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High-Performance Passive Macromodeling
Algorithms for Parallel Computing Platforms

Alessandro Chinea, Stefano Grivet-Talocia, Senior Member, IEEE, Salvatore B. Olivadese and Luca Gobbato,

Abstract—This work presents a comprehensive strategy for
fast generation of passive macromodels of linear devices and
interconnects on parallel computing hardware. Starting from a
raw characterization of the structure in terms of frequency-
domain tabulated scattering responses, we perform a rational
curve fitting and a postprocessing passivity enforcement. Both
algorithms are parallelized and cast in a form that is suitable for
deployment on shared-memory multicore platforms. Particular
emphasis is placed on the passivity characterization step, which
is performed using two complementary strategies. The first uses
an iterative restarted and deflated rational Arnoldi process to
extract the imaginary Hamiltonian eigenvalues associated to the
model. The second is based on an accuracy-controlled adaptive
sampling. Various parallelization strategies are discussed for both
schemes, with particular care on load balancing between differ-
ent computing threads and memory occupation. The resulting
parallel macromodeling flow is demonstrated on a number of
medium and large scale structures, showing good scalability up
to 16 computational cores.

Index Terms—Adaptive sampling, Linear macromodeling, Pas-
sivity, Hamiltonian matrices, Perturbation theory, Eigenvalues,
Singular Values, Scattering, Parallel algorithms.

I. INTRODUCTION

The verification of Signal and Power Integrity of digital,
mixed-signal and RF systems is almost invariably based on
time-domain system-level numerical simulations. The latter
are often run using circuit solvers of the SPICE class, applied
to netlists that include suitable circuit models of all system
parts, including both linear devices such as filters, baluns,
connectors, vias and interconnects in general, and nonlinear
devices such as drivers, receivers, amplifier circuits, etc. The
presence of the nonlinear devices is the main reason why the
system simulation has to be conducted in the time domain [1],
[2].

Since the electrical performance of interconnect and linear
devices in general is best represented in the frequency domain,
it is a standard practice to characterize such structures through
a representative set of frequency samples of their transfer
matrix in scattering, impedance or admittance form, suitably
spread over the frequency band of interest, possibly obtained
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from direct measurement or full-wave simulations. The con-
version of this representation into circuit models ready to be
plugged in a system-level SPICE netlist is thus necessary. The
standard approach to achieve this goal is to resort to the many
available macromodeling techniques that have appeared over
the last few years [3]-[40]. In this work, we intend the term
macromodeling as a set of methods that extract a simulation
model, i.e., a set of equations typically but not necessarily in
state-space form, starting from a finite set of input-output data
samples.

The most successful macromodeling approaches are based
on two key steps. First, an initial model is identified through
a curve-fitting stage [3]-[14]. A closed-form representation
of the model as a rational transfer matrix in the Laplace
domain is obtained by determining the model parameters
(i.e., poles and residues) that minimize some least squares
error with respect to the available frequency samples. This
representation is easily cast as a state-space realization [41].
A second step checks the model and, if needed, corrects the
model coefficients by enforcing its passivity [15]-[40]. This
second step is essential to avoid possible instabilities in the
transient system-level simulations, as discussed in [42]-[44].
Finally, the synthesis of the resulting state-space realization as
a SPICE-ready equivalent circuit is straightforward [2].

Despite the above macromodeling flow is now well es-
tablished, there may be some difficulties in its application
to medium and large scale complex structures. Here, com-
plexity is intended as a collective measure of the amount of
computations that are required for the model generation. This
measure is influenced by the number of available frequency
samples, by the number of ports of the device of interest, and
by the dynamic order, i.e., the size of a minimal state-space
realization [41], that is required for an accurate representation
of the system dynamics over the bandwidth of interest. In this
work, we present a set of techniques that may be used to
drastically reduce the total model extraction time by means
of parallelization and deployment on multicore hardware ar-
chitectures. It is widely acknowledged that high-performance
numerical schemes will have to take advantage of massively
parallel computers, that are expected to become ubiquitous in
the next few years even at the desktop level.

A parallelization strategy for rational curve fitting has been
presented as the Parallel Vector Fitting (PVF) scheme in [14].
So we only give a brief outline of the algorithm here, in
order to support and justify the numerical results. Some
preliminary work on parallelization of passivity enforcement
schemes has also been presented in [40], where a parallel
eigensolver for Hamiltonian matrices with sparse structure or
admitting a sparse factorization was presented. In this work,
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we further extend this approach and we complement it with a
parallel adaptive sampling scheme, presented as an extension
of the singular value/vector tracking scheme of [28]. The
main contribution of this work is the reformulation and the
parallelization of these schemes in order to achieve a good
scalability when increasing the number of computational cores.
This is in general a difficult task due to the presence of
unavoidable serial content or synchronization points in the
code that may limit its performance significantly. We show that
the overall macromodeling flow that is obtained is capable of
maintaining a very good speedup factor up to 16 computational
cores, the maximum currently available on our largest server.
In terms of runtime, complex interconnect models required by
Signal and Power Integrity analyses are extracted in seconds
or in the worst case in few minutes. These results make the
computational cost of the model extraction step essentially
negligible with respect to the cost of other verification steps,
including the preceding electromagnetic simulations or the
subsequent circuit analysis.

This paper is organized as follows. Section II introduces the
problem, sets notation, and provides background information.
Section III reviews the adaptive sampling scheme of [28]
and presents the proposed parallelization strategy. Section IV
reviews and discusses the parallelization of Hamiltonian-based
passivity checks. Section V discusses possible strategies for
combining the Hamiltonian-based passivity check with the
adaptive sampling process in order to maximize performance.
Passivity enforcement and its parallelization is addressed in
Sec. VI. Finally, Section VII reports and discusses the numer-
ical results obtained on a significant set of benchmarks.

Throughout this paper, ∗, T and H stand for complex con-
jugate, transpose, and conjugate (hermitian) transpose, respec-
tively. The sets of eigenvalues and singular values of a complex
matrix X are denoted as λ(X) and σ(X), respectively. The
maximum singular value is denoted as σmax(X) = ‖X‖.
The Frobenius norm of matrix X is defined as ‖X‖2F =∑
ij |Xij |2. The operators d·e and b·c round their argument

to the nearest larger and smaller integer, respectively.

II. BACKGROUND

A. Frequency-domain macromodel extraction
We consider the problem of frequency-domain macromodel

extraction. The starting point is a set of frequency samples

(ωk, Ĥk), k = 1, . . . ,K , (1)

where the complex P × P matrix Ĥk = Ĥ(ωk) is the
original computed or measured response of the structure under
investigation at frequency ω = ωk. A macromodel is here
defined as the state-space form{

ẋ(t) = Ax(t) + Bu(t) ,
y(t) = Cx(t) + Du(t) ,

(2)

with A ∈ RN×N , B ∈ RN×P , C ∈ RP×N , D ∈ RP×P ,
with corresponding transfer matrix

H(s) = D + C (sI −A)
−1

B , (3)

where s is the Laplace variable. We will focus our attention
to systems in scattering representation, so that (2) and (3) are

scattering matrices associated to some prescribed port resis-
tances R0i > 0 for i = 1, . . . , P . However, all material in this
paper applies to other input-output representations, including
impedance, admittance or more general hybrid forms, with
obvious modifications.

The identification of the state-space matrices (A,B,C,D)
from the data samples is typically performed using a rational
curve fitting process that finds poles pj and residue matrices
Rj of the following partial fraction form

H(s) = R∞ +

n∑
j=1

Rj

s− pj
(4)

by solving the following optimization problem

min
pj ,Rj ,R∞

K∑
k=1

∥∥∥∥∥∥R∞ +

n∑
j=1

Rj

ωk − pj
− Ĥk

∥∥∥∥∥∥
2

F

, (5)

where the approximation error is measured in the Frobenius
norm. The conversion of (4) into a state-space realization (2)
is straightforward and will not be discussed here [41]. We
only remark that, in case the rank of the residue matrices Rj

is full for each j, the size of the state-space matrix A of
a minimal realization is N = nP . In the following, we will
assume a Gilbert realization [24], [45], with A block-diagonal
with blocks of size 1 for the synthesis of real poles and of
size 2 for complex pole pairs. Note that this choice is always
possible in the construction of the state-space realization and
leads to a O(N) computational cost for the evaluation of the
transfer matrix at a given frequency.

