
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Classification of Language Interactions / Tomassetti, FEDERICO CESARE ARGENTINO; Torchiano, Marco; Vetro',
Antonio. - (2013), pp. 287-290. (Intervento presentato al convegno ACM / IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM) tenutosi a Baltimore, Maryland, USA nel October 10-11, 2013)
[10.1109/ESEM.2013.34].

Original

Classification of Language Interactions

Publisher:

Published
DOI:10.1109/ESEM.2013.34

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2510074 since:

Classification of Language Interactions
Federico Tomassetti∗, Marco Torchiano∗ and Antonio Vetro’∗

∗Dept. of Control and Computer Engineering
Politecnico di Torino

Torino, Italy
Email: [federico.tomassetti|marco.torchiano|antonio.vetro]@polito.it

Abstract—Context: the presence of several languages interact-
ing each other within the same project is an almost universal
feature in software development. Earlier work shows that this
interaction might be source of problems.

Objective: we aim at identifying and characterizing the cross-
language interactions at semantic level.

Method: we took the commits of an open source project
and analyzed the cross-language pairs of files occurring in the
same commit to identify possible semantic interactions. We both
defined a taxonomy and applied it.

Result: we identified 6 categories of semantic interactions. The
most common category is the one based on shared ids, the next
is when an artifact provides a description of another artifact.

Conclusion: the deeper knowledge of cross-language interac-
tions represents the basis for implementing a tool supporting the
management of this kind of interactions and the detection of
related problems at compile time.

I. INTRODUCTION

pol·y·glot |’päli,glät|
adjective
knowing or using several languages.1

Polyglotism is largely recognized as an almost ubiquitous
characteristic of modern software development projects: they
use several different languages [1]. For instance, most trivial
web applications are typically written in a general-purpose
language, e.g. Java, include some SQL queries, are visually
presented by means of HTML, formatted using CSS files,
and with client-side processing implemented using Javascript.
Another case is the use of Domain Specific Languages (DSLs)
that are quite common when adopting a model-driven approach
[2].

An important side effect of polyglotism within a single
project is the interaction between languages. From previous
studies [3] [4] we learned that the majority of commits in
open source projects are cross-language, i.e. they involve files
written in different languages.

Identifying the interactions between artifacts in different
languages (cross-language) is important because most devel-
opment environments, with the notable exception of some
platform-specific IDEs – e.g. some Android IDEs – do not
provide any support for managing them. A good knowledge
of cross-language interactions is a key factor in building
a specific support into IDEs with the goal of supporting

1Definition from the Oxford American Dictionary

development, maintenance, and comprehension activities on
polyglot applications.

Two main approaches to language identification are pos-
sible. Logical interactions [5] occur when two artifacts are
modified in the same commit. Semantic interactions occur
when within an artifact we can find some elements that link
it to another artifact.

In our previous study [3] we investigated logical interac-
tions. In this paper we attempt to both verify how frequently
logical interactions do actually correspond to semantic interac-
tions and classify the different types of semantic interactions.

The goal of this paper is twofold: (i) on one hand we investi-
gate the relationship between logical interactions and semantic
interactions, and (ii) we attempt an initial classification of the
semantic language interactions.

II. RELATED WORK

The authors of this paper previously worked on a prelim-
inary evaluation of the effects of language interactions [3].
Results indicate that most of the commits involve files written
using different languages. The prevalence of cross-language
commits depends on the kind of activity being performed
(e.g., implementation of a new feature involves the 30% of
cross-language commits, while writing tests involves a mere
5% thereof). In particular the work showed the presence of
a correlation between interactions involving certain pairs of
languages (e.g. C-Java) and an increased defectiveness.

Later we proposed a prototypal solution [4] for language
integration adopting a Language Workbench (the Jetbrains
Metaprogramming System2). Our solution addressed only one
particular kind of interaction (Shared ID) while in this work we
present a comprehensive classification of possible interactions
between artifacts written in different languages.

