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Summary 
 

Aim of  this thesis is the development of measurement methodologies in 

metrology for cell biology and regenerative medicine. 

 

Regenerative medicine is a novel branch of medicine based on the use of 

autologous stem cells and biocompatible medical devices to regenerate and repair 

damaged tissues of patients, i.e. by using three-dimensional scaffolds1 to implant 

stem cells into the tissue to be regenerated. 

 

Stakeholders of metrology for regenerative medicine are: health care providers 

who require safe, reliable and cost effective treatments, supported by evidence and 

approved by regulators; regulators who require standard materials and traceable 

data demonstrating the safety and efficacy of new products and treatments; 

medical products companies who require advanced and traceable techniques to 

develop new products and need methods to measure processes, such as cell 

growth on scaffolds, to ensure quality and efficiency of the medical products 

implanted into the patients.   

 

Consequently, regenerative medicine has the important requisite of a real time 

monitoring and not invasiveness  neither destructiveness processes to measure the 

cell-scaffold interactions, in order to preserve the samples from any contamination 

or modification.  

                                                 
1 Scaffold: three dimensional structure, natural or synthetic, used to harbour cells in vitro. Detailed 
description in Chapter 1. 
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Thus non-invasive measurement methodologies need to be developed for 

analysing the 3D cell culture on scaffolds and, in order to evaluate the uncertainty, 

highly reproducible measurement procedures are strongly required to minimize 

the type A uncertainties and to define the type B uncertainties. 

 

The non-invasive and non-destructive measurement of cell-scaffold 

interactions (i.e. stem cell proliferation and differentiation on scaffolds) is one of 

the most effective methodology to answer the need of testing the efficacy of the 

design, production/manufacturing, development and performances of stem cell-

scaffold products. 

 

To satisfy the requirements and the needs for metrology in regenerative 

medicine, for this thesis it has been chosen to develop a measurement 

methodology for cellular activity (proliferation and differentiation) on 3D 

Biocoral® scaffolds and to conduce a metrological study to evaluate the 

uncertainty of the methodology. 

 

This thesis has been developed in the Bioscience group of the Italian National 

Metrological Institute (Istituto Nazionale di Ricerca Metrologica - INRIM). 

 

The main important contributes of this thesis to the metrology in biosciences 

have been: 

 to lay the foundations for a metrological approach to cell biology and 

particularly to regenerative medicine research and applications; 

 to address the filling of the lack of traceability in the metrology for cell 

biology metabolic methodologies used to evaluate cellular activities in 

living sample with non-invasive procedures. 
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The main results and originalities achieved during this PhD work are: 

 a metabolic assay, the resazurin/resorufin assay, for the first time, has been 

metrologically characterized and the uncertainty of the measurement has 

been evaluated; 

 the resazurin/resorufin assay has been for the first time tailored for a 3D 

cell culture on Biocoral® scaffolds and the uncertainty of the measurement 

has been evaluated; 

 it was demonstrated that Biocoral® induces osteodifferentiation of stem 

cells and for the first time it was demonstrated on human mesenchymal 

stem cells; 

 it was demonstrated, for the first time, that the resazurin/resorufin 

metabolic assay can be a methodology to detect not only the proliferation 

but also the differentiation of stem cells on Biocoral® scaffolds; 

 

A description of the METREGEN regional project, which this thesis is part of, 

will follow in the introduction.  

The chapter 1 will give an overview on regenerative medicine field and its 

application with scaffolds, particularly referring to the Biocoral® scaffold.  

The resazurin/resorufin methodology will be deeply described in chapter 2 

with a uncertainty budget evaluation and discussion. 

Chapter 3 will present in details a series of experiments made to establish and 

characterize a hMSCs in vitro 2D culture, establish a hMSCs in vitro 3D culture 

on Biocoral, tailor the resazurin/resorufin assay for 3D cell culture on Biocoral 

and evaluate the hMSCs osteodifferentiation induced by Biocoral scaffolds. All 

the results have been analysed with a metrological approach to evaluate the 

uncertainty. 
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Finally, the conclusion will give a recapitulation and some interesting 

perspective of employment for the resazurin/resorufin methodology to final users, 

such as the cell factories2. 

                                                 
2 Cell factories are facilities, working with good manufacturing practice (GMP) procedures, 
dedicated to the development of cell therapy and cell-based products to be used in experimental 
clinical protocols for regenerative medicine mainly. 
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Introduction  

 
Aim 

 
The thesis has been developed in the Bioscience group of the Italian National 

Metrological Institute (INRIM) and is part of a wider regional project, “Metrology 

on a cellular and macromolecular scale for regenerative medicine- METREGEN”. 

The Bioscience group worked on three PhD theses having the common purpose to 

develop metrology for biosciences: the main aim is to define measurement 

methodologies for cellular properties specially studied in regenerative medicine 

(RM). RM is a branch of medicine that uses stem cells to regenerate and repair 

damaged tissues and organs. Stem cells are able to repair damaged tissues and 

organs by reaching the damaged site, by replicating themselves to increase their 

number and then by differentiating into specialized cells. The main process which 

RM is based on is here briefly described: cells taken from the patient who needs 

regeneration are grown in vitro3 to increase their number (in order to obtain an 

appropriate quantity of cells) and then injected into the patient tissue or organ or 

implanted on a scaffold4 for therapeutic purposes and the cells-scaffold complex 

is then introduced into the patient tissue or organ. Here the cells or the complex 

cells-scaffold will form new tissue or organ. 

Hence, the three thesis works, in a multidisciplinary manner, cooperate for the 

evaluation of cellular behaviours and functions during the cell-scaffolds 

                                                 
3 In vitro: this indicates an artificial environment outside the living organism. 
4 Scaffolds are three dimensional structures, natural or synthetic, used to harbour cells in vitro. 
Detailed description in the following paragraphs.  
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interactions in RM applications. In order to test a medical product efficacy before 

implantation into the patient, operators are used to repeat the measurement, for 

evaluating the efficacy, several times in order to improve the measurement 

accuracy, calculate the mean value and the standard deviation and consider them 

as the accepted value. This could be feasible for non cell-based medical product 

but is not always possible for cell-based medical products. In some cases, there is 

no possibility to repeat several times the measurements or there is no possibility to 

have several samples availability: this happens, for example, when the 

applications (or the experiments, if we consider the experimental phase) involve 

expansive materials or rarely obtaining products or time consuming procedures. 

For cell-based product efficacy evaluation, i.e. in the case of stem cells implanted 

in patients following a regenerative medicine surgery procedure, it is impossible 

to collect several samples to have an adequate number of measurements. Cells 

taken from patient for regenerative medicine are quite precious and need to be 

cultured in vitro being preserved from contaminations, invasive manipulations or 

any kind of destructive procedures. This imply that cells cannot be manipulated to 

be, for example, counted several times to have an accurate value of their number. 

In this case, a reduction of the number of measurements is highly recommended. 

Hence, how to be sure the quality of cell-scaffold implanted is adequate to ensure 

a successful regeneration?  

The requirement of metrology in RM is due to the need of reducing the number 

of measurements and obtaining an adequate uncertainty evaluation to be applied 

on the only single possible measurement and to the need of traceable 

methodologies and standard materials proper for RM. 

 

Aim of the present thesis work is the development of measurement 

methodologies in metrology for cell biology and RM by focussing on the 
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activities and properties of human mesenchymal stem cells5 (hMSCs) during their 

interactions with scaffolds for RM and on the possibility to measure those 

activities and properties. 

 

The METREGEN project 

 
The METREGEN project addresses the field of metrology in nanomedicine 

and specifically in regenerative medicine (RM). This is a novel field of research in 

which metrology is required to enhance the reliability of diagnostic results and to 

made more effective and efficient the therapeutic techniques and the development 

of new technologies. The impact of the project falls on the health care 

improvement, on the patient protection, on the cost limitation and on the 

competitiveness promotion between laboratories, industries and services in 

Europe. This metrological approach is required by legislation to improve the 

knowledge, the application and the utility of more and more substances, 

methodologies, protocols and techniques. The stakeholders in RM are: healthcare 

providers (e.g. hospitals, medical centres and cell factories2), regulators and 

medical products companies. 

Health care providers require safe, reliable and cost effective treatments, 

supported by evidence and approved by regulators.  

Regulators require standard materials and traceable data demonstrating the 

safety and efficacy of new products and treatments.  

Medical product companies require advanced and traceable techniques to 

develop new products and need methods to monitoring in real time processes such 

as cell growth on scaffold to ensure quality and efficiency of the medical 

products.   

                                                 
5 hMSCs are human stem cells used to repair tissues and organs in RM applications. They will be 
described in details in the following paragraphs. 
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The main aim of METREGEN is, in fact, the development of traceable 

measurement techniques for characterization of cellular and macromolecular 

processes involving RM products. 

At this purpose INRIM, University of Turin (UNITO), Politecnico of Turin 

(POLITO) and several industries share their expertise on tissue engineering, stem 

cells biology and genetics, chemistry and on nanoscale measurement techniques 

to develop research on measurement methodologies and technologies applied or 

applicable, in RM 

More in details, the METREGEN objectives are: 

- to develop new measurement technologies and to improve existing 

measurement instruments (to this aim partnerships with instrumentation 

companies have been undertaken); 

- to validate the following processes: in vitro cultivation6 of hMSCs, hMSCs 

seeding and culturing on scaffolds, hMSCs differentiation7 and its evaluation; 

- to develop methods to produce reference materials (gold standard) and 

artefacts for calibrating instruments. 

The project has been divided into three major topic of RM in which metrology 

is hardly recommended or required: 1) scaffold characterization in terms of fluids 

dynamics, mechanical and structural properties; 2) cells characterizations in terms 

of viability8 and functions; 3) macromolecules characterization.  

It has been proposed to investigate on a few parameters in order to privilege the 

study of the used methodologies to the complexity. 

                                                 
6 Cell cultivation is the process to maintain living cells in vitro. The cell culture is the name given 
to the system made by the cells, the growth medium and the vessel containing them. 
7 Differentiation is the process by which a not specialized cell becomes a specialized cell type. 
8 The cell viability indicate how many cells are living in a specific moment of the cell culture: it is 
calculated as the percentage of living cells on the total cell number in the culture.  
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For example, in the cell characterization issue, the cell proliferation9 and 

differentiation and mostly investigated. 

On the state of the art, the metrology in nanomedicine and RM is a very recent 

branch and its activities have been defined at both European level in the Quality 

of life group of EURAMET10, and international level in the Bio-analysis working 

group (BAWG) of the Consult Committee of Amount of substance (CCQM) of 

the International Committee for weight and Measurement. 

 

In February 2007 EURAMET published a document, the European Metrology 

Research Program (EMRP), which is the guide line for National Metrological 

Institutes (NMIs) for the following 15 years. The EMRP defines the metrology for 

Health, and in particular for nanomedicine, one of the most challenging for the 

next years and one of the selected project is dedicated to research in metrology for 

RM as an important added value to medicine products and diagnosis. 

INRIM is one of the participants for the development of new methodologies for 

cell analysis and for the realization of measurement methodologies for 

certification  of reference materials. 

 

 

 

 

 

 

                                                 
9 Cell proliferation is the cell growth process. The cells propagate themselves in vitro by dividing 
themselves many times. Each cell division increases the cells number of a 2n factor. 
10 EURAMET = European Association of National Metrology Institutes 
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Chapter 1 
 

1.1. The Regenerative Medicine 
 

Regenerative medicine, as defined by Greenwood et al. in 2006 and again in an 

editorial in the Journal of Regenerative Medicine in 2008  [1, 2], is an emerging 

interdisciplinary field based on both research and clinical applications focused on 

repair, replacement and regeneration of human cells, tissues and organs with the 

purpose of restoring their normal function damaged for various causes, including 

congenital defects, diseases, trauma and aging. 

Regenerative medicine (RM) uses a combination of technological approaches 

and goes beyond the traditional therapies of transplantation and replacement.  

These approaches include the use of specific molecules, gene therapy, stem cell 

transplantation, tissue engineering and the reprogramming of cells and tissues. In 

addition, regenerative medicine is perhaps one of the most interdisciplinary 

sciences covering a range of scientific fields including cell biology, embryology, 

physiology, biotechnology, nanotechnology, medicine, immunology, biomaterials, 

the chemical transport and fluids, biochemistry, mechanics, physics and tissue 

engineering that incorporates other disciplines. 

As result of a damage, the repair involves the activation of endogenous stem 

cells, resident in the organism, by means of biological or pharmacological 

treatments, in order to support and further stimulate the natural ability of stem 

cells to self-renew and then to repair damaged tissues and organs: the stem cells 

are indeed able to maintain tissue homeostasis11 and promote healing of damaged 

                                                 
11 Homeostasis: physical-chemical-biological equilibrium state 
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tissues [3]. The replacement involves the transplantation of cell-based products12 

from a donor tissue in order to restore tissue homeostasis through receiving the 

correct functionality of the cells of the donor tissue. Donor and recipient tissue 

may belong to the same person or to two different individuals. The regeneration 

process consists in the transplantation of stem cells, which require a growth and 

differentiation in vivo in order to re-establish homeostasis of the tissue and its 

regeneration [3]. 

Regenerative medicine combines tissues-substitute materials, created by 

selecting nonliving but biocompatible materials, called biomaterials, and stem 

cells that are placed onto the biomaterial to form a complex “biomaterial-cells”: it 

is implanted in tissue or organ to be repaired, regenerated or partially (or entirely) 

replaced. The biomaterial has the ability to stimulate regeneration of tissues since 

it is constructed with structural, mechanical and chemical characteristics similar to 

those of the tissue itself and it acts as a structure and vehicle for cells to be 

implanted in a specific site and to reside for the time required for the induction of 

regeneration. 

Regenerative medicine, although it is a relatively new science, in recent years 

has seen an increasing use of its clinical applications and the tissues and organs 

involved in regeneration were: skin, cartilage, bones, blood vessels, cornea, heart, 

some structures of the urinary tract and respiratory tract. 

The increase in the number of applications is due to several reasons, including 

issues associated with transplantation of organs from donors, the first among all is 

the organs shortage and the risk of rejection of organs from donor [4]. 

 
 

                                                 
12 The "cell-based products" are medical products in which one of  the component are the cells 
used for cell therapy or regenerative medicine purposes. 
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1.2. Mesenchymal Stem Cells  
 

Stem cells are undifferentiated cells, i.e. not specialized to perform a specific 

function in the organism. However, they have the potential to become 

differentiated (or to differentiate) giving rise to diverse cell types performing 

different functions. A red blood cell, for example, is designed to transport oxygen 

and a white blood cell is designated to fight diseases. The differentiated, or 

specialized, cell results from a cell division that originates from a stem cell. A 

stem cell undergoes a division giving rise to two cells, one of which remains 

generally stem cell and the other undergoes a process of differentiation in order to 

be specialized to perform a specific function [5]. In this way they ensure the 

turnover of differentiated cells that have a limited lifespan and die to leave the 

place for the new differentiated cells or that must be replaced in case of diseases, 

trauma or injury. 

The mesenchymal stem cells (MSCs) are a particular type of stem cell 

(different types of stem cells exist) called "mesenchymal" because the cells they 

give origin to are mesenchymal cells. Mesenchymal cells are cells that form the 

mesenchyme tissue. The mesenchyme is one of the first 3 embryonic tissues and 

from which other tissues derive: blood tissue, connective tissue, bone tissue, 

cartilage tissue, muscle tissue [5]. 