The Vector Fitting (VF) scheme [8]-[14] is the most
prominent rational curve fitting tool for the solution of (5).
As discussed in [8], the VF scheme reformulates the non-
convex form (5) as an iterative sequence of simple linear
least squares (LS) problems, associated to a pole relocation
stage that iteratively refines a set of initial poles. Although
no theoretical proof of convergence is available, except for
trivial cases, experience shows that the performance of the VF
scheme is excellent, making this method the tool of choice for
macromodel extraction.

It has been shown in [14] that the computational cost
of the VF scheme in its most advanced formulation [11]
scales approximately as O(P 2n2K) per iteration. This cost
is dominated by a QR factorization step required by the
LS solution [46]. This implies that macromodel extraction
for structures characterized by a large number of ports and
requiring a large number of poles may require significant
computational resources and overall runtime. Two main at-
tempts towards the reduction of this cost have been reported.
In [13], a preprocessing data reduction step is applied to
the samples (1), resulting in a small number ρ � P 2 of
frequency-dependent “basis” functions ϕν(ωk). With a full
control over the approximation error, each response Ĥi,j(ωk)
in the original dataset is expressed as a linear combination of
these basis functions. Therefore, a macromodel is obtained
by applying VF to the reduced basis, with a cost reduction
by a factor ρ/P 2, plus an overhead due to the initial data
compression stage. Full details on this procedure are available
in [13].
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A second approach to computational cost reduction of VF
is through parallelization. The Parallel Vector Fitting (PVF)
scheme, presented in [14], shows that excellent performance
is possible when restructuring the various steps of the basic
VF algorithm so that most operations can be performed
concurrently by a number of T computational threads running
on a shared memory computer. The parallel efficiency of the
PVF scheme in its various implementations is nearly ideal
for large-scale cases. A detailed presentation of PVF and
its performance is available in [14], so we will not discuss
this scheme further, although we will use it in Section VII
to present scalability results of the complete macromodel
extraction flow.

B. Passivity constraints

In order to be useful for subsequent system-level (transient)
simulations, the macromodel (2) must be compliant with
fundamental physics-based constraints: causality, stability, and
passivity. For rational macromodels, causality and stability are
guaranteed by the unique condition that all model poles should
have a negative real part, <pj < 0, ∀j, see e.g. [42]. This con-
dition is easily enforced during the VF pole relocation stage.
Model passivity is more difficult to guarantee, and a special
set of constraints and associated enforcement algorithms are
necessary.

The fundamental condition under which a (scattering) trans-
fer matrix H(s) represents a passive macromodel is bounded
realness1 [42], [44]. A transfer matrix H(s) is Bounded Real
(BR) if

1) each element of H(s) is defined and analytic in <s > 0;
2) H∗(s) = H(s∗);
3) Θ(s) = I −H(s)HH(s) ≥ 0 for <s > 0.

The first two conditions are guaranteed if the state-space
realization (2) is real-valued and asymptotically stable [41],
[47]. Under these assumptions, the last condition can be
relaxed and checked only on the imaginary axis s = ω,

Θ(ω) ≥ 0 , ∀ω , (6)

which in turn is equivalent to requiring that all singular values
of H(ω) must be uniformly bounded by one at any frequency

σi ≤ 1 , ∀σi ∈ σ(H(ω)) , ∀ω . (7)

Note that σi =
√

1− λi, where λi ∈ λ(Θ(ω)) are the
eigenvalues of Θ(ω), so that (7) is equivalent to

λi ≥ 0 , ∀λi ∈ λ(Θ(ω)) , ∀ω . (8)

The passivity condition (7) should be checked for each
frequency ω ∈ R. This suggests using a frequency sampling
process to extract a significant set of frequency points ωk and
to perform (7) on these samples only. In order for this approach
to be reliable, the set of samples ωk must be determined
adaptively based on the dynamic features of the macromodel,
in order to avoid missing important information due to an

1In case H(s) is an impedance or admittance matrix, the bounded realness
conditions should be replaced by positive realness conditions, simply obtained
by redefining Θ(s) = H(s) + H(s)H.

incomplete characterization. One of the main contributions of
this work is indeed a parallel scheme for an adaptive and
accuracy-controlled sample extraction, finalized at the fast
execution of passivity check (7). This scheme is presented
in Sec. III.

The passivity condition (7) includes also the asymptotic
value ω →∞

Θ(∞) = I −DTD ≥ 0 ⇔ ‖D‖ = σmax(D) ≤ 1 . (9)

If the slightly stronger condition

‖D‖ = σmax(D) < α < 1 (10)

with a suitable constant α is enforced during the construction
of the macromodel, then a passivity check can be performed
through the Hamiltonian matrix associated to the macro-
model [48], [49], defined for the scattering form as

M =

(
A−BR−1DTC −BR−1BT

CTS−1C −AT + CTDR−1BT

)
,

(11)
where R = (DTD − I) and S = (DDT − I). It is well
known [23], [48] that the frequencies ω̄k at which one of the
singular values σi reaches the threshold γ = 1 correspond to
the purely imaginary eigenvalues µk = ω̄k of the Hamiltonian
matrix M. This fact can be exploited [23] to devise a simple
scheme for the determination of the frequency bands where
the passivity condition (7) is violated.

This procedure does not require any sampling but involves
the determination of the eigenspectrum of the Hamiltonian ma-
trix. This operation requires O(N3) operations, which might
be impractical for large-scale models. However, when the
state-space realization of the macromodel is sparse (as in our
case), it is possible to apply a Krylov subspace projection [50]-
[54] to the Hamiltonian eigenproblem, in order to extract
the few eigenvalues of interest in a prescribed region of the
complex plane. This fact has been exploited in [24], where
a multishift restarted Arnoldi process [50]-[52], [55] similar
to the Complex Frequency Hopping (CFH) scheme [56] has
been applied to extract all purely imaginary Hamiltonian
eigenvalues. Also this scheme is an excellent candidate for
parallelization, as discussed in [40]. This paper extends the
preliminary results of [40] by presenting in Sec. IV a dedi-
cated dynamic scheduling that reduces thread-dependency and
improves parallel efficiency. Parallel adaptive sampling and
parallel Hamiltonian eigensolution will be combined into a
single algorithm in Sec. V

Before presenting the details of each scheme, we depict in
Fig. 1 the results that are expected at the end of the passivity
check. There are two main quantities of interest:
• the intersections ω̄k of the singular value trajectories with

the threshold γ = 1 (square dots in the figure); these are
directly obtained from the Hamiltonian eigenvalues;

• the local maxima (ω̂k, σ̂k) of the singular values within
each frequency band with passivity violations (black
dots in the figure). These maxima can be obtained both
by adaptive sampling and by repeated computation of
imaginary eigenvalues of suitably modified Hamiltonian
matrices [23], [48].
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Fig. 1. Graphical illustration of alternative passivity characterizations. Top:
Hamiltonian-based check, with precise determination of passive/nonpassive
frequency bands. Bottom: passivity check based on frequency sampling. See
text for details.

One of the main objectives of this work is to determine the
optimal strategy for the computation of the above quantities
in the least time using T concurrent computational threads on
a multicore computer.

III. PARALLEL ADAPTIVE SAMPLING

The main objective of the proposed Parallel Adaptive Sam-
pling (PAS) scheme is to determine a partition of the frequency
axis Ω = [0,∞) into disjoint subbands

Ω =

Q⋃
q=1

Ωq , Ωq = [ωq−1, ωq) (12)

with ω0 = 0 and ωQ = +∞. Defining the interior of each
subband as

Ω̌q = (ωq−1, ωq) = Ωq − {ωq−1} , (13)

the partition (12) is determined such that one of the following
conditions will hold for each subband Ω̌q

• maxi σi(ω) > 1, ∀ω ∈ Ω̌q: in this case, passivity condi-
tion (7) is violated at any point within the subband, which
is thus flagged as “non-passive” with the superscript np.

• maxi σi(ω) < 1, ∀ω ∈ Ω̌q: in this case, (7) holds at
any point within the subband, which is thus flagged as
“passive” with the superscript p.

