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Abstract 

Most modern companies are part of international economic networks, where goods are produced under different strategies, 

then transported over long distances and stored for variable periods of time at different locations along the considered 

network. These activities are often performed by first consolidating goods in appropriate bins, which are then stored at 

warehouses and shipped using multiple vehicles through various transportation modes. Companies thus face the problem of 

planning for sufficient capacity, e.g., negotiating it with third party logistic firms (3PLs) that specify both the capacity to be 

used and the logistical services to be performed. Given the time lag that usually exists between the capacity-planning 

decisions and the operational decisions that define how the planned capacity is used, the common assumption that all 

information concerning the parameters of the model is known is unlikely to be observed. We therefore propose a new 

stochastic problem, named the Variable Cost and Size Bin Packing Problem with Stochastic Items. The problem considers a 

company making a tactical capacity plan by choosing a set of appropriate bins, which are defined according to their specific 

volume and fixed cost. Bins included in the capacity plan are chosen in advance without the exact knowledge of what items 

will be available for the dispatching. When, during the operational phase, the planned capacity is not sufficient, extra capacity 

must be purchased. An extensive experimental plan is used to analyze the impact that diversity in instance structure has on the 

capacity planning and the effect of considering different levels of variability and correlation of the stochastic parameters 

related to items. 
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1. Introduction 

Most modern companies are part of international economic networks, where goods are produced under 

different strategies (made-to-stock or made-to-order), then transported over long distances, and stored for 

variable periods of time at different locations along the considered network. In this context, having enough 

capacity to properly perform crucial activities such as the supply, storage and distribution of goods is paramount 

if a company is to be competitive. It should be noted that these activities are often performed by first 

consolidating goods in appropriate bins, which are then stored in warehouses and shipped using multiple vehicles 

through various transportation modes. Thus, companies face the problem of having to plan for sufficient capacity, 

expressed here in terms of bins, to be available at different locations throughout their network and for different 

periods of time, in order to satisfy demand, expressed here as a number of items of variable size to be shipped 

and stored. Given that logistics activities are often subcontracted, capacity planning entails negotiations with 

third party logistics firms (3PL's) to book the needed capacity. The results of these negotiations often take the 

form of medium term contracts specifying both the capacity to be used (the quantity and type of the bins) and the 

additional services to be performed (storage, transportation, bin operations, etc.). Therefore, bin packing models 

represent important decision support tools for logistics managers, who bear the responsibility for these tactical 

planning decisions. 

Although bin packing optimization problems have been extensively studied, e.g., Martello & Toth (1990) and 

Wäscher et al. (2007), this research has mainly been conducted under the assumption that all the necessary 

information concerning the different parameters used to model the problems is known and readily available (i.e., 

deterministic parameters). Given the time lag that usually exists between the capacity-planning decisions and the 

operational decisions that define how the planned capacity is used, such an hypothesis in unlikely to be observed. 

Moreover, when the information becomes really known, an additional negotiation phase becomes necessary, in 

order to rent additional space and services, normally at a higher price. Therefore, we propose a new stochastic bin 

packing model, referred to as the Variable Cost and Size Bin Packing Problem with Stochastic Items (VCSBPSI). 

The VCSBPSI is an extension of the Variable Cost and Size Bin Packing Problem (Crainic et al., 2011) that 

explicitly takes into account more container types, the uncertainty related to their costs at the time of the full 

availability of the information, as well as the uncertainty related to the items appearing in capacity planning 

problems (both in terms of their volume and presence). The model is based on a two-stage stochastic 

programming formulation with recourse (Birge & Louveaux, 1997) that separates the tactical capacity planning 

decisions (Monczka et al., 2009) of the first stage, i.e., the a priori plan often performed in practice by 

considering a point estimation of future demand, from the operational decisions, that is, the recourse actions, 

taken repeatedly over the planning horizon, and defining the adjustments that can be made to the plan whenever 

the information becomes known. 

