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Abstract

This paper focuses the attention on the use of appropriate combinations of refined one-dimensional

(1D) beam theories to analyze thin-walled, reinforced structures. The cross-section of a slender body

is seen as the sum of different sub-domains. Each sub-domain is subsequently used as the cross-

section of a beam discretization. Displacement variables are then expanded around the beam axis of

each sub-domain by using refined 1D models which are based on the Carrera Unified Formulation.

The order of the beam elements can vary in different sub-domains. This subdivision has been called

”multi-line“ as opposed to the ”one-line“ approach of classical beam theories. 1D compatibility con-

ditions of the displacements at selected points of the sub-domain interface boundaries are imposed

by using Lagrange multipliers. Various problems have been analyzed to highlight the advantages and

disadvantages of the present multi-line approach. It is concluded that the multi-line approach appears

very effective in the case of thin-walled sections made by locally connected walls as well as in the

case of reinforced structures.

Keywords: Unified formulation; Higher-order theories; Beams; Reinforced Structures; Multi-line
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1 Introduction

Beam models are widely used to analyze the mechanical behavior of slender bodies, such as columns,

rotor-blades, aircraft wings, towers and bridges amongst others. The ease of application of one-

dimensional (1D) theories and their computational efficiency are some of the main reasons why

structural analysts prefer them to two-dimensional (2D) and three-dimensional (3D) models.

The classical and best-known beam theories are those by Euler [1] (hereinafter referred to as

EBBM) and Timoshenko [2, 3] (hereinafter referred to as TBM). The former does not account for

transverse shear deformations and rotatory inertia, whereas the latter assumes a uniform shear dis-

tribution along the cross-section of the beam together with the effects of rotatory inertia. These

models yield reasonably good results when slender, solid section, homogeneous structures are sub-

jected to flexure. Conversely, the analysis of deep, thin-walled, open section beams may require

more sophisticated theories to achieve sufficiently accurate results (see [4]).

Over the last century, many refined beam theories have been proposed to overcome the limitation

of classical beam modelling. Different approaches have been used to improve the beam models, which

include the introduction of shear correction factors, the use of warping functions based on de Saint-

Venant’s solution, the variational asymptotic solution (VABS), the generalized beam theory (GBT),

and others. Some selected references and noteworthy contributions are briefly discussed below.

Early investigators have focused on the use of appropriate shear corrections factors to increase the

accuracy of classical 1D formulations, such as Timoshenko and Goodier [5], Sokolniko [6], Stephen

[7], and Hutchinson [8]. The shear correction factor has generally been used as a static concept

which is restrictive. In this respect, Jensen [9] showed how the shear correction factor can vary with

the natural frequencies. Furthermore, a review paper by Kaneko [10] and a recent paper by Dong

et al. [11] have highlighted the difficulty in the definition of a universally accepted formulation for

shear correction factors.

Another important class of refinement methods in the literature is based on the use of warping

functions. The contributions by El Fatmi [12, 13, 14] and Ladevéze et al. [15, 16] are some excellent

examples.

Asymptotic type expansion in conjunction with variational methods has also been proposed; see

for example Berdichevsky et al. [17], which also includes a commendable review of previous works

on beam theory development. Some further valuable contributions have been made by Volovoi [18],

Popescu and Hodges [19], Yu et al. [20], Yu and Hodges [21, 22].
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GBT probably originated from the work of Schardt [23, 24]. GBT improves classical theories by

using piece-wise beam description of thin-walled sections. It has been widely employed and extended

in various forms by Silvetre et al. [25, 26, 27].

Higher-order theories are generally obtained by using refined displacement fields of the beam

cross-sections. Washizu [28] ascertained how the use of an arbitrarily chosen rich displacement fields

can lead to closed form exact 3D solutions. However, when complex cross-sections are considered,

the solution becomes increasingly inaccurate as the distance from the reference axis of the beam

increases.

To overcome this limitation of higher-order models, Multi-Line (ML) beam models are introduced

in this paper. In the ML beam modelling approach, a slender body is discretized by means of multiple

beam axes which are placed in different regions over the problem domain. 1D higher-order finite

elements are developed within the framework of the Carrera Unified Formulation (CUF), which has

been well established in the literature for over a decade [29, 30, 31, 32]. CUF is a hierarchical

formulation that considers the order of the model N as a free-parameter (i.e. as input) of the

analysis. In other words, refined models are obtained without the need for any ad hoc formulations.

