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Abstract. The Refined Zigzag Theory (RZT) belongs to the zigzag class of approximations for the 

analysis of laminated composite and sandwich structures. This paper presents the derivation of the 

non-linear equations of motion and consistent boundary conditions of RZT for multilayered plates. 

Subsequently, the equations are specialized to the linear boundary value problem of bending and 

the linear eigenvalue problems of free vibrations and buckling. In order to assess the accuracy of 

RZT, results concerning the static response, the free vibration frequencies and modal shapes, and 

the buckling loads of symmetric and un-symmetric sandwich plates, both simply supported and 

clamped and subjected to several loading conditions, are compared to the three-dimensional exact 

elasticity solution, high-fidelity FEM solutions, classical and zigzag theories, and accurate layer-

wise models or solutions obtained in the open literature by means of other methods. The numerical 

investigation shows that RZT is highly accurate in predicting the static response, the natural 

frequencies and the buckling loads of sandwich plates without requiring any shear correction 

factors. In virtue of its accuracy and of the C
0 
–continuity requirement for shape functions, RZT can 

be adopted to derive reliable and computationally efficient finite elements suited for large-scale 

analyses of sandwich structures.   
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1. Introduction 

In the last decades, composite materials have been increasingly used in different engineering 

fields (military and civilian aircrafts, aerospace vehicles, naval and civil structures) due to their high 

stiffness-to-weight and strength-to-weight ratios. Sandwich structures show further remarkable 

characteristics in terms of impact energy absorption and noise reduction.  

The classical sandwich-type construction is made of three layers (ordinary sandwich): the two 

external layers, called skins or faces or face-sheets, are separated by a thicker layer, called core. 

Generally, skins are made up of high-strength materials like steel or aluminum; however, to achieve 

higher stiffness- and strength-to-weight ratios, metallic materials are often substituted by composite 

materials. The core layer is made of a light material, which is usually much more compliant than the 

face-sheets. The three more typical geometries for the core are: honeycomb, corrugated, and cellular 

[1]. 

According to the position and the number of faces and cores, other sandwich construction 

geometries can be found: open-face sandwich, with one core and one face; multi-core sandwich, 

where more than two faces and one core are present. The open-face sandwich construction is almost 

always used as stiffened panels; readers interested in a comparison between the ordinary and multi-

core sandwiches can refer to [2].  

A safe design of sandwich structures requires an accurate model in order to analyze the 

phenomena that could occur during its service, for example buckling and failure, and to predict the 

static and dynamic response to external loads. For this purpose, a detailed three-dimensional FE 

model can be used; however, such models are computationally expensive due to the complex core 

geometry, especially if honeycomb or corrugated cores are modelled in detail. Thus, the approach 

which is generally adopted is to substitute the core with an equivalent homogenous material, i.e., a 

material whose mechanical behavior is equivalent, at a macroscopic level, to the behavior of the 

core effective medium. As a consequence, the accuracy of the solution depends on the effective 

prediction of the (equivalent) mechanical properties of the core. 

Starting from the 1950’s, many approaches have been proposed for the characterization of the 

equivalent materials for different core geometries, in particular the honeycomb materials. The first 

papers were mainly dedicated to a limited set of engineering constants [3-8], whereas only recently 

some theories have been proposed where the whole set of elastic constants is calculated as the result 

of a more general approach. For example, in [9], an energy-based approach is proposed where the 

strain energy of the effective core is equal to that in the equivalent medium. A review of different 

models and some original developments on the so-called thickness effect for honeycomb cores may 

be found in [10]. Corrugated core geometries have been also extensively studied [11]. The 
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substitution of the effective core with an equivalent medium leads to the assumption that all the 

other failure loads of the sandwich panel (i.e., the local failure modes, like the face wrinkling and 

the intra-cell buckling) are greater than the global mode. 

Once the engineering constants of the equivalent core material are evaluated and the latter is 

used in place of the effective core medium, two approaches are available to predict the elasto-

dynamic response of the sandwich panels, they are: three-dimensional (3D) elasticity approaches 

and two-dimensional (2D) models based on an a priori assumption of the through-the-thickness 

distribution of displacements and/or stresses (in this work we deal predominantly with 

displacement-based models). Among the 3D elasticity solutions, Pagano [12] solved the bending 

problem of rectangular, simply supported, and multilayered cross-ply plates, whereas Noor et al. 

[13] presented solutions for the buckling and free vibrations of simply supported sandwich panels 

with composite faces. Concerning 2D models, depending on the type of assumption made on the 

displacement field, they may be classified into two categories: the Equivalent Single Layer (ESL) 

and Layer-Wise (LW) models. 

Within ESL models the multilayered plate is reduced to a single equivalent layer according to 

constitutive relations, i.e., relations between stress resultants and strain components. In the past, an 

attempt to apply the Classical Lamination Theory (CLT) and the First-order Shear Deformation 

Theory (FSDT) to the analysis of sandwich structures has been made. It is a well known fact that 

the CLT generally provides inaccurate results since it neglects transverse shear deformation, 

whereas the accuracy of the FSDT strongly depends on the shear correction factors which are 

needed to adjust the through-the-thickness distribution of transverse shear stresses and strains. In 

order to overcome the problem of the shear correction factors estimation, several higher-order 

theories have been formulated which account for the actual through-the-thickness distribution of 

transverse shear stresses and for the transverse normal deformation. Barut et al. [14] formulated a 

higher-order {3,2} theory based on a cubic expansion for the in-plane displacements and a quadratic 

variation of the transverse component. Results pertaining the static deformation of thick sandwich 

plates subjected to bi-sinusoidal pressure are compared with exact solutions available in literature 

showing favorable agreement. Kant and Swaminathan [15,16] presented the analytical formulation 

and some solutions for the static and natural frequency analysis of simply supported sandwich 

plates based on a higher-order theory which accounts for the effect of transverse shear and normal 

deformability and the non-linear variation across the thickness of the in-plane displacements. Later, 

Swaminathan et al. [17,18] applied the same higher order theory to the bending and free vibration 

problem of sandwich plates with anti-symmetric angle-ply face-sheets. Kheirikhah et al. [19] solved 

the problem of  bi-axial buckling of soft-core sandwich plates using a multilayer higher order 
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theory: a third-order plate theory is used to model the face-sheets whereas a quadratic and a cubic 

expansion for the transverse and in-plane displacements are assumed, respectively, in the core. As 

highlighted in [20], ESL theories become inaccurate when the plate is thick, the transverse 

anisotropy is severe (i.e., the mechanical properties show remarkable differences from layer to 

layer), the materials are highly shear-deformable and exhibit high transverse normal deformability. 

The lack of accuracy in these conditions is caused by the use of a through-the-thickness C
1
- 

continuous
 
displacements field which leads to the non fulfillment of the transverse stresses 

continuity. Due to this, the ESL models have to be limited to the prediction of the global response 

quantities for relatively thin panels. 

Contrary to the ESL models, in the layer-wise (LW) theories every single layer is treated as a 

plate itself and the kinematic description is given for every single layer. In the framework of the 

LW models, Rao and Desai [21] developed a higher-order mixed LW model to evaluate the natural 

frequencies of simply supported sandwich plates. The LW model accounts for a through-the-

thickness cubic variation of the three displacement components and satisfies automatically the 

continuity condition of displacements and transverse stresses at the layers interfaces. Using the 

same kinematic assumptions of [21], Dafedar et al. [22] predicted the overall and local buckling 

loads of multi-core sandwich plates having an arbitrary sequence of stiff layers and cores. Moreira 

and Rodrigues [23] presented a LW model and applied it to the analysis of sandwich plates with 

thin cores. The displacement field assumed in each layer exhibits a linear variation for the in-plane 

components and a constant transverse displacement, thus neglecting transverse normal deformation. 

Although the LW models provide very accurate predictions, they are computationally expensive 

since the number of unknowns increases with the number of layers. 

The continuity condition of displacements and transverse stresses can be satisfied a priori by 

assuming a displacement field with thickness-wise slope discontinuities at the interface between 

adjacent layers with different mechanical properties. Models based on this assumption are known as 

ZigZag theories (ZZ), wherein the assumed kinematics is based on an ESL-type description with the 

superposition of a piecewise distribution. Moreover, the ZZ models have a number of kinematic 

unknowns regardless of the number of layers, thus being more computationally-efficient than LW 

models. The ZZ theories allow global response predictions for relatively thick  composite and 

sandwich structures that are often as accurate as those that can be achieved by the LW models. Di 

Sciuva, who pioneered these models, proposed a linear ZZ (LZZ) displacement-based model [24] 

which accounts for piecewise linear distribution across the thickness of the in-plane displacements 

and a priori satisfies the continuity of displacements and transverse shear stresses at interfaces 

(transverse normal deformability is neglected). Moreover, Di Sciuva [24] applied his LZZ model to 
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the linear problem of bending, free vibration and buckling load of multilayer composite plates. 

Later, the same author [25] formulated a ZZ plate model (CZZ) based on a piecewise cubic 

through-the-thickness variation for the in-plane displacements, obtained by the superposition of a 

linear zigzag distribution to a smeared cubic variation, and satisfying a priori the geometric and 

transverse shear stress continuity conditions.  

The development of accurate zigzag models is motivated by the demand to perform large-scale 

analyses in order to reach an accurate design of high-performance composite and sandwich 

structures. In order to pursue this aim, the analytical form of a zigzag model has to be suitable for 

an efficient finite element approximation. Based on its linear and third-order ZZ  models, Di Sciuva 

developed several finite elements [26-29]. Although numerically very efficient, C
1
-continuous 

shape functions are required to approximate the deflection due to the presence of its second spatial 

derivative in the strain energy. C
0
-continuos finite elements are computationally more efficient and 

easy to implement into FEM commercial codes. Xiaohui and Wanji [30], by using a third-order 

zigzag model, developed an improved C
0
-continuous plate finite element and applied it to the 

natural frequencies problem of sandwich plates with soft cores. Pandit et al. [31,32] formulated a 

higher-order ZZ model where the in-plane displacements are assumed to be cubic across the 

thickness and the transverse displacement is constant across the face thickness and varies according 

to a second order polynomial through the core thickness. Based on this kinematic assumption, a C
0
-

continuous plate finite element model was developed and applied to the bending, vibration and 

buckling loads problem of soft core sandwich plates [31,32]. 

