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Pore-scale modeling of fluid flow through gas diffusion

and catalyst layers for high temperature proton

exchange membrane (HT-PEM) fuel cells

Uktam R. Salomov1, Eliodoro Chiavazzo1, Pietro Asinari1,∗

Multi-Scale Modeling Laboratory (SMaLL), Dipartimento Energia, Politecnico di Torino,
Corso Duca degli Abruzzi 24, Zip code 10129, Torino, ITALY

Abstract

This work represents a step towards reliable algorithms for reconstruct-

ing micro-morphology of electrode materials of high-temperature proton-

exchange membrane fuel cells and for performing pore-scale simulations of

fluid flow (including rarefaction effects). In particular, we developed a de-

terministic model for a woven gas diffusion layer (GDL) and a stochastic

model for the catalyst layer (CL) based on clusterization of carbon particles.

We verified that both developed models accurately recover the experimental

values of permeability, without any special ad-hoc tuning. Moreover, we in-

vestigated the effect of catalyst particle distributions inside the CL on the

degree of clusterization and on the microscopic fluid flow, which is relevant for

degradation modelling (e.g. loss of phosphoric acid). The three-dimensional

pore-scale simulations of fluid flow for the direct numerical calculation of
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permeability were performed by the Lattice Boltzmann Method (LBM).

Keywords: High temperature PEM fuel cells, Micro-morphology of

electrodes, Pore-scale modeling, Rarefied fluid flow, Kinetic theory
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1. Introduction

Fuel cells based on proton-exchange membranes (PEM) and fueled by

hydrogen and air have many attractive features, including high power den-
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sity, rapid start-up and high efficiency [1]. In particular, there are several

compelling reasons for operating at a temperature higher than 100 ◦C (HT-

PEM), such as enhanced electrochemical kinetics, simplified water manage-

ment and cooling and enhanced carbon monoxide tolerance [1]. On the other

hand, among the major technology issues that must be addressed for their

commercialization and widespread use, the degradation phenomena of the

membrane electrode assembly (MEA) plays a key role [2].

Unfortunately, the failure mechanism of membranes in the PEM fuel cell

is not well understood [1]. First of all, at higher operating temperature,

membrane dehydration and the subsequent decrease in proton conductivity

is a significant issue. Membrane dehydration results in shrinking, cracking

[3] and finally in a loss of mechanical stability with increasing temperature.

Moreover, an extensive morphological relaxation occurs above the glass tran-

sition temperature of a polymer (130-160 ◦C for a dry membrane and 80-100

◦C for a hydrated membrane), which may have an adverse effect on the

properties of membranes [4]. Finally, during fuel cell operation, hydroxyl

radicals are responsible for chemical attack of the membrane, which initiates

the degradation process [5, 6]. In the degradation of the electrodes, the issue

of chemical and morphological instabilities of the catalyst layer is of greater

concern at high temperatures [1]. Firstly, corrosion of the carbon support

in the cathode may occur if the cathode is held at relatively high oxidation

potentials because of the generation of oxygen atoms at the catalyst [7]. Sec-

ondly, the morphology of the catalyst may be affected by the agglomeration

of the platinum and the increase in particle size during operation [8, 9]. The

optimum particle size for oxygen reduction reaction activity is 3-5 nm [9].
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Due to the increase of platinum particle size over time, the reaction rate of

oxygen reduction gradually decreases, and platinum utilization is reduced.

Platinum is also observed to dissolve and re-deposit during long-term oper-

ation [10]. Two mechanisms have been proposed for platinum dissolution

[10], but it is not clear yet which one is more effective and how they interact

during the operation.

Clearly the previous analysis points out that there is a lack of fundamental

understanding of the degradation phenomena of both electrolyte membrane

and electrodes for high temperature PEM fuel cells. Numerical modeling

may be helpful in comparing different degradation phenomena and in quan-

tifying the effects in terms of global device performance. One feature which

is common to most of the degradation phenomena (in particular, corrosion

of carbon support and catalyst agglomeration) is the change in the local

morphology of the material, driven by chemical reactions and/or mechanical

stresses. Modifications in the micro-morphology produce (a) direct effects on

mass transport by changing the local porosity and permeability and (b) in-

direct effects by changing the distribution/effectiveness of reaction catalytic

sites. The first step for understanding degradation consists in setting up

a morphological model of the virgin micro-structure before operation, as a

reference condition to compare any degradation with.

Tremendous work has been done over the past few years to visualize GDL

and CL using tomography and a number of papers have been published in this

area [11, 12, 13]. However, collecting a specific three dimensional morphol-

ogy is different from developing a general morphological model. A specific

three dimensional morphology by tomography allows one to compute precise
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fluid flow through it and to find macroscopic transport coefficients. However,

it does allow one to extrapolate the specific results towards different mate-

rials. On the other hand, a morphological model correlates the transport

coefficients with the global microscopic structure, but it also (a) explains

how different features of the microscopic structure (characteristic lengths,

distributions, shapes, orientations, clustering, etc.) determine independently

the transport coefficients and (b) suggests design strategies to improve trans-

port coefficients. Hence a morphological model allows one to generate many

virtual structures (all compatible with experimental data with regards to

some features) in order to find out a design strategy beyond experimental

measurements. For example, some PEM electrodes (and in particular the

gas diffusion layers) consist of fibers which have been coated with a conduc-

tive carbon fill, leading to a highly anisotropic material without any regular

micro-structure [14]. On the other hand, in the present paper, we consider gas

diffusion layers for high temperature PEM fuel cells which are characterized

by some degrees of regularity in the micro-structure and in the orientation of

fibers. Regular materials offer better options for optimization but they are

also more sensible to degradation phenomena. Hence, before developing any

degradation model, the sensitivity of the macroscopic transport coefficients

on the assumed micro-structure must be clarified. Moreover, concerning the

catalyst layer, we used the morphological model to investigate different dis-

tributions of platinum and the consequent mass flow rate, which may affect

degradation by phosphoric acid loss.

Few commercial packages are already available to generate both woven

and carbon-paper GDLs. One remarkable example is given by GeoDict soft-
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ware [15], initially developed by Fraunhofer ITMW. Besides the woven and

non-woven fiber-based structures, GeoDict can generate a wide range of dif-

ferent morphologies including regular-grid, sphere packing, open- and closed-

cell foams, sintered ceramic materials and their possible combinations. The

results of reconstruction using both the approach proposed in this paper (see

next Figure 4 (a)) and GeoDict (see Figure 2 (a) in Ref. [16]) are in good

qualitative agreement. However, even though some basic ideas of GeoDict

reconstruction are reported in literature [17], it is not always possible to col-

lect enough details in order to perform a complete comparison with other

methods. Moreover, as far as the authors know, there is no GeoDict specific

module for reconstruction of the catalyst layer, which is our main focus here.

In particular, an open and a flexible algorithm for CL reconstruction, as the

one we propose in this paper, can be easily extended by considering also cat-

alyst particles and their optimized distribution. The latter issue is essential

for mitigating specific degradation mechanisms and improving cell perfor-

mances (some first attempts along this direction are presented in Subsection

4.4).

