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Pollution control represents one of the main problems of public interest in all 

industrialised countries. Nowadays, the widespread issue of urban waste disposal 

has highlighted the necessity of developing advanced technological solutions aimed 

at improving waste containment facilities, since the major component of the solid 

waste disposal system to this day is still the landfill, in almost every country. 

Since the 1970s, when the engineering of waste containment began, the overall 

objective of Environmental Geotechnics was to limit contaminant discharge to 

groundwater and subsoil (Benson, 2000). Initially, clay liners and clay caps were 

introduced to provide isolation of waste leachate from the subsoil (or the 

groundwater beneath), in the case of liners, or to guarantee long-term control of 

percolation into the waste, and thus control the generation of leachate, in the case of 

covers. 

Since the 1990s design engineers and environmental agencies have shown a growing 

interest in the use of geosynthetic clay liners (GCLs) as an alternative to compacted 

clays in cover systems or in bottom lining of waste containment facilities because 

they have very low hydraulic conductivity to water and relatively low cost (Bouazza, 

2002). 

GCLs contain a thin layer of sodium bentonite with a dry thickness between 5 and 

10 mm, sandwiched between two geotextiles or glued to a geomembrane, GM. The 



����


excellent hydraulic performances of GCLs have to be attributed to bentonite 

characteristics (Shackelford et al., 2000) and, since these last are greatly influenced 

by the chemical composition of the environment surrounding the barrier and by the 

state parameters, the performances of GCLs can be altered, and then worsened, by a 

simple variation of the chemical or physical boundary conditions. 

Aimed at solving this last issue, clay liners and GCLs have undergone great change 

during the last two decades, with new material being introduced (i.e. polymers) and 

new design methods being adopted (i.e. membrane behaviour investigation, 

contaminant diffusion estimation). These new technologies have been used in 

several applications for pollution control to offer higher levels of safety, to guarantee 

maintenance of excellent performances, even in the long term, and to reduce the 

overall cost of liner construction (i.e. cheaper raw material and more practical 

installation).  

The research project developed during the Ph.D. has been focused on bentonite 

barriers. The term �bentonite barriers� includes bentonite or bentonite-based barriers 

which find application both in urban waste landfill, hazardous or radioactive wastes 

final disposal and in hydrocarbon containment.  

The developed theoretical and experimental study has had the aim of evaluating the 

possible improvement of containment performance of the bentonite barriers, towards 

standard (i.e. de-ionized water, DW) and non standard liquids (i.e. sodium and 

calcium chloride solutions or diesel oil), acting on their state parameters, chemical 

composition, and boundary conditions at installation. 

The whole laboratory activity has been developed at Politecnico di Torino, in the 

laboratory of soil mechanics of the Department of Environment, Land and 

Infrastructure Engineering and in the Disaster Planning Laboratory of the 

Department of Structural, Geotechnical and Building Engineering, with an exception 

for the swell pressure tests, which have been performed at ISMGEO (Seriate, Milan, 

Italy). 
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The contents of this thesis cover the main topic analysed during the development of 

the 3-years Ph.D. research programme. A short summary is reported below: 


����������������� ���!��� ��"�

This chapter is an introduction to the topic of the research activity: the improvement 

of contaminant containment performances of the bentonite barrier. Chapter 1 gives a 

phenomenological and physical description of the mineralogical, chemical and 

physical properties of sodium and calcium bentonite. Moreover, the main features 

and issues concerning Geosynthetic Clay Liners, and bentonite barriers in general, 

are introduced. 
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The role of physical pre-treatments, such as pre-hydration, pre-consolidation and salt 

removal, applied to sodium and polymer modified bentonites, has been analyzed in 

the Paper reported in chapter 2, titled: �THE ROLE OF PHYSICAL 

PRETREATMENTS ON THE HYDRAULIC CONDUCTIVITY OF NATURAL 

AND POLYMER MODIFIED SODIUM BENTONITES�. Moreover, the effect of 

the presence or absence of needling across the bentonite layer has been studied.  

All these variables have been shown to influence the hydraulic performances of 

bentonite through hydraulic conductivity change in both short and long term 

conditions. Physical pre-treatments and polymer addiction, in fact, influence the 

swelling behaviour of bentonite and its response to the cation exchange 

phenomenon. 