Recently, Tessler et al. have proposed a ZZ model for beams [33,34], plates [35-37], and shells 

[38] known as Refined Zigzag Theory (RZT). The kinematic field of FSDT is improved by adding a 

piecewise linear (across the lamina interfaces) zigzag function in the representation of the in-plane 

displacements and the transverse displacement is assumed to be constant through the thickness. The 

zigzag function is able to reproduce the actual in-plane displacements pattern and accounts for the 

shear deformation in every lamina in consistent way, thus it does not require any shear correction 

factor. The resulting kinematic field have a fixed number of kinematic unknowns, regardless of the 

number of layers, and does not enforce the continuity condition on transverse shear stresses among 

adjacent layers. Nevertheless, accurate predictions of all response quantities are obtained, including 

the transverse shear stresses that provide accurate average values at the ply-level [34,36] and 

improvements (with respect to the results of both LZZ and CZZ) in the through-the-thickness 

distributions close to clamped edges [34,36]. Moreover, Tessler et. al. [39,40] showed that within 

RZT, homogeneous plates should be modeled as laminated plates with infinitesimally slight levels 

of heterogeneity between adjacent layers. This homogeneous limit strategy produces highly accurate 
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response predictions, including those for strains and stresses, without the use of shear correction 

factors. The analytical form of RZT is ideally suited for developing computationally efficient C
0 

finite elements. By using this benefit, both C
0 

beam [41,42] and plate [43] RZT-based finite element 

formulations have been recently proposed. 

The Refined Zigzag Theory has already been assessed on a number of elasto-static bending 

problems which include simply supported rectangular plates subjected to bi-sinusoidal pressure and 

cantilevered plates subjected to a uniform pressure [36]. The results presented for several problems 

have highlighted the remarkable predictive capability of the RZT and its wide range of 

applicability, including highly heterogeneous sandwich laminates. 

The present original effort is focused on extending the original RZT formulation to vibration and 

buckling problems of sandwich plates. Using the RZT kinematics and non-linear von Kàrmàn 

strains, the plate equations of motion and related boundary conditions are derived from the 

D’Alembert’s principle. The resulting equations are used to formulate the linear eigenvalue 

problems of undamped free vibration and buckling. 

Symmetric and un-symmetric sandwich stacking sequences are investigated having isotropic and 

laminated composite face-sheets. The vibration and buckling results for sandwich plates are 

assessed with respect to 3D exact elasticity solutions, when available, or high-fidelity FEM 

solutions. If neither 3D exact elasticity solutions nor high-fidelity FEM solutions are available, 

results obtained with an accurate LW model are taken as reference in the comparisons. In order to 

assess the performances of RZT, comparisons with Di Sciuva’s original zigzag theories (LZZ and 

CZZ) and with higher-order ESL models are also made. Moreover, a comparison with the results 

obtained by means of FSDT (and different values of the shear correction factors) is performed in 

order to assess the accuracy of this approach widely adopted in the open literature and commercial 

codes. 

The paper is organized as follows. In the first part, the RZT displacement field is briefly 

presented and then, the non-linear equations of motion are derived. Subsequently, these equations 

are specified to the linear boundary value problem of the bending and the eigenvalue problems of 

undamped free vibrations and linear buckling of rectangular sandwich plates. In the final part of the 

paper, to test the accuracy of RZT, numerical results pertaining the bending, undamped free 

vibration and buckling (under uniform uni-axial, bi-axial compressive, and uniform in-plane shear 

load) of rectangular sandwich plates, both simply supported and clamped, are presented and 

compared with those resulting from the 3D exact elasticity theory, high-fidelity FE models, higher-

order ESL, zigzag theories and others available in literature. For comparison purposes, the same 

numerical examples that appeared in several referenced papers are examined herein. The numerical 
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examples show that RZT ensures very accurate results, both in terms of global response quantities 

(deflection, natural frequencies and buckling loads) and in terms of the through-the-thickness 

distributions of displacements and stresses. This accuracy is maintained, without using any shear 

correction factor, within a wide range of variation of geometrical (span-to-thickness ratio, core-to-

face thickness ratio, aspect ratio) and mechanical (face-to-core stiffness ratio) parameters of 

sandwich laminates. The higher-order zigzag models (CZZ) also provide correct response 

predictions but do not bring significant improvements in terms of accuracy with respect to linear 

zigzag models (RZT and LZZ), therefore corroborating the fact that the use of an higher-order 

approximation for the in-plane displacements is not necessary to improve the global responses 

prediction for sandwich plates. The FSDT is accurate in most cases if adequate shear correction 

factors are used; nevertheless, for thick and/or highly heterogeneous sandwich stacking sequence, 

this accuracy is not adequate and, as a general rule, through-the-thickness distributions of 

displacements and stresses exhibit significant deviations from the reference results. Even if a proper 

shear correction factor is used, the accuracy in estimating the natural frequencies reduces for 

higher-order modes. These results confirm the observation by Birman and Bert [44] on the use of 

shear correction factors for FSDT-based static and dynamic analysis of sandwich plates, i.e., none 

of the shear correction factors proposed in literature are able to produce accurate results in a wide 

range of cases. 

 

2. THE REFINED ZIGZAG THEORY FOR PLATES: DISPLACEMENTS, STRAINS, 

AND STRESSES 

 

Consider a laminated plate of uniform thickness 2h with N perfectly bonded orthotropic layers as 

shown in Figure 1. The orthogonal Cartesian coordinate system 1 2( , , )x x z  is taken as reference 

where the thickness coordinate z  ranges from h  to h . The middle 
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Figure 1. General plate notation. 

 

reference plane (or midplane) of the plate, mS , is placed on the 1 2( , )x x - plane. The plate is bounded 

by a cylindrical edge surface, S , constituted by two distinct surfaces, uS  and S , on which the 

geometrical and mechanical boundary conditions are enforced, respectively. Moreover, the 

intersection of the surface S  and of the 1 2( , )x x -plane is the curve C  which represents the 

perimeter of the midplane, mS . As for the edge surface, the curve C  is composed by two distinct 

curves, uC  and C , originated by the intersection of uS  and S  with the 1 2( , )x x -plane, 

respectively. Finally, tS  and bS  represent the top and bottom external surfaces of the plate (at z= +h 

and z= −h), respectively. 

The orthogonal components of the displacement vector, according to the kinematic assumptions of 

the Refined Zigzag Theory (RZT) [35,36], are expressed as 

 

   

   

1 1 2 1 2 1 1 2 1 1 1 2

2 1 2 1 2 2 1 2 2 2 1 2

1 2 1 2

( , , , ) ( , ) ( , ) ( ) ( , ), , ,

, ,( , , , ) ( , ) ( , ) ( ) ( , )

( , , , ) (

,

,, )

k k

k k

z

u x x z t u x x z x x z x x

u x x z t v x x z x x z x x

u x x

t t

z t w x

t

x

t

t t

t

  

  

  

  

  

(1) 
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where the superscript (k) is used to denote quantities corresponding to the k
th

 lamina and t  

represents the time variable. The displacement field of RZT, Eq. (1), is obtained superposing the 

displacement field of the First-order Shear Deformation Theory (FSDT) and two zigzag 

contributions to the in-plane displacements,  ( )

1 2( ) ( , , ) 1,2k z x x t     , which describe cross-

sectional distortions that are typical of laminated composites. The kinematic unknowns of RZT are 

seven: the same five kinematic variables of FSDT ( u  and v  are the in-plane uniform 

displacements, w  is the transverse deflection, 1  and 2  are the average rotations of the transverse 

normal around the positive 2x -axis and the negative 1x -axis, respectively) and two additional 

variables ( 1  and 2  are the amplitude of the zigzag rotations), see Figure 1.  
1

k
  and  

2

k
  are the 

so-called zigzag functions, piecewise linear functions of the thickness coordinate. The zigzag 

functions are independent of the state of deformation whereas depend on the thickness and of the 

transverse shear moduli of each layer and are set to vanish on the top and bottom laminate faces 

(refer to Figures 2(a) and 2 (b) which show  
1

k
  and  

2

k
 for a three-layered laminate) 

 

( ) ( )

1 2

(1) (1)

1 2

( ) ( ) 0

( ) ( ) 0

N Nz h z h

z h z h

 

 

     

     
 (2) 

 

For the complete derivation of the zigzag functions, refer to [35,36]. 

In the case of homogeneous plates, the zigzag functions vanish identically and the 

displacement field, Eq. (1), reduces to that of FSDT. Recently, Tessler et. al. [39,40] showed that 

within RZT, the homogeneous plates should be modeled as laminated plates with infinitesimally 

small differences in the transverse shear moduli of the material layers (homogeneous limit 

methodology), thus producing highly accurate response predictions. Moreover, Gherlone [45] 

showed that when the external layers of a laminate are weaker than the adjacent layers, in terms of 

transverse shear stiffness, the RZT zigzag functions can be adapted naturally to the effective shear 

properties of the stacking sequence and lead to accurate results.  

In order to develop a plate theory which accounts for moderately large deflection and small 

strains, the von Kàrmàn’s non-linear strain-displacement relations are used [46]. Consistent with the 

displacement field of Eq. (1), the in-plane and transverse shear strains are 
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 

 

 

 

2( ) ( )
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2( ) ( )

22 ,2 2,2 2 2,2 ,2

( ) ( ) ( )
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( ) ( )

1

2

1

2

1,2

k k

k k

k k k

k k

z

u z w

v z w

u v z w w

   

   

   

      

    

   

   

      

  

 (3) 

 

where  
,

  denotes the partial derivative with respect to the midplane coordinate, x  ( =1,2); 

moreover 
,w      and ( ) ( )

,

k k

z  
 
( =1,2).  

The generalized Hooke’s law for the k
th

 orthotropic lamina, whose principal material directions are 

arbitrarily oriented with respect to the midplane reference coordinates, 1 2( , ) mx x S , is written as 

 

( ) ( ) ( )

11 11 12 16 11

22 12 22 26 22

12 16 26 66 12

2 22 12 2

1 12 11 1

0 0

0 0

0 0

0 0 0

0 0 0

k k k

z z

z z

C C C

C C C

C C C

Q Q

Q Q

 

 

 

 

 

     
     
        

    
    
    
           

(4) 

 

where ( )[ ] k

ijCC (i,j=1,2,6) and ( )[ ] kQQ  (,=1,2) are the transformed elastic stiffness 

coefficients referred to the 1 2( , , )x x z  coordinate system and relative to the plane-stress condition 

that ignores the transverse-normal stress. The expression of these coefficients in terms of the elastic 

moduli corresponding to the material coordinates, can be found, e.g., in [47]. 

 

3. NON-LINEAR EQUATIONS OF MOTION 

 

The plate represented in Figure 1 is subjected to a transverse pressure loading, 1 2( , , )q x x t , applied 

on the midplane mS , to surface tractions, 
1 1 2( , , )tp x x t  and 

2 1 2( , , )tp x x t , acting on the top surface,   , 

and on the bottom surface,   , respectively, and to traction stresses, 
1 2( , , )zT T T , prescribed on S . 

The plate equations of motion and boundary conditions are derived from the D’Alembert’s principle 

which may be written as 

 

0i eU W W      (5) 
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(a) Zigzag function 
( )

1

k
. (b) Zigzag function 

( )

2

k
. 

Figure 2. Zigzag functions of the Refined Zigzag Theory for a three-layered laminate. 