Pore-scale modeling of fluid flow through electrodes has received inten-

sive research over the past few years [18]. In particular, pseudo-kinetic (also

called mesoscopic) approaches are considered efficient computational alter-

natives to other numerical methods. Pseudo-kinetic approaches based on

the Lattice Boltzmann Method (LBM) have became very popular for sim-

ulating fluid flows [19, 20, 21, 22, 24, 23] in a variety of applications such

as laminar, turbulent, thermal and multiphase flows, and even beyond hy-

drodynamics, according to some authors [25]. Reasons for this success are
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attractive implementation, promising handling of complex geometries and

suitability for parallel realization. Owing to its excellent numerical stability

and constitutive versatility, LBM can play an essential role as a simulation

tool for understanding advanced materials and processes [26]. Unlike con-

ventional Navier-Stokes solvers, lattice Boltzmann methods consider flows as

to be composed by a collection of pseudo-particles that are represented by a

velocity distribution function [23]. These fluid particles reside and interact

on the grid nodes. System dynamics and complexity emerge by the repeated

application of local rules for the motion, collision and redistribution of these

coarse-grained pseudo-particles. LBM is capable to tackle particularly those

problems which are ubiquitous characteristics of flows in the world of ma-

terials science and engineering [26], including porous media with changing

morphology. The lattice Boltzmann method has already proved to be an

effective tool in analyzing the porous materials of fuel cells, in particular

with regards to the effective permeability. This approach has been already

applied to analyze the electrodes of PEM fuel cells [14, 27] and high temper-

ature solid oxide fuel cells (SOFC) [28]. Moreover, pseudo-particles moving

on regular grids can easily deal with changing morphology. To this end, it

is sufficient to enable the access of pseudo-particles to new portions of the

computational domain or, vice-versa, prohibit their entrance into some other

computational regions (e.g. those occupied by obstacles). A recent review

over the applications of LBM and other pore-scale models in fuel cells was

given in Mukherjee et al. [29], which emphasizes the capability of these pore-

scale models toward gaining insight into underlying two-phase dynamics and

intricate structure-transport-performance interplay in the PEM fuel cell CL
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and GDL.

In this paper, we focus on direct numerical simulation of the fluid flow

through two fundamental regions of HT-PEM electrodes, namely a woven gas

diffusion layer (GDL) and a catalyst layer (CL). We believe that focusing on

fundamental modeling of materials for HT-PEM fuel cells may promote the

development of this technology, as already happened for other types (e.g.

solid oxide fuel cells). Moreover, HT-PEM fuel cells usually involve materi-

als with regular micro-structure, where morphological models can be tuned

in order to recover the macroscopic transport properties. These validated

morphological models can be used in order to feed macroscopic models by

material-depending parameters [30], to guide the material production process

and to understand degradation phenomena.

The paper is organized as follows. In Section 2, a brief description of

the adopted methodology (including boundary conditions) is presented a

simple validation is reported in Appendix A). In Section 3, we report the

reconstruction of two regions (GDL and CL) of the HT-PEM electrodes by

analyzing realistic micro-morphologic images. In Section 4, the results of

pore-scale flow simulations through these porous media using the previous

methodology and the effective permeability, calculated by the Darcy’s law

and taking into account also rarefaction effects are presented. Moreover, the

influence of catalyst distribution on mass transport properties is considered in

this section. Some conclusions and outlines are reported in the final section.
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2. Lattice Boltzmann Method

The Lattice Boltzmann Method (LBM) was derived historically as an

improvement of the Lattice Gas Automata (LGA) [23] and it can be derived

from kinetic theory of gases, under some proper simplifying assumptions [24].

It should be emphasized that, in spite of these origins, as far as the present

work is concerned, we will use this method as a computational solver of

the continuum-based equations for solving the pore-scale fluid flow through

porous media. Rarefaction effects will be taken into account by properly

post-processing the previous numerical results (see Subsection 4.3).

In this paper, LBM is preferred to other computational fluid dynamics

(CFD) solvers, because of two advantages which are relevant to the present

application. The first one is a reasonable handling of complex geometry of

porous media, which is consistent with the main objectives of this work,

where we need to consider the detailed structure of two layers of high tem-

perature PEM (HT-PEM), namely gas diffusion layer (GDL) and carbon

supported catalyst layer (CL). The second advantage is a good paralleliza-

tion potential, owning to an explicit formulation of the evolution operator E

in terms of the discrete distribution function f(x, t), which can be interpreted

in terms of Strang splitting [31]:

f(x + ξ, t+ 1) = Ef(x, t) = SCf(x, t), (1)

consisting of a fully local collision operation C and a streaming operator S,

involving only the neighbouring nodes.

The simplest choice for the collisional operator C corresponds to the pop-

ular Bhatnagar-Gross-Krook (BGK), developed in kinetic theory [32], and
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successfully applied in the LBM context as well [22]. The BGK model can

be further simplified by considering isothermal conditions, constant relax-

ation time and formulating it only for the lattice velocities, namely

fi(x + ξi, t+ 1) = fi(x, t) +
1

τ
(f eq

i (x, t)− fi(x, t)) , (2)

where ξi denotes the i-th discrete velocity, τ is the relaxation time, while f eq
i

is the equilibrium population function, which can be obtained from the local

Maxwell-Boltzmann distribution function (see for example [24]) by Taylor

expansion. Equilibrium discrete distribution functions, i.e. equilibria, for

the D3Q19 model read as follows:

f eq
i = Wiρ

(
1 +

1

c2s
(ξi · u) +

1

2c4s
(ξi · u)2 − 1

2c2s
(u2)

)
, (3)

where Wi and ξi are the weight factors and particle velocities, respectively,

with cs = 1/
√

3 being the speed of sound. It can be shown that the lattice

Boltzmann equations (2) recover Navier-Stokes equations in the asymptotic

limit. This derivation can be done using the Chapman-Enskog expansion [33]

or the Hilbert expansion, also called asymptotic analysis, which has the merit

to make particularly evident the effects due to different scaling assumptions,

i.e. how lattice velocity is set according to the grid spacing on different grids

[34].

Probably one of the most appealing features of LBM consists in the possi-

bility to use the bounce-back rule as no-slip boundary condition (BC), which

allows one to consider obstacles with complex shape into the fluid domain

in a simple manner [23]. For any boundary node xw and direction i such

that the node xw + ξi does not exist because it is outside the computational
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domain, the bounce-back rule is the following:

fBB(i)(xw, t+ 1) = f ∗i (xw, t), (4)

where BB(i) is the lattice index identifying the lattice velocity ξBB(i) which

is opposite to ξi, namely ξBB(i) = −ξi, and f ∗i is the post-collision discrete

distribution function, namely f ∗i = fi + (f eq
i − fi) /τ . Standard bounce-

back BC reproduce macroscopic no-slip wall boundary condition with first-

order accuracy in time and space [35]. Higher accuracy has been achieved

considering the wall-fluid interface to be located half-way between the wall

and the fluid lattice nodes [36]. Further improvement is given by generalizing

the previous expression such that the wall location can be freely tuned [37].

3. Micro-morphology reconstruction

3.1. Preparation of the Membrane-Electrode-Assemblies

In this work, we considered a high temperature polymeric electrolyte

membrane (HT-PEM) fuel cell Celtec − P1000 manufactured by BASF c©.

A membrane electrode assembly (MEA) is made as follows (according to

Ref. [38]): On top of a woven (carpet-like) gas diffusion layer (Toray Graphite

Paper, TGPH-120, BASF Fuel Cell, Inc.), a micro-porous layer is deposited,

consisting of Vulcan XC − 72R Carbon Black (Cabot Corp.) and polyte-

trafluoroethylene (Teflon R© Emulsion Solution, Electrochem Inc.). Moreover,

a catalytic layer is also deposited, composed of Platinum (Pt) catalyst on

carbon (C) support (Pt on Vulcan XC-72R Carbon Black, ETEK-Inc.). A

typical schematic diagram of a polymer electrolyte membrane fuel cell MEA

together with two main electrochemical reactions during fuel cell operation,
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hydrogen oxydation (HOR) in anod catalyst layer and oxygen reduction

(ORR) in cathode catalyst layer, are illustrated in Fig. 2.