�


�������-����"$�� &���)�".�(( �/�������� �"��%�!����� ���!��� ��"�

In the Paper included in this chapter, titled �COUPLED CHEMICAL-

HYDRAULIC-MECHANICAL BEHAVIOUR OF BENTONITES�, a theoretical 

approach has been proposed in order to derive constitutive equations which describe 

the coupled chemical-hydraulic-mechanical behaviour of bentonite barriers, with the 

aim to assess their long term performance. The phenomenological parameters that 

govern the transport of electrolyte solutions through bentonites, i.e. the hydraulic 
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conductivity, the reflection coefficient, which is also called the chemico-osmotic 

efficiency coefficient, and the osmotic effective diffusion coefficient, have been 

measured through laboratory tests on a natural sodium bentonite The obtained 

results have been interpreted by assuming that the microscopic deviations of the 

pore solution state variables from their average values are negligible. In this way, it 

is possible to interpret the macroscopic behaviour on the basis of the physical and 

chemical properties of the bentonite mineralogical components. 

At the end of the chapter two further chemico-osmotic tests are described aimed at 

analysing (1) the osmotic behaviour of calcium bentonite and (2) the effects induced 

on osmotic behaviour by stress-strain properties. Moreover, the osmotic results are 

confronted with data from literature. 

Finally, the design of a new osmotic apparatus to measure both the swelling pressure 

and the reflection coefficient is proposed. This apparatus will be produced in the 

laboratories of ISMGEO (Seriate, Milan, Italy). 

�
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Background information on hydrocarbon behaviour in soils is reported in the first 

part of this chapter. In particular, the effects of capillary forces on the distribution of 

immiscible fluids in porous media and the theoretical aspects, regarding the 

formation of tactoids induced by the low dielectric constant that characterizes the 

most of hydrocarbon species, are studied. 

An experimental study is presented in the Paper titled �HYDRAULIC 

PERFORMANCE OF GCLS WITH DIESEL OIL AND POLYMER TREATMENT 

PROPOSAL�, which is aimed at evaluating the hydraulic performance of a needle-

punched GCL using both standard liquids (i.e. de-ionized water) and diesel oil in 

order to estimate the change in hydraulic conductivity and swelling ability upon 

contact or permeation with hydrocarbons. Moreover, the hydraulic conductivity to 

diesel oil of GCL samples saturated at different initial gravimetric water contents 

was investigated with the aim to analyse the effect of initial water saturation on 

hydrocarbon containment performances. Finally, the swelling and hydraulic 






(�


performances to diesel oil of an innovative material, obtained by mixing sodium 

bentonite with a polymer, were measured. 
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The research described in the Paper included in this chapter, titled �REUSE OF 

MSWI BOTTOM ASH MIXED WITH NATURAL SODIUM BENTONITE AS 

LANDFILL COVER MATERIAL� has the aim of evaluating the reuse of 

incinerator slag, mixed with sodium bentonite, for landfill capping system 

components. A chemical, hydraulic and mechanical characterization was performed 

on pure bottom ash (BA) samples from an incinerator in the North of Italy and on 

the BA-bentonite mixture. This study qualifies the BA-bentonite mixture as a 

suitable material for landfill cover in Italy. Moreover, owing to the low release of 

toxic compounds from BA, the proposed cover system does not affect the leachate 

quality in the landfill. 
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The evidence of the strong degradation induced in the hydraulic performances of 

sodium bentonite barriers by the cation exchange phenomenon has been highlighted 

in the previous chapters. This experimental result underlines the need to study the 

transitional development of the cation exchange phenomenon with the aim to 

compare that to the period in which landfill barrier performances have to be 

guaranteed in in-situ conditions.  

The mathematical study developed in this chapter is focused on the evaluation of the 

role of the diffusive component of Calcium flux in the cation exchange phenomenon 

which can develop in a sodium bentonite barrier, placed in an environment 

inexorably rich in chemical compounds containing soluble Calcium (i.e. the natural 

soil, the aquifer, the drainage layer saturated with waste leachate or raining water). 
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This chapter is an introduction to the topic of the research activity: the improvement 

of contaminant containment performances of the bentonite barriers. Chapter 1 gives 

a phenomenological and physical description of the mineralogical, chemical and 

physical properties of bentonite. Moreover, the results of a laboratory study 

regarding the difference in the swelling and mechanical behaviour of sodium and 

calcium bentonite are reported. Finally, the main features and the main issues 

concerning Geosynthetic Clay Liners and bentonite barriers in general are 

introduced. 
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Clay minerals consist of hydrous silicates or alumino silicates and their structure is 

composed by layers of silica and alumina sheets joined together. The crystalline 

structure and the microstructure are the main factors which influence the physical 

and chemical properties of clay minerals. 

Clay minerals can be divided into: kaolinites, illites, attapulgites, chlorites and 

smectites. Each one of these categories presents some differences in the crystalline 

structure and, for this reason, each one is characterized by different properties. 
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In general, as described by Luckham (1999), every clay mineral is constituted by 

two structural units:  

- the first one is the octahedral sheet, consisting of an octahedral structure in which 

aluminium, iron or magnesium atoms are equidistant from the oxygen atoms or the 

hydroxyls. 

