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Abstract: Treatises on vibrations devote large space to study the dy-
namical behavior of an elastic system subject to known external tractions
since usually a “system” is part of a chain of mechanisms which disturb the
“system” for example due to the periodic rotation of shafts. These “dis-
turbances” affect the horizontal component of traction in a time dependent
way.

In this paper we shall study control and source identification problems
for a viscoelastic string subject to external traction, using moment theory.
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Applications, 407 (2013) 464-479.
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This version does not contain journal formatting and it may contain minor
changes respect to the published version.

1 Introduction

Elastic and viscoelastic systems have been widely studied from the point of
view of controllability (see for example [13, 22, 25] and references therein),
the simpler “canonical” case being the linearized version of the string equa-
tion

wtt(ξ, t) = (Pc(ξ)wξ(ξ, t))ξ

The coefficient c(ξ) = 1/ρ(x) depends on the physical properties of the
string, i.e. the density, and P is the horizontal traction in the string which,
for small oscillations and isolated systems, is constant in time (while c may
depend on ξ since the density may not be constant.) It is usually explicitly
assumed in control problems that, a part the action of external controls

1 This paper fits the research plans of INDAM-CNR of the project “Groupement de
Recherche en Contrôle des EDP entre la France et l’Italie (CONEDP)”.
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which does not change the horizontal component of the stress, the string is
“isolated” i.e. that P does not depend on time. Control problems for the
string equation under external traction have been rarely studied, see [1, 2, 4].
In fact, in general the system is part of a chain of mechanisms which produce
“perturbations” which influence the horizontal traction in the string, often
in a known way, for example due to the rotation of shafts. For this reason,
books on vibrations devote large space to the study of the behaviour of
elastic systems under known external tractions, see [11, 20].

In this paper we are going to study a viscoelastic string subject to ex-
ternal known tractions. The string is also subject to a known signal σ(t)
which enters trough an input operator b which is unknown. For example b
may be the characteristic function of a certain set and our final goal will be
the identification of the input operator b using boundary observations. So,
the problem we are going to study boils down to the following equation

wtt(ξ, t) = P (t) (c(ξ)wξ(ξ, t))ξ+

∫ t

0
M(t−s)P (s) (c(ξ)wξ(ξ, s))ξ ds+b(ξ)σ(t)

(1)
where P (t) represents the effect of the variable external traction and w =
w(ξ, t) with t > 0 and ξ ∈ (0, l) (unless needed for clarity, dependence of w
on its arguments will not be indicated later on).

Remark 1. The form (1) of the equation implies that the string is at rest
for negative times. If not, a known additional term appears in the right hand
side. This term has no influence on the arguments below. So, we put it equal
to zero.

Initial and boundary conditions are homogeneous (of Dirichlet type)

w(ξ, 0) = 0 , wt(ξ, 0) = 0 , w(0, t) = w(l, t) = 0 . (2)

The observation is the traction at x = 0, i.e.

−c(0)

(
P (t)wξ(0, t) +

∫ t

0
M(t− s)P (s)wξ(0, s) ds

)
.

We shall assume that P (t), M(t) and c(ξ) are smooth and that P (t) and
c(ξ) are strictly positive (see below for the assumptions) so that from this
“real” observation we can reconstruct the function

η(t) = wξ(0, t) (3)
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which will be used in the reconstruction algorithm.
In the purely elastic case, this kind of inverse problem has been studied

using control ideas in [23] (see also [9, 18]) where it is proved that this inverse
problem (in the purely elastic case) depends on the solution of a boundary
control problem. So, it is easily guessed that the control problem has to be
studied first also in the case that the traction varies with time. This is the
second main subject of this paper, which is studied first.

The problem we need to study first is the controllability of the deformation
w(·, T ), at a certain time T , when b = 0, the initial conditions are zero but
the boundary conditions are

w(0, t) =
f(t)

c(0)P (t)
, w(l, t) = 0 . (4)

Here f(t) is a square integrable control (the denominator is introduced solely
for convenience). So, the control problem we shall study first, and which
takes the most part of the paper, is as follows: given any prescibed target
W (ξ) ∈ L2(0, l), we must prove the existence of a square integrable control
f(t) ∈ L2(0, T ) such that w(ξ, T ) = W (ξ). Furthermore, we shall see the
existence of a universal control time T , such that any target in L2(0, l) can
be reached in time T .

The organization of the paper is as follows: the control problem is stud-
ied in section 3 while the identification problem is studied in section 4.
Assumptions and preliminaries are in Section 2.

1.1 Further references

Control problems for viscoelastic materials have already been studied un-
der several different assumptions. We cite in particular [8, 12] which seems
to contain the most general results. The paper [12] studied the case M =
M(t, s) but it is explicitly stated that the arguments require constant den-
sity. The paper [8] studied the case M = M(t, s, x) when the control is
distributed (from which controllability results for boundary control systems
with the control acting on the full boundary can be derived). These pa-
pers study also the multidimensional case, but the results does not seems to
provide a practical construction for the steering control since they depend
on compactness arguments (paper [12], which explicitly requires constant
density) or Carleman estimates (paper [8]). In this respect we cite also [15],
where controllability under boundary control is proved for multidimensional
systems. The arguments here are presented in the convolution case and con-
stant density, but are easily extended to non constant density. The proof
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in this paper being based on compactness arguments is not constructive ei-
ther. The paper [7], being based on an extension of D’Alambert formula
(see last section) is more constructive in spirit, but the elastic operator is
assumed to be time invariant. Furthermore, this paper studies only reach-
ability of smooth kernels, which is too weak for the identification problem.
The papers [3, 14, 16, 17] instead study the control problem for a viscoelas-
tic string, using moment methods, so that a representation formula for the
control can be given (see in particular [16, Section 4] and [14, Section 4]).
Our goal here is the extension of these results to a viscoelastic string subject
to nonconstant traction, and to show that the results can be used to solve a
source identification problem. Source identification problems using control
methods have been solved for elastic materials with constant traction first
in [23] (see also [9]) and the method has been extended to materials with
memory in [18]. When the traction is not constant we need a different idea,
presented in section 4.

