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Abstract. This paper presents a Genetic Algorithm for the optimiza-
tion of multiple indices of Quality of Service of Multi Protocol Label
Switching (MPLS) IP networks. The proposed algorithm, the Variable
Neighborhood Multiobjective Genetic Algorithm (VN-MGA), is a Ge-
netic Algorithm based on the NSGA-II, with the particular feature that
the solutions are encoded defining two different kinds of neighborhoods.
The first neighborhood is defined by considering as decision variables the
arrows that form the routes to be followed by each request, whilst the
second part of the solution is kept constant. The second neighborhood is
defined by considering as decision variables the sequence of requests, with
the first part kept constant. Comparisons are performed with: (i) a VNS
algorithm that performs a switch between the same two neighborhoods
that are used in VN-MGA; and (iii) the results obtained with an integer
linear programming solver, runing a scalarized version of the multiobjec-
tive problem. The results indicate that the proposed VN-MGA outper-
forms the pure VNS algorithm, and provides a good approximation of the
exact Pareto-fronts obtained with the ILP approach, at a much smaller
computational cost. Besides the potential benefits of the application of
the proposed approach to the optimization of packet routing in MPLS
networks, this work raises the theoretical issue of the systematic applica-
tion of variable encodings, which allow variable neighborhood searches,
as generic operators inside general evolutionary computation algorithms.

Keywords: Routing on IP Networks, Variable Neighborhood Search, Multi-
objective Genetic Algorithm.

1 Introduction

The internet transmission of multimedia applications has become an achievable
goal due to the emergence of new technologies. New applications such as video-
conferences, Video on Demand (VoD) or Voice over IP (VoIP) brought the need
of some guarantees of network characteristics with respect to the quality of the
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data flow, such as minimum bandwidth or maximum delay (De Giovanni et al.;
2004). However, in the conventional internet traffic, it is not possible to pre-
dict the path of the packets of transmission, i.e, there is no guarantee of the
regularity of communication. For this reason, some mechanisms were developed
for Quality of Service (QoS) that allow differentiation of the flows transmitted
and the definition of conditions, in order to reach a level of quality from the
prioritization of different flows according to their characteristics and objectives
(Paul and Raghavan; 2002). Recently, several technologies have been proposed,
based on the labeling of the information on IP networks that allow the process-
ing of different packets according to specific policies in order to achieve QoS
requirements. The MPLS (Multi Protocol Label Switching) is an example of
such a technology that makes possible the explicit routing of packets, which fa-
cilitates the provisioning of QoS according to the requirements of multimedia
applications.

Several studies have been proposed recently in order to develop an approach
of Traffic Engineering for Routing with QoS. According to RFC-3272 (Request
for Comments 3272), the Internet Traffic Engineering is defined as that aspect
of Internet network engineering dealing with the issue of performance evaluation
and performance optimization of operational IP networks (Awduche et al.; 2002).
Many of those studies deal with routing on IP networks and MPLS, using single-
objective GAs (Maia et al.; 2007; Andrade; 2008) or deterministic methods, like
Lagrangian Relaxation (Dias; 2004). As the model in those studies is formulated
with a single objective, the search can be biased to a specific goal, leading to
solutions that are unsuitable under other objective viewpoint. For this reason,
multi-objetive strategies have received some attention recently. However, the use
of multi-objective methods applied to the problem of routing on IP networks is
not so extensive. The works (Alvarado et al.; 2005; Erbas and Erbas; 2003;
Santos; 2009) should be mentioned in such a context. This work employs the
same objective functions employed by Santos (2009), which proposes a dynamic
evaluation for routing in MPLS using multi-objective techniques.