Identified for the first time by Friedenstein in 1970, the terminology by which 

the MSCs are indicate has undergone a series of changes. They are also defined 

"fibroblast colony-forming" (CFU- F), to indicate their fibroblastoid shape13 and 

their ability to form colonies of cells from one or a few cells; "Multipotent 

Stromal Cells" or “Marrow Stromal Cells (MSC) and "Bone Marrow Stromal 

                                                 
13 Fibroblastiod shape: similar to that of fibroblasts, typical and more abundant cells of connective 

tissues (blood, bone, adipose and the cartilage tissues are examples of connective tissue). 
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Stem Cells" (BMSSC), indicating their origin from the bone marrow and in 

particular from bone marrow stroma14 and their ability to differentiate into several 

("multi") types of cells. Also in vitro studies demonstrate that MSCs can 

differentiate into cells of the following tissues: bone, fat, cartilage, skeletal 

muscle, nervous, endothelial [6]. This ability is called "multipotency". 

The MSCs reside, besides in the embryo, also in several adult tissues and 

organs from which they were isolated: primarily they reside in the bone marrow 

but MSCs have been isolated also from other sites such as adipose tissue, amniotic 

fluid, the periosteum15, fetal tissues [6], skin, umbilical cord blood, peripheral 

blood, circulating in the body through the blood vessels, the placenta, the synovial 

fluid16, the articular cartilage as the liver, spleen, thymus, dental pulp, trabecular 

bone, skeletal muscle [7]. 

The debate over the use of embryos in order to harvest their stem cells will not 

be discussed in this thesis. It should be mentioned, however, the discussion of the 

risks related to the use of embryonic stem cells and the high carcinogenic 

potential of these cells [8]. 

 

In order to be studied and employed in base and applied research for RM, 

MSCs are isolated from animal and human tissues and cultured, i.e. kept as living 

cells in laboratory, in a condition called "in vitro". MSCs are typically isolated 

from bone marrow (BM) where are mainly contained in the red BM. However, as 

already mentioned, they can be isolated from other tissues and organs. 

The isolation of MSCs from BM requires a BM aspirate, which contains 

mainly: immature erythrocytes (i.e. red blood cells), leukocytes (i.e. white blood 

                                                 
14 Stroma: part of the bone marrow formed from a blend of fibers and reticular cells, such as 

fibroblasts, that support the hematopoietic marrow production of new blood cells. 
15 Periosteum: a fibrous membrane that covers the bones. 
16 Synovial fluid: fluid that lubricates joints and nourishes non-vascularized tissues. 
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cells) and platelets and their precursors, i.e. hematopoietic stem cells (that will 

originate new red and white blood cells and platelets), endothelial stem cells, 

which will give rise to endothelial cells and MSCs. The aspiration of BM is 

usually performed from the iliac crest17 and from the sternum [9].  

In the BM, MSCs are present in only minute quantities: about 1 in 100,000 

total BM cells is a MSC. Several methods are used to isolate MSCs from BM. 

One of the most used is the density gradient separation: the collected BM is 

centrifuged in a tube containing a density gradient medium (e.g Ficoll and 

Percoll18) [10] in order to separate the different blood phases containing the 

different types of cells with different weight and dimensions (fig. 1.1)  

 

Figure 1.1 : Tube containing a density gradient medium 

(FICOLL™). The sterile silicone coated glass tube contains: 

sodium heparin in the top layer, a polyester gen in the middle 

layer, the FICOLL™ Hypaque™ solution in the bottom fluid 

layer (made by a polysaccharide sodium diatrizoate solution). 

                                                 
17 Iliac crest is the top of the ilium, a bone of the pelvis. 
18 Ficoll is a polymer of sucrose with a high synthetic molecular weight, used to separate 
lymphocytes from other formed elements in blood and Percoll is a suspension of colloidal silica 
particles to separate cells, organelles, viruses and other subcellular particles. They are commonly 
used to separate MSCs from the BM other cells. 
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Figure 1.2 : Example of BM aspirate separation on FICOLL™ density gradient. In (a) it is 

shown the whole BM blood sample before the centrifugation; in (b) it is shown the same BM 

blood sample after centrifugation and (c) is its enlargement showing the different phases resulting 

from separation and among them the mononuclear cells (MNCs) ring contains the MSCs; in (d) it 

is shown the red blood cells confined in the lower part of the testing tube.  

  

After centrifugation in density gradient medium, the phase containing MSCs 

(the “Ring” of MNCs in fig. 1.2) is deposited on plastic vessels for cell culture (as 

shown in fig. 1.5). 

This will allow the selection of MSCs by their ability to adhere to the plastic. 

Also other BM cells can adhere to plastic but only MSCs can form colonies and 

proliferate. 

MSCs can be identified in vitro by three methodologies based respectively on: 

the morphological feature, the phenotypic profile and the differentiation potential. 

Through a microscopic analysis of cell morphology, once adherent to plastic, 

MSCs can be recognized because they assume a fibroblastoid morphology, similar 

to that of fibroblasts: elongated with regular edges, with a wide central body and  

extensions toward other cells (fig 1.3).  
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Figure 1.3: Several hMSCs with different shape and dimension but generally with a larger central 

body and many elongations. Optical microscopy. 20x Magnification.  

 

The identification of MSC by the analysis of their phenotypic expression19 is 

commonly used, even if the markers of phenotypic expression are not specific and 

unique for MSCs and, therefore, a unique phenotype which allows reproducible 

isolation of a MSCs does not currently exist [9]. However, a combination of 

positive and negative markers (i.e. present and absent on the surface of MSCs) is 

today considered commonly acceptable to identify these cells. It is generally 

accepted that the adult human MSCs do not express the following molecules  

markers: hematopoietic markers CD45, CD34, CD14 and CD11; signal molecules 

CD80, CD86, CD40; adhesion molecules CD31, CD18 and CD56; while they 

express the following surface markers: CD105, CD73, CD44, CD90, CD71, Stro-

1, CD106, CD166, CD54, CD29 [6] (Table 1.1). 

 

 

                                                 
19 Phenotypic expression analysis is the analysis of the cell surface antigens determining functions 
and behaviour of cells within the body. 
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MARKERS 

Negative Positive

CD45 CD105 

CD14 CD44 

CD34 CD29 

CD11 CD73 

CD80 CD90 

CD86 CD71 

CD40 Stro-1 

CD31 CD166 

CD18 CD106 

CD56 CD54 

 

Table 1.1 : MSCs phenotype profile 

 

However, it is necessary to point out that for a number of markers listed above, 

there is a variability of expression due to the tissue of origin, the method of 

isolation and the in vitro culture. Furthermore, there are differences in the 

expression of some markers influenced by factors secreted by cells during the first 

steps (in the initial phase) of the in vitro cell culture and not always the 

phenotypic expression of MSCs in vitro corresponds with that of these cells in 

vivo [6, 11].  

The third method used to identify the MSCs is a functional method based on 

the differentiation potential of MSCs: these cells are able to differentiate in vitro 

into specialized cells to perform certain functions in different tissues, capacity that 
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MSCs have also in vivo and that is defined "multipotency", as it has been 

mentioned above. Three MSCs differentiation processes are assayed in vitro and 

are generally accepted to verify the multipotency of MSCs: the three 

differentiation lead to the chemical induction of bone tissue, adipose tissue and 

cartilage tissue by treating the MSCs cultures with three different mixtures of 

chemical compounds. Of recent use is the analysis of the neural, the myogenic 

and the endothelial potential of MSCs, leading to the formation of nerve, muscle 

and endothelial cells respectively.  

The induction of bone differentiation is obtained by treating the cells with 

ascorbic acid, -glycerophosphate and dexamethasone for 2-3 weeks. The cells 

gradually form nodules of calcium which accumulates over time and increase the 

levels of gene expression of alkaline phosphatase, collagen type I and other bone-

related genes. The nodules are detected by staining methods specific for calcium. 

The two staining methods most commonly used are the Alizarin red and Von 

Kossa [12]. See chapter 3 for Alizarin Red staining application. 

The adipogenic differentiation is obtained by treating the cells with 

dexamethasone, insulin, isobutyl-methyl-xanthine and indomethacin. Over time is 

observed the formation, within the cytoplasm of the cell, of vacuoles (vesicles) 

containing lipids that are detected by the staining method with Oil Red O. 

Furthermore, the cells increase the levels of gene expression of proteins typical of 

adipose tissue including lipoprotein lipase [13]. 

The cartilage differentiation is induced by treatment with dexamethasone, 

ascorbic acid, insulin, transferrin, sodium pyruvate, selenious acid and the 

transforming growth factor-beta (TGF-. The cells produce an extracellular 

matrix composed mainly of proteins typical of cartilage tissue, collagen type II 

and aggrecan. The production of cartilaginous extracellular matrix is evidenced by 

staining with toluidine blue [13].  
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Figure 1.4 : Staining for cells undergone adipogenic (A), chondrogenic (B) and osteogenic (C) 

in vitro differentiation: Oil Red O (A), Toluidine blue (B) and Alizarin Red S (C) stainings.  

 

The three methods used for the identification of MSCs 

(adhesion/morphological, phenotypic and functional/multipotency) are 

complementary to each other and are today considered all necessary for the 

identification of these cells in vitro. The first two are affected by variability and 

are not specific for MSCs. The third one is considered more critical in the MSCs 

identification. 
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Summarizing, MSCs are taken by the iliac crest, isolated from the bone 

marrow by a gradient of density and selected among other bone marrow cells by 

their ability to adhere to the cell culture plastic vessels. They are cultured in vitro 

in traditional 2D cell culture in flasks or plates and proliferate over time 

increasing their number by sequential cells divisions and by following a typical 

cell growth curve up to 40 generations (duplications).  

 

 
Figure 1.5 : A summary pictures panel shows the steps of MSCs isolation and culture in plastic 

vessels (a typical flask is shown here). 

 

In in vitro culture, cell morphology changes over time in response to the cell 

state change. In the high proliferative state, cells take the fibroblastoid form, 

described earlier, but after some sequential duplications (process called 

"passaging"), cells slow the duplication rate and change the morphology 

becoming flattened and with a larger diameter and enter a low proliferative state 

until reaching the senescence state. In the latter state cell replication is almost 

absent or very slow and the cells assume a polygonal shape, wide and no more 

elongated. See fig. 1.6 
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Figure 1.6 : In A the cell culture is at a very early state (Passage 3) and cells are elongated 

with spindle shape (black arrows). In B cells are in a very late culture state (Passage 17) and their 

shape is flattened (red arrows). Both cell cultures are hMSCs from INRIM Bioscience group cell 

laboratory. Optical microscopy. 10x magnification. Bars = 100 m. 

 

Even MSCs multipotency is maintained over time but is gradually lost with the 

the passaging. “Passage” is the term used to indicate each step of propagation in a 

new plate, occurring when cells have no more surface where grow (usually when 

they occupied the 80% of total growing surface). They are enzimatically detached 

and seeded in a 1:3 ratio in a new plate or flask: 1/3 of the total amount of 

detached cells are re-seeded, or all the cells are seeded in a three time more 

extended surface [11]. 

 

1.3. The Bone Tissue 
 

The bone tissue is a specialized form of connective tissue, consisting of 

different types of cells and an extracellular matrix having the function to protect 

and support, to provide attachment sites of tendons and muscles, essential for 

locomotion. Furthermore, the bone tissue forms the main reservoir of many ions 

such as calcium, phosphate, magnesium and potassium. The mature bone is 

A B
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composed of two different types of tissues: the cortical bone (external) and the 

cancellous bene (a trabecular network inside the bones) (fig. 1.7 and fig. 1.8). The 

cortical bone is formed by cylindrical elements, the “osteons” (forming the so 

called Haversian system), compounds in turn by concentric lamellae consisting of 

a central channel (Havers channel) surrounded by lamellae of bone matrix. Within 

the lamellae reside the osteocytes (mature bone cells) embedded in spaces called 

lacunae of bone. The Haversian canals contains blood vessels and nerve cells 

which communicate with osteocytes through canaliculi (fig. 1.9). The cortical 

bone is covered by an outer membrane, the periosteum, consisting of an outer 

layer and an inner fibrous having an osteogenic potential and allows bone to grow. 

The interior of the bone is composed of a trabecular meshwork (cancellous bone) 

and bone marrow. The trabecular meshwork ensures flexibility and stability to the 

skeleton. The different structures, cortical and trabecular bone, have different 

mechanical properties [9]. 

 

 

Figure 1.7 : Schematic representation of a long bone. 
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Figure 1.8 : Image of epiphysis of a long bone 

 

 

Figure 1.9: Schematic representation of cancellous and compact bone structure. 



 29

 

1.3.1. Bone tissue cells 

Bone is composed of different types specialized cells embedded in an 

extracellular matrix: osteoprogenitor cells, osteoblasts, lining cells, osteoclasts, 

and osteocytes. 

The osteoprogenitors originate from mesenchymal stem cells (MSCs): from 

MSCs descend the preosteoblasts, from which derive the mature osteoblasts [14].  

Osteoprogenitor cells have proliferative capacity especially during the body 

growth and in the adult if fractures and other bone injuries need to be repaired. 

Osteoblasts originate from osteoprogenitor cells when the differentiation 

process begins. These cells are mainly responsible for the synthesis of bone 

extracellular matrix and for its mineralization. Osteoblasts have globular or 

polyhedral morphology and form epithelioid sheets by juxtapositioning one over 

the other in proximity of the bone surfaces during the bone formation process. 

Within the osteoblasts the synthesis of organic molecules of the bone extracellular 

matrix occurs and these molecules are then exocyted and assembled outside the 

cell. 

Osteocytes descend by osteoblasts that, after the deposition of extracellular 

matrix, remain trapped within gaps. 

The bone lining cells coat the bone forming an encasement. They derived by 

those osteoblasts that have exhausted the activity of bone formation and remain 

close to the bone surface. These cells have an important role in mediating the 

exchanges between the blood vessels and osteocytes. 

Osteoclasts are the only cell type non-native of the bone tissue, they in fact 

originate from preosteoclasts of the bone marrow: they degrade the bone matrix 

and are responsible for bone resorption [15]. 
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1.3.2. The extracellular matrix (ECM) 

The ECM is composed of an organic phase and a mineral phase. 

The inorganic phase of bone ECM is maily made of hydroxyapatite: calcium 

phosphate, Ca3(PO4)2, is combined with calcium hydroxide, Ca(OH)2, forming 

crystals of calcium hydroxyapatite, Ca10(PO4)6(OH)2. Small amount of calcium 

carbonate and other minerals are also present in the bone ECM. 

The organic component is largely composed of fibers of type I collagen 

(COLIA1), the most abundant structural protein of bone, forming 90% of the bone 

matrix. The remaining part consists of non-collagenous proteins such as 

osteocalcin (OC), osteonectin (ON), osteopontin (OP), bone sialoprotein (BSP), 

alkaline phosphatase enzyme (ALP), Runt-related transcription factor 2 (Runx2), 

bone morphogenic proteins (BMPs) and growth factors [16]. 

Early osteoblastic markers are Runx2, ALP and COLIA1, while during the 

later stages of differentiation  are expressed BSP, OC, OP, and ON. 

OC is the most abundant of the non-collagenous proteins and has the function 

of modulating the morphology of the crystals of hydroxyapatite [17].  

This protein is synthesized by osteoblasts during osteogenesis. The levels of 

serum OC (or GLA protein) are considered to be marker of osteoblastic and bone 

functionality [18]; these levels are particularly high in patients with increased 

bone metabolism [19]. 

ON is a glycoprotein linker between the collagen and the mineral part of bone 

matrix. Is thought to have a key role in determining the onset of mineralization of 

bone matrix [20]. It is considered a valid osteoblastic markers. 

OP is a sialoprotein that is assumed to have the biological function of allowing 

the adhesion of cells to the bone matrix and in controlling bone resorption [21]; 

reduced levels of mRNA of OP in stem cells derived from bone marrow are 

related to the underproduction of bone, such as in osteoporosis [22].  



 31

BSP is a protein probably involved in the formation of hydroxyapatite crystals 

of the matrix [23]. 

