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Abstract 

 

In the present work, planar anode-supported Solid Oxide Fuel Cell short-stacks have been 

designed, assembled, tested and characterized.  

The design of the stacks and its components (frame, housing, interconnect, compressive 

and bonded seals) required a great attention to the materials properties (i.e. thermal 

expansion coefficient compatibility, durability, strength and oxidation resistance, 

conductivity and so on), as well as to the fluid-dynamic analysis focused on flow field and 

gas distribution. Then, a careful analysis was done based on a multidisciplinary approach 

to select the stack components materials, geometries, and dimensions; in order to assure 

a high performing stack at elevated temperatures with cost reduction of materials, parts 

manufacturing and assembly procedure.  

The materials selected were: Crofer®22APU for the interconnect and the frame; AISI 316L 

for bolts and housing; Thermiculite® 866 for the compressive seal placed between the 

frame and the interconnect plate; Flexible Mica Paper for the compressive seal positioned 

between the interconnect endplate and the housing; SiO2-CaO-Al2O3-Na2O glass-ceramic 

sealant for the bonded seal to join the frame with the cell.  

On the other hand, the stack assembly was focused on the implementation of innovative 

and simple procedures, which allowed power capacity scale-up in accordance to power 

requirements. In this work, two different stack configurations were produced: with one cell 

(for initial testing of the materials and fluid-dynamic selected solutions) and with three 

cells. It must be mentioned that all developed stacks in this research were assembled with 

commercial cells “ASC3” from H.C. Starck.  

Also, calculations at ambient temperature and 800°C were done in the stack compression 

system to determine the proper tightening torque to be applied: this value was 50N. 

Although this calculation took into consideration the loss of tightening torque at high 

temperatures, some marks were found in housing and micas during the stack inspection 

after disassembly. These marks are a clear indicator of gas leakage.  
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Additionally, a study was carried out related to the effect of the protective Mn1.5Co1.5O4 

coating deposited on interconnect surface to prevent the cathode Cr poisoning. This 

experiment was executed in the stack of one cell configuration. No voltage degradation 

was observed during the galvanostatic experiment of 360 h at 800°C. 
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1. Introduction 

 

1.1 Fuel Cells for Energy Supply 

 

Ever since the beginning of industrialization, fossil fuels (coal, oil and natural gas) have 

been the major source of energy supply. However, it is certain that the supply of cheap, 

conventionally produced oil will peak and decline this century. The predictions about “peak 

oil” run from 2010 by ASPO (Association for the Study of Peak Oil and Gas) to a peak 

approximately in 2035 by IEA (International Energy Agency) [1]. Then at the latest, an 

energy revolution to alternative energy sources such as solar and wind will have taken 

place to cover the worldwide growing need for energy. 

Meanwhile there are fundamental economic [2], environmental and strategic interests [3] 

for a responsible dealing with fossil fuels. For example, the first 11 years of the 21st 

century experienced notably higher temperatures compared to the middle and late 20th 

century, so the economic costs of the climate change range between 5% and 20% of the 

worldwide gross domestic products (several trillion Euros). Therefore, governmental and 

non-governmental organizations strive to solve present and future energy problems on an 

international level [4].  

Regardless of what the driving force may eventually be, political reason or increasing 

energy prices, the importance of a more efficient use of energy has been recognized as a 

key issue for technology development. Considerable aspirations in this context are 
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connected with fuel cells. Interest in these alternative energy-conversion devices has 

increased rapidly in recent years, whereas the basic principles of fuel-cell operation are 

known since the early experiments of Schönbein and Grove in the first half of the 19th 

century. These fuel cells with high-energy conversion efficiency and low emission are 

promising systems for replacing combustion-based electrical generators at all sizes. 

In fact, fuel cells represent a revolutionary technology for power generation by fuel. In 

conventional electrical power generation the fuel is oxidized spontaneously in an 

irreversible combustion reaction, recovering the chemical energy in the fuel as heat, which 

has to be converted first to mechanical and then to electrical energy. In fuel cell-based 

power generation the oxidation reaction is carried out in an electrochemical cell, keeping 

the reactants apart and forcing the electron-transfer involved in the reaction to take place 

through an external circuit, such that most of the chemical energy can be recovered 

directly as electrical energy. 

The electric efficiency of conventional power generation is 33–38%, while that of power 

generation with high-temperature fuel cells may be 60% [5]. Moreover, the oxidation 

process in fuel cells takes place, with the aid of a catalyst, at temperatures much lower 

than the flame temperature, and therefore emits negligible NOx even in high-temperature 

fuel cells. Fuel cell-based power generation does not emit any particulates or noise either.  

It therefore makes sense to invest heavily in research and development of this technology 

to preserve fossil fuels and protect the environment. 

 

1.2 Fuel cells overview 

 

A general introduction is given on fuel cells. The history, different types, advantages and 

drawbacks of fuel cells are discussed. 

 

1.2.1 Definition 

 

Fuel cells are electrochemical devices that directly convert chemical energy, from a 

reaction between a fuel and an oxidant, into electrical energy. The basic elements of a 

typical fuel cell, as depicted in Figure 1-1, consist of an electrolyte phase in intimate 
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contact with a porous anode (negative electrode) and a porous cathode (positive 

electrode). The fuel and oxidant gases flow along the surface of the anode and cathode, 

respectively, and react electrochemically in the three-phase-boundary region established 

at the gas / electrolyte / electrode interface. A fuel cell can theoretically produce electrical 

energy for as long as fuel and oxidant are fed to the porous electrodes, but the 

degradation or malfunction of some of its components often limits the practical life span of 

a fuel cell. 

 

 

Figure 1-1: Schematic representation of a fuel cell 

 

Different fuels can be used, such as hydrogen, ethanol, methanol, or gaseous fossil fuels 

like natural gas. Solid or liquid fossil fuels need to be gasified first before they can be used 

as a fuel. Oxygen or air can be used as oxidant. 
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1.2.2 Types of fuel cells 

 

The various types of fuel cells are usually classified by the applied electrolyte (see Table 

1-1) and include the following: 

 Polymer electrolyte fuel cell (PEFC),  

 Alkaline fuel cell (AFC),  

 Phosphoric acid fuel cell (PAFC), 

 Molten carbonate fuel cell (MCFC),  

 Solid oxide fuel cell (SOFC).  

 

Table 1-1: Typical components, operating conditions and electrochemical reactions in Fuel 
Cells. a Space Shuttle Orbiter, b Apollo Program, c Fluorinated sulfonic acid, registered 

trademark of E.I. du Pont de Nemours & Company, Inc. 

 PEM AFC
a 

AFC
b 

PAFC MCFC SOFC 

Anode 
Pt black or 

Pt/C 

80%Pt-

20%Pd 
Ni Pt/C Ni-10%Cr 

Ni-YSZ 

cermet 

Cathode 
Pt black or 

Pt/C 

90%Au-

10%Pt 
Li-doped NiO Pt/C Li-doped NiO 

Sr-doped 

LaMnO3 

Electrolyte 

(mol%) 
Nafion 

c 
35-45% KOH 85% KOH 100% H3PO4 

62 Li2CO3-

38K2CO3 

Yttria 

stabilized 

ZrO2 (YSZ) 

Abs pressure 

(MPa) 
0.1-0.5 0.4 ~0.4 0.1-1 0.1-1 0.1 

Temperature 

(°C) 
80 80-90 260 200 650 1000 

Anode 

reaction 

H2  2H
+
+ 

2e
- 

H2 + 2OH
-

2H2O+2e
- 

H2 + 2OH
-

2H2O+2e
-
 

H2  2H
+
+ 

2e
- 

H2 +CO3
2-

H2O+CO2+2e
-
 

H2 +2O
2-

H2O+2e
-
 

Cathode 

reaction 

O2+4H
+
+4e

-

2H2O 

O2+2H2O 

+4e
-
4OH

-
 

O2+2H2O 

+4e
-
4OH

-
 

O2+4H
+
+4e

-

2H2O 

O2+2CO2 +4e
-

2CO3
-2

 
O2+4e

-
2O

-2
 

 

Large differences exist in application, design, size, cost and operating range for the 

different type of fuel cells. The fuel cells above are listed in order of increasing operating 

temperature, ranging from ~80°C for PEFC to 1000°C for SOFC. The low temperature fuel 

cells (PEFC, AFC, PAFC) utilise aqueous electrolytes in which H+ or OH- ions are the 

dominant ionic current carriers. 
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At higher temperatures, CO3 
2- ions in the molten salt electrolyte of the MCFCs and O2- 

ions in the solid electrolyte of the SOFC are the ionic current carriers. The operating 

temperature has consequences for design, the efficiency of the fuel cell, the choice of 

other materials needed in and around the fuel cell and the kind of fuel that may be used. 

For low temperature fuel cells (PEFC, AFC and PAFC) the operating temperature is too 

low to enable direct oxidation of hydrocarbon fuels like natural gas, therefore fuels like 

hydrogen and methanol are used. Low temperature fuel cells are generally seen as 

interesting for small scale applications, for example mobile applications like cars (PEFC), 

notebooks, phones etc. 

For high temperature fuel cells (MCFC and SOFC) it is possible to use natural gas which 

can be reformed internally into hydrogen and carbon monoxide (depending on operating 

temperature a catalyst will be necessary). The high temperature fuel cells, but also PAFC, 

are interesting for the decentralised production of electricity and heat (distributed CHP).  

 

1.2.3 Advantages and drawbacks 

 

The advantages and drawbacks of fuel cell systems are determined by their type and 

application. As it can be useful to compare a SOFC or MCFC system with traditional 

generators, a small fuel cell developed for applications as notebooks or mobile phones 

should be compared with traditional batteries. The advantages and drawbacks given here 

are mostly based on SOFC systems, but in general part of it will be valid for other types of 

fuel cells. 

The main advantages are: 

 High energy conversion efficiency. Because of the direct conversion of free 

enthalpy into electrical energy the usual losses from fuel to electrical energy, due to 

the conversion of fuel to heat, heat to mechanical energy and mechanical energy to 

electrical energy is avoided. The global efficiency is further improved when the by-

product heat is fully utilized. 

 Environmental compatibility. Fuel cells are capable of using practical fuels as an 

energy source with minor environmental impacts (less CO2 and NOx produced per 
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kWatt power), since they do not produce particulate matter neither Volatile Organic 

Compounds (VOCs). 

 Modularity. Fuel cells have the characteristic of modularity, i.e. cells can be made in 

modular sizes. The size of a fuel cell can be easily increased or decreased and its 

electric efficiency is relatively independent of size. 

 Siting flexibility. Because fuel cells can be made in a variety of sizes they can be 

placed at different locations with minimum siting restrictions. Fuel cell operation is 

quiet because a fuel cell has no moving parts. Consequently fuel cells can be easily 

located near points of use such as urban residential areas. 

 

Unfortunately, there are some drawbacks which have caused a slow introduction of solid 

oxide fuel cells on the energy market: 

 Material problems in relation with costs: For SOFC there are roughly two design 

types, tubular and flat plate. For the tubular cell material problems are less, but 

fabrication costs are high. For the flat plate design fabrication costs are less, but 

more material problems arise. 

 Economics. Introduction on the energy market would presently involve a high 

capital cost-to-performance ratio. 

 

1.3 PhD investigation objectives  

 

This PhD thesis is concerned with design, build and experimental analysis of planar Solid 

Oxide Fuel Cell stack. The general objective is the development and in-house production 

of short SOFC stacks of planar anode-supported geometry for dealing with multiple fuels.  

 

The following general considerations have been taken into account to establish the 

specific objectives of this research: 

 Chemical and Mechanical stability: at the cathode side under oxidizing conditions 

and at the anode side under reducing conditions, for temperatures up to 800°C. 

 Material selection: the thermal expansion coefficients similar between the contact 

layer materials.  

 Gas tightness: can be obtained by using adequate sealant materials and their 

proper placement. 
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 Thermal management: the temperature field must be as homogeneous as possible, 

whereas the reactant distribution system in both sides of the cell must be uniform. 

 Electrical behavior analysis of materials (ceramics, metallic and cermets) at high 

temperatures. 

 High electrical performance of the cell interconnection for reducing as much as 

possible the ohmic losses in the stack. 

 The sealing materials must avoid the gas leakages.  

 Moderate costs. 

 

In consequence, the specific objectives are: 

 

1. Testing of commercial anode-supported cell (“ASC3” NiO/YSZ anode, YSZ electrolyte, 

LSM cathode) to determine the stack geometry. 

2. Design and production of the components (interconnectors, housing, frame, seal and 

cell geometry) for a planar SOFC stack, with particular attention to: 

 Reactant distribution system with homogeneous flows field in the cell and small 

thermal stresses into the cell interconnection at the same time. 

 Electrochemical performance in the final configuration: high open circuit potential 

and minimum polarization losses must be ensured. 

 Good mechanical stability and high electrical conductivity of the interconnectors. 

 Capability to resist high temperature conditions under oxidizing atmosphere of the 

interconnector surface without material degradation.  

3. Building of short planar anode-supported SOFC stacks by using innovative procedures, 

which allow power capacity scale-up in accordance to requirements.  

4. Electrochemical testing of SOFC short-stacks under steady state conditions with non-

conventional fuels and experimental analysis 

5. Stacks disassembly and post mortem characterization of the SOFC stack components 

(interconnectors, frame, sealant, protective coating and ASC cells) by means of 

Scanning Electron Microscopy (SEM) and Energy Dispersion Spectroscopy (EDS). 

This activity was carried out in collaboration with Department of Applied Science and 

Technology (DISAT) of the Politecnico di Torino. 
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This PhD Dissertation has been organized in six chapters as briefly described hereafter: 

 

o Chapter 1 introduces the reader into the importance of Fuel Cells as an energy 

alternative to fossil fuels. In addition, the basic concepts, advantages and 

drawbacks of the different types of fuel cells are here exposed. Next, the objectives 

of this research work are presented in this Chapter.  

 

o Chapter 2 summarizes the Solid Oxide Fuel Cells historical background to present 

the evolution of this technology up to date. The SOFC working principles are also 

explained. Additionally, this Chapter deals with some key elements of SOFC 

technology: main configurations (tubular and planar) with particular attention in 

planar ones; technical requirements of components (interconnect materials, sealant 

materials, protective coatings) to assembly single stacks, and its use with different 

fuels. Furthermore, a brief review regarding materials used for stack building as 

sealant and interconnect materials is presented. 

 

o Chapter 3 deals with the development of stack materials and components as well 

as the engineering processes (based on the in-house production) to build a short 

anode-supported planar SOFC stack; with particular attention to reduce costs, and 

to improve the reliability and robustness of the stack systems against conditions 

that occur in actual operating systems. 

 

o Chapter 4 shows and analyzes the performance and electrochemical test results 

obtained with short planar anode-supported stacks of mono cell and multi cells 

configuration at different H2 gas flow conditions and different Fuel Utilization. 

 

o Chapter 5 presents the post mortem examination and results (in terms of 

mechanical structure, material compatibility and durability) of stacks previously 

tested. Also, the cathode protection from Cr poisoning is analyzed by 

microstructure investigation in those stacks with the protective coating. 

 

o Chapter 6 summarizes the conclusions drawn from the results of this work, as well 

as outlining possible future developments and application of the present 

investigation.
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2. Solid Oxide Fuel Cells Overview 

 

A brief historical background related SOFC is here described to present the evolution of 

this technology up to date. Next, the basic thermodynamic principles of SOFCs are 

explained. 

In addition, this Chapter deals with some key elements of SOFC technology: main 

configurations (tubular and planar) with particular attention in planar ones; technical 

requirements of components (interconnect materials, sealant materials, protective 

coatings) to assembly single stacks, and its use with different fuels. Furthermore, a brief 

review regarding materials used for stack building as sealant and interconnect materials is 

presented.  

2.1 Historical background 

 

The fuel cell concept dates from the beginning of the 19th century and is ascribed to Sir 

Humprey Davy. The possibility of making it a reality was demonstrated by Sir William 

Grove, who operated a successful hydrogen-oxygen cell in 1839, generally stated as the 

start of fuel cell history. Grove built a cell in which the reaction of hydrogen and oxygen 

produced water, and generated an electric current. He stated: ‘A shock was given which 

could be felt by five persons joining hands, and which when taken by a single person was 

painful’. 

The history of the solid oxide electrolytes can be considered to commence at the end of 

the 19th century, when Nernst produces his ‘glower’. Nernst discovered that the very high 

electrical resistance of pure solid oxides could be greatly reduced by addition of certain 
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other oxides. The most promising of these mixtures consisted mainly of zirconia (ZrO2) 

with small amounts of added yttria (Y2O3). This is still the most widely used electrolyte 

material in the Solid Oxide Fuel Cells (SOFC). 