The present study deals with the optimization of two or three merit func-
tions which, according to Wang and Crowcroft (1996), render the problem NP-
complete. Thus, the techniques based on non-deterministic heuristics are likely
to be the most suitable ones. The stochastic optimization techniques such as
Genetic Algorithms (GAs) and Variable Neighborhood Search (VNS) are exam-
ples of heuristic search strategies that can be used. GAs (Goldberg; 1989) are
search techniques that consider sets of candidate solutions (each solution is an
individual, and the set is the population), which are varied according to two kinds
of probabilistic rules: the mutations, which introduce perturbations into current
solutions, producing new ones, and the crossover, which combine the informa-
tion from previous solutions, producing new ones. Finally, the current population
passes a selection procedure, that probabilistically increases the frequency of the
best solutions in a new population, reducing the frequency of the worst ones.
In recent years, it has been recognized that a key factor that determines the
performance of GAs is the encoding employed for the representation of the so-



lutions in the population. This is attributed to the fact that different encodings
induce different neighborhoods, which lead to different behaviors of the variation
mechanisms of mutation and crossover (Carrano et al.; 2010). VNS techniques
(Mladenovi and Hansen; 1997), on the other hand, usually evolve a single solu-
tion each time. This solution is subject to heuristic descent searches that find
local minima in the attraction regions that are characterized by connected paths
in a given neighborhood induced by an encoding. The heart of VNS techniques
is the alternate usage of different encodings that induce different neighborhoods,
which allows the algorithm to perform further descent steps after finding a local
minimum in an encoding, by simply changing the encoding that is being used.

This paper deals with the problem of packet routing in MPLS systems. In the
specific context of this problem, a new Multiobjective Genetic Algorithm, the
VN-MGA (Variable Neighborhood Multiobjective Genetic Algorithm) is devel-
oped. The optimized routing tries to minimize the network cost and the amount
of rejection of simultaneous requests, as well as to perform a load balancing
among routes. The proposed algorithm allows to deal with these conflicting QoS
indicators, described as independent objective functions. Moreover, the set of
solutions provides flexibility for the decision maker to select one or other goal
according to the current state of the network.

The proposed VN-MGA is based on the classical NSGA-II (Deb et al.; 2002)
and has, as a distinctive feature, its crossover and mutation operators inspired in
the concept of variable neighborhood of the VNS techniques. Two different encod-
ings are employed: a low-level encoding, which encodes explicitly the routes that
are followed by each request of service, and a high-level encoding, that encodes
the permutations of the several requests of service, defining the order in which
they will be included in the solution. The crossover and mutation operators,
acting in these two levels, are able to explore and to exploit the decision variable
space with enhanced efficiency, leading to solutions that dominate the ones that
appear in algorithm versions using only one level. It should be noticed that the
proposed operators are problem-specific. In problems of combinatorial nature, it
has been established that algorithms employing specific crossover and mutation
operators can be much more efficient than general-purpose GAs (Carrano et al.;
2006).

A group of routing problems has been solved using hybrid approaches (Per-
boli et al.; 2008). There are hybrid methods for the vehicle routing problem using
Genetic Algorithms and Tabu Search (Perboli et al.; 2008) or combining VND
(Variable Neighborhood Descent) and GRASP (Greedy Randomized Adaptive
Search Procedure) (Freitas; 2008) and also problems of another characteristics,
such as pipeline petroleum distribution using GA and VNS (de Souza Filho;
2007). However, those studies typically combine the different algorithms in a
literal way, performing steps from one algorithm and from the other algorithm.
The present authors have not identified any reference that performs an organic
combination like the one proposed here. Some prelliminary results of the work
described here have been published in the conference paper (Onety et al.; 2011).



This paper is organized as follows: Section II describes the problem and its
modeling. Section III presents the VN-MGA. Section IV presents some results
obtained with this approach and the section V concludes the paper.

2 Problem Description and Modeling

This study deals with the problem of choosing routes in a scenario of a corpora-
tive IP network with MPLS technology. The proposal is to minimize the network
cost, to respond for the various user’s requests ensuring the quality of service
and to provide a load balancing between simultaneous streams. The network
model is represented by the graph G = (V, A), where V is the set of routers in
the MPLS domain and A = (4,7) is the set of links from node ¢ to node j, or
the links between the routers. The bandwidth of each link (4, 7) is represented
by B;j. Each user request is represented by (0*,d*,b*), where o* and d* indi-
cate, respectively, routers of source and destination of traffic and b* indicates
the amount of bandwidth to be reserved for the request k. The set of requests
is represented by R.