In the present work, beam theories using CUF are obtained on the basis of Taylor-type expansions

(TE). EBBM and TBM can be obtained as particular or special cases. The strength of CUF TE

1D models in dealing with arbitrary geometries, thin-walled structures and identifying local effects

is well known for both static [33, 34] and free-vibration analysis [35, 36, 37].

Different-order refined beam elements can be adopted for each beam-line in ML models. Then,

once each beam axis has been discretized with 1D elements, Lagrange multipliers are used to impose

constraints on displacement variables at a number of connecting points at the interface boundaries

between each beam-line. The number of beam-lines and the order of the beam elements used to

discretize each beam-line, as well as the number and the location of connecting points at the boundary

interfaces, are all parameters of the ML model.

In the next section a brief overview of CUF is provided. Subsequently, the use of Lagrange

multipliers for the development of ML models is described. Then, numerical results concerning

reinforced and thin-walled structures are presented and the main conclusions are outlined.
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2 Higher-order beam formulation

2.1 Preliminaries

The adopted rectangular cartesian coordinate system is shown in Fig. 1. Let us introduce the

transposed displacement vector,

u(x, y, z) =

{

ux uy uz

}T

(1)

The cross-sectional plane of the structure is denoted by Ω, and the beam boundaries over y are

0 ≤ y ≤ L. The stress, σ, and strain, ǫ, components are grouped as follows:

σp =

{

σzz σxx σzx

}T

, ǫp =

{

ǫzz ǫxx ǫzx

}T

σn =

{

σzy σxy σyy

}T

, ǫn =

{

ǫzy ǫxy ǫyy

}T (2)

In the case of small displacements with respect to a characteristic dimension in the plane of Ω, the

strain - displacement relations are

ǫp = Dpu

ǫn = Dnu = (DnΩ +Dny)u
(3)

where Dp and Dn are linear differential operators and the subscript “n” stands for terms lying on

the cross-section, while “p” stands for terms lying on planes which are orthogonal to Ω.
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(4)

Constitutive laws are now exploited to obtain stress components to give

σ = C̃ǫ (5)

Equation (5) can be split into σp and σn with the help of Eq. (2) so that

σp = C̃ppǫp + C̃pnǫn

σn = C̃npǫp + C̃nnǫn

(6)
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The matrices C̃pp, C̃nn, C̃pn, and C̃np are explicitly given in [32] and they contain the material

coefficients.

Within the framework of CUF, the displacement field u(x, y, z) can be expressed as

u(x, y, z) = Fτ (x, z)uτ (y), τ = 1, 2, ....,M (7)

where Fτ are the functions of the coordinates x and z on the cross-section. uτ is the vector of

the generalized displacements, M stands for the number of terms used in the expansion, and the

repeated subscript, τ , indicates summation. The choice of Fτ determines the class of the 1D CUF

model that is required and subsequently to be adopted. TE (Taylor expansion) 1D CUF models -

described by Eq. (7) - consists of a Maclaurin series that uses the 2D polynomials xi zj as base,

where i and j are positive integers. For instance, the displacement field of the second-order (N = 2)

TE model can be expressed as

ux = ux1
+ x ux2

+ z ux3
+ x2 ux4

+ xz ux5
+ z2 ux6

uy = uy1 + x uy2 + z uy3 + x2 uy4 + xz uy5 + z2 uy6

uz = uz1 + x uz2 + z uz3 + x2 uz4 + xz uz5 + z2 uz6

(8)

The order N of the expansion is set as an input option of the analysis; the integer N is arbitrary and

defines the order the beam theory. The Timoshenko beam model (TBM) can be realised by using a

suitable Fτ expansion. Two conditions have to be imposed: (1) a first-order (N = 1) approximation

kinematic field and (2) the displacement components ux and uz have to be constant above the

cross-section. By contrast, the Euler-Bernoulli beam model (EBBM) can be obtained through the

penalization of ǫxy and ǫzy. Classical theories and first-order models (N = 1) require the necessary

assumption of reduced material stiffness coefficients to correct Poisson’s locking (see [38]). In this

paper, Poisson’s locking is corrected according to the method outlined by Carrera et al. [32]. A

detailed description of TE CUF models can be found in [32].

2.2 Refined 1D finite elements

The FE approach is used to discretize the structure along the y-axis. This process is conducted via

a classical finite element technique, where the displacement vector is given by

u(x, y, z) = Fτ (x, z)Ni(y)qτi (9)
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Ni stands for the shape functions and qτi for the nodal displacement vector. For the sake of brevity,

the shape functions are not reported here. They can be found in many books, for instance in [39].