 

where   is the variational operator, U , iW
 
and eW  represent  the strain energy, the work of inertial 

forces and the work of the external loads, respectively. 

The variation of the total strain energy, U , is 

  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

11 11 22 22 12 12 1 1 2 2  

m

h

k k k k k k k k k k

z z z z

S h

U dzdS          


       (6) 

 

Introducing Eqs. (1), (3) and (4) in Eq. (6) and integrating by parts, the variation of the total strain 

energy reads 
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1 1 2 2 1 ,1 1 12 ,2 1 2 ,2 2 12 ,1 2

     

             

    

M n M n N v n M n M n

N u n M n M n N v n M n M n

Q n Q n N w n N w n N w n N w n w d

 

 

    

     



    

    

        



 (7) 

 

where 1n  and 2n  are the direction cosines of n, the unit outward vector normal to C , with respect to 

the coordinates 1 2( , )x x . Moreover,  
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   ( ) ( ) ( )

1 2 12 11 22 12, , , ,

h

T k k k

m

h

N N N dz  


  N

 

(8) 

 

 

1 1 2 2 12 12 21

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

11 1 11 22 2 22 12 1 12 2 12

, , , , , ,

, , , , , ,

T

b

h

k k k k k k k k k k k

h

M M M M M M M

z z z dz

   

          


 



M

 

(9) 

   ( ) ( ) ( ) ( ) ( ) ( )

2 2 1 1 2 2 2 1 1 1, , , , , ,

h

T k k k k k k

s z z z z

h

Q Q Q Q dz       


  Q

 

(10) 

 

are the membrane, bending and transverse shear stress resultants, respectively. 

The variation of the work of external forces, eW , is 

 

 

 

 

( ) ( )
1 21 2 1 2

( ) ( )

1 1 2 2

(1) (1)

1 1 2 2

( , , )

( ) ( )

( ) ( )

m

t

b

k k
ze z z

S S

t N t N

S

b b

S

W q x x t u dS T u T u T u dS

p u z h p u z h dS

p u z h p u z h dS



    

 

 

    

     

    

 





 
(11) 

Introducing Eq. (1) in Eq. (11), yields 

 

   

     

     

1 2

( ) ( )
1 21 1 1 2 2 2

( ) ( )

1 1 1 1 2 2 2 2

( ) ( )

1 1 1 1 2 2 2 2

1 1

( , , )

m

t

b

e

S

h

k k
z

C h

t N t N

S

b b

S

W q x x t wdS

T u z T v z T w

p u h p v h dS

p u h p v

z h z h

z h Sz hh d



 

        

       

       



 

 

       
 

      
 

     

 

 
   



 





 (12) 

 

By taking into account Eqs. (2), the equivalence among m t bS S S   and introducing the following 

definitions 
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 

 

1 1 1

2 2 2

1 1 1

2 2 2

t b

t b

t b

t b

p p p

p p p

m h p p

m h p p

 

 

 

 

 (13) 

 

the variation eW  reads  

 

 1 1 1 2 2 2 1 2

1 1 2 21 21 1 2 2

( , )

m

e

S

n n n nn n zn

C

W p u m p v m q x x w dS

N u M M N v M M V w d



 

     

      

     

       
  




 (14) 

 

where 

 

   ( ) ( )
1 1 2 2 1 1 1 2 2 21 2 1 2, , , , , , , , , , , ,

h

k k
n n n n zn n zn

h

N M M N M M V T zT T T zT T T dz
 

 


   (15) 

 

are the force and moment resultants of the prescribed tractions. 

The virtual work of the inertial forces, iW , is 

 

 ( ) ( ) ( ) ( ) ( )

1 1 2 2  

m

h

k k k k k

i z z

S h

W u u u u u u dzdS    


     && && &&

 

(16) 

 

where ( )k  is the material mass density of the k
th

 layer. Moreover, the dot indicates differentiation 

with respect to the time variable, i.e., f f t  & . Substituting Eq. (1) in Eq.(16) and performing 

integration through the thickness, gives rise to the 2-D form of the virtual work of inertial forces 

 

   

   

   

1 1

1 1 1 2

2 2 2 2

0 1 1 0 1 1 2 1 1 1 1

0 1 1 2 1 1 0 1 2 0 2

1 2 2 1 2 2 0 1 2 2 2 2 0

 

m

i

S

W I u I I u I u I I

I u I I I v I I v

I v I I I v I I I w w dS

 

   

   

      

     

      

       


     

     


 && &&&& &&&& &&

&& &&&& &&&& &&

&& &&&& &&&& && &&

 (17) 
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where the following definitions for the mass moments of inertia have been adopted 

 

   

    

( ) 2

0 1 2

2
( ) ( ) ( ) ( )

0 1 2

, , 1, ,

, , , ,i i i

h

k

h

h

k k k k

i i i

h

I I I z z dz

I I I z dz
  



   













 (18) 

 

By introducing Eqs. (7), (14) and (17) in Eq. (5), by taking into account that virtual variations are 

arbitrary variations, the non-linear differential equations of motion are obtained 

 

1

1,1 12,2 1 0 1 1 0 1:  u N N p I u I I      && &&&&  (19.1) 

2

12,1 2,2 2 0 1 2 0 2:  v N N p I v I I      && &&&&

 

(19.2) 

   1,1 2,2 1 ,1 12 ,2 2 ,2 12 ,1 0,1 ,2
:  w Q Q N w N w N w N w q I w        &&

 

(19.3) 

1

1 1,1 12,2 1 1 1 2 1 1 1:  M M Q m I u I I       && &&&&

 

(19.4) 

2

2 2,2 12,1 2 2 1 2 2 1 2:  M M Q m I v I I       && &&&&

 

(19.5) 

1 1 1

1 1,1 12,2 1 0 1 1 2 1:  M M Q I u I I          && &&&&

 

(19.6) 

2 2 2

2 2,2 21,1 2 0 1 2 2 2:  M M Q I v I I          && &&&&

 

(19.7) 

 

The D’Alembert’s principle also yields the variationally consistent kinematic and force boundary 

conditions 

 

11 1 12 2 on      or      on nuu u C N n N n N C    (20.1) 

212 1 2 2 on       or      on nuv v C N n N n N C  

 

(20.2) 

   1 1 2 2 1 ,1 12 ,2 1 12 ,1 2 ,2 2 on      or     Q Q  on znuw w C n n N w N w n N w N w n V C      

 

(20.3) 

11 1 1 1 12 2 on     or      on nuC M n M n M C   

 

(20.4) 

22 2 12 1 2 2 on     or      on nuC M n M n M C   

 

(20.5) 

11 1 1 1 12 2 on    or      on nuC M n M n M C
 

   

 

(20.6) 

22 2 21 1 2 2 on     or      on nuC M n M n M C
 

   

 

(20.7) 
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It is worthwhile to note that Eqs. (19) represent a generalization of the FSDT governing equations. 

In fact, the RZT displacement field, Eq. (1), is given by the superposition of the FSDT displacement 

field and of a through-the-thickness piecewise linear contribution related to the zigzag kinematic 

variables, 1  and 2 . Thus, the FSDT equations of motion are Eqs. (19.1)-(19.5) where all the 

mass moments of inertia multiplying the second order time derivative of 1  and 2
 
are neglected. 

Furthermore, since the von Kàrmàn strain-displacement relations are used, the non-linear 

contribution appears only in the third equation: in order to recover the linear equations of motion, 

the contribution given by the in-plane stress resultants to this equation has to be neglected. 

The plate constitutive equations are derived by substituting Eqs. (3) and (4) in Eqs. (8)-(10) and 

then integrating over the laminate thickness [36] 

 

nl

m m

T

b b

s s

    
    

    
         

N A B 0 e

M B D 0 e

Q 0 0 G e
 

(21) 

 

where 

 

   
2 2

,1 ,1 ,2 ,2 ,2 ,1 ,1 ,21/ 2 ,  1/ 2 ,  
T

nl

m u w v w u v w w     
 

e  (22.1) 

1,1 1,1 2,2 2,2 1,2 2,1 1,2 2,1,  ,  ,  ,  ,  ,  
T

b           e

 

(22.2) 

,2 2 2 ,1 1 1,  , ,  
T

s w w       e

 

(22.3) 

 

are the non-linear membrane, bending and transverse shear strain measures; 

 

  ;    ;  ;  

h h h h

T T

h h h h

dz dz dz dz    

   

      A C B CΒ D Β CΒ G Β QΒ  (23) 

 

are the stiffness matrices and 

 

( )

1 ( )

( ) 2

2 ( )

( ) ( ) 1

1 2

0 0 0 0 0
1 0 0

0 0 0 0 0 ; 
0 0 1

0 0 0 0

k

k

k

k

k k

z

z

z

 







 

 
  

    
  

 

Β Β  (24) 
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By introducing Eqs. (21) in Eqs. (19), the seven non-linear partial differential equations of motion 

in terms of kinematic variables are obtained. 

 

3.1 Linear bending 

 

In order to derive the equilibrium equations for the static linear response of the plate to external 

loads, the membrane strains are linearized with respect to the displacement components, see Eq. 

(22.1), and the inertial terms are discarded. Formally, the system of governing equations remains 

the same as in Eqs. (19) and the constitutive equations still read as Eqs. (21), with the only 

difference that the membrane strain measures are now given by  ,1 ,2 ,2 ,1,  ,  
T

m u v u v e . Thus, the 

static linear equilibrium equations read as follows 

 

1,1 12,2 1

12,1 2,2 2

1,1 2,2

1,1 12,2 1 1

2,2 12,1 2 2

1,1 12,2 1

2,2 21,1 2

0

0

0

0

0

0

0

N N p

N N p

Q Q q

M M Q m

M M Q m

M M Q

M M Q

  

  

  

  

  

   

   

  

  

 (25) 

 

3.2 Free vibrations 

 

The governing equations for linear free vibrations of the plate may be obtained from Eqs. (19) by 

neglecting the non-linear terms of the membrane strain measures and by discarding the external 

loads 
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1

2

1

2

1 1 1

1,1 12,2 0 1 1 0 1

12,1 2,2 0 1 2 0 2

1,1 2,2 0

1,1 12,2 1 1 2 1 1 1

2,2 12,1 2 1 2 2 1 2

1,1 12,2 1 0 1 1 2 1

2,2 21

N N I u I I

N N I v I I

Q Q I w

M M Q I u I I

M M Q I v I I

M M Q I u I I

M M









    



 

 

 

 

 

   

   

 

    

    

    



&& &&&&

&& &&&&

&&

&& &&&&

&& &&&&

&& &&&&

2 2 2

,1 2 0 1 2 2 2Q I v I I
        && &&&&

 (26) 

 

3.3 Linear buckling 

 

The governing equations of the linearized problem of buckling for symmetrically laminated plates 

subjected to uniformly distributed in-plane stress resultants, nnN  and nsN , can be formulated by 

using the Euler’s method of the adjacent equilibrium configurations. It is assumed that the plate 

remains flat during the pre-buckling equilibrium state and that the external in-plane stress resultants 

vary neither in magnitude nor in direction during buckling [48]. Under these assumptions, the 

linearized stability equations reads 

 

* *

1,1 12,2

* *

12,1 2,2

* * * * *

1,1 2,2 1, ,11 12, ,12 2, ,22

* * *

1,1 12,2 1

* * *

2,2 12,1 2

* * *

1,1 12,2 1

* * *

2,2 21,1 2

0

0

2 0

0

0

0

0

eq eq eq

N N

N N

Q Q N w N w N w

M M Q

M M Q

M M Q

M M Q

  

  

 

 

    

  

  

  

  

 (27) 

 

with the appropriate homogenous boundary conditions. The force and moment stress resultants 

appearing in Eqs. (27) and denoted with *( )g , are increment with respect to the pre-buckling state, 

1,eqN ,
2,eqN , and 

12,eqN
 
are the in-plane stress resultants at the equilibrium state. Moreover, since the 

task is only the estimation of the critical loads, non-linear terms can be neglected in the incremental 

stress-strain relations in order to obtain the linearized stability equations. 