• maxi σi(ω) ≈ 1, ∀ω ∈ Ω̌q: in this case, the maximum
singular value will be too close to the threshold γ = 1
in order to qualify the system as locally passive or non-
passive in Ω̌q . We want to make sure that this last case is

such that |Ωq| = ωq − ωq−1 is small. This undetermined
case will be flagged with the superscript ?.

Passive, non-passive, and undetermined bands will be collected
as

Ωnp =
⋃
q Ωq : max

i
σi(ω) > 1, ∀ω ∈ Ω̌q

Ωp =
⋃
q Ωq : max

i
σi(ω) < 1, ∀ω ∈ Ω̌q

Ω? =
⋃
q Ωq : Ωq * Ωnp ∪ Ωp

(14)

In addition, for each non-passive subband Ωq ⊆ Ωnp, we want
to find all local maxima σ̂k and the corresponding frequencies
ω̂k at which these maxima are attained. See Fig. 1 for a
graphical illustration.

A. Accuracy-controlled sampling via eigenvector tracking

We recall that, since A has no purely imaginary poles,
the singular values σi(ω) are continuous and differentiable
functions of frequency [57]. However, when computing these
singular values numerically over a prescribed discrete set of
frequencies {ωk}, there is no guarantee that each σi(ωk)
for fixed i collects samples from the same singular value
trajectory. The computation at each frequency ωk is in fact
independent, and the adopted singular value or eigenvalue
solver may return its results with an order that may differ from
one sample to the next. Especially when two singular value
trajectories cross at some frequency, the tracking becomes
ambiguous.

The first objective is thus to dynamically determine a set
of frequencies {ωk} that is sufficient to track the individ-
ual smooth singular value trajectories by a suitable reorder-
ing. This reordering can be achieved by a mode tracking
scheme [58], such as the one presented in [28]. Given two
available (adjacent) frequency samples ωm and ωm+1, we
compute the eigendecomposition of Θ(ωm) and Θ(ωm+1)
and we collect the eigenvalues into matrices Λm and Λm+1

and the (orthogonal and unit-normalized) eigenvectors into
matrices V m and V m+1. Note that these matrices coincide
with the right singular vectors of H(ω). Then, we compute all
possible mutual scalar products among all these eigenvectors
as entries in matrix

P̃m,m+1 = V H
mV m+1 . (15)

If the two frequencies are sufficiently close so that the direc-
tion of the eigenvectors undergoes a small change from ωm
to ωm+1, then P̃m,m+1 will have approximately the structure
of a permutation matrix, with one single element per row and
column with magnitude close to 1, and with all other elements
nearly 0. If this is true, the permutation matrix Pm,m+1 that
reorders the eigenvectors and eigenvalues from sample m to
sample m+ 1 is obtained by rounding the magnitude of each
element of P̃m,m+1 towards 0 or 1. A numerical test whether
this tracking/permutation is successful can be obtained by
checking

max
i,i′

{∣∣∣(|P T
m,m+1P̃m,m+1| − I

)∣∣∣
i,i′

}
< ε (16)

for a suitable threshold ε � 1. We refer to [28] for more
details. If condition (16) is fulfilled, we infer that the behavior
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Fig. 2. Adaptive frequency sampling via local refinement (serial implemen-
tation). Each row from top to bottom corresponds to one application of the R
check (17). White dots denote samples still to be processed. Black dots denote
samples being used by current R check. Black squares denote samples that
do not need any more processing. A thick line highlights a frequency band
that is finalized and which does not need further refinement.

of the system transfer function and its singular values is
well resolved within [ωm, ωm+1]. Otherwise, a new sam-
ple ωm+1/2 = (ωm + ωm+1)/2 is added and the check
is applied again to the two subintervals [ωm, ωm+1/2] and
[ωm+1/2, ωm+1]. Binary subdivision of each pair of adjacent
samples drawn from an initial distribution is applied recur-
sively until (16) is met everywhere.

B. Parallel Adaptive Sampling

Let us take a closer look at the above described adaptive re-
finement scheme. Formally, the refinement check is expressed
as

ν = R(ωm, ωm+1) , (17)

where the input arguments define the local band to be checked,
and the output ν can be either ωm+1/2 or the empty set ∅,
in which case no further refinement is required. Evaluation
of (17) requires the computation of transfer matrix H(ω) at
the two frequencies ωm, ωm+1, together with its right singular
vector matrices V m and V m+1. As part of the R check,
we include the following computations: if ν is empty, the
resulting permutation matrix Pm,m+1 is immediately applied
to reorder the singular values at ωm+1; otherwise, the new
sample ωm+1/2 is computed together with its associated trans-
fer matrix H(ωm+1/2) and singular vector matrix V m+1/2,
which are stored for the next check.

Iterative application of (17) determines a binary subdivision
tree of the frequency axis, where each node in the tree denotes
a frequency sample. Figure 2 illustrates the order in which
the R check is applied in a serial implementation, where we
assumed that the leftmost local subband that is still to be
refined is processed first. The figure shows that the subbands
are finalized starting from the left edge of the initial frequency
interval. This consideration leads to a simple strategy for the

ut ut ut

ut ut ut ut

ut ut ut

rs rs ut ut

rs rs rs ut ut ut

rs rs rs rs rs ut ut

rs rs rs rs rs rs rs rs rs

Fig. 3. Parallel adaptive frequency sampling via local refinement using T = 2
threads. Samples assigned to thread t = 1 (t = 2) are depicted with circles
(triangles). Arrows indicate start points (leftmost sample) for the two threads.
White fill denotes samples still to be processed, whereas black fill denotes
samples used by current iteration. Black squares denote samples that do not
need any more processing. A thick line highlights a frequency band that is
finalized and which does not need further refinement.

parallelization of this refinement scheme using T concurrent
threads, based on the following steps and rules.

1) Startup: At startup, a set of initial frequency samples S0
is determined. Here, we form this set as the union of samples
obtained independently through different strategies:
• an upper frequency Ωmax is determined following the

procedure in [24], with the guarantee that no passivity
violations occur for ω > Ωmax; therefore, only the
interval [0,Ωmax] needs to be checked instead of the full
imaginary axis;

• a set Slin of klin uniformly spaced samples are determined
in [0,Ωmax], including edges;

• a set Slog of logarithmically spaced samples with kd
samples per decade are computed from ωmin to ωmax,
where kd, ωmin and ωmax depend on the particular
application and structure of interest;

• a set Sp of samples is obtained as in [28] from the model
poles pi = αi ± βi by sampling uniformly with 2R+ 1
points the phase of the associated resonance curve, as

Sp =
⋃
i,r

{
ωi,r = βi + αi tan

rπ

2(R+ 1)

}
(18)

with r = −R, . . . , R.
As a result, the set of initial samples that will be subject to
the R iteration is defined as

S0 = Slin ∪ Slog ∪ Sp , (19)

with all samples reordered for increasing values.
2) Initial workload allocation: Supposing that we have T

threads that can operate concurrently, we partition the set of
initial samples as

S0 =

T⋃
t=1

S0t , (20)

where the number of elements of each subset is #{S0t } =
b#{S0}/T c for t = 0, . . . , T − 1. The remaining samples
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Fig. 4. Parallel adaptive frequency sampling via local refinement using T = 2
threads and dynamic rescheduling (same notation as in Fig. 3). Note that
thread t = 2 is restarted at the third iteration after completing its initially
assigned workload.

are assigned to S0T . The subdivision is ordered, such that for
t1 < t2,

∀ωi ∈ S0t1 and ∀ωj ∈ S0t2 ⇒ ωi ≤ ωj , (21)

with each pair of adjacent subbands S0ti and S0ti+1
sharing the

single sample

ω̃i = maxS0ti = minS0ti+1
. (22)

Each subset S0t is allocated statically to thread t, which iter-
atively applies the R refinement check until the entire subband
is covered, as in Fig. 2. This initial allocation ensures that,
if no refinement is required, approximately the same amount
of work is allocated for each thread. Figure 3 illustrates this
process, showing the evolution of each subset of samples Sνt
at few iterations ν. In the following, we will drop the iteration
count ν.