ALP, the glycosylated protein most abundant in the bone matrix, also 

participates to the mineralization of the matrix, even though its precise role has 

not yet been clarified [24]. 

The BMPs are a group of about 30 multifunctional cytokine and are 

fundamental in processes of osteogenesis and bone remodeling [25]. Among 

these, one of the most studied is BMP-2. 

Runx2 is one of the earliest genes of osteogenic differentiation [26] and has a 

key role in the regulation of osteoblast differentiation and bone formation [27].  

 

1.3.3. Skeletal Physiology 

The bone is a dynamic tissue due to the continuous removal of portions of 

matrix followed by newly synthesized matrix apposition. This process is due to 

the catabolic action of the osteoclasts that break down the existing matrix and 

anabolic action of osteoblasts that synthesize the new matrix. 

During the growth, the activity of osteoclasts and osteoblasts are not tightly 

coupled: the new bone is deposited in different locations with respect to the bone 

degraded. This mechanism, called modelling, allows the bone to grow and change 

shape in response to changes in physiological and mechanical loads to which they 

are subjected [28]. In the adult, on the contrary, takes place the remodelling, a 

process in which the activity of osteoblasts and osteoclasts is coupled in space and 

in time, therefore the newly synthesized bone, produced by osteoblasts, is 

deposited at the site where the bone has been degraded by osteoclasts. These 

anabolic and catabolic activities occur within discrete units of bone tissue calls 

basic multicellular units [29]. 

The production of bone matrix and its mineralization take place according to a 

precise orientation: initially the osteoblast lays bone on the side facing the pre-
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existing bone surface; subsequently it lays bone on each side around itself, so that 

each cell progressively move away from surrounding cells due to the interposition 

of the extracellular matrix. At this point the osteoblast slows substantially its 

metabolic activity and transforms itself into osteocyte, imprisoned in the gap of 

the matrix of newly formed bone, while new osteoblasts differentiate gradually 

from osteoprogenitor cells. When the process of new bone tissue formation is 

depleted, the osteoblast cells that remain close to the bone surfaces and cease their 

activities, reduce their organelles and become a membrane of flattened cells, the 

so-called bone lining cells. 

The remodelling allows the bone renewing preventing the accumulation of 

micro damages.  

 

1.4. Biomaterials and scaffolds 
 

Biomaterials are nonliving materials used in regenerative medicine field in 

order to replace lost structures, to support existing structures, to promote the 

formation of new tissues in a receiving body [9]. They are natural, synthetic or 

semi-synthetic, degradable or non-degradable, but all of them need to be 

biocompatible to be accepted and not rejected by the receiving body [30]. 

Natural biomaterials are: collagen, proteoglycans and glycosaminoglycans, 

fibrin, hyaluronic acid, cellulose, alginates, chitosan, hydroxyapatite of natural 

origin (e.g. coralline hydroxyapatite), calcium phosphate of natural origin (from 

bovine, coral and human bones), and others [30]. 

They are components of the extracellular matrix (ECM) or have 

macromolecular properties similar to the ECM properties. Among the advantages 

offered by natural biomaterials there are: biocompatibility, biodegradability, 

mechanical properties similar to those of human tissues, ability to interact with 

human tissues in a manner favourable to regeneration (e.g. by supporting the 
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growth and motility of cells toward sites affected by injury). Disadvantages are: 

the risk of viral or bacterial infections and in some cases the instability and 

premature deterioration over time which does not match the timing of natural 

regeneration of the native tissue. 

The synthetic biomaterials are polyesters, polyethylene-glycol, polyurethanes, 

polyglycolic acid (PGA), polylactic acid (PLA), ceramics, alloys, carbonates and 

others. They consist of a matrix of synthetic polymers with three-dimensional 

architecture and generally show high transport properties but exhibit considerable 

criticality of biocompatibility, especially due to the low content of information 

and signals to the cells.  

The semisynthetic biomaterials are, for example, modified hyaluronic acid, 

derivatives of hydroxyapatite, chitosan. 

A biomaterial is therefore a substance or combination of substances used for 

treating, improving or replacing tissues or organs. It has to ensure all the 

requirements the cell needs to produce the tissue, from cell proliferation to tissue 

production and to transplantation.  

The biomaterial is therefore characterized by the following features: 

1) Tolerance: it needs to be immunologically inert. In general, any extraneous 

material which comes in contact with tissues or fluids, generate a specific 

reaction. 

2) Biodegradability: it is the essential requirement for the use of a material and is 

closely related with the application and location of the biomedical device that is 

provisional or permanent, as needed.  

3) Cell-cell interaction: the biomaterial has to communicate and exchange 

signals with host cells [31, 32, 33]. 

Biomaterials are used for the manufacture of scaffolds for regenerative 

medicine.  
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The scaffolds are three-dimensional structures, with variable solidity and 

stiffness, which make possible the implantation of cells on the site of interest in 

the receiving body: the cells anchored to the scaffold can be introduced into the 

patient and regenerate damaged tissue by acting directly on the damage site with 

no dispersion in surrounding areas. It should be noted that the regeneration of new 

tissue is stimulated through an implant of cells alone. However, it is difficult to 

cells survive without a surface of adhesion or anchor and the control of the cell 

adhesion after implantation, in order to maintain their distribution in the site of 

interest, is quite complex [34, 35, 36, 37]. Therefore, the scaffold primary 

function is to allow the attachment of cells. The scaffold morphology and 

geometry must be designed taking into account the space and the external shape 

of the defect, lacuna or gap to be corrected. 

For all types of biomaterials, studied and used in pre-clinical (in animals) and 

clinical (human) applications, it has been experimentally observed that the 

characteristics and the surface properties of biomaterials have the ability to affect 

the initiation phase of cellular events at the interface between cells and the 

material. Cellular events include, for example, the cellular proliferation and 

differentiation, stimulated in both the implanted cells, anchored to the scaffold, 

and in the cells belonging to the tissue in which implantation occurs. 

The three-dimensional structures of the scaffolds, made of the most disparate 

biomaterials, have the ability to orchestrate the complete formation of new tissue 

both in vitro and in vivo. The scaffold offer to the cells a base structure where they 

can be anchored and then it supports the growth, differentiation and the three-

dimensional orientation for the formation of a 3D construct with cells in vitro and 

in vivo. The scaffold structure allows diffusion and convection transport 

phenomena to ensuring the supply of oxygen and nutrients for cells and the 

elimination of waste materials. The scaffold architecture influences both 

properties of single cells (such as vitality, migration and cell differentiation), and 



 35

characteristics of the 3D generated construct, which will replace, temporarily or 

permanently, the tissue of interest. Since tissues have different chemical 

composition and different characteristics at different levels (e.g. cellular and 

tissutal levels), it is understandable how different scaffolds, with specific 

characteristics, are needed to optimally support the regeneration of different 

tissues [38]. Consequently, an ideal structure and pre-packaged scaffold does not 

exist because each tissue requires a specific design. For example, bone tissue and 

cartilage tissues, the two most studied20, require different scaffolds mimicking 

their chemical composition and their mechanical properties (rigidity, hardness, 

etc.) and structural (internal architecture, porosity, etc.). As general 

characteristics, the scaffold must be reproducible products, controlled and with the 

possibility to host biological components (cells and/or growth factors). Hence the 

characteristics of the scaffolds, making them different from each other, are: 

- Chemical composition 

- Chemical properties  

- Macrostructure 

- Porosity and interconnection between the pores 

- Pore size (inner diameter of the channel) 

- Surface/volume ratio 

- Mechanical properties 

- Degradation to allow the remodelling  

 

They all have a relative importance for a specific issue. 

For example, the porosity and the channels are important because they provide 

access to the migrating cells from the outside towards the inside and within in 

                                                 
20 Bone and cartilage tissue are the most studied in the field of tissue regeneration by using 
mesenchymal stem cells because the ability of these cells to differentiate into cartilage and bone 
cells both in vitro and in vivo and for the frequency of diseases and disorders related to these two 
tissues. 
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different areas, to the proliferating cells whose daughter cells require new surface 

to anchor to; in addition they have to allow the capillary passage of blood in vivo 

and of liquids in in vitro cultures, they have to provide a proper area available for 

single cell and for the many cell-cell interactions. In addition, we distinguish 

micro and macro-porosity. The micro-porosity is fundamental for the growth and 

inner capillary for the cellular interactions while the macro-porosity is important 

for the exchange of nutrients and waste and for the removal of dead cells. 

The 3D scaffolds are support structures that induce cells to form functional 

tissues: they represent physical and mechanical support for the cells and the space 

available in their internal pores allow the cells to develop the tissue, allowing its 

vasculature during regeneration. 

The mechanical support is very important especially in transplants in which 

forces of compression or traction are developed; sufficient mechanical strength 

and stiffness are needed to counter forces of initial contraction and further to 

ensure a perfect reconstruction of the tissue. The biodegradability or 

reasorbability of the scaffold is necessary to allow the gradual replacement by 

newly formed tissue in the long term. 

The high porosity and the wide surface area provide high interconnection, 

structural strength and a three-dimensional surface. 

Several techniques have been developed in order to increase the accuracy and 

reproducibility in the production of scaffolds, ensuring a considerable flexibility 

in the design phase, because it allows to vary the physical characteristics of the 

matrices in order to optimize the biological response of the system [39, 40, 41].  

 

1.5. Scaffolds for regenerative medicine in orthopaedics 
 

The biomaterials used in clinical applications to replace portions of bone tissue 

have been studied over the last 30 years. 
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They are made of synthetic or natural materials. In both cases their use is 

motivated mainly by the limited availability of autologous grafts and the choice of 

material, be it natural or synthetic, is dictated by the following properties: the 

ability to stimulate osseointegration, the osteoconduction, osteoinduction, the 

induction of angiogenesis and vascularization, the resistance to mechanical stress 

and disruption and the reasorbability. The key element that determines all these 

properties is the internal architecture of the biomaterial, which makes it, in a 

unique word, "bioactive". 

Another important aspect is related to the use of autologous human cells in 

tissue regeneration mediated by biomaterials. 

Stem cells from the bone marrow are used in the regeneration of bone tissue in 

clinical applications because of their ability to pass from an undifferentiated state 

to a differentiated state as a result of chemical, mechanical and biological stimuli 

and to regenerate the damaged or missing tissue. 

Therefore, biomaterials are also selected on the base of their ability to make the 

scaffold permissive to: cell adhesion, migration and proliferation, cell-cell 

interactions, extracellular bone matrix formation which provides structural 

support to the new bone tissue formation.  

In addition, the biomaterial is vehicle of biological molecules through its pores 

interconnected by channels: molecules such as cytokines,  including BMPs, 

insulin-like growth factor (IGF) and TGF, stimulate the stem cells precursors of 

bone cells to differentiate into cells producing the extracellular bone matrix.  

Finally, in order to better mimic the physiological conditions of a bone or part 

of it, the biomaterials used in osteogenesis must reconstruct a three-dimensional 

microenvironment that allow the cells to grow forming new tissue as similar as 

possible to the natural bone tissue. The biomaterials three-dimensional structure is 

now considered a requirement of fundamental importance both in experimental 

studies in vitro and in in vivo applications. The research of the last 20 years in 
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regenerative medicine and tissue engineering has seen a growing interest in the 

study of the cell-scaffold construct, of the interactions between cells and 

biomaterial, responsible for the tissue regeneration induction and of the possible 

clinical applications of these cell-scaffold construct. 

Osseointegration, osteoconduction, osteoinduction, induction of angiogenesis 

and vascularization properties, resistance to mechanical stress and rupture, 

reasorbability, stimulation of cell differentiation, high internal porosity and 

interconnection between pores can be made in biomaterials synthesis, but are 

often naturally possessed by biomaterials of natural origin. Among the natural 

biomaterials, the ones made of coral are an important example and have been 

studied and used in clinical applications in orthopaedics, neurosurgery and 

dentistry [42].  
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1.6. The Biocoral®  
 

Biocoral® (Inoteb, LeGuernol, Saint-Gonnery, France) is a natural coral from 

exoskeleton of Madrepores (fig 1.10). 

 
Figure 1.10 : A Madrepore. 

The exoskeleton is made of calcium carbonate in the form of aragonite and 

constitutes 67% of weight. Several other trace elements are present and are similar 

to those of mammalian bone. Among them, Magnesium, Phosphorus, Potassium 

and Sodium. 

The Biocoral obtained from Madrepores (fig 1.11) is highly porous, rigid and 

inert. It has a chemical composition very similar to that of human bone: it is made 

up to 98% of calcium carbonate in the form of aragonite crystals and other trace 

elements (fluorine and strontium to 0.7 to 1%, Magnesium to 0, 05 to 0.2%, 1% 

Sodium, Potassium 0.03%, Phosphorus 0.05%, water 0.5% and 0.025% amino 

acids). Strontium is able to promote the process of mineralization.   

It has a porosity varying from 20% to 50% of the volume with an internal 

architecture formed by pores having a diameter from 150 to 500 m and a high 

degree of interconnection which invests all the material through a network of 

interconnecting pores of an average diameter of 260 m (Figure 1.12 and 1.13). 
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Among the ceramic materials based on calcium, Biocoral is the biomaterial with 

the best mechanical properties due to its porous structure that is very similar to 

that of cancellous bone. This makes the Biocoral a good biomaterial to support the 

formation of new bone [42].  

The coral of Biocoral is not altered by the process of production of the product 

that provides for manipulations such as to confer architectures, shapes and 

geometries of the most disparate. The geometry cylindrical or truncated cone is 

the most widely used and depicted in the images below. 

 

 

          
Figure 1.11 : Biocoral (front and side views) 

 

 

 
Figure 1.12 : Pores of Biocoral. Images acquired with an atomic force microscope (AFM) at 

INRIM. It is possible to see the internal connections of the scaffold. Bar: 0.5 mm 
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Figure 1.13 : Pore of Biocoral. Image taken with a scanning electron microscope (SEM) at 

INRIM. Bar: 0.5 mm 

 

Experimental studies and clinical applications in neurosurgery, orthopedic 

surgery and dentistry for the last 20 years have shown that a material is fully and 

gradually resorbable, biocompatible and bio-functional: it is well tolerated by both 

animal and human tissues, its porosity allows the possibility of a good 

osseointegration, allowing the new bone to grow, followed by gradual resorption 

which leaves space for the new bone and it has biomechanical properties very 

similar to those of the bone, also related to the porosity and internal structure. 

The first experiments and clinical applications date back to the early 90s. 

The trials have evaluated the biocompatibility of Biocoral with human cells and 

the ability to support cell growth and an osteogenic differentiation [43], the 

osteointegration and the resorption of Biocoral in human bone [44] and the ability 

to convey cytokines [45]. 

The clinical applications are mainly active in the field of dentistry and 

periodontal surgery [46]. 
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Chapter 2 
 

This chapter defines the measurand “cell number” and the cell counting 

procedure, describes the measurement methodology of Resazurin/Resorufin assay 

and addresses the evaluation of the assay uncertainty. At this scope a series of 

measurement are described and finally an uncertainty budget is discussed. 

 

2.1 Cell number and cell counting 
 

Cell number is a measurand in many sectors of science: in biomedical and 

microbiology research for cell-based experiments to determine the cell growth 

rate and to measure the cell viability, in medical diagnosis to assess the blood 

cells quantity or to verify the presence of pathogens in samples, in environmental 

analysis to estimate the microorganisms contaminations [47] and, generally, in all 

the protocols in which the cell number estimation is required. In biological cell 

cultures, cell number is one of the parameters necessary to investigate several cell 

culture features such as cell viability, proliferation, growth, fitness and 

metabolism which require a monitoring as function of time.  

The cell counting is a procedure by which it is estimated the number of cells in 

a given volume in an in vitro culture system and is a fundamental procedure in 

biological research on living cells samples and in all the other fields, named 

above, in which cell number determination is indicative for understanding a 

process, estimating a quantity, diagnosing a disease or studying a phenomenon.  