 

The first working SOFC was demonstrated by Baur and Preis (1937), using stabilised 

zirconia as electrolyte and coke and magnetite as a fuel and oxidant, respectively. At a 

current density of approximately 0.3mA/cm2 the cell voltage was 0.65V. Although the 

operation of the first SOFC was demonstrated, the current output of this cell was too low 

for practical purposes. 

 

A first period of intense activity in SOFC research began in the early 1960s, with intensive 

research programs driven by new energy needs mainly for military, space and transport 

applications. At that time basic research dealt with the improvement of electrolyte 

conductivity and the first steps in SOFC technology. A second period of high activity began 

in the mid-1980s and goes on today, focusing on electrode materials and technology. 

 

Efforts thus far have resulted in ‘almost’ commercial units which are part of our power 

generation facilities. Leading companies in SOFC commercialization are; for instance, 

Siemens and Sulzer (Europe), Westinghouse Electrical Cooperation (USA) and Fuji 

Electric Corporate Research and Development, Ltd and Tokyo Electric Power Co. (Japan). 

 

2.2 Operating Principles 

 

A simplified functional principle of a solid oxide fuel cell (SOFC), a concept that is regarded 

as one of the most promising systems due to its high efficiency and its flexibility in terms of 

the fuel gas, is schematically shown in Figure 2-1. The reactant gases are separated by an 

ionically conducting oxide membrane, which is usually made of doped zirconium oxide. 

The chemical potential difference between the reactant gases initiates a driving force for 

gas compensation through the oxygen ion-conducting electrolyte. The electrodes facilitate 

the incorporation and removal of oxygen ions into and from the electrolyte. 
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Figure 2-1: Schematic SOFC concept: Oxygen and fuel (here H2) react via a dense, oxide 
ion-conducting electrolyte; the spatial separation of reduction and oxidation reaction 

enables the utilization of the electrons involved in the redox process [6]  

 

The heart of any SOFC is a multilayer ceramic cell, which allows the generation of power 

by electrochemically oxidizing the fuel. A simple overview of the ceramic cell’s function and 

architecture is shown in Figure 2-2 . As can be seen, rare earth elements are used 

throughout the layers of the cell and cobalt is commonly used in the cell’s cathode. 
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Figure 2-2: Overview of Architecture, Function, and Materials of SOFC [7] 

 

The solid electrolyte can be an oxygen ion, a proton, or a mixed oxygen ion–proton 

conductor, but it must be an electronic insulator (prohibiting the conduction of electrons or 

electron holes) and gas impermeable (in a dense membrane form). While SOFCs based 

on proton conductors (e.g., BaZr0.1Ce0.7Y0.2O3-δ—base electrolytes) have attracted much 

attention in recent years, the most studied SOFC systems to date are based on oxygen ion 

conductors such as yttria-stabilized zirconia electrolyte (YSZ, with a composition of 8 

mol.% Y2O3—92 mol.% ZrO2, sometimes referred as 8YSZ); the anode is a porous nickel-

YSZ cermet; and the cathode is a porous composite that usually contains YSZ and La1-

xSrxMnO3-δ (LSM, usually x varies from ~0.15 to ~0.20). YSZ-based SOFCs usually 

operate at high temperatures (750–1000°C) to be efficient because of the limited transport 

and catalytic properties of the SOFC materials at low temperatures. To reduce the 

operating temperature, doped ceria (such as Ce0.9Gd0.1O2-δ or GDC and Ce0.9Sm0.1O2-δ or 
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SDC) have been used as the electrolyte and La0.6Sr0.4Co0.2-Fe0.8O3-δ (LSCF) as the 

cathode for SOFCs to be operated at low temperatures (<700°C).  

If, for example, hydrogen is used as fuel gas (see Figure 2-1), the following 

electrochemical reactions occur at the two electrodes:  

 

Cathode: 
 

 
  ( )     (       )     (           )   Equation 1 

Anode:    (           )    ( )      ( )     (     ) Equation 2 

Sum:    
 

 
  ( )    ( )     ( )   Equation 3 

The electronically conducting SOFC cathode (typically lanthanum strontium manganite, 

LSM) leads the oxidant through its porous channels to the electrolyte, where the oxygen-

reduction mechanism takes place (Eq. 1). The region where the electronic conducting 

phase (cathode), gas phase (porous cathode channels) and ionic conducting phase 

(electrolyte) meet, is called triple-phase boundary (tpb); the concentration of these active 

sites determines the electrochemical performance of the cathode. Before incorporation of 

the oxygen ions into the electrolyte, a variety of steps including adsorption of the 

molecules, dissociation into oxygen atoms and ionization take place at the cathode. Due to 

the chemical potential difference, the oxygen ions travel through the electrolyte towards 

the anode where the redox reaction occurs (Eq. 2). The electrons, which are involved in 

the electrochemical reaction, are forced to flow through an outer circuit performing 

electrical work. In case of an open circuit, the Nernst voltage UN arises between cathode 

and anode:  

   
  

  
   √

    (       )

   (     )
      Equation 4 

where R is the general gas constant, T the absolute temperature, F Faraday’s constant 

and pO2 the respective oxygen partial pressure at cathode and anode.  

For a certain oxygen partial pressure at the cathode, pO2 c, the magnitude of Er depends 

on the anode oxygen partial pressure, pO2 a, and thus on the type and composition of the 

fuel fed to the anode. For example, when H2 is fed to the anode, the following cell reaction 

takes place: 

     
 

 
     

  
↔           Equation 5 
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Where Ki is the equilibrium constant of Eq. 5. The equilibrium oxygen partial pressure at 

the anode is given by 

       (
     

       
)
 

      Equation 6 

Substituting the equation for the anode oxygen partial pressure (Eq. 6) into (Eq. 8) yields 

      
  

  
       

  

  
  

    

     
    Equation 7 

where E0 is the reversible voltage at the standard state and is given as 

   
  

  
          Equation 8 

At the standard state, Er equals E0, and the following equation is established for any fuel 

     
   

  
  

        

  
     Equation 9 

where ΔG0 is the standard Gibbs free energy change of the combustion reaction of the 

fuel, ΔH0 the standard enthalpy change, ΔS0 the standard entropy change and z the 

number of electrons involved in the reaction to convert a single fuel molecule. The 

maximum energy obtained in this case is given by -ΔG0 and the ideal thermodynamic 

efficiency, εT, represented by ΔG0/ΔH0. Table 2-1 gives ΔG0, ΔH0, E0 and εT for the use of 

H2 as fuel. 

 

Table 2-1: Thermodynamic data and efficiency (εT) for the hydrogen oxidation reaction 

T (K) ΔG0 (kJ) ΔH0 (kJ) E0 (V) εT 

1000 -192.5 -247.3 0.997 0.78 

1250 -178.2 -249.8 0.924 0.71 

 

However, the respective electrochemical processes in the cell exhibit ohmic losses which 

arise during the transport of charge carriers in the electrodes and in the electrolyte, where 

the latter (diffusion losses of the oxygen ions) dominate the ohmic part of the total losses. 

Additionally, polarization losses evolve during the conversion of electronic current into 

ionic current. Both the ionic transport in the electrolyte and the electrochemical reaction at 
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the electrodes are thermally activated; thus, the ohmic and polarization losses increase 

with decreasing temperature. Due to the losses, the cell voltage UC always undercuts the 

Nernst voltage UN: 

         ∑           Equation 10 

with jL as load current and k the contributing loss portions, which are given by their 

respective area specific resistance (ASR). 

During operation, oxygen molecules are adsorbed, dissociated, and reduced on the 

cathode surface to ionic oxygen species before incorporated into the lattice as oxygen 

ions, which then move through the electrolyte to the anode and combine with fuel 

molecules to form water and carbon monoxide/dioxide (if a hydrocarbon fuel is used). 

Outside the cell, electrons move from the anode to the cathode through an external circuit, 

converting chemical energy of the fuel to electrical energy. In Kroger’s notation, oxygen 

reduction on the cathode can be described as follows: 

 

 
        ̈    

     Equation 11 

 

At the same time, fuel molecule (e.g., hydrogen) is oxidized on the anode by combining 

with oxygen ions and release electrons: 

     
           ̈    Equation 12 

 

The combination of Eq. 11 and 12 yields the overall reaction of the fuel cell, 

   
 

 
           Equation 13 

 

For practical applications, SOFCs have different structures, and each of them has its own 

advantages and disadvantages, though the materials for cell components in these different 

designs are either the same or very similar in nature. 

 

i. Fuel Cell Efficiency 

 

The overall efficiency of an SOFC, εFC, is the product of the electrochemical efficiency, εE, 

and the heating efficiency, εH. The electrochemical efficiency is, in turn, the product of the 
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thermodynamic efficiency, εT, the voltage efficiency, εV, and the Faradaic or current 

efficiency, εJ, of the fuel cell. 

Thus,                             Equation 14 

 

The heating efficiency must be considered when the fuel contains inert gases, impurities 

and other combustibles in addition to the electrochemically active species. Then, the 

heating value efficiency, εH, is defined as: 

   
   

     
     Equation 15 

where ΔH0 represents the enthalpy of fuel species available in the fuel cell to generate 

electricity and ΔHcom is the enthalpy included in all combustible species in the fuel gases 

fed to the fuel cell. 

On the other hand, the thermodynamic efficiency is given by the ratio of the free enthalpy 

change of the cell reaction, ΔG, which may be totally converted to electrical energy and 

the enthalpy of the reaction. Thus, a fuel cell has an intrinsic (maximum) thermodynamic 

efficiency expressed as follows. 

   
  

  
   

   

  
    Equation 16 

 

In an operating SOFC, the cell voltage is always less than the reversible voltage. As the 

current is drawn from the fuel cell, the cell voltage is reduced due to various losses. The 

reduction in the cell voltage under current load depends on current density and several 

factors such as temperature, pressure, gas flow rate, gas combustion and cell material. 

The voltage efficiency, εV, is defined as the ratio of the operating cell voltage under load, 

E, to the equilibrium cell voltage, Er, and is given as 

   
 

  
    Equation 17 

 

The difference between the operating cell voltage and the expected reversible voltage is 

termed polarisation or overpotential and is presented as η. The total polarisation of a cell is 

the sum of four types of polarisation: charge transfer or activation polarisation, ηA, diffusion 
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or concentration polarisation, ηD, reaction polarisation, ηR, and resistance or ohmic 

polarisation, ηΩ: 

                Equation 18 

 

Polarisation cannot be eliminated but can be minimised by material choice and cell design. 

Temperature, pressure, electrolyte composition and electrode material certainly influence 

cell polarisation. 

Electrochemical reactions involve an energy barrier that must be overcome by reacting 

species. This energy barrier, called the activation energy, results in activation or charge 

transfer polarisation, ηA. Activation polarisation is related to current density, i, by the 

following equation: 

        (
       

  
)       ( 

     

  
)  Equation 19 

Where β is the symmetry coefficient and i0 is the exchange current density. The symmetry 

coefficient is considered as the fraction of the change in polarisation which leads to a 

change in the reaction rate constant. The exchange current density is related to the 

balanced forward and reverse electrode reaction rates at equilibrium. A high exchange 

current density means a high electrochemical reaction rate and, in that case, a good fuel 

cell performance is expected. The exchange current density can be determined 

experimentally by extrapolating plots of log i versus η to η=0. For large values of η (either 

negative or positive) one of the bracketed terms in Eq. 19 becomes negligible. After 

rearranging one obtains 

               Equation 20 

which is usually referred to as the Tafel equation. Parameters a and b are constants which 

are related to the applied electrode material, type of electrode reaction and temperature 

Diffusion or concentration polarisation, ηD, becomes eminent when the electrode reaction 

is hindered by mass transport effects, i.e., when the supply of reactant and/or the removal 

of reaction products by diffusion to or from the electrode is slower than that corresponding 

to the charging/discharging current i. When the electrode process is governed completely 

by diffusion, the limiting current, iL, is reached. The limiting current can be calculated from 

the diffusion coefficient of the reacting species, D, their concentration, cM, and the 

thickness of the diffusion layer, δ, by applying Fick's law as follows: 
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     Equation 21 

For an electrode process free of activation polarisation, the diffusion or concentration 

polarization can be expressed as 

   
  

  
  (  

 

  
)    Equation 22 

 

In general, mass transport is a function of temperature, pressure and concentration of the 

species involved. In SOFC’s the reactants must diffuse through the porous anode and 

cathode, emphasising the importance of the microstructure and design of electrodes. 

The reaction polarisation, ηR, appears when the rate of the electrode process is influenced 

by a chemical reaction. A possible reaction includes the incorporation of oxygen in the 

oxide sublattice at the cathode. 

The ohmic polarisation is caused by the resistance of the conducting ions (through the 

electrolyte), electrons (through the electrodes and current collectors) and contact 

resistances between cell components. The ohmic polarisation, ηΩ, is given as 

          Equation 23 

where Ri represents the total ohmic cell resistance, including both ionic and electronic 

resistances. 

With respect to the current efficiency, for 100% conversion of a fuel, the amount of current 

density, iF, produced is given by the Faraday's law as: 

     
  

  
    Equation 24 

Where df/dt is the molar flow rate of the fuel. For the amount of fuel actually consumed, 

the current density produced is given by 

     (
  

  
)
        

   Equation 25 

 

The current efficiency, εJ, is the ratio of the actual current produced to the current 
available from complete electrochemical conversion of the fuel as can be seen next. 

   
 

  
     Equation 26 

In the case of fuel cells, the current efficiency is commonly expressed as fuel utilization. 
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2.3 SOFC stack technologies 

A wide range of SOFC stack and cell technologies has been developed, differing from 

each other in terms of: 

 Cell materials used. 

 Thickness and morphology of cell materials. 

 Shape of cells. 

 Means and architecture of interconnects. 

 Means and architecture of gas flow manifolds. 

 Manufacturing methods used for each layer in the cell structure. 

These differences can strongly impact the cost of the materials as well as the cost of 

manufacturing. There is a large number of cell/stack architectures to considerer among 

tubular and planar configurations, not to mention the range of material combinations and 

manufacturing methods.  

 

2.3.1 Planar versus tubular configuration 

 

Earlier studies in SOFCs were focused on high temperature tubular SOFC systems; since 

the late 1990s, accompanied with the reduction of electrolyte thickness in the planar SOFC 

technology, the development of planar SOFC systems has drawn great interest due to its 

apparent advantages in power density and the ease of fabrication. However, tubular SOFC 

is still favorable for portable applications where rapid start-up and cool-down are required.  

 

In SOFC tubular configurations (see Figure 2-3), the electrode (either cathode or anode) is 

usually made into a long-tube with a porous wall. Outside the electrode tube are the 

electrolyte and then another electrode. Cells are also connected in series through 

interconnects. Another example of a tubular-type cell is the transverse stripe type tubular 

cell. The schematic is shown in the figure below. In this type of cell, the single cells are 

arranged in series on one tube. Therefore, each tube can be regarded as a small stack. 

Numerous other tubular designs have been proposed, but are no longer pursued.  
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Figure 2-3: Overview of Three Types of Tubular SOFC: a) Conduction around the Tube;       
b) Conduction along the Tube; c) Segmented in Series [8].  

 

Large- diameter tubular SOFCs have been the most successful so far. Their main 

advantage is the seal-less stack design; the disadvantages are the low power density, the 

long start-up times, and the expensive fabrication techniques.  

Microtubular SOFCs are especially useful for smaller systems, providing rapid start-up; the 

reason for this is the small diameter of the cells and the low wall thickness which prevent 

the build-up of damaging thermal stresses. Start-up in about a minute is possible and 

leaks can be prevented by bringing the microtubes through the insulation for sealing in the 

cold zone. On the negative side, cell interconnection and assembly issues are significant, 

and it seems likely that microtubular systems will mainly be applicable in small systems. 

In planar stack SOFCs, each cell is made into a flat disk, square, or rectangular plate. The 

cells are put in series and connected by the interconnect plates, as schematically shown in 

Figure 2-5: Schematic for the cross-section of self-supported SOFC. 
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Figure 2-4: Overview of two different SOFC planar stacks designs studied by                      
the National Energy Technology Laboratory /U.S. DOE [9]  

 

Planar SOFCs employ the same materials for the single cell as other cell designs. The 

most common cell materials are yttria-stabilised zirconia (YSZ) for the electrolyte, 

lanthanum strontium manganite (LSM) for the cathode and nickel/zirconia cermet (Ni/YSZ) 

for the anode. The planar cells can be broadly classified into two categories: self-

supporting and external supporting. In the self-supporting configuration, one of the cell 

components (often the thickest layer) acts as the cell structural support. Thus, single cells 

can be designed as electrolyte supported, anode supported, or cathode supported. In the 

external-supporting configuration, the single cell is configured as thin layers on the 

interconnect or a porous substrate. The key features of each configuration are 

summarised Table 2-2. 

