to interpret. To

overcome this issue, post-pruning steps are usually applied, which have the

following aims: (i) ensuring that only valid and useful itemsets are incor-

porated into the decision support system and (ii) making the model that is

composed of the selected itemsets both manageable and interpretable. To

reduce the number of extracted patterns, a support constraint is commonly

enforced to prune the itemsets that occur rarely in the analyzed data. How-

ever, in some contexts the rare itemsets represent interesting information

that is worth considering for decision making. Furthermore, since the support

constraint does not ensure a limited pattern set size the readability of the ex-

tracted patterns is not guaranteed. When addressing data that are supplied

with taxonomies, the number of mined patterns further increases because

the high-level itemsets are extracted as well as low-level ones. Nevertheless,

a generalized itemset can be considered to be a high-level representative of

a subset of low-level descendant itemsets, which might potentially represent

more specific (low-level) knowledge in a compact way. Hence, generating

compact and manageable generalized itemset-based models that are charac-

terized by a good balance between itemset specialization and generalization

is desirable.

This paper proposes a novel approach to generating compact models that

are composed of frequent generalized itemsets; the proposed method is both

efficient and effective. To generate itemset-based models that can be eas-

ily managed by domain experts, without the need for ad-hoc post-pruning

phases, we propose to place two novel mining constraints, which are the

descendant and ancestor cardinality-based constraints, into the generalized
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itemset mining process. The aim is two-fold: (i) to prevent the genera-

tion of large sets of sibling itemsets that are descendants of the same high-

level ancestor and (ii) to report the corresponding generalization (ancestor),

which concisely represents the knowledge that is associated with a large set of

low-level descendant itemsets. The descendant cardinality-based constraint

focuses on pruning those itemset subsets that are not suitable for manual in-

spection. More specifically, this constraint states that a set of itemsets that

have a common generalization is generated only when its manual inspection

becomes practically feasible, i.e., its cardinality is smaller than a (analyst-

provided) maximum cardinality max card. During a preliminary analysis,

analysts typically focus their attention on subsets of low-level itemsets (i.e.,

the most fine-grained patterns). Hence, if an itemset set has a humanly man-

ageable size, then experts might deem it useful for decision making. Oth-

erwise, they could examine the corresponding (higher level) generalizations.

The ancestor cardinality-based constraint states that only the generalizations

whose knowledge is covered by a very large number of lower level itemsets,

i.e., the number of itemsets is larger than a minimum (user-provided) cardi-

nality min card, are generated because they are worth considering in place

of their many lower level descendants. Hence, this approach aims at select-

ing the high-level itemsets that cover the knowledge that is pruned by the

descendant cardinality-based constraint. Although minimum and maximum

cardinality thresholds might be set independently by domain experts, the

use of a unique threshold value allows the itemset-based model to best cover

the analyzed data and, thus, to achieve the best trade-off between knowledge

specialization and generalization. Note that the proposed approach is appli-
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cable to data that come from any applications context in which meaningful

taxonomies might be inferred.

We also propose a novel generalized itemset mining algorithm, namely

CarGeMi (Cardinality-based Generalized itemset Miner), in which the

newly proposed constraints are incorporated into the mining process to en-

sure the conciseness and readability of the generated model without perform-

ing the traditional itemset mining process followed by post-pruning.

The experiments, which were conducted on datasets coming from a real

mobile context-aware applications scenario, demonstrate the effectiveness

and usefulness of the proposed approach. The actionability of the discovered

patterns for supporting advanced analysis has been validated by a domain

expert. Furthermore, the CarGeMi performance and scalability have been

evaluated on benchmark and synthetic data.

This paper is organized as follows. Section 2 compares our work with

previous approaches. Section 3 introduces preliminary notions about gener-

alized itemset mining. Section 4 formally states the generalized itemset min-

ing problem with cardinality-based constraints, whereas Section 5 describes

the CarGeMi algorithm. Section 6 thoroughly describes the experimental

evaluation. Finally, Section 7 draws conclusions and discusses future work.

2. Related work

Generalized itemsets have been fruitfully exploited in many research con-

texts (e.g., context-aware systems [9, 14, 34], network traffic analysis [6, 8]).

For this reason, in recent years, many efficient mining algorithms that inte-

grate constraints or taxonomy-based filtering techniques have been proposed
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(e.g., [4, 5, 7, 20, 24, 27, 3, 30, 31]).

The generalized itemset mining problem was first addressed in [3] in the

context of market basket analysis. The authors proposed a generalized fre-

quent itemset mining algorithm that generates itemsets by considering, for

each item, its parents in the hierarchy. Hence, candidate frequent itemsets are

generated by exhaustively evaluating the taxonomy and, thus, by producing

a large number of redundant patterns. More recent approaches address gen-

eralized itemset mining complexity reduction by preventing the generation of

uninteresting candidate patterns. For example, in [30], subset-superset and

parent-child relationships in the lattice of generalized patterns are exploited

to constrain the mining process. Novel optimization strategies applied to

generalized itemset mining have also been proposed [7, 20, 24, 31]. For ex-

ample, in [24, 31], an attempt to mine closed and maximal itemsets [29]

in the presence of taxonomies has been conducted. In contrast, in [20],

the authors propose an optimization that is based on a top-down hierarchy

traversal. This method identifies in advance itemsets that cannot be fre-

quent in a transactional dataset by exploiting the Apriori principle [1]. More

recently, an opportunistic-driven approach has been introduced [7]. This

approach avoids exhaustive taxonomy evaluation followed by post-pruning

by generalizing an itemset only if its support value is below the minimum

support threshold. Similarly, we also propose a novel and efficient algorithm

for generalized itemset mining. However, instead of pruning itemsets based

on their main quality indexes, we analyze the cardinality of the pattern sets

related to the same upper level generalization to drive the itemset extraction

process. Specifically, only manageable sets of descendant itemsets are kept
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because they are worth considering during a manual inspection. Further-

more, generalizations are kept only when their descendant set is not practi-

cally manageable. Another recently proposed approach [10] analyzes itemset

correlation flippings while generalizing items at higher abstraction levels.