Finally, we cite the papers [5, 6, 19] in which a new kind of control
problem for systems with memory is introduced. This control problem has
no counterpart for memoryless systems.

2 Assumptions and preliminaries

The assumptions in this paper are:

1. P (t) is continuous and strictly positive, P (t) ≥ p0 > 0 for every t ≥ 0
and c(ξ) ∈ C1(0, π) is strictly positive: c(ξ) ≥ c0 > 0 for every ξ ∈
[0, π].

2. The kernel M(t) ∈W 2,2
loc (0,+∞). Hence

N(t) = 1 +

∫ t

0
M(s) ds

has three derivatives (N ′′′(t) is locally square integrable) andN(0) = 1.

We introduce the selfadjoint operator A: L2(0, l) apstoL2(0, l) defined by

domA = H2(0, l) ∩H1
0 (0, l) , Aφ = (c(ξ)φξ(ξ))ξ . (5)

It is well known that this selfadjoint operator has compact resolvent, and
that it has a sequence of eigenvalues {−λ2

n}n≥1, with the following asymp-
totic estimate [21, p. 173)]

λn =
π

L
n+

Hn

n
, |Hn| < M , L =

∫ l

0

1√
c(s)

ds ,

∣∣∣∣φ′n(0)

λn

∣∣∣∣ < M
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(M does not depend on n).
Note that reference [21] has n+1, with n ≥ 0, while we use n with n ≥ 1.

Remark 2. Clearly, the actual length l of the interval will not affect con-
trollability or reconstruction. So, in order to simplify the formula we shall
assume that the system has been normalized by taking the length of the in-
terval so to have

L =

∫ l

0

1√
c(s)

ds = π .

With this normalization,

λn = n+
Hn

n
. (6)

Alternatively, we can obtain this normalization by changing the unity of
measure of the time variable.

2.1 Riesz systems

The arguments of this paper are based on the theory of Riesz systems. We
recall the definition: a sequence {hn} in a separable Hilbert space H is a
Riesz basis when it is the image of an orthonormal basis of H under a linear
bounded and boundedly invertible transformation. The key property is that
every h ∈ H ha a unique representation with respect to the Riesz basis {hn},

h =
∑

αnhn

and {αn} ∈ l2. In fact, there are positive numbers m and M such that

m
∑
|αn|2 ≤ ‖h‖2 ≤M

∑
|αn|2 .

If a sequence is a Riesz basis of its closed span (possibly not equal to H) it
is called a Riesz sequence.

A property we shall need is that if {hn} is a Riesz sequence then the series∑
αnhn converges if and only if {αn} ∈ l2, and the convergence is uncondi-

tional. Furthermore we need two perturbation results from [24, Ch. 1]. The
first is a Paley-Wiener theorem, adapted to Hilbert spaces and orthonormal
bases. It states that if ∑

‖hn − εn‖2 < 1

({εn} orthonormal) then {hn} is a Riesz basis. In fact we shall use the
following corollary:
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Corollary 3. Let {ε̃n} be a Riesz sequence and let the sequence {hn} satisfy∑
‖hn − ε̃n‖2 < +∞ (7)

then there exists a number N such that {hn}n>N is a Riesz sequence too.
This in particular implies that ∑

αnhn

converges in the norm of H if and only if {αn} ∈ l2.

We stress that the sequence {ε̃n} in Corollary 3 need not be orthonormal.
Condition (7) does not imply that {hn} is a Riesz sequence but

Theorem 4 (Bari Theorem). Let {ε̃n} be a Riesz system and let the sequence
{hn} satisfy condition (7). If furthermore∑

αnhn = 0 =⇒ {αn} = 0 (8)

then {hn} is a Riesz sequence.

The additional condition (8) is called ω-independence. Note that the
convergence of the series in (8) is in H so that it must be {αn} ∈ l2 because
{hn}n>N is a Riesz sequence, from Corollary 3.

2.2 Representation of the solution

Now we consider Eq. (1) with zero initial conditions but both the affine
term and the boundary condition (4). We need a definition/representation
formula for the solutions. We confine ourselves to a formula for w(ξ, t) and
we ignore velocity, since only w(·, T ) is needed for the identification problem.
So, we prefer to write Eq. (1) as a first order equation, integrating both the
sides. We get

wt =

∫ t

0
N(t− s)P (s) (c(ξ)wξ(s))ξ ds+ b(ξ)g(t) , g(t) =

∫ t

0
σ(s) dS .

(9)
We multiply both the sides of (9) with φn(ξ) and we integrate on [0, π]. We
get

w′n(t) = −λ2
n

∫ t

0
N(t− s)P (s)wn(s) ds+ φ′n(0)

∫ t

0
N(t− s)f(s) ds+ bng(t)

(10)
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where

wn(t) =

∫ π

0
w(ξ, t)φn(ξ) dx , bn =

∫ π

0
b(ξ)φn(ξ) dξ .

Let us fix any time T > 0. We want a representation formula for wn(T ).
Let

Q(t) = P (T − t)
and let zn(t;T ) solve

z′n(t;T ) = −λ2
nQ(t)

∫ t

0
N(t− s)zn(s;T ) ds , zn(0, T ) = 1 . (11)

Using wn(0) = 0, we see that

zn(0;T )wn(T ) =

∫ T

0

d

ds

(
zn(T − s;T )wn(s)

)
ds .

We use Leibniz formula and we replace w′n(t) and z′n(t;T ) with their expre-
sions. We get the following representation formula for wn(T ):

wn(T ) =

∫ T

0
f(T − s)

[
φ′n(0)

∫ s

0
N(s− r)zn(r;T ) dr

]
ds

+bn

∫ T

0
zn(T − s;T )g(s) ds . (12)

So, we expect the following definition of the solution w(ξ, T ):

w(ξ, T ) =

+∞∑
n=1

φn(ξ)

∫ T

0
f(T − s)

[
φ′n(0)

∫ s

0
N(s− r)zn(r;T ) dr

]
ds

+

+∞∑
n=1

φn(ξ)bn

∫ T

0
zn(T − s;T )g(s) ds . (13)

The following Lemma justifies formula (13):

Lemma 5. The series in (13), as functions of T , converge in C([0,K];L2(0, π))
for every K ≥ 0.