We investigate the use of this model in the context of an international supply chain for a major retail firm 

(Crainic et al., 2013). We focus, specifically, on the contract between the firm and a 3PL service provider to 

secure capacity for regular long-haul container shipping. In this context, the contract specifies the numbers of 

containers of various sizes and costs to be provided by the 3PL at shipping date, for a given planning horizon. On 

shipping dates, whenever the demand exceeds the planned capacity, additional containers may be secured at 

premium costs. In this paper, we first examine the impact of problem characteristics on the efficiency of an exact 

solver. We then analyze the value of explicitly accounting for uncertainty within the tactical plan. 

The remainder of this paper is organized as follows. In Section 2, a detailed formulation of the VCSBPSI 

problem is provided, while Section 3 describes the solution approach proposed and the experimental plan that is 

conducted. Section 4 presents the computational results and analyses the impact of the different problem 

characteristics on the problem solutions. Finally, conclusions and future research directions are presented in 

Section 5. 

http://link.springer.com/search?facet-author=%22T.+G.+Crainic%22
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2. The VCSBPSI problem 

The firm is engaged in a continuous procurement process (Aissaoui et al., 2007 and Rizk et al., 2008). Based 

on current inventories, short-term forecast demand, estimated lead times, and its specific procurement and 

inventory policies (Bertazzi & Speranza, 2005 and Bertazzi et al., 2007), the firm orders on a regular basis 

products to suppliers in a given geographical region, e.g., South-East Asia. Suppliers are instructed to deliver 

their goods to a consolidation center (Crainic & Kim, 2007 and Bertazzi et al., 2008), e.g., a port. The 3PL then 

consolidates them into containers and ensures their shipping (Crainic et al., 2013 and Chen et al., 2001). The 

latter is performed by long-haul carriers, e.g., maritime lines, according to a known fixed schedule, e.g., twice a 

week. 

Better fares may be negotiated with the 3PL, and the carriers, when the number of containers and slots on 

vehicles is negotiated a priori for a given planning horizon (Ford, 2001), e.g., a semester, months or a year. The 

resulting contract guarantees a regular volume of flow and business to the 3PL (and carrier), e.g., a maritime 

shipment of a given number of containers every week for the next semester, and the desired level and cost of 

service to the company. Tactical capacity planning aims to determine these quantities for the firm, given an 

estimation of the demand, number of items, and their sizes, to be shipped at each selected departure over the 

planning horizon. The plan thus specifies the set of containers, or bins, of particular volumes and (fixed) costs, to 

be made available at each selected departure to ship the estimated items. Fixed costs are used here to represent 

the specific rates offered by the 3PL for bins of different sizes. The capacity plan is then repeatedly applied at 

each selected departure of the planning horizon. Bins included in the capacity plan are thus chosen in advance, 

without knowing exactly what items will eventually be packed. 

Variations in the customer demand for goods in stores and in the delivery of the products to the consolidation 

center by suppliers may yield, however, numbers and sizes of items different from the estimation used when 

building the tactical plan. In particular, these variations require an adjustment of the plan when the planned 

capacity is not sufficient. Extra capacity must then be purchased, generally at a much higher cost than the fare 

negotiated in the plan, to properly perform the necessary operations. We represent this extra capacity as extra 

bins of various volumes, provided at a premium by the 3PL (e.g., fixed costs defined according to the spot 

market). 

Including explicitly the uncertainty on the future demand, the number and characteristics of items, into the 

tactical planning model should reduce the need, and cost, of adjusting the plan and adding capacity. A two-stage 

stochastic programming formulation is used to model this planning problem, where the a priori planned selection 

of bins makes up the first stage decisions, the acquisition of extra capacity when actual item information is 

revealed making up the second stage decisions. This yields the VCSBPSI model. 

Let J  define the set of available bins in the first stage of the problem where, Jj , j
f  and j

V  are 

respectively the fixed cost and volume associated with bin j . Let set   be the sample space of the random 

event, where   defines a particular realization. Let vector   contain all stochastic parameters defined in the 

model and )(  be a given realization of this random vector. If we define the first stage variables as 1=
j

y  if 

bin Jj  is selected, 0 otherwise, the VCSBPSI model may then be formulated as 

 

))](,([Emin  yQyf jj

Jj




 (1) 

,{0,1},s.t. Jjy j   (2) 

 

where ))(,( yQ  is the extra cost paid for the capacity that is added in the second stage of the problem, given 

the tactical capacity plan y  and the vector )( . The objective function (1) then minimizes the sum of the total 

http://link.springer.com/search?facet-author=%22T.+G.+Crainic%22


4 Teodor Gabriel Crainic et al. / Procedia - Social and Behavioral Sciences 00 (2013) 000–000 

fixed cost of the tactical capacity plan and the expected cost associated with the extra capacity added during 

operations, while constraints (2) impose the integrality requirements on y . 