3) Dynamic thread reallocation: As the iterative refinement
check proceeds and each subband is processed independently
by each thread, it may happen that some bands require
more adaptive refinement steps than others. Therefore, it may
happen that one thread tj completes its refinement task when
the other threads are still working. In this case, we should
avoid leaving the thread inactive, since this would compromise
parallel efficiency. In order to find some work to do for the idle
thread tj , we scan the remaining threads ti for i 6= j and we
determine the number of sample pairs in set Sti that at current
iteration are still to be processed by the R check. Although it
is not guaranteed that the work for these threads will coincide
with the corresponding number of unchecked subbands, the
number of expected R iterations will not certainly be smaller.
Therefore, we identify the thread t` that requires the largest
amount of estimated R checks and we restart thread tj by
assigning to it one half of the samples still to be processed by
t`. More precisely, we split

S` → Ŝt` ∪ Ŝtj (23)

with the constraint

∀ωi ∈ Ŝt` and ∀ωk ∈ Ŝtj ⇒ ωi ≤ ωk , (24)

with the two sets Ŝt` , Ŝtj sharing only one sample. This strat-
egy guarantees an initially equal subdivision of the workload

between tj and t`. Figure 4 provides a graphical illustration of
this thread reallocation. Then, the thread reallocation process
is repeated anytime some thread becomes idle, by rescheduling
it to help the most busy thread at that time.

4) End of refinement pass: The above described multi-
thread adaptive refinement process stops when all threads have
completed their tasks. Due to the proposed optimized dynamic
scheduling, the algorithm is automatically load balanced, ex-
cept for the last iteration during which a group of threads
might remain idle while the other threads are completing their
last task. The maximum total duration of this last step is the
time required for a single R iteration.

In addition to the natural stopping condition for the R
iteration, which occurs when ∅ is returned by (17) and in
which case all singular value trajectories are tracked based
on their singular vector perturbation, we add an additional
stopping condition in terms of the maximum number of nested
refinements Imax. This parameter intervenes when tracking
is not possible, e.g., in the case of singular values with
higher multiplicity, whose singular vectors cannot be defined
uniquely. In all numerical tests in this paper we used Imax = 6,
which was observed to provide a good compromise between
accuracy and efficiency.

C. Local passivity check

The final result of the above refinement scheme is a set
of frequency samples ωk and a reordered sequence (through
the above-defined permutation matrices Pm,m+1) of singular
values samples. For fixed i, the reordered samples σi(ωk) can
thus be considered to be drawn from a continuous and dif-
ferentiable trajectory σi(ω). Exploitation of this smoothness
leads to various straightforward ways of checking passivity
between each pair of adjacent frequencies. One can define a
worst-case linear prediction error at sample ωm based on a
first-order eigenvalue perturbation from the adjacent left and
right samples [28]

∆±m = max
i

{∣∣∣(V H
m±1 ΘmV m±1

)
ii
− (Λm)ii

∣∣∣} , (25)

and infer that the model is locally passive in a neighborhood
of ωm if

max
i
σi(ωm) + βmax{∆−m,∆+

m} < 1 , (26)

where β > 1 is a parameter used to compensate for the missing
higher order terms in the linear prediction (see [28] for details).
This local check at ωm can be formally expressed as

ϑm = C(ωm−1, ωm, ωm+1) , (27)

where ϑm is either 0 (flagging locally non-passive samples)
or 1 (locally passive samples), since a symmetric check is
performed using both samples at the left and right of current
sample. The only exception is when the check is performed
at the edge of the bandwidth of interest, in which case only
two samples are used to construct a one-sided linear prediction
error ∆−m or ∆+

m.
Performing this local passivity check using T computational

threads is straightforward, since a direct static scheduling
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is sufficient. In fact, since the C check is performed on a
prescribed set of samples which remains fixed and does not
grow through iterations, the static work allocation discussed
in Sec III-B2 is already optimal. Therefore, we do not discuss
this aspect further.

As a result from above procedure, the model is concluded
to be passive in (ωm, ωm+1) if (26) is satisfied at both ωm and
ωm+1. Conversely, the model is concluded to be non-passive
in (ωm, ωm+1), or at least in some portion of it, if any of the
maximum singular values at sample m and m + 1 is larger
than one,

max
i
σi(ωm) > 1 or max

i
σi(ωm+1) > 1 . (28)

For all other cases in which

max
i
σi(ωm) ≤ 1 and max

i
σi(ωm+1) ≤ 1 , (29)

but (26) is not satisfied at ωm and ωm+1, the subband is
flagged as undetermined since the singular value trajectories
are too close to the threshold.

Once all subbands are flagged, adjacent passive (nonpassive
or undetermined) bands are merged to form the subdivi-
sion (12). Finally, the local maxima (ω̂k, σ̂k) of the singular
value trajectories for each nonpassive subband are determined
by constructing a local quadratic polynomial that interpolates
three adjacent samples and by taking its peak value. All these
operations require negligible time and are performed as a serial
postprocessing in our implementation.

D. Optimizations

The local passivity check C as described above is performed
after the adaptive refinement iteration R is completed. This
strategy presents some critical aspects related to memory use
and management. In fact, the C check requires to store, for
each sample ωm to be checked, the matrix Θ(ωm), the
eigenvalue matrix Λm, and the eigenvector matrices at the left
and right samples V m±1. So, until a subband (ωm, ωm+1) is
definitely flagged as passive/non-passive/undetermined, all the
above quantities need to be stored for each of the two samples
m, m+1. For a P×P transfer function resulting into a number
K of final frequency samples, the overall storage requirement
scales as O(2P 2K). For instance, a 100-port structure with
10000 frequency samples requires more than 1.6 GB of storage
using complex double-precision arithmetics.

This large storage requirement can be relaxed and sig-
nificantly reduced with a modified scheduling approach that
interleaves the application of R and C iterations. In fact,
after each subband (ωm, ωm+1) is flagged after running the
C check at both its endpoints, only the P eigenvalues along
the diagonal of Λm need to be stored for the final identification
of local singular value maxima. The idea is then, during the
R refinement loop, to

• apply a C check whenever a triplet of adjacent samples
(ωm−1, ωm, ωm+1) is finalized by the R check;

• flag subband (ωm, ωm+1) as soon as both samples are
processed by a C check;

TABLE I
PEAK MEMORY USAGE DURING PARALLEL ADAPTIVE SAMPLING AND

LOCAL PASSIVITY CHECK FOR A TEST CASE (K = 4392, P = 56) WITH
(M2) AND WITHOUT (M1) MEMORY OPTIMIZATION. RESULTS ARE

SHOWN FOR DIFFERENT NUMBER OF THREADS T .

T M1, MB M2, MB
1 442 21
2 446 24
3 451 28
4 455 34
5 461 32
6 471 39
7 480 41
8 491 50

• free the memory from data that is not required by later
R or C checks, and reuse it to store new samples data,
as required by local refinement.

The actual implementation does not free or allocate any
memory during the main refinement loop, since this would
dramatically impact performance (memory management oper-
ations require exclusive access to resources and are not thread-
safe). We use a pool (buffer) of elementary memory cells that
is preallocated, based on some heuristic criterion depending
on the number of concurrent threads T . These cells are reused
by suitable linking through pointer reassignment. If the preal-
located memory pool is full, then another block is allocated
at once, thus limiting impact on parallel performance. Table I
illustrates the memory savings obtained for a significant test
case. Note that this memory optimization is achieved with no
loss of performance or parallel efficiency.

IV. PARALLEL HAMILTONIAN EIGENSOLUTION

As pointed in Sec. II-B, an alternative and purely algebraic
passivity check that does not require any frequency sampling
is provided by the set of purely imaginary eigenvalues of the
Hamiltonian matrix (11). In particular, denoting these eigen-
values as µk = ω̄k, it is well known that the frequencies ω̄k
provide a partition of the imaginary axis into open subbands
Ω̄k such that

σi(ω) 6= 1 ∀ω ∈ Ω̄k ∀k , (30)

so that the number of singular values σi exceeding the
passivity threshold γ = 1 does not change within each Ω̄k.
The frequencies ω̄k provide the only crossing points between
the singular value trajectories and the passivity threshold, see
Fig. 1 for an illustration.