This work is focus on the cell number estimation in bi-dimensional cell 

cultures in vitro. 
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Several methods of cell number quantifying have been developed to follow the 

life span of an in vitro cell culture and different techniques are today in use: from 

the simplest and cheapest one, based on the use of the hemocytometer (or 

counting chamber, e.g. Neubauer chamber) or on cell image analysis to more 

sophisticated ones based on metabolic assays (when the activity is proportional to 

the number of cells explicating that activity) or spectrophotometry, electrical 

resistance to the most expansive ones based on flow cytometry.  

In the first two cases the object “cell” is really counted by the operator, in all 

the other cases indirect measurements are performed (e.g. by measuring a 

metabolic activity of the cells or properties that are only cell-dependent but are not 

related to cell, such as light and electrical resistance). However, in any case, a low 

level of accuracy and reproducibility due to several influence parameters of 

uncertainty, represents a common drawback and obstacle to a reliable 

consideration of the results. 

The lack of traceability needed to compare results from different laboratories 

or obtained in the same laboratory, but at different times or by different operators, 

as clearly expressed by EURACHEM/CITAC Guide, Quantifying Uncertainty in 

Analytical Measurement [48], justifies the consideration of quantification of the 

number of cells as a measurement service required to the National Institutes of 

Metrology (NMIs). The NMIs raise the question of quantification of cell 

populations in both traditional two-dimensional (2D) and three-dimensional (3D), 

mimicking real tissues, culture systems [49].  

 

 

2.2 Cell counting in 3D cell culture on scaffolds 
 

3D cell cultures on scaffolds in vitro mimic real situations occurring in the 

body, i.e. in vivo, because tissues and organs are three-dimensional structures in 
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which the cells are usually distributed in a three-dimensional matrix (with shapes 

and characteristics different from tissue to tissue) and are not arranged in a single 

layer of two-dimensional surfaces as they are, instead, when cultured in traditional 

in vitro 2D cell cultures in flasks, plates or Petri dishes.  

As in vitro system, the 3D cell culture needs to be checked in terms of 

biocompatibility. The measurement of cell viability and proliferation provides 

important information on the biocompatibility of the culture system, its influence 

on the state of the cells, on the welfare of cell culture, on cell metabolism and on 

cell differentiation. In addition, it is very important that by monitoring the in vitro 

proliferation and differentiation a great amount of information can be gathered 

and assumptions or predictions about the behaviour of cells in vivo can be made.  

Cell viability indicates the amount (usually expressed as a percentage) of live 

cells on total cells present in the culture system.  

Cell proliferation is the process by which cells increase their number by a 

factor of 2n through consecutive cell divisions.  

In both cases, cell viability and cell proliferation, the cell number is the 

measurand to be quantified. 

The possibility to perform sequential measurements on the same cell 

population is extremely important in the analysis of cell viability and 

proliferation.  

Traditionally, the number of cells is determined by removing the cells from the 

culture system (2D plates or 3D scaffolds) and counting them by the use of a 

hematocytometer, which provides for a manual counting, or by the use of an 

electronic counter. Other methods of counting are based on: imaging, i.e. on the 

acquisition of images using a microscope coupled with a camera, and on the 

manual or by software cell count [50]; metabolic tests that assay metabolite 

activity of cultured cells and that are used when the number of cells is 

proportional to the number of cells performing that particular metabolic activity. 
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However, these methods of cell counts are in most cases destructive (manual or 

electronic counts involve the enzymatic detachment of the cells from the growth 

system and metabolic methods involve the use of substances toxic for cells or able 

to alter the cell structure) or invasive (need of making slices or pieces of tissues 

for imaging), whether they are applied to 2D cultures or 3D scaffolds. As well as 

a tissue or an organ biopsy, the 3D scaffold needs to be sectioned or sliced, or the 

cells contained in it must be detached. In any case, this prevents to perform a cell 

count over time on a single sample. Also, often cells cannot be detached from 3D 

scaffolds with the classic enzymatic methods.  

Therefore, for 3D cell cultures it is necessary to employ non-destructive and 

non-invasive methods for cell counting.    

There are at present some metabolic reaction-based methods in the literature 

for monitoring animal cell number (giving information on cell proliferation) over 

time [51, 52, 53]. However, most of them requires the use of substances that are 

cytotoxic [52], or results in cell lysis to measure the metabolic product [52, 53, 

54].  

The method chosen for cell number evaluation in this thesis work is the 

resazurin/resorufin assay based on the reduction of resazurin into the end product 

resorufin. It is not cytotoxic and does not require any cell damaging steps [55], 

therefore it satisfies the requirement of non-destructiveness and non-invasiveness. 

 

2.3 Resazurin/Resorufin assay 
 

The resazurin/resorufin (R/R) assay is a fluorimetric and metabolic assay used 

for determining the number of living cells in a biological in vitro system. It is 

based on a redox reaction: the reduction of  resazurin (dark blue in color, redox 

dye with a slight intrinsic fluorescence) into the end product resorufin (pink, 

highly fluorescent molecule, excitation wavelength of 579 nm and emission 
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maximum at the wavelength of 584 nm), made by redox enzymes. Only living 

cells can perform this reaction because nonviable cells rapidly lose metabolic 

capacity and do not generate any fluorescent signal [55]. O’Brien et al. (2000) 

proposed the resazurin dye, the original name of the Alamar Blue dye, to assess 

the mammalian 2D cell cultures cytotoxicity [56]. Resazurin solution is added to 

the cell culture medium, containing the cells,  as 10% in volume. The resaruzin 

molecule can penetrate cells by passing the cell membrane and into the cytoplasm 

is reduced by cytosolic, microsomal and mitochondrial redox enzymes producing 

the fluorescent resorufin (reaction product). Resorufin diffuses out of cells back to 

the culture medium which alone does not reduce resazurin [57]. The number of 

cells in the cell culture is considered proportional to the total metabolic activity of 

cells. The metabolic activity is indicated by the redox reaction (reduction of 

resazurin) rate and can be calculated by the substrate (resazurin) consumption rate 

or by the product (resorufin) formation rate. The substrate can have a limiting 

effect, thus is usually supplied in excess. Thus, the metabolic activity 

measurement is obtained by measuring the concentrations of the specific 

metabolic product (resorufin) over time and the reaction rate can be calculated as 

the variation of product concentration over time.  

The product concentration in the culture medium is detected by measuring the 

fluorescence intensity due to an adequate excitation after a contact time of 

resazurin solution with cells. 

The R/R assay for the first time in this study has been used for 3D cell cultures 

on Biocoral as non-destructive and non-invasive assay (experimental set up and 

results have been described in chapter 3). The test measures the metabolic activity 

carried out by the only viable cells (metabolically active) and quantifies the 

number of cells under the assumption that all active cells exert this activity and 

that the average of this metabolic activity is stable over time.  
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The metabolic activity of a cell varies with the cellular phenotype (for example 

varies between an undifferentiated or a stem cell and the same cell which is 

differentiating or is already differentiated) and changes in cell phenotype depend 

on a series of phenomena that occur in the environment of the in vitro cell culture, 

including the limitation of glucose, changes in pH of the culture medium, the 

characteristics of the scaffold in the case of 3D cultures such as stiffness, elastic 

modulus, mechanical properties, etc. 

Hence, when the cell number estimation is based on a cell metabolic activity it 

is extremely important to consider that metabolic assays are affected by various 

influence parameters and their entire characterization requires a deep and intense 

analysis of the specific cell phenotype, aiming to evaluate the uncertainty of the 

methods.    

The work described in this chapter is a first approach of uncertainty evaluation 

of a metabolic method for measuring the cell number. The innovative contribution 

of this work is because metabolic methods to determine the cell number, although 

widely used, have never been metrologically characterized, neither in 2D nor in 

3D cell cultures. 

This study is applied to hMSCs 2D cultures, undifferentiatied cells, grown non-

differentiating cell culture medium, using the metabolic assay R/R, based on the 

resazurin conversion to resorufin to evaluate the cell number and estimate the cell 

proliferation.  

 

2.4 Experimental set up 
 

2.4.1. Cell seeding  

The hMSCs were purchased from Lonza Group Ltd (Basel, Switzerland). They 

are bone marrow derived-hMSCs from donor. hMSCs were expanded and 

maintained in non-differentiating cell growth aMEM (alpha modified Minimum 
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Essential Medium - Lonza, Wokingham, UK) with FBS 10% v/v (Fetal Bovine 

Serum, Lonza, Wokingham, UK), L-glutammine 2mM, penicillin 100 U/ml and 

streptomycin 100 g/ml (Lonza Wokingham, UK) in Petri dishes. Fresh medium 

was replaced every 3-4 days until cells reached about the 80% of confluence21, 

then they were washed once with 1X Phosphate Buffer Saline (PBS), detached 

with 0.25% Trypsin – 0.53mM Ethylenediaminetetraacetic acid (EDTA) solution, 

counted by means of a hemocytometer and suspended at several concentrations 

(cells/ml) in 100 μl non-differentiating aMEM growth medium to be seeded and 

cultured statically in 96 well microplates. Then, cells are posed in the incubator at 

37°C with 5% CO2 overnight to adhere on the surface of the wells. Cells were 

managed in laminar flow hood (class II) under sterile conditions. 

 

2.4.2. Resazurin/Resorufin (R/R) assay analysis 

After cell adhesion, resazurin is added as 10% in volume to the cell culture 

growth medium in the well containing the cells (adherent on the surface of the 

well). Fluorescence intensity of the resorufin has been measured after a contact 

time (0.5 to 6 hours) of resazurin with cells.  

Important to note that in the specific case the entire liquid phase (cell culture 

growth medium containing resazurin) volume has been used to measure 

fluorescence intensity, i.e. 100 μl. However, cell culture can be establish in a 

different vessel (such as a Petri dish) where the liquid phase volume is much 

higher. In that case, the volume of resorufin used for fluorescence intensity 

measurement (typically 100  μl) is taken from the liquid phase (previously mixed 

to be homogeneous) and placed in a multiplate well (typically in a 96 well plate) 

for the measurement. Two volumes are therefore distinguished: the total liquid 

phase volume (VLP) in which the reaction occurs and the volume of aliquot of 

                                                 
21 Confluence: the confluence % indicates the % of total growth area in the Petri dish (or other cell 
culture vessel) occupied by the cells. 
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liquid phase placed in the well (Vw) in which the measurement is made. In the 

following measurand definition, both will be taken into account, even if in the 

specific measurements VLP and Vw are the same entity. 

 

2.4.3. Fluorescence measurement system  

The GloMax®-Multi Microplate Multimode Reader (Promega) was used to 

measure fluorescence intensity. Excitation was performed at 525 nm wavelength 

while emission was measured in the range of 580-640 nm. Microplates with 96 

wells were used. 

 

2.5 Measurand definition: cell number 
 

The number of cells (N) is measured in a cell culture which is in a certain 

volume of liquid phase (made by growth medium in which the resazurin is 

diluted) in cell culture vessel, such as a well of a microplate. 

Under the hypothesis that the metabolic activity of the cells is stable, i.e., the 

measuring time is very lower than cell duplication time, the number of cells N in 

the cell culture liquid phase volume is proportional to the molar concentration of 

product in the liquid phase CProd,t available in the well at contact time τ and to the 

volume of the liquid phase in the cell culture vessel VLF. 

The hypothesis that the metabolic activity of the cells is stable is depending by 

the cell phenotype that changes, for example, between undifferentiated and 

differentiated cells. In the following equation, K1 defines the specific metabolic 

activity of the cell and depends by the contact time between resazurin and cells (τ) 

 

  LFProd,t1 VCKN    (1) 
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The product concentration at the contact time τ in the liquid phase is 

proportional to the fluorescence intensity emitted by the molecules of product 

If,Prod,t. K2 is influenced by the liquid phase volume in the measurement well (VW). 

 

  f,Prod,tW2Prod,t IVKC 
             (2) 

The cell culture medium and the reaction product resorufin could emit in the 

same spectrum region and lead to modifications of the fluorescence intensity. It is, 

hence, necessary to measure the blank (b) in absence of cells but with times and 

treatments analogous to those of the samples (s) with cells.  

 

 f,b,tf,s,tf,Prod,t III 
                (3) 

 

Hence, the measurand equation can be written as:  

 

                                     
  LFf,b,tf,s,t VIIKN 

                 (4) 

 

Where K = f (K1,K2) and is therefore influenced by τ, VW and from the 

metabolic activity of the cells. 

 

2.6 Analysis of quantities influencing the measurement 
 

Each input quantity xi  that appears in equation (4) (V, k, I and the dilution in 

the measurement procedure) has been considered a quantity influencing the 

measurement. The estimation of the associated standard uncertainties u(xi )and of 

the systematic effects have been given, as shown in table 2.1. 
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a.  Fluorescence 

 
The fluorescence intensity is determined by the instrument used for the 

measurement, hence the fluorescence measurement needs to be characterized with 

respect to the adopted measurement system. Several measurement instruments are 

available for measuring the fluorescence intensity but results coming from 

different systems are not easily comparable to each other.  

In the specific case, adopting the GloMax®-Multi Microplate Multimode 

Reader, one single measurement system performing up to 96 analysis at the same 

time and routinely used for diagnostic measures, the fluorescence measurement 

can be influenced by: the repeatability of the measurement, the position of the 

well within the plate, the plate re-positioning into the measuring system and the 

sample volume loaded in the well.  

For the sample volume loaded in the well, an analysis of the fluorescence 

intensity sensitivity needs to be carried out to evaluate the sensitivity coefficients. 

The repeatability of the fluorescence measure in a single well has been 

evaluated lower than 0.5% over the whole fluorescence intensity range of interest. 

The reproducibility evaluated among the 96 wells on the same plate has been 

found lower than 1%, even though results from 5-10% of wells were outliers. 

Thus, it is necessary to work in triplicate in order to eventually identify outliers.  

The plate placement into the plate reader could contribute to the 

reproducibility. Hence, the standard deviation of repeated measurements has been 

calculated.  

The system measures the fluorescence intensity due to excitation produced by 

an incident ray entering the well. The effective optical path length of the incident 

beam is influenced by the liquid level in the well, thus the fluorescence intensity 

has been measured as function of the volume filling the well VW. The 

fluorescence intensity is highest in the range around 100 μl. This volume 
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minimizes the contribution to the uncertainty of the filling-the-well liquid volume 

fluorescence intensity.  

To summarize, the fluorescence intensity uncertainty has a component of 

repeatability of instrument measure (0.5%) and a component of reproducibility 

due to the well positions in the plate (1%). A further contribution is due to the 

volume of liquid filling the well and can be evaluated separately as function of the 

available sample volume. Sensitivity coefficients of sample and black 

fluorescence intensity (If,s,2.5h and If,b,2.5h) are calculated by derivatives of eq. (4) 

with respect to If,s,2.5h and If,b,2.5h. 

 

b. Liquid Volumes 

 

The type of liquid phase, namely the cell culture medium, is one of the most 

influencing factors that can interfere on the reaction rate by increasing or 

decreasing the cell growth. Hence, two different cell culture media added each 

one with two different FBS quantities have been analyzed. The difference of 

fluorescence intensity of the different media as function of the contact time τc, i.e., 

contact between resazurin and cells, for several different cell concentrations (cell 

number/ml) seeded on wells, has been evaluated. The volume of the liquid phase 

in the cell culture vessel VLF and the volume filling the measurement well Vw have 

been measured by a calibrated micropipette. VLF is affected by the residual 

volumes during liquid replacements, evaporation during the contact time and 

micropipette uncertainty. In the specific tests the cell culture vessel was the well 

itself, thus VW and VLF are the same volume. A 3% total uncertainty has been 

calculated. The sensitivity coefficient of VLF has been calculated by the derivative 

of eq (4) with respect to VLF. 
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c. Slope 

 

The slope of calibration curve (K) can be calculated by regression analysis of 

experimental data given by cell culture with a nominal value of cells. The cell 

number can be or estimated from the cell seeding concentration or measured by 

detaching and counting the cell by means of an hemocytometer, e.g., Neubauer 

chamber. 