However, the above-mentioned approach does not consider cardinality-based

constraints. The proposed constraints could be classified, at first glance, as

global constraints [18]. Instead of pruning itemsets based on their main qual-

ity indexes, global constraints prune (non-generalized) itemsets by comparing

each of them with a set of related (non-generalized) itemsets. To the best of

our knowledge, global constraints have neither been defined nor applied in

the context of generalized itemsets.

A related issue is the discovery and selection of relevant subsets of (non-

generalized) itemsets. Notable examples of relevant subsets are maximal and

closed frequent itemsets. Maximal frequent itemsets are frequent itemsets

whose supersets are all infrequent [1]. In contrast, a frequent itemset is

closed if none of its immediate supersets has the same support [29]. Efficient

algorithms for mining both maximal and closed frequent itemsets have been

proposed (e.g., [35, 36]). In parallel, other approaches have adopted proba-

bilistic approaches to select the subset of most informative yet non-redundant

frequent itemsets. Some of these approaches (e.g., [13, 23]) compared the ob-

served frequency (i.e., the support) of each itemset against a null hypothesis

(e.g., its expected frequency) to evaluate its interestingness; other approaches

(e.g., [26, 33]) also considered the previously selected patterns in itemset

evaluation to reduce the model redundancy. However, the above-mentioned

approaches did not address pattern mining in the presence of taxonomies and
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also did not propose cardinality-based constraints to generate compact and

easily manageable pattern sets.

3. Preliminaries

In the context of structured data [32], a dataset is composed of a set

of records. Each record is a set of items, where an item is a couple (at-

tribute name, value). While attribute name is the description of a data fea-

ture, value represents the associated information and belongs to the corre-

sponding attribute domain. Since continuous attribute values are typically

not suitable for use in itemset mining, they are preliminary discretized [32].

Table 1 shows the structured dataset that is exploited below as a running

example. This dataset is composed of 5 records, and each record corresponds

to a user request that was submitted to a mobile application through her/his

mobile phone. This request is characterized by the following attributes: user

gender, time, location, and service description. To generalize items that are

contained in a structured dataset at a higher abstraction level, a taxonomy

can be defined. A taxonomy [21] is a forest of generalization hierarchies, in

which each tree represents a hierarchy of aggregations that are defined on an

attribute domain. In the following, Γ and GHi represent a taxonomy and its

generalization hierarchy corresponding to the i-th dataset attribute, respec-

tively. Figure 1 reports an example taxonomy that was built over the running

example dataset. This taxonomy is composed of 4 generalization hierarchies,

one for each dataset attribute. As an example, consider the generalization hi-

erarchy corresponding to the location attribute (see Figure 1(b)). Leaf nodes

are labeled with values in the location attribute domain, whereas non-leaf
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nodes are leaf node aggregations that are labeled with distinct values that

are not in the attribute domain. Root nodes are labeled with the special

value ⊥. Although a taxonomy could potentially include an arbitrary num-

ber of generalization hierarchies per attribute, for the sake of simplicity in

this paper, we will consider taxonomies that contain exactly one generaliza-

tion hierarchy per attribute.

Table 1: Example dataset D.

Time User gender Location Service description

11:00 a.m. Male Milan ServiceA
11:10 a.m. Male Milan ServiceA
8:40 p.m. Female Turin ServiceA
11:00 a.m. Female Trento ServiceA
5:05 p.m. Female Naples ServiceB

In the presence of taxonomies, itemsets are sets of data items that belong

to distinct dataset attributes and whose values are taxonomy node labels

(disregarding the root label). Items can be mapped to the corresponding

taxonomy nodes. Itemsets that contain at least one item that is mapped

to a non-leaf taxonomy node (i.e., a generalized item) are called generalized

itemsets [3]. The generalization level of an item with respect to a taxonomy Γ

is defined as the height of the subtree rooted in the corresponding node. The

level L[X,Γ] of a generalized itemset X with respect to Γ is the maximum

among its item levels. For example, {(Service, CategoryX), (Location, Italy)}
is a generalized itemset of level 3.

A k-itemset I (i.e., a set of k items) covers a given record r if all of its

items are either contained in r or in ancestors of an item in r with respect

to the given taxonomy [3]. Given a structured dataset D, the support of I
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11:00 a.m. 11:10 a.m.

from 5 p.m. to 6 p.m.

5:25 p.m.

a.m.

from 11 a.m. to 12 p.m. from 8 p.m. to 9 p.m.

8:40 p.m.

p.m.

(a) GHtime

(b) GHlocation (c) GHservice (d) GHgender

Figure 1: Taxonomy built over the data items in D

in D is defined as the ratio between the number of records in D that are

covered by I and the total number of records in D. (Generalized) itemsets

whose support is above or equal to a given support threshold are said to

be frequent [3]. For example, the generalized itemset {(Service, ServiceA),
(Location, North Italy)} has support 4

5
in D because it covers 4 out of 5

dataset records (See Table 1).

Given two generalized itemsets X and Y , X is said to be an ancestor

of Y with respect to a given taxonomy Γ if L[X,Γ]>L[Y ,Γ] and for every

(generalized) item yi ∈ Y there exists a (generalized) item xi ∈ X such that

either xi = yi or xi is an ancestor of yi in GHi ∈ Γ. If X is an ancestor of

Y , then Y is a descendant of X, i.e., Y ∈ Desc[X,Γ]. Given an arbitrary
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Table 2: Generalized itemsets extracted from D. min sup = 1.