 

4. NUMERICAL RESULTS 
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To assess the accuracy of the Refined Zigzag Theory for the analysis of sandwich structures, the 

linear boundary value problem of bending and the linear eigenvalue problems of free vibration and 

buckling of rectangular sandwich plates, both simply supported and clamped (along one or more 

edges), are considered. The rectangular plates are defined in the domain 

1 2[0, ], [0, ], [ , ]x a x b z h h    . Mechanical material properties of face-sheets and cores, as well as 

stacking sequences taken into consideration, are listed in Tables 1-3. In numerical examples, 

realistic core materials are used, for example the NOMEX honeycomb denoted by N (Table 2), 

whereas in other cases, for comparison purposes, the same mechanical properties as those reported 

in referenced papers are assumed. 

 

 

Table 1. Mechanical properties of isotropic and orthotropic materials used for the face-sheets. The Young’s 

moduli, ( )k

iE , and the shear moduli, 
( )k

ijG , are expressed in GPa; the density, ( )k , is expressed in kg m
-3

. 

Orthotropic Materials Isotropic Materials 

Face 

material 
F1 

F2 F3 F4 Face 

material 
F5 F6 

F7 

Ref. [30] Ref. [49] Ref. [30] Ref. [50] 

( )

1

kE  50 131 19 276 

( )kE  50 62.5 65.5 
( )

2

kE  10 10.34 1 6.9 

( )

3

kE  10 10.34 1 6.9 

( )

12

k  0.25 0.22 0.32 0.25 

( )k  0.34 0.34 0.25 
( )

13

k  0.25 0.22 0.32 0.25 

( )

23

k  0.25 0.49 0.49 0.3 

( )

12

kG  5 6.895 0.52 6.9 

( )

13

kG  5 6.205 0.52 6.9 

( )

23

kG  5 6.895 0.338 6.9 

( )k  - 1627 - 681.8 
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Table 2. Mechanical properties of core materials. The Young’s moduli, ( )k

iE , and the shear moduli, 
( )k

ijG , are 

expressed in GPa; the mass density, ( )k , is expressed in kg m
-3

. The parameter r is the Core-to-Face 

Stiffness Ratio (CFSR).  

Orthotropic Materials Isotropic Materials 

Core 

material 

N C1 C2 Core 

material 
C3 

C4 C5 

Ref. [53] Ref. [49] Ref. [30] Ref. [30] Ref. [50] 

( )

1

kE  10
-5

 3.2×10
-5

 0.5776 

( )kE  62.5 r 6.89×10
-3

 negligible 
( )

2

kE  10
-5

 2.9×10
-5

 0.5776 

( )

3

kE  75.85×10
-3

 0.4 0.5776 

( )

12

k  0.01 0.99 0.0025 

( )k  0.34 0 - 
( )

13

k  0.01 3×10
-5

 0.0025 

( )

23

k  0.01 3×10
-5

 0.0025 

( )

12

kG  22.5×10
-3

 2.4×10
-3

 0.1079 

( )kG  - - 0.131 
( )

13

kG  22.5×10
-3

 7.9×10
-2

 0.1079 

( )

23

kG  22.5×10
-3

 6.6×10
-2

 0.22215 

( )k  - - 1000 
( )k  - 97 - 
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Table 3. Sandwich laminate stacking sequences (from bottom to top surface); tc and tf  are the core and the 

single face-sheet thickness, respectively.  

Laminate Normalized lamina thickness, 2h
(k)

/2h Lamina materials Lamina orientation (°) Ref. 

L1 (0.05/0.05/0.8/0.05/0.05) (F1/ F1/N/ F1/ F1) (0/90/Core/90/0) - 

L2 
(0.5tf/0.5tf/tc/0.5tf/0.5tf) 

refer to Sect. 4.1, 4.2 
(F2/ F2/ C4/ F2/ F2) (0/90/Core/0/90) [30] 

L3 (0.1/0.7/0.2) (F6/ C3/ F5) (0/Core/0) - 

L4 
(0.5tf/0.5tf/tc/0.5tf/0.5tf) 

refer to Sect. 4.2 
(F4/ F4/ C2/ F4/ F4) (90/0/Core/90/0) [30]

 

L5 (0.1tf/0.1tf)5/tc/(0.1tf/0.1tf)5 (F3/ F3)5/ C1/( F3/ F3)5 (0/90)5/Core/(90/0)5 [49] 

L6 (0.5334/4.597 /0.5334) mm (F7/ C5/ F7) (0/Core/0) [50] 

 

Analytical solutions based on RZT are derived and compared with 3D exact elasticity solutions, 

high-fidelity finite element solutions when the former are not available, and with solutions obtained 

with higher-order ESL, LW or ZZ models. Moreover, a comparison with the results obtained by 

means of FSDT and different values of the shear correction factors is performed. 

 

4.1 Linear bending 

 

The numerical results presented in this section refer to the linear boundary value problem of 

bending of simply supported sandwich plates. Eqs. (26) have to be considered to solve the problem 

in the framework of RZT. 

  

Problem 1 

A simply supported, cross-ply sandwich plate subjected to a bi-sinusoidal transverse pressure, 

1 2 0 1 2( , ) sin( / )sin( / )q x x q x a x b  . 

For this problem, an exact elasticity solution is available (as derived by Pagano in [54]) and is used 

as a reference for assessing the performances of RZT. The simply supported boundary conditions 

read (see, Eqs.(20)),  
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1 2 2 1 1 1

2 1 1 2 2 2

0, :   0

0, :  0

x a v w N M M

x b u w N M M





 

 

       

       
 (28) 

 

and the exact solution is given by the following trigonometric expansions [36] 

 

Table 4a. Problem 1, Laminate L1: normalized maximum (central) deflection, 

2 4

11 0(10 / ) ( / 2, / 2)w D q a w a b ; k
2
 is the shear correction factor. 

a/2h Pagano RZT 

FSDT 

kx
2
= 1 

ky
2
 = 1 

kx
2
= 5/6 

ky
2
= 5/6 

kx
2
 = 2/3 

ky
2
 = 2/3 

kx
2
 = 0.0242 

ky
2
 = 0.0225 

6 8.038 8.040 0.573 0.610 0.665 8.243 

10 3.254 3.253 0.456 0.469 0.489 3.217 

20 1.118 1.118 0.406 0.410 0.415 1.097 

50 0.507 0.507 0.392 0.393 0.394 0.503 

100 0.419 0.419 0.390 0.391 0.391 0.418 

 

Table 4b. Problem 1, Laminate L2, core-to-face thickness ratio tc/tf =10: normalized maximum (central) 

deflection, 2 4

11 0(10 / ) ( / 2, / 2)w D q a w a b ; k
2
 is the shear correction factor. 

a/2h Pagano RZT 

FSDT 

kx
2
= 1 

ky
2
 = 1 

kx
2
= 5/6 

ky
2
= 5/6 

kx
2
 = 2/3 

ky
2
 = 2/3 

kx
2

 =0.0030 

ky
2

 =0.0032 

6 58.913 58.913 0.654 0.701 0.772 76.855 

10 24.702 24.702 0.504 0.521 0.546 27.936 

20 6.909 6.909 0.440 0.444 0.451 7.299 

50 1.478 1.478 0.422 0.423 0.424 1.520 

100 0.684 0.684 0.420 0.420 0.420 0.694 
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(29) 

 

where  1 2 1 2, , , , , ,   U V W  are the unknown amplitudes of the kinematic variables which are 

determined from the satisfaction of the equilibrium equations, Eqs. (25). For comparison purposes, 

analytic solutions are also obtained using FSDT with different shear correction factors: at first, the 

three classical values (1, 5/6 and 2/3) are used for both shear correction factors kx
2 

and ky
2
, then 

values  

 

for kx
2 

and ky
2 

are estimated by means of a procedure adopted by Ferreira in [55] and based on a 

comparison between the shear strain energy resulting from the piecewise constant shear strain 

assumption, proper of FSDT, and that coming from the three-dimensional equilibrium equations.  

Two square sandwich plates (laminates L1 and L2, Table 3), with laminated composite cross-ply 

face-sheets and a soft core, are considered and the non-dimensional transverse displacement for 
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different span-to-thickness ratios, a/2h, is compared with the exact elasticity solution and with the 

FSDT results (Tables 4a and 4b). Results collected in Tables 4a and 4b show that the FSDT 

solution,  

 

Figure 4. Problem 1, Laminate L1, a/2h=6: through-the-thickness distribution of normalized in-plane 

displacement,  4 4 ( )

2 11 0 210 ku D q a u . The FSDT solution is obtained with kx
2
= ky

2
=0.0242. 
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Figure 5. Problem 1, Laminate L1, a/2h=6: through-the-thickness distribution of normalized in-plane normal 

stress,  2 2 ( )

11 0 114 kh q a  . The FSDT solution is obtained with kx
2
= ky

2
=0.0242. 

 

Figure 6. Problem 1, Laminate L1, a/2h=6: through-the-thickness distribution of normalized in-plane normal 

stress,  2 2 ( )

22 0 224 kh q a  . The FSDT solution is obtained with kx
2
= ky

2
=0.0242. 
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computed with the classical values of the shear correction factors, is very stiff especially when the 

plate is thick, whereas the solution converges to the exact result when the span-to-thickness ratio is 

high (a/2h=100 at least). If the shear correction factors are determined by the procedure described 

in [55], the FSDT solution improves and it approaches the Pagano’ solution, as in the case of 

laminate L1, also when the plate is thick (Table 4a). Nevertheless, shear correction factors 

computed as in [55] are not always able to produce accurate deflection predictions; see, for 

example, laminate L2 (Table 4b) and the related FSDT solution which is too deformable, thus 

leading to an overestimation of the exact solution (by 30% for a/2h=6). These results confirm the 

observation by Birman and Bert [44] on the use of shear correction factors for the FSDT-based 

static and dynamic analysis of sandwich plates, i.e., none of the shear correction factors proposed in 

literature are able to produce accurate results in a wide range of cases. The RZT results match very 

well with the 3D exact elasticity solution for every value of the span-to-thickness ratio considered 

and without using any shear correction factor. 