The proof of this Lemma requires a preliminary study of the functions
zn(t, T ) and can be found in the appendix.

Remark 6. It has an interest to note that zn(t;T ) is related to the resolvent
r(t, s) of the kernel k(t, s) = −λ2

nN(t− s)P (s) as follows:

zn(t;T ) = r(T, T − t) .
Eq. (11) is the second resolvent equation (see [10, formula (3.3) p. 295])
written in terms of zn(t;T ).
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3 The control problem

In this section we study the control problem needed to identify the source
term b; i.e. we consider Eq. (1) with b = 0 and initial and boundary condi-
tions

w(ξ, 0) = 0 , wt(ξ, 0) = 0 , w(0, t) =
f(t)

c(0)P (t)
, w(π, t) = 0 . (14)

As we already said, we want to identify a time T such that for every
W (ξ) ∈ L2(0, π) there exists a control f(t) with the property that the cor-
responding solution w(t) satisfies w(T ) = w(ξ, T ) = W (ξ).

It is convenient to perform several transformations first. In particular,
as we are interested in the controllability solely of the deformation w(·, T )
and not of the velocity, we preferred to rewrite Eq. (1) in the form of a first
order equation, but we note explicitly that the technique we use here can
also be used to study the controllability of the pair (w(·, T ), wt(·, T )) as done
in [14] in the case that the external traction P and the density are constant.

This section on controllability consists of three subsections: first we re-
duce the control problem to a moment problem. Then we present the trans-
formations which will simplify the problem uder study, in subsection 3.1.
Then we prove that a certain sequence of functions is a Riesz sequence in
L2(0, S) wher S is a suitable number to be identified (in Theorem 12) and
this will prove controllability, as seen in the subsection 3.1. The final result
of controllability is as follows:

Theorem 7. Let T0 solve∫ T0

0

√
P (T − s) ds =

∫ l

0

1√
c(s)

ds . (15)

and let T ≥ T0. Then, for every ξ ∈ L2(0, π) there exists a boundary control
f ∈ L2(0, T ) such that the corresponding solution w(t) satisfies w(T ) = ξ.

The computation of w(t) for every t makes sense thanks to Lemma 5
and the number T0 exists since∫ T

0

√
P (T − s) ds ≥ Tp0 .

The control time T0 depends on the length of the string. If the length
has been normalized as in Remark 2, then formula (15) takes the form∫ T0

0

√
Q(s) ds =

∫ T0

0

√
P (T − s) ds = π (16)
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and this is the formula we use in the proofs, in order to henance readability
of the paper.

Remark 8. In this Section 3 the final time T is fixed once and for all. So,
instead of the notation zn(t, T ) we shall use the simpler notation zn(t), i.e.
we put zn(t) = zn(t, T ) (T fixed). We shall return to the complete notation
in Section 4 and in the Appendix.

3.1 Reduction to a moment problem

We fix a certain time T and we consider the solution w(ξ, T ), at this fixed
time, when b = 0. We have, from (12) and (13):

w(ξ, T ) =

+∞∑
n=1

φn(ξ)

∫ T

0
f(T − s)

[
φ′n(0)

∫ s

0
N(s− r)zn(r) dr

]
ds . (17)

As we noted, zn(t) instead of zn(t;T ) since T is fixed.
Equality (17) shows that w(ξ, T ) = W (ξ) if we can solve the moment

problem ∫ T

0
f(T − s)

[
φ′n(0)

∫ s

0
N(s− r)zn(r) dr

]
ds = Wn (18)

where

Wn =

∫ π

0
φn(ξ)W (ξ) dξ .

The transformation of L2(0, π) 3 W 7→ {Wn} is an isometric isomor-
phism of L2(0, π) and l2.

Our main result is that this moment problem is solvable and that the
solution f of (18) (which has minimal L2-norm) depends continuously on ξ,
since we have:

Theorem 9. Let T0 be as in Theorem 7 and let T ≥ T0.
The sequence {

φ′n(0)

∫ t

0
N(t− r)zn(r) dr

}
(19)

is a Riesz sequence in L2(0, T ).

In order to prove the theorem, we perform several transformations.
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3.1.1 Transformations

Again we recall that we work with a fixed time T and 0 ≤ t ≤ T so that
zn(t;T ) is simply denoted zn(t) but it is important for the Appendix that
we don’t forget the dependence on T .

In this section, we transform the equation of zn(t).
First we introduce

H(t) = −N ′(0)t− logQ(t) , ζn(t) = eH(t)zn(t) = e−N
′(0)t 1

Q(t)
zn(t) . (20)

We shall see below the reason for this misterious looking transformation
which does depend on T since Q(t) = P (T − t).

The function ζn(t) verifies

ζ ′n(t)−H ′(t)ζn(t) = −λ2
ne
H(t)Q(t)

∫ t

0
N(t− s)e−H(s)ζn(s) ds

and so also
ζ ′′n −H ′(t)ζ ′n +

(
λ2
nQ(t)−H ′′(t)

)
ζn = G(t) (21)

where

G(t) = −λ2
n

[
H ′(t)Q(t)eH(t) + eH(t)Q′(t)

] ∫ t

0
N(t− s)e−H(s)ζn(s) ds

−λ2
ne
H(t)Q(t)

∫ t

0
N ′(t− s)e−H(s)ζn(s) ds . (22)

Now we apply the Liouville transformation to Eq. (21), which requires
the introduction of two auxiliary functions, which will be determined later
on (see [21, p. 163]): we introduce the function ζ̃n(t) given by

a(t)ζ̃n(t) = ζn(t) (23)

(here a(t) is the first auxiliary function). Then we have

a(t)ζ̃ ′′n(t) +
[
2a′(t)−H ′(t)a(t)

]
ζ̃ ′n(t)

+
[(
λ2
nQ(t)−H ′′(t)

)
a(t)−H ′(t)a′(t) + a′′(t)

]
ζ̃n(t) = G(t) .

