
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Development of an innovative low-cost MARG sensors
alignment and distortion compensation methodology
for 3D scanning applications / Daniel, Grivon; Vezzetti, Enrico; Violante, MARIA GRAZIA. - In: ROBOTICS AND
AUTONOMOUS SYSTEMS. - ISSN 0921-8890. - (2013), pp. 1710-1716. [10.1016/j.robot.2013.06.003]

Original

Development of an innovative low-cost MARG sensors
alignment and distortion compensation methodology

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.robot.2013.06.003

Terms of use:

Publisher copyright

© 2013. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.robot.2013.06.003

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2511714 since: 2016-02-12T15:03:16Z

Elsevier



DEVELOPMENT OF AN INNOVATIVE LOW-COST MARG SENSORS ALIGNEMENT 
AND DISTORTION COMPENSATION METHODOLOGY FOR 3D SCANNING 

APPLICATIONS 

D. Grivon, E. Vezzetti, M.Violante 

Dipartimento di Ingegneria Gestionale e della Produzione, Politecnico di Torino,  
Corso Duca degli Abruzzi 24, 10129, Torino, Italy 

Tel.: +39 011 5647294; Fax: +39 011 5647299; e-mail: enrico.vezzetti@polito.it 
 

Abstract 

 Working in the low cost 3D scanner design domain, it would be very interesting to employ 
inertial technologies because they could provide objects surface spatial data, recording they 
movement moving, and asking a very low cost in term of sensor investment. Unfortunately these 
technologies are characterised by distortion problems that normally do not allow to obtain satisfying 
measures for being employed for 3D scanning applications.  
 This situation happens working with Magnetic Angular Rate Gravity (MARG) sensor, on which 
many reports have been written to describe the methods used to suitably manage the data provided 
by the sensors in order to obtain an accurate orientation estimation, but only a few address the 
problem of calibration and distortion compensation. Furthermore, the proposed approaches usually 
involve both complex sensors models and accurate calibration facilities expensive from the 
workload, the computational and the economic points of view which compromise their possible 
employment in low-cost 3D scanning applications. 
 In this paper a novel approach for MARG sensors heading alignment and distortion 
compensation is proposed in order to increase the reliability of the information provided by the 
sensors and improve the process of attitude estimation, in order to get measurement quality level 
sufficient to be employable in 3D scanning applications. 
 Both the effectivity and the reliability of the proposed approach are validated by some 
experimental results and the performances are evaluated considering the quality of the outcome 
provided by the same attitude estimation algorithm processing raw data and compensated data. 
 
Keywords: 3D Scanners, Magnetic Angular Rate Gravity, Calibration Procedure, Attitude 
Estimation. 
 
 
1. INTRODUCTION 

 
The need to obtain a 3D model, given a real object, a shape, or a surface, is becoming more and 
more important in different fields and for different purposes. For this reason, 3D scanner builder is 
investing in new technologies able to acquire the entire shape of complex object without constraints 
in term of object dimensions, locations, and material typologies. Accordingly, it is necessary to 
dispose of flexible tools that move around the object and allow to acquire the entire object shape 
without complex and time consuming software post processing operations. Some devices work 
employing special scanning heads with tracking systems for recording the head spatial position 
during the acquisition phase, while other employ special marker, located on the object surface, for 
maintaining fixed reference during the scanning tasks. All these technologies are able to provide 
interesting results, but are very expensive, so they could not be employable by all those people that 
could get advantages by the availability of 3D virtual model of real objects. Therefore, it is also 
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necessary to invest in other low technologies/sensors able to support the development of 3D 
scanning devices without important investments [1,2] 

In recent years, the scope linked to the inertial navigation has seen the development of 
numerous research activities in transversal fields of applications, ranging from the dead reckoning 
to the assisted navigation, from the motion racking to biomedical applications. This development 
was supported above all by new possibilities given by silicon manufacturing processes that led to 
the creation of specific sensors able to guarantee medium-high performance at reasonable prices. In 
this context, the measurement units known as MARG (Magnetic Angular Rate Gravity, mounting 
on-board an accelerometer, a gyroscope, and a magnetometer) have been widely used and studied. 
Starting from real time motion tracking for virtual reality applications [3,4] till arriving to aerospace 
vehicles and satellites control [5,6] these sensors are able to provide significant added values to 
different application domains. 