 

Figure 7. Problem 1, Laminate L1, a/2h=6: through-the-thickness distribution of normalized transverse shear 

stress,  2 ( )

1 0 12 k

z zh q a  . The FSDT solution is obtained with kx
2
= ky

2
=0.0242.  
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Figure 8. Problem 1, Laminate L1, a/2h=6: through-the-thickness distribution of normalized transverse shear 

stress,  2 ( )

2 0 22 k

z zh q a  . The FSDT solution is obtained with kx
2
= ky

2
=0.0242. 

 

Figures 3-8 show a comparison of the through-the-thickness distribution of normalized in-plane 

displacements and stresses for laminate L1, with a span-to-thickness ratio a/2h = 6. Even if the 

FSDT solution obtained with suitable values of the shear correction factors [55] is accurate in terms 

of maximum (central) deflection, the through-the-thickness distributions of in-plane displacements 

and stresses are not in agreement with the reference solutions. In particular, maximum in-plane 

normal stresses are heavily underestimated, Figures 5 and 6. This inaccuracy represents one of the 

main drawbacks of the shear-correction strategy within FSDT. The RZT accurately models in-plane 

displacements, in-plane normal stresses and also transverse shear stresses, obtained by integration 

of the equilibrium equations and denoted by “Integrated Shear Stress” (Figures 7 and 8). The RZT 

transverse shear stresses obtained by the  
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Table 5. Problem 1, Laminate L3: comparison on normalized maximum (central) deflection, 

2 4

11 0(10 / ) ( / 2, / 2)w D q a w a b . 

 a/2h=6  a/2h=100 

CFSR=10
-1

   

Pagano 1.214 0.845 

RZT 1.212 0.845 

FSDT    

 kx
2
= ky

2
 = 1 0.959 0.844 

 kx
2
= ky

2
 = 5/6 0.982 0.844 

 kx
2
= ky

2
 = 2/3 1.017 0.845 

 kx
2
= ky

2
 = 0.4042  1.129 0.845 

CFSR=10
-3

   

Pagano 22.667 0.978 

RZT 22.658 0.978 

FSDT    

 kx
2
= ky

2
 = 1 0.994 0.857 

 kx
2
= ky

2
 = 5/6 1.021 0.858 

 kx
2
= ky

2
 = 2/3 1.062 0.858 

 kx
2
= ky

2
 = 0.0058  24.322 0.941 

 

constitutive equations are through-the-thickness piece-wise constant and provide an adequate 

esteem of the average stress in each layer.  

The main physical reason for the zigzag shape of in-plane displacements relies on the 

different mechanical properties of adjacent layers. In order to assess the predictive capabilities of 

RZT with respect to this property, an important mechanical parameter of sandwich plates may be 

introduced, namely the Core-to-Face Stiffness Ratio, CFSR=r. A rectangular three-layer sandwich 

plate (laminate L3, Table 3) is considered: the face sheets are made using different materials, and 

the mechanical properties of the core are related with those of the bottom face sheet by means of the 

parameter r (see Table 2). 

The non-dimensional RZT transverse displacement for different values of the span-to-

thickness ratio, a/2h, and of CFSR=r, is compared with Pagano’ s solution and the FSDT solution, 

see Table 5. Two different values of r are considered in order to investigate the case of a stiff core 

(r=10
-1

) and the case of a soft core (r=10
-3

). When the sandwich plate with a stiff core is considered, 

the use of shear corrections factors computed as in [55] lead to slightly more accurate results by 
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FSDT than with classical values, k
2
=1, 5/6 and 2/3. On the other hand, when using a soft core, the 

classical correction factors are inadequate whereas those based  

 

Table 6. Problem 2, Laminate L2, core-to-face thickness ratio, tc/tf =10: comparison on the first six non-

dimensional circular frequencies,   24

22mp mp f fa h E   , where f  and 2 fE are the mass density 

and the transverse Young’s modulus of the face, respectively. 

a/2h 
Mode: 

m,p 

LW 

[21]
 

RZT LZZ CZZ 
HSDT 

[56]
 

FSDT 

kx
2
= 1 

ky
2
 = 1 

kx
2
 = 

5/6 

ky
2
 = 

5/6 

kx
2
= 

2/3  

ky
2
= 

2/3 

kx
2
=0.00296 

ky
2
=0.00319 

10 1,1 1.848 1.852 1.852 1.852 4.859 14.284 13.997 13.597 1.715 

 1,2 3.220 3.229 3.229 3.230 8.019 32.457 31.113 29.378 2.751 

 2,2 4.289 4.305 4.306 4.307 10.297 44.276 42.244 39.647 3.444 

 1,3 5.224 5.241 5.243 5.244 11.738 55.138 51.95 48.057 3.910 

 2,3 6.094 6.117 6.120 6.121 13.471 63.112 59.508 55.083 4.424 

 3,3 7.676 7.704 7.711 7.712 16.132 77.626 72.857 67.075 5.169 

100 1,1 11.940 11.946 11.946 11.946 15.509 16.277 16.273 16.266 11.843 

 1,2 23.402 23.415 23.415 23.414 39.029 44.922 44.882 44.823 23.332 

 2,2 30.943 30.961 30.962 30.961 54.762 64.809 64.739 64.634 30.479 

 1,3 36.143 36.166 36.166 36.166 72.757 95.516 95.328 95.048 36.022 

 2,3 41.447 41.474 41.475 41.474 83.441 109.56 109.35 109.02 41.008 

 3,3 49.762 49.796 49.797 49.796 105.378 144.72 144.38 143.86 48.779 

 

on [55] provide better deflection estimations (even if, for a/2h=6, an overestimation of more than 

7% is still obtained). 

Instead, RZT ensures very accurate results if compared with the reference solutions, for both cases 

of stiff and soft core. 

 

4.2 Free vibrations 

 

In this section, free-vibration analyses are conducted for simply supported and fully clamped 

square sandwich plates. Frequencies of undamped free vibration are the eigenvalues of Eqs. (26) 

and the related eigenvectors represent the corresponding modal shapes. 
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Problem 2 

A simply supported, cross-ply square sandwich plate (Laminate L2). 

Since the boundary conditions are the same as for Problem 1 and the stacking sequence is cross-ply, 

spatial approximations similar to those of Eqs. (29) are used to obtain the exact solution of the 

eigenvalue problem, Eqs. (26), in the framework of RZT 

 

   

 

 

 
 

 

 

 

1 2
1 2

1 1

1 2

1 2
1 1 2 1

1 1

1 1 2 1

1 2

2 1 2

2 1 2

, , sin sin sin

, ,

, , cos sin sin

, ,

, ,

, ,

, ,

M P

mp mp

m p

mpM P

mp mp

m p

mp

mp

m x p x
w x x t W t

a b

u x x t U
m x p x

x x t t
a b

x x t

v x x t V

x x t

x x t

 


 
 







 

 

   
    

   

  
      

        
         

 
 

 
 
 





 1 2
2

1 1

2

sin cos sin
M P

mp mp

m p

mp

m x p x
t

a b

 


 

 
     
     

     



 
(30) 

 

where 
mp  are the circular frequencies, related to the corresponding natural frequencies, 

mpf , by the 

simple relation 2mp mpf   and where m and p are the number of half-waves along the x1- and x2-

direction, respectively, of each mode shape. In Table 6, the first six non-dimensional circular 

frequencies obtained using RZT for two values of the span-to-thickness ratio are presented and 

compared with other solutions available in literature. Solution quoted as LW [21] is obtained using 

a layer-wise model wherein a cubic expansion in the thickness direction for the three displacement 

components is assumed and the continuity of transverse stresses at layer interfaces is ensured. The 

LW model is able to estimate accurate natural frequencies for laminated composite and sandwich 

plates, therefore its solution can be taken as a reference result in this comparison. Moreover, 

solution quoted as HSDT [56] is  
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Figure 9. Problem 1, Laminate L2, a/2h=10: contour plots of the first six mode shapes obtained with RZT.  
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Table 7. Problem 2, Laminate L2, a/2h=10: comparison on the fundamental non-dimensional circular 

frequency,  4 2

1 1 2f fa h E   ,  where f  and 2 fE
 
are the mass density and the transverse Young’s 

modulus of the face, respectively. 

tc/tf 
Exact 

[57] 
RZT LZZ CZZ 

HSDT 

[16] 

FSDT 

(kx
2
; ky

2
) 

4 1.908 1.910 1.911 1.911 8.995 
1.317 

(kx
2
=0.0014;ky

2
=0.0017) 

10 1.848 1.852 1.852 1.852 4.859 
1.715 

(kx
2
=0.0030;ky

2
=0.0032) 

20 2.131 2.135 2.135 2.135 3.143 
2.093 

(kx
2
=0.0055;ky

2
=0.0058) 

30 2.332 2.336 2.336 2.336 2.848 
2.313 

(kx
2
=0.0081;ky

2
=0.0084) 

40 2.469 2.473 2.473 2.473 2.827 
2.457 

(kx
2
=0.0107;ky

2
=0.0110) 

50 2.566 2.570 2.570 2.570 2.862 
2.557 

(kx
2
=0.0133;ky

2
=0.0135) 

 

obtained by means of a higher-order ESL theory which assumes a cubic variation across the 

thickness for the three displacement components. Finally, other two models are used for comparison 

purposes, i.e., the linear (LZZ) [24] and the cubic (CZZ) [25] Di Sciuva’s original zigzag model. 

Both high-order and first-order displacement-based equivalent single layer models (HSDT and 

FSDT with kx
2
= ky

2
 = 1, 5/6, 2/3), highly overestimate the natural frequencies. This is due to the 

difference of mechanical properties between core and faces which causes an overestimation of the 

stiffness of the plate. When FSDT is used with kx
2
 and ky

2
 evaluated according to [55], although an 

improvement may be observed, frequencies are underestimated. The error is always below 2% 

when the plate is thin, a/2h=100, whereas ranges from 7% (fundamental frequency) to 30% (6
th

 

frequency) when the plate is moderately thick, a/2h=10. It is interesting that FSDT, coupled with kx
2 

and ky
2
 evaluated according to [55], ensures better results than the HSDT model. The RZT results, 

as well as those obtained with LZZ and CZZ, are very close to each other and compare favorably 

with the LW solutions, even if RZT and LZZ are linear models whereas CZZ is cubic. 
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Figure 9 shows the contour plots of the first six mode shapes obtained with RZT and corresponding 

to the frequencies reported in Table 6, for a/2h=10. 