Id Generalized itemsets Sup Level Lower level Itemsets that satisfy
descendants the cardinality constraints

(max card=3, min card=3)
Selected: X Pruned: -

1 {Turin} 1 1 - -

2 {Naples} 1 1 - X

3 {Trento} 1 1 - -

4 {ServiceB} 1 1 - X

5 {Milan} 2 1 - -

6 {ServiceA} 4 1 - X

7 {Naples,ServiceB} 1 1 - X

8 {Turin,ServiceA} 1 1 - -

9 {Trento,ServiceA} 1 1 - -

10 {Milan,ServiceA} 2 1 - -

11 {South Italy} 1 2 {Naples} -

12 {North Italy} 4 2 {Milan} X

{Turin}
{Trento}

13 {CategoryX} 5 2 {ServiceA} -

{ServiceB}
14 {North Italy,ServiceA} 4 2 {Milan,ServiceA} -

{Turin,ServiceA}
15 {South Italy,ServiceB} 1 2 {Naples,ServiceB} -

16 {Turin,CategoryX} 1 2 {Turin,ServiceA} -

17 {Milan,CategoryX} 2 2 {Milan,ServiceA} -

18 {Trento,CategoryX} 1 2 {Trento,ServiceA} -

19 {Naples,CategoryX} 1 2 {Naples,ServiceB} -

20 {South Italy,CategoryX} 1 2 {Naples,ServiceB} -

21 {North Italy,CategoryX} 4 2 {Turin,ServiceA} -

{Milan,ServiceA}
{Trento,ServiceA}

22 {Italy} 5 3 {North Italy} -

{South Italy}
23 {Italy,ServiceA} 4 3 {North Italy,ServiceA} -

24 {Italy,ServiceB} 1 3 {South Italy,ServiceB} -

25 {Italy,CategoryX} 5 3 {North Italy,CategoryX} X

{South Italy,CategoryX}
{North Italy,ServiceA}
{South Italy,ServiceB}

generalized itemset Z, for our purposes we will denote as φ(Z) ⊆ Desc[Z,

Γ] the set of descendants of Z whose generalization level is L[Z,Γ]-1. For

example, according to the taxonomy that is reported in Figure 1, Italy is an

ancestor of North Italy and φ(Italy)={North Italy, South Italy}.
Given a structured dataset D, a taxonomy, and a minimum support

threshold min sup, the frequent generalized itemset mining problem [3] en-

tails discovering all of the frequent (generalized) itemsets from D, i.e., all of

the frequent (generalized) itemsets that satisfy min sup.
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4. Generalized itemset mining with cardinality-based constraints

The support threshold is a widely used itemset mining constraint; a sup-

port threshold prevents the extraction of itemsets that occur rarely in the

source data [1]. Unfortunately, the frequent itemset mining process might

still generate a large set of patterns that is hardly manageable by domain

experts, especially when very low support thresholds are enforced [4]. This

situation motivates the need for enforcing new constraints during the min-

ing process with the goal of making the result easily manageable by domain

experts.

We propose a new type of constraint called cardinality-based constraints.

The proposed constraints are placed in the generalized itemset mining process

with the aim of producing compact generalized itemset sets, which can be

inspected manually by domain experts. Unlike many traditional constraints

(e.g., the minimum support constraint), which evaluate the itemset signifi-

cance based solely on the characteristics of the itemset, the newly proposed

constraints evaluate the itemset interestingness by comparing it with a set of

other itemsets. Specifically, these constraints consider, for each generalized

itemset I of level l > 1, the cardinality of the set of its low-level descendants

of level l − 1, to decide whether I and its descendants might be suitable

for manual inspection. The cardinality-based constraints can be specialized

into two subcategories: the descendant cardinality-based constraint and the

ancestor cardinality-based constraint. Their formal definitions are given in

the following.

The descendant cardinality-based constraint selects manageable subsets

of sibling generalized itemsets, i.e., itemsets that (i) have the same general-
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ization level and (ii) are descendants of the same high-level itemset. More

specifically, a subset of sibling generalized itemsets satisfies the descendant

cardinality-based constraint if its manual inspection is practically feasible,

i.e., when its cardinality is smaller than a (analyst-provided) maximum car-

dinality threshold.

Definition 4.1. Descendant cardinality-based constraint. Let D be a

structured dataset, let Γ be a taxonomy, let X be a generalized itemset, and

let max card be a non-negative integer number. The generalized itemsets in

φ(X) satisfy the descendant cardinality-based constraint if 6 ∃ Y ⊆ X such

that |φ(Y )| ≥ max card.

Enforcing the descendant cardinality-based constraint prevents the genera-

tion of large descendant sets. The key idea is that large sets of itemsets are

barely manageable by domain experts and, hence, their extraction is pre-

vented. The constraint prunes X’s descendants if X, or any of its subsets

Y ⊆ X, has more than max card descendants.

Consider again the running example (see Table 1 and Figure 1). Table 2

reports the itemsets that were mined by a traditional approach [3] from the

location and service attributes in D by exploiting the taxonomy that is re-

ported in Figure 1 and by enforcing an absolute support threshold min sup

equal to 1. Itemset support values (i.e., the observed frequencies), generaliza-

tion levels with respect to the given taxonomy, and lower level descendants

are also reported. Note that the enforcement of low support thresholds of-

ten entails generating a very large number of patterns that might become

difficult to consider. Even when coping with very small datasets, such as
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the dataset that is reported in Table 1, and when considering only two of

its attributes, enforcing low support thresholds leads to the extraction of a

very large number of patterns (25). According to the given taxonomy, Turin,

Milan, and Trento are generalized as North Italy. By enforcing a maximum

cardinality threshold max card = 3, the expert deems that itemset sets that

include three or more itemsets are not manageable for subsequent analysis.

Hence, {(Location,Turin)}, {(Location,Milan)}, and {(Location,Trento)} are
discarded because they are all descendants of the upper level generalization

{(Location,North Italy)}. When considering combinations of the requested

service description and the requested location, i.e., patterns with schema

{(Service=value, Location=value)}, analysts should expect a similar trend

and, thus, might no longer be interested in considering itemsets that include

the items {(Location,Turin)}, {(Location,Milan)}, and {(Location,Trento)};
instead, they would immediately consider itemsets that include their gener-

alization {(Location,North Italy)}.
The descendant cardinality-based constraint has a notable property, called

the anti-monotonicity property, which allows the search space to be pruned

early.

Property 1. Anti-monotonicity property of the descendant cardinality-

based constraint. Let D be a structured dataset, and let Γ be a taxonomy.