Our modeling activity starts from Scanning Electron Microscope (SEM)

micro-morphology images of the above HT-PEM fuel cell reported in Fig. 1,

which are original and purposely obtained for this goal. The considered

system consists of an impermeable (for the gases) electrolyte at the center

(Fig. 1 (a) and (c)), with two very thin regions at the upper and bottom sides

of the electrolyte, sandwiched between the electrolyte and the electrodes.

These regions are the carbon supported Pt catalyst layers (Fig. 1 (d)), which

hold together the membrane and two (anode and cathode) woven gas diffusion

layers (Fig. 1 (a) and (b)). The most significant geometrical parameters of

the system are given in Table 1.

Two options are typically possible when dealing with modeling of com-

plex media. One option is to obtain directly 3D information. The advent of

dual-beam focused ion beam scanning electron microscopy (FIB-SEM) has

greatly facilitated this process by providing high-quality volumetric data [42].

However, image analysis techniques remain nowadays the most popular be-

cause of the low cost of equipments and instrumentations, which have already

large-diffusion [43]. In this paper, we will focus on the latter approach, which

is based on post-processing 2D SEM images in order to get the most mean-

ingful topological information. The considered materials are characterized by

a regular micro-structure (in particular GDL), which makes the development

of morphological models (depending on few parameters) possible.

We have performed pore-scale reconstructions of the microscopic topol-

ogy of the system using information given in Table 1 and micro-morphology

12



images (Fig. 1). This has been done in order to define realistic paths for

the pore-scale fluid flow. To this purpose, a digital map of the whole geom-

etry is collected in a one dimensional array, whose elements correspond to

the mesh nodes. Three possible values are assigned to the array elements, 0

for fluid, 2 for solid and 1 for boundaries between solid and fluid. Tracing

the interface between solid and fluid nodes is useful for applying boundary

conditions (e.g. the bounce-back rule discussed in the previous Section 2).

The one dimensional array can be reported mathematically by the following

definition

Mix,iy ,iz =


0 (ix, iy, iz) ∈ fluid

1 (ix, iy, iz) ∈ fluid
⋂
solid

2 (ix, iy, iz) ∈ solid

(5)

In the following two subsections, the details on how to generate the arrays

MGDL and MCL for GDL and CL respectively, which represent the ge-

ometries of reconstructed porous media, are reported. It should be noted

that topology reconstruction of the different layers (GDL and CL) has to

be considered separately, due to the considerable disparity in reconstruction

algorithms and characteristic scales of their geometry.

3.2. Reconstruction of a woven GDL

Let us start with reconstruction of a woven gas diffusion layer, similar to

the one depicted in Fig. 1, whose characteristic cell consists of four orthog-

onal bundles of fibers. For simplicity, we have considered the x−direction

as the main flow direction, consequently yz−plan is a woven plane (see Fig.

3 for details). The following assumptions are considered in the main recon-

struction algorithm:
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(i) Fibers of the GDL are grouped into two pairs of mutually orthogonal

bundles;

(ii) A cross-section of a bundle is an ellipse with LA and LB, being semi-

major and minor axes, respectively;

(iii) Fibers are homogeneously distributed in a bundle;

(iv) A fiber is modeled as a cylinder with sinusoidal directrix.

The suggested reconstruction procedure starts with the estimate of the av-

erage distance d between two nearest neighbor fibers within a bundle and

the radius of fibers r. These parameters can be obtained by analyzing the

images in Fig. 1 and using simple geometric relations, namely

d =
1

2

(
LA

NA

+
LB

NB

)
− 2r, (6)

r =

(
(LANB + LBNA)2

4πN2
AN

2
B

4(NA − 1)(NB − 1)

4(NA − 1)(NB − 1)−Nt

− LALB

4(NA − 1)(NB − 1)−Nt

)1/2

, (7)

where NA, NB and Nt are number of fibers along semi-major axes, semi-

minor axes and total number of fibers in an elliptic bundle, respectively. An

example of reconstructed woven GDL is reported in Fig. 4.

For the values of NA = 18, NB = 12, LA ≈ Lz/4 = 240µm, LB ≈

Lx/4 = lGDL/4 = 100µm (taken by analyzing Fig. 1 (a)), we have obtained

d = 3.7µm and r = 3.5µm. Hence, for the sake of simplicity, d ≈ r has

been assumed in the following calculations. The above few parameters are
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enough for reconstructing 3D micro-morphology of GDL, because the lat-

ter clearly shows some degree of regularity. Due to orthogonality (see the

above assumption (i)), 3D reconstruction can be easily done by generating

first fibers along y-direction and consequently generating, in a similar way,

the orthogonal fibers along the z-direction. Concerning the y-fibers, let us

generate first (a) one 2D slice (xz planes in Fig. 3 (a)) at the generic side

of the computational box, (b) one 2D slice at the middle and (c) one 2D

slice at the opposite side. All remaining slides are created by changing the

coordinates of the centers of fiber sections along sinusoidal directrix during

the final step (d). Hence let us define the 3D reconstruction algorithm of a

woven GDL porous medium according to the following steps:

• Creation of an elliptic bundle of circular fiber sections with a given

radius;

• Creation of a 2D slice by merging two elliptic bundles (Fig. 3 (a));

• Creation of all 2D slices (including those depicted in Fig. 3 (b) and (c))

by shifting the centers of fiber sections along sinusoidal directrix (Fig. 3

(d)). Notice that inside each slice there are two directrixes, which are

shifted by half wave length;

• Creation of the orthogonal fibers in a similar way and assembly of the

reconstructed 3D micro-structure.

Finally, the resulting porosity ε of the reconstructed geometry has been com-

pared to the reference values [39, 40]. To this end, ε can be calculated as a

ratio between the volume occupied by fluid Vf and the total volume Vd of
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the computational domain:

ε =
Vf
Vd

=
Vd − Ve
Vd

, (8)

where Ve is the volume occupied by obstacles. The total volume of the

computational domain is Vd = LxLyLz, while the volume of fibers in GDL

can be calculated using the following expression:

Ve = NbNtVse = NbNtπr
2

∫ Lx

0

√
1 + f ′(x)2 dx, (9)

where Nb and Nt are the number of bundles in the considered woven geometry

and the number of fibers in a single bundle, respectively. According to the

assumption (iv), f(x) = sinx. As a result, porosity of the reconstructed 3D

porous medium is ε = 0.6892, for the following set of parameters Nb = 4,

Nt = 400, Ny = Nz = 1112 and Nx = 432, which is close to the experimental

value of εGDL = 0.7 (see Table 1).