Their development and subsequent use arises from the need to mitigate estimation errors 
(mainly due to measurement noise or drift phenomena) that are generated in the process of 
integration of data provided by gyroscope (attitude determination) and accelerometer (position 
determination) necessary to obtain the overall information defining the position and orientation of a 
body. 

More recently, many research activities have focused in identifying the best methods of 
processing the information provided by MARG only for determining the orientation of a device: 
Using Complementary Filter [7,8] or the Kalman Filter [9,10] are the two most commonly used 
solutions that, although different in their theoretical foundations and implementation strategies, plan 
to use the orientation information provided by accelerometer and magnetometer to support the data 
acquired by the gyro in order tocorrect the drifts andother errors. 

In this context the growing trends towards modern 3D scanning systems, that include the use 
of a scanning head (equipped with a probe or with a laser scanner) free from physical constraints, 
imply the possibility to install a MARG measurements unit able to determine the orientation of 
scanning head itself. Anyway, this strategy implies that the attitude of the device can be computed, 
while the problem position determination is not solved yet. 

On the contrary, in the case in which the information that define the orientation are directly 
used to obtain three-dimensional displacement of the scanning device itself, the relevance of a 
correct attitude determination is crucial. In particular, the authors have highlighted how, starting 
from data that define a 2D path laying on the plane always tangent to the acquiring surface, it is 
possible to obtain a three-dimensional tracking of the movement done (thus a correct reconstruction 
of the surface on which the device is slid) [11]. 

In this context, however, the accuracy degree required for the data that define the attitude of 
the scanning device is very high. In particular, it is necessary to underline how even small constant 
errors in the orientation estimation may lead to drift phenomena and to consequent 
unreliablescanning results. 

In this sense it is fundamental to define an efficient and convenient procedure (from the 
workload, the computational and the economic points of views) for calibration and alignment of the 
various sensors mounted on the board in order to ensure the reliability of respective information as 
well as the coherence between data provided by different sensors. 

In fact, although many publications on the methodology to manage data provided by MARG 
have been done and the problem of correct identification of the sources of error in such 
measurement units (such as measurement noise, drift of the sensors...) has been addressed in several 
ways, less interest has been devoted to the formulation of innovative and functional methods of 
calibration for low-cost inertial sensors in order to obtain good results without resorting to the use 
of complex equipment calibration or to elaborate sensor models [12]. Jurman et al. [13], referring to 
[14,15], treat directly the problems of calibration of MEMS sensors and the correction of defects 
due to manufacturing process or by misalignment during assembly of the board, providing anyway 
a complex calibration model that requires a considerable computational effort in the determination 



of the 36 parameters that define the model itself. The majority of other authors do not consider as 
crucial the problem of an exact calibration, but prefer to include the distortions in the characteristic 
of the sensors, the phenomena of mutual misalignment or the incorrect scale factors within the 
system model used to determine the orientation of the device itself, increasing however the overall 
complexity of the estimation algorithm [10]. 

On the other hand, one of the few references dealing with specific problems of testing and 
calibration compensation [16] offers compensation and calibration routines making use of 
sophisticated and expensive equipment whose use should be to affect target low-cost considered in 
the choice initial components and targets of the project. 

This paper presents an innovative and effective alternative to the mentioned solutions 
providing a simple routine, yet effective, for the calibration of low-cost sensors, the removal of 
offsets, the compensation of misalignment between mutual sensors and compensation of any non-
linearity and distortion present in the sensors themselves for supporting the employment of MARG 
in 3D scanning applications. 

 
2. PROPOSED METHODOLOGY 

 
In the following section the methodology and the routines used to perform the sensor plane 
alignment and the calibration & compensation routine are proposed [17]. A sensor plane alignment 
methodology has been designed and developed with the aim to provide a simple, but at the same 
time effective, method that fixes the misalignment among the different sensors assuming a starting 
reference plane (in the following the reference plane is the XY plane of the board). The following 
chart (Fig.1) resumes well the four phases that compose the alignment routine. 

 
Figure 1: Main steps of Sensor Plane Alignment Routine. 

 
As evident, the result of this routine is an alignment matrix: in order to remove the misalignment 
among the different sensor planes and obtain consistent data every next measurements have to be 
aligned (i.e. multiplied by the respective alignment matrix) according to relation founded. 