Let G be the set of generalized itemsets that are mined from D by evaluat-

ing the taxonomy Γ and by enforcing no minimum support threshold (i.e.,

min sup = 1). Let S ∈ G be the subset of generalized itemsets that satisfy

the descendant cardinality-based constraint. The anti-monotonicity of the de-

scendant cardinality-based constraint states that, if a generalized itemset X
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does not satisfy the descendant cardinality-based constraint, i.e., X /∈ S, then
every itemset Y such that X ⊂ Y does not satisfy that constraint.

Proof 1. Let X be a generalized itemset that does not satisfy the descendant

cardinality-based constraint. By definition, there exists a generalized itemset

Z ⊆ X such that |φ(Z)| ≥ max card. Because Z ⊆ X, for every itemset

Y such that X ⊂ Y , Z ⊂ Y . Hence, Y does not satisfy the descendant

cardinality-based constraint.

An algorithm that exploits the above-mentioned property to efficiently per-

form generalized itemset mining with cardinality-based constraints is pre-

sented in Section 5.

The ancestor cardinality-based constraint selects, among the upper-level

generalizations, the most valuable generalizations based on the cardinality of

their lower level descendant set.

Definition 4.2. Ancestor cardinality-based constraint. Let D be a

structured dataset, let Γ be a taxonomy, let X be a generalized itemset, and

let min card be a non-negative integer number. The generalized itemset X

satisfies the ancestor cardinality-based constraint if |φ(X)| ≥ min card.

Consider again the previous example. The domain expert is asked to set

the minimum cardinality of the set of patterns related to the same region

for which an upper generalization is worth considering in place of its (large)

descendant set. By enforcing a minimum cardinality threshold min card =

3, the generalized itemset {(Location,North Italy)} is extracted because it

has at least 3 descendants (Turin, Milan, and Trento) and, hence, satisfies
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the constraint. The high-level itemset related to “North Italy” is chosen as a

representative of the knowledge that is covered by its corresponding (large)

descendant set.

The enforcement of both the descendant and the ancestor cardinality-

based constraints during the generalized itemset mining process produces

a concise pattern-based model that is suitable for domain expert analysis.

Although the minimum and maximum cardinality thresholds can be set in-

dependently, the use of a unique threshold value (i.e., min card = max card)

is advisable because it makes the mined pattern-based model representative

of all of the analyzed data and, thus, especially suitable for targeted analy-

sis. Specifically, when min card = max card (also denoted in the following as

the standard configuration), unmanageable descendant sets are pruned and

the corresponding ancestors are kept. Hence, all of the dataset records that

are covered by the discarded descendants are still covered by an upper level

generalization. We formalize this notable property as follows.

Property 2. Coverage of a descendant set. Let D be a structured

dataset, let Γ be a taxonomy, let X be a generalized itemset, and let min card

(= max card) be a non-negative integer number. Let φ(X) ⊆ Desc[X, Γ] be

the set of descendants of X whose generalization level is L[X,Γ]-1 such that

all of its itemsets do not satisfy the descendant cardinality-based constraint

max card. X satisfies the ancestor cardinality-based constraint min card (=

max card) and covers all of the records in D that are covered by any itemsets

in φ(X).

Proof 2. Because by Definition 4.1 there exists Θ ⊆ φ(X) such that |Θ| ≥
max card, it follows that φ(X) ≥ max card=min card. Hence, X satisfies the
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ancestor cardinality-based constraint. Furthermore, because φ(X) ⊆ Desc[X,

Γ], it follows that all of the records in D that are covered by itemsets in φ(X)

are also covered by X.

The above property confirms that setting a unique value for min card and

max card prevents the expert from disregarding potentially relevant data

correlations because discarded low-level correlations are still maintained at

a higher abstraction level.

In Table 2, Column (6) reports the set of generalized itemsets that are

mined by CarGeMi by setting the minimum and the maximum cardinality

thresholds to three (min card = max card = 3). Generalized itemsets that

satisfy the above constraints are the itemsets that have (i) three lower level

descendants or more, and (ii) at most two siblings. Readers could notice

that the generated model (i.e., the set of generalized itemsets that satisfy

both constraints) is a compact and easy-to-read set, which is composed of

only 6 out of the 25 patterns that would be extracted without enforcing any

cardinality-based constraint.

A thorough experimental analysis of the impact of the proposed con-

straints is reported in Section 6.

5. The Cardinality-based Generalized Itemset Miner

Given a structured dataset D, a taxonomy Γ that is built over the data

items in D, and a minimum and a maximum cardinality threshold min card

and max card, respectively, the CarGeMi (Cardinality-based Generalized

itemset Miner) algorithm addresses the extraction of all of the itemsets, gen-

eralized and not, that satisfy both the descendant and the ancestor cardinality-
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based constraints (Cf. Definitions 4.1 and 4.2) and occur at least once in D
(i.e., min sup = 1). A pseudo-code of the CarGeMi algorithm is reported

in Algorithm 1.

Similar to Cumulate [3], CarGeMi is a level-wise algorithm that follows

an Apriori -like approach to itemset mining [2]. At each iteration, the algo-

rithm generates all of the generalized itemsets of a given length. Specifically,

at an arbitrary iteration k, Cumulate performs two main steps: (i) candidate

generation, in which all of the generalized k-itemsets are generated from the

selected generalized (k− 1)-itemsets and (ii) candidate evaluation and prun-

ing, to discard candidate generalized itemsets that do not satisfy the mining

constraints. Unlike Apriori and Cumulate, CarGeMi addresses the itemset

mining problem with cardinality-based constraints and it does not enforce

any support constraint, i.e., min sup is set to 1. In detail, at an arbitrary

iteration k CarGeMi performs the following steps: (i) generation of the sets

C[l, k] of candidate generalized k-itemsets of increasing level l, (ii) pruning of

the set of descendants of every generalized itemset for which (a) the support

is equal to zero, i.e., the itemset never occurs in D (see lines 9-10) or (b) the

cardinality is higher than or equal to the maximum descendant cardinality

threshold max card (lines 11-20), (iii) generation of the set C[l, k+1] of gen-

eralized (k+1)-itemsets of level l (see lines 21-25), and (iv) pruning of the set

of generalized itemsets that have a level greater than l and whose descendant

set has a cardinality that is lower than min card (lines 26-34). The prun-

ing step (ii).(b) exploits the anti-monotonicity property of the descendant

cardinality-based constraint (see Property 1).