3.3. Reconstruction of CL

The reconstruction procedure of the catalyst layer micro-morphology is

different from the one of GDL due to the lack of regularity of such porous

medium. In Table 1, major parameters of carbon support of catalyst can be

found, such as length of the catalyst layer lCL = 30µm and the average size of

carbon particles around Dcp = 30− 40nm (these data can also be estimated

by analyzing Fig. 3 about Vulcan XC-72 in Ref. [44]). Here, we focus on

algorithms which can accurately describe the CL morphology (see Fig. 3 in

[44]) for a given porosity parameter εCL = 0.5−0.6 (as reported in the Table

1). The first straightforward approach consisted in randomly placing spheres

with a fixed radius in the computational domain. To this end, the number
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of particles Ncp has to be estimated as a function of porosity. In particular,

percolation theory [45] predicts that:

εCL = e−nVcp , (10)

where n is the volume concentration of carbon support particles (i.e. spheres),

and Vcp the volume of each particle. In our simulation, the computational

domain is a cube with edge Lx = Ly = Lz = L and volume V = L3, whereas

the volume of a single carbon support particle is Vcp = 4
3
πR3

cp with n = Ncp/V

and

Ncp =
3ln(1/εCL)

4π

(
L

R

)3

. (11)

We find out that the above straightforward approach, in the subsequent direct

numerical simulations (see Section 5), produces a value of permeability of

ksingle = 1.07451× 10−16m2, namely three orders of magnitude smaller than

the real value of permeability kCL = 1× 10−13m2 (see Table 1).

The source of a such mismatch lies in the incorrect reconstruction of the

catalyst layer. This also confirms that finding a suitable model for micro-

morphology is far from trivial. In fact, as it can be seen from the real micro-

morphology (see Fig. 3 in Ref. [44]), the assumption of homogeneously

distributed particles within the carbon supported catalyst layer is not realis-

tic. A more accurate inspection of real micro-morphology reveals a structure

where carbon particles are clustered into groups with some characteristic size

Lav
cluster. The above mismatch induced us to re-design the algorithm of CL re-

construction, taking into account clusterization of carbon support particles,

as well. To this end, CL is assumed to be formed by randomly generated 3D

clusters of ellipsoidal shape, containing spherical carbon support particles.
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For the sake of completeness, below we summarize the adopted assumptions

in the modified reconstruction algorithm:

(i) A simple cluster is an ellipsoid containing spherical carbon support

particles;

(ii) Irregularity of the shape of each cluster is provided by random genera-

tion of semi-axes A and B of the ellipsoid, while the third semi-axis C

is calculated preserving a fixed average cluster volume;

(iii) Each cluster is filled by random deposition of spherical carbon particles

inside it;

(iv) Random orientation of the ellipsoid is obtained by random rotations

around the three coordinate axes.

The new algorithm for reconstructing the CL geometry, taking into account

all above assumptions, is presented below:

• Random generation of ellipsoid center coordinates (xc0, y
c
0, z

c
0);

• Random generation of Ncp coordinates of the centers of spherical car-

bon particles (xi0, y
i
0, z

i
0) around (xc0, y

c
0, z

c
0). The number of carbon

particles within a single cluster Ncp can be calculated by:

Ncp ≈
ABC

R3
cp

,

where Rcp is an average size of carbon particles. It should be noted

that, in order to fulfill assumption (i), only carbon particles whose

center satisfies the following inequality are counted:

(xi0 − xc0)2

A2
+

(yi0 − yc0)2

B2
+

(zi0 − zc0)2

C2
≤ 1;
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• Repetition of above two steps Ncluster times, which can be found using

percolation theory and assumption (iii), namely

Ncluster =
3 ln(1/εCL)

4π

(
L

Lav
cluster

)3

. (12)

The previous refinement of the morphological model of a catalyst layer,

based on the degree of clustering, definitely improved the match with ex-

perimental permeability (see in details Section 4). However, it leaded to

overestimation of real clusterization, which was further improved by redis-

tributing Pt catalyst inside CL (Subsection 4.4).

4. Direct numerical simulation of permeability

For all the following fluid flow simulations, the BGK collisional operator

in the LBM solver has been used. However, it should be emphasized that

this approach, in spite of its simplicity, has some drawbacks, such as the

dependence of permeability on relaxation frequencies [35]. In the paper by

Pan et al. [35], these effects have been analyzed in detail and it was found

that relaxation frequency in the BGK-LBM approach considerably affects the

computed permeability. In particular, an increase of relaxation time leads

to an approximately linear increase of permeability for the same geometrical

configuration of porous medium, which is clearly unphysical. However, this

effect almost vanishes for the value of relaxation time τ = 1 l.u. (lattice units).

This encouraged us to choose the latter value of viscosity in order to increase

the accuracy of our computations, instead of considering a more complex

collision model as the multiple-relaxation-time (MRT) model [14, 35, 46].
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We have applied periodic boundary condition in the y- and z-direction,

while, along the x−direction, inlet and outlet pressure difference was applied

by imposing Pinlet and Poutlet respectively (see Fig. 4). Bounce-back boundary

condition has been considered to model no-slip wall boundaries between fluid

and solid obstacle (fibers or particles). Permeability k of porous medium has

been computed according to its conventional definition imposing constant

pressures at the opposite sides of porous media and using the Darcy’s law,

namely

k =
ρuν

∂P/∂x
. (13)

Recalling that the Darcy’s law is valid only for laminar flows, we repeated

the simulations for excluding any dependence of the computed permeabil-

ity on the imposed pressure differences and consequently on the mean flow

velocity. Therefore, we run each simulation several times at different pres-

sure differences: ∆P = Pinlet − Poutlet ∈ [0.0001, 0.0005, 0.005] l.u.. For all

these values, we obtained the same permeability, which proves that basic

assumptions underlying the Darcy’s law are indeed valid.

4.1. Results of fluid simulation in GDL

Firstly we have computed the fluid flow through a gas diffusion layer of

the HT-PEM, reconstructed as described in the previous Section, in order to

evaluate permeability. In the direction orthogonal to the main flow, periodic

boundary conditions are applied. Hence the computational domain consists

of one periodic elementary cell of the woven structure. All geometrical fea-

tures of the porous medium (namely radius of cross-section of electrodes r,

distance between neighbor electrodes d, edges of computational domain Lx,
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Ly, Lz, mesh spacing ∆x) have been re-parametrized by a dimensionless res-

olution parameter nr. In particular, we have assumed Ly = Lz = 278nr ∆x

and Lx = 108nr ∆x and r = d = nr ∆x. Here, it should be noted that

the condition nr ≥ 3 is required to have (at least) one fluid node between

two neighboring fibers in a bundle. In particular, the following simulation is

carried out with nr = 4 and Nt = 400. The numerical results for pore-scale

fluid flow through the reconstructed GDL are given in Table 2. The com-

puted value of permeability, namely kGDL = 0.443638× 10−12m2, is in good

agreement with the experimental values (see Table 1). It is important to

point out that no special tuning was applied in order to achieve this result.

We notice that a DELL Precision R© T7500 Linux workstation was not

suitable to perform simulation in this case (see Appendix about validation).

In fact, in a 32 bit floating-point representation, the single computational

node with a D3Q19 lattice requires 76 (19 × 32/8) bytes. The requirement

nr ≥ 3 implies at least 324 × 834 × 834 × 76 ≈ 16 GB of RAM. There-

fore, this simulation has been performed by a small Transtec R© HPC cluster

with 72 total virtual cores, 144 GB total RAM, 5.5 TB total disk capacity

(3.0 TB failure free), double networking by both Infiniband and GBit. This

cluster has 8 computational nodes with following properties: 2 Quad-core

Intel Xeon, 2.33 GHz processors, corresponding to 8 virtual cores; 16 GB

RAM, leading to 2 GB/core ratio; 250 GB SATA hard drive, 7200 rpm. The

previous simulation for computing permeability with nr = 4 required the

full computational power of the cluster. Efficient implementation of Lattice

Boltzmann schemes is discussed in Ref. [47]. Information about the specific

efficiency of Palabos code for different architecture and number of cores is
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presented in the comparison study reported in Ref. [48].