Gall et al. [5] proposed a definition of logical coupling
between files based on the observation of a software repository.
They defined as logically coupled two files which changed to-
gether in at least one commit. This allows identifying possible
relations which cannot be easily found with a more rigorous
syntactic analysis. Another advantage of this approach is the
possibility to apply it to all possible kind of artifacts. In later
work [6], [7], Ratzinger et al. showed that logic couplings
defined on the basis of a repository’s history could be used

2http://www.jetbrains.com/mps/

to find artifacts which need to be refactored (reducing the
coupling). This is a complement to syntactic coupling.

Mayer and Schroeder [8] name the problems of references
across artifacts written in different languages as “semantic
cross-language links”. Being these links out of scope of
the individual programming language, they are ignored by
most language-specific tools and are often checked only at
runtime. They propose to explicitly express constraints for
these links and present three possible approaches to do that: at
source code level, using language-specific meta-models, and
using language-spanning meta-models. They chose the second
approach. We instead advocated the third in our previous work
[4], because it permits to reuse a common API and, in the
case of the MPS language workbench, it is already available
without the need of developing it.

Pfeiffer realized a system called TexMo [9] which permits
to express references between artifacts written in different
languages (corresponding the category of interaction that we
named as Shared ID), but not to express other kind of con-
straints. It is realized as an Eclipse plugin and it is intended to
be used instead of the original editors provided inside Eclipse.
Our prototypal approach [4] does not require to recreate the
editors but permits to simply enrich the industrial-strength
editors already available in MPS. It does not resort on a limited
universal metamodel, but instead uses the MPS representation
of the language, allowing considering every aspect of the
language.

Pfeiffer et al. [10] used TexMo in a controlled experiment
with 22 subjects to demonstrate the effects of tool support
for cross-language references. Results show a significative
improvement in the ability to correctly locate the source of
errors due to broken cross-language references.

III. METHOD

We devised a research method to achieve the dual objec-
tive of identifying interaction categories and classifying the
occurrences of interactions in a real project.

The procedure we followed consists of six steps: leftmar-
gin=0.4cm

1) screening: we identified logical interactions by selecting
the cross-language commits using the approach based
on file extensions, defined in [3];
We adopted this approach to focus on a limited number
of candidate pairs since examining all possible con-
nections between every pair of files in a large project
requires both a deep knowledge of the project itself and
a huge effort;

2) commit selection: we selected the bug-fixing commits
from the project version control syste;.
This choice is motivated by the fact that they typically
represent focused modifications involving a limited set
of files. Considering that we are interested in binary
relations between files, a large number of files could
lead to an exponential number of possible pairs of files
to be analyzed;

3) manual verification: we verified the language of the
files to confirm the presence of cross-language logical
interactions in a predefined temporal range (the same
used in the previous study);
Since the previous step is based on the file extensions
alone, some false positive are possible. Where different
extensions actually correspond to the same language or
vice versa the same extension (or lack of) corresponds
to different languages;
This manual inspection led us to classify as bash scripts
files that had not an extension. In a few cases that
left us with a commit where only bash files were
modified, therefore the commit was clearly not a cross-
language commit and so it was excluded from further
examination;

4) semantic interaction manual confirmation: we manually
inspected the files modified simultaneously in the same
commit, using mainly the contextual diffs of the involved
files and the relative log message to identify cross-
language interactions and to assign them to a class.
In this way we progressively constructed a taxonomy of
semantic interactions;

5) revision of the classification: we discussed the classifica-
tion built in the previous step, merged similar categories,
and defined more meaningful labels.
The goal of this step is to come up with a clear and
precise definition of the cross-language interaction cat-
egories and provide representative examples. The results
at this stage are presented in section IV.