The objective functions are described by the equation (1), based on the work
of Santos (2009).
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where
af; €{0,1},V(i,j) € A,Vk € R (5)
a*€{0,1},Vk € R (6)
a € [0,1] (7)

The objective function F; represents the sum of links used to accept a request
k. The fewer links are used, the smaller is the delay for the data travel from
origin to destination. Fy aims to reduce the number of rejections of requests. The



amount of rejection of the requests is related to the admission control of new
connections, which determines if a connection can be admitted or not, according
to the load network condition and the amount of bandwidth requested. The
minimum number of requests that must be responded is represented by C, shown
in Equation 4. In F3, « represents (in relative terms) the load of the most used
edge, with values varying from 0 to 1. Minimizing the amount of data traffic on
the links means that the load is evenly distributed. Consequently, the network
is balanced. The constraint 2 represents the classical flow conservation. In 3,
the requested bandwidth (b*) for a link (i, ) must be less than or equal to the
available bandwidth.

The problem stated in equation (1) has several functions to be minimized,
and therefore it is a multi-objective optimization problem. A multi-objective op-
timization problem is defined as:

min f(x), f(x) = (f1(x), f2(x),", fi(x)) (8)
subject to: x = (z1,22, -+, zy) € X

in which x € X is the decision variable vector, X is the optimization parameter
domain, £ € F is the objective vector, and F is the objective space. In other
words, F = f(X).

The goal of some multi-objective optimization methods is to obtain esti-
mates of the Pareto-optimal set (Ehrgott; 2000), which contains the set of non
dominated solutions of the multi-objective problem. A point x’ is said to be
dominated by another point x if the following relation holds:

£(x) < £(x') and £(x) # £(x')
in which the relation operators < and # are defined as:

f(a) <f(b) & fi(a) < fi(b), Vi=1,2,---,1
and

f(a) # f(b) < 3i € {1,2,---,1} : fi(a) # fi(b)

in which a and b represent two different decision vectors.
In this way, the Pareto set P is defined as the set of non dominated solutions:

P = {x*|Px: f(x) < f(x*) A f(x) # f(x*)}. (9)

All solutions that are not dominated by any other decision vector of a given
set are called mon dominated regarding this set. A Pareto-optimal solution is
a non dominated vector x € X. The Pareto-optimal set of the multi-objective
optimization problem is the set of all Pareto-optimal solutions. The image of
this set in the objective space is called the Pareto front £(P).

3 Structure of Multiobjective Genetic Algorithm

The basic structure of the multiobjective genetic algorithm VN-MGA used here
is the classical Non-dominated Sorting GA (NSGA-II), described in (Deb et al.;
2002). The following features of NSGA-II are used inside VN-MGA:



1. Non-dominated sorting: consists in sorting the solutions according to the
non-dominance ranking. An individual belonging to rank 1 is not dominated
by any of the solutions, while an individual belonging to rank k is dominated
by at least one individual that belongs to rank k£ — 1. This ensures that solu-
tions belonging to lower dominance ranks are better than solutions situated
at higher ranks.

2. Crowding-distance: The crowding distance is used as a measure of occupation
in the neighborhood of a solution in the objective space. This indicator is
defined as the sum of the lengths of the edges of a hypercube with vertices
situated on the m nearest solutions (in which m means the dimension of the
objective space). The crowding distance is used as the comparison criterion
between solutions situated in the same rank, providing an advantage to the
solutions which have the nearest neighbors at larger distances. This helps
to avoid situations where the obtained solution set is too concentrated in
a small (crowded) region, leading the algorithm to produce more uniform
samplings of the Pareto-set.

3. Binary tournament: consists in choosing two individuals randomly and com-
paring them according to some fitness function. The one with best fitness
evaluation is selected. In such a comparison, the rank is used as the first
criterion and, in the case of solutions with same rank, the crowding distance
is used in order to determine the result of the tournament.

We now depict the multiobjective optimization approach to the problem
of optimizing the routing in IP networks, with the specific features that are
necessary to deal with QoS parameters.