- the second one is called tetrahedral sheet, consisting of a tetrahedral structure in 

which a silicon atom is equidistant from the oxygen atoms or the hydroxyls. 

Both networks are repeated indefinitely to form a sheet. 

Bentonite is a clay soil composed by at least 70% of montmorillonite, which belongs 

to smectite clay minerals, also called �three-layer minerals� or 2:1 phyllosilicates. 

The main feature of this class is to be formed by a certain number of unit layers, 

consisting of the combination of an octahedral (alumina or magnesia) sheet and two 

tetrahedral (silica) sheets, one on each side, as shown in Fig. 1.1 and Fig. 1.2. The 

sheets are joined because they share oxygen atoms (covalent bonds). 
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The unit layers are pooled together face-to-face to form the crystal lattice. In this 

case they are held together by Van Der Waals forces (see Fig. 1.2). 

Clay minerals present a charge due to the isomorphous substitutions of lower charge 

species as Mg2+, Fe2+ or Mn2+ for Al3+ in the octahedral sheet, and to the substitution 

of Al3+ or Fe3+ for Si4+ in the tetrahedral sheet. In this way a charge deficiency is 

established and this deficiency determines a negative electric potential at the 
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surfaces of the particles, which is compensated by the cations contained in the pore 

solution. The ideal unit cell formula of montmorillonite is 

{(OH)4Si8Al3.44Mg0.66O20⋅nH2O
0.66-} with a typical surface charge of 0.66 equivalent 

per unit cell. 

The cation exchange capacity, CEC, is defined as the total amount of cations 

necessary to compensate the negative clay charge and it�s expressed in 

milliequivalents per hundred grams of dry clay. A typical CEC value for 

montmorillonite is 80-100 meq/ 100g. 




�,2.$"
 ��
�
�+%*0+$,--+%,*"
&$�'*�-
-�**,&"�


Montmorillonite crystals consist of parallel-aligned elementary alumino-silicate 

lamellae, which are approximately 10 Å thick and 1000-2000 Å in the lateral extent. 

The unit cell parameters are a = 5.17 Å and b = 8.95 Å, which correspond to a unit 

cell area of 92.5 Å2, or one unit charge per 140 Å2. The corresponding surface 

charge, σ, is equal to 0.114 C·m-2. The total specific surface, S, available for water 

adsorption is approximately equal to 760 m2·g-1, assuming a solid density, ρsk = 2.65 

g·cm-3. 
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Montmorillonite particles can be represented as infinitely extended platy particles. 

The half distance, b (m), between the montmorillonite particles can be estimated 

from the total porosity, n (-), or the void ratio, e = n/(1-n) (-). Norrish (1954) showed 

that bentonite can have a dispersed structure in which clay particles are present, as 

well separated units, or an aggregated structure that consists of packets of particles, 

or tactoids, within which several clay platelets or lamellae are in a parallel array, 

with a characteristic interparticle distance of 9 Å. 

The formation of tactoids has the net result of reducing the surface area of the 

montmorillonite, which then behaves like a much larger particle with the diffuse 

double layer only fully manifesting itself on the outside surfaces of the tactoids (see 

Fig. 1.3).  
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The formation of tactoids is due to internal flocculation of the clay platelets, and 

depends on the concentration and the valence of the ions in the soil solution. The 

number, Nl, of clay platelets or lamellae forming tactoids increases with an increase 

of the ion concentration and valence of cations in the soil solution. Unfortunately, 

the number of platelets in a tactoid cannot be predicted and has to be estimated from 
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macroscopic measurements of the transport parameters (e.g. hydraulic conductivity). 

A complicating factor is the non-uniform distribution of ions in mixed systems. For 

instance, in Na+-Ca2+ systems, the distribution of the ions is not random, but the 

charges within the tactoids are mainly neutralized by Ca2+ whereas those on the 

outer surfaces are substantially enriched in Na+ over Ca2+. 

The average half spacing, b, in dispersed clays may be estimated assuming a 

uniform distribution of the clay platelets in a parallel orientation, from the relation: 

S

e
b

skρ
=                     (1.1) 

If the clay has an aggregated structure, only the external surface of the tactoids is in 

contact with the mobile fluid, therefore the void space within the platelets in the 

tactoids should be subtracted from the total void space to obtain the void space with 

reference to the conducting pores (see Fig. 1.3). If Nl is the number of platelets per 

tactoid, the external specific surface, S', and the internal specific surface, S'', are 

given by: 

lN

S
'S =                   (1.2a) 

S
N

)1N(
'SS''S

l

l −
=−=                 (1.2b) 

The average half spacing between the platelets in the tactoids, as determined by 

means of X-ray measurements, is b'' = 4.5 Å (Shainberg et al., 1971). The total void 

index, eT, of the bentonite is given by the sum of the void index inside the tactoid, 

e'', and the void index, e, of the conducting pores. The water in the tactoids can be 

considered part of the solid particles and is excluded from the transport mechanisms. 