Elements with four nodes (B4) are used in this work, that is, a cubic approximation along the y-axis

is assumed. The choice of the theory order, N , is completely independent of the choice of the beam

finite element to be used along the axis of the beam.

The principle of virtual displacements is used to derive the elemental stiffness matrix and the

external loadings vector.

δLint =

∫

V

(δǫTp σp + δǫTnσn) dV = δLext (10)

where Lint stands for the strain energy and Lext is the work done by the external loadings. δ stands

for the usual virtual variation operator. The virtual variation of the strain energy is rewritten using

Eq.s (3), (6) and (9).

δLint = δqT
τiK

ij τ sqsj (11)

K
ij τ s is the stiffness matrix in the form of the fundamental nucleus. In a compact notation, it can

be written as

K
ij τ s = I

ij

l ⊳
(

D
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(12)
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l , I
ij,y
l , I

i,y j

l , I
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)

=

∫

l

(

Ni Nj, NiNj,y
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Nj, Ni,y
Nj,y

)

dy (14)

It should be noted that Kijτs does not depend either on the expansion order or on the choice of the

Fτ expansion polynomials. These are the key-points of CUF which allows, with only nine FORTRAN

statements, the implementation of any-order of multiple class theories.

For the sake of brevity, the derivation of the loading vector from the virtual variation of the work
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of external loadings, δLext, is not provided in this paper. It can be found in [32] for different loading

conditions.

3 Multi-line refined beam models

The method of Lagrange multipliers provides the stationary conditions of a constrained functional.

The application of Lagrange multipliers to CUF has recently been introduced in [40], where Lagrange

multipliers are used to implement higher-order 1D models with variable kinematic field along the

beam axis. A more generic discussion of the Lagrange multipliers method can be found in [41, 42],

whereas Zienkiewicz and Taylor [43] show the use of multipliers in Finite Element Method (FEM)

for contact and tied interfaces, for multibody coupling and to avoid the necessity of C1 continuity

for the problem of thin plates.

In the present paper, Lagrange multipliers are used to implement ML models. In Fig. 2a a slender

structure discretized by two different beam axes is shown. Higher-order elements of arbitrary order

are placed on each beam-line, which separately describes a given sub-region of the whole structure.

Lagrange multipliers are then used to impose compatibility on displacement variables at a number

of connecting points at the interface boundary between beam-lines.

If we consider two points, 1 and 2, sharing the same position on the interface boundary, the

Lagrangian that has to be added to the original problem in order to impose the equality of displace-

ments is

Π = λ
T
(

u1
− u2

)

(15)

where u1 and u2 are the displacements of points 1 and 2, respectively. Points 1 and 2 belong to

different beam-lines. λ is the vector containing the Lagrange multipliers. Equation (15) is rewritten

in terms of CUF with the help of Eq. (9).

Π = λ
TBq (16)

where the fundamental nucleus of the matrix B is

Bτi =
(

F 1
τ N

1
i − F 2

τ N
2
i

)

I (17)

I is the identity matrix with dimensions 3 × 3. F 1
τ N

1
i and F 2

τ N
2
i are the products of the cross-

sectional functions of Eq. 7 and the shape functions along the beam axis computed at points 1 and
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2, respectively. The superscripts ”1” and ”2” also denote the fact that, generally, different beam axes

can be modeled with different beam theories. More details about the use of multipliers in refined

beam theories can be found in [40].

The solution of the problem is given by finding q and λ from the following linear system:











Kq+
∂Π

∂q
= F

∂Π

∂λ
= u

(18)

where F is the loadings vector and u is equal to 0 for homogeneous conditions. K is the global

stiffness matrix. K is built by assembling the stiffness matrices of each beam-line - which are

computed according to the previous section - as shown in Fig. 2b. Equation (18) is rewritten using

Eq. (16). In a matrix form it reads







K BT

B 0













q

λ






=







F

0






(19)

The use of the multipliers method offers many advantages. However, the main disadvantage of its

use in structural problems is that the matrix of Eq. (19) is not, in general, positive definite.

4 Numerical Results

In this section the accuracy and computational efficiency of the present higher-order ML models are

demonstrated by carrying out the static analysis of both reinforced and thin-walled structures and

the results are presented. First, the analysis of a beam with a I-shaped cross-section is discussed so

as to make an easy and straightforward comparison with classical beam theories. Next, a reinforced

thick plate undergoing a bending-torsional loading condition is considered. A thin-walled beam

with a circular cross-section is subsequently analyzed to highlight the usefulness of the higher-order

terms in the detection of in-plane deformations. Finally, a riveted structure is used to show the

capability of the present ML models to take into account the effects due to localized constraints

such as mechanical fasteners and welded joints. ML solutions are compared with results by classical

and higher-order single-line CUF theories together with the results obtained from the finite element

commercial code MSC Nastran.
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4.1 I-section beam

A cantilever beam with a I-shaped cross-section such as the one shown in Fig. 3 is considered first.