The slope of calibration curve K have been calculated by regression analysis of 

experimental data measured by detaching and counting the cell by means of a 

Neubauer chamber.  

The linear regression minimizes the objective function at the estimated K value 

[58]:  

 
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While the uncertainty of K [58] is: 
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where y,i  is the uncertainty of each experimental point and combines the 

uncertainty of all the measured quantities, i.e., number of cells, volume and 

fluorescence intensities. Cell counting relative uncertainty, evaluated as the 

reproducibility of the Neubauer chamber’s cell counting, has been calculated to be 

5%. 
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The K uncertainty decreases when the ratio between cell number N and 

available liquid volume VLF increases and depends on the number of experimental 

points. The conditions in which the experiments are made to calculate the 

calibration curve constant should be as similar as possible to the measurements 

conditions of the cell number. The sensitivity coefficient of K has been calculated 

by derivative of eq (4) with respect to K. The K uncertainty has been calculated to 

be 2.2% for time of contact larger than 1 hour and 3% at 0.5 hours of contact.  

 

d. Dilution 

The fluorescence intensity measurement instrument has a detection limit of 

5x105 fluorescence units (or counts). Consequently, the maximum ratio between 

the number of cells and the volume of available liquid has a limit. The limit value 

for the different contact times has been analyzed. For values above the detection 

limit a dilution of the samples is necessary. The optimal dilution is with the blank 

solution. However, the available volumes of the blank solution are rarely 

sufficient for each dilution. The water has produced a non linear reduction to the 

interfering quantities effect. Hence, it has been necessary to dilute also the black 

solution to obtain a correct linearity of the calibration curve. The dilution of 

sample and black solutions with a solvent similar to the blank, i.e., fresh medium, 

has given a good response. 

 

e. Correlation between input quantities 

In order to keep the evaluation simple we did not consider correlation between 

none of the input quantities. 

 
 

2.7 Uncertainty budget 
 

The uncertainty budget of the cell count by CTB assay is reported in table 2.1. 

It has been calculated for a contact time of 2.5h and low cell number at the 



 55

experimental conditions of the tests. The Significance Index (SI) is the ratio 

between the contribution of the analysed influence quantity and the maximum 

contribution to the uncertainty provided by one of the influence quantities. SI 

lower than 1% indicates that the contribution to the uncertainty is negligible, SI 

upper that 10% indicates that the contribution is relevant, SI=100% indicates the 

most relevant contribution. 

The most relevant contribution was given by K. The K uncertainty can be 

reduced by increasing the number of measurement points of calibration curve; in 

addition, the fluorescence intensity may be enhanced calibrating the system by 

fluorophores standard solutions. 

 
 

Component  Unit Quantity 
Source of 
uncertainty 

Standard 
uncertainty

Combined 
standard  
uncertainty 

Relative 
combined 
standard  
uncertainty 

Sensitivity 
Coefficient 

Uncertainty  
contribution  

SI 

Xi [Xi] xi  u(xi) u(xi) u(xi)/xi |ci| [u(xi)·ci]
2  

If,s,2.5h counts 3.8·105 
reproducibility 3.8·103 

4.2·103 1.1% 2.7·10-2 1.3·104 35% 
repeatability 1.9·103 

If,b,2.5h counts 5.0·104  
reproducibility 5.0·103 

5.6·103 11.2% 2.7·10-2 2.3·104 60% 
repeatability 2.5·103 

VLF dm3 1.0·10-4 
pipette 
calibration 

1.0·10-6 1.0·10-6 1.0% 8.9·107 7.9·103 21% 

K dm3 270 regression 5.9 5.9 2.2% 3.3·101 3.8·104 100% 

N - 8910   286 3.2%    

 
Table 2.1. Uncertainty budget for cell number quantification by by R/R assay in 2D cell cultures. 
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2.8 Discussion 
 

The cell counting methods based on metabolic activities are indirect methods 

and require a high reproducibility in experiments to calibrate the method and in 

experiments with samples. The identification of standard measurement units for 

fluorescence intensities and absorbance are certainly a significant prerogative for 

methods unification in order to increase their traceability, regardless of the 

adopted measurement instrument.  

 

2.9 Conclusions 
 

Results, in 2D cell culture, revealed that three are the main components: 

repeatability and reproducibility of the measurement system and a contribution 

due to the sample loading step procedure.  Uncertainty is around 3,5% in the 

tested experimental conditions. All the influence quantities give a relevant 

contribution to the total uncertainty. It means that to reduce uncertainty by one 

order of magnitude, the uncertainty of all the quantities must be reduced. However 

the use of appropriate volumes for cell culture vessels and well filling allow to 

reduce uncertainty. Increasing the number of calibration points on the curve 

reduce calibration constant uncertainty and gives an opportunity to further reduce 

uncertainty. 

The metabolic methods to the 3D cell cultures requires a deep knowledge of 

the scaffold-cells and scaffold-metabolites interactions to ensure the independence 

from transport limitation and to foresee the effective activity of the cells attached 

to the scaffold. For a 3D system, several other component can be influence 

parameters. 

For example, in the most difficult 3D culture conditions,  due to internal porous 

architecture of the 3D system, usually only the peripheral environment of the 3D 
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system is available for collecting the culture medium in which the metabolic 

product is released. Only in that liquid volume the metabolic product 

concentration can be measured. In addition, in a 3D system, limitation factors of 

the cell activity are the diffusion of nutrients, such as oxygen and glucose, from 

the cell culture medium surrounding the scaffold to the cells within the scaffold 

pores and the diffusion of metabolic products from the inner part of the scaffold to 

the outer environment. Limitations of the cellular activity influence rate and yield 

of the cell growth. 

This justifies the need to evaluate the uncertainty in a 3D cell culture system. 

This work is a first approach to the uncertainty evaluation of a metabolic assay in 

conventional 2D cell cultures and can be the basis for a 3D system in order to 

increase the traceability of those methods, regardless of the adopted measurement 

instrument.  
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Chapter 3 
 

3.1. Summary 
 

This chapter describes the experiments made to tailor the R/R 

(resazurin/resorufin) cell counting method for 3D cell culture on Biocoral, with 

metrological approach and with the initial aims to quantify the cell number on 

scaffolds and to analyze the cell proliferation trend. A series of preliminary 

operations have been made to perform the experiments, such as the establishment 

of a hMSCs culture in the biometrology laboratory at the beginning of this PhD 

thesis work. 

Contrary to what was expected, on 42 Biocorals the fluorescence intensity of 

resorufin, supposed to reflect the cell number trends, did not increase over time 

but was fluctuating, as detailed explained in the following paragraphs. This 

evidence and some recent knowledge about the influence of biomaterials on cell 

behaviour, suggested a different interpretation of the R/R assay results: they do 

not correlate with the cell number but with the cellular activity (or metabolism) 

mainly represented by proliferation and differentiation. Thus, new ongoing 

hypotheses were made. The first one is on Biocoral influence on hMSCs and the 

second one is on R/R assay: the porous structure of the scaffold induces 

osteodifferentiation of the cells cultured within it and R/R assay can detect this 

differentiation. Hence, other experiments were introduced to demonstrate the 

hypotheses. Finally, it was demonstrated that Biocoral induces 

osteodifferentiation of hMSCs and that the R/R assay, tailored for the first time in 

this thesis for a 3D cell culture on Biocoral, can be a methodology to study the 
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cellular proliferation and differentiation activities on Biocoral because well 

indicates the dynamic balance between the two cellular activities. 

 

3.2. Experimental set up 
 
The experimental set up consisted in series of preliminary operations to prepare 

and characterize the samples and subsequent experiments to analyze with a 

metrological approach the R/R assay results when the method is tailored for 3D 

Biocoral® cell cultures. 

Operations and experiments have been performer in order to: 

3.2.1 establish a hMSCs in vitro 2D culture  

3.2.2 characterize the hMSCs properties and features (proliferation and 

differentiation) 

3.2.3 establish a hMSCs in vitro 3D culture on Biocoral 

3.2.4 tailor the R/R assay for 3D cell culture on Biocoral 

3.2.5 test the R/R on chemically differentiated hMSCs in 2D cultures 

3.2.6 evaluation of hMSCs osteodifferentiation induced by Biocoral 

scaffolds 

 

3.2.1 Establishment of hMSCs in vitro 2D cell cultures  

 
Materials and Methods 
 

hMSCs (purchased from Lonza Group Ltd) have been cultured in Petri dishs 

with cell culture medium made by: MEM (alpha modified Minimum Essential 

Medium - Lonza, Wokingham, UK) with FBS 10% v/v (Fetal Bovine Serum, 

Lonza, Wokingham, UK), L-glutammine 2mM, penicillin 100U/mL and 

streptomycin 100 g/mL (Lonza Wokingham, UK). Petri dishes with a growth area 

of about 57 cm2 have been used. Fresh medium was replaced every 3-4 days until 
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cells reached 80% of confluence (number of cell/area). Then, cells were further 

expanded or used for experiments. For expansion, to obtain a suitable total 

number of cells, hMSCs were detached from the plastic enzymatically by an 

incubation of 5 min with 0.25% trypsin/EDTA (Invitrogen), counted by using an 

hemocytometer (or manual cell counter, such as the Neubauer chamber) and then 

the total cell amount were re-seeded in other 3 Petri dishes. hMSCs are usually 

expanded with a 1:3 splitting ratio: this ratio is commonly used to support their 

physiologic (even if in vitro) growth rate. A different ratio could inhibit or 

decrease the normal rate.  

Cells were managed in laminar flow hood (class II) under sterile conditions. 

 
Results 
 

hMSCs cell culture were established in the Biosciences cell culture laboratory 

and a collection of cell samples was made in order to realize a cell bank available 

for following experiments. hMSCs samples from passage 3 to passage 16 have 

been made, collected and stored in liquid nitrogen. This operation of cell culture 

establishment and cell bank production required about 6 months. 

 
Figure 3.1: Petri dishes for cell culture (left), freezing vials containing cells (middle), liquid 

nitrogen dewar containing vials with cells (right). 
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3.2.2 hMSCs osteogenic differentiation: induction and evaluation  

 
Osteogenic differentiation induction 

Materials and Methods 

In order to confirm the stemness and multipotency of hMSCs, cells were 

treated with chemicals to be induced toward osteogenic phenotype. Cells cultured 

in Petri dishes were detached from the plastic enzymatically by an incubation of 5 

min with 0.25% trypsin/EDTA, counted by using the Neubauer cell counting 

chamber and 15x103 cells/cm2 were seeded in 6 well plates having a total growth 

area of 9.8 cm2. Cells were let to adhere over night in growth medium (GM) 

(MEM with FBS 2%, L-glutammine 2mM, penicillin 100U/mL and 

streptomycin 100 g/mL). The day after, cells were treated with osteogenic 

medium (OM) made by adding the growth medium with the following substances: 

Dexamethasone 100nM, B-Glycerophosphate 10mM, Ascorbic acid 50ug/ml. The 

OM was replace freshly every 2-3 days for 21 days. 

A parallel control cell culture were treated with GM. 

 

Results 

After 21 days treatment, control cells and treated cells have a different 

morphology, as show in fig. 3.2. Control cells (A) follow a directions in their 

patter and stratifications are absent. 

Treated cells (B) have a disorganized patter, having several overlapping 

regions in which cells are stratified.  



 62

 

 

 

 

 

 

 

 

 

Figure 3.2 : In A control cells and in B treated cells, cultured at INRIM. Optical microscopy with 

10x magnification. 

 

Discussion 

Control and treated cells have different appearance. However, in order to 

assess the osteodifferentiation, calcium deposition (marker of osteodifferentaition) 

needs to be demonstrated and Alizarin Red S Staining (ARS) has been chosen 

being a well known and used methodology to stain calcium nodules produced by  

the cells [12]. 

 

Osteogenic differentiation evaluation by Alizarin Red S Staining (ARS) 
 
Materials and Methods 

ARS stains the calcium deposits produced by differentiated cells. At day 21, 

control and treated cells were washed twice with PBS and fixed with Ethanol 70% 

in PBS for 1h. Cells were then stained with ARS 40mM for 15 minutes on a 

rocker. ARS were eliminated and cells were washed with distilled water 5 times. 

Finally cells were washes with PBS once.  

 

 

 

A BA B
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Results 

In treated cell cultures calcium nodules were stained in red as showed in the 

fig. 3.3. Three upper wells contain control cells which have not being stained with 

ARS staining and resulted not coloured. Treated cells in the three lower wells 

reacted to the ARS staining becoming red. 

 

 
Figure 3.3: Control and treated cells stained with ARS: they appear not coloured and red coloured 

respectively. Red = calcium deposits (nodules). Images taken at INRIM: a digital camera (A) and 

an optical microscope with 10x magnification (B, C, D) were used. 

 

Discussions 

hMSCs cultures established and grown in the Biosciences cell culture 

laboratory have been tested for osteodifferentiation potential. They were positive 

Controls 

Treated 

A B 

C D
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to the ARS staining confirming the osteodifferentiation. They can therefore be 

used in osteoinduction evaluation experiments. 

 

 

3.2.3 Establishment of hMSCs in vitro 3D cell cultures on 

Biocoral: cell seeding and culture methodologies. 

Materials and Methods 

hMSCs have been cultured in Petri dishes with cell culture medium (MEM 

with FBS, L-Glutammine, penicillin and streptomycin as described above) until 

they reach the 80% of confluence. Cells have been detached from Petri dishes by 

using the trypsin/EDTA solution and counted by using the Neubauer chamber. 

Cells were finally seeded on scaffolds: Biocoral scaffolds were placed into wells 

of a 24 well-plate (fig. 3.4) and a 100 L drop of cell culture medium containing 

the appropriate number of cells were deposited on the upper base surface of each 

scaffold. The scaffold with the “cells-drop” were incubated at 37°C and 5% CO2 

for 1 hour to let the drop be absorbed by the scaffold and to allow the cells to 

adhere on and within the scaffold. After 1 hour, 1 ml of cell culture medium was 

added in each well (containing one scaffold) to completely cover the scaffold. The 

3D cell cultures on Biocoral were maintained for days or for months to conduce 

several preliminary experiments. Fresh medium was routinely replaced every 3-4 

day or every day if necessary for short term measurements. No osteogenic 

medium or other osteoinductive factors were used.  
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Figure 3.4 :  Biocorals placed in wells of a 24 well-plate. Growth medium will fill the well 

completely covering the Biocoral. 

  

Results 

As described previously, Biocoral has a porous structure, as shown in the 

following Atomic Force Microscope (AFM) and scanning electron microscope 

SEM images (figures 3.5, 3.6 and 3.7), which allows cellular colonization. The 

cells are not visible with an optical microscope because the scaffold is opaque to 

light.  

 

 

Figure 3.5 : Biocoral upper base surface. Image taken with scanning electron microscope (SEM) 

at INRIM thanks the kind availability of Dr M. Pisani. 
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Figure 3.6 : Biocoral porous structure. The scaffold has been fractioned to see the internal pores. 

Images acquired with Atomic Force Microscope (AFM) at INRIM from Dr E. Bernardi. It is 

possible to see internal interconnections. Bar: 0.5 mm  

 

 

Figure 3.7 : Biocoral pore. Image taken with scanning electron microscope (SEM) at INRIM 

thanks the kind availability of Dr M. Pisani.  