The void index associated with the internal surfaces of the tactoid, e'', can be 

estimated as follows: 

''S''b''e skρ=                     (1.3) 

where ρsk = density of the solid particles (kg/m3). 
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The corrected half spacing, b, between the tactoids, in the case of an aggregate 

microstructure of bentonite, can be estimated from a similar equation to Eq.1.1: 

'S

e
b

skρ
=                     (1.4) 

where e = eT - e0 = void ratio referring to the void space between the tactoids and S' 

= effective specific surface of the tactoids. 

When the number, Nl, of clay platelets in the tactoids increases, the external specific 

surface decreases and the half spacing, b, between the tactoids increases, even 

though the total void ratio remains constant and the void ratio referring to the pore 

volume available for the transport decreases. 

Guyonnet et al. (2005), through a comparison of the results of hydraulic 

conductivity tests and microscopic analyses of bentonite structure based on small 

angle X-ray scattering and transmission electron microscopy, showed that high 

values of the hydraulic conductivity are related to an aggregated structure (also 

called the hydrated-solid phase), while low values of the hydraulic conductivity are 

related to a dispersed structure (also called the gel phase). These experimental 

results can be explained by the increase in the average pore size, due to tactoid 

formation (see Fig. 1.3). 
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This paragraph summarizes the main results of a laboratory study, developed during 

the Ph.D. activity, aimed at analysing the influence of the microscopic scale 

structure of montmorillonite lamellae on the swelling and mechanical properties of 

bentonite. At the microscopic scale, two main and distinct montmorillonite 

structures can be distinguished: a dispersed structure of separated lamellae, typical 

of sodium bentonite, and an aggregated structure formed by packets of lamellae 

united in a parallel face-to-face array, called tactoids, which are typical of calcium 

bentonite. 
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In this paragraph the results of swell index tests, liquid limit determinations, 

swelling tests under isotropic conditions and loading/unloading tests under isotropic 

conditions performed on sodium and calcium bentonite are reported, with the aim to 

highlight the influence of microscopic scale structure (dispersed/aggregated) on 

macroscopic scale properties of bentonite, such are the swelling behaviour and the 

mechanical properties. 

�
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The powdered sodium bentonite used in the Ph.D. laboratory activity is an Indian 

sodium bentonite that is used for the production of a needle-punched GCL. The 

bentonite is characterized by a cation exchange capacity (CEC, measured using the 

methylene blue adsorption method) of 105 meq/100g. The mineralogical 

composition, evaluated through x-ray diffraction analysis, indicates a bentonite that 

is primarily composed of smectite (> 98%) with traces of calcite, quartz, mica and 

gypsum. More information on sodium bentonite is reported in the paragraph 2.4.1. 

Calcium bentonite has been obtained through an accelerated degradation of sodium 

bentonite that was promoted by the cation exchange of calcium for sodium. Sodium 

bentonite was kept in contact with a highly concentrated (1M) calcium chloride 

solution for a week. In this way, sodium bentonite exchanged sodium cations with 

calcium cations present in the equilibrium solution. Excess soluble calcium salts, 

contained in the exchanged calcium bentonite (due to the usage of a 1M CaCl2

solution as equilibrium solution), were successively removed by a series of 

hydration with de-ionized water and settlement cycles. Calcium bentonite was left to 

settle in de-ionized water and, when complete settlement was reached, excess water 

was removed and the material was hydrated once again. This procedure was stopped 

when the electrical conductivity of the equilibrium solution was less than 700 

µS/cm. 

�

�6#6#�	�)�5�������� �"�$��"'��$���9��.�((�	�)�5���)������!��/�� $ �"�

Swell index tests can estimate the volume change of bentonite after hydration 

(Katsumi et al., 2008). These tests can be used to obtain a qualitative measurement 

of the swelling behaviour of bentonite subjected to several electrolyte 
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concentrations. High swell index, SI, means high swelling performance of bentonite 

in equilibrium with a specific electrolyte solution at a specific molarity. 

Swell index tests (ASTM D5890) were performed on sodium and calcium bentonite 

regarding the equilibrium conditions with sodium chloride (2 mM, 5 mM, 10 mM, 

20 mM, 50 mM, 100 mM, 500 mM and 1 M solutions) and calcium chloride (2 mM, 

5 mM, 10 mM and 50 mM solutions), respectively. Moreover, swell index was 

measured with de-ionized water, DW, for both sample. 