The fast determination of the eigenvalues µk was discussed
in [24]. Instead of forming the full Hamiltonian matrix (11)
and computing the whole set of its eigenvalues, from which
the purely imaginary ones are then extracted, it is possible
to search only a small region of the complex plane covering
the imaginary axis. This is obtained by a shift-and-invert [51]-
[55] approach combined with a rational Arnoldi process [50],
which amounts to forming an orthogonal basis for the Krylov
subspace

span
{
v1, (H− θI)−1v1, . . . , (H− θI)−d+1v1

}
(31)
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where v1 is a suitable random starting vector and θ ∈ R
is a purely imaginary shift. A projection of the Hamilto-
nian eigenvalue problem onto this space returns a smaller-
size matrix, whose eigenvalues approximate the eigenvalues
of M that are closest to θ. By a suitable thresholding to
monitor convergence as the size of the Krylov subspace grows,
see [24], one obtains both few eigenvalue estimates {λ̃i} close
to θ and an associated radius ρ, which defines a circular region
Cθ,ρ centered at θ where a sufficiently accurate estimate of all
included Hamiltonian eigenvalues is available. This single-shift
Arnoldi iteration S can be formally described in functional
form as

({λi}, ρ)← S(θ, ρ0) (32)

where the input parameters are the shift and some initial radius
ρ0 defining a tentative eigenvalue search region, and the output
parameters are the complete set of eigenvalues {λi} that are
included in the disk Cθ,ρ, whose radius ρ is not known in
advance but is determined during the process.

The entire imaginary axis can be searched by placing
multiple shifts θk ∈ R, and by finding an estimate of
few Hamiltonian eigenvalues closest to each shift through
dedicated single-shift iterations. A standard bisection process,
documented in [24], allows to cover the entire frequency
band of interest. Then, the eigenvalue sets obtained from all
shifts are collected, and all purely imaginary eigenvalues ω̄k
are extracted. In order to determine whether the model is
passive within the corresponding subbands Ω̄k, it is sufficient
to compute the singular values of the model at a single point
within each band.

The above multishift Arnoldi process is another excellent
candidate for parallelization, since the numerical processing
required by each shift θk is independent on each other shift
θk′ 6=k. However, there is a hidden interdependency since the
number and location of new shifts to be processed depends
on the results obtained on previously analyzed shifts. The
algorithm described in [40] overcomes these difficulties by
adopting a dynamic scheduling process that, given a number
of available threads T , partitions the frequency band to be
checked into disjoint subbands, which are processed indepen-
dently by different threads. A high-level description of this
multi-shift scheme is outlined below, with reference to Fig. 5.

1) Start by subdividing the frequency band of interest
[0,Ωmax] into κT equal subintervals, where κ ≥ 2, and
define the corresponding edges as tentative shifts θk; the
condition κ ≥ 2 ensures that there are more subbands
than threads;

2) the first T − 1 shifts together with the last (centered at
the right edge of the frequency band) are assigned to
the T computing threads, which perform independent
single-shift iterations (step 1 in Fig. 5);

3) whenever a thread computes its task, a new single-shift
iteration is started, by centering it at the first available
shift waiting to be processed (e.g., thread t = 1 in step
2 of Fig. 5);

4) when all initial shifts have been processed and a com-
puting thread becomes idle, a new shift is defined at the
midpoint of the frequency band (θleft + ρleft, θright −

(1)

1 2 3

(2)

12 3

(3)

12 3

(4)

12 3

(5)

12 3

(6)

12 3

(7)

12 3

(8)

1 23

(9)

12 3

(10)

12 3

(11)

12 3

(12)

12 3

(13)

12 3

(14)

13

Fig. 5. Illustration of multishift iteration process using T = 3 threads.
Each row represents a snapshot of the scanned frequency band at the end
of each iteration, when one thread completes its S iteration and returns its
convergence circle (depicted in red color). The arrows pinpoint the location of
the shift θ under processing by the corresponding thread. Completed circles
at previous iterations are represented with blue color. The situation at the end
of the multishift iteration is depicted in the last row (enlarged view), showing
that the union of all convergence circles covers the entire frequency band.

ρright), where θleft, θright denote two adjacent shifts that
have already been processed and ρleft, ρright are the
corresponding convergence radii. See, e.g., the reallo-
cation of thread t = 2 from step 8 to step 9 in Fig. 5.
Note that the choice κ ≥ 2 in the initialization step 1)
guarantees that a pair of adjacent completed shifts is
always available, except at termination;

5) as a further optimization, anytime a thread completes its
single-shift iteration, the obtained convergence circle is
checked and any shifts that might be included (which
therefore do not need any processing) are removed from
the processing queue;

6) the algorithm stops when the entire frequency band
of interest [0,Ωmax] is covered by the union of all
convergence circles obtained through the iteration,

[0,Ωmax] ⊂ U =
⋃
k

Cθk,ρk . (33)

7) whenever all single-shift iterations are completed and
estimates for all eigenvalues λ̃k ∈ U are available, all
these estimates are refined down to machine precision
through another set of shift-and-invert iterations centered
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at λ̃k. The parallelization of this last step is trivial, since
a static scheduling is sufficient.

In summary, thread decoupling is achieved by the partitioning
of step 1. Automatic load balancing is achieved by reschedul-
ing idle threads at those frequency shifts where significant
work is still required (steps 3 and 4). Finally, any unnecessary
work is avoided by removing the corresponding shifts from
the processing queue in step 5.

V. COMBINING ADAPTIVE SAMPLING AND HAMILTONIAN
EIGENSOLUTION

Both the adaptive sampling scheme of Sec. III and the
Hamiltonian eigensolution of Sec. IV provide on output a
subdivision of the frequency band [0,Ωmax], in particular

PAS → [0,Ωmax] =
{
∪qΩp

q

}⋃{
∪qΩnp,?

q

}
, (34)

Ham → [0,Ωmax] =
⋃
k

Ω̄k , (35)

where we have collected in the same set the non-passive and
the undetermined bands from the adaptive sampling check. By
construction, we know that

∀Ωp
q , ∃k : Ωp

q ⊆ Ω̄k , (36)

since the model is locally passive (with smooth tracking) at
all computed samples of Ωp

q .
The adaptive sampling process is very fast, but it does

not provide a precise localization of all crossing points ω̄k
of singular value trajectories with the passivity threshold.
Moreover, the corresponding local passivity check is unable
to qualify some frequency bands, which are still left unde-
termined. Conversely, the Hamiltonian eigensolution provides
a precise characterization of each individual subband, but
this higher resolution comes with a higher computational
cost. This section describes our approach for combining the
advantages of both schemes, in order to obtain the most precise
information as possible with good parallel efficiency.

The basic idea is to exploit (36) in order to exclude
the frequency bands Ωp

q obtained through adaptive sampling
from the more expensive search of Hamiltonian eigenvalues.
Therefore, we perform first a parallel adaptive sampling and
local passivity check to flag these certainly passive subbands,
which are then removed from the starting interval

[0,Ωmax] \
{
∪qΩp

q

}
= ∪qΩnp,?

q . (37)

Only the remaining bands are searched for imaginary Hamil-
tonian eigenvalues. This is achieved by applying a set of local
multishift iterations independently to each of the individual
subbands Ωnp,?

q = [ω′q, ω
′′
q ]. The same scheduling approach

already described in Sec. IV is used, with some additional
higher-level scheduling that manages the concurrent process-
ing of multiple subbands.

Assuming T available threads and Q distinct subbands to
be processed, our proposed dynamic scheduling is based on
the following rules

1) the subbands to be characterized are sorted in decreasing
order according to their bandwidth ω′′q −ω′q and ranked;

this ordering is maintained until the multishift iteration
loop is completed;

2) if Q ≥ T , a single thread is initially allocated to each
band, starting from the top-ranked ones;

3) if instead Q < T , more than one thread is assigned
to each subband. In the initialization stage, an even
subdivision of threads among the subbands is used, with
dT/Qe and bT/Qc threads assigned to the first and last
subbands in the current ranking;

4) an individual multishift iteration, as in Sec. IV, is applied
to each subband with its private set of threads, until this
subband is completed and all its threads become idle;

5) when a number of threads become available, they are
assigned to the frequency bands that are still under
processing starting from the top-ranked one, following
the same “democratic” strategy of item 3) above, unless
there are some bands that are still waiting for the first
thread. The latter are served first to improve parallel
efficiency.