The second trasformation is a transformation of the time variable: we in-
troduce

x = L(t)



3 The control problem 11

where L(t) is still unspecified (but we shall see that we can choose L(t)
strictly increasing and its inverse transformation will be denoted M(t)). We
introduce Yn(x) defined by

ζ̃n(t) = Yn(L(t)) .

Then we have the following equation for Yn(x):

a(t)
[
L′(t)

]2
Y ′′(L(t)) +

[
a(t)L′′(t) +

(
2a′(t)−H ′(t)a(t)

)
L′(t)

]
Y ′(L(t))

+
[
λ2
nQ(t)a(t) +

(
a′′(t)−H ′′(t)a(t)−H ′(t)a′(t)

)]
Y (L(t)) = G(t) .

We must be precise on this point: here and below notations like Y ′(L(t))
will denote the derivative of Y (x) computed for x = L(t).

Now we relate the functions L(t) and a(t) so to have the coefficient of
Y ′(L(t)) equal to zero, i.e. we impose(

L′(t)
)′

= −L′(t)
[
2
a′(t)

a(t)
−H ′(t)

]
(this is legitimate since we shall choose a(t) 6= 0). In order to satisfy this
condition we choose

L′(t) =
eH(t)

a2(t)
.

Note that L(t) turns out to be strictly increasing. Furthermore, we choose

L(t) =

∫ t

0

eH(s)

a2(s)
ds

so that we have also L(0) = 0 and L(t) > 0 for t > 0.
Once L(t) has been chosen as above, we see that the equation of Yn(x)

is

1

a3(t)
e2H(t)Y ′′n (L(t)) +

[
λ2
nQ(t) +

(
a′′(t)−H ′′(t)a(t)−H ′(t)a′(t)

)]
Yn(t)

= G(t) .

Finally we choose

a(t) = eH(t)/2 1
4
√
Q(t)

(note: it is strictly positive) and we get the final form of the equation for
Yn(t):

Y ′′(L(t)) +
[
λ2
n + Ṽ (t)

]
Y (L(t)) =

e−H(t)/2

Q(t)3/4
G(t) (24)
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where

Ṽ (t) =
e−H(t)/2

Q(t)3/4

[
a′′(t)−H ′′(t)a(t)−H ′(t)a′(t)

]
.

The definition of a(t) gives

L′(t) =
√
Q(t) . (25)

Let M(x) be the inverse function of L(t), defined on the interval [0, L(T )] =
[0, S] and

V (x) = Ṽ (M(x)) .

Using this and the explicit form of G(t) in (22) we see that Yn(x) satisfies
the following integro-differential equation on the interval

0 ≤ x ≤ S = L(T ) :

Y ′′(x) +
(
λ2
n + V (x)

)
Yn(x)

= −λ2
ne
H(M(x))/2

[
H ′(M(x))Q1/4(M(x))

+Q′(M(x))Q−3/4(M(x))
] ∫ M(x)

0
N(M(x)− s)e−H(s)ζn(s) ds

−λ2
ne
H(M(x))/2Q1/4(M(x))

∫ M(x)

0
N ′(M(x)− s)e−H(s)ζn(s) ds .

We make the substitution s = M(r) (we recall that M(r) is the inverse
function of L(s)), we use 0 ≤ r ≤ x when 0 ≤ s ≤M(x) and

d

dr
M(r) =

1

L′(s)
=

1√
Q(s)

where s = M(r).

Then, we have the following equation for Yn = Yn(x):

Y ′′n + V (x)Yn + λ2
nYn = −λ2

n

∫ x

0
A(x, r)Yn(r) dr (26)

where

A(x, r) = eH(M(x))/2Q1/4(M(x))
{[
H ′(M(x))

+Q′(M(x))Q−1(M(x))
]
N(M(x)−M(r))

+N ′(M(x)−M(r))
}
e−H(M(r))/2Q−3/4(M(r)) . (27)
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The values Yn(0) = y0 and Y ′n(0) = y1 are easily computed:

y0 = Yn(0) = eH(0)/2 4
√
Q(0) = Q(0)−1/4 = P (T )−1/4 ,

y1 = Y ′n(0) = −1

4
Q(0)−7/4

{
2N ′(0)Q(0) +Q′(0)

}
=

1

4
P (T )−7/4

{
P ′(T )− 2N ′(0)P (T )

}
.

In the following, we don’t need these explicit expressions, but we shall
need the following facts:

• the initial conditions y0 and y1 do not depend on n;

• the initial condition y0 is strictly positive (we shall need that it is
different from zero.)

• the initial conditions y0 and y1 do depend on T , equivalently on S =
L(T ).

• In the appendix we shall use the fact that when T ∈ [0,K] then there
exists a number M (which depends on K) such that |y0(T )| < M ,
|y1(T )| < M for every T ∈ [0,K].

We introduce the notation

gn(x) = y0 cosλnx+
1

λn
y1 sinλnx . (28)

Using (28) and (26) we can write the following Volterra integral equation
for Yn(x):

Yn(x) = gn(x)− 1

λn

∫ x

0
sinλn(x− s)V (s)Yn(s) ds

−λn
∫ x

0
sinλn(x− s)

∫ s

0
A(s, ν)Yn(ν) dν ds

= gn(x)−
{∫ x

0

[
A(x, s) +

1

λn
sinλn(x− s)V (s)

]
Yn(s) ds

+

∫ x

0
cosλn(x− s)A(s, s)Yn(s) ds

+

∫ x

0
cosλn(x− s)

∫ s

0
A,1(s, ν)Yn(ν) dν ds

}
.

In this and following formulas, we use the comma notation for the deriva-
tive. Hence, A,1(x, s) is the derivative of A(x, s) respect to the first variable.
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When x = r the brace in (27) is{
H ′(M(r)) +Q′(M(r))Q−1(M(r)) +N ′(0)

}
= 0

thanks to the choice (20) for H(t). The reason for the choice of the expo-
nential eH(t) is precisely this:

A(s, s) = 0 .