3.1 Variable Neighborhood Search

The Variable Neighborhood Search (VNS), proposed by Mladenovi and Hansen
(1997), is a simple heuristic method which has the purpose of performing a
global optimization using sequences of local searches. The main idea is to have a
repertoire of operators which implicitly define two or more structures of neigh-
borhood, and to switch between them. The search starts with a feasible solution
and searches iteratively for a new one in the immediate neighborhood defined
by the current search operators. By switching the operators, it is possible to
change the neighborhood, which allows to perform descent searches in a new
neighborhood. This allows to escape from points which represent local minima
in some neighborhood, using the descent paths of other neighborhoods.

In literature, there are many variants of VNS which consider different se-
quences of neighborhoods, or different solution acceptance conditions. A basic
version defines a set of neighborhoods N = {Nk, k=1,..., k;max} and an initial
solution x that will be used in the local search with the neighborhood N*. This
procedure is repeated for many iterations. The acceptance condition will choose
between the previous local optimum and the new one. If this is the best solu-
tion, then the neighborhood for the next iteration will be in the first position.
Otherwise, the neighborhood will follow the sequence. The algorithm proposed
by Hansen and Mladenovi (2001) is described in Algorithm 1.



Algorithm 1 Basic VNS

1: k+1

2: while k < kmax do

3:  a) Perturbation: generate randomly a point ' in N*(z);

4:  b) Local search: Local search from z’; Denote z” as a local optimum obtained;
5:  ¢) Acceptance: if f(z") < f(z) then z + z” and continue the search on this

neighborhood,;
6: else, k+ k—+1
7: end while

Based on distinct neighborhoods, this work proposes the integration of VNS
concepts within Genetic Algorithms. During the evolution process, genetic oper-
ators of crossover and mutation are developed for each such a neighborhood. In
this way, the search in one neighborhood aids the search in the other one with
alternated executions, exploring different search spaces.

3.2 The Proposed Multiobjective Genetic Algorithm

The figure 1 illustrates a schema of the proposed algorithm, the VN-MGA.
Crossover and mutation operations are defined at two levels. The number of
generations is the criterion used to determine when to switch encodings. Thus,
after IV generations searching new routes at Level 1, the search for new solutions
is made at Level 2.

3.3 Genetic Representation

The encoding was designed in two levels of operations. The Level 1 represents
the codification of routing, i.e. the genetic operations focus on the sequences
of arcs that form routes. The Level 2 encodes the sequence of requests, i.e. the
sequence in which the requests should be included in the solution. The requests
indicate the demand of N flows, given as origins and destinations. The two levels
are considered alternately. Figure 2 illustrates the population at each level.

At Level 1, the individual is represented by a group of routes on each request,
denoted by i1,12,...,4,. Each path is described by a source, intermediate and
destination nodes, represented by the node numbers, where the first one is the
source node and the latter one is the destination node. Each request has a specific
need for bandwidth according to its application, called Bandwidth Requested.
Each link has a total Bandwidth Capacity. Thus, in order to respond to requests,
the bandwidth requested must be less than or equal to the available one.

Considering that it is a multiobjective problem, not only the shortest path
should be examined. For this reason, aiming to generate a diversity of individuals,
the initial routes are generated from the Dijkstra’s algorithm with random costs
distributed on links, given the origins and the destinations.

The bandwidth is then withdrawn from the available one, representing the
allocation of routes with bandwidth reservation. If the request cannot be met,
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Fig. 1. Schema of VN-MGA

i.e. the requested bandwidth is greater than the available one, then that request
is rejected.

At Level 2, the individuals are represented by a set of requests, indicated
by Ri, R, ..., R,,. As the algorithm does not differentiate the priority between
simultaneous requests, the evaluation is made according to their position in the
sequence. Thus, depending on the sequence, accepting or rejecting a request can
impact the result of optimization.

3.4 Crossover Operators

In this study, crossover operators are proposed for the two encoding levels. The
first one consists of the exchange of genetic material between individuals at
Level 1, which represents the routes. Two individuals are selected randomly,
responding for the same request r of source O, and destination D,.. If there is a
dominance relation between them, the dominant individual is selected. If there
is no dominance, the crossover tries to join characteristics of both parents. If
there is a node N¢ in common between those individuals, the offspring is formed
from node O,. up to Nc¢ of the first parent i; and from Nc¢ until Dr of the second
parent iy. Figure 3 illustrates the crossover process.
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Fig. 3. Crossover with node in common (Santos; 2009). (a) represents the route of an
individual i1 to a request r. (b) represents the route of an individual i2 to a request r.
(c) represents the route of the offspring to a request r.