In order to investigate the influence of the core-to-face thickness ratio on the predictive capabilities 

of RZT and of other models, the fundamental frequency of laminate L2, a/2h=10, has been 

estimated for different values of tc/tf (Table 7). The exact solution for this problem, based on the 

propagator matrix method and on a semi-analytical solution of a higher-order mixed approach [57], 

is used as reference. 

Also for the cases considered in Table 7, HSDT overestimates the stiffness of the plate leading to 

high values of the fundamental frequency. The error of HSDT reduces as the core-to-face thickness 

ratio increases since the plate approaches the behavior of a single-layer plate. When the core-to-face 

thickness ratio is small, the shear correction factors estimation procedure [55] is not effective and 

FSDT leads to an under-estimation of the reference frequency values (more than 30% for tc/tf=4). 

For higher values of tc/tf, better results are obtained by means of FSDT. Taking into account the 

results reported in Tables 6 and 7, the shear correction factors estimation procedure [55], coupled 

with FSDT, provides accurate frequency estimations for thin sandwich plates or thick laminates 

with a large value of the core-to-face thickness ratio. The RZT confirms a very good agreement 

with the reference solution in the considered range of tc/tf, thus demonstrating the wide range of 

applicability of the proposed model for sandwich plates. Also the other considered linear zigzag 

model, LZZ, is accurate; no appreciable improvements are introduced by using a cubic zigzag 

model, CZZ.  

 

Table 7. Problem 2, Laminate L2, a/2h=10: comparison on the fundamental non-dimensional circular 

frequency,  4 2

1 1 2f fa h E   ,  where f  and 2 fE
 
are the mass density and the transverse Young’s 

modulus of the face, respectively. 

tc/tf 
Exact 

[57] 
RZT LZZ CZZ 

HSDT 

[16] 

FSDT 

(kx
2
; ky

2
) 

4 1.908 1.910 1.911 1.911 8.995 
1.317 

(kx
2
=0.0014;ky

2
=0.0017) 

10 1.848 1.852 1.852 1.852 4.859 
1.715 

(kx
2
=0.0030;ky

2
=0.0032) 

20 2.131 2.135 2.135 2.135 3.143 
2.093 

(kx
2
=0.0055;ky

2
=0.0058) 
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30 2.332 2.336 2.336 2.336 2.848 
2.313 

(kx
2
=0.0081;ky

2
=0.0084) 

40 2.469 2.473 2.473 2.473 2.827 
2.457 

(kx
2
=0.0107;ky

2
=0.0110) 

50 2.566 2.570 2.570 2.570 2.862 
2.557 

(kx
2
=0.0133;ky

2
=0.0135) 

 

Problem 3 

A fully clamped, cross-ply square sandwich plate (laminate L4). 

Along a clamped edge all the kinematic variables vanish. For clamped boundary conditions, the 

RZT exact solution does not 

 

Table 8. Problem 3, Laminate L4, core-to-face thickness ratio, tc/tf=8: comparison on the first ten non-

dimensional circular frequencies,   1100mp mp c fa E   , where 
c  is the mass density of the core and 

1 fE
 
is the longitudinal Young’s modulus of the face. 

a/2h Mode: m,p 
3D FE 

[58] 
RZT(M=P=10) LZZ(M=P=10) CZZ(M=P=10) 

FSDT(M=P=10) 

kx
2
=0.0834; 

ky
2
=0.1445 

5 1,1 12.046 12.327 12.391 12.403 11.434 

 2,1 18.270 18.158 18.263 18.292 16.407 

 1,2 20.572 21.543 21.673 21.711 19.562 

 2,2 24.874 25.474 25.637 25.687 22.429 

 3,1 26.405 26.092 26.313 26.379 22.850 

 3,2 30.644 31.787 32.053 32.136 27.505 

 1,3 - 32.279 32.520 32.611 28.511 

 2,3 - 35.164 35.436 35.538 28.812 

 4,1 - 35.696 36.182 36.307 30.856 

 3,3 - 40.164 40.535 40.723 32.929 

10 1,1 11.224 11.444 11.479 11.477 11.183 

 2,1 16.678 16.456 16.502 16.504 16.094 

 1,2 18.965 19.813 19.883 19.883 19.055 
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 3,1 22.710 22.917 22.977 22.983 22.199 

 2,2 23.527 23.160 23.248 23.253 22.356 

 3,2 28.073 28.194 28.295 28.303 27.113 

 1,3 - 29.521 29.63 29.639 28.120 

 4,1 - 30.120 30.219 30.243 28.797 

 2,3 - 31.898 32.014 32.020 30.449 

 4,2 - 34.386 34.548 34.620 32.766 

 

 exist and an approximate solution has been developed by means of the Rayleigh-Ritz method. The 

kinematic variables are approximated in the following way 

 

   1 2 1 2 1 2 1 2 1 2

1 1

, , , , , , , , , , , , ( ) ( )
M P

mp mp mp mp mp mp mp m p

m p

u v w U V W x x     
 

      (31) 

 

where 1( )m x
 
and 

2( )p x  are Gram-Schmidt polynomials built to satisfy the geometric boundary 

conditions; for the particular expressions of 1( )m x
 
and 

2( )p x , see Ref. [35]. In Table 8, the first 

ten circular frequencies, computed with different approaches, are compared with the RZT results. 

Solution cited as 3D FE [58] is obtained by means of three-dimensional finite element analysis and 

it can be considered as a reference result. For comparison purposes, solutions are also obtained with 

FSDT (shear correction factors as in [55]). Moreover, Di Sciuva’s linear (LZZ) and cubic (CZZ) 

models are involved in the comparison. Also the FSDT, LZZ and CZZ solutions are obtained by 

means of the Rayleigh-Ritz’s method using a similar procedure established for RZT (see Eq. (31)). 

Pursuant to a convergence analysis performed for the RZT, LZZ, CZZ, and FSDT solutions, ten 

Gram-Schmidt polynomials in both directions, i.e. M=P=10, are found to be the minimum number 

able to guarantee convergent results. 

As for Problem 2, FSDT under-estimates the reference frequency values, especially for higher-order 

modes (error up to 11 %). The error reduces by increasing the span-to-thickness ratio and the results 

approach those of the 3D FEM solutions. From the results reported in Table 8, RZT, LZZ and CZZ 

appear accurate in an engineering sense, if compared with the reference solution. The RZT 
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Figure 10. Problem 3, Laminate L4, a/2h=5: contour plots of the first six mode shapes obtained with RZT.  

 

Table 9. Problem 4, Laminate L5: comparison of uni-axial overall buckling load parameter, 

 2 3

1 1 2

cr

fn N b E h  where 1

crN  is the uniform uni-axial critical load and 2 fE  is the transverse Young’s 

modulus of the face. 

 tf /2h =0.025  tf /2h =0.05  tf /2h =0.1 

a/2h 5 10 20  5 10 20  5 10 20 

3D [13] 1.503 2.238 2.554  2.082 3.737 4.659  2.605 5.608 7.897 

RZT 1.539 2.263 2.566  2.115 3.765 4.681  2.628 5.633 7.921 

LZZ  1.540 2.264 2.566  2.120 3.769 4.683  2.642 5.652 7.931 

CZZ  1.572 2.281 2.571  2.139 3.784 4.688  2.632 5.637 7.923 

FSDT            

kx
2
= ky

2
 =1 1.682 2.337 2.589  2.622 4.122 4.811  4.029 6.952 8.491 

kx
2
=ky

2
=5/6 1.566 2.278 2.571  2.390 3.971 4.758  3.623 6.631 8.368 
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kx
2
=ky

2
=2/3 1.418 2.195 2.543  2.110 3.763 4.681  3.147 6.202 8.189 

kx
2
, ky

2
  

1.539 2.263 2.566  2.116 3.767 4.682  2.620 5.638 7.926 

(kx
2
=0.820, ky

2
=0.782)  (kx

2
=0.697, ky

2
=0.643)  (kx

2
=0.541, ky

2
=0.479) 

 

 preserves its remarkable accuracy also for clamped boundary condition, even considering higher 

modes, thus ensuring a wide range of applicability of this model. Results reported in Table 8 put 

also in evidence two points. Firstly, the LZZ and CZZ capabilities in predicting accurate natural 

frequencies are not affected by the clamped boundary conditions, contrary to what happens to 

transverse shear stresses estimation near clamped edges [33-36]. Secondly, as already highlighted 

by Di Sciuva and Icardi [59], the use of an higher-order zigzag model does not ensure improvement 

in the prediction of the global responses, above all in the range of core-to-face thickness ratio 

considered in the present numerical cases. 

From these observations, we can state that a relevant improvement in the prediction capability of 

global response of an ESL theory is due to the use of a suitable zigzag function more than to the 

adoption of higher-order polynomial expansions. 

 The contour plots of the first six mode shapes, obtained with RZT for a/2h=5, are represented in 

Figure 10. 

 

4.3 Linear buckling 

 

In this section, results concerning the critical buckling load of (i) simply supported sandwich 

plates subjected to uniform uni-axial compressive load, (ii) fully clamped sandwich plates under 

uniform bi-axial compressive load, and (iii) plates supported on two edges, clamped on the others 

and subjected to in-plane shear load, are presented. Buckling loads may be calculated within RZT 

as eigenvalues of the stability equations, Eqs. (27), coupled with suitable homogeneous boundary 

conditions. The generalized displacement components in Eqs. (27) are measured from the state just 

prior to the occurrence of the buckling. 

     

Problem 4 

A square sandwich plate (laminate L5), simply supported on all edges and subjected to a uniform 

uni-axial compressive load, 
1N . 

Since the boundary conditions are of simple support and cross-ply sandwich plates are considered, 

the spatial approximation of the unknown kinematic variables are given by expressions similar to 
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those of Eqs. (30). Comparison of the buckling critical load, for different values of span-to-

thickness ratio, a/2h, and face-to-overall thickness ratio, tf/2h, is made. Several models are 

considered in order to assess the predictive capabilities of RZT (see Table 9). Solution quoted as 3D 

[13] is taken as reference in the comparison: the face-sheets and the core are treated as three 

dimensional continua and the buckling response is obtained by using the solution procedure 

suggested by Srinivas and Rao [56]. 

The FSDT, with the classical shear correction factors, over-estimates the uni-axial buckling load 

parameter; whereas the results converge to the reference solutions if the procedure proposed in [55] 

is adopted to calculate kx
2
 and ky

2
. For the present problem, FSDT provides accurate results since, as 

it has been highlighted in the previous section, the shear correction factors estimation procedure 

[55] is effective when the plate has a thick core layer, regardless the span-to-thickness ratio. The 

LZZ and CZZ results are very close to those obtained by means of RZT, the latter being slightly 

better and leading to highly accurate predictions within the considered ranges of span-to-thickness 

ratio, a/2h, and face-to-overall thickness ratio, tf/2h. 