It is assumed that the beam has a height h = 100 mm and a width w = 96 mm. The length to

height ratio, L/h, is 10. The thickness of the flanges is t1 = 8 mm, whereas the thickness of the web

is t2 = 5 mm. The material data are: elastic modulus E = 200 GPa and Poisson ratio, ν, equal to

0.29. A vertical force Fz = −2× 103 N is applied at point B (see Fig. 3) at the free end of the beam.

Table 1 shows the vertical displacements, uz, at the tip of the beam, at points A and B, which

are shown in Fig. 3. The number of the degrees of freedom (DOFs) is also given for each model in

Table 1. The results are compared with 3D (Solid) and 2D (Shell) FEM solutions obtained using

commercial code MSC Nastran. The Solid model was constructed by using 8-node CHEXA elements

having approximately a unitary aspect ratio. On the other hand, the Shell model was obtained with

4-node CQUAD4 shell elements. In Table 1 the vertical displacement uzB by the Shell model is

between brackets since it was measured on the midplane of the flange and not exactly at point B.

The analytical result achieved through Euler-Bernoulli beam theory is also given for comparison

purposes, uzb = FzL
3

3EI
, where I is the cross-section moment of inertia. The results by classical and

refined CUF single-line models are shown in rows 6 to 15, where up to eight-order (N = 8) beam

models are considered. The last rows of Table 1 give the results by the ML models of the I-section

beam.

Figure 4 shows the difference between the single-line and the present ML models. In the single-

line approach, 10 B4 refined beam elements are placed on one beam axis. Conversely, in the ML

models of the I-shaped cross-section structure, three beam axes are used. Specifically, one beam-line

is placed on the web and one beam-line is placed on each flange. 10 B4 beam elements are used for

each beam-line. Compatibility of displacements is subsequently imposed at three points per beam

node on the interfaces between flanges and web through Lagrange multipliers. Unlikely the problems

discussed in [40] where the number of connecting points was chosen on the basis of a convergence

study, for the present ML models it was found that the convergence of the solution is guarantee with

a few connecting points. For this reason the attention is not focused on this problem in the present

paper. The ML models of the I-section beam are referred to as MLNf ,Nw , where Nf is the expansion

order of the beam elements placed on beam-lines of the flanges and Nw is the expansion order of the

beam elements placed on the beam-line of the web.

Figure 5 shows the deformation of the free end of the beam. ML models are compared to the

eight-order single-line model and to the Solid model. Finally, Fig. 6 shows the distribution of normal
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stresses, σyy, at the clamped end for different structural models. Based on these results the following

comments can be made:

• Classical and higher-order single-line models cannot detect the warping due to the bending-

torsional load according to MSC Nastran results.

• Lower-order elements can be effective when used in a ML approach. In fact, third-order (ML3,3)

and fourth-order (ML4,2, ML4,3, and ML4,4) ML models match Shell and Solid solutions both

in terms of displacement and stress fields.

• The number of the degrees of freedom of ML models is extremely reduced if compared to

MSC Nastran and single-line refined models.

4.2 Reinforced plate

The analysis of a reinforced thick plate was carried out next. The cross-section of the beam is shown

in Fig. 7 together with verification points, A and B. The main dimensions of the structure are also

given in Fig. 7. The length of the beam along the y-axis was set to L = 1 m. The whole structure

was made of a material with Young’s modulus E = 75 GPa and Poisson’s ratio ν = 0.3. The beam

was clamped at one end and loaded with a vertical load, Fz = 100 N, at point A on the free end.

Table 2 shows the vertical displacements, uz, and normal stress components, σyy, at points A

and B on free and clamped cross-sections, respectively. The number of DOFs is also quoted for each

model. MSC Nastran models are given for comparison purposes. The Solid model was built with

8-node CHEXA elements as in the previous example. The Shell/Beam model was constructed by

using a combination of shell and beam finite elements. Specifically, CQUAD4 shell elements were

used to discretize the plate, whereas 2-node CBEAM 1D finite elements were used for the stringers.

In the Shell/Beam model, particular attention was given to the introduction of fictitious offsets

between the plate and the stringers. The results by the Shell/Beam model are given in brackets

since they are measured on the mid-plane of the plane as close as possible to points A and B. Rows

5 to 15 show the results by classical and higher-order single-line CUF models. Up-to-ninth-order

models are considered. Rows 18 to 23 show the results by ML models.