Equally, the calibration & compensation routine can be defined using four main steps 
(Fig.2). Once the coefficients defining the ellipsoid features are found, each sample successively 
acquired must be correct performing the 4th step. Anyway, because of the last operation requires 
firstly to rotate the acquired sample and then to correct the axes gains, it is necessary to restore the 
initial orientation of the samples after the compensation is performed: this is done multiplying the 
compensated measurement by the inverse of the DCM matrix. 



Although the planes alignment method and the calibration & compensation routine can be 
considered as two stand-alone processes, they must be both performed in succession in order to 
obtain an optimal result and provide a real increase in the reliability of the sensor measurements. 
 

 
 

Figure 2: Main steps of Calibration & Compensation Routine. 
 
2.1 Sensor Plane Alignment 
 

If the device is rotated keeping this reference plane always lying on a fixed plane, then the 
vector of the corresponding physical quantity measured by each sensor (i.e. the gravity vector for 
the accelerometer and the magnetic vector for the electronic compass that remains fixed in the 
navigation frame), should depict a cone in the body reference system for each rotation of 360° 
(Fig.3). Considering an ideal situation in which the sensor planes are perfectly aligned to each other 
and to the reference, the axis of rotation must coincide with the axis of the cone, while the tip of the 
arrow that represents the physical quantity (i.e. the acceleration vector or the magnetic vector) must 
trace a circle that lies on a plane parallel to the rotation plane: this phenomena is related to the 
assumption of keeping the device always rotating on the same fixed plane, that constraints the z 
coordinate to have no variation. 
 

 
Figure 3: The ideal cone drawn by the physical vector in the body frame. 



 
Due to the sensor misalignment, the data are deviated. The aim of the alignment procedure is to 
minimize this deviation. In order to evaluate the misalignment of each sensor, a complete rotation 
done by keeping the reference sensor plane coincident to a fixed plane is required. By this way 
every physical quantity measured by the correspondent sensor and represented as a vector will 
ideally draw a circle on the MARG body frame. 
Once the data are collected it is possible to define the misaligned planes for each sensor as the 
planes that contain the different circumferences defining the bases of the cones drawn by the vector 
tips (Fig. 4). 

 
Figure 4: The cones drawn for the physical vectors and the misaligned planes containing the data. 

 
In particular, the equation representing a plane can be written as 
 

,γβα ++= yxz            (1) 
 
where x, y, z represent the Cartesian variables in a three-dimensional space and γβα ,,  are the 
coefficients that defines the features of the plane. Furthermore, once a XY plane for each sensor is 
defined, a vector normal to each plane can be defined as 
 

].,,[ γβα −−=normv            (2) 
 
Figure 5 shows the circles of the collected data, the different planes, and the orthogonal vectors 
during an alignment session. 
 

 
Figure 5: The circles drawn by the physical vectors sensed by the different sensors: the normal 
vectors of each planes are clearly visible. 

 
The final step in the alignment routine is to define the two consequent rotations, the first of an angle 

Rollε  around the x axis and the second of an angle Pitchε  around the y axis, that align the normal 
vector of each plane to the normal vector of the reference plane, namely ]1,0,0[. =refnormv . 



The result of this calibration method is an alignment matrix for each sensor that has the well-known 
structure 
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Once the alignment matrices are obtained for all the sensors, it is possible to multiply each set of 
data for its corresponding rotation matrix (Fig.6). 

 
Figure 6: The aligned planes for the different sensors. 

 
2.2 Calibration & Compensation (Offsets Removal, Nonlinearities and Distortions). 
 
The Offsets Removal, Nonlinearities and Distortions Compensation methodology aims at fitting the 
3D data drawn in each sensor reference frame by the physical vectors (sampled for an acquisition 
session during which the MARG board is freely rotated around its reference axes) with an ellipsoid, 
removing the offsets, centring the fitted ellipsoid, and finally correcting the gains for the sensor axis 
triads in order to reshape the data to obtain a sphere. 
Since the following directly refers to topics of linear algebra, it seems appropriate to introduce the 
mathematical foundations used, in order to firstly clarify all the symbols used.  
There are various representative forms for an ellipsoid [18,19,20]: 
 
Algebraic form: 
 
( ) ,0,, 222 =+++++++++=Γ KJzHyGxFxzEyzDxyCzByAxzyx     (4) 

 
where the terms A, B, C, D, E, G, H, J, and K are constants. 
 