We see that, as soon as one subband is completed, its threads
start helping the largest subbands still under processing, thus
speeding up their completion with automatic load balancing.
Therefore, the fine-grained subdivision of all threads among
elementary operations provide an excellent opportunity for
maintaining scalability and parallel efficiency when increasing
the number of cores.

VI. PASSIVITY ENFORCEMENT

Several algorithms are available for enforcing model passiv-
ity, see [15]-[40] and references therein. Most of these schemes
share the common strategy of applying some perturbation to
the model coefficients so that the model becomes passive.
This perturbation is invariably complemented by a suitable
control over the perturbation amount, usually expressed in
terms of some transfer matrix norm. Here, we follow the
standard approach by applying the perturbation to the state
matrix C, which usually stores the residues matrices Rj

in (4), as C → C + ∆, and we minimize the energy of the
corresponding input-output perturbation, expressed by

E = tr{∆P∆T} , (38)

where tr denotes the matrix trace and P is the controllability
Gramian [41] associated to the model state-space realiza-
tion (2). Wherever appropriate, frequency-weighted versions
of this perturbation norm can be used, by replacing P with a
more general frequency-weighted Gramian matrix [31], [32].

The passivity constraints are here formulated as in (7)
using the information that is collected from the previously
completed passivity check. In particular, since the proposed
passivity check scheme returns all local maxima σ̂k of the
singular value trajectories that exceed the threshold γ = 1,
together with the frequencies ω̂k at which this maxima are
attained, we set up multiple local passivity constraints at
these frequencies, by relating the decision variables ∆ to
the induced singular value perturbation δσ̂k through a simple
first-order approximation. The theory in [34] shows that the



IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY 10

resulting optimization problem can be formulated as

min tr{∆P∆T} subject to W vec{∆} ≥ b , (39)

where the vec operator stacks the columns of its matrix
argument in a single column vector, and where the individual
rows of matrix W and vector b correspond to the passivity
constraint (7) applied to the perturbation of each local maxi-
mum σ̂k at frequency ω̂k. This formulation is standard.

Once (39) is solved, the model is checked again for passiv-
ity. In fact, the solution of the convex optimization (39) is not
guaranteed to provide a passive model, since (39) provides a
first-order approximation of the passivity constraint (7), which
is formulated at a discrete subset of frequencies and not over
the entire continuous imaginary axis. Therefore, the process
must be iterated until the model results passive.

Being iterative in nature, the only possibility to parallelize
the above passivity enforcement algorithm is to focus on each
individual pass of the loop. The passivity check part, which
actually dominates the computational cost, has been addressed
in earlier sections. For what concerns the actual system per-
turbation, there are two main opportunities for parallelization,
namely the construction of the local optimization problem (39)
and its numerical solution. Our implementation is based on the
following steps.
• The controllability Gramian P never changes through

iterations. Therefore, P can be computed once (if needed)
after the first passivity check. Since we are adopting a
block-quasi-diagonal state-space realization, the structure
of P is also block-diagonal, see [24]. Each diagonal block
of this Gramian is therefore computed by an independent
thread.

• The various rows of the passivity constraint in sys-
tem (39) are independent, since based on different fre-
quencies ω̂k and/or singular value maxima σ̂k. All these
constraints are therefore spread among the available
threads and computed in parallel. We remark that this
computation requires the re-computation of the singular
vectors V k of the system transfer matrix, since our
implementation does not keep track of these vectors to
reduce the memory footprint. Also this computation is
performed in parallel by all available computing threads.

• The solution of the constrained optimization problem (39)
also requires an inner loop of iterations. Our implemen-
tation is based on an interior-point scheme [49], [59],
[60], which embeds the set of inequality constraints (39)
in the optimization cost function through a logarithmic
barrier, and solves the resulting unconstrained optimiza-
tion scheme through a globalized Newton iteration. Our
parallelization intervenes in the construction of the linear
system to be solved at each Newton iteration, which is
performed concurrently by all available threads. For more
details on this formulation, see [59], [61], [62],

In general, due to the several synchronization points that
are required by this double iteration (with one outer loop
constructing (39) after the passivity check, and one inner
Newton loop for the actual solution of (39)), the overall
parallel efficiency of the system perturbation alone is expected

TABLE II
TEST CASES: K , P AND N DENOTE THE NUMBER OF FREQUENCY

SAMPLES IN THE RAW DATA, THE NUMBER OF PORTS AND THE DYNAMIC
ORDER OF THE OBTAINED MODEL, RESPECTIVELY.

Case K P N
1 71 92 1472
2 511 18 4572
3 4096 36 4968
4 2000 36 8064
5 570 34 1428
6 2043 18 2952
7 4096 18 3600
8 145 35 700
9 990 155 10540

10 282 164 6888
11 348 172 5504

to be less than what can be achieved for the passivity check
stage. Fortunately, this fact has little impact on the overall
efficiency, since the computational cost of the passivity check
is usually much larger than the cost of the perturbation stage.
This fact will be confirmed by the numerical results presented
in next Section.

VII. NUMERICAL RESULTS

Our proposed parallel passive macromodeling flow is illus-
trated on several benchmark cases, whose main features are
summarized in Table II. The table shows that the number of
ports P ranges from a minimum of 18 to a maximum of 172,
and the dynamic order N (the size of the state matrix A)
from a minimum of 700 to a maximum of 10540. So, we can
consider these benchmarks as ranging from medium-scale to
large-scale models. All the underlying structures are electrical
interconnects, in particular: cases 2–4, 6 and 7 are high-
speed channels connecting CPU and memory in enterprise
servers; cases 1 and 5 are package-level mixed signal/power
distribution networks, case 8 is an interconnect model in a
mixed-signal system, and cases 9–11 are chip-package-board
power distribution models.

We analyze separately the performance of model gener-
ation via Parallel Vector Fitting in Sec. VII-A, the model
passivity check via Parallel Adaptive Sampling, Hamiltonian
eigenvalue computation, and by the proposed combination
of both approaches in Sec. VII-B, and the global passivity
enforcement in Sec. VII-C. All these results are presented by
reporting the time required by a serial implementation, denoted
in the following as τ1, taken as the reference for measuring
speedup and parallel efficiency, and the time required by our
parallel implementation using 8 cores (τ8) and 16 cores (τ16).
All tests were performed using a Linux server with four
quad-core AMD Opteron processors running at 1.9 GHz. All
algorithms were implemented in C/C++ based on the OpenMP
paradigm [63] and the Lapack numerical libraries [64].

A. Model generation via Parallel Vector Fitting

We report here the timing results required by model
generation using the PVF algorithm [14]. The original P -
port scattering parameter data were subject to three PVF
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TABLE III
TIMING RESULTS FOR QR FACTORIZATION OF THE LEAST SQUARES POLE

RELOCATION SYSTEM IN THE PVF SCHEME. THE TIME REQUIRED BY 8
AND 16 THREADS IS REPORTED IN THE LAST TWO COLUMNS, TOGETHER

WITH THE SPEEDUP FACTOR (IN BRACKETS) WITH RESPECT TO THE
SERIAL IMPLEMENTATION USING 1 THREAD (SECOND COLUMN).

Case τ1, s τ8, s τ16, s
1 6.74 0.89 (7.59×) 0.46 (14.76×)
2 444.01 59.02 (7.52×) 30.90 (14.37×)
3 4088.17 533.90 (7.66×) 277.28 (14.74×)
4 104.72 13.89 (7.54×) 7.35 (14.25×)
5 373.64 49.65 (7.53×) 25.66 (14.56×)
6 43.10 5.83 (7.40×) 3.27 (13.20×)
7 628.17 82.56 (7.61×) 41.82 (15.02×)
8 1.39 0.19 (7.15×) 0.11 (13.21×)
9 601.55 77.83 (7.73×) 40.54 (14.84×)

10 569.44 72.77 (7.83×) 36.66 (15.53×)
11 374.20 48.10 (7.78×) 24.05 (15.56×)

TABLE IV
AS IN TABLE III, BUT REPORTING OVERALL TIME REQUIRED BY PVF TO

GENERATE MACROMODELS FROM SCATTERING PARAMETER SAMPLES.