The candidate set C[1, 1] is initialized with the set of items that oc-
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Algorithm 1 The Cardinality-based Generalized itemset Miner algorithm
Input: structured dataset D, taxonomy Γ, maximum descendant cardinality threshold max card, min-

imum ancestor cardinality threshold min card
Output: L, the set of generalized itemsets that satisfy both the ancestor and descendant constraints
1: /* initializations */
2: L = ∅
3: /* C[l, k] is the set of candidate generalized k-itemsets of level l */
4: C[1, 1] = {domain of the items in D}
5: C[l, 1] = {generalized items of level l in Γ} ∀ l > 1
6: k = 1
7: while ∃ l | C[l, k] is not empty do
8: /* Generate candidate k-itemsets of increasing level and select the ones that satisfy the descendant

cardinality-based constraint and have a support higher than or equal to 1 */
9: scan D and count the support of ci ∀ ci ∈ C[l, k]
10: discard ci ∈ C[l, k] that never occurr in D
11: for l from 2 to maxlevel do
12: for all c ∈ C[l, k] do
13: c.desc = {it ∈ C[l− 1, k] | it is a descendant of c ∈ C[l, k] of level l − 1 in Γ}
14: /* Select the level-(l − 1) descendants of c */
15: if |c.desc| ≥ max card then
16: /* Discard the descendants that do not satisfy max card */
17: remove c.desc from C[l− 1, k]
18: end if
19: end for
20: end for
21: for l from 1 to maxlevel do
22: /* Generation of level-l candidate (k + 1)-itemsets */
23: C[l, k + 1] = candidate generation( C[l, k])
24: /* Apriori-based generation step of candidates C[l, k + 1] by self-joining of the candidate set

C[l, k] */
25: end for
26: for l from 1 to maxlevel do
27: for all c ∈ C[l, k] do
28: /* Select the level-l generalized k-itemsets that satisfy the ancestor cardinality constraint

max card */
29: if L[c,Γ]>1 and |c.desc| ≥ min card then
30: insert c into L[l, k]
31: /* Update of the output set L */
32: end if
33: end for
34: end for
35: k = k + 1
36: end while
37: return L
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cur in D. Because we address generalized itemset mining in the context of

structured datasets, CarGeMi exploits the characteristics of the datasets to

prune candidates that include multiple items per attribute early. Candidates

that do not satisfy the descendant cardinality-based constraint are discarded

from the set C[l, k] of candidate generalized k-itemsets of level l and are not

considered in the generation of the upper level k-itemsets. Candidates that

fulfill both the ancestor and the descendant constraints are included in the

output set L.
In the worst case, CarGeMi requires up to n · h dataset scans, where n

is the number of record attributes and h is the height of the used taxonomy.

An empirical analysis of the CarGeMi scalability is given in Section 6.4.

6. Experimental results

We performed a large set of experiments on real-life, benchmark, and

synthetic datasets to evaluate the efficiency and effectiveness of the proposed

approach. Specifically, we analyzed (i) the impact of the cardinality-based

constraints on the characteristics of the mined patterns (see Section 6.1),

(ii) the performance comparison between CarGeMi and the state-of-the-

art approaches (see Section 6.2), (iii) the usefulness of the patterns that

were mined from data that were acquired from real-life mobile applications

(see Section 6.3), and (iv) the scalability of the CarGeMi algorithm (see

Section 6.4).

Table 3 summarizes the main characteristics of the real and benchmark

datasets. All of the evaluated datasets and taxonomies, the synthetic data

generation, the Python version of the code for CarGeMi and the other
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Table 3: Dataset characteristics

Dataset Number of records Number of attributes Taxonomy height
Recs 5,688 4 4

TeamLife 1,197 4 4
Nursery (UCI) 12,960 9 2
Shuttle (UCI) 43,500 10 2

evaluated approaches (i.e., GenIO [7] and Cumulate [3]) are available at [19].

A more detailed description of the analyzed datasets and taxonomies is given

in the following.

Mobile datasets. The analyzed real datasets have been collected by Telecom

Italia Lab1 and are related to a variety of mobile applications. The considered

applications, called Recs and TeamLife, provide users with a set of services

(e.g., weather forecasting, restaurant recommendations, and photo and movie

uploads) through mobile devices (e.g., smartphones and tablet PCs). We

collected the application service requests that come from each application in

separate log files (i.e., datasets).

Recs. The Recs application is a recommender system that provides rec-

ommendations to users on restaurants, museums, movies, and other enter-

tainment activities. Each user can request a recommendation, vote for an

item (i.e., an entertainment center), update a vote, and upload a file or a

photo to provide useful information about an item (i.e., a restaurant or a

museum) or to post a comment. Hence, a set of services is provided to the

end users to perform the described operations/services. The dataset contains

1Telecom Italia Lab is the research hub of the Telecom Italia Group, an international
leader in the telecommunications area.
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the user requests that were submitted and that were obtained by logging the

user requests over the time period of three months. For the Recs dataset,

the following generalization hierarchies have been considered:

• date → month → trimester → year

• time stamp → hour → time slot (2-hour time slots)→ day period

(AM/PM)

• user → gender

• service → service category

TeamLife. The TeamLife dataset was generated by logging the activities

of the users of the TeamLife application. TeamLife allows users to upload

files, photos, and videos and to share them with other system users. Four

different types of services are offered. The dataset collects the user requests

that were submitted over a time period of three months. For TeamLife, we

used a taxonomy that was similar to the taxonomy previously described for

the Recs dataset.