Let K  stand for the set of available bins in the second stage, and Kkf k , , the associated fixed costs. To 

formulate ))(,( yQ , we consider the following stochastic parameters in )( : )(I , the set of items to be 

packed, and )(, Iivi  , the item volumes. The second stage variables are defined as follows: 1=
k

z  if bin 

Kk  is selected, 0 otherwise; 1=
ij

x  if item )(Ii  is packed in bin Jj , 0 otherwise; and 1=
ik

x  if item 

)(Ii  is packed in bin Kk , 0 otherwise. We now define function ))(,( yQ  as 

 

kk

Kk

zfyQ 
 )(

min=))(,(


  (3) 

)(1,=s.t. Iixx ik

Kk

ij

Jj




 (4) 

JjyVxv jjiji

Ii




,)(

)(




 (5) 

KkzVxv kkiki

Ii




,)(

)(




 (6) 

KJlIixil  ,)({0,1},   (7) 

.{0,1}, Kkzk   (8) 

 

The objective function (3) minimizes the cost associated with the extra bins selected. Constraints (4) ensure 

that each item is packed in a single bin. Constraints (5) and (6) make sure that the total volume of items packed in 

each bin does not exceed the bin volume. Finally, (7) and (8) impose integrality requirements on all second stage 

variables. 

3. Solution approach and experimental plan 

The first step towards solving model (1)-(8) is to obtain a manageable approximation of function 

))](,([E 


yQ . Sampling is applied to obtain a set of representative scenarios, namely the set S , which are used 

to approximate the expected cost associated with the second stage: 

 

)(min s
kk

Kk

s

Ss

jj

Jj

zfpyf
s




  (9) 

SsIixx ss
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ij

Jj
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kk
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ik

s
i

sIi
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

,,  (12) 

SsKJlIix ss
il  ,,{0,1},  (13) 

SsKkz s
k  ,{0,1},  (14) 

,{0,1}, Jjy j   (15) 
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where 
s

p defines the probability associated with scenario Ss ; 1=s

k
z  if bin Kk   is selected in scenario 

Ss , 0 otherwise; 1s

ij
x  if item sIi  is packed in bin Jj  in scenario Ss , 0 otherwise; and 1s

ik
x  if 

item sIi  is packed in bin Kk   in scenario Ss , 0 otherwise. 

We aim to explore the impact that diversity, in particular regarding 3PL’s bins availability, has on capacity 

planning and the effect of considering different levels of variability and correlation of the stochastic parameters 

related to the items. Starting from existing instances for BPP and VSBPP (Monaci, 2001 and Crainic et al. 2011) 

and the extension for the stochastic version of BPP defined by Crainic et al. (2012), a new set of instances was 

generated. The set considered three types of bins with the following characteristics: 

 Volumes 50, 100 and 120; 

 Fixed cost correlated to their volumes computed as )1( 
j

V , where   is uniformly distributed in the 

range [-0.3, 0.3]; According to Correia et al. (2008) these values ensure a spread of the fixed costs 

which replicates realistic situations; 

 The number of bins of volume 
j

V  defined in both stages as the minimum number of bins of volume 
j

V  

needed to pack all items; 

 The cost 
k

f  for extra bins in the second stage is the original one increased by a fixed percentage factor 

 (5%, 10%, 20%, and 40%). 

Concerning the set of items, it was assumed that the number of items in the second stage was uniformly 

distributed into the range [25, 50]. The items were organized  in the following categories:  

 Small (S): volume in the range [5, 10]; 

 Medium (M): volume in the range [15, 25]; 

 Big (B): volume in the range [20, 40]. 