 

 Self-supporting: where one of the cell components (often the thickest layer) acts as the 

cell structural support. Thus, the single cell can be designed as electrolyte, anode or 

cathode supported, as schematically shown in Figure 2-5. This figures also reports that 

the anode-supported is the best choice from the polarization standpoint. 

 

o Electrolyte-supported. Early planar cells were mostly electrolyte-supported. This 

requires a relatively thick electrolyte (>100 but typically around 200 μm, with both 

electrodes at about 50 μm) which leads to high resistance, requiring high-

temperature operation (about 900-1000°C) to minimise electrolyte ohmic losses. 

 

o Cathode-supported. This allows for a thinner electrolyte than electrolyte-supported 

cells, but mass transport limitations (high concentration polarization) and 

manufacturing challenges (it is difficult to achieve full density in a YSZ electrolyte 
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without oversintering an LSM cathode) make this approach inferior to anode-

supported thin-electrolyte cells. 

 

o Anode-Supported. Advances in manufacturing techniques have allowed the 

production of anode-supported cells (supporting anode of 0.5 to 1 mm thick) with 

thin electrolytes. Electrolyte thicknesses for such cells typically range from around 3 

to 15 μm (thermomechanically, the limit in thickness is about 20 to 30 μm). The 

cathode remains around 50 μm thick, given the difference in thermal expansion 

between the anode and the electrolyte). Such cells provide potential for very high 

power densities (up to 1.8 W/cm2 under laboratory conditions, and about 600 to 800 

mW/cm2 under commercially-relevant conditions) [8].  

 

For cell configurations with thin (5-20 μm) YSZ electrolytes, the cell can operate at 

reduced temperatures (< 800°C). The advantages of reduced-temperature 

operation for the SOFC include a wider choice of materials (especially low-cost 

metallic materials for the interconnect), longer cell life, reduced thermal stress, 

improved reliability, and potentially reduced cell cost. The main disadvantages are 

potential slow electrode reaction kinetics (thus high polarisations) and the reduced 

thermal energy that can be extracted from the hot exhaust stream by a turbine or a 

heat exchanger.  

 

 External supporting: the single cell is configured as thin layers on the interconnect or a 

porous substrate.  

 

o Metal Interconnect-supported. This configuration minimizes mass transfer 

resistance and the use of (expensive) ceramic materials. In such cells, the 

electrodes are typically 50 μm thick and the electrolyte around 5 to15 μm. While 

the benefits are obvious, the challenges are to find a materials combination and 

manufacturing process that avoids corrosion and deformation of the metal and 

interfacial reactions during manufacturing as well as operation. 
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Figure 2-5: Schematic for the cross-section of self-supported SOFC.  

 

 

Table 2-2: Features of different designs of planar single cell [8].  

 
Cell 

configuration 
Advantage Disadvantage 
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 Electrolyte  

Supported 

- Relatively strong structural 
support from dense electrolyte.  
- Less susceptible to failure due 
to anode re-oxidation. 

- Higher resistance due to lower 
electrolyte conductivity.  
- Higher operating temperatures 
required to minimise ohmic loses. 

Anode  
Supported 

- Highly conductive anode. 
- Lower operating temperature via 
use of thin electrolyte. 

- Mass transport limitations due to 
thick anodes. 
- Potential anode re-oxidation 

Cathode  
Supported 

- No oxidation issues. 
- Lower operating temperature via 
use of thin electrolyte. 

- Lower conductivity. 
- Mass transport limitation due to 
thick cathodes 
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Interconnect 
supported 

- Thin cell components for lower 
temperature. 
- Stronger structures from metallic 
interconnects. 

- Interconnect oxidation. 
 
- Flowfield design limitations due 
to cell support requirement.  

Porous 
substrate 

- Thin cell components for lower 
operating temperature.  
- Potential for use of non-cell 
material for support to improve 
properties. 

- Increased complexity due to 
addition of new materials. 
- Potential electrical shorts with 
porous metallic substrate due to 
uneven surface. 

 

 (a) Electrolyte-supported   (b) Cathode-supported  (c) Anode-supported 

 

Lowest Performance Intermediate Performance Highest Performance 

Cathode: ~50 μm 
Anode: ~50 μm 

Electrolyte: ~150 μm 

Cathode: ~2000 μm 
Anode: ~50 μm 

Electrolyte: ~20 μm 

Cathode: ~50 μm 
Anode: ~500-1000 μm 

Electrolyte: ~10 μm 

1) High ohmic contribution 
2) Low cathode 

concentration polarization 
3) Low anode concentration 

polarization 

1) Low ohmic contribution 
2) High cathode 

concentration 
polarization 

3) Low anode 
concentration 
polarization 

1) Low ohmic contribution 
2) Moderate anode 

concentration 
polarization 

3) Low cathode 
concentration 
polarization 
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More recently, planar SOFC systems with high power densities operating at lower 

temperatures (650 to 850 °C instead of 900 to 1000 °C as was previously the norm) have 

been developed. Combined with the ability of SOFC to use conventional fossil fuels, this 

could help reduce the cost of the fuel cell because less-expensive materials of 

construction could be used at lower temperatures. This would improve the economy of 

applications ranging from small-scale stationary power (down to ~2 kW) to auxiliary power 

units for vehicles and mobile generators for civilian as well as military applications. There 

is even the possibility that SOFC could eventually be used for part of the prime power in 

vehicles. The present challenge for developers is to produce robust, high-performance 

stack technologies based on suitable low-cost materials and fabrication methods. 

Derivatives from SOFC technology, such as oxygen sensors used in automobiles, are 

already in widespread commercial use. 

 

Planar SOFCs provide very high areal (W/cm2) and volumetric (W/cm3) power densities 

and can be manufactured by low-cost conventional ceramic processing techniques; 

however, sealing around the edges of the cells and the control of temperature gradients 

which can cause cell cracking remain issues to be resolved. 

To summarize, a comparison between the main features of planar and tubular structures 

of SOFC is presented in Table 2-3. 

 

Table 2-3: Comparison of main features for planar an tubular structure  
for solid oxide fuel cells [10] 

 Planar Tubular 

Power per unit area Higher Lower 

Power per unit volume Higher Lower 

Ease of fabrication Easier Difficult 

Cost of fabrication Higher Lower 

Ease of sealing Difficult Easy 

Long-term stability Fair Excellent 

Thermo-cycling stability Fair Good 
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2.3.2 Gas Flow configuration in Planar SOFC 

 

The most important design feature of the Planar SOFC relates to gas flow configuration 

and gas manifolding which can be arranged in several ways.  

 Gas flow configurations. Fuel and oxidant flows in planar SOFCs can be arranged 

to be cross-flow, co-flow, or counter-flow. The selection of a particular flow 

configuration has significant effects on temperature and current distribution within 

the stack, depending on the precise stack design. Various flow patterns can be 

implemented in the different flow configurations including Z-flow, serpentine, radial, 

and spiral patterns (see  

 Figure 2-6). Flow fields (flow channels) are used in planar SOFCs to increase 

uniformity of gas distribution and to promote heat and mass transport in each cell. 

In addition, the flow field is often designed to have sufficient pressure drop through 

the cell to promote cell-to-cell flow uniformity within the stack. Thus, defining the 

flow field for both fuel and oxidant flows is an important aspect in designing planar 

SOFCs. For a specific design, the shape and arrangement of the flowfield can be 

varied to improve/optimise stack design. Figure 2-7 shows two examples of 

flowfield design used in planar SOFCs [10]. Flowfields are commonly designed as 

part of the interconnect although certain planar designs include the flowfield in the 

electrodes. Since the flowfield electrically connects the interconnect and the 

electrodes, contact area (between the flowfield and the electrodes) must be 

considered in the design to minimise contact resistance losses. 

 

  
 

Figure 2-6: Flow patterns in planar SOFCs [11] 
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Figure 2-7: Sketch for flow configurations; (a) co-flow; (b) counter-flow; (c) crossflow. [12] 

 

 Gas manifolding. Any stack design must include gas manifolds for routing gases 

from a common supply point to each cell and removing unreacted gases and 

reaction products. Gas manifolds can be classified as external or integral. External 

manifolds are constructed separately from the cell or interconnect component of 

the stack. Figure 2-8 is an external manifold concept for crossflow planar SOFCs. 

Integral manifolds are formed and designed as part of the cell or interconnect and 

one example is found in Figure 2-9. Depending on the design, gas manifolds often 

require sealing to prevent gas leakage or crossover. The manifold seal is insulating 

to prevent cell-to-cell electrical shorts. In principle, the manifold must be designed 

to have low pressure drop (relative to individual cell pressure drop) to provide 

uniform flow distribution to the stack. 

 

Figure 2-8:  Examples of external manifold 
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Figure 2-9: Example of integral manifolds. 

 

2.4 Technical requirements of planar SOFCs and components for stack 

building 

 

The major components of an individual SOFC cell include the electrolyte, the cathode, and 

the anode. Fuel cell stacks contain an electrical interconnect, which links individual cells 

together in series or parallel. The electrolyte is made from a ceramic such as yttria-

stabilized zirconia (YSZ) and functions as a conductor of oxide ions. Oxygen atoms are 

reduced into oxide ions on the porous cathode surface by electrons, and then flow through 

the ceramic electrolyte to the fuel rich porous anode where the oxide ions react with fuel 

(hydrogen), giving up electrons. The interconnect serves to conduct the electrons through 

an external circuit.  

In this section, the requirements of planar SOFC design, the characteristics that the 

leading candidate materials possess with particular attention in the stack components 

(metallic interconnectors, sealing materials and protective coatings) are discussed.  
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2.4.1 Key requirements for planar SOFC design 

 

Advances in ceramic technology, especially in synthesising fine powders, engineering 

material compositions, tailoring composition/property/microstructure relationships, and 

fabricating/processing intricate structures, have contributed to the increased interest in 

planar SOFCs since early 1980s. Significant progress has now been made on the 

demonstration of fabricability, performance, and operation of planar SOFCs.  

A planar SOFC, like any other cell configuration, must be designed to have the desired 

electrical and electrochemical performance, along with required thermal management and 

mechanical/structural integrity to meet operating requirements of specified power 

generation applications. The key requirements are briefly discussed as follow and they are 

summarised in Table 2-4. 

 Electrical performance. It means that the design must minimise ohmic losses in 

the stack. Thus, the current path in the components (especially those having low 

electrical conductivity) must be designed to be as short as possible. There must 

be good electrical contact and sufficient contact area between the components. 

The current collector must also be designed to facilitate current distribution and 

flow in the stack.  

 Electrochemical performance. The stack design must provide for full open circuit 

voltages and minimal polarisation losses. Thus, any significant gas leakage or 

cross-leakage and electrical short must be avoided. Fuel and oxidant must be 

distributed uniformly not only across the area of each cell but also to each cell of 

the stack. The gases must be able to quickly reach the reaction sites to reduce 

mass transport limitation.  

 Thermal management. This requirement means that the design must provide 

stack cooling and more uniform temperature distribution during operation. The 

design must permit the highest possible temperature gradient across the stack. 

 Mechanical/structural integrity. Any planar SOFC stack must be designed to 

have adequate mechanical strength for assembly and handling. Thus, 

mechanical and thermal stresses must be kept to minimum to prevent cracking, 

delamination, or detachment of the components under the variety of operating 

conditions the stack is expected to experience (e.g., normal operating 

temperature gradients, off-design temperature gradients, thermal shock 
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conditions such as sudden power change and cold start-up, and mechanical 

loading expected during installation, moving, and vibration loading). 

Table 2-4: Design requirements for planar SOFC design [11] 

 Property requirement Design target 

Electrical 
performance 

Minimal ohmic loss 

Short current path 
Good electrical contact and 
sufficient contact area. 
Current collector design for 
uniform and short current path. 

Electrochemical 
performance 

Full open circuit voltage 
 
 

Low polarisation loss 

Insignificant gas leakage or 
cross-leakage (no or minimal 
sealing). 
No electrical short. 
Uniform gas distribution between 
cells and across cells.  
Easy gas access to reaction 
sites. 

Thermal 
management 

Cooling and uniform 
temperature distribution. 

 
Highest possible temperature 

gradient across stack. 

Simple and efficient means for 
cooling. 
Appropriate gas flow 
configuration. 
Design to withstand thermal 
stress. 

Mechanical/structural 
integrity 

Mechanical strength for 
assembly and handling. 

Minimal mechanical stress.  

 

 

2.4.2 Cell and Stack Performance   

 

Planar SOFCs of various sizes have been fabricated and operated under various 

conditions. Single cells have been shown to have extraordinarily high areal power 

densities. For example, power densities of up to 1.8 W/cm2 at 800°C and 0.8 W/cm2 at 

650°C have been obtained for anode-supported planar cells with hydrogen fuel and air 

oxidant [13]. 

The planar cell design offers high power density but currently has a number of significant 

issues such as requiring high-temperature gas seals at the edges of the cell components 

to isolate oxidant from fuel. Difficulties in successfully developing such high-temperature 

seals have slowed the development and use of planar design cells for SOFC generators. 
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However, SOFC stacks in 1-25 kW size utilising planar cells are now beginning to be 

designed, fabricated, and electrically tested.  

 

2.4.3 Interconnect materials 

 

Two roles of the interconnect in high-temperature solid oxide fuel cells (SOFCs) are the 

electrical connection between cells and the gas separation within the cell stack. The fact 

that the interconnect must be compatible with all of the cell components as well as be 

stable with respect to both oxidising and reducing gases places very stringent materials 

requirements on it. These requirements plus the additional constraints of cost and ease of 

fabrication tend to limit the possible choices to only a few materials. These materials come 

from either perovskite-type oxide ceramics based on rare earth chromites for operating 

temperatures in the 900-1000°C range or metallic alloys for lower temperature cell 

operation.  

The properties which an interconnect must possess are rather extensive and somewhat 

dependent upon the particular SOFC configuration. However, typical requirements are:  

 High electronic conductivity with low ionic conductivity  

 Chemical stability in both fuel and air  

 Thermal expansion match to other cell components  

 High mechanical strength  

 High thermal conductivity  

 Chemical stability with regard to other cell components  

Depending upon the particular SOFC design, additional requirements such as the ease of 

fabrication to gas-tight density, the ability to make gas-tight seals with other cell 

components, and the material cost also play an important role.  

In order to meet all these requirements, two classes of materials are commonly used for 

interconnects, namely ceramic and metallic materials.  

The first three requirements listed above are crucial and tend to eliminate most candidate 

materials. In fact, for operation at temperatures above 800°C, the only oxides that fit these 

criteria are the doped rare earth chromites.  
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In particular, compositions from the system (La,Sr,Ca)(Cr,Mg)O3 are the leading 

interconnect materials. However, due to the electrical conductivity required, lanthanum 

chromites cannot be used at temperatures lower than 800 °C. In addition, lanthanum 

chromites show undesirable swelling in reducing atmospheres caused by the reduction of 

Cr4+ ions to Cr3+ and the formation of oxygen vacancies [14] leading to strong internal 

stresses and possible cracking during operation. Nevertheless, compositions from the 

system (Y,Ca)CrO3 also have acceptable properties. These rare earth chromites satisfy 

most of the requirements, but have problems in fabrication and have high cost.  

Apart from these physical handicaps, costs are high for the LaCrO3 and for the processing 

of the layers. Hence, the advantages of metallic interconnects are obvious: high electrical 

conductivity, good ability for processing and lower costs. The disadvantages, however, are 

corrosion in combination with increasing resistance during operation, chromium 

evaporation and unsatisfactory high-temperature strength. 

The long-term stability of the metallic interconnect is essentially governed by the corrosion 

characteristics. The materials used for interconnects are alloys which form chromium 

oxide, thus ensuring sufficiently high conductivity for thin oxide scales. Meanwhile, several 

ferritic steels have been developed especially for SOFC application containing only very 

small amounts of aluminium and silicon to avoid the formation of highly resistive oxide 

scales and low amounts of manganese for the formation of (Cr,Mn)3O4 spinels as the outer 

corrosion scale [15, 16]. 

The main focus in interconnect development is still the improvement of corrosion 

behaviour, but also the reduction of the contact resistance of the oxide scales or in 

combination with coatings and the reduction of chromium evaporation to avoid a 

detrimental poisoning of the cathode with chromium species [17, 18]. All these phenomena 

make a major contribution to the observed degradation of stack voltage during operation, 

although it is not yet clarified to what extent. 

The interconnects can be fabricated by machining, pressing or, in the case of powder 

metallurgical alloys, by near-net-shape sintering. The gas distribution is usually realised by 

parallel channels whilst the ridges separating the channels serve as electrical contact with 

the electrodes. An example of these channels was observed previously in Figure 2-7. A 

bipolar interconnect plate is shown in Figure 2-10, which serves several functions: a) gas 

barrier between anode and cathode; b) electrical connector between anode and cathode 
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(series); distribution of fuel and oxidant (flow field). A bipolar interconnector also must 

meet several requirements [19] as follows:  

 Impermeability. 