Parametric form: 
 

( )








=
=
=

=Γ
,sin

sincos
coscos

,,
δ

δ
δ

cz
vby
vax

zyx          (5) 

 
where πδ 20 ≤<  and π≤< v0 . A particular relevance assumes the matrix form that rearranges 
the algebraic form and describes the same ellipsoid as 
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where 
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The translation matrix of the ellipsoid centre from the origin to [ ]CCC ZYX ,,  is defined as 
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and can be accomplished by the matrix 
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where 
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Thus, once found the translation coordinates, it is possible to centre the ellipsoid in the origin and 
simplify the terms G, H, J. Then, by dividing all the achieved coefficients by the new constant term 
L, we finally obtain the canonical form of an ellipsoid that we will express, without abuse of 
notation, as 
 
( ) .1222,, 222 =+++++=Υ fxzeyzdxyczbyaxzyx       (12) 

 
The equivalent matrix representation is 
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where a, b, c, d, e, and f are constant and can be obtained as 
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Now it is possible to find the direction of the three ellipsoid principle axes performing an algebraic 
Eigen analysis. The subject of Eigen analysis seeks to find a coordinate system, in which the 
solution to an applied problem has a simple expression. Therefore, Eigen analysis might be called 
the method of simplifying coordinates. An ellipsoid can be also defined as a geometric object 
described by its semi-axes. In the vector representation, the semi axes directions are unit vectors 

321 ,, vvv  and semi-axes lengths are constant a, b, c. The vectors 321 ,, cvbvav  form an orthogonal 
triad. Algebra does not change the triad: the invariants 321 ,, cvbvav  must somehow be hidden in the 
equations that represent the ellipsoid. Solving the Eigen problem for the matrix A means to find the 
eigenvectors (i.e. the hidden vectors) 321 ,, vvv  and the eigenvalues (i.e. the hidden values) 321 ,, λλλ  
for the matrix A so that  
 

,TRDRA =             (16) 
 
where R consists of three columns of mutually orthogonal unit eigenvectors and D is a diagonal 
matrix with the three eigenvalues along its diagonal. Thus, considering the previously introduced 
relations, we obtain 
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where the eigenvectors columns of R define a new rotated coordinate system X, Y, Z; thus matrix 
 

( )TTT vvvR 321=            (18) 
 
represents in all respects a rotation matrix, i.e. a DCM matrix, that aligns the coordinate system x, y, 
z to the new reference frame X, Y, Z. In the end, the last useful equation underlines the relation 
between eigenvectors and semi-axes resulting in the common ellipsoid expression 
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according to which is clear the correspondence 
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The following figure (Fig.7) shows how the data acquired by freely rotating the MARG board 
trying to cover all the possible orientation positions. 



 
 

Figure 7: An example of the samples acquired by the magnetometer and the underlying ellipsoid 
obtained fitting the data. 
 
As introduced, the geometrical surface drawn by the vector tip of the physical quantity measured (in 
this case it is the magnetic field samples are shown by red dots) in the several orientations is an 
ellipsoid. The underlying mesh represents the best ellipsoid that fits the data and from which the 
Eigen analysis is performed. 

In the following figure (Fig.8) it is possible to have a quick confrontation between the raw 
uncalibrated magnetometer measurements (blue dots) and the data after the compensation process 
(red dots). It can be easily observed that the proposed method removes the distortions on the sensor 
model and compensate the presence nearby magnetic sources. In fact, the compensated data 
describe a surface that approximates very well the ideal case in which the acquired unbiased and 
undistorted sample should depict a sphere. 
 

 
 

Figure 8: The raw magnetometer measurements (blue dots) and the same data obtained after the 
compensation routine described beforehand (red dots). 

 
3. EXPERIMENTAL VALIDATION 
 
The measurements unit used is a low-cost tool that embeds a 3 axes gyroscope ITG-3200 produced 
by InvenSense which guarantees a sensitivity of 14,375 LSB/(°/s) and low total RMS noise (about 
0.35 RMS), a 3 axes accelerometer ADXL345 produced by Analogue Devices with a good 
resolution of 3,9 mg/LSB and an adequate bandwidth of 3.2 KHz, a digital compass 
(magnetometer) HMC 5883L with a good sensitivity of 0.73 mGauss/LSB which enables 1° to 2° 
compass heading accuracy. The codes for processing the acquired data are run on a general 
purposes computer. 