Three classes of item spread were identified, reflecting actual data and transportation cases. The first class 

(Sp1) included a high percentage of small items (S=60%, M=20%, B=20%). The second class (Sp2) included a 

high percentage of medium items (S=20%, M=60%, B=20%), while the third class (Sp3) included a high 

percentage of big items (S=20%, M=20%, B=60%). 

For each combination of the parameters mentioned above, 10 instances were randomly created, giving a final 

set of 360 instances.  

Finally, the number of scenarios was set to 25, 50, and 100. 

In order to qualify the problem, we use the following experimental plan: 

 The scenario-based stochastic problem (9)-(15) is solved by a commercial MIP solver, with a maximum 

running time of 15 minutes. The obtained stochastic solution is then used as reference for further analysis. 

 Expected Value Problem (EVP). This problem is obtained by substituting the stochastic item set in each 

scenario with a set of deterministic items computed by averaging the number and the volume of big, medium 

and small items in the scenarios. Then, the associated deterministic problem is solved in order to obtain the 

tactical plan (i.e., the first stage decision). The corresponding optimal solution of the deterministic problem is 

then used in a Monte Carlo simulation in order to compute the actual stochastic objective function associated 

to the first-stage decisions. 

 Percentage VSS (VSS%). The Value of the Stochastic Solution (VSS), which gives a measure of how much a 

decision maker gains by using Stochastic Programming instead of the EVP approach is computed as  

100
2

2

%





SP

SPEVP

z

zz
VSS , (16) 

where 
EVP

z  and 
SP

z
2

 are the objective function values of the Monte Carlo simulation of the EVP and of the 

scenario-based two-stage stochastic problem, respectively.  

Additional data is moreover collected in order to qualify the two-stage stochastic model, i.e., the percentage of 

the objective function value given by the first and the second stages, and the percentage of used volume in each 

bin loaded in the first and the second stages. 
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4. Experimental Results 

In this section, we report the experimental results and analyze the impact of stochastic parameters on the 

problem solution. All the computations were carried out on an Intel Core i7-2630 workstation with 6 Gb RAM 

and 2.0 GHz processors. Gurobi 5.5 was chosen as MIP solver (Gurobi Optimization Inc, 2013). The choice of 

Gurobi follows from its efficiency in finding good feasible solutions within limited computation time. Notice 

that, an in-depth experimentation was conducted with CPLEX 12.5 (CPLEX, IBM ILOG, 2012) on a subset of 

instances. It showed that the solution gaps (i.e., the distance between the incumbent solution and the lower 

bound) were comparable with those obtained with Gurobi and that, within the same computational time, Gurobi 

was able to find, in the mean, better integer solutions. A time limit of 15 minutes was imposed to each instance. 

Table 1 compares the solutions obtained with the two methodologies described in the experimental plan. Table 

1 reports, for each combination of item spread (Column 1), second-stage bin cost increase parameter  (Column 

2), and number of scenarios (Row 1), the percentage VSS (Columns 3, 5 and 7) and the average computational 

time required by the EVP (Columns 4, 6 and 8). The computational time of the two-stage stochastic model is not 

reported in Table 1 because it reaches the limit of 15 minutes for each instance. 

 The maximum %VSS  is sufficiently large to justify the two-stage stochastic approach when the values of  

are small (5% and 10%). In fact, the %VSS  decreases when the cost of bins in the second stage increases 

(minimum with  = 40%). For high values of , the increase in the bin cost of the second stage also makes the 

EVP reserve extra space in the first stage. 

Notice that, in terms of number of scenarios, 25 scenarios are enough for a good approximation of the 

problem. Also notice that, the %VSS  decreases when the number of scenarios increases. In our opinion, this 

behavior is related to the usage of the uniform distribution for choosing the items in the second stage scenarios. 

This issue should be further investigated. 

The computational time of the EVP mainly depends on the number of scenarios and the value of . With the 

number of scenarios increasing, the computational time reaches the limit of 15 minutes.  

 
Table 1. Comparison of the solutions obtained with the scenario-based stochastic problem and the EVP.  