 Mechanical strength. 

 Flatness and dimensional tolerance.  

 Electrical bulk conductivity. 

 Contact resistance. 

 Pressure drop (flow field design). 

 Manufacturability. 

 Material stability. 

 Cost. 

 

Figure 2-10:  Interconnect design for cross-flow bipolar. 

 

Recently, a high temperature ferritic stainless steel known commercially as Crofer ® APU 

22 has been used in an extensive way for the interconnection of planar anode-supported 

cells. This alloy was especially developed for SOFC application. At temperatures up to 

900°C a chromium-manganese oxide layer is formed on the surface of Crofer ® 22APU 

which is thermodynamically very stable and possesses high electrical conductivity.  

The low coefficient of thermal expansion is matched to that ceramics typically used for 

high temperature fuel cells in the range from room temperature to 900°C. However, the 

high chrome content of this alloy (see Table 2-5) results in a relatively high materials cost 

(around 30 €/kg) and lead to poisoning the cathode with chromium leading to its deposition 

at the three phase (LSM/YSZ/gas) boundary and causing rapid de-activation of the 

cathode. 
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Table 2-5: Crofer ® 22APU chemical composition (%wt) [from material data sheet, May 
2010 by ThyssenKrupp VDM] 

 Cr Fe C Mn Si Cu Al S P Ti La 

Min. 20.0 
Bal. 

 0.30      0.03 0.04 
Max  24.0 0.03 0.80 0.50 0.50 0.50 0.020 0.050 0.20 0.20 

 

 

2.4.4 Protective and contact coatings 

 

Many attempts have been made to reduce the damaging effect of chromium vapours on 

the cathode side by suitable protective layers. The first approach was plasma-sprayed 

coatings of lanthanum chromite as a protective method to minimise the evaporation of 

volatile Cr species [20]. The function of these coatings as diffusion barriers against volatile 

Cr species strongly depends on the quality of the layers (gas tightness, crack density) and 

may not always be as effective as expected. In addition, for anode-supported cells, the 

plasma-sprayed chromite coatings are characterized by high contact resistances and high 

fabrication costs in comparison to ceramic methods using slurries or pastes. However, the 

reactivity of lanthanum chromite with metals, either with Cr- or Fe-based alloys, is low and 

the metal/ceramic interface is very stable under operating conditions. 

Chemical interactions between coatings and interconnect material increase when the 

alkaline earth content in the ceramic is increased. Often perovskite materials have been 

brought in contact with Cr-based alloys or steels and the formation of chromates (e.g. 

CaCrO4 or SrCrO4) was observed [21, 22] leading to the progressive decomposition of the 

perovskite material and a brittle interface. As a consequence of these interactions, the 

application of cobalt oxide or cobalt manganese spinel between the perovskite and alloy 

was investigated [23,24] and showed stable contact resistance over time. 

Coating the ferritic steel Crofer22APU by wet powder spraying with a porous Co3O4 layer 

or a metallic Co layer leads to the formation of a new dense Cr-free reactive layer under 

SOFC operating conditions [25]. As a reaction product of Mn from the oxide scale of the 

steel and the Co3O4 layer, this dense layer may act as a barrier against the vapour phase 

transport of volatile Cr species. 

Contact materials are electrically conductive ceramics applied to improve the contact 

between interconnect and electrode. Whereas for the anode side metallic materials are 
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used (as mesh, foam or paste), the cathode side is often coated with ceramic cathode-like 

compositions having conductivities in the range of 50–500 S/cm. Because there are no 

electrochemical requirements to be obeyed for the contact materials, they can vary 

significantly from the electrode materials and be optimised with regard to other physical 

and chemical properties than the electrodes. Apart from the electrical conductivity, the 

most important properties are the thermal expansion and sintering behaviour at 

assembling temperatures in the range of 800–1100°C. Because the contact layer 

thickness may vary between 30 and 200 µm and ceramic materials heat treated below 

1000°C are usually very porous, the specific conductivity of the material should be high. 

This is, in fact, the case for lanthanum cobaltites which have specific conductivities up to 

1700 S/cm [26]. In contrast, the thermal expansion of these cobaltites has a strong 

mismatch with the other cell components. For electrically conductive ceramics, therefore, a 

compromise between acceptable conductivity and tolerable mismatch in thermal 

expansion has to be made as for the cathode materials. 

 

2.4.5 Sealing materials 

 

The challenges of sealing the oxidant from fuel in planar SOFC stacks is significant. The 

function of SOFC seals includes: 

 Prevent mixing of fuel and oxidant. 

 Prevent mixing of reactants with the ambient environment. 

 Provide mechanical bonding of components. 

 Provide electrical insulation between stack components. 

 

Planar designs typically require multiple seals per repeat unit, and even in planar designs 

the length of the seals can vary by two or three orders of magnitude for a given area cell 

depending on design. A number of possible seal types is shown in Figure 2-11 for a 

rectangular planar cell with metal interconnects.  
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Figure 2-11: Possible Seal Types in a Planar SOFC [8] 

 

The requirements, material choices, and general sealing concepts are common to most 

planar SOFC stack designs. Fundamentally, two different types of seals are being 

developed for SOFC: bonded and compressive seals. 

Bonded Seals 

Bonded seals can be rigid or compliant. A hermetic seal is achieved through adhesive 

forces between the seal material and both surfaces against which the seal is to work. The 

seal material must have good adhesive properties (good wettability of the material to be 

sealed). 

Some are designed to remain flexible over the operating range of the cell, while others are 

meant to be rigid. To use the rigid type of seal, the thermal expansion coefficient of the 

seal material and all other components must be closely matched. If the seal is compliant, 

the thermal expansion coefficient matching requirements are somewhat relaxed. The 

bonding temperature for this type of seal should lie between the operating temperature 

and the stability limit for the other cell materials. There are several common sub-types of 

bonded seals currently under consideration for SOFC applications. Glass and glass-

ceramic seals are perhaps the most common. This type of seal is attractive because: 

 Viscous/wetting behavior of glass facilitates hermetic sealing. 

 They are inexpensive and easy to manufacture and apply. 
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 Wide range of compositions of glass and ceramics allows tailoring some of the key 

properties (e.g. thermal expansion coefficient glass transition temperature). 

 Glass-ceramics can be designed to avoid viscous flow and uncontrolled progressive 

crystallization during operation. 

 

However, glass-ceramic seals also exhibit disadvantages: 

 They are brittle, leading to seal and even cell failures during cool-down; 

 Despite control, few glass systems allow a match of thermal expansion coefficient 

to other important cell materials (typically alkaline earth-alumina-silica glasses). In 

any case, the cell materials do not match each other close enough to allow a rigid 

seal in larger cells. 

 Many glasses interact with adjacent cell components, especially with the 

interconnects. 

 Some of the constituents of glass volatilize during operation (e.g. silica, borate, and 

alkali metals). These constituents will likely foul or poison the electrode catalyst or 

interact in an undesirable manner with other cell components. 

Metal brazes, which use a molten metal filler to ensure sealing, provide some attractive 

features: 

 Molten metal facilitates hermetic sealing. 

 Easy to fabricate. 

 Properties can be tailored by judicious choice of composition. 

 

However, several factors limit their application in SOFC: 

 Brazes are electrically conductive, making them unsuitable of most seal types. 

 Few braze materials are compatible with SOFC operating conditions. Noble metals 

are considered too expensive in most SOFC stack designs. Silver is less expensive, 

but its use in a dual (oxidizing and reducing) environment can lead to chemical 

instability. 
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In addition to the benefits listed above, bonded seals result in compact structures, as no 

load- frame or other means to apply pressure is required. However, in cells with metal 

interconnects, the mismatch in thermal expansion may be too great for the use of rigid 

seals. 

As mentioned before, glass or glass ceramics are frequently applied for joining metals, 

especially the joining of steels [27]. Many of these products are available commercially, but 

most of the sealing products are produced for low-temperature joining and for room 

temperature applications. However, no commercial product fulfills the requirements of a 

thermal expansion coefficient in the range of 10–13 x 10-6 K-1 up to high temperatures. 

Therefore, many SOFC developers started their own sealing development. 

 

Compressive Seals 

A hermetic seal is achieved by pressing the seal material between the surfaces to be 

sealed. The seal material must be elastic over the operating temperature range, and 

sufficiently soft to fill the micro-roughness on the surfaces to be sealed. Compressive seals 

offer several advantages: 

 Mechanically “de-couple” adjacent stack components, thus reducing thermal stress 

during cycling. 

 Thermal expansion matching requirements between cell components may be 

somewhat relaxed (though electrical contact considerations may still require this) 

 Some are easy and inexpensive to fabricate. 

 

However, there are also barriers to overcome: 

 Difficult to achieve a hermetic seal with some materials unless “soft seat” interlayer 

is provided. 

 Few materials and structures are compliant and provide a hermetic seal at the 

operating temperatures. 

 A load frame is required to provide compression to all seals. This type of hardware 

is potentially bulky and expensive. If (portions of the) load frame must be kept at 

lower temperatures than the stack itself, packaging and insulation is significantly 
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complicated, especially if multiple stacks are to be combined for larger-capacity 

systems. 

 Other stack components must be designed to withstand prolonged pressure. This 

can be a challenge, given that creep strength of the metals used in the interconnect 

is typically very low (in the 700 to 800 °C operating temperature range typical for 

state-of-the-art planar cells). 

 To the extent that electrical contact between cell components depends on 

controlled pressure, balancing these pressure requirements with those of the seal 

can be a challenge for the cell designer. 

 

Recently, mica and hybrid mica seals have been developed as a viable technology. Mica 

seals were found to have many desirable characteristics, such as the ability to withstand 

thermal cycling, but exhibited unacceptable leak rates. When a thin layer of glass is 

inserted on either side of the seal to fill the voids between the seal and the other stack 

components, the leak rate was substantially reduced while other desirable properties were 

retained. 

 

2.4.6 Summary 

 

The research work on solid oxide fuel cells is mainly based on their characterization 

according to theoretical thermodynamics and electrochemistry, fundamentals and 

suitability of materials, fuel issues, experimental measurements on single cells and stacks 

degradation mechanisms and demonstration projects. The design of single cell units is an 

interesting challenge concerning the issues of lowering costs (lower operating 

temperatures, minimize expensive materials), increasing performance (higher conductivity 

electrolyte, more active electrodes, reduction of leakages), durability (lower operating 

temperatures, better seals, improved current collection); and robustness (metal-supported, 

oxidation-tolerant anodes) [28,29,30]. Concerning the issue of fuels for SOFCs, efforts are 

devoted to measure current-voltage characteristics of cells with various feedstocks, the 

effect of sulphur poisoning of anodes, design of the thermal management and control of 

systems [31]. Many works are focused in the characterization of SOFCs short stacks with 

the aim of investigate reliable measurement procedures of performance of single cell units 
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and stack, possible scale-up problems during multi-cell stacking, practical viability of the 

stack and stack components via log-term operation and thermal cycling tests, performance 

dependence upon fuel and air flow, pointing both to flow homogeneity between cells in a 

stack and flow distribution within a repeating unit [32].  

 

An extensive simulation activity can be found in open literature. Several models approach 

the simulation of SOFC systems, computational fluid-dynamic of single cell units and 

stacks; a promising approach is represented by mesoscopic models (Lattice Boltzmann 

methods- LBMs) [33, 34].  

 

Furthermore, one of the major challenges for implementation of SOFC (planar 

configuration) is the development of suitable sealant material to separate the air and the 

fuel. The seals must be stable in a wide range of oxygen partial pressure (air and fuel) and 

be chemically compatible with other fuel cell components, while minimizing thermal 

stresses during high temperature operation [35, 36].  

 

Glasses and glass-ceramics, in principle, meet most of the requirements of an ideal 

sealant by choosing suitably the components of the glasses and their proportion [37]. 

Glass ceramics, which can be prepared by controlled sintering and crystallization of 

glasses, possess superior mechanical properties and higher viscosity at the SOFC 

operating temperature. To develop a suitable glass-ceramic sealant, it is therefore 

necessary to understand the crystallization kinetics both from the point of view of its 

sealing properties and of its chemical interactions when in contact with other components 

of the cell. For example, barium aluminosilicate sealants showed a high reactivity with the 

metallic interconnect [38], while phosphate and borate glasses are not sufficient stable in 

the humidified fuel gas environment. 

 

One of the keys to commercialisation of SOFC-based power generation systems is a 

major reduction in costs of the SOFC stack. It is now widely accepted that planar cell and 

stack configurations offer the best prospect for commercially viable SOFC systems. Such 

geometries offer high power densities and the potential for low-cost production of the cell 

and stack components; for example the cells could be produced by conventional, mass- 

production processes such as tape-casting.  
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The development of planar SOFC technology has been the subject of worldwide 

programmes for more than ten years and considerable progress has been made in 

improving cell performance and in gaining a greater understanding of the underlying 

materials and design issues. However, there have been few demonstrations of planar 

SOFC stack technology at a significant scale due to the difficulties in achieving a sealed 

and mechanically robust design and problems with the stability of the materials in the stack 

operating environment.  

 

At this stage the most viable route for lowering stack operating temperatures is to use the 

anode as the structural support for a very thin electrolyte (~10 µm). The concomitant 

reduction in electrolyte resistance removes a major barrier to efficient operation of the 

SOFC stack at temperatures below 800°C. There may also be benefits in improved 

mechanical robustness of the anode- supported cells compared to electrolyte-supported 

cells. Given these potential advantages, anode-supported cells technology is currently the 

subject of development programmes at a number of companies and research institutes 

around the world. 

Reducing the stack operating temperature is one way to reduce degradation rates and 

potentially to allow the use of lower cost materials in the stack and system. This would be 

particularly attractive if it allowed the stack interconnect plate to be produced from ferritic 

stainless steel or similar low- cost metal. To date, planar SOFC technology development 

has mainly focused on cells in which the structural member is the electrolyte, which needs 

to be at least 100 µm in thickness in order to retain the mechanical integrity of the cell. 

With the conventionally used electrolyte materials (generally, yttria- stabilised zirconia or 

YSZ) this dictates that the cells should operate at temperatures above about 850°C in 

order to keep the electrolyte resistance to acceptable levels. This restricts the materials 

choice for the interconnect plate to expensive alloys or electronically conducting ceramics.  

High stack operating temperatures also add to overall system costs since this requires that 

the surrounding system components such as afterburners and heat exchangers are also 

produced from expensive, heat resistant materials. However, as long as the SOFC stack 

operating temperature does not fall significantly below 700°C, sufficient heat should still be 

available to allow steam reforming of the fuel and therefore maintain high system 

efficiency. 



Solid Oxide Fuel Cells Overview 

Design & Development of Planar Solid Oxide Fuel Cell Stack                                      41 

Two principal routes for reducing the operating temperature of the planar stack can be 

considered. One route is to replace the conventional materials with those having better 

electrical and catalytic performance at lower temperature. This applies to replacement of 

the YSZ electrolyte with a material of inherently higher oxygen ion conductivity as well as 

employing improved electrode materials. New materials are being investigated but 

limitations such as mechanical strength and chemical stability are still being addressed 

and they will not realistically be available for use in stacks for some years. 

 

e. Goals and importance of SOFC Development  

 

Solid Oxide Fuel Cells  have the potential to become a major source of electrical energy in 

the coming decades. They combine very high electrical efficiency (in the range 45-60%) 

with extremely low emissions of major local air pollutants (CO, NOx and unburned 

hydrocarbons). They can potentially be operated on a range of fuels, including pipeline 

natural gas and bio-mass, without a significant loss of efficiency or increase in system 

complexity and cost. Being essentially modular, SOFC systems will be highly attractive for 

the distributed power market where units can be sized and configured to meet a particular 

local power generation demand.  

Efficiency and long-term stability are the two main goals of SOFC development, 

particularly with regard to new applications. Besides commercially available stationary 

systems, mobile applications like auxiliary power units (APU) [39, 40] or μ-SOFCs [41] as 

battery replacement are of increasing interest. In the course of that, the operating 

temperature of the systems need to be reduced from 800 °C ≤ T ≤ 1000 °C to T ≤ 750 °C 

for APU application and to T ≤ 600 °C for μ-SOFC application. In general, a reduction of 

the operating temperature offers advantages and bears drawbacks. The material 

requirements of the system and developing costs are reduced substantially for 

intermediate-temperature SOFCs (IT-SOFCs) at 500 °C ≤ T ≤ 750 °C. For example, the 

bipolar plate facilitating the electrical contacting of the fuel cells and providing the supply of 

the gaseous fuels can be made of highly alloyed ferritic steel as opposed to ceramic 

interconnects at operating temperatures below 800 °C, which makes the production of the 

plate suitable for a cheap mass production. Additionally, decreasing operating temperature 

leads to increased long-term stability and simplified thermal management of the SOFC 

system. On the other hand, the thermally activated transport processes in solid oxide fuel 
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cells decrease in principle with decreasing operating temperature entailing an increase of 

ohmic (predominantly electrolyte based) and electrode polarization losses and thereby 

causing a decrease of SOFC efficiency. However, the increase of power density is a 

central approach in world-wide SOFC research [42] to further the competitiveness to 

existing energy systems. Therefore, the development of highly efficient electrolytes and 

catalytically effective electrodes at 500 °C ≤ T ≤ 750 °C is of decisive relevance. 