If there is not a common node between individuals, the crossover attempts to
find edges to link the paths. Thus, the offspring inherits the nodes from O, until
the new node interconnection of the first parent i; and from the new node until
D,. of the second parent is. Figure 4 illustrates the crossover without a vertex
in common.

If there is no node to link the paths, the offspring inherits one of the parents’
path, randomly selected in order to compose the set of population.

In the Level 2 crossover, the individual is analyzed from the perspective
of request sequence. Two routes representing the same request are randomly
selected and swapped, generating a new combination of them, and therefore, a
new individual. Figure 5 illustrates this operation. The request Ry is selected
from the individual 4;. Then, looking for Rs in is, the routes Ry of i1 and Ry of
1o are interchanged.
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Fig. 4. Crossover without node in common (Santos; 2009). (a) represents the route of
an individual 41 to a request r. (b) represents the route of an individual i2 to a request
7. (c) represents the route of the offspring to a request r.

.

R1[R2| R3| R4| <« i1 R1| R2|R3|R4| « f1
R4|R1|R3| R2| <« i2 R4|R1|R3|R2| « 2

(a) (b)

Fig. 5. Crossover at Level 2. (a) The request Rs is selected in individual 1. (b) The
routes Ry of i1 and R» of i2 are interchanged, generating the offspring.

Another crossover operator, still focusing on the Level 2, is implemented
based on the Partially-Mapped Crossover (PMX). Initially two chromosomes
are picked out. Then, two cutoff points are chosen randomly. Subsequently, the
exchange of the material situated between the cutoff points is performed, pro-
ducing two offspring, still intermediate. In order to conclude the crossover, an
operation of mapping is performed, in order to repair of the chromosomes, mak-
ing the genes unique. With this crossover, in addition to the exchange of routes
between the parents, a change of the order of requests is also performed. Figure
6 illustrates this operation.

3.5 Mutation

The mutation operator is the responsible for the insertion of new genetic char-
acteristics for individuals of the population. As in the case of crossover, the
mutation is defined for the two encoding levels, with Level 1 concerning the se-
quences of arcs that form the routes and Level 2 dealing with the sequences of
requests, given pre-defined routes that were found with Level 1 operations.

For Level 1, the chromosome to be mutated and two cutoff points on that
are chosen randomly. A new path, from the initial to the second cutoff point, is
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Fig. 6. PMX crossover at Level 2.

searched in the adjacency matrix. Therefore, a new section of the route is created.
The search for a new sub-route is performed both in forward and backward
directions (from the first to the second cutoff point, and in the opposite direction,
from the second to the first cutoff point), alternately, avoiding any bias in this
search. Figure 7 illustrates the process of mutation.

~@
@’*@7
()

@/ Q\‘
®

@d@’j
)

/.
J

3

p

© ®\.
Ve
@ @@

c)

Fig. 7. Mutation at Level 1. (a) represents the route of an individual to a request r.
(b) selection of the points 2 e 6 for a new sub-route. (c) Mutated individual.

The mutation in Level 2 performs the permutation of requests. Similarly to
the Level 1 mutation, at this stage two cutoff points are selected randomly, but
now, considering the requests. Then, a swap between these two requests changes
the sequence of individuals. Figure 8 represents the mutation at Level 2.
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4 Effects of Two-Level Encoding

With the purpose of determining the specific effect introduced by the two-level
encoding, which was introduced in the VN-MGA, some tests have been per-
formed for comparing the performance of VN-MGA with two reduced versions
of the same algorithm, which employ operators either only on Level 1 or on Level
2. Those tests have been performed with some network instances, commonly used
for telecommunications problems, such as that presented on Fig. 9(a) and Fig.
9(b), which will be named here as Instance #1 and #2, respectively.

Fig. 9. (a) Instance #1. (b) Instance #2.