More information on the testing solutions is reported in the paragraph 2.4.2. 

The swell index trend obtained for sodium and calcium bentonite is reported in 

Figure 1.4 as a function of the NaCl and CaCl2 concentration, respectively. 
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The swelling behaviour of the sodium bentonite (NaB) and calcium bentonite (CaB) 

shows turbid samples (�T� in the graph), which do not present a precise interface 

between the settled bentonite and the upper clear solution. In these cases, bentonite 

forms a stable suspension and it is not possible to evaluate a value of SI. As a 

consequence, a conventional value of SI of 100 mL/2g has been assigned to the 

turbid solutions (actually, without recognising how much the suspension is turbid). 
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Regarding sodium bentonite, the results presented in Fig. 1.4 highlight that the 

stability of bentonite suspensions decreases when the electrolyte concentration 

increases: the material behaves as a stable suspension for very low molarity values 

and for deionised water, while swelling behaviour is inhibited for a higher NaCl 

concentration than 0.5 M. Whereas if calcium bentonite is concerned, the swelling is 

substantially inhibited for every calcium chloride molarities, while the test 

performed with DW presents significant swelling behaviour. 

Atterberg Limits are water contents of soil that represent qualitatively the passage 

between two different states of aggregation. The liquid limit (LL), in particular, is 

the water content, in percent, of a soil at the boundary between the semi-liquid and 

plastic state. LL represents how much moisture a soil material can hold until 

reaching a liquid state.  

Under a qualitative point of view, LL value can be related to the external specific 

surface of montmorillonite particles, S′, as described by Farrar and Coleman (1967).  

The term S′ represents the surface of the clay soil external to the tactoid, referred to 

the volume of the solid particles. The external surface is able to absorb a significant 

amount of water, and, as a consequence, is responsible for the extent of the swelling 

behaviour during imbibition. Moreover, as reported in Equation 1.2(a), S′, is a 

function of the microscopic structure of the montmorillonite particles, and, in 

particular, of the number of platelets per tactoid (Nl). When bentonite structure is 

dispersed (low Nl), as for sodium bentonite, the external specific surface will be 

high, while, when the bentonite lamellae are aggregated in large tactoids, as for 

calcium bentonite, S′ will assume a low value.  

LL determination was performed by means of Casagrande�s device accordingly to 

ASTM 4318 (multipoint liquid limit method) on sodium and calcium bentonite 

hydrated with sodium chloride (10 mM and 500 mM solutions) and calcium chloride 

(50 mM solution), respectively. Moreover, the test was performed on both 

bentonites hydrated with DW. 

Table 1.1 shows the LL of sodium (NaB) and calcium (CaB) bentonite hydrated 

with the above electrolyte concentrations. 
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 Liquid limit, LL [%] 

 DW 10 mM 50 mM 500 mM 

sodium bentonite + 

NaCl solutions 
525 524 - 111 

calcium bentonite + 

CaCl2 solutions 
152 - 144 - 

The results show that LL decreases when bentonite is exposed to high molarities 

electrolyte solutions as a consequence of S′ reduction, induced by the tactoid 

formation, which decreases the water adsorption capacity of montmorillonite at the 

microscopic scale. Moreover, the LL value of sodium bentonite with respect to the 

500 mM NaCl solution (LL = 111%) is considerably lower than the value measured 

for calcium bentonite with DW (LL = 152%). This result proves the higher value of 

swell index obtained for CaB with DW and low molarity CaCl2 solutions than that 

obtained for NaB with high molarity NaCl solution.  

In any case, LL values obtained for sodium bentonite are notably higher than those 

obtained for calcium bentonite at similar molarity values. 

Farrar and Coleman (1967) gave the following regression equation (with the 95% 

confidence limit in the brackets) between the surface area, S, and the liquid limit, 

LL, of several British clay soils: 

2S 14 1.48 LL  ( 33),    where [S] = m /g ; [LL] = % = − + ⋅ ±                       [1.5] 

The values of specific surface, S, found for calcium and sodium bentonite on the 

basis of the results of LL test using equation 1.5 are reported in Table 1.2. 
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 Specific surface, S (± 33)  [m2/g]  

 DW 10 mM 50 mM 500 mM 

sodium bentonite + 

NaCl solutions 
763 762 - 150 

calcium bentonite + 

CaCl2 solutions 
210 - 199 - 

The specific surface values obtained for sodium bentonite in Table 1.2 are within the 

typical value range 700-840 m2/g (Mitchell and Soga, 2005). 
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Swelling and loading/unloading/reloading tests under isotropic conditions were 

performed on powdered sodium and calcium bentonite using a flexible wall 

permeameter. Testing procedure, specimen preparation and test results are reported 

in this paragraph. 