On the electrolyte-site the first step to meet these demands was the introduction of thin-

film electrolytes (thickness t ≈ 10 μm) in anode-supported cells (ASC), which are able to 

significantly reduce the portion of ohmic losses in comparison to electrolyte-supported 

cells (ESC, t ≈ 150 μm). Besides geometrical optimization, two approaches for higher 

oxygen-ion conduction of the electrolyte itself are pursued: a) the development of new 

materials (e.g. doped lanthanum gallate, (La,Sr)(Ga,Mg)O3-δ, LSGM [43]) with high 

oxygen-diffusion properties and b) the usage of a tailored microstructure of the electrolyte 

taking advantage of potential grain-size effects.  

For the development of high-performance cathodes, the following requirements have been 

stipulated [44]: beneficial chemical diffusion and oxygen-exchange properties of the 

cathode material (I), adjusted coefficients of thermal expansion (TEC) (II) and chemical 

compatibility (III) between cathode and substrate and a tailored microstructure (IV). 

Some of these requirements have already been fulfilled: Mixed ionic-electronic conducting 

(MIEC) iron- and cobalt-containing perovskites from the (La,Sr)(Co,Fe)O3-δ (LSCF) 

material group are already known for their high oxygen permeability (I) [45] and high 

electrocatalytic activity [46, 47]. These MIEC materials significantly enlarge the area where 

the oxygen reduction can take place and thereby provide lower cathode polarization losses 

compared to solely electronic conducting cathode materials like (La,Sr)(Mn)O3-δ (LSM). 

The TEC of the cathode (II) is usually adjusted by the stoichiometry on the B-site (Co, Fe) 

[48]; the chemical compatibility (III) is ensured by the introduction of a ceria-based 

interlayer between cathode and electrolyte [49]. The role of the microstructure (IV), 

however, is still unclear. 
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3 SOFC stack development & assembly  

 

The research carried out in this PhD focuses on materials, structure optimization and 

engineering techniques for developing anode supported planar SOFC stack components. 

Preliminary technical aspects were approached in order to obtain a behavior improvement 

of stack. 

Engineering processes developed are based on the in-house production. The aims are 

primarily to reduce costs, and to improve the reliability and robustness of the stack 

systems against conditions that occur in actual operating systems. 

 

3.1 Stack SOFC Components & Materials 

3.1.1 Standard Repeat Units (SRU) 

 

The main structure of the SRU with single cell was designed and assembled as shown in 

Figure 3-1. This design takes into account its reproducibility in a higher scale for multi-cells 

configuration. 
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1. Fuel Cell 
2. Glass-Ceramic Seal 

3. Metallic Frame  
4. Metallic Mesh 

5. Compressive Seal 
6. Interconnect 

Figure 3-1: Main structure of the SRU with single cell 

 

This configuration includes the separation between anodic and cathodic gas by means of 

the glass-ceramic seal. Also, the Compressive Seals were utilized for electric insulation 

and manifolds sealing. In addition, it was necessary to include the metallic mesh (Ni at the 

anode side and Platinum at the cathode side) to improve the electrical contact between the 

electrode and interconnect plates of the system. The frame is a metallic component made 

in CroFer® (ferritic stainless steel) which is the sealing gasket for glass-ceramic seal.  

 

The SRU material selection was done taking into consideration the thermal expansion 

coefficients compatibility among the cell and stack components, as observed in Figure 3-2 

and Figure 3-3, where can be evidenced that the mismatch in thermal expansion at 800°C 
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between the cell and the metallic interconnect is too great for using rigid seal. This is the 

reason to use the glass-ceramic seal to join the electrolyte to the metallic frame.  

 

Figure 3-2: Expansion of Typical Cell Components in a 10 cm x 10 cm Planar SOFC with 
Ni-YSZ anode, YSZ Electrolyte, LSM Cathode, and Ferritic Steel Interconnect. [50] 

 

  

Figure 3-3: Thermal Expansion coefficients of Cell and Stack Materials [51] 

 

3.1.2 Housing  

This element is formed by two plates as schematically shown in Figure 3-4. The housing 

constitute the mechanical support due to it maintains pressure equalized in fuel cell stack 

(tightening torque: 50N) during test. A second function is to distribute the gases (Air and 

Fuel) in the stack because of the inlet manifolds. Each housing plate must be coupled with 
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the respective counterpart, because each of them has the external manifolds, one for the 

inlet gas and the other for the outlet gas.  

 

 

Figure 3-4: Schematic of the housing plates and the bolts. [53] 

 

These parts are made in Stainless steel AISI 316L. This alloy offers higher creep, stress-

to-rupture, and tensile strength at elevated temperature. In addition, AISI 316L has lower 

carbon content than AISI 316. This characteristic is important to avoid the susceptibility for 

intergranular corrosion at high temperatures [52]. 

 

Table 3-1: Chemical composition of AISI 316 and 316L [from IMS S.p.a.] 

AISI 316 

C Mn Si Cr Ni Mo N Others 

≤0.070 ≤2.00 ≤1.00 16.50÷18.50 10.00÷13.00 2.00÷2.50 ≤0.11 
S≤0.030 
P≤0.045 

AISI 316L 

C Mn Si Cr Ni Mo N Others 

≤0.030 ≤2.00 ≤1.00 16.50÷18.50 10.00÷13.00 2.00÷2.50 ≤0.11 
S≤0.030 
P≤0.045 
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In this work, a simple integrated compression system was developed to guaranty a 

hermetic enclosure of the planar SOFC stack. Basically, the two housing plates (see 

Figure 3-4 ) are characterized by the load of the bolts and the plates deformation depends 

on load and temperature (as per Young modulus).  

The distance between the two plates also depends on the temperature (through thermal 

expansion coefficients) and the number of layers (through friction and roughness). A 

numerical routine procedure suggest that the pressure to be applied to the housing plates 

has to be one and a half times higher respect to the required one during operation for 

three cells stack shows in Figure 3-4. This value increases as the number of layer does 

[53]. 

In this PhD investigation, the housing plates were designed as shown in Figure 3-5 a). 

These components were designed to contain the stack, to distribute the gases and to lock 

hermetically the stacks and its pieces. This figure notes also the position of the metallic 

interconnector on housing plate (b); two pictures of the prototype with a detail of bolts 

positioning (c); and after building completion (d).  

 

Figure 3-5: a) Drawing of the housing plates used; b) Drawing of the housing plate with 
the interconnector; c) Detail of bolts positioning during the prototype assembly; d) 

Prototypical stack after building completion.  

Thanks to the development of the compression system described above, the prototypes 

properly functioned more than 500 hours at standard operation conditions.  
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Additionally, it must be noted that this system does not work under thermal cycle 

conditions due to the loss of bolts mechanical properties after the first thermal cycle. This 

happens because of the high mechanical loads at high temperatures. The solution 

adopted in this research was the use of a new set of bolts in each stack.  

A possible optimization for future developments would be the improvement of the 

compression system by means of springs, braces, or hydraulic controlled system. 

Besides the functions of housing explained before, this component also works as 

interconnector since it was manufactured to have the flow field for cathodic and anodic 

gases. The figure below exhibits the two housing designs and the one used in this 

investigation (see Figure 3-6 b), which enhanced the bolts position as shown in Figure 3-5 

b).  

  
Figure 3-6: Housing Stack: a) first version; b) improved version. 

 

3.1.3 Compressive Seal 

These kinds of seals must be guaranteed two functions: electrical insulation; and sealing 

between the stack structure and housing component.   

During the stack assembly, two types of compressive seals were used. The first one is the 

Flexible Mica Paper from Fuel Cell Materials. Mica paper is a commonly used material for 

compressive sealing in SOFC stacks, due to it offers excellent thermal, electrical and 

moisture resistance. The mica paper dimensions used was 170 x 170 mm with 

thicknesses of 0.50 mm. In addition, a laser cutting was employed to obtain exactly the 

manifolds and the holes for bolts positioning, as noticed in Figure 3-7 a).  

a b 
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Figure 3-7: Compressive seal types: a) Mica paper; b), Thermiculite® 866 by Flexitallic 

 

The second type of seal is illustrated in Figure 3-7 b). This seal has a high performance 

material and it is supplied in cut gasket or sheet form. The material is composed of a blend 

of chemically exfoliated vermiculite and steatite and is totally free from organic material 

consequently the material will not release thermal decomposition products during elevated 

temperature service. This seal can be applied for requirements as: low stress sealing, 

electrical isolation, non-contaminating and complex gasket geometry. 

 

3.1.4 Glass-ceramic Seal 

This seal is positioned between the cell and the frame. It is also known as “bonded seals”. 

The seal used in this PhD Thesis was developed by DISAT-Politecnico di Torino in the 

framework of the Regional Project “MULTISS” and in cooperation with the development of 

the prototypical stack in this research. 

A schematic view of the metallic frame is presented in Figure 3-8.The process for 

developing the seal joint between the cell and the frame is illustrated in Figure 3-9 and a 

description of this process is mentioned hereafter.  

 

 

 

a b 
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Figure 3-8: 3D schematic view of Metallic frame 

 

The sealant composition ranged between 50-55 wt% SiO2, 10-12 wt% Al2O3, 20-23 wt% 

CaO and 10-12 wt%Na2O. The sealant, labeled as SACN, was produced as a glass by 

melting the appropriate raw materials in different proportions and by heating at 1500°C 

for 1 hour in a platinum crucible; the melt was cast on a metal plate and the transparent 

glass was ground for differential thermal analysis (DTA) and hot stage microscopy 

experiments (HSM). 

 

Preliminary studies of wettability of the sealing glass on CroFer®22APU alloy (as 

received and preoxidised at 950°C in air for 2 hours,) and on YSZ supported on NiO-YSZ 

anode (ASE) ceramic were carried out by heating microscopy or in a tubular oven under 

air or Ar atmosphere. 

 

The CroFer®22APU/glass-ceramic sealant/ASE joined samples were obtained by 

placing the CroFer®22APU plates on the yttria-stabilised zirconia (YSZ) surface of the 

anode-supported- electrolyte with the glass slurry sandwiched in between. The slurry 

was made of a mixture of glass powder dispersed in ethanol (solid content 40 wt. %). 

 

Heat-treatments were performed in a tubular oven (argon atmosphere) at a temperature 

above the glass softening point, without applying any load. Reproducible results, in terms 

of joint thickness and homogeneity were obtained. The joining thermal treatment was 

carried out from room temperature to 900°C with a dwelling time of 30 minutes at 900°C 

and a heating rate of 5°C/min. Two main crystalline phases were detected by X-ray 

diffraction (XRD) in the glass-ceramic obtained after the sealant heat-treatment 

necessary for the joining process: Ca2Al2SiO7 and NaAlSiO4. 
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Furthermore, some CroFer®22APU/glass-ceramic sealant/ASE samples were exposed 

to H2-3H2O atmosphere at 800°C for 500 hours, and to thermal cycles (air atmosphere) 

from room temperature to 800ºC for a period of 500 hours and 3000 hours. 

 

Cross-sections of joined samples were characterized by scanning electron microscopy 

(SEM) after polishing. EDS analysis was carried out in order to detect any elemental 

diffusion into or away from the seal after H2-3%H2O atmosphere exposure and following 

thermal cycling at 800˚C and to examine for any chemical interactions between 

CroFer®22APU and cell with the glass-ceramic sealant at the three-phase-boundary 

under reducing and oxidizing conditions. An example of seal joint in the frame can be 

observed in Figure 3-10. These results can be found in Chapter 5.  

 

 

Table 3-2: Characteristic temperatures and thermo mechanical properties 

of the proposed sealant 

 

Glass-ceramic  sealant 

Tg (°C) 670 

Softening temperature (°C) 740 

Thermal expansion coefficient (°C -1) 10.7 (300°C-500°C). 

Temperature at η 104  dPa·s (°C) 1165 
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Figure 3-9: Joining CroFer® frame / glass-ceramic sealant / ASC cell unit procedure 

 

 

 

  
 

Figure 3-10: SOFC joined to metallic frame with glass ceramic seal to the: 
 a) Anodic side; b) Cathodic side.  

 

 

b a 
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3.1.5 Interconnect 
 

This component presents two important functions: one related to the air distribution on the 

cathode side or to the fuel distribution on the Anode side to assure high efficiency of the 

chemical conversion; and the second function related the electrical connection of the cells.  

A computational fluid dynamic study (CFD) was carried out to define interconnect 

geometry. It is important to properly choose a gas flow distribution geometry (flow field) of 

the interconnect plate to guaranty high performance of chemical reactions in the cell 

electrodes. In the cell surface, three main ways of dealing with the slow reaction rates are: 

the use of catalysts, raising the temperature and increasing the electrode area. The first 

two can be applied to any chemical reaction. However, the third is special to fuel cells and 

is very important. Indeed, electrode area is such a vital issue that the performance of a fuel 

cell design is often quoted in terms of the current per cm2 [54].  

However, the surface area is not the only issue; the electrode is made highly porous. This 

has the effect of greatly increasing the effective surface area. SOFC cell electrodes have a 

microstructure that gives them surface areas that can be hundreds or even thousands of 

times their straightforward ‘length × width. On the other hand, the gas flow required for the 

porous electrode is higher than to straightforward area of the electrodes. 

The CFD analysis for the interconnect definition was carried out in the framework of the 

Regional Project “The Design and in-house development of Solid Oxide Fuel Cell (SOFC) 

stacks for dealing with multiple fuels” (MULTISS).The developed design is in accordance 

to the flow field simulation and this is explained in the “Appendix A” of this thesis. Some 

results were exposed below. 

Figure 3-11 shows the model mesh that was built for the tuning of the algorithms and the 

validation the gas flow field for the pins configuration.  
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Figure 3-11: Example of the CFD mesh on the interconnector surface for the Pins 
configuration flow field. 

 

Simulations in fact showed the presence of a “shadow effect” behind the geometry 

constraints of the interconnect (pins or channels) that significantly reduce the 

concentrations of the reactants in that zones. This implies that at high current density 

some part of the anode volume works very badly and the cell behaves as it had a lower 

active surface. These justify the diffusive limit of the polarization curves and suggest some 

strategies to reduce this effect and to obtain good performance also at high current 

density. Unfortunately, reducing this effect by decreasing the pins or channels width 

contrast with the electrical conduction need between electrode and interconnector. (See 

Figure 3-12). 

 

Figure 3-12 “Shadow effect” of the pins to the reactant diffusion  
in the electrode volume 
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After modeling work was utilized to optimize the gas flow inside the interconnects. 

Preliminary comparisons were made between circular cells and square cells varying the 

inlet and outlet size. The results show that the corner region is the worst ones in term of 

fluid distribution. So circular cell for this kind of inlet-outlet configuration was justified. (See 

Figure 3-13). 

 

       
 

Figure 3-13: H2 molar fraction distribution on the anode surface at different current 
densities in case of rectangular cells with channel flow field. 

 

Then, using circular geometry, some simulations are made changing the ratio between the 

inlet and the outlet channel section, which is one of the most important parameters in fluid 

flow distribution. (See Figure 3-14) 
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Figure 3-14: H2 molar fraction distribution on the anode surface at different current 
densities in case of circular cells, with modification of the ratio between the inlet and 

the outlet channel section 

 

Best results are obtained in those configurations with similar inlet and outlet dimensions. 

Variations in channels geometry (complex configurations or similar) could optimize the flow 

fields for a single operation point but simpler geometries work better for general purpose 

operations. We also experimented that a transversal channel can redistribute differences 

between longitudinal channels with positive effect. Since the electrical modeling is the less 

approximate part, the channel width and the ratio between channel and solid part widths 

was considered in conservative way. 

Figure 3-15 shows the finally design for different interconnect plates of anode and cathode 

sides; and it is possible to note the different gas flow profiles (pins or channels) considered 

previously. 
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Figure 3-15: Interconnector with different gas flow designs. a) anode side with pin 
configuration, b) cathode side of bipolar interconnect with channel configuration and c) 

cathode end plate interconnect with channel configuration. 