  25S  50S  100S  

 ɑ (%) %VSS  Time (s) %VSS  Time (s) %VSS  Time (s) 

Sp1 

5 3.11 126.49 2.85 334.61 2.41 246.22 

10 2.91 308.51 2.86 813.25 1.76 639.08 

20 2.25 210.21 1.71 813.82 1.28 819.09 

40 1.17 126.86 0.51 162.59 0.64 254.36 

Sp2 

5 2.62 206.24 1.97 777.22 1.83 831.67 

10 2.79 390.10 2.23 738.96 1.44 837.06 

20 1.49 70.10 1.93 248.30 0.67 639.43 

40 1.36 222.37 0.68 579.32 0.32 825.96 

Sp3 

5 3.43 246.66 3.26 846.85 2.31 900.76 

10 2.62 128.16 2.44 139.30 1.47 744.46 

20 1.84 220.44 1.49 795.81 0.37 900.18 

40 0.60 510.99 0.69 900.23 0.34 902.09 
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For more details on the results of the two-stage stochastic model and the EVP, Table 2 and Table 3 report the 

optimality gap reached by the MIP solver (Columns 3, 7 and 11) computed as  

 

100
*

*





z

LBz
Gap , (17) 

 

where *z  is the best integer solution and LB is the lower bound, the percentage of the objective function due to 

the first stage (Columns 4, 8 and 12) and the average filling levels of bins in the first stage (Columns 5, 9 and 13) 

and in the second stage (Columns 6, 10 and 14). The values are grouped by classes of item spreads (Column 1), 

the cost factor of bins in the second stage (Column 2) and the number of scenarios.  

The gaps of the scenario-based stochastic problem are quite large (greater than 4%). This is due, in our 

opinion, to the difficulty of the MIP solver to compute a good lower bound for large-size integer problems that 

include a lot of symmetry in the solutions, which is unfortunately typical of packing problems. Moreover, the 

percentage of the objective function achieved in the first stage increases with the cost factor. In fact, when the 

difference of the cost of the bins in the first and second stages increases, the tactical decisions become more 

conservative. This is contrary to the filling level of bins, which is decreasing when the cost of the bins in the 

second stage increases given that the first stage decisions allocate more capacity. 

From the point of view of the sources of complexity, the item spread classes do not seem to affect the solution 

quality. This is mainly due to the unrestricted availability of bins.  However, further experimentations (involving 

possibly different distributions used to generate the number of items) are needed to extend our findings.  

Obtaining tighter lower bounds would also help in assessing the impact of the spread. Furthermore, it is 

interesting to note that the results are stable and do not depend on the number of scenarios. This means that 25 

scenarios are enough to model the actual transportation case under study.  

 
Table 2. Summary of main experimental results for the two-stage stochastic model. 

  25S  50S  100S  

 
ɑ 

(%) 

Gap 

(%) 

OFS 

(%) 

FFS 

(%) 

FSS 

(%) 

Gap 

(%) 

OFS 

(%) 

FFS 

(%) 

FSS 

(%) 

Gap 

(%) 

OFS 

(%) 

FFS 

(%) 

FSS 

(%) 

Sp1 

5 7.21 73.87 89.26 86.47 7.80 67.82 92.03 85.89 8.96 72.84 91.50 85.61 

10 6.95 77.21 89.63 80.77 6.92 74.70 91.41 87.55 7.32 77.06 91.46 86.53 

20 5.68 76.46 89.96 85.07 6.12 77.16 91.16 86.84 7.26 78.67 90.62 84.92 

40 5.15 81.28 87.05 85.87 6.02 85.34 88.16 82.70 6.12 86.92 88.58 80.07 

Sp2 

5 6.12 71.86 90.48 87.71 7.20 73.37 91.49 85.14 7.58 76.80 91.34 86.85 

10 6.16 73.25 90.75 84.34 6.55 76.72 90.98 88.17 7.38 79.84 90.77 87.72 

20 5.99 75.28 89.72 83.75 6.12 79.57 90.08 85.47 7.00 85.33 89.87 84.94 

40 5.16 84.94 87.06 82.44 5.53 84.37 88.81 83.10 5.58 85.15 89.99 85.12 

Sp3 

5 5.38 71.80 91.19 88.68 5.85 73.50 91.69 90.39 6.67 73.63 92.32 89.08 

10 6.31 74.46 89.51 86.14 6.78 75.41 90.64 88.03 7.76 79.62 90.66 88.06 

20 7.78 78.57 87.86 82.79 7.88 80.40 89.08 84.37 8.39 86.53 89.58 87.39 

40 4.46 81.96 88.32 83.88 4.55 85.78 88.79 88.47 4.89 88.08 89.27 84.61 

 