 

Problem 5 

A fully clamped rectangular sandwich plate (laminate L6) under bi-axial compression 

2 1( 0.5 ).N N  

The same problem has been solved in [50] and, for comparison purpose, the same material and 

geometrical configuration has been used here. The RZT approximate solution is obtained by using 

the Rayleigh-Ritz method as for the dynamic Problem 2, Sect. 4.2, and the same spatial 

approximation for the incremental kinematic variables as in Eqs. (31). The FSDT, LZZ and CZZ 

solutions are computed in a similar manner. Since the RZT, LZZ, CZZ and FSDT solutions are 

approximate, a convergence study was carried out to select the required number of Gram-Schmidt 

polynomials, i.e. the values of M and P. The critical buckling stress, for different values of the 

aspect ratio a/b, is estimated by means of the above mentioned models and compared with several 

other solutions available in literature. In particular, two references are considered: a 2D finite 

element solution, by Khatua and Cheung [51], and one obtained with the Finite Strip Method 

(FSM), by Yuan and Dawe [52],
 
wherein the core is represented as a three-dimensional solid with 

quadratic through-the-thickness in-plane displacements and a linear transverse displacement, 

whereas the face-sheets are modeled as thin plates, i.e. according to the assumptions of the CLT. 

In Table 10, the critical buckling stresses are compared for the four above stated formulations and 

the results reported in [50]. 

The FSDT results, obtained with the classical values for the shear correction factors, overestimate 



38 
 

the reference solutions available in literature especially for values of the aspect ratio, a/b, lower 

than 1. Instead, the use of the shear correction factors computed as in [55] improves FSDT critical 

buckling stress predictions. Solutions obtained with the Di Sciuva’s linear (LZZ) and cubic (CZZ) 

zigzag models fit very well, in an engineering sense, with those obtained with the RZT, for every 

value of the aspect ratio considered. Comparisons made in Table 10 show that RZT is able to 

predict the critical buckling stresses that are in close agreement with the reference solutions [50]. 

These results also confirm that the use of a higher order model does not lead to relevant 

improvements in terms of global response predictions. It is worth remarking that as in the free 

vibration analyses (Problem 2, Sect. 4.2), the LZZ and CZZ deficiencies near the clamped edge do 

not affect the capability of these models to predict the critical buckling loads accurately. 

 

Problem 6 

A rectangular sandwich plate (laminate 7), simply supported on two opposite edges and clamped 

along the other edges, subjected to a uniform in-plane shear load, 
12N . 

The same problem has been solved in [50], therefore, for comparison purposes, the same material 

properties and geometry have been used here. The RZT approximate solution is obtained by using 

the Rayleigh-Ritz method. In this case, the boundary conditions read as: 

 

Table 10. Problem 5, Laminate L6, b=0.5969 m: comparison of the critical buckling stress (
1 2cr

cr fN t  in 

N mm
-2

.) 

 Aspect ratio (a/b) 

 0.5 0.7 1.0 

Khatua and Cheung [51]
 

170.91 112.41 81.45 

Yuan and Dawe [52]
 

170.11 111.15 80.95 

RZT (M=P=8) 170.37 111.25 80.99 

LZZ(M=P=7)  170.39 111.28 81.01 

CZZ(M=P=4)  170.65 111.54 81.25 

FSDT(M=P=6)     

 kx
2
= ky

2
 =1 220.72 129.73 89.65 

 kx
2
= ky

2
=5/6 220.36 129.61 89.59 

 kx
2
= ky

2
=2/3 219.81 129.43 89.51 

 kx
2
= ky

2
= 0.0264  170.26 111.18 80.93 
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Table 11. Problem 6, Laminate L6, b=0.5969 m: comparison of the critical buckling stress (
12 2cr

cr fN t  in 

N mm
-2

).  

 Aspect ratio (a/b) 

 0.5 0.7 1.0 

Yuan and Dawe [52]
 

256.80 172.00 134.60 

RZT(M=P=9) 257.44 172.04 134.54 

LZZ(M=P=12)  256.98 171.78 134.29 

CZZ(M=P=5)  258.17 173.28 135.63 

FSDT(M=P=10)     

 kx
2
= ky

2
 =1 336.59 208.81 158.12 

 kx
2
= ky

2
=5/6 336.00 208.54 157.95 

 kx
2
= ky

2
=2/3 335.10 208.14 157.69 

 kx
2
= ky

2
= 0.0264  256.68 171.44 133.96 

 

 

Figure 11. Problem 6, Laminate L6: contour plots of the buckling mode shapes obtained with RZT for each 

values of the aspect ratio considered in Table 11. 

 

* * * * * * *
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where the displacements and stress resultants denoted with *( )g  are incremental with respect to the 

pre-buckling state. The incremental kinematic variables are approximated in the following way 

 

   
* * * ** * *

1 2 1 2 1 2 1 2 1 2

1 1

, , , , , , , , , , , , ( ) ( )
M P

mp mp mp mp mp mp mp m p

m p

u v w U V W x x     
 

      (33) 

 

where 1( )m x
 

and 
2( )p x  are trigonometric functions and Gram-Schmidt polynomials, 

respectively,  built to satisfy the geometric boundary conditions.  

In a similar way, the FSDT, LZZ and CZZ solutions are obtained by means of the Rayleigh-Ritz’ 

method. 

Critical buckling stress values obtained by means of several models and with different values of the 

aspect ratio a/b, are reported in Table 11. Also in this case, the FSDT solution obtained with the 

classical values of the shear correction factors, overestimates the solution available in literature [52] 

and the others reported for comparison. When the shear correction factors are computed by means 

of the procedure suggested in [55], FSDT improves and its results approach the reference solutions, 

even if the solution remains conservative for every value of the aspect ratio considered. The use of a 

higher-order model, i.e. the Di Sciuva’s cubic zigzag model (CZZ), leads to a slightly higher values 

of the critical buckling stress if compared with those of the linear model (LZZ). It is demonstrated, 

also in this case, that the results computed by means of LZZ and CZZ are not negatively affected by 

the presence of clamped boundary conditions. The models are in fact able to estimate critical 

buckling stresses that are in good agreement with the reference solutions. Critical buckling stresses 

obtained with RZT compare favorably with the reference values within the considered range of 

aspect ratio values. 

Table 11 collects the RZT, LZZ, CZZ and FSDT convergent results obtained with M and P 

numbers of Gram-Schmidt polynomials that are reported as subscript in Table 11.    

The contour plots of the buckling mode, obtained with RZT for each values of the aspect ratio 

considered in Table 11, are represented in Figure 11. 

 

 

Results of Tables 9-11 show that RZT provides accurate predictions of critical buckling loads in 

several load and boundary conditions, thus demonstrating the wide range of applicability of the 

proposed model.   
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Conclusions 

The Refined Zigzag Theory (RZT) has been used in this paper in order to obtain the non-linear 

(in the von Kàrmàn sense) equations of motion and related boundary conditions of laminated 

composite and sandwich plates. The governing equations have been derived and used to solve the 

(i) linear boundary value problem of bending and, for the first time, the linear eigenvalue problems 

of (ii) undamped free vibrations and (iii) buckling under uni- and bi-axial compression and shear 

load of sandwich plates, both simply supported and clamped. For the simply supported plates, the 

exact solution has been obtained by means of the usual trigonometric expansions of the kinematic 

unknowns, whereas, for the case of clamped boundary conditions, approximate solutions have been 

obtained by means of the Rayleigh-Ritz method. 

Several numerical studies have been performed in order to assess the accuracy of RZT in 

predicting global response quantities for sandwich plates, i.e., maximum deflection, natural 

frequencies, and buckling loads, and in evaluating local response quantities, i.e., through-the-

thickness distributions of displacements and stresses. Moreover, the influence of several 

geometrical (span-to-thickness ratio, core-to-face thickness ratio, aspect ratio) and mechanical 

(core-to-face stiffness ratio) parameters as well as of boundary conditions, has been investigated.  

In addition, for comparison purposes, results obtained with several previously developed linear 

and cubic zigzag models (LZZ and CZZ), 3D exact elasticity solutions, and high-fidelity finite 

element solutions have been presented. An investigation on the performance of the First-order Shear 

Deformation Theory (FSDT) with different shear correction factors has also been performed. 

The numerical studies have demonstrated that for the sandwich plates examined, RZT exhibits 

the same accuracy in predicting the global response quantities as the LZZ and CZZ theories. No 

significant improvements are brought by the use of a higher-order zigzag model (CZZ) as compared 

to the linear theories (RZT and LZZ). This observation confirms the importance of enriching the 

model kinematic description by means of a zigzag function rather than increasing the order of the 

approximation for the in-plane displacement components. The RZT preserves its accuracy changing 

the sandwich geometrical or mechanical parameters, the boundary and the loading conditions, thus 

ensuring a wide range of applicability. Moreover, RZT does not require any shear correction factor 

to provide good predictions. 

Furthermore, the present numerical studies have also demonstrated that FSDT, using specially 

derived shear correction factors, gives more accurate predictions for the global response quantities 

than those obtained with the classically adopted values of kx
2
 and ky

2
. In the majority of cases, the 

shear correction factors estimated by means of a procedure based on a transverse shear strain energy 

equivalence ensures accurate prediction of the maximum deflections, fundamental frequencies and 
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overall critical buckling loads. Nevertheless, the accuracy decreases when the sandwich plate is 

thick or it has a low value of the core-to-face stiffness ratio or core-to-face-thickness ratio. In 

particular, for decreasing values of the core-to-face stiffness ratio, an over-estimation of the 

maximum deflection, as well as an under-estimation of the natural frequencies and overall critical 

buckling loads, are observed. Moreover, in the free vibration problem, the under-estimation is 

stronger for the higher-order modes but, for a certain mode, the increase in the span-to-thickness 

ratio leads to more accurate results. Even when FSDT, coupled with more accurate shear correction 

factors, provides accurate esteems of the maximum deflection, the through-the-thickness 

distributions for in-plane displacements and stresses are quite far from the reference stresses, in 

particular resulting in a under-estimation of the maximum stresses.       

The RZT is accurate not only for static analyses of sandwich plates, as demonstrated in a number 

of previous papers, but also for estimating natural frequencies and buckling loads, as revealed by 

the numerical results of the present paper. By virtue of its accuracy, computational efficiency, and 

ease of implementation into FEM codes (requiring  C
0
-continuous kinematic variables), the RZT-

based finite elements appear to be highly desirable for a wide range of laminated composite and 

sandwich structural analyses.  

 

References 

 

[1] Noor AK, Burton CW. Computational models for sandwich panels and shells. Applied 

Mechanics Review 1996; 49(3): 155-199. 

[2] Weeks CA, Sun CT. Multi-core composite laminates. Journal of Advanced Materials 1994; 

25(3): 28-37. 

[3] Chang CC, Ebcioglu IK. Effect of cell geometry on the shear modulus and on density of 

sandwich panel cores. Journal of Basic Engineering 1961; 83(4): 513-518. 