4.2. Results of fluid simulation in CL

In this case, a more sophisticated reconstruction of micro-morphology

has been developed. The additional computational requirement was fully

compensated by relatively less demanding flow simulation. In Table 3, the

sensitivity of permeability on the cluster size of carbon particles is reported.

For all simulations, we used a cubic computational box made of N ×N ×N

nodes and porosity εCL = 0.5. Random deposition of carbon particles, per-

formed using the first straightforward approach (see previous Section about

reconstruction), leads to permeability, which is approximately three orders

of magnitude smaller than the real value. On the other hand, following the

refined approach, clusterization provides a considerable improvement in pre-

dicting the real permeability, as far as the optimal value Lav
cluster = 1500nm is

used. Notice, this value of clusterization is too high, according to very recent

experimental results [13]. The reason is due to the assumption that all cata-

lyst particles deposited on the bottom of CL, which we made for calculation

of permeability using conventional approach. While in reality catalyst parti-

cles are widespread in CL and the distribution of them considerably affects

to mass flow rate (see Subsection 4.4).

In Fig. 5, the reconstructed geometry and the flow streamlines through

the CL porous medium are reported, using both straightforward approach

(results (a) and (b)) and refined approach taking into account clusterization

(results (c) and (d)). A magnification of fluid flow simulation based on the

first approach (see Fig. 5 (b)) is intended to make more visible the fluid paths:

fluid flow is dispersed in the porous medium and hence it is highly reduced
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because of drag resistance. On the other hand, in the refined approach (see

Fig. 5 (d)), because carbon clusters are impermeable for fluid, the fluid flow

can take advantage of the interstices among clusters.

4.3. Rarefaction effect

In the previous subsections, the continuum-based equations, i.e. incom-

pressible Navier-Stokes equations, were used for solving the pore-scale fluid

flow through porous media. However some of the pores have a characteristic

size which is comparable with the mean free path of the gas λ, i.e. the average

distance traveled by a gas particle between two subsequent collisions. Fluid

flow with length scales of the order of the mean free path of fluid particles

is characterized by rarefaction effects which are not properly described by

standard hydrodynamics based on continuum equations [49]. Hence, in this

subsection, we investigate on possible rarefaction effects, in order to find out

if they may eventually modify in a substantial way the previous permeabil-

ity estimates and consequently the reliability of reconstructed morphological

models.

The fundamental dimensionless number for describing the rarefaction ef-

fects is the Knudsen number Kn [49, 50], defined as the ratio between the

mean free path of the gas λ and a macroscopic length Lchar describing the

flow, e.g. a channel width or the diameter of an object exposed to the flow,

namely

Kn =
λ

Lchar

. (14)

The Navier-Stokes equations are applicable only for flows at sufficiently small

Knudsen numbers and fail in the description to flows at Knudsen numbers
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Kn > 0.01 [49, 51, 52]. In particular, depending on the Knudsen number,

there are many flow regimes: Continuum flow (Kn < 0.01); Slip-flow (0.01 <

Kn < 0.1); Transient flow (0.1 < Kn < 3); Free molecular flow (Kn > 3).

In order to estimate the Knudsen number in our simulations, we have to

calculate both the mean free paths for the gases involved in electrochemical

reactions of the HT-PEM and the characteristic lengths of the considered

porous media, i.e. GDL and CL. For the sake of simplicity, let us con-

sider separately the mean free paths of the single components of the reactive

mixture in the ideal case, namely hydrogen, oxygen and water vapor. This

simplifying assumption will be enough for finding out the relevant order of

magnitude. According to the standard theory of ideal gases [53], the mean

free path can be computed as

λ =
1√

2π d2 n
, (15)

where n is the number of molecules per unit volume and d is the molecu-

lar diameter. Moreover, the kinematic viscosity ν can be computed by the

Maxwell’s formula [53], namely

ν =
2

3π d2 n

√
k T

πm
, (16)

where k = 1.3087×10−23 J/K is the Boltzmann constant, T is the operating

temperature and m is the mass of the molecule. Combining the previous

formulas yields

λ = ν
3

2
√

2

√
πm

k T
. (17)

Taking data about transport coefficients from NIST database [54] and using

the previous formula given by Eq. (17), it is possible to estimate the mean

24



free paths for the gases involved in electrochemical reactions of the HT-PEM,

as reported in Table 4. The mean free paths under operating conditions of

temperature T = 423 K and pressure P = 101325 Pa are 159nm, 270nm

and 113nm for oxygen, hydrogen and water (vapor), respectively. In the

following calculations, the mean free path of hydrogen will be used in order

to check the sensitivity of the computed permeabilities with regards to the

highest Knudsen number.

Concerning the characteristic lengths of the considered porous media, we

propose the following simplified procedure. The pressure gradient through

a straight capillary is given by the standard Hagen-Poiseuille equation [55],

namely
∂P

∂x

∣∣∣∣
HP

= −32µu

L2
char

, (18)

where, in this case, Lchar is the capillary diameter. The previous formula can

be generalized in case of porous media [56] in the following way

∂P

∂x
=
∂P

∂x

∣∣∣∣
HP

h′/h

ε
= −32µu

L2
char

h′/h

ε
, (19)

where h is the straight path (minimum length) through the porous medium

and h′ the actual path. Sometimes the ratio h′/h is called tortuosity in

the literature on porous media [56]. A typical value of h′/h = 5/2 is often

encountered dealing with fuel cells and this is in good agreement with direct

numerical simulations of fluid flow in fuel cell electrodes [28]. Assuming

h′/h = 5/2 and combining the previous equation with the Darcy’s law given

by Eq. (A.1) yields

Lchar =

√
80 k

ε
, (20)
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where k is the permeability of the porous medium computed with no-slip

boundary conditions, i.e. without rarefaction effects.

In order to calculate how rarefaction affects the permeability, we use the

results of a previous study about pressure-driven flow through a microchannel

[57]. In Ref. [57], the two-dimensional isothermal flow in case of low Mach

number Ma� 1 and moderate Knudsen number Kn ≤ 0.15 is analyzed by

using the Navier-Stokes equations with a first-order slip-velocity boundary

condition. In particular, by means of a perturbation expansion in the height-

to-length ratio of the channel and using the ideal gas equation of state, the

zeroth-order analytic solution for the stream-wise mass flow rate is derived.

In the original Ref. [57], the stream-wise mass flow rate is expressed in

terms of the two-dimensional Knudsen number KnH = λ/H where H is

the channel height. The channel height H is actually half of the hydraulic

diameter, which is the proper characteristic quantity for describing both two-

and three-dimensional flows, i.e. H = Lchar/2. Consequently KnH = 2Kn

where Kn = λ/Lchar as usual in the present paper. Taking into account

this generalization for three-dimensional flows and recalling Eq. (A.1), the

original formula for the stream-wise mass flow rate can be used for deriving

an expression of permeability correction as a function of Kn, namely

kslip
kno−slip

= 1 +
24σKn

1 + P
, (21)

where kslip is the permeability taking into account the rarefaction effects,

kno−slip is the permeability computed as in the previous subsections, σ is the

momentum accommodation coefficient, which depends on the properties of

porous medium (for engineering calculation usually σ = 1) and P is the ratio

between inlet and outlet pressure, i.e. Pinlet/Poutlet ≥ 1. In deriving both
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numerical results for GDL, reported in Table 2, and those for CL, reported

in Table 3, a pressure ratio equal to P = 1.0005 was used.