6) semantic interaction classification: we re-processed all
the commits and performed a definitive classification
of the cross-language interactions according to the final
taxonomy.
When several instances of the same relation were found
between the same pair of files (e.g. many Shared ID) just
one occurrence was reported. Though the same relation
could possibly be counted more than once, if it appears
in distinct commits.
The result at this final stage is a set of cross-language
semantic interactions identified over a set of commits.
We then conducted an analysis – presented in section
V – of such data aimed to: i) verify the precision
of the logic interaction approach in terms of semantic
interactions, ii) define a frequency profile of cross-
language interaction categories.

IV. CATEGORIES

As a result of step 5) (see sec.III), we built a taxonomy
of the cross-language semantic interactions. The interactions
between different languages can occur in several different
forms. While it is extremely common to use more than one
language in a single project, it could even be the case that
different languages are used in the same file. For instance
consider the presence of an utterance of SQL embedded in
a valid expression of an host language (typically a General
Purpose Language like Java or PHP) or the preprocessing

TABLE I
CATEGORIES FOR THE IMPLEMENTATION OF LANGUAGE INTERACTIONS

AMONG DIFFERENT ARTIFACTS

Category Definition
Shared ID The same ID is used among the artifacts involved in the

interaction.

Shared data A piece of data have to hold exactly the same value
among the different artifacts involved.

Data loading A data from one of the file involved is loaded by the
code in another file involved.

Generation One or more files are completely or partially generated
by the execution of one file. Also the modification of part
of a file is accepted.

Description One of the file involved contained a description of the
content of another file (a part or the whole file).

Execution One file executes the code contained in another file.

languages as the C preprocessor language or M4. In our work
we assumed that it is possible to identify a main or host
language in which a certain artifact (e.g., a file) is expressed.
We to focus only on interactions between distinct artifacts
taking into consideration the main language of each file.

We emphasize that the identified categories are not mutually
exclusive. For example a Java class could load an XML file
(Data loading relation) and then perform some processing on
specific part of it, using identifiers for the navigation. In that
case normally the same identifier is present both in the Java
and in the XML file (Shared ID relation). In our example
therefore there will be both Data loading and Shared ID
relations on the same pair of files.

In Table I we report the definition of the categories we
identified. In the rest of the section we present an example
for each category. Examples are derived from the interactions
classified according to the procedure in section III.

A. Shared ID - Example

A configuration file written in XML (Listing 1) contains
the qualified name of a Java class (Listing 2). The class
is named S3FileSystem and it is contained in package
org.apache.hadoop.fs.s3; the fully qualified name is
therefore org.apache.hadoop.fs.s3.S3FileSystem.
<property>
<name>fs.s3.impl</name>
<value>org.apache.hadoop.fs.s3.S3FileSystem</value>
<description>The FileSystem for s3: uris.</description>

</property>

Listing 1. Snippet from file src/java/core-default.xml at commit 1058343

public class S3FileSystem extends FileSystem {

Listing 2. Snippet from file src/java/core-default.xml at commit 1058343

B. Shared data - Example

Two different configuration files of Ivy have to specify the
same version of a particular library. The library is the Google
Protobuffer and the value of the version is "2.4.0a". The files
involved are an XML file (Listing 3) and a properties file
(Listing 4).

<dependency>
<groupId>com.google.protobuf</groupId>
<artifactId>protobuf-java</artifactId>
<version>2.4.0a</version>

</dependency>

Listing 3. Snippet from file ivy/hadoop-common-template.xml at commit
1134857

protobuf.version=2.4.0a

Listing 4. Snippet from file ivy/libraries.properties at commit 1134857

C. Data loading - Example
Configuration data is loaded by Java code from an XML

file, to implement a unit test on the Configuration class.
In Listing 5 you can read the code of the XML file, while

in Listing 6 is reported the line responsible for loading the
XML file.
<!-- This file is a fake version of a "default" file like
core-default or mapred-default, used for some of the unit

tests.
-->

<configuration>
<property>
<name>tests.fake-default.new-key</name>
<value>tests.fake-default.value</value>
<description>a default value for the "new" key of a

deprecated pair.</description>
</property>

</configuration>

Listing 5. Snippet from file src/test/test-fake-default at commit 1126719

static {
Configuration.addDefaultResource("test-fake-default.xml");

}

Listing 6. Snippet from file src/test/core/org/apache/hadoop/conf/Test/
ConfigurationDeprecation.java at commit 1126719

D. Generation - Example
A script used for setup may generate different files. For

example the bash in Listing 7 file generates the actual mapred-
site.xml from a template.