In order to evaluate the results of the different phases of the proposed method, the raw 
samples, the compensated data, and the aligned-compensated data provided by the accelerometer 
and the magnetometer are elaborated using the Gauss-Newton Method [21] for quaternion 
convergence discussed in [11]. In particular, this method, which is used to solve the nonlinear 
problem in the quaternion components that transforms the reference physical quantities in a fixed 
frame (i.e. the Earth reference frame) in the sampled quantities that result to be rotated in 
accordance to the MARG board orientation, quickly converges to the solution with respect to other 
nonlinear solution approaches used as Quaternion Estimation algorithm as the Gradient Descent 
algorithm [22] or the Newton Method [23]. 

The movement performed during this test session requires that the XY plane of the board 
has to be kept always in contact and laying on a reference inclined plane; by rotating the device 
around its Z axis, the measurements obtained in ideal conditions (absence of distortions, noise, and 
perfect alignment of all the sensors) should depict no change for the roll and the pitch angles and 
more than 360° (a rotation) for the yaw angle. Thus, the quality of the method con be evaluated as 
the value the roll and pitch angles assume (i.e. the difference from the ideal value of 0°). Figure 9 
shows the angles solved by this algorithm and allows to focus on the different improvements 
provided by each step of the alignment/compensation process. 

Furthermore, it must be considered that the measurements provided by the accelerometer 
and the magnetometer are really noisy and any filter is actually applied. 

The blue lines represent the angles obtained using the misaligned and distorted 
measurements: it is evident how the raw samples produce unreliable angles. 
Besides, it is evident how the proposed methods act on the raw data improving their quality; the 
compensation routine is able to reduce the highest peaks in the angles detection, while it maintains 
the deviation due to the sensor plane misalignment. The alignment method finally fixes also this 
aspect and provide values for the roll and the pitch angles really close to the ideal situation. 
 

 
 

Figure 9: The roll, pitch and yaw angles solved by the Gauss-Newton algorithm. 
 



Another mean to evaluate the quality of the proposed routine is the Objective Function (or Cost 
Function) of the Gauss-Newton Method. In fact, considering that the Cost Function describes the 
trend in the convergence of the Gauss-Newton algorithm, it is obvious that high values of F(x) 
imply non-consistent and incompatible information provided by the different sensors and, thus, an 
unreliable attitude estimation. 

In this sense, the low values assumed in the case of using compensated data for quaternions 
estimation is another index of the high quality of the alignment-compensation routine performed 
that produces a reduction of more than one order of magnitude in the mean value of F(x)(Tab.1). 
 

 Cost Function F(x) 
Raw Data 410539,8 −⋅  
Compensated Data 410096,1 −⋅  
Aligned-Compensated Data 510231,2 −⋅  

 
Table 1: Cost Function Values. 

 
In fact, the high values of F(x) for the misaligned and uncompensated data (green plot) underline 
how the consistency of the information given by the sensors is really low: this aspects results in the 
bad attitude estimation shown by the green plot in figure 9.  

The major improvement in the orientation estimation is given by the compensation routine: 
in fact, the distortions that affect above all the magnetometer, but also the other sensors, produce the 
largest error and result in the highest peak in the roll and pitch angles. Consequently, after the 
compensation is applied, the consistency of the different information increases and the mean and 
the maximum values of F(x) actually decrease (red line). 

Finally, the alignment routine further improves the overall quality of the sample: the roll and 
pitch angles drawn by the blue plot in figure 10 are really near to the ideal reference of 0° (the mean 
error is about 0.32°) and the value of the Cost Functionis reduced of more than one degree of 
magnitude with respect to the values shown with raw data. 

 
Figure 10: The Objective Function of the Gauss-Newton algorithm for the different sets of data

 
 



4. CONCLUSION 
 
This paper discusses a novel method for calibration, sensor plane alignment and distortions 
compensation of low cost MARG platform. After a detailed overview of the theoretical aspects 
involved in the routine, the method is presented in its easy-to-use nature, which complies with the 
low cost nature of the sensors considered. The results clearly underline the quality and the reliability 
of the proposed approaches that are able to improve the quality of inertial and magnetic 
measurements and solve the problems related to nonlinearities and distortions. 
The benefits of this method result even more evident if we consider the reduction of further 
workload required to implement complex sensor model that takes into account the nonlinearities 
that lay in the sensors. 
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