 

Only cells adherent to the outer surface side are in fact visible in transmitted 

light with optical microscopy, as shown in fig. 3.8 where cells can be just seen at 

the edges of Biocoral.  
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Figure 3.8 : Arrows indicate hMSCs adhered to the external surface of a Biocoral scaffold. They 

form “bridges” between 2 edges of the scaffolds. Transmitted light optical microscopy. 

 

In order to check the adhesion and the colonization of the scaffolds by cells, a 

staining of the cells with a fluorescent molecule has been performed. The staining 

was carried out using the calcein AM (Invitrogen). This molecule is a cell-

permeant dye, able to enter the cell and only in live cells is metabolized by 

cytoplasmic intracellular enzymes: the esterases enzymes, by hydrolysis of the 

acetoxymethyl ester (AM) group, modify the chemical structure of the molecule 

that is converted from a nonfluorescent calcein to a green-fluorescent calcein. The 

green-fluorescent calcein is retained within live cells, producing an intense 

uniform green fluorescence with excitation maximum wavelength at 495 nm and 

emission maximum at 515 nm. 

 

 

Biocoral

Well plate   
bottom

cells

cells

Biocoral

Well plate   
bottom

cells

cells
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As shown in fig. 3.9 the entire cell is evident when illuminated with light at the 

appropriate wavelength: cells have an elongated shape and seek to create contacts 

to establish communications between them. However, even by fluorescently 

colouring the cells, it is not possible to see them inside the scaffold but only on 

the outer surface or in more external pores (figures 3.9, 3.10, 3.11). 

 

 

 

Figure 3.9: Outer edge of 
Biocoral. The upper right image 
is the fluorescence acquisition, 
the upper left image is the 
transmitted light acquisition and 
the lower right is the merged 
image. Cells stained in green 
(Calcein AM) are evident on the 
dark background (scaffold). 
Fluorescence confocal 
Microscopy kindly provided by 
Dr Giachino. 10x Magnification. 
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Discussion 

Cell seeding methodology on Biocoral resulted in cell attachment to the 

scaffold pores. Cell colonization by the scaffold, at this stage can only be 

Figure 3.10 : A pore in detail.  
The upper right image is the 
fluorescence acquisition, the 
upper left image is the 
transmitted light acquisition and 
the lower right is the merged 
image. Cells stained in green 
(Calcein AM) are present on the 
internal sides of the scaffold 
pore. Fluorescence confocal 
microscopy. 20x Magnification.  

Figure 3.11: Upper face of 
the Biocoral scaffold. Cells 
in green (Calcein AM) are 
visible on the dark 
background (scaffold)  
It is the cell seeding site. 
Fluorescence confocal 
microscopy. 
40x Magnification. 
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hypothesized. However, Mygind et al. in 2007 [59] have made slices of a 3D cell 

culture on a coralline scaffold and have demonstrated that cells are within the 

scaffolds, living and colonizing the internal pores. Imagining a situation of 

cellular distribution within the scaffold, it is important to understand that the 

diffusion, the transport of nutrients and the elimination of the metabolic products 

has to be ensured. The structural properties of the scaffolds affect the fluid 

dynamics properties while the geometry and the chemical characteristics 

determine the mechanical properties and the substances transport dynamics. 

Transport through a matrix (scaffold) is linked to highly porous diffusion and 

convective mechanisms. The biocoral ensures, through its internal architecture, 

such transport allowing the cells to live inside it for long periods. The images of 

figures 3.9, 3.10 and 3.11 refer to samples of biocoral scaffolds on which the cells 

were cultured for 6 months: a sufficiently long time, much longer than necessary, 

in order to assess the biocompatibility and the ability to allow a cell growth of the 

scaffold. 

The cells, once deposited on the surface of the scaffold, adhere to it, migrate 

into the more internal pores and colonize the scaffold, proliferating over time. 

 

3.2.4 Cell activity analysis of cell cultures on Biocoral scaffolds: 

R/R assay for 3D cultures  

Materials and Methods 

R/R assay, described in Chapter 2, has been used.  

Scaffolds were placed in 24 well plates and a known number of cells were 

seeded on them as described in paragraph 3.2.3. Several cell density (cell 

number/scaffold) were seeded and the 3D culture were analyzed at several time 

points (different days of the culture). Cells on Biocorals were cultured for 

different period of total time (culture lifetime), as summarized in table 3.1. 
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ID Scaffold Cells density n. scaffolds used Culture lifetime (days) Time points 
A 2.25x103 1 10 4 
B 4.5x103 1 10 4 
C 9x103 1 10 4 

D, E, F 5x105 3 21 7 
GHI 1x105 3 21 7 
JKL 3x105 3 21 7 
M 5x104 1 51 8 
N 8x104 1 51 8 
O 9x104 1 51 8 
P 1x105 1 51 8 
Q 7x103 1 119 12 
R 4x105 1 119 12 
S 1x105 1 119 12 
T 2x105 1 119 12 
U 3x105 1 119 12 

 

Table 3.1 : Summary of set up for 4 experiments of hMSCs activity on Biocoral with R/R assay. 

 

After 24 hours at 37°C and 5% CO2 to let the cells to adhere on to the 

scaffolds surface, scaffolds were incubated for 2 hours with 1 ml of Resazurin 10 

mM in growth medium. 

After 2 hours, the R/R solution was collected in microcentrifuge tubes. 

Scaffolds were washed with PBS and fresh growth medium were added (1 

ml/scaffold). 

Fluorescence intensity of R/R solution were measured with the GloMax®-Multi 

Microplate Multimode Reader (Promega Corporation, USA). Excitation was 

performed at 525 nm wavelength while emission was measured in the range 580-

640 nm. Microplates with 96 wells were used and a volume of 100 l for each 

sample was measured in triplicate. 
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Results 

The following graphs show the trend of fluorescence intensity (IF), measured in 

counts, of resorufin after metabolization of resazurin  by cells within the scaffold 

over time (days). IF is expected to reflect the cell number, hence it should be 

correlated with the cell number. However the IF trend allow to hypothesize a 

different interpretation of R/R results: the IF detected with the R/R assay does not 

correlate with the cell number but with the cellular activity (AC), i.e. the cellular 

metabolism, as described by the following equation. This new hypothesis will be 

discussed below.  

WCF VkAI   [counts]        (3.1) 

where IF is the fluorescence intensity measured, AC is the cellular activity, k is 

the proportionality constant and VW is the volume of R/R solution filling the 

measurement well. 

Aim, at this moment, is to evaluate the AC trend (through IF values) and not yet 

to quantify AC. Thus, k is not quantified. 

Error bars on fluorescence intensity values represent the combined standard 

uncertainty of the measurement, with a coverage factor of k=1, equal to the 

positive square root of the sum of the squared terms repeatability, reproducibility 

and uncertainty due to VW, as described by the formula: 

222 )()( WF VuilityreproducibityrepeatibilIu    [counts]        (3.2) 

For scaffolds A, B, C, M, N, O, P, Q, R, S, T, U the repeatability is calculated 

as the standard deviation of the three repeated measurements for each sample and 

reproducibility has not been calculated because only 1 scaffold was analyzed for 

each condition. 
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For scaffolds D, E, F, G, H, I, J, K, L the repeatability is the mean of standard 

deviation of the three repeated measurements and the reproducibility is calculated 

as the standard deviation of all the 9 measurements. 

For each scaffold the VW is 0.1 ml with an uncertainty due to the pipetting  error  

set as 0.001 ml.  

 

 

The trend has been analyzed for cells seeded at several density (cells/scaffold) 

on 21 Biocorals. Cell density and days of culture are reported in table 3.1. 
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Graph 3.1: IF increase slowly during the first 6 days and then the increase rate is higher. Cell 

density at day 0 in A, B and C is very low. 
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Graph 3.2: IF values are fluctuating over time. Firstly it decreases, then it increases and again 

decreases. However, the trend is very similar in all the scaffolds, independently from the cell 

density at day 0.  
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Graph 3.3: IF values are monitored for 50 days. The trend is fluctuating over time reaching the 

maximum values in all the scaffolds around day 18 of culture. 
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Graph 3.4: IF values are monitored for 4 months. The trend is fluctuating over time reaching the 

maximum values in the first 20 days of culture. 
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Graph 3.5: By comparing the first 55 days trend of the graph 3.4 with the trend in 50 days shown 

in graph 3.3, it is evident that Biocoral S very well reflects the trend observed in graph 3.3, even if 

the maximum value of IF is reached later here. 
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Generally, the R/R fluorescence intensity trend in Biocorals is fluctuating: cells 

seem to decrease and increase their number, but the following discussion will 

explain a different interpretation of R/R results. 

 

Discussion 

Fluorescence intensity is expected to reflect the cell number. However, the 

trend observed in all the scaffold, independently from the number of cells seeded 

on Biocorals at day 0, indicates that IF, and consequently the cell number, did not 

increase over time but was fluctuating. This evidence, confirmed in 21 scaffolds, 

with different cell number seeded at day 0, and some recent works demonstrating 

that biomaterials induce the cell differentiation, suggested a different 

interpretation of results of R/R assay and allowed new ongoing hypotheses. The 

first new hypothesis is that Biocoral influence hMSCs behaviour by inducing an 

osteodifferentiation. The second is that R/R assay on Biocorals can indicate this 

differentiation and it does not relate with the cell number. Thus, R/R assay results 

probably indicate a dynamic process of cellular proliferation/differentiation.  

In order to confirm this hypothesis, two experiments have been made: the first 

is the analysis of resazurin reaction when in contact with cell having two different 

phenotypes: undifferentiated and differentiated. The second experiment is to 

demonstrate that Biocoral induce osteodifferentiation of hMSCs. 

 

3.2.5 Testing the R/R on chemically differentiated hMSCs in 2D 

cultures 

Aim of this test is to answer the questions: do hMSCs metabolized differently 

the resazurin? Hence, does the R/R assay give different responses for 

differentiated cells with respect to undifferentiated ones? 
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Materials and Methods 

In order to verify the behaviour of R/R metabolic reaction with differentiated 

hMSCs, 15x103 cells/cm2 were seeded in 6 well plates. Cells were let to adhere 

over night in growth medium (GM) (MEM with FBS 2%, L-glutammine 2 mM, 

penicillin 100U/mL and streptomycin 100 g/mL). The day after, cells were treated 

with osteogenic medium (OM) made by adding the growth medium with 

Dexamethasone 100 nM, B-Glycerophosphate 10 mM, Ascorbic acid 50 g/ml. 

The OM was replace freshly every 2-3 days for 15 days. 

A parallel control cell culture were treated with GM. 

Control and treated cell were then treated with resazurin to perform the R/R 

assay. 

The incubation time was 24 hours, a time much longer than the standard 

incubation time (suggested between 0.5 and 4 hours from the manufacturer). 

The same samples of control and treated cell were stained with Alizarin Red S 

staining (as described previously) to mark the calcium nodules. This to directly 

correlate the R/R assay results and ARS results.  

 

Results 

As shown in fig. 3.12, treated cells differentiated forming calcium nodules 

stained positively with ARS (red), control and treated cells react diversely to the 

R/R test. Undifferentiated cells (control) reduced the resazurin becoming pink 

(and fluorescent) while fully differentiated cells (treated), even after 24 hours of 

incubation with resazurin, did not (or slightly) metabolized the substrate resaruzin 

and the colour did not change (fluorescence neither). 
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Figure 3.12 : R/R assay results on control and treated cells in the left panel, ARS corresponding 

results in the central panel and an optical microscopy image of the cells stained with ARS on the 

right panel, are shown. 

 

Discussion 

The results showed that undifferentiated and differentiated hMSCs metabolized 

differently the resazurin, hence R/R assay give different responses for cells with 

different phenotype.  

The R/R assay on Biocorals does not relate with the cell number. Thus, R/R 

assay results should be considered as indicating a dynamic process of cellular 

proliferation/differentiation.  

In addition, when cells are chemically induced to differentiate and then 

undergo to the /R assay, in both samples, control and treated ones, the cells are 

attached on the well surface but treated cells are embedded in a mineralized 

matrix that probably prevent the resazurin solution access to the cells. Under this 

hypothesis, it is plausible that differentiating cells, not completely embedded in 

the mineralized matrix, can still partially have access to the resazurin. However, 

experiment does not indicates what is the behaviour of differentiating cells with a 

mixed phenotype. Hence, further experiments should be done with cells at 
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different stage of differentiation in order to have a quantitative correlation 

between R/R assay results and differentiation stages of hMSCs. 

 

3.2.6 Evaluation of hMSCs osteodifferentiation induced by 

Biocoral scaffold 

In order to demonstrate the hypotheses that: 1) Biocoral has an osteogenic 

potential and induce osteodifferentiation in hMSCs seeded on it and 2) R/R reflect 

the dynamic process of proliferation/differentiation of hMSCs on Biocoral, an 

analysis of gene expression was performed. 

 

Materials and Methods 

A Real Time Polymerase Chain Reaction (RT-PCR) was performed to study 

the phenotype expression patter of hMSCs cultured on Biocoral scaffolds and 

particularly to analyze the cell osteogenic expression patter. 

The RT-PCR technique quantifies the expression of specific genes in hMSCs 

in 2D and 3D cell cultures on Biocoral, contained in the DNA copies. The RT-

PCR allows the simultaneous amplification and quantification of DNA by 

monitoring in real time the intensity of fluorescence released from the 

amplification product during the chain reaction of DNA polymerase: this is 

possible by means of the use of fluorescent markers whose accumulation, at the 

level of the reaction product, follows the same kinetics of PCR. 

 

In order to obtain DNA samples to perform the RT-PCR analysis, the following 

steps have been carried out: 

- Cells seeding and culture on Biocoral:  21 Biocoral scaffolds have been 

seeded with 3x105 hMSCs at passage 7 and cultured up to 21 days with 

normal cell culture medium with no osteogenic or osteoinductive factors. 
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Three scaffolds for each time point (respectively at day 1, 4, 7, 10, 14, 18, 21) 

have been used for the gene expression analysis.  

- Cell activity evaluation of hMSCs on Biocoral: for each scaffold the R/R cell 

activity assay, non destructive and non dangerous for the RNA, has been 

performed immediately prior to start the following steps. 

- Biocoral pulverization: cells, especially the ones embedded in the extracellular 

mineralized matrix within the Biocoral pores, cannot be detached easily from 

the scaffold. However, in order to collect the RNA from all the cells within the 

Biocoral the sample needs to be homogeneous. At this scope, Biocorals are 

pulverized and homogenized by using liquid nitrogen steinless stell mortars 

and pestles, designed and made at INRIM, autoclaved to be RNasi free (fig. 

3.13.) The Biocoral is placed in the compartment of the entire mortar, 

previously placed in liquid nitrogen. Then the mortar containing the Biocoral 

is placed in liquid nitrogen. After cooling, the scaffold is pulverized with the 

pestle. Biocoral power needs to be as finest as possible. 

 

 
Figure 3.13 : Mortar and pestles. Mortar is made of stainless steel, autoclavable and liquid 

nitrogen resistant.  

 

Compartment 
for Biocoral

Compartment 
for Biocoral
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-   RNA extraction: this step allows the extraction of RNA from cells, both the 

differentiated ones and the non differentiated (proliferating) ones.  

After pulverization, the powder is transferred in falcon tubes of polypropylene, 

kept in dry ice to ensure the low temperature. The sample was added with 1ml of 

QIAzol Lysis Reagent (QIAGEN) and vortexed. For phase separation, 0.2 ml of 

chloroform (for 1 ml of TRIZOL ® Reagent) were added to the tubes. The 

samples were shaken vigorously for 15 seconds and taken 3 minutes at room 

temperature. After centrifugation at 13,000 x g for 15 minutes at 4 °C, the mixture 

results separated into a phenol-chloroform phase (red), containing proteins and 

lipids, a middle phase (white) containing DNA and a colorless aqueous phase 

(transparent). The RNA remains exclusively in the aqueous phase as shown in a 

demonstrative picture (fig. 3.14). 