Case τ1, s τ8, s τ16, s
1 8.46 1.26 (6.70×) 0.73 (11.60×)
2 453.37 61.11 (7.42×) 32.41 (13.99×)
3 4114.51 539.81 (7.62×) 281.61 (14.61×)
4 105.74 14.11 (7.49×) 7.52 (14.06×)
5 433.79 63.05 (6.88×) 35.67 (12.16×)
6 47.44 6.80 (6.98×) 3.98 (11.92×)
7 633.88 83.86 (7.56×) 42.75 (14.83×)
8 1.48 0.21 (6.92×) 0.12 (12.40×)
9 615.82 81.04 (7.60×) 42.91 (14.35×)

10 650.62 90.53 (7.19×) 50.06 (13.00×)
11 405.33 54.70 (7.41×) 28.82 (14.06×)

pole relocation iterations by using a common pole set for
all responses (using the response splitting scheme denoted
as “none” in [14]), for which the most demanding part is
a QR factorization stage of individual blocks of the large
least-squares system required for pole relocation [11]. The
parallelization of this algorithm part leads to the results of
Table III, where also the speedup obtained by using T = 8 and
T = 16 threads is reported within brackets. Table IV reports
instead the overall time and corresponding parallel speedup
factors required by the complete model generation via PVF.
Although the parallel efficiency and the overall speedup is
slightly less than observed for the QR factorization alone, we
can conclude that an excellent performance is achieved by our
parallel implementation, with close to ideal speedup factors for
the large-scale cases that require significant computing time.
These results confirm the PVF performance discussed in [14].

B. Passivity check

We now discuss the performance of the proposed passivity
check schemes. The first set of results in Table V reports the
number of frequency samples required by a continuous smooth
tracking of the singular values/vectors. The set of initial
samples S0 was generated using the guidelines of Sec. III-B,
with klin = 300 linearly spaced samples, kd = 4 samples per
decade over 9 decades of frequency, and 2R+ 1 = 7 samples
per pole (in the common-pole model representation (4)). Since
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Fig. 6. Starting (circles) and final tracked frequency samples of few selected
singular values for case 1

TABLE V
PASSIVITY CHECK: NUMBER OF INITIAL #{S0} AND FINAL #{Send}

FREQUENCY SAMPLES OBTAINED BY THE PROPOSED ADAPTIVE
FREQUENCY SAMPLING SCHEME.

Case #{S0} #{Send}
1 376 5229
2 1187 13216
3 766 6568
4 1093 16049
5 451 3129
6 873 6932
7 1007 10112
8 348 1969
9 558 12712

10 467 11229
11 429 10128

this number of initial samples is quite limited, it is expected
that the PAS scheme will add many samples in order to
track unambiguously the singular value trajectories. This is
confirmed by the number of final samples #{Send} reported
in Table V, which is always in the order of several thousands.
Figure 6 reports few selected singular value trajectories for
case 1 within a restricted frequency band, showing how the
final set of samples is able to resolve all fine variations of the
curves, which are sampled too coarsely by the initial sample
distribution.

Table VI reports the timing results and the parallel speedup
for T = 8 and T = 16 concurrent threads obtained by our
PAS scheme, inclusive of both adaptive sampling refinement
and local passivity check. We see that the scalability of this
passivity check scheme with the number of cores is excellent,
with a speedup superior to 15× in almost all cases.

We now turn to the Hamiltonian-based passivity check of
Sec. IV. The timing results for all test cases are reported in
Table VII, where the time required for the calculation of the
Hamiltonian eigenvalues using a standard full eigensolver is
also reported (second column) for comparison. We see that,
even with a serial implementation, the required computation
time by our multishift iterative solver is significantly reduced.
This reduction becomes more aggressive if more threads are
used, as demonstrated in Table VII. The speedup factors with
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TABLE VI
TIMING RESULTS FOR THE PARALLEL ADAPTIVE SAMPLING AND LOCAL

PASSIVITY CHECK SCHEME FOR T = 1, 8 AND 16 THREADS, WITH
CORRESPONDING SPEEDUP FACTORS.

Case τ1, s τ8, s τ16, s
1 112.76 14.31 (7.88×) 7.11 (15.87×)
2 8.05 1.05 (7.6×) 0.51 (15.66×)
3 26.56 3.35 (7.93×) 1.85 (14.33×)
4 80.42 10.69 (7.52×) 5.09 (15.78×)
5 5.69 0.73 (7.80×) 0.37 (15.39×)
6 3.53 0.45 (7.89×) 0.23 (15.14×)
7 5.37 0.68 (7.87×) 0.35 (15.38×)
8 3.71 0.46 (8.00×) 0.24 (15.47×)
9 1151.28 145.83 (7.89×) 78.33 (14.70×)
10 1069.71 134.12 (7.98×) 69.46 (15.40×)
11 1091.38 136.44 (8.00×) 69.13 (15.79×)

TABLE VII
PASSIVITY CHECK VIA HAMILTONIAN EIGENVALUE COMPUTATION. THE
TIME τT REQUIRED USING T THREADS IS REPORTED AND COMPARED TO

THE TIME τfull REQUIRED BY A FULL EIGENSOLVER.

Case τfull, s τ1, s τ8, s τ16, s
1 153.14 66.40 9.56 (6.94×) 5.70 (11.66×)
2 4303.77 358.81 49.73 (7.22×) 30.66 (11.70×)
3 5563.02 283.67 40.45 (7.01×) 22.28 (12.73×)
4 22288 (*) 929.37 131.14 (7.09×) 68.05 (13.66×)
5 150.11 34.77 4.54 (7.65×) 3.02 (11.51×)
6 1216.43 225.98 30.81 (7.34×) 19.42 (11.64×)
7 2239.23 264.78 34.75 (7.62×) 19.69 (13.45×)
8 18.58 23.73 3.18 (7.47×) 1.73 (13.72×)
9 48234 (*) 1718.56 268.54 (6.40×) 148.18 (11.60×)
10 14177 (*) 2594.00 361.90 (7.17×) 204.01 (12.72×)
11 7460 (*) 1711.48 246.21 (6.95×) 135.73 (12.61×)

(*) estimated based on theoretical O(N3) scaling law

T = 8 and T = 16 threads are a bit reduced with respect to
the adaptive sampling check, but still quite satisfactory and
always superior to 11× with T = 16 threads, with a best case
reaching 13.66×. This reduction in parallel efficiency is due
to the higher degree of interdependency between concurrent
threads and, especially, in the smaller amount of independent
calculations (frequency shifts) available for thread distribution.
For reference, in the PAS scheme for case 9 one has a
number of final frequency samples of 12712, whereas only
326 frequency shifts are required by the selective Hamiltonian
eigenvalue calculation. Also, the overall CPU time is higher
for the Hamiltonian-based check with respect to the adaptive
sampling check for most (but not all) cases. Despite this
reduction in parallel efficiency and increased runtime, the
Hamiltonian-based check allows a precise determination of the
frequencies ω̄k that bracket the passivity violation bands, for
which only an estimate is available from the adaptive sampling
check.

The performance of the passivity check proposed in Sec. V
based on the combination of adaptive sampling and multi-band
Hamiltonian eigenvalue calculation is illustrated in Table VIII.
This check, although more computationally expensive than
the sampling-based check, provides a precise localization of
passivity violations and is generally less expensive than the
Hamiltonian-based check alone. Only few cases require a
larger runtime (cases 1, 8, 9–11). This is due to the fact that

TABLE VIII
TIMING RESULTS FOR THE HYBRID PASSIVITY CHECK BASED ON
ADAPTIVE SAMPLING COMBINED WITH SELECTED HAMILTONIAN

EIGENVALUES.