UCI benchmark datasets. Two representative UCI benchmark datasets [12],

namely Shuttle and Nursery, have also been tested to evaluate the CarGeMi

performance on data from different domains. Specifically, the NASA shut-

tle dataset contains 9 continuous attributes that describe the positions of

radiators in the Space Shuttle and one class attribute that is useful for clas-

sification purposes. The nursery dataset contains data that was used to

rank applications for nursery schools. Applications are ranked at 5 possible
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levels: recommended, very recommended, priority, special priority, and not

recommended.

To build generalization hierarchies over the continuous attributes, we

applied several 10-bin equi-depth discretization steps with finer granulari-

ties [32]. The finest discretized values are considered to be the data item

values and, thus, become the taxonomy leaves, whereas coarser discretiza-

tions are exploited to aggregate the corresponding lower level values into

higher level values. Generalization hierarchies over the categorical attributes

are analyst-provided. For example, for the Nursery attribute Child’s nurs-

ery “critical” and “very critical” priority values are generalized as “critical

priority”.

Synthetic datasets. We exploited the IBM synthetic dataset generator [22] to

evaluate CarGeMi scalability. The data generator automatically produces

structured datasets that are composed of a user-specified number of records

and attributes. To automate the taxonomy generation procedure over the

generated datasets, we extended the generator source code as follows. For

each attribute, the item values are treated as taxonomy leaves; they are

sorted into lexicographical order and are grouped by an aggregation factor

f . Any item group produces an upper level item that aggregates all of the

group members. The procedure iterates until all of the items are clustered

in a unique group (i.e., the root node). To keep the ratio between the level-l

and level-(l-1) item set cardinalities constant, we set f to ⌈ (h - 1)√n⌉, where
n is the attribute domain size and h is the user-specified taxonomy height.

The extended generator version is available for research purposes at [19].
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6.1. Impact of the cardinality-based constraints

We performed a set of experiments to evaluate the impact of the cardinality-

based constraints on the characteristics of the mined patterns. Figure 2

reports the number of itemsets (generalized and not), the percentage of

generalized itemsets, and the CarGeMi execution time that were achieved

on the real-life mobile datasets by setting the standard configuration (i.e.,

max card=min card) and by varying the values of max card and min card

in the range [2,100].

As expected, the total number of extracted itemsets increases when the

value of max card (= min card) increases because the descendant cardinality-

based constraint becomes less selective and, thus, a higher number of low-

level itemsets is, on average, extracted (see Figures 2(a) and 2(b)). However,

the percentage of mined generalized itemsets decreases when max card in-

creases (see Figures 2(c) and 2(d)) because high-level pattern extraction is

prevented as a result of the selection of the corresponding descendant sets.

The curve slopes in Figure 2 depend on the cardinality of the considered

attribute domains. In fact, the larger the domain of an attribute A is, the

higher, on average, the number of generated low-level itemsets that refer to A

(i.e., the itemsets that include non-generalized items of A) becomes. Hence,

enforcing the descendant cardinality-based constraint on datasets with at-

tributes that are characterized by a high domain cardinality yields, on aver-

age, more severe low-level itemset pruning. In contrast, the pruning selec-

tivity of the ancestor cardinality-based constraint on high-level itemsets, on

average, decreases when addressing data with similar characteristics. Because

the CarGeMi execution time is mainly affected by the number of generated
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Figure 2: CarGeMi: performance analysis
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itemsets, its trend is analogous to the one of the previously described curves

(see Figures 2(e) and 2(f)).

Note that experts can also enforce different values for max card and

min card. However, in general, this choice is suboptimal in terms of model

compactness because the extraction of a manageable set of sibling itemsets

might not prevent the extraction of the corresponding ancestor itemset. Be-

cause we focus on generating compact generalized itemset models, we deem

this type of parameter setting to be less interesting for our research purposes.

Hence, the corresponding curves have been omitted.

6.2. Comparison between CarGeMi and state-of-the-art approaches

We compared CarGeMi mining results with those achieved using (i)

two representative generalized itemset mining algorithms, i.e., the traditional

Cumulate algorithm [3] and the recently proposed GenIO algorithm [7] and

(ii) a maximal and closed itemset miner [35].

6.2.1. Comparison with previous generalized itemset mining algorithms

To evaluate the compactness and manageability of the subset of patterns

that were generated using our approach, we compared them with the results

from two representative generalized itemset mining algorithms, Cumulate [3]

and GenIO [7]. Cumulate and GenIO, which are similar to all of the previous

generalized itemset mining algorithms, enforce a minimum support thresh-

old (i.e., a minimum frequency of occurrence of the generated patterns) to

reduce the number of mined (generalized) itemsets. However, the enforce-

ment of a minimum support threshold could also prune rare but interesting

knowledge [13]. Unlike [7, 3], our approach exploits the cardinality-based
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constraints to make the set of mined patterns manageable by domain ex-

perts and does not enforce any minimum support threshold.

To compare CarGeMi with Cumulate and GenIO, we first performed

several mining sessions with both Cumulate and GenIO by varying the min-

imum support threshold, which is the only parameter of both algorithms,

in the range [0.2%, 3%]. Then, we compared the obtained results, in terms

of the number of extracted itemsets and the execution time, with the re-

sults achieved by our approach. We considered the following settings, which

are taken as representatives among all of the tested settings: min card =

max card = 10, min card = max card = 25, and min card = max card =

50. Figures 3(a) and 3(b) summarize the results that were achieved on the

Recs dataset. Similar results were obtained for the other datasets.

Because CarGeMi does not enforce any support constraint, the number

of itemsets mined by CarGeMi remains constant by varying the support

threshold. The number of itemsets mined by CarGeMi is always less than

the number of patterns extracted by Cumulate when max card is set to 10.

A similar result was obtained by comparing CarGeMi with GenIO. The

number of (generalized) itemsets mined by Cumulate and GenIO becomes

comparable or slightly less than the number extracted by CarGeMi only

when relatively high support thresholds are enforced (e.g., min sup>1.5%

for both Cumulate and GenIO) and max card is set to 50 for CarGeMi.

Because the execution time of all of the three considered algorithms is strictly

related to the number of generated combinations, when low minimum support

thresholds are enforced CarGeMi performs significantly better than both

Cumulate and GenIO in terms of the execution time (see Figure 3(b)).