The powdered bentonites were deposited loosely in a dry state in a steel mold inside 

the permeameter. The bulk dry density was approximately equal to the gravimetric 

density (1 g/cm3, typical of the dry bentonite contained in a geosynthetic clay liner). 

The flexible membrane inside the mold adhered to the specimen, so that, after 

removing the mold, the flexible wall permeameter was assembled completely 

without disturb the specimen, as reported in Fig. 1.5. 
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During swelling tests, the specimens were saturated with DW from both side (from 

top and bottom porous stone) with a constant effective confining stress, σ′, of 10 

kPa, under a constant back pressure, uBP, of 515 kPa. During the test, the bulk 

volume of the specimen was monitored every half hour during the day, while, during 

the night, the specimen was left to swell for approximately 12 hours.  
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The tests were stopped when the specimen volume ceased to increase. 

The results of the swelling tests under isotropic conditions performed on sodium and 

calcium bentonite are reported in Fig. 1.6 in term of volume strain, εv, as a function 

of the time, t, and in Fig. 1.7 in term of void ratio, e, as a function of the time, t. 
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The sodium bentonite specimen (NaB) doubled its volume during the hydration 

phase with DW. The final volumetric strain of NaB, measured in correspondence to 

the asymptote, was equal to approximately 100%, while the void ratio increased 

from the initial value of 1.68 to the final value of 4.20, corresponding to the 

asymptote. The calcium bentonite specimen (CaB) substantially did not swell during 

imbibitions. The final volumetric strain of CaB was equal to 4% and the void ratio 

increased from 1.68 to 1.75 during hydration. 
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The specimen of sodium (NaB) and calcium (CaB) bentonite beforehand hydrated 

with de-ionized water, DW, for the swelling test (see paragraph 1.2.3.1) have been 

subjected to a loading/unloading test, without disassemble the flexible-wall 

permeater, with the aim to measure the average modulus of deformation under 

isotropic conditions during the loading phase and, after unloading, during the 
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reloading phase.During the test, the load was assigned to the specimen following the 

steps reported in Table 1.3 in terms of effective isotropic confining stress. The back 

pressure of the pore solution, consisting of DW, was maintained constant and equal 

to 515 kPa. 
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Effective isotropic confining stress, σ′ [kPa] 

Loading phase: 

10 

27.5 

70 

Unloading phase: 

70 

27.5 

10 

Reloading phase: 

10 

27.5 

70 

The results of the test performed on sodium and calcium bentonite are reported in 

Fig. 1.8 and in Fig. 1.9, respectively.Fig. 1.8 and Fig. 1.9 show the positive 

volumetric strain, during the loading and reloading phases, corresponded to 

bentonite consolidation, whereas the negative volumetric strain, during the 

unloading phase, corresponded to material swelling. The specimen deformation 

trend show an elasto-plastic behaviour, where the elastic deformation was regained 

during the unloading phase while the plastic deformation resulted unrecoverable. 

The deformation modulus, K, under isotropic conditions has been defined as: 

v v

p
K

′ ′∆ ∆σ
= =

∆ε ∆ε
                   [1.6] 

where vε  is the volumetric strain and p′ is the isotropic tensor, which, under 

isotropic conditions as in the studied test, results equal to the confining stress, ′σ .  
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The deformation modulus of sodium and calcium bentonite were calculated using 

Eq. 1.6 and resulted, for sodium bentonite, equal to KCV = 1.0⋅103 kPa 

(corresponding to the virgin compression curve) and KCV = 1.4⋅103 kPa 

(corresponding to the reloading curve) and, for calcium bentonite, equal to KCV = 

3.3⋅103 kPa (corresponding to the virgin compression curve) and KCV = 4.3⋅103 kPa 

(corresponding to the reloading curve). 

The test highlights that the bentonite degradation induced by cation exchange 

phenomenon, although worsens the swelling performance of sodium bentonite, 

produces an increase in mechanical properties of the material. The aggregated 

structure, which characterized calcium bentonite at microscopic scale, determines 

the higher stiffness of the material and the lower compressibility. 
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The more up-to-date production of GCLs generally uses the needle-punching 

technology. This process causes some fibres form the top of geotextiles to extend 

through the bentonite and bottom geotextile, bonding the entire structure together 

(Von Maubeuge and Heerteen, 1994). The fibers that are punched through the 

bottom geotextile rely on natural entanglement and friction to keep the GCL 

together. 