 

The material used for the interconnect fabrication was a commercially Ferritic stainless 

Steel with high amount of Chromium named Crofer® APU22 produced by ThyssenKrupp 

Germany. The thickness of the raw plate was 2.5 mm and the material was machined in 

accordance with the mechanical design done in this PhD investigation during the stack 

development phase.  

The metallic mesh is an additional connector between the cell and the interconnect plate in 

anode side (nickel) as well as in cathode side (platinum). In this way, a good electrical 

connection and compatibility under operative conditions can be obtained (reduce for the 

anode and oxidant for the cathode). In this work, the meshes utilized were from Alfa Aesar 

- A Johnson Matthey Company, Platinum and Mikel Gauze 100 mesh. An example can be 

appreciated in Figure 3-16. 

The metallic mesh improves and makes uniform the electrons distribution on the 

electrodes surface. It also reduces the contact resistance due to the malleability and the 

adaptation capabilty to the geometry of electrodes and interconnectors. The mesh has an 

excellent compatibility with the anode since they both are made of the same material. On 

the cathode side, it is necessary to use noble metals like Pt or Au for avoiding the surface 

oxidation between the interface electrode/interconnector. Other solution can be the use of 

inconel (Ni-based alloy) with a protective coating in order to reduce costs by substituting 

a 

b 

c 
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the utilization of noble metals. In this way, the interconnector conductivity can be increased 

by reducing the contact resistance, as shown in Table 3-3. 

 

 

Figure 3-16: Platinum mesh (100 mesh) 

 

Table 3-3: Electrical Conductivity of metals used in SOFC components 

Element 
Electrical Conductivity 

(x 10^7 Ohm.m) 
Element 

Electrical Conductivity 

(x 10^7 Ohm.m) 

Ag 6.21 Co 1.72 
Cu 5.88 Ni 1.43 
Au 4.55 Fe 1.02 
Al 3.65 Pt 0.96 
Mg 2.33 CroFer® 1.81 

 

Another step for the interconnect preparation consisted of the protective coating 

application on the interconnect surface. This coating was developed by Edison Research 

& Development Center Edison S.p.A [55,53] in the framework of MULTISS project. A thin 

Mn1.5Co1.5O4 coating (1µm) was deposited on CroFer®22APU using thermal co-

evaporation technique, followed by heat treatment in oxygen. Further details related to the 

coating fabricating technique and results are reported in [55]. 

 

3.1.6 Fuel Cell 

This investigation was based on a commercial circular planar SOFC by HC stark with 80 

mm diameter for anode and electrolyte, while the diameter of 70 mm was used for the 
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cathode. In this way, there was a gap of 10mm for the glass ceramic seal to join the cell 

with the frame. It was an anode supported type. The cell consisted of: 

 Anode made of NiO-YSZ  

 YSZ electrolyte (8 % mol. Yttria Stabilized Zirconia). 

 Double layer cathode made of LSM (lanthanum strontium manganite) and YSZ-

LSM (YSZ functional layer and a LSM current collecting layer).  

The thickness of the anode was around 580 µm, the electrolyte layer was 4 µm thick, and 

the thickness of the cathode was around 45 µm.  

 

3.2 Assembly procedure 

 

In this paragraph, a detailed procedure for stack assembly is found. Every step carried out 

during this procedure is illustrated in Figure 3-17.  

 

Figure 3-17: Steps for stack assembly procedure 
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1) Housing Stack Fuel. This element is the structure mechanical support due to it 

maintains pressure equalized in fuel cell stack (50N) during test.  A second function 

is given by the Air and Fuel distribution in the stack because it has the inlet 

manifold.  This component must be coupled with its external counterpart, which has 

the outlet manifold. 

 

2) Mica Insulation. Two functions are guaranteed: electrical insulation; and sealing 

between the stack structure and housing component.   

 

3) Cathode End Plate This piece has two functions related to the air distribution on the 

Cathode side (developed design in accordance to the fuel field simulation); and the 

electrical wire connection. 

4) Mica Insulation. This material brings the functions related to the electrical insulation 

and the sealing between the cathode plate and the frame plate (cell joint).  

 

5) Electrical connector Cathode side. This part brings the electrical connection 

between the cathode cell and the metallic plate. The materials used must keep a 

high electrical conductivity at high temperatures (around 800°C) and oxidant 

atmosphere. 

 

6) Fuel Cell type anode supported (ASC). This part is constituted by three basic 

elements of stack: Frame: It is a thin CroFer® plate, which supports the jointed cell. 

Sealing glass-ceramic Cell. 

 

7) Mica Insulation. In addition to the electrical insulation, this material seals the anode 

plate and the frame plate (cell joint). 

 

8) Electrical connector Anode side. This part brings the electrical connection between 

the anode cell and the metallic plate. The materials used must keep a high electrical 

conductivity at high temperatures (around 800°C). 

 

9) Anode End Plate. This piece has two functions related to the fuel distribution on the 

Anode side (developed design in accordance to the fuel field simulation); and the 

electrical wire connection. 



SOFC stack development & assembly 

DESIGN & DEVELOPMENT OF PLANAR SOLID OXIDE FUEL CELL STACK        61 

 

10)  Mica Insulation. Two functions are guaranteed: electrical insulation; and sealing 

between the stack structure and housing component. 

 

11)  Housing Stack Fuel. This part has the same function that the housing shown at the 

beginning of this sequence. It must be coupled with its internal counterpart, which 

has the inlet manifold. 

The procedure shown above was developed to allow the assembly of multi cells 

configuration. Some pictures of the prototypes produced with one cell and 3 cells are 

reported as follows. 

Mono cell configurations Multi cell configurations (3 cells) 
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4. SOFC Stack Testing  

 

A short-stack of planar cells was designed, developed and built. In this section, the 

experimental results obtained with short-stacks of mono cell and multi cells 

configurations are presented and analyzed. 

 

Two standard configurations were defined and tested: 

1. One cell configuration. The aim consisted of testing the assembly stack system in 

order to evaluate the mechanical structure and material compatibility, thermo-

fluid-dynamic field and electrical connection. Other aspect to study is the cathode 

protection from Cr poisoning by means of a protective coating. 

2. Three cells configuration. The idea was to verify the scale-up of the system 

from the lab design to a higher power system. Additionally, a high duration test 

was performed to verify the system stability. A fuel system was integrated based 

on simulated biogas used as primary fuel source. 

 

The conditions used during testing of short stacks are summarized in Table 4-1. Results 

obtained from every test will be extensive presented and discussed in the next 

paragraphs. 
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Table 4-1: The experimental conditions used for the shorts-stacks tested 

Test Test name Cell number Flow field 
Protective 

Coating 

Time 

(hours) 

I m1STACK 1 Pins no 250 

II m2STACK 1 Pins yes 375 

III STACK 1 3 Channels yes 200 

IV STACK 2 3  Channels yes   

 

 

4.1 Test I: Stack on mono cell configuration without protective coating. 

 

Scope of this test was to verify the stack design, assembly procedure and proper 

operation of seal glass-ceramic based cell assembly. The duration of this test was 250h. 

The gas flow design in the interconnect plate was Pins configuration (see Figure 3.11). 

No protective coating was deposited on the interconnectors.  

 

The stack stability was tested in Open Circuit Voltage (OCV) conditions and then 

different flow rates of H2 were used in order to verify the stack response with different 

fuel utilization (FU), as can be seen in Figure 4-1. 
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Figure 4-1: Galvanostatic performance of the m1STACK. 

 

During the first 75 hours, in the OCV condition it is possible to note a slightly increase of 

the voltage. This increase can be explained by a normally activation of the electrode.  

The polarizations tests (I-V curves) were done to check the degradation of the stack. 

These tests were completed with the same gas flow rate of H2 (500 Nml/min), as seen in 

Table 4-2. 

 

Table 4-2: Referential time for the I-V curve done with H2 (500 Nml/min) 

Test Time (h) 

1 95 

2 110 

3 150 

4 170 

5 185 

6 220 

 

OCV 

1 2 
3 

4 

5 6 
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Different flow rates conditions of H2 were tested in the whole test duration. The respective 

results were taken from the polarization curve form (I-V curve) to evaluate the stack 

behavior and response with FU variations.  

Figure 4-2 presents the decreasing performance of the stack under the same flow rate of 

H2 (500 Nml/min) during all time tested. Specifically, in the beginning on the test 1 and 2 

(see Figure 4-1 for timing reference) is evident the activation process of the electrode 

and the assessment of the electrical connection between the cell and the interconnect 

plate. These affirmations were confirmed with ASR curve presented in the Figure 4-3. 

 

Additionally, the maximum power of the stack (during third test) after 140 hours was 

obtained at high current conditions (from 0.5 A/cm2) as seen in Figure 4-2. In fact, this 

maximum power value corresponds to the minimum curve of ASR (see Figure 4-3), 

which is related to the ASC3 cell value. On the other hand, the decreasing performance 

of the stack was begun after the third test. The progress degradation was noted on the 

tests 4, 5 and 6 in Figure 4-2 and Figure 4-3. 

 

  

Figure 4-2: I-V curve with the same H2 flow rate (500 Nml/min) to verify the m1Stack 
performance during all time test. 
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Figure 4-3: Comparison of the ASR during all time test at 500 Nml/min of H2 

 

Other interesting result was the decreasing performance of the stack with the variation of 

the H2 flow rates, as presented in Figure 4-4. This is more evident for H2 flow rates lower 

than 400 Nml/min at high current conditions (from 0.5 A/cm2). This means that the stack 

is limited in power generation with low H2 flow rates and high Fuel Utilization. For this 

reason, the optimization of the flow field of plates was carried out. 

 

 

Figure 4-4: I-V curve with different flow rates (250 – 1000 Nml/min)  
to verify the m1Stack performance in a short time. 
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Figure 4-5: I-V curve with the same H2 flow rate (500 Nml/min)  
to verify the m1Stack performance during all time test. 

 

The I–V curve of the stack and the output performance of the individual cells is shown in 

Figure 4-5. The maximum power of the stack was 8.5W, while the ASC3 cell produced a 

power peak of 27W when fed with the same flow rate of H2 (500 Nml/min). This difference 

represents an energy loss around 70% with respect to the total capacity of power 

production of the cell. These losses can be attained to the ohmic losses due to the contact 

resistance between interconnectors and cell.  

 

 

4.2 Test II: Stack on mono cell configuration with protective coating 

 

Scope of this test was to check the stack performance and durability using a protective 

coating of the interconnector face in contact with the cathode electrode to avoid its Cr 

poisoning. The protective coating was produced by Edison Research & Development 

Center Edison S.p.A [53, 55]. The duration of this test was of 375 h, as can be seen in 

Figure 4-6. 

The stack stability was tested in OCV conditions during the first part, and then different 

flow rates of H2 were used in order to verify the stack response with different fuel 

utilization. The stack was stable for more than 300 hours under electrical load and without 

apparent degradation. 
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Figure 4-6: Galvanostatic performance of the m2STACK 

 

Figure 4-7 notices the evaluation of the polarization, power, efficiency and fuel utilization 

obtained with the variation of the flow rate of H2 on the m2Stack test.  

The maximum efficiency was about 29% with a FU of 80%. An evident improvement was 

obtained in comparison with m1STACK. In fact, the maximum power on the m2Stack is 

20% higher than the m1Stack (11 vs. 8.5 W). Additionally, higher current densities were 

obtained with lower hydrogen flow rates. 

 



SOFC Stack Testing 

DESIGN & DEVELOPMENT OF PLANAR SOLID OXIDE FUEL CELL STACK        69 

  

  

Figure 4-7: Polarization, power, efficiency and FU of the m2STACK 

 

The I–V curve of the stack and the output performance of the individual cells shown in 

Figure 4-8. The maximum power of the stack was 11W, while the ASC3 cell produced a 

power peak of 27W when it was feeding with the same flow rate of H2 (500 Nml/min). This 

difference represents an energy loss of 60% of the total that the cell can produce. These 

losses can be attained to the ohmic losses due to the contact resistance between 

interconnectors and cell. A slight improvement of 10% of power produced was obtained in 

comparison to m1Stack. 
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Figure 4-8: I-V curve with the same H2 flow rate (500 Nml/min) to verify the m2Stack 
performance during all time test. 

 

Moreover, the ASR value of the m2Stack reported in the Figure 4-9 shows an 

enhancement in confront with the ASR value of the m1Stack. The protective coating 

represents betterment for the stack system. During 375 hours of test, there was no 

evidence of voltage decreasing at load current conditions. So, there were no indications 

related to cathode Cr poisoning. On the contrary, the test on m1Stack revealed voltage 

decay from 150 hours. This is a clear indication of cathode Cr poisoning. 

 

Finally, the optimization of the flow field of plates should be carried out to reduce the 

ASR values of the stack. Also, a reduction of the interconnect thickness is necessary. In 

this way, the ohmic losses will decrease whereas the power stack performance 

increases.    
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Figure 4-9: Comparison of the ASR in m1Stack and m2Stack. 

 

4.3 Test III: Stack on three cell configuration with protective coating 

 

Scope of this test was to verify the stack design and the scaling up to assembly procedure 

and the electrical stability of the developed stack in multi cell configuration. 

Other innovation was the modification of flow field of cathode and anode plates by 

changing from pin configuration (used in the previous mono cell) to channels configuration 

(used in the new 3 cells short-stack), as shown in Figure 3.13 b and c).  

The stability was tested in Open Circuit Voltage conditions during the first part of test and 

then the stack was supplied with 1000 Nml/min flow of H2 (effective 333 Nml/min x cell) to 

analyze the stack response and durability. These values are the maximum operating 

values in this test because of lab instrumental limitations. 
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Figure 4-10: Galvanostatic performance of the STACK 1. 

The specify polarizations tests (I-V curves) were done to check the degradation of the 

stack. These tests (see Table 4-2:) were completed with the same gas flow rate of H2 (333 

Nml/min). 

Table 4-3: Referential time for the I-V curve done with H2 (333 Nml/min) 

Test Time (h) 

1 50 

2 80 

3 100 

4 125 

5 150 

6 175 

 

Although the stack was stable, 3 cells did not present the same behavior (see Figure 4-10 

and Figure 4-11). The top and down cells exhibited better performances at low current. On 

the contrary, the central cell performed better at high current. 

OCV 

1 

2 

3 4 5 
6 
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This test was influenced by two electrical blackouts: one of 40 minutes and the other one 

was about 20 minutes the day after. These events caused the automatic closure of the H2 

safety electrovalve. Probably, they caused the partial anode oxidation. In consequence, it 

was not possible to perform this test for a long time. 

 

Figure 4-11: I-V curves for the 3 cells of the STACK1 

 

In Figure 4-12, it is possible to note a detrimental effect in the internal fuel dynamic in the 

stack, especially in case of the response obtained at high current conditions. Also, tests 

with the same flow rate (H2: 333 Nml/min; Air: 533 Nml/min per cell) have been performed 

to investigate the fuel cell degradation during tests completion (200 hours). (See Table 

4-3). 
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Figure 4-12: I-V curve with the same H2 flow rate (333 Nml/min x cell)  
to verify the stack performance during all time test. 

 

Additionally, the ASR value of the Stack 1 (3 cells configuration) reported in the Figure 

4-13 shows an enhancement at low current conditions. In particular, a significant reduction 

of ASR values was reached at the end of the test (Test 6) in comparison with the previous 

ones. Taking into account these results, it is necessary to perform experiments for a higher 

duration in order to assure the electrodes activation and electrical connections 

assessment. 
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Figure 4-13: Comparison of the ASR values during all time test for stack1 

 

4.4 Test IV: Stack on three cell configuration with protective coating fed with 

simulated reformed biogas. 

 

Scope of this test was to verify the electrical stability of the developed stack in multi cell 

configuration fed with simulated reformed biogas. This test was executed in the framework 

of the PRIN2008 project. 

One innovation was the modification of a fuel composition, changing the H2 with a 

simulated biogas. For this, it was necessary the implementation of a cleaning 

(desulfurization) and reforming system.  

Figure 4-14 shows a scheme of SOFC stack integration with simulated reformer biogas, 

while Figure 4-15 presents the Piping & Instrumentation Diagram (P&ID) of SOFC stack 

fed with simulated reformed biogas. This test bench (see Figure 4-16) was developed and 

built in Energy Department of Politecnico di Torino to operate with the two systems in an 

independent way to assure the correct functioning of both systems before integration.  
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Figure 4-14: Schematic process of SOFC stack fed with simulated reformed biogas. 
 

 

Figure 4-15: Piping & Instrumentation Diagram (P&ID) of SOFC stack fed  
with simulated reformed biogas 
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Figure 4-16: Test Bench Developed by Energy Department of Politecnico di Torino 
for tested SOFC stack fed with different fuel. 