In this case the repository contains the template file but not
the generated file, which would be present in a project using
Hadoop.
...
template_generator ${HADOOP_PREFIX}/share/hadoop/common/

templates/conf/mapred-site.xml ${HADOOP_CONF_DIR}/mapred-
site.xml

...

Listing 7. Snippet from file src/main/packages/hadoop-setup-conf.sh at
commit 1190035

E. Description - Example
The documentation of the Access Control List functionali-

ties reported in Listing 8 describes a functionality expressed in
class AccessControlList (path src/java/org/apache/hadoop/se-
curity/authorize/AccessControlList.java).
<tr>
<td>mapreduce.cluster.acls.enabled</td>
<td>Boolean, specifying whether checks for queue ACLs and job

ACLs are to be done for authorizing users for doing queue
operations and job operations.</td>

<td>If true, queue ACLs are checked while submitting
and administering jobs and job ACLs [..]. </td></tr>

Listing 8. Snippet from file src/docs/src/documentation/content/xdocs/
cluster_setup.xml at commit 998001

F. Execution - Example

A POM file executes the code of Java class (see Listing 9).
<doclet>org.apache.hadoop.classification.tools.

IncludePublicAnnotationsStandardDoclet</doclet>

Listing 9. Snippet from file pom.xml at commit 1195817

V. CLASSIFICATION

The project selected for the analysis is Hadoop3 (See step 1
in Section III). We considered 39 bug-fixing commits from the
Hadoop project (step 2), that were classified in [3] as cross-
language (because they contain logical interactions). After a
first inspection we discarded 3 commits because they were not
cross-language (step 3).

Out of the remaining 36 commits we found semantic cross-
language relations which we could classify in 27 cases (75%).
More in details, in 11 commits we found one interaction, in
10 cases two relations, in 3 commits we found 3 relations, in
two cases we found 4 occurrences, and in one case even 8
interactions.

We can conclude that using logical interaction as a proxy
to identify semantic interactions has an estimated average
precision of 75% (27 commits classified over 36 found with
semantic cross-language relations) with a 95% confidence in-
terval ranging from 57% to 87%, estimated using a proportions
test.

Figure 1 reports the frequency of the interaction categories.
Of course here we report only the relations which we were
able to identify. We cannot exclude the presence of other
relations that we were unable to detect. Thus the number of
cross-language interactions we identified could be interpreted
as a lower-bound of possible existing relations. Some relations
could be expressed implicitly, for example a file could load
the content of another file using a library method of which we
do not know the semantics.

The most frequent category of relation is by far Shared ID
(27 instances). In 12 cases we found a Shared data relation, in
10 Description, in 4 Data loading, in 2 Generation, and in 1
Execution. In this case of a Generation relation the repository
normally contains the file which represents the source of the
generation – typically a template file – but not the generated
file, which would be present in a running configuration of the
system.

The most frequently involved files were xml (42 cases),
followed by java (30), properties (16) and sh (11). In 3 cases
each also ac, am and spec files were involved. In only one
case we found file with avpr and c extension.

VI. CONCLUSIONS AND FUTURE WORK

We conducted an investigation of the cross-language se-
mantic interactions in an open-source project. A very simple
approach based on logic links – co-presence in the same com-
mit – is able to indicate the presence of confirmed semantic
interactions with a limited though acceptable precision (75%).