So, elaborating further the integral equation for Yn(x) we have

Yn(x) = gn(x)−
∫ x

0
An(x, s)Yn(s) ds

+
1

λn

∫ x

0
sinλn(x− s)

[∫ s

0
A,11(s, ν)Yn(ν) dν

]
ds

= gn(x)−
∫ x

0
An(x, s)Yn(s) ds

+
1

λn

∫ x

0
Yn(ν)

[∫ x−ν

0
A,11(x− r, ν) sinλnr dr

]
dν . (29)

where

An(x, s) =

[
A(x, s) +

1

λn
(V (s)−A,1(s, s)) sinλn(x− s)

]
.

Note that
An(x, x) = 0 .

3.2 Some estimates

The estimates in the following Lemma 10 are used also in the Appendix,
where we need to keep track of the dependence on T ∈ [0,K], hence on S
in the corresponding interval [0,Ξ]. So, in this lemma dependence on S is
explicitly indicated. For this, we recall that the function Yn(x) = Yn(x;S)
is defined for 0 ≤ x ≤ S ≤ Ξ. Furthermore we recall that also y0 and y1

depend on S: y0 = y0(S) y1 = y1(S). Using (6 ) and Gronwall inequality
we get:

Lemma 10. Let Ξ > 0. There exists a number M = MΞ such that for every
x ∈ [0, S] ⊆ [0,Ξ] the following inequalities hold:

|Yn(x;S)| < M , |Yn(x;S)− y0(S) cosnx| ≤ M

n
. (30)
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The proof is in the Appendix.
Using Corollary 3 we get:

Theorem 11. Let S ≥ π be fixed. There exists N > 0 such that the sequence
{Yn(x)}n≥N = {Yn(x;S)}n≥N is a Riesz sequence in L2(0, S).

This suggests that we can use Bari Theorem, as in [17], in order to prove
that {Yn(x)}n≥1 is a Riesz sequence. This is an intermediate step we shall
need below, but we note that the sequence to be studied is (19) which,
written in terms of Yn(x) gives the following sequence of functions of the
variable t:

φ′n(0)

∫ L(t)

0
N(t−M(s))eN

′(0)M(s)/2 1
4
√
Q(M(s))

Yn(s) ds .

The transformation from ψ(t) ∈ L2(0, T ) to (Lψ)(x) = ψ (M(x)) in L2(0, S)
(where T = M(S)) defines a bounded and boundedly invertible transforma-
tion of L2(0, T ) onto L2(0, S) so that we can equivalently study the following
sequence in L2(0, S): {

φ′n(0)

∫ x

0
C(x, s)Yn(s) ds

}
(31)

where
C(x, s) = N(M(x)−M(s))eN

′(0)M(s)/2Q−1/4(M(s)) (32)

and we must identify a value of S such that the sequence in (31) is Riesz in
L2(0, S). We shall prove:

Theorem 12. The sequence (31) is a Riesz sequence in L2(0, S) for every
S ≥ π .

Using (25) and L′(0) = 0 we see that the sequence (19) is a Riesz sequence
in L2(0, T ) for every T ≥M(π), i.e. for every T > T0 where T0 solve∫ T0

0

√
Q(s) ds = π . (33)

This is formula (16).
Thanks to the fact that C(x, x) is strictly positive, we can equivalently

study the sequence{
φ′n(0)

∫ x

0
B(x, s)Yn(s) ds

}
, B(x, s) =

C(x, s)

C(x, x)
. (34)

The computational advantage of this transformation is that nowB(x, x) = 1.
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3.2.1 The proof of Theorem 12

In this proof we work on a fixed interval [0, S] (hence in a fixed interval
[0, T ] so that we don’t need to keep track of the dependence of Yn(x) on S).
We shall need asymptotic estimates for several different sequences. In order
to simplify the notations, M will denote a number which does not depend
on the index of the sequences but which in general depends on the interval
[0, S] we are working in. Analogously, {Mn(x)} will denote a sequence of
functions which is bounded on [0, S]. The bound can depend on S. These
constants and sequences will not be the same at every occurrence, without
any possibility of confusion.

We introduce
K(s) = V (s)−A,1(s, s) (35)

so that An(x, s) in formula (29) is

An(x, s) = A(x, s) +
1

λn
K(s) sinλn(x− s) .

Furthermore, we introduce the notation Zn(x) (compare (34)):

Zn(x) = φ′n(0)

∫ x

0
B(x, s)Yn(s) ds . (36)

We shall proceed in parallel with the sequences {Yn(x)} and {Zn(x)} in
order to prove the following result which, as we noted, implies Theorem 9.

Theorem 13. Let S ≥ π. Both the sequences {Yn(x)} and {Zn(x)} are
Riesz sequences in L2(0, S).

The proof require several steps.

Step 1: both the sequences {Zn(x)} and {Yn(x)} are linearly independent.
We first prove that if {Zn(x)} is linearly dependent then {Yn(x)} is linearly
dependent too; and then we prove linear independence of {Yn(x)}.

If {Zn(x)} is linearly dependent then there exist numbers K and αn such
that

K∑
n=1

αnZn(x) = 0 i.e.

∫ x

0
B(x, s)

[
K∑
n=1

φ′n(0)αnYn(s)

]
ds = 0 .

Hence we have also
K∑
n=1

φ′n(0)αnYn(s) = 0
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because B(x, s) is smooth and B(x, x) = 1. We prove that this implies
αn = 0 by proving that {Yn(x)} is linearly independent. We proceed by
contradiction: let K be the first index for which

K∑
n=1

αnYn(s) = 0 . (37)

Note that K ≥ 2 since Y1(x) 6= 0.
Using equality (26) we get

0 =
K∑
n=1

αnY
′′
n (x) = −

K∑
n=1

λ2
nαnYn −

∫ x

0
A(x, r)

(
K∑
n=1

λ2
nαnYn(r)

)
dr

So we have also
K∑
n=1

λ2
nαnYn(x) = 0 .

This equality and (37) contradict the definition of K since they give:

K−1∑
n=1

(λ2
K − λ2

n)αnYn(x) = 0 .