Some examples of ML modelling approaches to the analysis of the reinforced plate are outlined

in Fig. 8. The three-line model (Fig. 8c) was considered in this paper and the results are given in

Table 2. In the three-line model, one beam-line is used to model each component of the structure,

i.e. the panel and the two stringers. Each stringer is then constrained at the panel by imposing

11



displacements equality at two points per beam node on the interface boundary. 10 B4 elements

were used for each beam-line in the present analysis. This three-line model of the reinforced panel

is referred to as MLNp,Ns , where Np is the expansion order of the refined beam elements used to

discretize the panel and Ns is the expansion order of the elements on the stringers.

Finally, Fig. 9 shows the normal stresses, σyy, distribution at the clamped cross-section. The

following comments arise from the analysis:

• The use of refined theories appears to be mandatory to provide significant improvements in

the prediction of the torsional structural behavior by means of beam modeling. In fact, high

expansion orders are necessary to detect the bending-torsional behavior of the reinforced plate

if single-line models are adopted.

• Lower-order elements can be effective if ML approach is used, as shown in the previous example.

ML models of the reinforced panel give good results with a number of DOFs which is lower

than MSC Nastran and single-line models.

• ML models represent a valid alternative for the analysis of reinforced structures, which are

usually analysed by means of a combination of beam and shell finite elements.

4.3 Thin-walled cylinder

A cantilever thin-walled cylinder was considered. The cross-section geometry of the beam is shown

in Fig. 10. The outer diameter, d, was set to 1 m, whereas the thickness, t, was 0.02 m. The length-

to-diameter ratio, L/d, was taken to be equal to 10. The cylinder was made of the same material as

in the previous example. A vertical load, Fz = 103 N, was applied at point A (see Fig. 10), at the

free end.

Figure 11 shows the difference between single-line beam models and the ML models implemented.

In particular, two- and four-line models were considered for the analysis. In the two-line model, the

cylinder was separated into two independent caps. Each cap was then discretized with 1D higher-

order elements. Subsequently, the two caps were constrained together by imposing displacements

equality at two nodes on each interface boundary in correspondence of the beam nodes. The two-line

models are hereafter referred to as ML2Nt,Nb
, where Nt is the expansion order of the beam elements

laying in the top beam-line and Nb is the expansion order of the elements laying on the bottom beam-

line. Similarly, the four-line models are composed by four distinct caps, each of which is discretized

by a beam-line. The four-line models are hereafter referred to as ML4Nt,Nb,Nl,Nr , where Nt, Nb, Nl,
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and Nr are the expansion orders of the refined elements lying on the top, bottom, left, and right

beam-line, respectively. 10 B4 beam elements were placed each beam-line of the ML models.

Table 3 compares the vertical displacements, uz, at verification points on the tip cross-section for

single- and multi-line CUF models to MSC Nastran solutions. Both solid and a shell FEM models

are provided. As in the previous examples, MSC Nastran CHEXA finite elements were used for the

development of the Solid FEM model, whereas CQUAD4 elements where used for the Shell model.

Comparison of the normal stress, σyy, is shown in Tab. 4, where the results from both the present

and reference models are given.

Figure 12 shows the in-plane deformation of the loaded cross-section at the tip of the beam.

Both two- and four-line models are compared to classical (EBBM) and higher-order (N=11) beam

models as well as to Shell model. The following statements are worthy of careful study:

• Very high expansion orders are needed to correctly detect the displacement field of the thin-

walled cylinder undergoing a concentrated load.

• The eleventh-order (N = 11) single-line model provides good results if compared to the solution

from the MSC Nastan model with a significant reduction of the computational effort.

• The results given by the multi-line models, such as the ML29,5 and the ML47,7,5,5 models, are

in good agreement with reference results. However, no particular improvements in terms of

computational efficiency are evident with respect to single-line models. This is mainly due to

the continuous geometry of the structure considered.

4.4 Riveted I-section beam

Reinforced structures are rarely obtained through industrial extrusion processes. These kind of

structures are more likely realized by assembling different components (i.e. flanges, plates, webs

and stringers) by means of rivets, studs, or welded joints. One of the most important feature of

the present ML approach is that it allows to take into account the effects of those local joints such

as mechanical fasteners. In order to show this characteristic of ML models, the I-section beam

addressed in the first example is here re-considered. For the I-shaped beam whose results are given

in this section, the horizontal flanges and the vertical web were considered as separate components.