3http://hadoop.apache.org

Execution

Generation

Data loading

Description

Shared data

Shared ID

0 5 10 15 20 25

2%

4%

7%

18%

21%

48%

Fig. 1. Frequency of semantic cross-language interaction categories

Based on the actual instances we defined a taxonomy of
semantic interactions, which provide us with a deeper under-
stand of cross-language relations. The relations we identified
are: Data loading, Description, Execution, Generation, Shared
data, Shared ID.

We also computed the frequency of occurrence of the in-
dividual categories. Apparently about 50% of the interactions
take places by means of shared ids.

An ongoing work is being devoted to the implementation
of tool support for cross-language interactions,in order to
discover which one might be source of problems, as showed
by our previous work. The knowledge on the interaction cate-
gories is the main starting point for designing tool support for
cross-language interactions. In addition the information about
the frequency allow defining priorities among the different
interaction categories when building the supporting tool.

REFERENCES

[1] D. Wampler, T. Clark, N. Ford, and B. Goetz, “Multiparadigm
programming in industry: A discussion with neal ford and brian goetz,”
IEEE Software, vol. 27, no. 5, pp. 61–64, 2010. [Online]. Available:
http://dx.doi.org/10.1109/MS.2010.121

[2] M. Torchiano, F. Tomassetti, F. Ricca, A. Tiso, and G. Reggio,
“Relevance, benefits, and problems of software modelling and model
driven techniques–a survey in the italian industry,” THE JOURNAL OF
SYSTEMS AND SOFTWARE, vol. 86, no. 8, pp. 2110–2126, 2013.
[Online]. Available: http://porto.polito.it/2506343/

[3] A. Vetro’, F. Tomassetti, M. Torchiano, and M. Morisio, “Language
interaction and quality issues: an exploratory study,” in Proc. of the
ACM-IEEE int. symposium on Empirical soft. eng. and measurement,
ser. ESEM ’12. New York, NY, USA: ACM, 2012, pp. 319–322.
[Online]. Available: http://doi.acm.org/10.1145/2372251.2372309

[4] F. Tomassetti, A. Vetro’, M. Torchiano, M. Voelter, and B. Kolb, “A
model-based approach to language integration,” in Modeling in Software
Engineering (MISE), 2013 ICSE Workshop on, 2013.

[5] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling
based on product release history,” in Software Maintenance, 1998.
Proc., Int. Conf. on, 1998, pp. 190–198. [Online]. Available:
http://dx.doi.org/10.1109/ICSM.1998.738508

[6] J. Ratzinger, M. Fischer, and H. Gall, “Improving evolvability through
refactoring,” in Proc. of the 2005 int. workshop on Mining software
repositories, ser. MSR ’05. New York, NY, USA: ACM, 2005, pp.
1–5. [Online]. Available: http://doi.acm.org/10.1145/1082983.1083155

[7] J. Ratzinger, T. Sigmund, P. Vorburger, and H. Gall, “Mining software
evolution to predict refactoring,” in Empirical Soft. Eng. and Measure-
ment, 2007. ESEM 2007. First Int. Symp. on, 2007, pp. 354–363.

[8] P. Mayer and A. Schroeder, “Cross-language code analysis and refactor-
ing,” in Source Code Analysis and Manipulation (SCAM), 2012 IEEE
12th Int. Working Conf. on, sept. 2012, pp. 94 –103.

[9] R.-H. Pfeiffer and A. Wasowski, “Texmo: a multi-language develop-
ment environment,” in Proc. of the 8th European Conf. on Modelling
Foundations and Applications, ser. ECMFA’12. Berlin, Heidelberg:
Springer-Verlag, 2012, pp. 178–193.

[10] ——, “Cross-language support mechanisms significantly aid software
development,” in Model Driven Engineering Languages and Systems,
ser. Lecture Notes in Computer Science, vol. 7590. Springer Berlin
Heidelberg, 2012, pp. 168–184.