Step 2: a new expression for Zn(x). We integrate by parts in (29) as
follows (the definition of K(s) is in (35)):

Yn(x) = gn(x)−
∫ x

0
A(x, s)Yn(s) ds− 1

λn

∫ x

0
sinλn(x− s)K(s)Yn(s) ds

− 1

λ2
n

∫ x

0

[∫ x−ν

0
A,11(x− s, ν)

d

ds
cosλns ds

]
Yn(ν) dν

= gn(x)−
∫ x

0
A(x, s)Yn(s) ds− 1

λn

∫ x

0
sinλn(x− s)K(s)Yn(s) ds

+
1

n2
Mn(x) .

Let R(x, s) be the resolvent kernel of −A(x, s). Then we have (recall
λn ∼ n)

Yn(x) =

[
gn(x)− 1

λn

∫ x

0
sinλn(x− s)K(s)Yn(s) ds

]
+

∫ x

0
R(x, s)

[
gn(s)− 1

λn

∫ s

0
K(ν) sinλn(s− ν)Yn(ν) dν

]
ds

+
1

n2
Mn(x) . (38)
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Using smoothness of R(x, s) and R(x, x) = 0 (a consequence of A(x, x) = 0),
we can integrate by parts twice and we see:∫ x

0
R(x, s)gn(s) ds =

Mn(x)

n2
.

Using Lemma 10, we see that the same holds also for the double integral
(exchange the order of integration and integrate by parts once) so that

Yn(x) =

[
gn(x)− 1

λn

∫ x

0
sinλn(x− s)K(s)Yn(s) ds

]
+

1

n2
Mn(x) .

We replace this expression in (36) and we see that:

Zn(x) = φ′n(0)y0

∫ x

0
B(x, s) cosλns ds+ y1

φ′n(0)

λn

∫ x

0
B(x, s) sinλns ds

−φ
′
n(0)

λn

∫ x

0

[∫ x

ν
B(x, s) sinλn(s− ν) ds

]
K(ν)Yn(ν) dν

+
1

λn

∫ x

0
B(x, s)Mn(s) ds . (39)

Integrating by parts, we see that on every interval [0, S] the functions
Zn(x) are sum of a term of the order 1/n plus:

φ′n(0)y0

∫ x

0
B(x, s) cosλns ds = y0

φ′n(0)

λn

[
sinλnx−

∫ x

0
B,2(x, s) sinλns ds

]
.

(40)
We integrate by parts the last integral and we use the estimates (6). We get
the following result:

Lemma 14. Let S > 0. There exists M such that for every n and every
x ∈ [0, S] we have

|Zn(x)| < M ,

∣∣∣∣∣Zn(x)− y0

√
2

π
sinnx

∣∣∣∣∣ < M

n
. (41)

Step 3: we prove that ω-independence of {Yn(x)} on L2(0, S), S ≥ π,
implies that of {Zn(x)}. Let {αn} be a sequence such that the following
equality holds in L2(0, S):

+∞∑
n=1

αnZn(x) = 0 . (42)
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We prove that if {Yn(x)} is ω-independent, then {αn} = 0, i.e. {Zn(x)}
is ω-independent too.

The fact that {Zn(x)}n>N is a Riesz sequence in L2(0, S) implies that
{αn} ∈ l2. In fact, we have more:

Lemma 15. If (42) holds in L2(0, S) (any S > 0) then the series∑
φ′n(0)αn sinnx (43)

converges in L2(0, S). So, If (42) holds and if S ≥ π then there exists
{γn} ∈ l2 such that

αn =
γn

φ′n(0)
.

Proof. The second statement follows from the first one, since the sequence
{sinλnx}n>N is a Riesz sequence2 in L2(0, S) when S ≥ π so that conver-
gence of (43) implies {φ′n(0)αn} ∈ l2. So, we prove that equality (42) implies
convergence of the series (43).

We prove the first statement. Using (39), equality (42) can be written
as

+∞∑
n=1

φ′n(0)

λn
αn

∫ x

0

[∫ x

ν
B(x, s) sinλn(s− ν) ds

]
K(ν)Yn(ν) dν

−
+∞∑
n=1

αn
λn

∫ x

0
B(x, s)Mn(s) ds− y1

∫ x

0
B(x, s)

(
+∞∑
n=1

φ′n(0)

λn
αn sinλns ds

)

= y0

(
+∞∑
n=1

φ′n(0)αn

∫ x

0
B(x, s) cosλns ds

)

(these equalities technically have to be intended as finite sums, and the
equality holds in the limit if it happens that the series converges. But, every
series on the left side side is clearly convergent, so that the series on the
right side has to converge too). Using (40) we write the series on the right
hand side as

y0

(
+∞∑
n=1

αn
φ′n(0)

λn
sinλnx

)
− y0

∫ x

0
B,2(x, s)

(
+∞∑
n=1

αn
φ′n(0)

λn
sinλns ds

)
ds

We see that the second series can be differentiated in L2 and that the dif-
ferentiated series converge. Hence also the first series can be differentiated

2 here in fact N = 1 but we don’t need this.
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termwise and

y0

(
+∞∑
n=1

αnφ
′
n(0) cosλnx

)
converges to a square integrable function, so that {φ′n(0)αn} ∈ l2 since
{cosλnx}n>N is a Riesz sequence in L2(0, S) when S ≥ π.

Consequently we have

0 =

+∞∑
n=1

γn
φ′n(0)

Zn(x) =

∫ x

0
B(x, s)

[
+∞∑
n=1

γnYn(s)

]
ds .

The fact that B(x, s) is smooth and B(x, x) = 1 easily implies

+∞∑
n=1

γnYn(s) = 0 .

If {Yn(x)} is ω-independent then {γn} = 0 and so {αn} = 0, i.e. {Zn(x)}
is ω-independent too. So, in order to prove that {Zn(x)} is ω-independent,
which is our final goal, it is sufficient to prove ω-independence of {Yn(x)}.
This we do in the last step.

Step 4: the sequence {Yn(x)} is ω-independent. Let the sequence {γn}
satisfy

+∞∑
n=1

γnYn(x) = 0 (44)

in L2(0, S) (so that {γn} ∈ l2). Using (29) we get∑
γngn(x) =

∑
γn

∫ x

0
An(x, s)Yn(s) ds

−
∑ γn

λ2
n

{∫ x

0
A,11(x, ν)Yn(ν) dν

+

∫ x

0
cosλn(x− s)

[
A,11(s, s)Yn(s) +

∫ x

x−s
A,111(s, ν)Yn(ν) dν

]
ds

}
.