Case τ1, s τ8, s τ16, s
1 171.97 22.20 (7.75×) 12.74 (13.50×)
2 9.53 1.57 (6.06×) 1.22 (7.82×)
3 28.24 4.22 (6.69×) 3.29 (8.58×)
4 110.89 17.03 (6.51×) 12.13 (9.14×)
5 28.46 3.90 (7.30×) 2.50 (11.40×)
6 3.44 0.44 (7.85×) 0.24 (14.61×)
7 5.55 0.70 (7.94×) 0.36 (15.37×)
8 28.50 3.60 (7.92×) 2.01 (14.20×)
9 2831.43 402.08 (7.04×) 218.95 (12.93×)

10 2957.15 419.10 (7.06×) 238.60 (12.39×)
11 2837.98 397.00 (7.15×) 221.38 (12.82×)
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Fig. 7. Maximum singular value (thin line) and frequency bands Ωp
q that are

flagged as passive after the adaptive sampling check (thick line). Top panel:
case 1; bottom panel: case 5.

the passivity violations for those cases are spread over a large
frequency band rather than localized at small-size independent
subbands. This implies that the set ∪qΩp

q in (37) is small or
even empty, so that a large portion or even the full frequency
band [0,Ωmax] has to be scanned again by the Hamiltonian
eigensolver. The preliminary adaptive sampling leads to no
advantage in such cases. A different scenario happens, e.g.,
for case 5, for which the set ∪qΩp

q is a significant portion of
[0,Ωmax], so that only a small remaining subband necessitates
Hamiltonian eigenvalue determination. A graphical illustration
of these two scenarios for cases 1 and 5 is provided in Fig. 7.

C. Passivity enforcement and overall results

The timing results for the passivity enforcement step de-
scribed in Sec. VI are reported in Table IX. From these results
we can observe that the serial runtime is almost negligible in
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TABLE IX
TIMING RESULTS AND PARALLEL SPEEDUP FOR THE PASSIVITY

ENFORCEMENT.

Case τ1, s τ8, s τ16, s Iterations
1 41.66 25.49(1.63×) 12.31 (3.38×) 8
2 8.47 5.64(1.50×) 0.40 (2.74×) 42
3 6.01 4.62(1.30×) 2.88 (2.08×) 18
4 5.88 4.08(1.44×) 2.78 (2.11×) 19
5 2.66 2.14(1.24×) 1.98 (1.34×) 29
6 2.13 1.98(1.08×) 1.95 (1.09×) 45
7 1.99 1.83(1.08×) 1.85 (1.07×) 38
8 0.98 0.88(1.11×) 1.00 (0.98×) 16
9 28.28 12.13(2.33×) 9.25 (3.05×) 10

10 112.34 39.51(2.84×) 26.72 (4.20×) 7
11 25.34 10.65(2.37×) 8.37 (3.03×) 33

TABLE X
TIMING RESULTS AND PARALLEL SPEEDUP FOR THE COMPLETE

PASSIVITY ENFORCEMENT LOOP.

Case τ1, s τ8, s τ16, s
1 1250.94 182.47 (6.86×) 113.31 (11.04×)
2 804.99 121.58 (6.62×) 101.57 (7.93×)
3 675.65 87.73 (7.70×) 70.22 (9.62×)
4 2320.52 369.85 (6.27×) 340.35 (6.82×)
5 382.74 72.82 (5.26×) 62.63 (6.11×)
6 468.39 65.94 (7.10×) 55.90 (8.38×)
7 558.96 84.26 (6.63×) 51.49 (10.86×)
8 101.59 21.97 (4.63×) 16.22 (6.26×)
9 11992.74 1795.32 (6.68×) 1523.24 (7.87×)
10 7397.36 1279.82 (5.78×) 995.71 (7.43×)
11 30606.63 4520.92 (6.77×) 3223.43 (9.50×)

practically all cases with respect to the time required by the
passivity check. This confirms that most attention in algorithm
speedup via parallelization must be devoted to the passivity
check phase. We also see that the parallel efficiency of the
enforcement process is much worse than what was achieved
for the passivity check. This is easily explained noting that
passivity enforcement is achieved through an inner iteration
loop for solving problem (39) based on an interior-point
scheme [59], [61], [62]. The number of iterations for each
case is reported in the last column of Table IX. Each iteration
requires the construction and the solution of a relatively small-
size unconstrained optimization problem, whose formulation
is based on full dense matrices. The cost for the individual
iteration is thus not expected to scale well with the number
of concurrent threads used to solve this problem. Moreover,
when the individual cost per iteration is small, no advantage at
all is expected from parallelization. Some moderate speedup
is observed for those cases that require significant runtime per
iteration.

We now turn to the complete passivity enforcement loop,
which iteratively performs a passivity check and perturbs the
model coefficients by solving (39) until the model is passive.
In order to reduce overall runtime, the passivity check is
performed in our implementation only by the PAS scheme,
until no passivity violations are detected. At this point, the
hybrid check of Sec. V is used in order to precisely detect
and eliminate the residual passivity violation bands.

The timing results for all cases are reported in Table X. We
see that, despite the several unavoidable synchronization points
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Fig. 8. Trajectories of all singular values for case 1 model after passivity
enforcement (vertical scale has been stretched around the passivity threshold
σ = 1).
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Fig. 9. Comparison between passive model and raw data for some case 3
responses. Similar results (not shown) were obtained for all other responses
and all other cases.

possibly affecting the iterative scheme, the overall speedup ob-
tained by using T = 8 and T = 16 threads is quite satisfactory.
As an example, we report in Fig. 8 the set of singular values
of the case 1 model after passivity enforcement. The enlarged
vertical scale shows that all singular values are bounded by
one, implying model passivity. Figure 9 compares a selected
set of scattering responses of the final passive case 1 model
to the original data used for model extraction. The accuracy is
excellent, with no visual difference between model and data
on this scale.

We conclude this section by reporting in Fig. 10 the speedup
factor τT /τ1 achieved by the four key stages of our proposed
parallel macromodeling flow, namely the PVF model extrac-
tion, the passivity check via adaptive sampling, the hybrid
adaptive sampling/Hamiltonian passivity check, and the full
passivity enforcement loop. The plots report best case, worst
case, and average among all analyzed benchmarks. These plots
clearly illustrate the benefits of parallelization.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

We have presented a comprehensive macromodel extraction
flow based on a parallel formulation and implementation of



IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY 14

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

No. of threads

S
pe

ed
−

up

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

No. of threads

S
pe

ed
−

up

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

No. of threads

S
pe

ed
−

up

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

No. of threads

S
pe

ed
−

up

Fig. 10. Speedup plots for the four stages of our parallel macromodeling
flow: PVF (top left), PAS passivity check (top right), hybrid PAS/Hamiltonian
passivity check (bottom left), and complete passivity enforcement (bottom
right). The plots report the ratio τT /τ1 versus the number T of computational
threads for the best and worst cases (dashed lines), and the average (solid lines)
among all analyzed benchmarks.

all underlying numerical algorithms. The starting point is a
set of tabulated frequency responses, and the final objective is
a macromodel in state-space form, whose transfer function ap-
proximates with good accuracy the original data. The standard
flow is applied here, based on rational curve fitting followed
by a passivity enforcement step via model perturbation.

The main focus of this work is the acceleration of all
steps of the macromodel extraction flow through algorithm
parallelization and deployment on multicore computing ar-
chitectures. To this end, we reformulated both rational curve
fitting, passivity check and enforcement so that the various
numerical operations can be performed concurrently by inde-
pendent computing threads assigned to the various available
processors. Performance and scalability tests were performed
by increasing the number of threads up to the largest allowed
by our server (16).

The numerical results show that macromodel extraction
for medium and large scale structures can be performed fast
and efficiently. The most demanding part remains passivity
enforcement, which requires a passivity check at each iteration.
Good scalability with the number of computing threads is
observed at all stages of the extraction, providing a quite
promising framework for deployment on future computing
architectures, which are expected to offer massively parallel
computing power even at the desktop level.

Various directions are available for future investigations.
We mention the possibility to extend the proposed parallel
macromodeling flow to electrically large structures by em-
bedding delay terms in the macromodels. This subject has
been studied in several publications, see e.g. [65]-[69] and
references therein. It is expected that an ad hoc parallelization

strategy will be quite effective in reducing model extraction
also in this case.

A second direction is pointed by [39], where a new
framework for passivity enforcement based on a convex non-
smooth formulation was developed. This approach provides a
theoretical proof of optimality and convergence, at the price of
a much increased iteration count, hence runtime, with respect
to the approach of this work. Each iteration of [39] still
requires a full passivity check; it is therefore expected that
very similar speedup factors as documented in this work will
be possible through parallelization. However, we believe that
research efforts within this framework should be directed first
to the reduction in the number of required iterations, leaving
code optimization and parallelization to a second stage.
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