As shown in Fig. 13, flanges and web were linked via stringers. Each stringer was constrained to the

web and the flange by means of one (CASE A) or two (CASE B) rivets. The distance between two

rivets in the y-axis direction is 31.25 mm.
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The dimensions of the beam, i.e. the width w, the height h, the thicknesses t1 and t2, and the

length L, were the same as in the first analysis case. The stringers had sides equal to a = 15 mm, as

shown in Fig. 13, whereas their thickness was set equal to t2. The structure was made of the same

material as in the first example. The beam had clamped-free boundary conditions and it underwent

a vertical point load, Fz = −2× 103 N, which was placed at the top left corner on the free end.

ML models of the riveted I-section beam were built with seven beam-lines, with 10 B4 elements

each. Specifically, each component of the structure (i.e. flanges, web and stringers) was modelled

by one beam-line. Subsequently, components were linked each other at boundary interfaces via

Lagrange multipliers, which simulate the rivets. In the following, ML models of the riveted beam

are referred to as MLNf ,Nw,Ns , where Nf , Nw, and Ns are the expansion orders of the refined beam

elements discretizing the flanges, the web, and the stringers, respectively.

Table 5 shows the vertical displacement of the loaded point for both single- and multi-line 1D

higher-order models. Several ML models were considered and the results of both CASE A and

CASE B are given. The results by ML models are also compared to the solution from a solid model

by MSC Nastran. 8-node CHEXA elements were used in the construction of the solid model and

MSC Nastran rigid Multipoint Constraints (MPC) were used to simulate the rivets. Figure 14 shows

the distribution of the displacement components,
√

u2x + u2y + u2z, on the free end of the beam from

both ML, single-line, and Solid models. The following comments are valid:

• ML models give the possibility to simulate the effects due to mechanical fasteners on reinforced

structures.

• ML models allow for the obtaining of 3D-like solutions with low computational efforts.

• The error committed by neglecting the effects of the rivets ranges from 14% (CASE B) to 30%

(CASE A), as shown from the comparison between the ninth-order (N = 9) single-line model

and the ML4,4,4 model.

5 Conclusions

A higher-order multi-line approach to the analysis of slender bodies has been presented in this paper.

Refined beam elements have been formulated using CUF, which allows for the formulation of any-

order beam theories by setting the expansion order as input of the analysis. Multiple beam axes

discretizing the same structure have been coupled by imposing compatibility of displacements at
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a number of connecting points at the boundary interface using Lagrange multipliers. The results

agree with the models obtained using solid, shell, and beam finite elements by the commercial code

MSC Nastran. The present method has shown to be highly efficient for the analysis of reinforced

structures in which the cross-section is physically made by different components connected each

others by mechanical fasteners or welded joints. On the other hand, the method does not introduce

particular advantages for the analysis of continuous/compact structures. Future work could be aimed

to the improvement of ML models by means of the impositions of more distributed constraints in

integral form at boundary interfaces. Comparisons with results obtained by imposing conditions on

strains at boundary interfaces would be of interest too. Moreover, the extension of these conditions to

stresses would allow the application of the present ML models to laminated composites structures.
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List of Table Captions

• (Tab. 1) Vertical displacement at points A and B on the free end of the cantilever I-section

beam

• (Tab. 2) Vertical displacements, uz, and normal stresses, σyy, at points A and B on the free

and clamped ends, respectively. Reinforced plate undergoing a torsional-bending load

• (Tab. 3) Vertical displacements, uz, at points A and B on the free end of the cylinder

• (Tab. 4) Normal stress component, σyy, at points A and B on the clamped end of the cylinder

• (Tab. 5) Vertical displacement, uz, at the loaded point of the riveted I-section beam
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Tables

−uzA , mm −uzB , mm DOFs

−uzb =
FzL

3

3EI
= 0.951, mm

MSC Nastran models
Solid 0.956 2.316 355800
Shell 1.006 (2.437) 61000
Classical and refined single-line models

EBBM 0.951 0.951 93
TBM 0.964 0.964 155
N = 1 0.964 0.978 279
N = 2 0.956 0.978 558
N = 3 0.989 1.018 930
N = 4 0.989 1.287 1395
N = 5 0.993 1.481 1953
N = 6 0.992 1.462 2604
N = 7 0.997 1.560 3348
N = 8 0.997 1.851 4185