The previous expression represents the last ingredient for taking into ac-

count the rarefaction effects. The proposed simplified procedure is the follow-

ing: By Eq. (20), the characteristic length Lchar is derived for a given porous

medium with an already computed no-slip permeability; Consequently the

Knudsen number Kn = λ/Lchar is computed; Finally, by Eq. (21), the per-

meability correction, i.e. kslip/kno−slip, is computed and allows one to derive

the refined estimate of permeability, accounting for rarefaction effects. In Ta-

ble 5 an estimate of the rarefaction effects on the calculation of permeability

for both GDL and CL is presented for hydrogen (having the highest Knudsen

number, as reported in Table 4). Clearly, according to these precautionary

estimates, the rarefaction effects are not negligible in general for the present

porous media. These estimates are the highest expected deviations from the

results reported in the previous subsections. However it is worth the effort to

point out that, even in the worst case, i.e. a permeability increase of a factor

of two for CL, the latter is still quite smaller than the dependency of predicted

permeability on the underlaying morphological model. In fact, in Table 3,

changing the average size of cluster from 400nm to 1500nm leads to an in-

crease of the permeability of one order of magnitude (five times the previous

maximum rarefaction effect). Moreover, taking kno−slip = 0.420467×10−13m2

from the last row of Table 3 and multiplying it by kslip/kno−slip = 2.249 leads

to an effective permeability of kslip = 0.945567 × 10−13m2, which is pretty

close to 1×10−13m2 reported in Table 1. Hence the developed morphological

models can be considered robust against rarefaction effects.
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4.4. Effects of platinum particle distribution in CL

In this section, we explore some catalyst layer configurations by tuning

the distribution of the catalyst Pt particles. The goal is twofold. First of

all, the assumption of placing all catalyst Pt particles at the interface be-

tween CL and membrane is not realistic (even though imposing constant

pressures at the opposite sides of porous media is the standard way to com-

pute permeability according to its conventional definition). The reason is

that conventional definition of permeability (see Eq. (13)) does not rigor-

ously apply to CL, where electrochemical reactions happen inside the layer

itself. The conventional definition may lead to an underestimation of the

effective pressure gradient and consequently an overestimation of the parti-

cle clustering, in order to recover the same experimental permeability (as we

did in Subsection 4.2). This is why, in our calculations, we found a particle

clustering higher than what it should be, according to some very recent to-

mography data [13]. More specifically, it should be noted that Darcy’s law

for permeability calculation assumes that all sink nodes (Pt particles) are

deposited at the domain bottom side. However, in real systems, catalyst

particles are spread homogeneously inside catalyst layer, where the electro-

chemical reactions take place. Hence the real partial pressure gradient due to

electrochemical reactions is actually smaller than the simulated one. In this

section, we explore the sensitivity of numerical results on this assumption.

Secondly, the catalyst particle distribution should be optimized in order to

improve the performance of the PEMFCs and also to mitigate degradation

mechanisms (e.g. loss of phosphoric acid). Optimal functionalization of

catalyst layer can be achieved by proper tuning mass transport properties of
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CL microstructure with regards to transport of reactant (hydrogen, oxygen)

and product gases (water vapour). In this stage, the role of the proposed

morphological model is essential. From the morphological point of view, it

is important to have small platinum particles with large surface area, finely

dispersed on the catalyst support surface (typically carbon powders). Large

amount of work has been done during last years to decrease the platinum

loading on the catalyst layer, using advanced catalyst deposition techniques

or promoting platinum alloys with other metals, e.g. Pt-Ru, Pt-Sn, Pt-Cr.

However mainly the fraction of Pt particles on the carbon support of PBI-

based high temperature PEMFC has been considered so far. Thus, electrodes

with different platinum percentages on the carbon support, but with the same

PBI content normalized with respect to the C/PBI weight ratio (C/PBI =

20), have been treated and optimal weight ratio has been found [38].

In the present work we investigated an influence of Pt deposition on the

mass flow rate through the same porous medium. We slightly extended our

previous model for reconstruction of CL microstructure by introducing a new

discrete value in Eq. 5 for one dimensional array describing the geometry.

For example, let us assumeM = 3 for Pt catalyst particles in catalyst layer,

namely

Mix,iy ,iz =



0 (ix, iy, iz) ∈ fluid

1 (ix, iy, iz) ∈ fluid
⋂
solid

2 (ix, iy, iz) ∈ solid

3 (ix, iy, iz) ∈ catalyst particles

(22)

For comparison, we considered two simulation setups illustrated in Fig.6 (a)

and (b), where the same amount of catalyst particles is used, but by different
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distributions reported in 6 (c) and (d). In particular, the former distribution

is the conventional one used to compute permeability by Darcy’s law, while

the latter has been obtained by redistributing platinum particles inside the

catalyst layer.

Pore-scale simulations using BGK lattice Boltzmann method were per-

formed for catalyst layers with clusterization equal to Lav = 1500nm and

with the previous Pt deposition distributions. It should be noted, for the all

simulation imposed pressure difference was taken ∆P = 0.00001 in order to

be sure that flow is indeed laminar. In Table 6, the parameters of porous

medium, computational domain, lattice Boltzmann method and the mass

flow rate at the inlet are reported. As it can be seen from the table, we have

approximately an order of magnitude increase in flow rate by redistribut-

ing Pt particles. Mean velocity and flow rate change (see Fig.7 (c-d)), but

also fluid flow streamlines change (see Fig.7 (a-b)). This means that there

are quantitative changes (scale factor), but also qualitative changes in the

flow field. Thus, redistribution of catalyst particles inside the microstructure

leads to considerable increase of mass flow rate and it provides an additional

tunable parameter of the morphological model.

The morphological model proposed in this paper allows one to explain

how macroscopic transport coefficients are sensitive to different features of

microstructure, like carbon support clustering and catalyst distribution. The

latter point is very relevant also for analyzing three dimensional morphology

by tomography. In fact, computing permeability of tomography microstruc-

ture by assuming catalyst on the bottom side would lead to inaccurate re-

sults, in spite of the accuracy on the geometry. This proves that any input
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data about morphology must be interpreted by a morphological model. The

morphological model presented here may be useful for designing strategies

in order to increase PEMFC performance and to mitigate degradation phe-

nomena by improving mass transport processes.

The main idea behind the mitigation strategy is to manipulate flow field

through catalyst layer by realizing different setups of morphological param-

eters, like distribution of catalyst particles, clusterization and so on. As a

concluding remark, let us consider a simple example. It is reasonable to as-

sume that the loss of phosphoric acid at the interface between catalyst layer

and the membrane is also driven by the normal pulling stress. The latter is

proportional to the normal velocity gradient. Hence the pulling stress could

be reduced by properly placing the catalyst particles, e.g. by an exponen-

tial decay distribution with flatter profile at the above mentioned interface.

The systematic and comprehensive results about the application of the devel-

oped morphological model to mitigate specific degradation mechanism, i.e.

phosphoric acid loss from membrane and catalyst layer (without significant

changes in current density), will be presented elsewhere.

5. Conclusions

Operating PEM fuel cells at high temperature is definitively a promising

technology, because of enhanced electrochemical kinetics, a simplified wa-

ter management and cooling and the enhanced carbon monoxide tolerance.

However the degradation phenomena of the membrane electrode assembly

(MEA) represents one of the major issues that must be addressed for their

commercialization and widespread use. Understanding detailed degradation
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phenomena will require a huge community effort. However we think that

pore-scale modeling, simulation and morphological models can be definitively

powerful tools towards this goal. The present paper represents a preliminary

step towards reliable algorithms for reconstructing micro-morphology of HT-

PEM electrodes. Pore-scale modeling has already boosted the technological

development of other types of fuel cells, e.g. solid oxide fuel cells, where

many contributions have been observed in recent years. Moreover, this kind

of modeling techniques can take strong advantage by recent progresses in

dual-beam focused ion beam scanning electron microscopy (FIB-SEM). How-

ever, it must be pointed out that developing reliable morphological models

is essential for interpreting the morphological data by FIB-SEM.