The parameters used in the experiments described in this section are dis-
played in Table 1.

As can be observed in Figures 10 and 11, the variable encoding described by
two levels, improves the final quality of the routing. It can be observed that the
solutions delivered by VN-MGA dominate the solutions obtained by single-level
searches.

5 Results

In order to evaluate the VN-MGA proposed here, some numerical tests were
performed. The first comparison was performed with the results delivered by an
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Fig. 10. Results for Instance #1. Red circles represent the solutions achieved by Level
1 algorithm (encoding of paths), black crosses represent solutions obtained by Level 2
algorithm (encoding of requests), and blue asterisks indicate the solutions provided by
the combination of both levels 1 and 2 (the VN-MGA).

integer linear programming (ILP) solver, which provides the exact solutions for
the problem instances. The ILP formulation delivers the solutions of the multi-
objective problem by using an scalarization approach, the e-constraint method
(Ehrgott; 2000). The multi-objective optimization problem is converted into a
series of single-objective ones, each one with only one objective function being
optimized and the other ones treated as constraints of the problem. For each
objective function considered as a constraint, a constraint value ¢; is assigned.
Each solution of such a problem is at least a weakly non-dominated solution
(Ehrgott; 2000), and by varying the values of ¢; it is possible to generate all
the solutions belonging to the Pareto-optimal set of the problem. The main
drawback of this approach, apart the fact that the ILP solver should be run once

Table 1. Parameters for the algorithm

Mutation Probability 0,4

Crossover Probability 0,9

Available Bandwidth for each link|1024Kbps
Requested Bandwidth 200Kbps e 400Kbps
Number of generations 50

Number of individuals 50

Number of requests 50
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Fig. 11. Results for Instance #2. Red circles represent the solutions achieved by Level
1 algorithm (encoding of paths), black crosses represent solutions obtained by Level 2
algorithm (encoding of requests), and blue asterisks indicate the solutions provided by
the combination of both levels 1 and 2 (the VN-MGA).

for generating each solution of the Pareto-optimal set, is that the computational
complexity of the approach is exponential in the number of decision variables.
Therefore, this kind of approach is not suitable for large problem instances.

A problem with the objective function vector represented by f(.) and the
constraint function vector represented by ¢(.) can be modeled in terms of m
problems:

x* = arg min f;(z), (10)
subject to:
g(z) <0
] VA 11
{fj(z)§€j§]—1,...,m;]7éz (11)
where

zeR™" f(.):R" — R™ and g(.) : R" — R? (12)

As ILP tools, both the FICOT™XPress Optimization and the CPLEX solver
have been used here. In order to simplify the search, it was considered the mini-
mization of two objective functions: F; that represents the cost of time delay in
the network, and F3 that represents the load of the most used link. The second
objective function, that represents the number of package rejections, was set
with a fixed value, initially zero. Firstly, the ILP solver searched the minimum
value for the objective function F;. Afterwards, starting from the optimal value
of Fy, it minimized the objective function F3, by relaxing F; with an increasing
€1.
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The solutions delivered by the ILP solver, using the e-constraint scalarization
approach, are used here in order to evaluate the ability of the proposed algorithm
for reaching the Pareto-optimal set of the problems.

Some parameters of the VN-MGA which are kept fixed in the experiments
are described in Table 2.

Table 2. Parameters for the VN-MGA algorithm

Mutation Probability 0,4

Crossover Probability 0,9

Available Bandwidth for each link|1024Kbps
Requested Bandwidth 200Kbps e 400Kbps

The same instances that were represented in Figure 9, were used in the tests
described in this section.

Instance #1

The Instance #1 is a simple one, and it is used for the purpose of evaluating the
proposed algorithm. It is composed of 15 vertices and 52 links. For 10 and 20
simultaneous requests, 40 generations and 40 individuals are used. Twice these
values are employed for 30 and 40 simultaneous requests. The results are shown
in Figure 12.