Present MLNf ,Nw

Nf Nw

1 1 1.016 1.016 837
2 1 0.990 1.028 1116
2 2 0.951 1.940 1674
3 1 0.994 1.104 1488
3 2 0.950 1.984 2046
3 3 0.952 2.186 2790
4 1 0.983 1.201 1953
4 2 0.951 2.008 2511
4 3 0.954 2.197 3255
4 4 0.952 2.230 4185

Table 1: Vertical displacement at points A and B on the free end of the cantilever I-section beam

20



Model −uzA , mm −uzB , mm σyyA , MPa σyyB , MPa DOFs

MSC Nastran models
Solid 1.297 1.163 4.041 1.955 469800

Shell/Beam (1.393) (1.265) (4.194) (2.542) 41400
Classical and refined single-line models

EBBT 1.233 1.233 3.368 3.310 93
TBM 1.233 1.233 3.368 3.310 155
N = 1 1.236 1.231 3.368 3.310 279
N = 2 1.223 1.175 4.009 2.901 558
N = 3 1.224 1.184 2.549 1.336 930
N = 4 1.239 1.187 2.530 1.236 1395
N = 5 1.245 1.187 2.790 1.359 1953
N = 6 1.256 1.181 3.176 1.537 2604
N = 7 1.261 1.178 3.313 1.734 3348
N = 8 1.270 1.166 3.313 1.734 4185
N = 9 1.276 1.167 3.714 1.710 5115

Present MLNp,Ns

Np Ns

1 1 1.237 1.232 3.417 3.349 837
3 1 1.254 1.183 3.572 2.055 1488
3 3 1.278 1.161 3.475 1.447 2790
5 3 1.281 1.161 3.730 1.498 3813
5 5 1.281 1.160 3.753 1.500 5859
7 5 1.283 1.159 3.825 1.672 7254

Table 2: Vertical displacements, uz, and normal stresses, σyy, at points A and B on the free and
clamped ends, respectively. Reinforced plate undergoing a torsional-bending load
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Model −uzA , mm −uzB , mm DOFs

MSC Nastran models
Shell 1.062 0.412 20000
Solid 1.066 0.409 100800
Classical and refined single-line models

EBBT 0.583 0.583 93
N = 3 0.623 0.559 930
N = 5 0.807 0.452 1953
N = 7 0.941 0.383 3348
N = 9 0.997 0.392 5115
N = 11 1.039 0.377 7254

Present ML2Nt,Nb

Nt Nb

1 1 0.589 0.588 558
3 1 0.594 0.588 1209
3 3 0.687 0.498 1860
5 1 0.684 0.581 2231
5 3 0.787 0.481 2883
5 5 0.868 0.431 3906
7 1 0.763 0.576 3627
7 3 0.809 0.483 4278
7 5 0.982 0.413 5301
7 7 0.989 0.395 6696
9 1 0.792 0.576 5394
9 3 0.967 0.462 6045
9 5 1.015 0.413 7068
9 7 1.016 0.401 8463
9 9 1.016 0.401 10230

Present ML4Nt,Nb,Nl,Nr

Nt Nb Nl Nr

1 1 1 1 0.589 0.588 1116
1 1 3 3 0.592 0.587 2418
3 3 3 3 0.759 0.474 3720
3 3 5 5 0.827 0.476 5766
5 5 3 3 0.901 0.437 5766
5 5 5 5 0.968 0.414 7812
5 5 7 7 0.982 0.401 10602
7 7 5 5 1.017 0.404 10602

Table 3: Vertical displacements, uz, at points A and B on the free end of the cylinder
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Model σyy × 10−5, Pa DOFs
pt. A pt. B

MSC Nastran models
Shell 3.331 −3.729 20000
Solid 3.060 −3.409 100800

Classical and refined single-line models
EBBM 3.243 −3.243 93
N = 3 3.723 −3.509 930
N = 5 3.187 −3.399 1953
N = 7 3.636 −4.188 3348
N = 9 3.868 −4.244 5115
N = 11 3.731 −4.033 7254

Present ML2Nt,Nb

Nt Nb

5 1 3.789 −3.244 2232
5 3 3.358 −3.550 2883
5 5 4.098 −4.196 3906
9 3 5.525 −4.400 6045
9 5 3.753 −3.892 7068
9 7 3.985 −3.702 8463
9 9 3.339 −3.776 10203

Present ML4Nt,Nb,Nl,Nr

Nt Nb Nl Nr

1 1 1 1 3.247 −3.247 1116
3 1 1 1 3.920 −3.185 1767
3 3 3 3 3.507 −3.574 3720
5 3 3 3 2.875 −3.224 4743
5 5 5 5 3.614 −4.009 7812
7 5 5 5 3.936 −4.345 9207