If GCL is considered as a replacement of the most common compacted clay liner 

(CCL), the main advantage of GCL-made sealing liner are the limited thickness, the 

good compliance with differential settlements of underlying soil waste, easy 

installation and low cost (Manassero et al. 2000). A qualitative comparison of GCLs 

and CCLs, provided by different authors referring to different criteria had been 

proposed by Manassero et al. (2000) and here reported in Figure 1.11. 

The type of bentonite used in the GCL effects the permeability. Sodium bentonite 

(i.e. a soil composed by montmorillonite which presents mainly Sodium as 

exchangeable cation) is the predominant clay mineral component of the bentonite 

normally used and is a product of the weathering of volcanic ash deposited in a 

marine environment. Calcium montmorillonite (i.e. a montmorillonite which 

presents mainly Calcium as exchangeable cation) is the product of volcanic ash 

being deposited in a fresh water environment.  

Hydrated sodium bentonite has a dispersed structure, a very high swelling potential 

and a very low permeability characteristic. However, a disadvantage of sodium 

bentonite is the potential for cation exchange of Sodium with Calcium (dominant in 

the pore water of many soils), which tends to neutralize the charges within the 

tactoids and, consequently, to increase tactoid dimension, with the associate 

reduction in swelling and increase in permeability.

The cation exchange produces a transformation of sodium bentonite into calcium 

bentonite and, consequently, a reduction in the repulsion forces between the lamellae 

and the formation of tactoids. The main effects of this phenomenon are a reduction 

in the swelling performances (see paragraph 1.2), which leads to the consolidation of 

the material and the expulsion of water, and an increase in hydraulic conductivity. 

A landfill bottom barrier is required to ensure hydraulic and pollutant containment 

during the entire active life of a landfill (i.e. during the waste storage phase) and 
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conditions and reported hydraulic performance and swelling ability degradation 

induced by the permeation of electrolyte solutions containing divalent cations.  

The evidence of the strong degradation induced in the hydraulic performances of 

sodium bentonite by the cation exchange phenomenon highlights on one hand the 

need to study the temporal development of this phenomenon with the aim to 

compare that to the period in which landfill barrier performances have to be 

guaranteed, on the other hand the need to develop innovative materials aimed at 

improving GCL resistance to the degradation induced by the cation exchange 

phenomenon. Both objectives have been developed in the PhD research project:  

(1) in chapter 6 a finite difference model is developed to study the diffusive flux of 

Calcium through a bentonite barrier, since the diffusive component of flux seems to 

give the higher contribution to cation exchange in bentonite layers subjected to a 

hydraulic gradient, i,  typical of in situ conditions (i.e. i < 30); 

(2) regarding the second point, both the influence of chemico-physical pre-

treatments (i.e. pre-hydration, pre-consolidation and salt removal) and the influence 

of polymer addiction to the hydraulic performance of sodium bentonite, subjected to 

a Calcium advective flux, have been studied and reported in chapter 2. 

In the last decade,� new GCL applications, requiring their use for hydrocarbon 

containment, have found growing interest. In this particular area, the main GCL 

application is the secondary containment aimed at preventing subsoil dispersion of 

accidental oil spills through primary lining system (HDPE) from hydrocarbon 

storage tanks (underground or on surface). 

As hydrocarbon containment is concerned, a reduction of the barrier efficiency (with 

respect to the hydraulic conductivity values commonly measured with water) can be 

expected due to the reactive nature of sodium bentonite. In fact petroleum products, 

that are characterized by dielectric constant values significantly lower than that of 

water, produces the formation of tactoids and consequently a decrease of the 

hydraulic containment performances of the barrier. 

Both physical pre-treatments (i.e. pre-hydration) and polymer addiction have been 

developed during the PhD to limit the reduction of sodium bentonite efficiency 

when subjected to hydrocarbons. These contents are reported in chapter 4. 
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In the last decades, several research has focused on the potential benefits arising 

from the existence of semi-permeable membrane behaviour in bentonite and 

bentonite-based barrier materials (Malusis, 2001; Malusis and Shackelford, 2002a,b; 

Van Impe, 2002, Malusis et al. 2003; Manassero and Dominijanni, 2003; 

Shackelford at al., 2003; Henning, 2004; Lu et al., 2004; Dominijanni and 

Mannassero, 2005; Yeo et al., 2005; Kang and Shackelford, 2009; Kang and 

Shackelford, 2010; Dominijanni and Manassero, 2012a,b). 

The electric interaction between the montmorillonite lamellae and the ions contained 

in the pore solution generates macroscopic phenomena that cannot be modelled with 

the classical constitutive equations of soil mechanics (Mitchell, 1993). For instance, 

when a bentonite layer is put in equilibrium with an electrolyte solution, swelling or 

shrinkage is observed depending on the salt concentration, without any apparent 

modi�cation of the effective stresses. Moreover, if a bentonite layer is interposed 

between two electrolyte solutions with different salt concentrations, a volumetric 

�ux of water can be observed, even in the absence of a hydraulic gradient. 