 

  

 

Figure 3.14 : Different stages in the tube after treatment with phenol-chloroform and separation by 

centrifugation. 

 

The aqueous phase is carefully transferred to a new tube without disturbing the 

interphase. The RNA obtained in the aqueous phase were added with 0.6 ml of 

70% ethanol. The samples were incubated at -4 °C for 10 minutes and then well 

were re-suspended (avoiding vortexing and centrifugation). RNA is purified using 

the RNeasy Mini Kit protocol (Qiagen). Briefly, the sample is placed on special 

columns of purification, centrifuged at 10000 rpm for 15 seconds at room 
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temperature. The RNA is retained in the column, washed with two buffers 

provided in the kit and centrifuged at maximum g number of the centrifuge for 1 

minute at room temperature to eliminate the buffers. Finally the RNA is eluted 

from the column with 40 μl DEPC-treated water in order to remove DNAse and 

RNAse. 

The RNA samples obtained are quantified using theNanoDrop ND-1000 

spectrophotometer.  

The RNA purity is secured when the spectrophotometric A260/A280 ratio ≥ 1.8, 

where A260 and the absorbance in nanometers relative to nucleic acids, while 

A280 is the absorbance in the UV and the index of protein contamination. 

The RNA integrity is assessed by electrophoresis on agarose gel. 

 

-   Retrotranscription: the retrotranscription is a reverse transcription reaction 

producing the molecules of  complementary DNA (cDNA) from RNA.  

250 ng of total RNA extracted from BIOCORAL and total RNA extracted from 

hMSCs as control cells are reverse transcribed in a final volume of 20 l. A 

mixture composed of RNA and random primers (1.5 pmol/μl) are incubated at 

65°C for 10 minutes to facilitate the extension of the primers by reverse 

transcriptase in the following step. The reverse transcription is performed by using 

the Transcrioptor First Strand cDNA Synthesis kit (Roche Diagnostics): the RNA 

is incubated in a mixture composed with deoxyribonucleotide triphosphates 

(dNTPs) 1 mM, RNase inhibitor 20Units and reverse transcriptase 50Units, Buffer 

10X and MilliQ water to reach the final volume for 10 minutes at room 

temperature followed by a at 55°C for 30 minutes and 85°C for 5 minutes. Finally 

20 l of cDNA are synthesized from RNA. 

To check the occurred retrotranscription, 1 μl of cDNA is used to amplify an 

endogenous gene control (expressed in all tissues at any time) by Polimerase 

Chain Reaction (PCR): the endogenous gene amplified for this test is the β-actin 
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gene. To perform the PCR reaction the following reagents are used: KAPA2G 

Fast polymerase, 10 μM of forward primers for β-actin (5'-

CTAGAAGCATTTGCGGTGGACGATGGAG-3') and 10 μM of reverse primers 

for β-actin (5'-ATGGATGATGATATCGCCGCG-3'), 5X reaction buffer, 10 M 

dNTPs and MilliQ water in a final volume of 25 μl. cDNA is amplified for 30 

cycles with annealing temperature of 62°C. 

 

-   RealTime PCR protocol analysis: The TaqMan Gene Expression Master Mix 

(Applied Biosystems) was used to perform the amplification. It contains 

AmpliTaq Gold® DNA polymerase Ultra Pure, uracil-DNA Glycosylase (UDG), 

deoxyribonucleotide triphosphates (dNTPs) with triphosphate deoxyuridine 

(dUTP), ROX™ passive reference and buffer components. 

To prepare the mixture of the components for the PCR reaction, the following 

reagents are mixed in tubes RNase-free: 10 l of TaqMan Gene Expression 

MasterMix 2X, 0.4 M final primer, 0.2 l of UPL probe and 50 ng of cDNA, for a 

final volume of 20 l per reaction. 

The tubes are briefly vortexed to mix the solutions and briefly centrifuged to 

remove any air bubbles from the solution. 

The genes of interest are analyzed on ABI 7500 Real Time PCR platform Fast 

Real-Time PCR System (Applied Byosistem). 

The conditions of thermal cycles are as follows: 2 min at 50°C, 10 minutes at 

95°C, necessary to activate the enzyme AmpliTaq Gold, and 40 cycles of PCR 

consisting of 15 seconds at 95°C for the denaturation process and 1 minute at 

60°C for the steps of annealing /extension. 

 

For the analysis of RT-PCR data was used the relative quantification technique 

that allows to normalize the data with respect to the differences in target gene 

expression levels compared to a control gene. This gene, called housekeeping 
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gene, is constitutively expressed, i.e. it is not subject to modulation of the 

expression due to changes in cell phenotype, and used as an internal control 

reference. For hMSCs a stable housekeeping gene is RPL13A [60] and for this 

thesis work it has been used the RPL13A from Roche-Diagnostics (RealTime 

ready Assay® IDA 102119, No.B Accession NM_012423). 

 

The cDNA quantity is expressed as gene expression (GE) and is calculated as: 

 CtGE  2    (3.2) 

      where ∆(∆Ct) is give by 

     samplesamplecalibratorcalibrator CtTARGETACtRLPCtTARGETACtRLPCt  1313   (3.4) 

                                                                                           

Ct defines the amplification cycle at which the fluorescence level crosses a 

baseline threshold of fluorescence level at which all the samples are in the 

exponential phase of the amplification reaction; the fig. 3.15 shows the Ct 

meaning. 

 

 
Figure 3.15 : Ct defines the amplification cycle at which the fluorescence level crosses a 

baseline threshold of fluorescence level at which all the samples are in the exponential phase 

of the amplification reaction. 
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Hence, ∆(∆Ct) is the difference between the calibrator ∆Ct (CtRPL13A-

CtTarget) and the unknown sample ∆Ct (CtRPL13A-CtTarget). 

The calibrator is a sample of hMSCs cultured in 2D condition prior to be 

seeded on Biocoral scaffolds. To the GE of the calibrator is arbitrarily assigned 

the value of 1 unit. The target is the gene of interest which expression has to be 

checked in the cells. 

The relative difference of gene expression (∆GE) was calculated between 

hMSCs cultured on 3D Biocoral scaffolds and hMSCs cultured in 2D cultures.  

For each gene in both 2D and 3D cell culture sample, ∆GE was calculate using 

the following formula:  

100
0

0 



t

tti

GE

GEGE
GE    [%]   (3.5) 

where tiGE  is the GE in the 3D sample at time i  and 0tGE  is the GE in 2D at 

time 0 . 

 

Cell activity evaluation of hMSCs on Biocoral 

Results 
 

Three series scaffolds (X, Y, Z) have been analyzed with resazurin/resorufin 

assay in 7 days of analysis by performing the assay on 3 different scaffolds for 

each day for a total of 21 Biocoral scaffolds in 21 days (7 scaffolds for each 

series).  

Three scaffolds (J, K, L Biocorals, analyzed also in graph 3.2) have been 

cultured in parallel as control: on these 3 scaffolds the R/R assay was performed 

at each time points over the entire period of culture (21 days), therefore the same 

scaffold was followed over time. The mean values of the 3 scaffolds have been 

represented in the following graph. 
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Error bars on fluorescence intensity values represent the combined standard 

uncertainty of the measurement, with a coverage factor of k=1, equal to the 

positive square root of the sum of the squared terms repeatability, reproducibility 

and uncertainty due to VW, as described by the formula: 

222 )()( WF VuilityreproducibityrepeatibilIu    [counts]        (3.6) 

The repeatability is the mean of standard deviation of the three repeated 

measurements and the reproducibility is calculated as the standard deviation of all 

the 9 measurements. 

For each scaffold the VW is 0.1 ml with an uncertainty due to the pipetting  

error  set as 0.001 ml.  
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Graph 3.6: IF  values fluctuate over time in both set of 3 scaffolds reaching the maximum on the 

same time. Cellular activity decreases and increases over time on 6 scaffolds where the same cell 

number was seeded at day 0. 

 

In scaffold set X, Y, Z each point represents the behaviour of cells living 

within different scaffolds. The behaviour is not exactly of the same cells. 

However, the same cell population has been divided on the 21 scaffolds and can 

be considered the same. 
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In both set of 3 scaffolds, JKL (control) and XYZ, cells have the same 

fluctuating trend: they decrease and increase the cellular activity until the day 10 

and then decrease drastically until the day 21. 

 

Discussion 
 

In this experiment 21 Biocoral scaffolds have been considered as the same 

scaffold analyzed over time but each scaffold has been destroyed after only one 

analysis with R/R assay to be used for RNA extraction and gene expression 

analysis. Fluorescence intensity results of R/R assay, show that cellular activity 

have a fluctuating behaviour as also occurred in previously experiments on R/R 

assay tailoring on Biocorals: cells within the Biocoral are a mixed pool of 

proliferating and differentiating cells and they react differently with the resazurin 

with a different capacity to metabolize it. Therefore, the fluorescence intensity is 

fluctuating and indicates a mean cellular activity of the cell population on 

scaffolds. These results can be correlated with the gene expression results as 

follows. 

 

RNA estraction 

Results 
 

The RNA extracted from Biocorals had a purity in the range of 1.7 - 1.9.  

RNA integrity has been verified. 

 

Discussion 
 

RNA extraction from cells cultured on Biocoral has not been an easy 

procedure.  
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Biocoral has a very stiff and porous structure: two conditions making the 

accessibility of RNA extraction reagents to the cells within the pores very hard.   

Results of RNA quantity was variable from scaffold X, Y and Z at the same 

time point demonstrating the hardness of the procedure and the difference 

between different Biocorals in retaining cells within the pores. 

To note that the RNA are extracted from hMSCs having three different 

phenotype: undifferentiated, differentiating and differentiated phenotypes.  

 

Retrotranscription 

Discussion 

The standard protocol was feasible for the Biocoral RNA extracts and the 

procedure have not met drawbacks. 

 

RealTime PCR: osteogenic expression patter analysis of cells on Biocoral 

Results 
 

The temporal expression of a panel of 5 differentiation genes and of 5 stemness 

genes were determined by quantitative real time PCR using RNA isolated from 21 

scaffolds. The 3 series of scaffolds (X, Y, Z) were analyzed for 21 days at 7 time 

points. For each point (day of analysis) one scaffold for each series X, Y, Z was 

used. Results were compared with the housekeeper gene expression RPL13A to 

normalize the gene expression of different samples and were related to the gene 

expression in hMSCs in 2D cell cultures placed as 0%. Each sample was run in 

triplicate.  

Results are reported as mean values (mean of X, Y and Z)  in one graph for 

each gene analyzed: each graph for the gene expression is compared with the 

cellular activity (proliferation/differentiation) coming from R/R assay results on 

Biocorals (mean of X, Y and Z). 
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This allows to simultaneously evaluate and correlate the gene expression with 

the cellular activity of cells on scaffolds. 

The following genes have been analyzed: 

- for stemness/proliferation: CD29, CD44, CD90, CD105, CD166  

- for osteodifferentiation COLIA1, ON, OP, BSP, BMP2 

 

For statistical analysis the raw data of gene expression levels obtained from 

each experiment of RT PCR (for each sample three replicates) were subjected to 

the Anova test. The differences between the data obtained were all statistically 

significant with a p value <0.0001. 

 

The uncertainty of ∆GE has been calculated as:  

2
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2 )]()([)]()([)( tttiti GEuGEcGEuGEcGEu    [%]      (3.7) 

where c(GEti) and c(GEt0) are the sensitivity coefficients of u(GEti) and u(GEt0) 

respectively and are calculated as: 
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Thus, the eq. 3.7 becomes: 
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where u(GEti) and u(GEt0) are the standard deviations of the GEti and GEt0 

triplicate measurements.  
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Graph 3.7: CD29 profile of expression and cellular activity on Biocoral. 

CD29 expression level in 3D cell cultures is positive between day 0 and day 1 

but then decrease during the cell culture on Biocoral. A 20% increment is revealed 

during the last days in culture. The CD29 expression trend follows the cellular 

activity trend: when cells are not metabolizing the resazurin and the cellular 

activity is toward the differentiation, CD29 decrease. 

 
Discussion 
 

The CD29 expression trend after the first days in culture, during which the 

gene is expressed, decrease with respect to the undifferentiated hMSCs (2D 

sample at day 0) indicating a change in the cell phenotype: cells are loosing their 

stemness. 
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Graph 3.8: CD44 profile of expression and cellular activity on Biocoral.  

 

CD44 expression in 3D cell cultures increases during the first day, then the 

stemness gene decreases when cell activity goes towards differentiation and 

increases when cell activity is towards proliferation. Hence, it follows the cellular 

activity trend. 

 

Discussion 

Similarly to the CD29 expression trend, also CD44 expression decrease with 

respect to the undifferentiated hMSCs (2D sample at day 0) indicating a change in 

the cell phenotype: this evidence confirm that cells are loosing their stemness. 
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Graph 3.9: CD90 profile of expression and cellular activity on Biocoral.  

 

CD90 expression decreases since from the beginning of the 3D cell culture 

with a slight increase starting when the cellular activity goes towards proliferation 

and decreases again when cell activity is substantially towards proliferation after 

day 14. The expression, therefore, follows the cellular activity trend. 

 

Discussion 

Similarly to the CD29 and CD44 expression trend, also CD90 expression 

decrease with respect to the undifferentiated hMSCs (2D sample at day 0) 

indicates that cells are loosing their stemness when cultured of Biocorals. 
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Graph 3.10: CD150 profile of expression and cellular activity on Biocoral. 

 

CD105 expression is very similar to CD90 expression and follows the cellular 

activity trend: during differentiation, the stemness gene decreases its expression 

and when cells are mostly during the proliferation phase, the stemness gene 

expression increases. 

 

Discussion 

CD105 expression is a further confirmation of the change in phenotype of the 

hMSCs seeded and cultured on Biocorals. Cells lose their stemness since the first 

days of culture on scaffolds. 

 

 

 

 



 94

CD166 

 

‐100%

‐90%

‐80%

‐70%

‐60%

‐50%

‐40%

‐30%

‐20%

‐10%

0%

0 5 10 15 20 25Time [d]

Δ
G
E 
[%

]

0,0E+00

5,0E+04

1,0E+05

1,5E+05

2,0E+05

2,5E+05

3,0E+05

3,5E+05

4,0E+05

4,5E+05

5,0E+05

IF
 [
co
u
n
ts
]

CD166

cellular activity

 
Graph 3.11: CD166 profile of expression and cellular activity on Biocoral. 

 

CD166 expression is very similar to CD105 expression: it decreases since the 

first days of 3D culture and follows the cellular activity trend: during 

differentiation, the stemness gene decreases its expression and when cells are 

mostly during the proliferation phase, the stemness gene expression show a very 

slight increase. Only during the last days a 20% increment in gene expression 

level does not follows the cellular activity trend.  

 

Discussion 

CD166 expression is the later confirmation of the change in phenotype of the 

hMSCs when cultured on Biocorals. The slight increase between days18 and 21 

could indicate that a pool of cells are proliferating and their expression of CD166 

is revealed while as cellular activity the differentiation is predominant. 
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Collagene type I, alpha 1 (COLIA1) 
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Graph 3.12: COLIA1 profile of expression and cellular activity on Biocoral. 

 

COL1A1 expression increase during the first day of hMSCs in 3D culture on 

Biocoral and remains at higher level than 2D cell culture during the first three 

days. Then, its expression decreases during the cell culture remaining at low level 

of expression. A slight increase is observed when cellular activity trend is towards 

the proliferation, after day 5.  

 

Discussion 

COL1A1 is expressed at very high level during the first establishment of the 

cell culture within the Biocorals being much higher than in the hMSCs cultured in 

2D.  