 

Figure 4-17 notices the electrochemical performance of the Stack2. In the first part of the 

test, the stack was fed with H2 and next it was integrated with the simulated reformer 

biogas system. Electrical stable conditions were obtained for more than 500 hours with a 

current density around 0.1 A/cm2. The stack and the biogas fuel system were integrated 

for the last 300 hours of test.  

Unfortunately, the hydrogen inlet pipe was broken after 50 hours. The safety system 

avoids the total damage of the stack, nevertheless two of the three cells were affected: V1 

around 80% and V2 (about 40%). Since the cell 3 did not reveal any damage and the 

reformer properly worked, it was decided to continue the experiment until 500 hours.  
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Figure 4-17: Galvanostatic performance for > 500 h in Stack2. 

 

This test was satisfactory completed regard to the integration of both systems, as can be 

seen in Figure 4-18, where it is possible to note the inlet and outlet gases in the critical 

point of the system (simulated biogas, cleaning, reformer and stack).   

 

Figure 4-18: Gases composition during the SOFC stack integration phases with simulated 
biogas system.   



SOFC Stack Testing 

DESIGN & DEVELOPMENT OF PLANAR SOLID OXIDE FUEL CELL STACK        79 

In fact, the desulphurization and reforming system satisfactorily worked due to they allow 

feed the SOFC stack as seen in Table 4-4, where the simulated biogas polluted with sulfur 

was cleaned (desulphurization) and the reformer converted the CH4 into CO2 

 

Table 4-4: Gases composition during the SOFC stack integration phases with simulated 
biogas system. 

  
Cleaning section Reformer Stack 

 
Simulated 

biogas 
Starting 
Cleaning 

Final 
Cleaning 

starting 
Reformer 

final 
Reformer 

starting 
Stack 

Final   
Stack 

H2 0,00 0,00 0,00 51,50 62,39 22,19 8,47 

CH4 60,00 59,17 59,89 0,02 3,16 0,01 0,04 

CO2 40,00 39,19 39,64 29,34 11,66 0,98 0,18 

CO 0,00 1,09 0,00 19,14 22,78 0,00 0,00 

N2+CO 0,00 0,00 0,00 0,00 0,00 76,87 91,32 

H2S 
(ppmv) 

32,07 0,00 0,00 0,00 0,00 0,00 0,00 
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5. SOFC Stack Characterization  

The short-stacks tested were submitted to post mortem examination and the respective 

results, in terms of mechanical structure, material compatibility and durability are analyzed 

are presented and analyzed in this Chapter. Other aspect that was studied regards the 

cathode protection from Cr poisoning by means of a protective coating. The conditions 

used during testing of short stacks are summarized in Table 4.1. 

Figure 5-1 shows the prototypical SOFC stack before and after testing. It is evident the 

oxidation occurred in housing plates and bolts. In consequence, another stainless steel 

should use with better performances at high temperatures (800°C) not only from corrosion 

resistance point of view but also with a good mechanical stability and durability.  
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BEFORE AFTER 

  

  

Figure 5-1: Developed SOFC stack: before & after testing 

 

The housing material was stainless steel AISI 316L. This alloy offers higher creep, stress-

to-rupture, and tensile strength at elevated temperature. In addition, L-graded (low carbon 

content) is resistant to sensitization (precipitation of chromium carbide along the grain 

boundaries) in short-term exposures at high temperatures [56]. The sensitization 

phenomenon results in susceptibility to intergranular corrosion, since the grains become 

depleted in chromium and lose their corrosion resistance (see Figure 5-2). The 

intergranular corrosion susceptibility occurs during long term exposures at elevated 

temperatures (400-850°C). This explains the material degradation observed in housing 

plates and bolts after long thermal cycling tests.  
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Figure 5-2: Scheme of the sensitization phenomenon in austenitic stainless steel. 

 

A solution could be to replace the AISI 316L with AISI 316Ti, which is a Titanium stabilized 

graded. This proposal looks for the prevention of intergranular corrosion, since 

incorporating strong carbide formers or stabilizing elements such as titanium or niobium in 

the stainless steels. These elements have a much greater affinity for carbon than 

chromium, then, carbide formation with these elements reduces the carbon available in the 

alloy for formation of chromium carbides. The Table 5-1 shows the chemical composition 

differences between these alloys.  

 

Table 5-1: Chemical composition of AISI 316, 316L and 316Ti [from IMS S.p.a.] 

AISI 316 

C Mn Si Cr Ni Mo N Others 

≤0.070 ≤2.00 ≤1.00 16.50÷18.50 10.00÷13.00 2.00÷2.50 ≤0.11 
S≤0.030 
P≤0.045 

AISI 316L 

C Mn Si Cr Ni Mo N Others 

≤0.030 ≤2.00 ≤1.00 16.50÷18.50 10.00÷13.00 2.00÷2.50 ≤0.11 
S≤0.030 
P≤0.045 

AISI 316Ti 

C Mn Si Cr Ni Mo Ti Others 

≤0.080 ≤2.00 ≤1.00 16.50÷18.50 10.50÷13.50 2.00÷2.50 5xC÷0.70 
S≤0.030 
P≤0.045 

 

On the other hand, the bolts material is the same for the housing plates. The main issue is 

related to the loss of tightening torque at elevated temperatures, although the applied 
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torque took into account the calculated torque at ambient and at 800°C. The stack is 

subjected to thermal cycling that does not allow an appropriate control of the compression 

system when 800°C are reached. Considering this aspect, another compression system 

(e.g: braces) could be used for having better control.  

The effect of the tightening torque loss can be appreciated in Figure 5-3, due to the 

oxidation signs presented in the compressive seal gaskets, which were subsequently 

reduced by H2. In this way, leakages between the housing and the end plate interconnect 

is evident. The gases could leak during the cooling phase of the stack, because the bolts 

are shrunk by thermal effects losing then the tightening torque.  

It is also possible that leakages occur during testing. In particular, the temperature 

increases after the application of electrical current, due to the Joule effect.  

In order to enhance the stack performance, it would be necessary to optimize or 

developed a new compression system which can guarantee a good control of tightening 

torque to avoid leakages.  

 

 

Figure 5-3: Housing plates after stack disassembly 

 

 

5.1 POST MORTEM ANALYSIS ON m1STACK 

 

Figure 5-4 shows a schematic cross section view of the ASC cell joined to the 

Crofer22APU frame (submitted to 250 hours of tests in m1STACK), that has been cut in 
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different zones and sections. The sketch reported in Figure 5-4 will be used as a reference 

for post mortem analyses of the tests described above. 

 

Figure 5-4: Schematic cross section view of the ASC cell joined to the frame 
 

Figure 5-5a, shows a SEM cross section of Crofer22®APU/glass-ceramic sealant after 

250 hours of m1STACK test. The interface between the glass-ceramic sealant and the 

Crofer®22APU is homogenous, free of cracks and voids; the preoxidation layer on the 

Crofer®22APU is still visible. No elements (Cr and Mn) diffusion was detected into the 

glass-ceramic sealant, as demonstrated by the EDS elements mapping reported in Figure 

5-6.  

 

Figure 5-5: SEM cross section of Crofer22APU/glass-ceramic sealant after 250 hours 
of m1STACK test. 

Figure 5-5b, shows the SEM cross section of YSZ/glass-ceramic sealant interface; it can 

be observed that the interface is still sound and continuous and the very thin YSZ 

electrolyte (5 µm) is not cracked. 

(a) (b) 
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Figure 5-6: SEM and EDS analyses Crofer22APU/glass-ceramic sealant/air side three 
phase boundary 

Further SEM and EDS analyses were focused at the Crofer22®APU/glass-ceramic 

sealant/air side three phase boundary. The microstructure at the edges of the samples 

around the glass-ceramic sealant/Crofer®22APU interface was also investigated in order 

to examine the presence of any corrosion products. The SEM micrograph reported in 

Figure 5-7 did not reveal any anomalous corrosion of the Crofer®22APU interconnect. 

 

Figure 5-7: SEM micrograph Crofer22APU interconnect 
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Examinations on the cathode area close to the interface with YSZ are reported in Figure 

5-8 a and b and show the Mn, Cr spinel oxide faceted crystals deposited on the LSM 

cathode surface; these faceted crystals contain manganese and are generally considered 

to be a spinel phase. 

  

Figure 5-8: (a) and (b): Faceted crystals formed on the cathode 
surface after m1stack test. 

 

Figure 5-9: SEM cross-section of the SRU (area A) after thermal ageing experiments 
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Figure 5-9 shows a LSM cathode top view, close to the electrolyte interface: some 

deposited crystals can be observed on the cathode surface. EDS analysis conducted on 

these crystals revealed the presence of chromium, manganese and oxygen suggesting the 

formation of a (Cr, Mn)3O4 spinel phase. 

In fact, one of the major degradation mechanisms in SOFCs is cathode poisoning by 

chromium from vaporization of the metallic interconnect [57]. The chromium transport 

occurs primarily through the formation of Cr6+ containing species, such as CrO3 or 

CrO2(OH)2, from oxidation of chromium oxide in the interconnect [58]. This phenomenon 

degrades the performance of the cathode under polarization, because it causes 

associated chemical changes of the LSM phase as well the new spinel phase formation 

occurs. Furthermore spinel blocks pores and thus impedes the oxygen reduction required 

for the function of the cell. Chromium poisoning has been observed in chromium-based 

[59], nickel-based [60] and iron-based [61] interconnect alloys. In order to avoid this 

phenomenon, a protective coating was deposited on the interconnector of m2stack, as 

found in the next section.  

 

5.2 POST MORTEM ANALYSIS ON m2STACK 

 

This test is different from m1STACK, because of the presence of Mn1.5Co1.5O4 coating on 

Crofer22APU frame and on Crofer22APU pins. We report a brief description of the coating 

preparation and characterization. A thin Mn1.5Co1.5O4 coating (1µm) was deposited on 

Crofer22APU using thermal co-evaporation technique, followed by heat treatment in 

oxygen. The produced coating (see Figure 5-10) exhibited a dense crystalline structure 

with grain size of about 200 nm. The coating/substrate interface is continuous and pores 

free; the coating average thickness is 1µm. Further details related to the coating 

fabricating technique and results are reported in [55]. 

 



SOFC Stack Characterization 

DESIGN & DEVELOPMENT OF PLANAR SOLID OXIDE FUEL CELL STACK        88 

 

Figure 5-10: FESEM plane and cross section view of Mn1.5Co1.5O4 coated on 

Crofer22APU 

The compatibility of the Mn1.5Co1.5O4 coating with the glass-ceramic sealant was 

preliminary tested; SEM cross section of the as prepared SACN glass ceramic sealant on 

Mn1.5Co1.5O4  coated Crofer22APU is shown in Figure 5-11. The interface between the 

glass ceramic sealant and the Mn1.5Co1.5O4 spinel coating on Crofer22APU is continuous 

and crack free, due to a good thermal expansion coefficient match of the glass ceramic 

sealant (10.7×10−6 C−1) with that of Mn1.5Co1.5O4 spinel (10.8×10−6 C−1) coating on 

Crofer22APU.  
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Figure 5-11: SEM cross section. Interface between the glass ceramic sealant and the 
Mn1.5Co1.5O4 

 

Nevertheless, for the assembly of the m2STACK it was decided to deposit Mn1.5Co1.5O4 

coating on Crofer22APU frame only in the area not in direct contact with the glass-ceramic 

sealant. The glass-ceramic sealant was subsequently deposited in direct contact with the 

preoxidised Crofer22APU. 
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The stack was stable for more than 300 hours (under electrical load) and without apparent 

degradation. As in the case of m1STACK test. The interfaces between the glass-ceramic 

sealant and both the Crofer22APU and YSZ are homogenous, free of cracks and voids, as 

reported in Figure 5-12 a and b respectively.  

 

 

Figure 5-12: The interfaces between the glass-ceramic sealant and both the 
Crofer22APU and YSZ 

 

It must be highlighted that SEM investigations carried out on the cathode surface did not 

reveal the presence of the Mn Cr spinel oxide faced crystals, as reported in Figure 5-13; 

this was an experimental evidence of the effectiveness of the Mn1.5Co1.5O4 spinel coating 

on Crofer22APU, thus preventing cathode Cr poisoning 

 

Figure 5-13: The Mn1.5Co1.5O4 spinel coating on Crofer22APU 

 



SOFC Stack Characterization 

DESIGN & DEVELOPMENT OF PLANAR SOLID OXIDE FUEL CELL STACK        91 

5.3 POST MORTEM ANALYSIS ON STACK 1 (3 cells configuration) test 

 

Figure 5-14 show a picture of the stack after the disassembly. Mica adhesion to the 

surface of the Crofer22APU plate is evident. 

 

 

Figure 5-14: STACK 1 after the disassembly 

 

Figure 5-15 shows a picture of the frame of the top cell in the stack after disassembly; 

glass-ceramic sealant (white) is evident only in some areas, the remaining glass ceramic 

sealant was found to be on the cell side, still adherent to the YSZ electrolyte. 

 

Figure 5-15: Top view of the frame cell 1 in the STACK 1 
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As in the case of the previously described post mortem tests, it was decided to cut small 

samples in the most significant areas; a SEM magnification of Crofer22APU and the glass- 

ceramic sealant at the 3-phase boundary (at the cathode side) is reported in Figure 5-16, 

showing a good adhesion of the sealant to the Crofer22APU. 

 

Figure 5-16: SEM magnification of Crofer22APU and the glass-ceramic sealant at the 
3-phase boundary 

 

SEM magnifications of the red and the blue area respectively are reported in Figure 5-17 

 

Figure 5-17: Top view magnifications of the frame 

 

The SEM magnification of the blue area clearly shows the residual mica stick to the 

Mn1.5Co1.5O4 coated Crofer22APU frame. The magnification of the red area show the 
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Mn1.5Co1.5O4 coating on the Crofer22APU; the coating microstructure is seen to be 

homogenous and without defects. 

Figure 5-19 shows the top view of the LSM cathode/YSZ interface, where no Mn, Cr spinel 

oxide crystal were observed, thus demonstrating an effective protection of the 

Mn1.5Co1.5O4 coating against Cr cathode poisoning. It is important to mention that the 

verification of Cr presence was done at the cathode/electrolyte interface, because after the 

chromium evaporation occurs from the interconnect surface, a gas transport of chromia 

vapour contacts the cathode surface (interconnect/cathode interface), then it reacts and it 

diffuses into cathode until reduction and deposition occurs at cathode/electrolyte interface 

as schematically is illustrated in Figure 5-18.   

 

Figure 5-18: Scheme about formation, transport and interaction of Cr species during 
SOFC operation. 
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Figure 5-19: Top view of the LSM cathode/YSZ interface 

 

Post-mortem examinations were conducted on different areas of the Crofer22APU 

frame/glass-ceramic sealant/ASC cell.  

The stack was stable for more than 300 hours (under electrical load) and without apparent 

degradation. The interfaces between the glass-ceramic sealant and both the 

Crofer®22APU and YSZ are homogenous, free of cracks and voids. 
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6. Conclusions  

 

In this PhD thesis, a planar Solid Oxide Fuel Cell stacks were designed, built, tested and 

analyzed. This investigation was carried out in the framework of the Regional Project “The 

Design and in-house development of Solid Oxide Fuel Cell (SOFC) stacks for dealing with 

multiple fuels” (MULTISS) and the National Project PRIN2008.  

The general objective consisted in the development and in-house production of SOFC 

short-stacks of planar anode-supported geometry for dealing with multiple fuels. In 

consequence, the following main activities were done and the respective conclusion can 

be drawn:  

1. Determination of the stack geometry by means of test of commercial anode-supported 

cell (“ASC3” NiO/YSZ anode, YSZ electrolyte, LSM cathode).  

Preliminary comparisons were made between circular cells and square cells 

varying the inlet and outlet size This study was done by using a numerical modeling 

(see Appendix A) of flowfield in interconnect plates. This activity was carried out in the 

framework of MULTISS Project. The results showed that the corner regions are the 

worst ones in term of fluid distribution. Then, the cell circular geometry was selected.   

The tests were done by using a commercial cell anode-supported type (ASC3) from 

H.C. Starck with diameter of 80mm for anode and electrolyte, while the diameter of 70 

mm was used for the cathode. In this way, there was a gap of 10mm for the glass 

ceramic seal to join the cell with the frame. Additionally, the other stack components 

will have a square geometry to facilitate their manufacturing process and to reduce 

cost.   
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2. Materials selection of stack components (interconnectors, housing, frame, compressive 

and bonded seals), according to compatibility at high temperatures (800°C) in terms of 

thermal expansion, stack mechanical structure, degradation and electrical 

characteristics (insulator or conductor).  

The material chosen for the interconnector and the frame was a ferritic stainless steel 

known as Crofer® 22APU. At temperatures up to 900°C a chromium-manganese oxide 

layer is formed on the surface of Crofer ® 22APU which is thermodynamically very 

stable and possesses high electrical conductivity. The low coefficient of thermal 

expansion (11.9 ·10-6/K) is matched to that ceramics typically used for high 

temperature fuel cells in the range from room temperature to 800°C. 