In this paper, we focus on direct numerical simulation of the fluid flow

through two fundamental regions of HT-PEM electrodes, namely a woven

gas diffusion layer (GDL) and a catalyst layer (CL). The considered wo-

ven GDL is characterized by a regular micro-structure, where morphological

models depend on few parameters that can be set by inspection of images

obtained by scanning electron microscopy. On the other hand, permeability

through CL is highly sensible to clusterization of carbon particles, which can

be modeled by stochastic algorithms. Hence these two examples are rep-

resentative of two wide classes of materials, which differ for manufacturing

processes and operating conditions. It is important to point out that the

proposed micro-morphology techniques accurately recover the experimental

values of permeability, without any special ad-hoc tuning. However, it must

be recognized that the degree of clusterization in CL may depend on the

assumptions made about the distribution of catalyst. For this reason, dif-
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ferent catalytic distributions have been explored, in order to suggest that

more realistic assumptions must be taken into account when dealing with

CL, beyond standard approaches (simply based on Darcy’s law).
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Appendix A. Flow through array of body-centered cubic spheres

(BCC)

In this Section, the hydraulic permeability associated with multiple or-

dered packs of identical spheres in a cubic domain was computed, by perform-

ing fluid flow simulations by LBM. In particular, body-centered cubic spheres

(BCC) was considered [35] as shown in Fig. 8. A pressure gradient was ap-

plied along x-direction (see Fig. 8 for details) and the resulting steady-state

averaged superficial velocity was used to calculate the permeability values,

according to the Darcy’s law.
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Flow simulations with ordered packing of regular obstacles were per-

formed to check the consistency of numerical predictions of permeability,

obtained by different fluid dynamics softwares (PALABOS [58] and ANSYS

Fluent R© [59]) and analytic expressions from the literature. For validation

purposes, the convenience of simulating ordered packs of spheres is twofold.

First of all, exact analytic expressions are available. Secondly, adoption of

periodic boundary conditions allows one to reduce the computational demand

(in comparison with packs made of randomly placed spheres [14], where larger

computational domains are typically required).

Permeability k is a constant factor appearing in the Darcy’s law [55],

which relates the pressure gradient∇P across a porous medium to the volume

averaged velocity u, i.e.,

u = −k∇P
µ

, (A.1)

where µ denotes viscosity. The volume averaged velocity, also called discharge

per unit area, is not the velocity which fluid particles traveling through the

pores is experiencing. In order to find out the latter quantity, the volume

averaged velocity must be divided by the porosity to account for the fact

that only a fraction of the total formation volume is available for flow.

Numerical results were compared to values as predicted by the analytic

expressions (see [60, 61]). Prediction of permeability of porous media with

periodic structures dates back to the theoretical works of Hasimoto [62], and

later on, to the work of Sangani and Acrivos [60], which performed analytic

and numerical studies of periodic arrays of spheres for different configura-

tions. According to these models, the permeability can be computed as

kS =
R2

6πdk

(
L

R

)3

, (A.2)
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where L is the edge of the periodic cell, R is the radius of the sphere and

dk is a dimensionless drag coefficient. The dimensionless drag coefficient

dk is determined by geometric parameters of the porous media, and can be

represented by a power series of γ as follows

dk =
30∑
n=0

qnγ
n, (A.3)

where the coefficients qi are tabulated [60]. The dependence of the param-

eter γ on porosity ε takes into account the considered configuration, i.e.

the spheres arrangement. For body-centered cubic (BCC) configuration, the

dependence reads

γ =

(
8(1− ε)√

3π

)1/3

. (A.4)

It should be noted that this analytical model is accurate in the limits of low

and high porosity. More specifically, analytic expression given by Hasimoto

[62] is not valid for γ ≤ 0.2, and in work by Sangani [60] authors improved

this using the same method as Hasimoto, but adding extra terms in the

velocity expression, with a wider validity range: 0 < γ < 0.85. For high

densities they obtained the lubrication type approximations for narrow gaps

[63].

Another popular relation was proposed by Kozeny [64] and later modi-

fied by Carman [65]. The resulting equation is known as the Kozeny-Carman

(KC) equation. Authors considered a porous material as an assembly of cap-

illary tubes for which the equation of Navier-Stokes can be used. This yields

the permeability k as a function of porosity ε, specific surface, and a factor

accounting for the shape and tortuosity of channels. Since its first appear-

ance in [65], this equation has taken several forms, including the following one
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(Eq. A.5) that is commonly used for porous media with spherical particles

[61]:

kKC =
D2

150

ε3

(1− ε)2
, (A.5)

where D is the sphere diameter.

We notice that the estimates of permeability as predicted by Eq. (A.2)

on (A.5) show a good agreement only for a small range of porosity, namely

ε ∈ [0.7; 0.82].

The convergence of permeability for ordered arrays of spheres has been

analyzed as a function of mesh resolution. We have simulated a flow through

idealized three-dimensional porous structures composed of ordered arrays of

spheres with BCC packing configuration, by setting fixed pressure boundaries

at inlet and outlet (along x-direction in Fig. 8). Sphere surfaces were treated

as no-slip wall boundaries using the bounce-back boundary conditions (see

previous Section). In this configuration, we considered a cubic unit cell with

periodic boundary conditions along both y- and z-direction. Following [61],

we adopted an edge of the periodic computational box with L = 1.917 cm =

1.917× 10−2m and porosity ε = 0.32.

In order to validate the solver that is used in the rest of the paper, i.e.

LBM solver with D3Q19 lattice implemented in PALABOS [58], different

comparisons were carried out. In Table 7 the input parameters imposed

in our simulations, as well as the obtained results, are presented. Values for

permeability obtained by PALABOS were compared with (a) other LBM sim-

ulations [61], (b) results obtained by commercial software ANSYS Fluent R©

[59] and (c) analytic predictions by Kozeny-Carman equation (see Eq. (A.5)).

In particular, the PALABOS results, as common in the LBM literature, are
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expressed first in dimensionless units (so-called lattice units l.u., see [23])

and then in physical units by means of proper scaling factors. For the sake

of clarity, all these data are shown in Fig. 9 (inset), where good agreement

is found. In LBM simulations by PALABOS, the relaxation parameter has

been chosen as ω = 1.0 l.u. and the kinematic viscosity ν = 1/6 l.u. in order

to minimize the effect of viscosity on permeability (see in particular Fig. 4 of

Ref. [35]). This choice allows to obtain the maximum accuracy by means of

the simplified BGK collisional model and to avoid the use of more complex

collisional models, like the multiple-relaxation-time (MRT) model (see [46]

and [14] for applications to PEM fuel cells).

In Table 8 the dependence of permeability on the numerical resolution,

i.e. number of computational node for discretizing the box edge, is reported.

Results clearly show a considerable dependency of permeability for coarser

meshes, while a plateau is observed starting from a 2563 resolution. Hence the

5123 resolution can be considered accurate enough to get mesh-independent

results.

Simulations were performed using a DELL Precision R© T7500 Linux work-

station with CPU Due Intelr Xeonr X5650 (six cores, clock rate 2.66 GHz,

12 MB cache) and 48 GB (6×8GB) of DDR3 memory (1333 MHz), with OS

Red Hat Enterprise Linux version 6.3.
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Table 1: Typical transport parameters of the GDL and CL of a HT-PEM fuel cell from
literature.