The Monte Carlo simulation shows similar trends. Gaps are tighter than in the stochastic model, supporting 

our hypothesis that it is the symmetry of the first level that is mainly responsible for the high gaps in Table 2. 
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Table 3. Summary of main experimental results for the EVP.  

  25S  50S  100S  

 ɑ 

(%) 

Gap 

(%) 

OFS 

(%) 

FFS 

(%) 

FSS 

(%) 

Gap 

(%) 

OFS 

(%) 

FFS 

(%) 

FSS 

(%) 

Gap 

(%) 

OFS 

(%) 

FFS 

(%) 

FSS 

(%) 

Sp1 

5 0.09 90.38 86.55 72.60 0.26 88.94 89.02 77.74 0.22 90.61 88.78 77.94 

10 0.04 90.33 86.38 71.82 0.21 90.26 88.22 77.76 0.28 89.62 88.96 78.93 

20 0.03 90.12 86.09 71.14 0.10 90.18 87.70 78.88 0.17 89.74 88.25 77.58 

40 0.14 89.16 85.23 71.19 0.32 85.52 87.51 78.29 0.37 88.89 88.58 76.43 

Sp2 

5 0.21 90.42 87.73 77.48 0.36 91.61 88.40 81.07 0.64 90.84 89.26 82.37 

10 0.09 91.24 86.83 77.88 0.60 90.31 87.90 81.51 0.56 89.88 89.36 84.10 

20 0.25 91.36 85.77 74.93 0.45 90.33 87.54 79.68 0.53 90.33 88.74 82.64 

40 0.05 89.35 86.22 78.62 0.68 87.68 88.47 82.33 0.95 87.50 89.60 83.53 

Sp3 

5 0.15 91.41 86.29 77.69 0.64 90.62 87.80 83.71 0.77 90.91 88.92 85.56 

10 0.04 91.85 75.49 82.52 0.55 91.49 87.53 82.80 0.56 91.60 88.25 83.86 

20 0.50 91.31 84.79 78.50 0.71 91.66 86.95 83.54 0.75 91.55 88.30 84.86 

40 0.83 89.09 86.02 78.67 1.08 89.58 87.52 82.89 1.45 89.21 90.56 85.73 

 

 

5. Conclusions 

In this paper, we considered a real problem arising in the context of the management of an international supply 

chain. In particular, we analyzed the process of the contract procurement between a major retail firm and the 3PL 

service provider, which is ensuring the capacity for the firm’s long-haul container shipping. This let us to 

introduce the Variable Cost and Size Bin Packing Problem with Stochastic Items, a new stochastic variant of the 

Bin Packing problem, explicitly taking into account container types, the uncertainty related to their costs when 

information becomes fully available, and the uncertainty related to the items (in terms of volume and presence) 

that are to be moved when the plan is to be implemented. We derived a two-stage stochastic formulation with 

recourse that assigns the tactical capacity planning decisions to the first stage, yielding the a priori plan, and the 

operational decisions, taken each period of the planning horizon, to the recourse actions specifying the 

adjustments that can be made to the plan whenever the information becomes known.  

Extensive computational results performed over a large set of instances showed how the usage of the 

stochastic model brings relevant effects both in terms of economic impact (reduction of costs) and operations 

management (prediction of the capacity needed by the firm). 

Future work will focus on pursuing other sources of uncertainty for capacity planning in logistics (e.g., the 

availability and cost of bins at shipping date, the volume of the bins chosen in advance, and the selection of the 

3PL), and adapt the proposed model to other application fields, e.g., City Logistics, E-grocery, etc. 
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