The housing material utilized was stainless steel AISI 316L. This alloy offers higher 

creep, stress-to-rupture, and tensile strength at elevated temperature. In addition, it is 

resistant to sensitization (precipitation of chromium carbide along the grain boundaries) 

in short-term exposures at high temperatures. The sensitization phenomenon results in 

susceptibility to intergranular corrosion during long term exposures at elevated 

temperatures (400-850°C). This explains the material degradation observed in housing 

plates and bolts after long thermal cycling tests.  

With respect to the compressive seals, two types were selected to guarantee a proper 

gas tightness and electrical insulation. The first one was Thermiculite® 866 (Flexitallic, 

UK) placed between the frame and the interconnect plate; whereas the second one 

was Flexible Mica Paper (Fuel Cell Materials) positioned between the interconnect 

endplate and the housing.  

On the other hand, the bonded seal used to hermetic join the frame with the electrolyte 

was developed by DISAT Politecnico di Torino in the framework of MULTISS Project. 

This research group has widely experience in glass ceramic based materials. In fact, 

they developed a new sealant based on sodium-calcium-aluminum-silicate-glass 

ceramic, which has a thermal expansion coefficient of 10.7 x 10-6 °C-1. This value is 

compatible with YSZ and Crofer® 22APU substrates. 

 

3. Design, development and production of short-stack components adapted on planar 

ASC3 cell: 

 Frame in stainless steel Crofer®22APU to join the cell with SiO2-CaO-Al2O3-Na2O 

sealant providing an effective gas stream separation between the anode and 

cathode side. 
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The performance of a glass-ceramic sealant in two SOFC short stack configurations 

was tested and evaluated. The glassceramic sealant demonstrated an excellent   

chemical and thermo mechanical compatibility with both Crofer®22APU and YSZ 

components providing excellent hermeticity. 

 Interconnect in stainless steel Crofer22APU taking into consideration the following 

aspects from the numerical modeling developed at DENERG Politecnico di Torino 

in the framework of MULTISS project:  

o Two flow fields (pins and channels) to prevent shadow effect at high current 

density were calculated. 

o The inlet and outlet gases dimensions were calculated to facilitate the fuel 

and air distribution in order to minimize the ohmic losses due to contact 

resistance. 

o The flow configuration selected for the bipolar interconnects was cross-flow 

fluid configuration, which is usually utilized to feed standard circular cells.  

 

 Deposition of coating on interconnect surface for cathode protection from Cr 

poisoning. The coating based on Mn1.5Co1.5O4 was developed by Edison Research 

& Development Center, Edison S.p.A, in the framework of MULTISS project. 

 

 For the Housing plates, the loss of tightening torque at elevated temperatures, 

although the applied torque (50N) took into account the calculated torque at 

ambient and at 800°C.   

 

4. Building of short planar anode-supported SOFC stacks. This activity was focused on 

the implementation of innovative and simple procedures, which allowed power capacity 

scale-up in accordance to power requirements.  

 

5. Performance and electrochemical testing of short stacks under steady state conditions. 

It were tested two different configurations as mentioned below:  

 

• One cell configuration. The assembly stack system was tested to evaluate the 

mechanical structure and material compatibility, thermo-fluid-dynamic field and 

electrical connection. In addition, the cathode protection from Cr poisoning was 

examined by means of coating deposition on the interconnect surface. In this 
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way, a comparison was done between m1stack (without coating) and m2stack 

(with protective coating). In the m2stack test (where Mn1.5Co1.5O4 coating was 

previously deposited on Crofer22APU) carried out at ~0.3 A cm-2 and an FU of 

25%, no voltage degradation was observed during the galvanostatic experiment 

of 360 h at 800°C. 

 

• Three cells configuration. The system scale-up from the one cell design to a 

short-stack was verified as well as the system stability thanks to a high duration 

test.  

In addition, a simulated reformed biogas fuel system (desulfurization and 

reforming) was integrated to the Stack2. This aspect represents an innovation, 

since the modification of fuel composition was carried out, by changing from H2 

fuel to simulated biogas.  

 

6. Stacks disassembly and Post mortem characterization of stack components 

(interconnectors, frame, sealant, protective coating and ASC cells). The mechanical 

structure, material compatibility, durability and cathode protection from Cr poisoning 

were examined by using Scanning Electron Microscopy (SEM) and Energy Dispersion 

Spectroscopy (EDS). This activity was carried out in collaboration with Department of 

Applied Science and Technology (DISAT) of the Politecnico di Torino and Edison 

Research & Development Center Edison S.p.A, in the framework of MULTISS project.  

 

Finally, the main conclusions can be drawn as follows: 

 The short stack development in a reliable and reproducible way was confirmed. 

 It was demonstrated that the assembly procedure was efficient thank to the ease 

procedure and time reduction in the production of the different configurations. 

 SOFC stack assembly feasibility to operate in steady state conditions was 

demonstrated.  

 The protective coating of the interconnector face in contact with the cathode 

electrode improved the stack stability as demonstrated with testing. 

 The power capacity increasing of stack unit was obtained by using a simple scaling 

procedure.  
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 The short stack with 3 cells configuration performs and is stable.  

 SOFC stack operation with simulated biogas feeding was proved. 

 Cleaning gas and reforming system were integrated with SOFC stack in steady 

state condition for more than 300 hours. 

 

 

 

Recommendations and Future works  

 

Some recommendations are mentioned below as a consequence of the lessons learned 

during this research. In the same way, future works and applications are presented.  

 

 Changing material of housing and bolts from AISI 316L to 310S; which combines 

excellent high temperature properties with good weldability and ductility, is designed 

for high temperature service. AISI 310S resists oxidation in continuous service at 

temperatures up to 1150°C when reducing sulfur gases are not present. This alloy 

is also used for intermittent service at temperatures up to 1040°C. 

 Development of a new compression stacks system in order to automatically control 

the tightening torque. 

 Performing tests of long duration (>1000 h) to verify the stack stability and 

durability. 

 Modeling and design a complete BoP around the SOFC short-stack. 

 Energetic and economic analysis of the SOFC introduction in market applications. 
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A. Appendix  

 

Modeling and design of the single planar SOFC 
 
 

The CFD analysis for the interconnect definition was carried out in the framework of the 

Regional Project “The Design and in-house development of Solid Oxide Fuel Cell (SOFC) 

stacks for dealing with multiple fuels” (MULTISS).[53,62,63] 

 
Modeling plays an important role in this project. The two main goals are: 

4 to understand, demonstrate and describe certain phenomena that happen inside the 
cell and housings difficult to observe during the tests; 

5 to perform a large number of virtual tests in order to optimize some aspect or part of 

the system, such as minimizing pressure drops or improve fluids distribution. 
 

Many post mortem analysis in fact reveal that somewhere the fluid flow was unstable or 

that temperature values are abnormal in some part of the cell. Intuitive justifications are 

provided after experimental tests, and through the simulations these hypothesis are 

confirmed. Furthermore it is possible to circumscribe the main involved phenomena and 

eventually to perform simulations to emphasize only them. After that, a large number of 

simulations to research the better configuration or to perform topology optimizations are 

done. 
 

Modeling solid oxide fuel cells mainly consists in coupling traditional algorithm for solving 

multi species Navier-Stokes equations with some routine that simulate the electrolyte 

behavior. In commerce many tools for CFD (computational fluid dynamic) exist, and some 

of them already provide adequate routines to simulate fuel cells in general and SOFC in 

particular.  

 

Often the quality of these codes is very high, but two inconvenient have to be underlined: 

first of all the high (in some cases prohibitive) licensing costs, and second that one can 

only do what the tools are designed for. This aspect could be a strong limitation in research 

activities where one wants to simulate only certain phenomena, or develop models that 

differ from the standard ones, or implement the “wrong physic” to confirm or disprove 

some hypothesis. Moreover licensing costs represents barren costs in research project 

because they have to be considered like a consumables and not reusable when project 

ends. For all these reasons the attention is focused on the OpenFOAM® CFD tool that is 

open source (no license cost has to be taken into account) and it is fully customizable 

basing on our needs (middle-high C++ knowledge is necessary). This software provide 

some  precompiled Navier-Stokes solvers for  fluid flows  and porous media but the 

multi species mass and thermal transport are not well implemented and no fuel cells 
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integrated module already exists. In this project the standard code was updated with a 

new multi species mass transport library developed during the project and an own SOFC 

code was implemented. Of course part of time was spent for building modeling 

instrument and not for simulations research. But in this way people that worked in this field 

obtained an high level formation and they really increase their knowhow both in CFD in 

general and in SOFC simulations in particular. This represent a long term investment 

because this knowledge can be fruitfully reutilized in other projects. The large amount of 

work dedicated to build multi-species transport library and to develop the SOFC code 

finally converged into a publication. 
 

Modeling single cells presents some difficulties characteristic of the problem. First of all, 

we have to consider that the domain is limited respect to the real system, and boundary 

conditions can heavily modify the model behavior and results especially from the thermal 

point of view. In fact we didn't know the exact temperature distribution around the cell but 

only some temperature constrains far from it. Furthermore the combustion of the exhausts 

at the cells border drastically change the thermal field in that zones. Complete system 

model required too many computational resources and even if we can have them we risk 

to lose our main target that is the cell simulation and topology optimization. For this reason 

many isothermal simulation were performed that give us acceptable results. Domain 

limitations also give us some difficulties to numerically describe the combustion around the 

cell from a gas composition point of view. In fact the dynamic of combustion is affected 

from the external cell environment conditions such as oxygen availability and thermal 

constrains. Another problem encountered during the simulations concern the mesh 

generation. Many cell components are characterized by very high aspect ratio (ratio 

between  the  minimum  and  maximum  dimensions).  For  example  the  cathode  has  a 

diameter of 80 mm and a thickness of 0.034 mm. An adequate grid resolutions along the 

thickness implies a big resolution along other dimensions so the total number of elements 

quickly increases. For this reason many studies of mesh-independent are performed in 

order to prove the quality of our meshes. 

 

Activity 

 
The first modeling step is the mesh generation and the most complex component from this 

point of view is the interconnect. The meshes used for simulations in MULTISS project are 

generated following two main process: 
 

 parametric script for generating simple geometries for repetitive simulations used in 

model tuning, validation and topological optimization; 

 standard  pre-processing  method  starting  from  CAD  software,  exporting  the 

geometry into a grid generator tool and finally importing the mesh to utilize it with 

the CFD code. 
 

In the first case very controllable mesh quality can be obtained and the mesh generation is 

directly coupled inside an automatic process. This is a very useful functionality to obtain a 

complete SOFC simulation tool, in fact for an end user it is sufficient to tune some settings 
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to obtain an own mesh (based on some predefined geometry). The second mesh 

generation process is more similar to what happened in industrial environment. In this 

case it is possible to design more complex geometry fully coupled with other components. 

In this case particular attention has to be placed on mesh quality in order to prevent 

abnormal behavior of the grid generation tool. 

 

 

 
 

 

Figure A-1: Example of the mesh on the interconnector surface 

 
Once the model and the mesh are built the next step is the tuning of the algorithms and 
the validation. The philosophy used is to use the real physic values for parameters that 
have it (porosity, tortuosity, etc…) and to respect the relations between parameter used to 
tune the model (for example between anode and cathode exchange current density). The 
validation process showed that the differences between 2D and 3D model is appreciable 
only at medium-high current density. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A-2: H2 molar fraction at the anode surface as a function of current density in case of 2D (left) 

and 3D (right) models 
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Figure A-3: Experimental and model polarization curves in case of 2D and 3D models 

 
In general simulated curves overlap the simulated ones very well. At high current density 
2D simulation over predict the voltage and the polarization curves don’t fall down in the 
diffusive limiting region. This is due to the absence of any geometric fluid channels 
impedances in that simulation. Simulations in fact showed the presence of a “shadow 
effect” behind the geometry constraints of the interconnect (pins or channels) that 
significantly reduce the concentrations of the reactants in that zones. This implies that at 
high current density some part of the anode volume works very bad and the cell behaves 
as it had a lower active surface. This justify the diffusive limit of the polarization curves and 
suggest some strategies to reduce this effect and to obtain good performance also at high 
current density. Unfortunately reducing this effect by decreasing the pins or channels width 
contrast with the electrical conduction need between electrode and interconnector. 

 

 
 

 
 

Figure A-4: “Shadow effect” of the pins to the reactant diffusion in the electrode volume 
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Another phenomenon that is explained through simulations is the lower experimental OCV 
value respect to the theoretical one during not sealed configuration tests. A little difference 
is expected due to gas leakage through the cell electrolyte and the measured value had to 
be justified in other way. We know that in the un-sealed configuration the exhausts burn 
outside the cell. This implies two main consequences: the increasing of the temperature 
and the variation of the reactant concentrations. The interested zone affected by this two 
phenomena is the annular region at the border of the cell, quite big even if it takes a little 
ray unit. An approximate combustion model (steady state, laminar, Arrhenius reaction 
rates, low grid refinement, etc…) was implemented because it was not the main aim of our 
works, but it however gave an explanation to the observed OCV phenomena. 

 

 
 

 
 

Figure A-5: Heat flow for burning reaction at the border of the un-sealed cell 

 

 

When the anodic fluid flow is high enough (every cases where a quantity of molar flux on 
nitrogen is added) the combustion mainly occurs outside the cell but the diffusive effects 
on the reactants are present also inside the gas channels. So there is a zone of the cells in 
which the temperature is higher, the oxygen is nearly absent, the hydrogen is lacking and 
the water is present in abundance. All these factors contribute to reduce the Nernst 
potential. The  entity  of  this  reduction  is  comparable with  the  measured OCV.  More 
accurate results could be achievable modeling combustion in more accurate way. 
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Figure A-6 Distribution of molar fraction along the cell ray in case of un-sealed cell 

 

 

First simulations are used to understand and explain physic phenomena. After modeling 
work was utilized to optimize the gas flow inside the interconnects. Preliminary 
comparisons were made between circular cells and square cells varying the inlet and 
outlet size. The results shows that the corner region are the worst ones in term of fluid 
distribution. So circular cell for this kind of inlet-outlet configuration was justified. 
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Figure A-7: H2 molar fraction distribution on the anode surface at different current densities in case of 

rectangular cells 

 

Then, using circular geometry, some simulations are made changing the ratio between the 

inlet and the outlet channel section, that is one of the most important parameters in fluid 

flow distribution. 
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Figure A-8: H2 molar fraction distribution on the anode surface at different current densities in case of 

circular cells, with modification of the ratio between the inlet and the outlet channel section 
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Best results are obtained in that configurations with similar inlet and outlet dimensions. 

Variations in channels geometry (complex configurations or similar) could optimize the flow 

fields for a single operation point but simpler geometries work better for general purpose 

operations. We also experimented that a transversal channel can redistribute differences 

between longitudinal channels with positive effect. Since the electrical modeling is the less 

approximate part, the channel width and the ratio between channel and solid part widths 

was considered in conservative way. 
 

Finally some simulations are performed about the anodic and cathodic flow configuration. 

Standard circular cells are usually fed by cross flow fluid configuration. Counter flow 

configuration could work better both in term of gas distribution and in term of current and 

temperature distribution. Unfortunately the optimal configuration require two different inlet 

manifold. This could increase the complexity of the system so it was not considered for 

preliminary tests. 
 

 
Figure A-9: H2 and O2 molar fraction distribution on respectively the anode and cathode surfaces at 

different current densities in case of circular cells, in case of different flow configuration (cross- flow, 

multiple inlet, etc) 

 
Conclusions 

At the end of Single Repeated Unit (SRU) simulation process, many parameters are fixed 
and some rules are defined in order to optimize the geometry.  
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Modeling suggests that the width of the channels has to be thicker as much as possible 
in order to prevent shadow effect at high current density.The inlet and outlet dimensions 
are increased to facilitate the fuel distribution. 

 
The ratio between fuel channel width and interconnect width is set to one to minimize 
the ohmic losses due to contact resistance. Further simulations with comparison with 
experimental results suggest that the ratio can be set to two or three without increase 
the electric resistance and improving fluid dynamic performances. 
 
The results can  be  improved increasing the  meshes resolution and upgrading 
some models like combustion, mass and heat transfer, etc… This can be done only 
increasing the complexity of the model and only for one cell. 
 
Considering the future stack point of view the model was built in order to obtain best 
results with minimum computational requirement. For optimization also 
economic/manufacturing constraints are considered in order to provide a geometry 
realistically feasible. 
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B. Appendix  

 

Figure B-1: Data from Kittel, Introduction to Solid State Physics, 7th Ed. 

Referenced to G. T. Meaden, Electrical resistance of metals, Plenum, 1965. 
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