Parameter Value Reference
lGDL 400µm Siegel [39]
εGDL (BASF Celtec-P 1000) 0.7 Kvesic [40]
kGDL (BASF Celtec-P 1000) 10−12m2 Kvesic [40]
εGDL (BASF Celtec-P 2000) 0.78 Siegel [39]
kGDL (BASF Celtec-P 2000) 5× 10−13m2 Siegel [39]
lCL,a 30µm Siegel [39]
lCL,c 40µm Siegel [39]
Carbon support particle size 30− 40nm Antolini [41]
εCL 0.5 – 0.6 Lobato [38]
kCL (BASF Celtec-P 2000) 1× 10−13m2 Siegel [39]
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Table 2: Numerical results of permeability of GDL (l.u. stands for lattice units, see [23]).

Resolution 432× 1112× 1112
Lattice average velocity 3.60172× 10−07 l.u.
Lattice pressure gradient 1.16009× 10−07 l.u.
Lattice length 9.259× 10−07m
Actual permeability 0.443638× 10−12m2
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Table 3: Sensitivity of permeability on the cluster size of carbon particles in CL (l.u.
stands for lattice units, see [23]).

Resolution 200× 200× 200
Average size of cluster 40nm
Lattice average velocity 1.60371× 10−05 l.u.
Lattice pressure gradient 2.51256× 10−06 l.u.
Lattice length 1.0× 10−08m
Actual permeability 1.07451× 10−16m2

Resolution 200× 200× 200
Average size of cluster 400nm
Lattice average velocity 7.16111× 10−04 l.u.
Lattice pressure gradient 2.51256× 10−06 l.u.
Lattice length 1.0× 10−08m
Actual permeability 0.47502× 10−14m2

Resolution 400× 400× 400
Average size of cluster 1500nm
Lattice average velocity 1.26456× 10−04 l.u.
Lattice pressure gradient 1.25313× 10−06 l.u.
Lattice length 5.0× 10−08m
Actual permeability 0.420467× 10−13m2
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Table 4: Estimation of mean free paths for the gases involved in electrochemical reactions
of the HT-PEM. Operating temperature T = 423 K and pressure P = 101325 Pa. Data
taken from Ref. [54].

Oxygen Hydrogen Water (vapor)
Molecular weight 0.032 kg/mol 0.002 kg/mol 0.018 kg/mol
Molecular mass 5.314× 10−26 kg 3.321× 10−27 kg 2.989× 10−26 kg
Dynamic viscosity 2.67× 10−05 Pa s 1.13× 10−05 Pa s 1.42× 10−05 Pa s
Density 0.973 kg/m3 0.061 kg/m3 0.547 kg/m3

Kinematic viscosity 2.75× 10−05m2/s 1.86× 10−04m2/s 2.60× 10−05m2/s
Mean free path λ 159nm 270nm 113nm
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Table 5: Estimate of rarefaction effects for hydrogen gas flow, with mean free path λ =
270nm (see Table 4), through GDL and CL.

Layer ε kno−slip Lchar Kn kslip/kno−slip
GDL 0.7 0.443638× 10−12m2 7.12× 10−6m 0.038 1.455
CL 0.5 0.420467× 10−13m2 2.59× 10−6m 0.104 2.249
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Table 6: Simulation results and comparison.

Name Non-distributed Distributed

Average size of clusters 1500 nm 1500 nm
Relaxation frequency 1.1 l.u. 1.1 l.u.
Lattice viscosity 0.136364 l.u. 0.136364 l.u.
∆ P 1.0× 10−5 l.u. 1.0× 10−5 l.u.
Domain size 128× 128× 128 128× 128× 128
Flow rate 3.06678× 10−7 l.u. 2.22284× 10−6 l.u.
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Table 7: Input parameters and obtained numerical results by ANSYS Fluent R©, PALA-
BOS, literature [61] and Kozeny-Carman model. The PALABOS results are reported first
in dimensionless units (the so-called lattice units l.u., see [23]) and then in physical units.

Parameters
Porosity 0.32
R/L ratio 0.433
Sphere diameter D 0.0166 m
Edge of computational box L 0.01917 m
ANSYS Fluent R©

Dynamic viscosity 0.001 kg/(m× s)
Pressure gradient ∇P 0.245 Pa/m
Average pore velocity 0.7970 ×10−04m/s
Surface velocity 0.3276 ×10−04m/s
Mass flow rate 0.1192 ×10−04 kg/s

Permeability-FLUENT 1.337 ×10−07m2

PALABOS
Resolution 512× 512× 512
Lattice viscosity ν 1/6 l.u.
Lattice pressure gradient 9.78474× 10−08 l.u.
Lattice average velocity 5.32578× 10−05 l.u.
Lattice permeability 90.7158 l.u.

Permeability-PALABOS 1.2757 ×10−07m2

OTHERS

Permeability [61] 1.240 ×10−07m2

Permeability Eq. (A.5) 1.302 ×10−07m2
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Table 8: Dependence of permeability on resolution. The results are reported first in
dimensionless units (the so-called lattice units l.u., see [23]) and then in physical units.

Resolution 64× 64× 64
Lattice average velocity 3.68895× 10−05 l.u.
Lattice pressure gradient 7.93651× 10−06 l.u.
Lattice permeability 0.77468 l.u.
Actual permeability 0.697212× 10−07m2

Resolution 128× 128× 128
Lattice average velocity 1.04201× 10−5 l.u.
Lattice pressure gradient 3.93701× 10−06 l.u.
Lattice permeability 4.41116 l.u.
Actual permeability 0.992511 ×10−07m2

Resolution 256× 256× 256
Lattice average velocity 4.91507× 10−06 l.u.
Lattice pressure gradient 3.92157× 10−08 l.u.
Lattice permeability 20.889 l.u.
Actual permeability 1.175006× 10−07m2

Resolution 512× 512× 512
Lattice average velocity 5.32578× 10−05 l.u.
Lattice pressure gradient 9.78474× 10−08 l.u.
Lattice permeability 90.7158 l.u.
Actual permeability 1.275691× 10−07m2
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(a) HT-PEM Fuel Cell (b) Gas diffusion layer (GDL)

(c) Catalyst layers (CL) + Membrane (d) Catalyst layer (CL)

Figure 1: Micro-morphology of a HT-PEM fuel cell by Scanning Electron Microscope
(SEM) imaging (purposely obtained for the present work).

56



Figure 2: Schematic diagram of PEMFC.
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Figure 3: Reconstruction steps of a woven GDL.
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Figure 4: Geometry of the reconstruction and streamlines of fluid flow through a woven
GDL. In order to simplify the visualization, the used parameters, namely NA = 6, NB = 4,
Nx = 180 and Ny = Nz = 240, are coarser than those required by computing permeability.
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Figure 5: The geometry and flow streamlines through reconstructed CL porous medium:
(a)-(b) the results of the straightforward algorithm; (c)-(d) the results of clusterization
one for Lav

cluster = 350nm.
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(a) (b)

(c) (d)

Figure 6: Two considered (a-b) locations and (c-d) corresponding deposition distribution
of Pt particles inside the catalyst layer.
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(a) (b)

(c) (d)

Figure 7: (a-b) Pt deposition and flow streamlines (c-d) slices of corresponding flow velocity
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Figure 8: Periodic unit cell of an infinite array of body-centered cubic spheres.
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Figure 9: Permeability as a function of porosity given by Eq. (A.5). Inset: The results of
different numerical methods for porosity ε = 0.32.
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