Table 4: Normal stress component, σyy, at points A and B on the clamped end of the cylinder
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Model −uz, mm DOFs

MSC Nastran model
CASE A CASE B

Solid 2.072 1.770 140800
Classical and refined single-line models
EBBM 0.803 93
TBM 0.814 155
N = 3 0.861 930
N = 5 1.097 1953
N = 7 1.122 3348
N = 9 1.353 5115

Present MLNf ,Nw,Ns

Nf Nw Ns

CASE A CASE B
1 1 1 0.937 0.841 1953
1 2 1 0.938 0.879 2232
2 2 1 1.451 1.120 2790
2 2 2 1.459 1.160 3906
2 3 2 1.488 1.187 4278
3 3 2 1.629 1.259 5022
3 3 3 1.896 1.376 6510
3 4 3 1.901 1.407 6975
4 4 3 1.905 1.412 7905
4 4 4 1.924 1.452 9765

Table 5: Vertical displacement, uz, at the loaded point of the riveted I-section beam
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List of Figure Captions

• (Fig. 1) Coordinate frame of the beam model

• (Fig. 2) Multi-line approach for the analysis of slender bodies (a) and assembly of the global

stiffness matrix (b)

• (Fig. 3) I-section beam geometry and verification points

• (Fig. 4) Single- and multi-line approaches to the analysis of the I-section beam

– (a) Single-line beam model

– (b) Multi-line beam model

• (Fig. 5) Tip cross-section deformation of the I-section beam

• (Fig. 6) Normal stress distribution, σyy, at the clamped end of the I-section beam

– (a) ML2,1

– (b) ML3,2

– (c) ML4,3

– (d) Solid

• (Fig. 7) Cross-section of the reinforced plate. Dimensions are in millimeters

• (Fig. 8) Multi-line-beam approaches to the analysis of the reinforced plate

– (a) Single-line model

– (b) Two-line model

– (c) Three-line model

– (d) Four-line model

• (Fig. 9) Normal stress distribution, σyy, at the clamped end of the reinforced plate structure

– (a) Single-line, N = 2

– (b) ML1,1

– (c) ML3,1

– (d) ML3,3

25



– (e) Solid

• (Fig. 10) Cross-section of the thin-walled cylinder and verification points

• (Fig. 11) Single- and multi-line beam models of the thin walled cylinder

– (a) Single-line model

– (b) Two-line model

– (c) Four-line model

• (Fig. 12) Tip cross-section deformation of the thin-walled cylinder for different theories

• (Fig. 13) Cross-section of the riveted I-section beam

• (Fig. 14) Displacement field,
√

u2x + u2y + u2z, on the deformed tip cross-section of the riveted

beam

– (a) Single-line, N = 9

– (b) ML4,3,3, CASE A

– (c) ML4,3,3, CASE B

– (d) Solid, CASE B
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Figure 1: Coordinate frame of the beam model
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Figure 2: Multi-line approach for the analysis of slender bodies (a) and assembly of the global
stiffness matrix (b)
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Figure 3: I-section beam geometry and verification points
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Figure 4: Single- and multi-line approaches to the analysis of the I-section beam
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Figure 5: Tip cross-section deformation of the I-section beam

(a) ML2,1 (b) ML3,2

(c) ML4,3 (d) Solid

Figure 6: Normal stress distribution, σyy, at the clamped end of the I-section beam
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Figure 7: Cross-section of the reinforced plate. Dimensions are in millimeters
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(b) Two-line model
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Figure 8: Multi-line-beam approaches to the analysis of the reinforced plate

(a) Single-line, N = 2 (b) ML1,1 (c) ML3,1

(d) ML3,3 (e) Solid

Figure 9: Normal stress distribution, σyy, at the clamped end of the reinforced plate structure
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Figure 10: Cross-section of the thin-walled cylinder and verification points
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Figure 11: Single- and multi-line beam models of the thin walled cylinder
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Figure 12: Tip cross-section deformation of the thin-walled cylinder for different theories
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Figure 13: Cross-section of the riveted I-section beam

(a) Single-line, N = 9 (b) ML4,3,3, CASE A

(c) ML4,3,3, CASE B (d) Solid, CASE B

Figure 14: Displacement field,
√

u2x + u2y + u2z, on the deformed tip cross-section of the riveted beam

32


	Introduction
	Higher-order beam formulation
	Preliminaries
	Refined 1D finite elements

	Multi-line refined beam models
	Numerical Results
	I-section beam
	Reinforced plate
	Thin-walled cylinder
	Riveted I-section beam

	Conclusions