27



 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 0  0.5  1  1.5  2  2.5  3

N
u

m
b

e
r 

o
f 

it
e

m
s
e

ts

Minimum support threshold (%)

Cumulate
Genio

CARGEMI - max_card=min_card=50
CARGEMI - max_card=min_card=25
CARGEMI - max_card=min_card=10

(a) CarGeMi vs. generalized min-
ers: number of itemsets

 0

 50

 100

 150

 200

 250

 0  0.5  1  1.5  2  2.5  3

E
x
e

c
u

ti
o

n
 t

im
e

(s
)

Minimum support threshold (%)

Cumulate
Genio

CARGEMI - max_card=min_card=50
CARGEMI - max_card=min_card=25
CARGEMI - max_card=min_card=10

(b) CarGeMi vs. generalized min-
ers: execution time

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

 0  0.1  0.2  0.3  0.4  0.5

N
u

m
b

e
r 

o
f 

it
e

m
s
e

ts

Minimum support threshold (%)

LCMv2 - Closed
LCMv2 - Maximal

CARGEMI - max_card=min_card=50
CARGEMI - max_card=min_card=25
CARGEMI - max_card=min_card=10

(c) CarGeMi vs. closed/maximal:
number of itemsets

Figure 3: Recs dataset: Comparison between CarGeMiand its competitors

To additionally analyze data that have different distributions and that

come from diverse contexts, we compared CarGeMi and GenIO perfor-

mance on the UCI datasets. While the GenIO itemset mining process from

Shuttle takes more than 10 hours to complete successfully, even when rela-

tively high support threshold values (higher than 30%) are enforced, CarGeMi

always succeeds and generates 593 generalized itemsets when max card (=

min card) is set to 2 and 70,209 generalized itemsets when max card (=

min card) is equal to 10. The former extraction takes 83 seconds, whereas the

latter takes approximately 1.5 hours. When addressing the Nursery dataset,

GenIO takes less than 10 hours to successfully complete only when the min-
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imum support threshold is higher than or equal to 10%. For example, when

min sup=10%, GenIO generates 94,902 itemsets and takes approximately 3.5

hours to succeed. In contrast, by setting max card (= min card) to 15, the

number of generalized itemsets mined by CarGeMi is two orders of magni-

tude less than the number mined by GenIO (1,243), and the execution time

is approximately 42 seconds. As discussed in Section 6.1, when lowering

max card, the model size and execution time further reduce.

The obtained results show that, in most cases, CarGeMi generates more

compact pattern sets than its competitors and that it is, in general, more

efficient in terms of the execution time. Furthermore, unlike all of the previ-

ous approaches, CarGeMi does not require the enforcement of a minimum

support constraint to successfully complete the mining task.

6.2.2. Comparison between CarGeMi and closed and maximal itemset min-

ing algorithms

Closed [29] and maximal [11] itemsets are two types of itemsets that are

frequently used to concisely represent the main characteristics of the analyzed

data. We compared the pruning effectiveness that is achieved by CarGeMi

with the effectiveness of a non-generalized closed and maximal itemset mining

algorithm, which was derived from the LCM algorithm implementation [35].

We considered frequent non-generalized closed and maximal itemsets because

(i) to the best of our knowledge, no implementation of a frequent generalized

closed itemset mining algorithm is publicly available and (ii) non-generalized

frequent closed/maximal itemsets are a subset of the itemsets that are ex-

tracted by any generalized itemset miner. Hence, their cardinality represents

a lower bound estimate.

29



Figure 3(c) reports the results that were achieved for the Recs dataset

when the minimum support threshold is varied; the support threshold is

the only parameter of the closed and maximal itemset mining algorithm

and is set in the range [0.02%, 0.5%]. The number of generalized and non-

generalized itemsets mined by our approach is less than the number of fre-

quent non-generalized closed and maximal itemsets when medium and low

support thresholds are enforced. Indeed, in most of the cases in which a sig-

nificant number of potentially relevant patterns are extracted, the pruning

selectivity of the cardinality-based constraint (not combined with any sup-

port constraint, i.e., min sup=1) is higher than the selectivity that is achieved

by closed/maximal itemset selection. Similar results have been obtained for

the TeamLife dataset. To perform a fair comparison, we also tested the

closed/maximal itemset miner [35] without enforcing any support threshold.

As expected, the gap between our approach and its competitors increases

significantly. Specifically, the number of mined closed/maximal itemsets be-

comes approximately one order of magnitude higher than the number of

generalized itemsets mined by CarGeMi.

6.3. Examples of real-life applications

We analyzed the usefulness and applicability of the proposed approach in

a real-life mobile context with the help of a domain expert.

The expert is interested in performing targeted advertising based on the

analyzed data. To analyze the characteristics of the system user requests

and to tailor service provision to the actual user needs, she initially focused

her attention on the subset of itemsets that are characterized by the schema

{user=value, service=value}. Columns 1 and 2 in Table 4 report the itemsets
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Table 4: Generalized itemsets with schemata {user=value, service=value} and
{time=value}. min card=max card=20.

{user=value, service=value} {time=value}
Itemset support (%) Itemset support (%)

{(user,guest), (service,post)} 6.27% {(time,14PM-15PM)} 16.96%
{(user,guest), (service,photo)} 0.17% {(time,09AM-10AM)} 13.03%
{(user,carmen), (service,file)} 9.94% {(time,18PM-19PM)} 12.53%

{(user,carmen), (service,photo)} 1.34% {(time,16PM-17PM)} 11.95%
{(user,carmen), (service,post)} 0.17% {(time,12PM-13PM)} 8.44%
{(user,anna), (service,photo)} 1.84% {(time,11AM-12AM)} 8.27%
{(user,anna), (service,post)} 0.67% {(time,20PM-21PM)} 7.18%
{(user,anna), (service,file)} 0.50% {(time,22PM-23PM)} 4.43%

{(user,cristina), (service,photo)} 2.59% {(time,01AM-02AM)} 4.09%
{(user,cristina), (service,file)} 0.33% {(time,05AM-06AM)} 3.84%