We prove that we can compute termwise the derivative of the series on the
left hand side. As above, it is sufficient that we prove that the series on the
right side can be differentiated termwise. This is clear for the second series.
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As to the first one, it can be written as∑
γn

∫ x

0
An(x, s)Yn(s) ds =

∑
γn

∫ x

0
A(x, s)Yn(s) ds

−
∑ γn

λn

∫ x

0
K(s) sinλn(x− s)Yn(s) ds .

We have the following result:

Lemma 16. The series
∑

(γn/λn)
∫ x

0 K(s) sinλn(x− s)Yn(s) ds converges
in L2(0, S).

Proof. We note that∑ γn
λn

∫ x

0
K(s) sinλn(x− s)Yn(s) ds

=
∑ γn

λn

∫ x

0
K(s) [Yn(s)− y0 cosλns] sinλn(x− s) ds

+y0

∑ γn
λn

∫ x

0
K(s) sinλn(x− s) cosλns ds .

The derivative of the first series converges uniformly, thanks to inequal-
ity (30). Using trigonometric formulas we see that the last series is

(∫ x

0
K(s) ds

)∑ γn
2λn

sinλnx+
∑ γn

2λn

∫ x

−x
K((x− r)/2) sinλnr dr

whose derivative is L2-convergent.

We sum up:
∑+∞

n=1 γn cosλnx ∈ W 1,2(0, S) and, proceeding as in previ-
ous steps, we see that the following lemma holds:

Lemma 17. Let equality (44) hold for the sequence {γn}. Then, there exists
{σn} ∈ l2 such that γn = σn/λn.

Now we start a bootstrap argument:

Lemma 18. The series
∑

(σn/λn)Yn(x) is uniformly convergent to a W 1,2(0, S)
function, and its derivative can be computed twice termwise.

Proof. We insert γn = σn/λn in (44) and we use the representation (29) to
get

+∞∑
n=1

σn
λn
gn(x) =

+∞∑
n=1

σn
λ2
n

∫ x

0
K(s) sinλn(x− s)Yn(s) ds

−
+∞∑
n=1

σn
λ2
n

∫ x

0
sinλn(x− s)

[∫ s

0
A,11(s, ν)Yn(ν) dν

]
ds
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We compute a first derivative termwise and we get

+∞∑
n=1

σn
λn
g′n(x) =

+∞∑
n=1

σn
λn

∫ x

0
K(s) cosλn(x− s)Yn(s) ds

−
+∞∑
n=1

σn
λn

∫ x

0

[∫ x−ν

0
A,11(x− r, ν) cosλnr dr

]
Yn(ν) dν

Clearly we can compute a second derivative of the last series. We prove that
also the first series can be again differentiated termwise. In fact, formal
differentiation gives

K(x)

(
+∞∑
n=1

σn
λn
Yn(x)

)
−

+∞∑
n=1

σn

∫ x

0
K(s) sinλn(x− s)Yn(s) ds .

The first series is uniformly convergent and the second one is handled as in
Lemma 16.

The previous computations prove L2-convergence of
∑+∞

n=1(σn/λn)g′′n(x)
so that, as above:

Lemma 19. If condition (44) holds then there exists a sequence {δn} ∈ l2
such that

γn =
δn
λ2
n

.

This lemma combined with (26) shows that the second derivative of
the series in (44) can be computed termwise, and of course it is zero. So,
from (26) we get

+∞∑
n=1

δnYn(x) +

∫ x

0
A(x, r)

[
+∞∑
n=1

δnYn(r)

]
dr = 0 i.e.

+∞∑
n=1

δnYn(x) = 0 .

This equality, combined with (44), gives

+∞∑
n=2

(
1− 1

λ2
n

)
δnYn(x) = 0 .

This argument can be repeated till we remove N first elements from the
series in (44). Using 1 − 1/λ2

n 6= 0 for n large we conclude that the series
in (44) is in fact a finite sum. But, then all its coefficients have to be zero,
since we proved linear independence of the sequence {Yn(x)}.

This completes the proof of Theorem 13, hence also of Theorem 7.
Using this result, we can now study the identification problem.
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4 Source reconstruction

It is now convenient to go back to the full notation zn(s; t) and we recall that
zn(s; t) is defined for 0 ≤ s ≤ t. So, the solution of Eq. (1) with boundary
control f(t) ≡ 0 is given by (see (13))

w(ξ, t) =

+∞∑
n=1

φn(ξ)bn

∫ t

0
zn(t−s; t)g(s) ds , bn = 〈b, φn〉 =

∫ π

0
b(ξ)φn(ξ) dξ .

The output y(t) = wx(0, t) is

η(t) =
+∞∑
n=1

bnφ
′
n(0)

∫ t

0
zn(t− r; t)g(r) dr (45)

We prove that we can compute the output for every t, i.e.:

Lemma 20. Let g(t) be as in (9). Then, the function t→ η(t) is continuous

The proof is in the Appendix.
Now we choose g(t) of the special form

g(t) =

∫ t

0
N(t− s)f(s) ds . (46)

Here f(t) is locally square integrable and this is achieved by taking

σ(t) = f(t) +

∫ t

0
N ′(t− s)f(s) ds

(use N(0) = 1). Let us fix any T ≥ T0 (T0 is specified in Theorem 7) and
let us note that

η(T ) =

〈
+∞∑
n=1

φn(x)φ′n(0)

∫ T

0
zn(T − r;T )

∫ r

0
N(r − s)f(s) ds dr, bn(x)

〉

=

〈
+∞∑
n=1

φn(x)

∫ T

0
f(T − s)

[
φ′n(0)

∫ s

0
N(s− r)zn(r;T ) dr

]
ds, b(x)

〉

(the crochet denotes L2(0, π)-inner product). We recall zn(r;T ) = zn(r) and
we compare this formula with (17). We see that the left side of the crochet
is w(T ) when f(t) is the boundary control. Hence, for every k there exists
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a suitable fk(t) ∈ L2(0, T ), i.e. a suitable σk(t) ∈ L2(0, T ), such that the
corresponding output η(k)(t) is such that

η(k)(T ) = 〈φk, b〉 = bk ,

the k−th Fourier coefficient of b(ξ) respect to the orthonormal basis {φk(ξ)}
(or, if we whish, to any prescribed orthonormal basis, thanks to Theorem 7).
So, b(ξ) is given by

b(ξ) =

+∞∑
n=1

η(k)(T )φk(ξ) .