Instance #2

The Instance #2 is composed of 24 vertices and 43 links. For 10 simultaneous
requests, the values obtained by VN-MGA are equal to the best values reached
by the e-constraint method. For 20, 30 and 40 simultaneous requests, most of
the values obtained by VN-MGA are equal to the best values attained by the
e-constraint method, but in some cases the results by VN-MGA presented a
small gap in relation to the exact solution. Although finding most of the optimal
points, the VN-MGA was not able to cover the whole Pareto-optimal front. The
VN-MGA clearly outperforms the basic VNS algorithm, in the cases of 30 and
40 requests, both in terms of the number of Pareto-optimal estimates that were
generated and in terms of dominance. Figure 13 shows these results.

5.1 Hypervolume metrics

The hypervolume metrics was employed in order to provide some numerical fig-
ures for the comparisons between the VN-MGA and the basic VNS algorithm.
In the comparisons, the reduced-version algorithms involving only Level 1 and
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Fig. 12. Comparison between e-constraint and the VN-MGA algorithm. Circles repre-
sent the solutions achieved by the e-constraint ILP technique, and the solutions deliv-
ered by the proposed VN-MGA are represented by red asterisks. Instance #1, R=10,
R=20, R=30, R=40

Level 2 operations are also included, with the purpose of quantifying the perfor-
mance gain of the employment of both levels. The package described by Fonseca
et al. (2006) was employed in order to compute those figures. The table 3 shows
the values of hypervolume metric calculated for the Pareto-Optimal set of the
Instance #2, produced by each algorithm, after 10 tests, with the same number
of function evaluations assigned to each algorithm. These results show that even
the worst results produced by the systematic change of neighborhood, such as
performed within VNS and VN-MGA, are better than the best values of any
single-level algorithm.

Comparing the variable-neighborhood algorithms, one observes that the VN-
MGA attains better hypervolume values than the VNS. This suggests that the
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Fig. 13. Comparison between e-constraint and the VN-MGA algorithm. Circles repre-
sent the solutions achieved by the e-constraint ILP technique. The solutions delivered
by VNS are represented by black crosses and the solutions of the proposed VN-MGA
are represented by red asterisks. Instance #2, R=10, R=20, R=30, R=40

crossover operators employed by the VN-MGA play an important role in the
search for good solutions in the problems examined in this study.

Table 3. Hypervolume metric for different algorithms.

Hypervolume [Level 1[Level 2[ VNS [VN—MGA

Best value 21.7 | 23.95 (34.62| 37.67
Worst value 17.55 | 20.68 |24.81| 26.04
Average value 20.62 | 22.41 (28.57| 30.37
Standard Deviation| 1.42 1.14 | 3.6 5.15
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6 Conclusions and Future Work

This paper proposed an algorithm to optimize multiple objectives that represent
Quality of Service indices on IP networks. The proposed algorithm, VN-MGA,
is a Genetic Algorithm based on the NSGA-II, with the particular feature that
each solution has two different encodings, at Level 1 and Level 2. At Level 1,
the solution is encoded considering as decision variables the edges that form the
routes to be followed by each request. At Level 2, the solution is encoded with
the routes considered as fixed, and the sequence of requests considered as the
decision variable. The results suggest that local minima can be indeed avoided
using this approach.

The good behavior presented by the proposed VN-MGA, outperforming both
some algorithm versions that do not employ variable neighborhoods and a basic
VNS algorithm, raises an interesting issue to be studied: should the evolutionary
algorithms specialized in combinatorial optimization problems employ variable
neighborhood operators as a standard methodology? The authors intend to in-
vestigate this issue in the near future.

Concerning the MPLS problem, a challenging area of future work concerns
a quantitative analysis, covering sensitivity and scalability. The sensitivity deals
with fault tolerance in paths or routers and the capacity of re-routing of the
proposed method. Using new scenarios, it is possible to assess the scalability in
order to quantify the gain that is expected with the application of the proposed
algorithm. Within this perspective, it is also possible to suggest new models
for telecommunication networks. In any case, the proposed approach delivers a
reasonable diversity of solutions belonging to the Pareto Front. So, it offers a
larger range of options for the decision maker in different situations, such as in:
(i) network congestion that occur in rush moments, or (ii) using applications
that require a small delay, or (iii) responding to concurrent requests that do not
present stringent requirements of delay, but require large bandwidths, among
others.
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