{(user,nicoletta), (service,photo)} 0.50% {(time,03AM-04AM)} 3.59%
{(time,07AM-08AM)} 3.26%
{(time,23PM-00AM)} 2.42%

and their corresponding support values and were extracted from TeamLife

by setting max card and min card to 20. The expert selected a relatively low

value for max card and min card because she usually prefers to address com-

pact models (i.e., small sets of itemsets), from which fruitful knowledge can

be inferred through manual inspection. Note that the number of extracted

patterns remains constant when setting max card=min card in the range of

[19, 26]. Moreover, when setting higher threshold values (e.g., in the range

of [27, 40]), the model size increases slightly (up to 44 itemsets), whereas

the model size slightly reduces when setting the thresholds to values in [10,

18] (approximately 10 itemsets). Hence, the obtained results are suitable for

manual inspection for a relatively large set of cardinality-based constraint

values.

Two of the mined itemsets reported in Column 1 of Table 4 are related

to the user guest, whereas all of the others are related to female users (i.e.,

Carmen, Anna, Cristina, and Nicoletta). The extracted itemsets can be
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deemed relevant by domain experts for performing targeted advertising. For

example, based on the collected results, the analyst determines that user

Nicoletta exclusively requests a photo service. Hence, a personalized adver-

tisement can recommend to her correlated services (e.g., a post service) for

cross-selling purposes. Because itemsets that are related to male users never

occur in the mined set, it turns out that the number of male users who re-

quest system services can be so high as to successfully tailor personalized

advertisements to each of them. Similarly, the number of frequent patterns

with schema {user=value, service=value} concerning male users exceeds the

analyst-provided threshold max card=10 for every considered level of ab-

straction. Thus, the corresponding pattern sets are not generated because

they are deemed to be hardly manageable through manual inspection.

Now consider the 1-itemsets with schema {time=value} reported in Ta-

ble 4. These patterns can be deemed to be useful for profiling system usage

and scheduling bandwidth allocation. Columns 3 and 4 in Table 4 report the

corresponding itemsets that are mined from TeamLife. All of the selected

patterns refer to 2-hour time slots. The compactness of the model generated

by CarGeMi allows the analyst to determine the time slots at which the

system is mostly used and to shape the system resources accordingly. In

contrast, traditional generalized itemset miners, which do not enforce any

cardinality-based constraint, generate a larger number of patterns, among

which the most significant and promptly usable patterns remain hidden. For

example, the support of two of the itemsets that are reported in Table 4 is

0.17%. These two itemsets can be mined by Cumulate and GenIO only by

enforcing a minimum support threshold that is equal to or less than 0.17%.
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However, by enforcing min sup=0.17%, Cumulate and GenIO mine 8,656 and

7,777 itemsets, respectively. These larger sets of itemsets can cause confusion

rather than useful knowledge for the domain expert. However, by enforcing

higher support threshold values, many obvious high-level or less interesting

itemsets are mined by Cumulate and GenIO. Indeed, the actionability of

their mined patterns remains limited.

6.4. Scalability

We evaluated the scalability of the proposed algorithm on synthetic datasets

with (i) the number of records, (ii) the number of attributes, and (iii) the

taxonomy height (i.e., the number of generalization levels).

Figure 4(a) reports the CarGeMi execution time by varying the num-

ber of records from 10,000 to 500,000 on datasets that were characterized

by 5 attributes and by exploiting taxonomies with 2 levels of generalization.

Three representative constraint settings are considered. Similar to previous

Apriori-based algorithms, CarGeMi scales roughly linearly with the number

of records. Curves with slightly different slopes were obtained by using differ-

ent constraint settings. As already discussed in Section 6.1, the CarGeMi

execution time increases when higher max card values are enforced because of

the lower pruning selectivity of the descendant cardinality-based constraint.

In spite of the fact that CarGeMi does not enforce any support constraint

in the itemset mining process, it appears to be able to efficiently cope with

quite large and complex datasets (e.g., the execution time is approximately

270 seconds with min card = max card = 10).

We also analyzed the impact of the number of dataset attributes and

the taxonomy height on the CarGeMi execution time. The scalability of
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Figure 4: CarGeMi scalability analysis

CarGeMi with the number of attributes was performed on datasets char-

acterized by 10,000 records, taxonomies with 2 levels, and the number of

attributes in the range of 4 to 15. A set of datasets with 10,000 records, 5

attributes, and a taxonomy height varying from 2 to 5 have been used to

analyze the CarGeMi scalability with the taxonomy height. The results,

which are reported in Figures 4(b)-4(c), show that, similar to previous level-

wise approaches (e.g., [7, 3]), CarGeMi scales super-linearly with both the

number of attributes and the taxonomy height because of the combinatorial

increase in the number of generated combinations.
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7. Conclusions and future work

This paper presents a novel approach to discovering generalized itemsets

with constraints from data supplied with taxonomies. Specifically, this work

proposes two novel constraints that allow generating concise itemset-based

models, in which high-level itemsets are used to represent large and, thus,

not easily manageable descendant sets. Furthermore, the paper also proposes

a novel algorithm in which the newly proposed constraints are incorporated

into the mining process.

The effectiveness of the proposed approach has been evaluated on real

datasets that were acquired from the mobile context, whereas the algorithm

performance and scalability have been evaluated on benchmark and synthetic

datasets.

The proposed approach relies on analyst-provided taxonomies. For future

research, we plan to extend this work by integrating automatic taxonomy

inference procedures. Furthermore, to analyze sequential data from different

viewpoints, we will investigate the extension of the proposed approach to

temporal generalized sequence mining [15, 16, 25]. Last but not least, an

interesting future research direction will be the application of the proposed

approch to role mining [17, 28]. In such context, control data can be analyzed

at different levels of abstraction to elicit a set of meaningful roles that simplify

access management. For example, user permissions in an enterprise can be

aggregated into higher level categories and analyzed at different granularity

levels in order to achieve optimal security administration based on the role

that each individual plays within the organization.
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