[4] Penzien J, Didriksson T. Effective shear modulus of honeycomb cellular structure. AIAA 

Journal 1964; 2(3): 531-535. 

[5] Masters IG, Evans KE. Models for the elastic deformation of honeycombs. Composite 

Structures 1996; 35(4): 403-422. 

[6] Becker W. The in-plane stiffnesses of a honeycomb core including the thickness effect. Archive 

of Applied Mechanics 1998; 68: 334-341. 

[7] Becker W. Closed-form analysis of the thickness effect of regular honeycomb core material. 

Composite Structures 2000; 48: 67-70. 



43 
 

[8] Grediac M. A finite element study of the transverse shear in honeycomb cores. International 

Journal of Solids and Structures 1993; 30(13): 1777-1788. 

[9] Hole J, Becker W. A refined analysis of the effective elasticity tensor for general cellular 

sandwich cores. International Journal of Solids and Structures 2001; 38(21): 3689-3717. 

[10] Gherlone M, Di Sciuva M. Analytical models for the homogenization of sandwich honeycomb 

cores. In: Proceedings of 17th Congresso Nazionale AIDAA, Rome, 2003, pp. 457-466. 

[11] Ko W.L. Elastic constants for sf/db corrugated sandwich cores. NASA Technical Paper n° 

1562, 1980. 

[12] Pagano NJ. Exact solutions for rectangular bidirectional composites and sandwich plates. 

Journal of Composite Materials 1970; 4(1): 20-34. 

[13] Noor AK, Peters JM, Burton WS. Three-dimensional solutions for initially stressed structural 

sandwiches. Journal of Engineering Mechanics 1994; 120(2): 284-303.   

[14] Barut A, Madenci E, Heinrich J, Tessler A. Analysis of thick sandwich construction by a 

{3,2}-order theory. International Journal of Solids and Structures 2001; 38(34): 6063-6077. 

[15] Kant T, Swaminathan K. Analytical solutions for the static analysis of laminated composite 

and sandwich plates based on an higher order refined theory. Composite Structures 2002; 56(4): 

329-334. 

[16] Kant T, Swaminathan K. Analytical solutions for free vibration of laminated composite and 

sandwich plates based on higher-order theory. Composite Structures 2001; 53(1): 73-85. 

[17] Swaminathan K, Patil SS, Nataraja MS, Mahabaleswara KS. Bending of sandwich plates with 

antisymmetric angle-ply face-sheets- analytical evaluation of higher order refined computational 

models. Composite Structures 2006; 75(1-4): 114-120.  

[18] Swaminathan K, Patil SS. Analytical solutions using a higher order refined computational 

model with 12 degree of freedom for the free vibration analysis of antisymmetric angle-ply plates. 

Composite Structures 2008; 82(2): 209-216. 

[19] Kheirikhah MM, Khalili SMR, Malekzadeh Fard K. Biaxial buckling analysis of soft-core 

composite sandwich plates using improved high-order theory. European Journal of Mechanics 

A/Solids  2012; 31(1): 54-66. 

[20] Di Sciuva M, Icardi U. Numerical assessment of the core deformability effect on the behavior 

of sandwich beams. Composite Structures 2001; 52(1): 41-53.  

[21] Rao MK, Desai YM. Analytical solutions for vibrations of laminated and sandwich plates 

using mixed theory. Composite Structures 2004; 63(3-4): 361-373. 

[22] Dafedar JB, Desai YM, Mufti AA. Stability of sandwich plates by mixed, higher-order 

analytical formulation. International Journal of Solids and Structures 2003; 40(17): 4501-4517. 



44 
 

[23] Moreira RAS, Dias Rodrigues J. A layerwise model for thin soft core sandwich plates. 

Computers and Structures 2006; 84(19-20): 1256-1263. 

[24] Di Sciuva M. Bending, vibration and buckling of simply supported thick multilayered 

orthotropic plates: an evaluation of a new displacement model. Journal of Sound and Vibration 

1986; 105(3): 425-442. 

[25] Di Sciuva M. Multilayered anisotropic plate models with continuous interlaminar stresses. 

Composite Structures 1992; 22(3): 149-167. 

[26] Di Sciuva M. Development of an anisotropic, multilayered, shear-deformable rectangular plate 

element. Computers & Structures 1985; 21(4): 789-796. 

[27] Di Sciuva M. A general quadrilateral multilayered plate element with continuous interlaminar 

stresses. Computers & Structures 1993; 47(1): 91-105. 

[28] Di Sciuva M. A third-order triangular multilayered plate finite element with continuous 

interlaminar stresses. International Journal for Numerical Methods in Engineering 1995; 38(1): 1-

26. 

[29] Di Sciuva M., Icardi U., Villani M. Failure analysis of composite laminates under large 

deflection. Composite Structures 1998; 40(3-4): 239-255. 

[30] Xiaohui R., Wanji C. Free vibration analysis of laminated and sandwich plates using 

quadrilateral element based on an improved zig-zag theory. Journal of Composite Materials 2011; 

45(21): 2173-2187. 

[31] Pandit MK, Sheikh AH, Singh BN. Analysis of laminated sandwich plates based on an 

improved higher order zigzag theory. Journal of Sandwich Structures and Materials 2010; 12(3): 

307-326. 

[32] Pandit MK, Sheikh AH, Singh BN. Buckling of laminated sandwich plates with soft core based 

on an improved higher order zigzag theory. Thin-Walled Structures 2008; 46(11): 1183-1191. 

[33] Tessler A, Di Sciuva M, Gherlone M. Refinement of Timoshenko beam theory for composite 

and sandwich beams using zigzag kinematics. Technical Report NASA/TP-2007-215086, 

December 2007. 

[34] Tessler A, Di Sciuva M, Gherlone M. A refined zigzag beam theory for composite and 

sandwich beams. Journal of Composite Materials 2009; 43(9): 1051 – 1081. 

[35] Tessler A, Di Sciuva M, Gherlone M. Refined Zigzag Theory for laminated composite and 

sandwich plates. Technical Report  NASA-TP-2009-215561, 2009. 

[36] Tessler A, Di Sciuva M, Gherlone M. A consistent refinement of first-order shear deformation 

theory for laminated composite and sandwich plates using improved zigzag kinematics. Journal of 

Mechanics of Materials and Structures 2010; 5(2): 341-367. 



45 
 

[37] Di Sciuva M, Gherlone M, Tessler A. A robust and consistent first-order zigzag theory for 

multilayered beams, in: Gilat R, Banks-Sills L, editors. Advances in Mathematical Modelling and 

Experimental Methods for Materials and Structures: The Jacob Aboudi Volume, Springer, New 

York, 2010, pp. 255 - 268. 

[38] Versino D. Refined theories and discontinuous Galerkin methods for the analysis of 

multilayered composite structures. Ph.D. thesis, Politecnico di Torino, Italy, 2012. 

[39] Tessler A, Di Sciuva M, Gherlone M. Refined zigzag theory for homogeneous, laminated 

composite, and sandwich plates: a homogeneous-limit methodology for zigzag function selection.  

Technical Report NASA/TP-2010-216214, January 2010. 

[40] Tessler A, Di Sciuva M, Gherlone M. A homogeneous limit methodology and refinements of 

computationally efficient zigzag theory for homogeneous, laminated composite, and sandwich 

plates. Numerical Methods for Partial Differential Equations 2011; 27(1): 208 – 229. 

[41] Gherlone M, Tessler A, Di Sciuva M. C
0
 beam elements based on the refined zigzag theory for 

multilayered composite and sandwich laminates. Composite Structures 2011; 93(11): 2882 – 2894. 

[42] Oñate E, Eijo A, Oller S. Simple and accurate two-noded beam element for composite 

laminated beams using a refined zigzag theory. Computer Methods in Applied Mechanics and 

Engineering 2012; 213-216(1): 362-382.  

[43] Versino D, Gherlone M, Mattone M, Di Sciuva M, Tessler A. An efficient, C
0
 triangular 

elements based on the Refined Zigzag Theory for multilayered composite and sandwich plates. 

Composites Part B: Engineering 2013; 44B(1): 218 – 230. 

[44] Birman V, Bert CW.  On the choice of shear correction factor in sandwich structures. Journal 

of Sandwich Structures and Materials 2002; 4: 83-95. 

[45] Gherlone M. On the use of zigzag functions in equivalent single layer theories for laminated 

composite and sandwich beams: a comparative study and some observations on external weak 

layers, accepted for publication on Journal of Applied Mechanics; 2013. 

[46] Chueng-Yuan C. Nonlinear analysis of plates, McGraw-Hill Book Company, 1980. 

[47] Reddy JN. Mechanics of laminated composite plates. Theory and analysis, CRC Press, Inc., 

1997. 

[48] Brush DO, Almroth BO. O. Buckling of Bars, Plates, and Shells, McGraw-Hill Book 

Company, 1975. 

[49] Aiello MA, Ombres L. Buckling load design of sandwich panels made with hybrid laminated 

faces and transversely flexible core. Journal of Sandwich Materials and Structures 2007; 9(5): 467- 

485. 



46 
 

[50] Chakrabarti A, Sheikh AH. Buckling of laminated sandwich plates using an efficient plate 

model. International Shipbuilding Progress 2007; 54(1) 63-81. 

[51] Khatua TP, Cheung YK. Stability analysis of multilayer sandwich structures. AIAA Journal 

1973; 11(9): 1233-1234. 

[52] Yuan WX, Dawe DJ. Overall and local buckling of sandwich plates with laminated faceplates, 

part II: applications. Computer Methods in Applied Mechanics and Engineering 2001; 190(40-41): 

5215-5231.  

[53] Giglio  M, Manes A. Study of crack propagation in sandwich panels (Al Nomex). In: 

Proceedings of 34th National Conference of Italian Association for Stress Analysis, Milan, 

September 2005, (in Italian).  

[54] Pagano NJ. Exact solutions for composite laminates in cylindrical bending. Journal of 

Composite Materials 1969; 3(3): 398-411.  

[55] Ferreira AJM. A formulation of multiquadric radial basis function method for the analysis of 

laminated composite plates. Composite Structures 2003; 59(3): 385-392. 

[56] Srinivas S, Rao AK. Bending, vibration and buckling of simply supported thick orthotropic 

rectangular plates and laminates. International Journal of Solids and Structures 1970; 6(11): 1463-

1481. 

[57] Rao MK, Scherbatiuk K, Desai YM, Shah AH.  Natural vibration of laminated and sandwich 

plates. Journal of Engineering Mechanics 2004; 130(11) 1268-1278. 

[58] Kulkarni SD, Kapuria S. Free vibration analysis of composite and sandwich plates using an 

improved discrete Kirchhoff quadrilateral element based on third-order zigzag theory. 

Computational Mechanics 2008; 42: 803-824. 

[59] Di Sciuva M, Icardi U. On modeling of global and local response of sandwich plates. Journal 

of Sandwich Structures and Materials 2000; 2(4): 350-378. 

 