Remark 21. At first sight it might seem that the previous method is similar
to the one developed in [23]. In fact, it is not the same idea and, as expected
due to the time varying coefficient P (t), it is less efficient. In fact, the
algorithm in [23] does not really use σ(t) which has to be known, smooth and
with σ(0) = 1, but fixed once and for all. Using this fixed input the output
y(t) is measured for every t ∈ [0, T ] and then a sequence of algorithms applied
to this simple observation gives the Fourier coefficients bk. The algorithm
in [23] has been extended to systems with memory, with constant P (t), in [18]
but it seems that this algorithm cannot be used to study time varying traction.
For this reason we proposed to use the full map L2(0, T ) 3 σ(·) 7→ y(T ).

5 Appendix: The proof of Lemmas 5, 10 and 20

In this appendix it is important to recall that every transformation in Sec-
tion 3.1.1 is on a fixed interval [0, T ] and does depend on T . Even the
transformation H(t) = H(t;T ), since it depends on Q(t) = P (T − t). Now
we consider these transformation for every fixed T in an interval [0,K] so
that it will be 0 ≤ t ≤ T ≤ K and the pair (t, T ) will belong to the triangle

4̃ =
{

(t, T ) : 0 ≤ t ≤ T ≤ K
}
.

We have that

L(t) = L(t;T ) =

∫ t

0

√
P (T − s) ds , L′(t) =

√
P (T − t)

are bounded on the triangle 4̃, uniformly for 0 ≤ T ≤ K.
As in Section 3.1.1, let, for every T ∈ [0,K],

S = L(T ) = L(T ;T )
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so that 0 ≤ x = L(t;T ) ≤ S ≤ Ξ = L(K,K) and the triangle 4̃ is trans-
formed to

∆ =
{

(x, S) : 0 ≤ x ≤ S ≤ Ξ
}
.

So, M(t;X) andM ′(t;X) andA(x, r;X) and their derivatives are bounded
on 4. We recall that y0 and y1 do depend on S. So we shall write

gn(x) = gn(x;S) = y0(S) cosλnx+
1

φ′n(0)
y1(S) sinλnx

and that y0(S) and y1(S) are bounded on [0,Ξ].

Proof of Lemma 10. The first inequality in (30) follows from Gronwall
inequality applied to (29). So, we must prove

|Yn(x;S)− gn(x;S)| ≤ M

n
(47)

(the constant M depends on Ξ.)
In order to get inequality (47) we integrate by parts once the last integral

in (29) and we add and subtract gn(x;S) to the first integral. Then we
integrate by parts so to get a factor 1/λn. We obtain

Yn(x)− gn(x;S) =

−
∫ x

0
An(x, r;S) [Yn(r;S)− gn(r;S)] ds

−
∫ x

0
An(x, r;S)gn(s;S) dr +

1

λ2
n

Mn(x;S)

where Mn(x;S) is a function that we don’t need to write down explicitly,
but such that |Mn(x, S)| < M for every n and (x, S) ∈ 4.

The require inequality follows from here, integrating by parts the last
integral and using Gronwall inequality.

The proofs of Lemmas 5 and 20. The idea of the proofs of these lemmas
is similar. In order to prove Lemma 5 we have to consider the first series
in (13) while for Lemma 20 we have to consider the series in (45). The
common feature is an integral of the general form
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∫ t

0
V (t, r)zn(r;T ) dr

=

∫ L(t;T )

0
V (t;M(s;S))eN

′(0)M(s;S)P−1/4(M(s;S)− T )ζ̃n(M(s;S);T ) ds .

Now we use

L(M(x;S);T ) = x , Yn(s;S) = ζ̃n(M(s;S);T )

and finally we get an integral of the form∫ x

0
V1(x, s;X)Yn(s;X) ds .

The integral in Lemma 5 is obtained when V (t, r;T ) = N(t − r) and then
V1(x, s;X) = C(x, s;X). The integral in (45) is obtained with V (t, r) =
g(t − r). Note that C(x, x;X) 6= 0 while g(0) = 0 and so in the proof of
Lemma 20 we shall have V1(s, s;X) = 0.

We present now the proof of Lemma 5 and we leave the similar proof of
Lemma 20 (based on inequality (41)) to the reader.

We transform the variable t ∈ [0, T ] ⊆ [0,K] in the series (13) to the
variable x = M(t) ∈ [0, S] ⊆ [0,Ξ] as shown above and we consider the
L2(0, π) norm of the resulting series, for each S ∈ [0,Ξ]. Using the fact
that {φn(ξ)} is orthonormal in L2(0, π) and definition (32), the square of
the norm can be written as

+∞∑
n=1

∣∣∣∣∫ x

0
Λ(x, ν;S)

(
φ′n(0)

∫ ν

0
C(ν, r;S)Yn(r;S) dr

)
dν

∣∣∣∣2
=

+∞∑
n=1

∣∣∣∣∫ x

0
Λ(x, ν;S) (C(ν, ν;S)Zn(ν;S)) dν

∣∣∣∣2
Λ(x, ν;S) = f

(
M(x;S)−M(ν;S)

)
M ′(ν;S)

Using (41) we see that it is sufficient to note

+∞∑
n=1

∣∣∣∣∫ x

0
Λ(x, ν;S)C(ν, ν;S) sinns

∣∣∣∣2 ≤ ∫ x

0
|Λ(x, ν;S)C(ν, ν;S)|2 ds .

The proof is now finished since the right hand side is bounded for 0 ≤
s ≤ S ≤ Ξ.
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