Collagen is the first produced protein in the ECM and the results of this 

experiment are consistent with this behaviour. It is plausible that Biocoral 

immediately and strongly induce the collagen production that will be then 

mineralized by other non-collagenous proteins. 
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Graph 3.13: ON profile of expression and cellular activity on Biocoral. 

 

ON mean expression trend (mean between X, Y and Z series on Biocorals) is 

always decreasing over time. However, if only scaffold X gene expression trend is 

considered (graph 3.14) there is a slight increment of expression in the first day of 

culture.  
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Graph 3.14: ON profile of expression and cellular activity on Biocoral X. 
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Discussion 

The behaviour of ON in cells cultured on scaffold X indicate a rapid induction 

of ON production simultaneously with collagen, confirming the role of ON in 

starting the mineralization process and connecting the collagen to the mineral 

matrix. 

However, the mean curve is not showing any increment of ON production 

indicating a different scaffolds induce different behaviour of cells. 
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Graph 3.15: OP profile of expression and cellular activity on Biocoral. 

 

The differentiation gene OP shows a fluctuating expression over time: it is 

lower that 2D cell culture at the beginning of the 3D culture, then it is higher 

when cellular activity is differentiation and later it decreases from day 4 to day 7 

when cells proliferate. Then, again it increases going to day 7 to day 18 while 

cells differentiate and finally decreases. This last decrease is only visible in 
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scaffold z. In fact, in X and Y (data not shown) the trend is increasing from day 7 

to day 21 while cellular activity is always towards differentiation. 

 

Bone sialoprotein (BSP) 
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Graph 3.16: BSP profile of expression and cellular activity on Biocoral. 

 

The expression levels of BSP are very high at the beginning of the 3D culture, 

when cellular activity trend is towards differentiation decreases and became lower 

when cells proliferation increases. Thus the change in cellular activity is 

correlated with a decrease of BSP production. After day 7 the production of BSP 

is reduced to the same 2D cell culture levels. Cells do not produce BSP during the 

late culture on Biocorals. 

 

Discussion 

The correlation between BSP gene expression and cellular activity is very 

evident in the first period of the culture: when cells differentiate they produce 

BSP, when cell proliferate the production rapidly decreases. BSP expression starts 

just shortly after the collagen production has reached the maximum level. This is 
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consistent with the role of BSP in the formation of mineral crystals of the ECM 

after collagen deposition. 

 

Bone morphogenic protein 2 (BMP2) 
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Graph 3.17: BMP2 profile of expression and cellular activity on Biocoral. 

 

BMP2 expression level is higher than in the 2D cell culture only after day 5 

when its expression start to follows the cellular activity. It reaches a maximum at 

day 21, in late stage of differentiation.  

 

Discussion 

BMP2 is involved in osteogenesis and bone remodelling. This could be 

consistent with data of gene expression: the maximum of expression in this 

experiment is reached at day 21 when cells are in a late differentiation and the 

scaffold undergo a process of consumption: its edges appear eroded. This 

behaviour could be an attempt of remodelling by cells differentiating into 

osteoclasts. 
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General discussion 
 

To recapitulate, for this study a set of gene expression markers have been 

chosen: five stemness markers to assess the gene expression of proliferation and 

stemness-related genes: CD29, CD44, CD90, CD105 and CD166; five osteogenic 

differentiation markers to evaluate the expression of differentiation-related genes: 

early differentiation markers Collegen-α type I, Osteonectin and BMP and late 

differentiation markers Osteopontin and Osteocalcin. The gene expression has 

been evaluated on 21 scaffolds at 7 time points, on three scaffolds for each time 

point. Just before each gene expression analysis, a cellular activity assay has been 

performed on each Biocoral scaffold. Hence, for each scaffold, data on cellular 

activity and the corresponding data on gene expression have been collected. 

It is very well addressed by Lian and Stain in a 1992 review [61], there exists a 

temporal gene expression during the development of bone cells phenotype in vivo 

and in in vitro cultures. Even if the temporal sequence not always coincides 

between in vivo and in vitro, because it is influenced by several signals in vivo 

which are not present in in vitro conditions, there is a sequence of three principal 

events always occurring to allow a normal development of cell bone phenotype: 

1) proliferation, 2) extracellular matrix maturation and 3) mineralization. 

These three periods are characterized by two restriction points to which the 

cells cannot proceed further without gene regulation and cells signalling 

pathways: the first is when proliferation is down regulated and this implies that 

gene expression associated to extracellular matrix maturation is induced and the 

second is when mineralization occurs. Lian and Stain also claim that a great 

number of evidences confirm a functional relationship between proliferation and 

differentiation: in particular, the decrease of proliferation activity involves the 

subsequent induction of genes associated with extracellular matrix maturation and 
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mineralization that involves the differentiation induction. When cells decrease 

their proliferation, they start to produce extracellular matrix and to develop an 

osteoblast phenotype. This process is normally highly regulated: in transformed 

osteoblasts and in osteosarcoma cells (tumour cells), the loss of 

proliferation/differentiation relationship is associated with the loss of cell growth 

controls and the abnormal development of tissue-specific structure and function. 

Summarizing, there is a complex regulatory mechanism associated to a 

signalling pathway that controls the relationship between osteoblast proliferation 

and differentiation. 

The following two figures represent the temporal gene expression sequence 

descried by Lian et Stain. Is very clearly shows the presence of three phases with 

relative gene expression over a 40 days rat osteoblasts cell culture. 

 

 

Figure 3.17: Temporal expression of 

cell growth and osteoblast phenotype 

related genes during the development of in 

vitro formed bone-like tissue by normal 

diploid rat osteoblasts. Represented are (A) 

cell growth-related genes H4 histone 

(reflects DNA synthesis), c-myc and c-fos; 

(B) extracellular matrix-associated genes 

type I collagen, fibronectin (FN) and TGF-

β expressed during the proliferative period; 

(C) osteoblast phenotype-related genes 

associated with extracellular matrix 

maturation are alkaline phosphatise (AP) 

and MGP; (D) genes induced to high levels 

with extracellular matrix mineralization 

represented are osteopontin (OP) and 
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osteocalcin (OC) along with calcium accumulation. The vertical dotted lines separate periods of 

maximal expression of cell. 

 

Figure 3.18: Model of the reciprocal 

relationship between proliferation and 

differentiation in normal diploid cells during 

the rat osteoblast developmental sequence 

and in osteosarcoma (transformed) cells , 

described by Lian and Stain. These 

relationships are schematically illustrated as 

arrows representing changes in expression of 

cell cycle- and cell growth-regulated genes 

(proliferation arrow) and genes associated 

with the maturation (differentiation arrow) of 

the osteoblast phenotype as the extracellular 

matrix developes and mineralizes in normal diploid cell cultures (top panel). Here, the three 

principal periods of the osteoblast developmental sequence are designated within broken vertical 

lines (proliferation, matrix development and maturation, and mineralization). These broken lines 

indicate the two experimentally established principal transition points in the developmental 

sequence exhibited by normal diploid osteoblast during the progressive acquisition of the bone cell 

phenotype: the first at the completion of proliferation when genes associated with matrix 

development and maturation are up-regulated, and the second at the onset of extracellular matrix 

mineralization. The lower panel schematically illustrates the deregulation of the relationship 

between growth and differentiation in transformed osteoblasts or osteosarcoma cells. The 

proliferation vector reflects the continuous expression of the cell growth and expression of cell 

cycle- and proliferation-related genes. In contrast to normal diploid cells, the constitutive 

expression of osteoblast differentiation phenotype markers in transformed cells reflects the 

absence of the two developmentally important transition points observed in normal diploid cells. 

In osteosarcoma cells, cell growth and tissue-specific gene expression occur concomitantly; thus 

the relationship between growth and differentiation is deregulated. AP-1 = AP-1 binding activity; 

H4 = histone; COL-I = type α1 collagen; FN = fibronectin; ALK PHOS = alkaline photophatase; 

MGP = matrix Gla protein; OP = osteopontin; OC = osteocalcin; HA = total accumulated 
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hydroxyapatite. (From G. S. Stein, J. B. Lian, and T. A. Owen : FASEB J. 4:311 – 3123 (1990).) 

 

During the proliferation phase stemness gene, such as C-Myc, reach the 

maximum expression levels; the differentiation begins during final part of 

proliferation phase when the extracellular matrix production is coming with the 

expression of extracellular matrix-associated genes such as collagen type I (coll-

1); finally the differentiation continues during the mineralization phase resulting 

in the expression of  matrix mineralization-related genes such as osteopontin (OP) 

and osteocalcin (OC) along with calcium accumulation. 

In an in vitro cell culture of hMSCs, the relationship between cell proliferation 

and cell differentiation (in general but also in particular into the osteoblast 

lineage) is influenced by signalling but is also space-dependent. The space 

limitation in 2D or 3D cell culture system implies a sort of “mechanical” signal 

(the so called “contact inhibition”) that stimulate the cells to stop proliferation 

(there is no more space to growth!) and to change their metabolism towards the 

differentiation. 

Taking together the results from cell proliferation and gene expression analysis 

and the discussion about relationship between proliferation and differentiation, 

several interesting comment can be made on results obtained from this study. 

Under the hypothesis that Biocoral scaffold induce cell osteogenic 

differentiation and considering that resazurin reacts differently with proliferating 

cells and differentiating cells, it is possible to formulate a second hypothesis 

regarding the cell proliferation results. 

Results of R/R assay on Biocoral show cells appear to and increase decrease 

their proliferation rate over time during the 21 days culture within the scaffolds. 

This fluctuating trend reflects the colonization that cells are performing within the 

scaffolds. New regions of the scaffold, day by day, are occupied by cells and the 

cellular activity is heavily influenced by those colonization: when cells reach new 
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regions with empty pores, they have space to adhere and to proliferate by 

subsequent cell divisions. When the free space ends, cells stop proliferating and 

start to differentiate. In each pore of the scaffold, cells create a microenvironment 

and reach the complete colonization at different times in different pores. Hence, 

the state of the entire scaffold in terms of proliferation/differentiation 

continuously evolves over the time until all the pores are colonized by cells and 

all the cell are differentiating. 

Cells that are differentiating, produce an ECM in which step by step they 

embed themselves and mineralize it to form new bone. 

If the measurement is done in a proliferating phase, in which most cells have 

space to growth, the result is a high fluorescence value. If the measurement is 

done in a differentiation phase, when only few cells are proliferating because the 

most part of them stopped to grow and embedded themselves in the matrix, the 

fluorescence intensity value decrease because cells are not easily accessible to the 

resazurin solution. They are embedded in a mineralized matrix and are not able to 

reduce the resazurin as well as they do with free cellular surface not embedded in 

the matrix. 

 

Collegen type I α 1 (COLIA1) 

COLIA1 is the principal structural component of the bone ECM and is very 

early expressed during bone formation being the base for the following 

mineralization [9]. In in vitro cell culture, it is initially synthesized the 

proliferation phase and is accumulated during the culture period. The collagen is 

responsible for collagenous matrix formation and contributes to changes in cell 

structure, osteoblast differentiation and gene expression reflecting the cellular 

differentiation. Then, with the increase of collagen production, cells slow till to 

cease the proliferation at a low cell number [61]. 



 105

Results of this study on COLIA1 expression reflect the high level of production 

at the beginning of cell proliferation phase and the continuative production with a 

slight accumulation during the culture. Cells use the collagen firstly produced to 

mineralize it and to proceed with the differentiation during the culture. 

 

Osteonectine (ON) 

The osteonectin is a glycoprotein linker between the collagen and the mineral 

part of bone matrix [62]. Is thought to have a key role in determining the onset of 

mineralization of bone matrix; high concentrations of calcium ion increase its 

expression as well as that of other markers terminals of osteoblasts, favouring the 

deposition of matrix mineral. It is considered a valid osteoblastic markers. In 

addition, it is also involved in cell spreading [61].   

Nefussi at el in 1997 [63] have found that ON expression is evident during the 

first hours of in vitro rat osteoblasts cell culture. 

Hence, its expression similar in pattern and time concomitance with COLIA1 

in all the scaffold series, X, Y and Z is quite interesting and confirm its role in 

helping the cell spreading and in linking the collagen with the mineral bone 

matrix. It is possible to hypothesize that within the Biocorals during the 

proliferation phase, cells produce collagen, start the mineralization process and 

simultaneously produce ON to connect collagen to the mineral matrix. 

 

Bone sialoprotein (BSP) 

The bone sialoprotein is a non-collagenous protein of the ECM involved in the 

formation of hydroxyapatite crystals of the matrix during mineralization in in 

vitro and in vivo [64].  

Its pattern of expression in scaffolds confirm its presence during the first two 

weeks of cell culture having a peak in the middle of first week, just shortly after 
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the collagen production has reached the maximum level. This is consistent with 

the role in the formation of mineral crystals of the ECM. 

 

Osteopontine (OP) 

The osteopontin (OP) is a sialoprotein that is deemed to have the biological 

function of allowing the adhesion of cells to the bone matrix and in controlling 

bone resorption [21]; reduced levels of mRNA in cells of OP stem cells derived 

from bone marrow (BMSC) are related to the underproduction of bone, such as 

osteoporosis [22]. High levels in the proliferation phase, low proliferation in the 

post and then increase again during the mineralization [61]. 

 

The reproducibility of these data on scaffolds series X, Y and Z in terms of 

cellular activity proliferation/differentiation, gene expression levels, temporal 

sequence of gene expression with a precise correspondence on days is very high 

and quite impressive. In addition, if considering scaffolds internal structure can 

influence the cell behaviour and Biocoral are natural scaffolds, hence affected by 

natural variability, reproducibility of these results is very strong. The uncertainty 

associated to the cellular activity analysis method (R/R method) allow to consider 

the trend reliable. 
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Conclusions 
 

The present thesis is one of the first metrological approaches to cell biology 

and regenerative medicine aiming to fill the lack of traceability in metrology of 

biosciences for cellular analysis. 

The first issue to face when metrology and uncertainty evaluation need to be 

applied to living organism, i.e. cells, is the definition of the measurand. This thesis 

lay the foundations for the definitions of metrological concepts starting from the 

measurand definition, influence parameters of uncertainty, moving to the selection 

of one specific methodology, among several with different characteristics, to be 

analyzed from a metrological point of view, reasoning about the best approach in 

order to consider living entities that change their nature over time, i.e. 

differentiating cells,  and finally coming to the definition of an uncertainty budget 

to be applied in different situations to reach standardization among laboratories 

and in the specific field of the heath care. 

A method to declare an uncertainty budget for measuring the cellular metabolic 

activity according to the EURACHEM/CITAC Guide Quantifying Uncertainty in 

Analytical Measurement has been defines for R/R assay methodology. For the 

first time the methodology was tailored for 3D cell cultures with a metrological 

approach. 3D cell cultures are fundamental for regenerative medicine research and 

application on patients and require non invasive methods to be tested in terms of 

cell proliferation and differentiation over time. 

It was demonstrated that Biocoral induces osteodifferentiation of hMSCs and 

that the R/R assay can be a methodology to study the cellular proliferation and 

differentiation activities on Biocoral because it well indicates the dynamic balance 

between the two cellular activities and with the uncertainty budget evaluated in 
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the thesis, results of the correlation can be stated as accurate and highly 

reproducible, even if the entire process leading to the results is quite complex and 

variability is inherent into the sample itself . 

Results on 42 different sample of 3D cell culture on Biocoral scaffolds have 

shown a very impressive level of reproducibility in terms of cellular activity 

proliferation/differentiation, gene expression levels, temporal sequence of gene 

expression with a precise correspondence between gene expression and cellular 

activity. In addition, the uncertainty associated to the cellular activity analysis 

method (R/R assay) allow to consider the results even more reliable. 

Taking together these results, it is highly likely to foresee a broad employment 

of the metrological approach to other biological assays testing cellular activity or 

cellular properties not stable over time and difficult to define.
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