The mechanical and transport behaviour of bentonites has more affinity with that of 

biological tissues, reverse-osmosis membranes, or polyelectrolyte gels than with that 

of sands or gravels, since clays are characterized by membrane behaviour. 

Clay soils in general are semipermeable or permiselective porous media. The term 

"semipermeable" describes the ability of some materials to be permeable to only 

some components of a solution. Referring to a permeating solution constituted by a 

solvent and a single solute, a semipermeable membrane is "ideal" or "perfect" if is 

able to prevent completely the passage of the solute. However the ability to restrict 

the movement of solutes is only one of the so-called "osmotic properties" of clay 

soils. The movement of the permeating solution through a semipermeable 

membrane, for example, may be driven by a solute concentration gradient (chemico-

osmosis) or by an electric potential gradient (electro-osmosis). 

Nowadays, we know that all osmotic properties of semipermeable membranes are 

due to the ability of the solid skeleton to "interact" differently with the components 
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of the fluid phase. The simplest "interaction" is that to hinder the passage of 

molecules having size greater than the pore size (steric hindrance). For clays the 

main source of osmotic phenomena is recognized to be the electrostatic interaction 

between the ions in the pore solution and the solid skeleton, having generally a 

negative electric charge. 

The materials characterized by similar properties are very common. The 

semipermeable membranes may be classified in three categories: (1) mineral 

membranes; (2) biological membranes; (3) synthetic membranes. Clay soils are an 

example of mineral semipermable membranes or, preferentially, semipermeable 

porous media, considering that: (i) they are characterized by a system of 

interconnected pores; (ii) they may have an appreciable thickness (Dominijanni, 

2005). A lot of biological tissues, as well as cell membranes, articular cartilages or 

bones behave as semipermeable membranes. Polyelectrolyte gels and concrete are 

examples of synthetic semipermeable materials. 

Clay membrane behaviour is quantified in terms of reflection coefficient, σ. The 

value of σ for a clay soil exhibiting no solute restriction is zero (σ = 0), 

corresponding to zero membrane efficiency, whereas the value of σ for clay soil 

exhibiting complete solute restriction is unity (σ = 1), corresponding to 100% 

membrane efficiency. In general, the value of σ for naturally occurring clay soils 

that exhibit membrane behaviour range from greater than zero to less than unity 

because of the variation in the pore sizes that exist in such soils (Shackelford, 2005). 

Clay membrane behaviour is a function of several mechanical, physical and 

chemical factors, such as stress-strain properties of clay, boundary and initial salt 

concentrations, type of solute species (ions) and mineralogy of the soil (Shackelford 

et al., 2003). In general, the potential for the existence of membrane behaviour 

increases with (a) an increase in stress (decrease in porosity), (b) an increase in 

content of high activity clay minerals, particularly sodium montmorillonite, and (c) a 

decrease in the salt concentration in the pore water (Shackelford et al., 2003). 

Both osmotic and swelling properties have been studied for the bentonite used in the 

laboratory activity of the PhD research programme. The results of these analyses are 

reported in chapter 3. 
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Compacted bentonite based barriers (i.e. sand or sand-like material + bentonite) 

have been used for hydraulic containment applications in cases where suitable 

natural clayey soils are not readily or economically available (e.g. Garlanger et al., 

1987; Chapuis et al., 1992; O�Sadnick et al., 1995; Stern and Shackelford, 1998; 

Kaoser et al., 2006; Castelbaum and Shackelford, 2009). In most cases the use of 

sodium bentonite is chosen on the basis of the ability to achieve a relatively low 

hydraulic conductivity (i.e. K ≈ 10-9 m/s) upon permeation with DW using only a 

relatively small quantity of bentonite, generally < 20% by weight. The use of small 

quantities of bentonite decreases the cost of the raw material supply.  

The low hydraulic conductivity values for compacted bentonite based barriers can be 

attributed primarily to the high swelling potential of sodium bentonites in the 

presence of water resulting in the formation of a relatively tight soil matrix (Howell 

and Shackelford, 1997). 

During the development of the PhD, the reuse of incinerator slag, instead of the soil 

commonly used in soil-bentonite mixtures (i.e. sand), was evaluated for landfill 

capping purposes.��

Nowadays, large quantities of bottom ashes from municipal solid waste incineration 

(MSWI BA), with mechanical properties that are appropriate for the construction of 

landfill covers, are increasingly becoming available, due to the spread of 

incineration plants. 

Since MSWI BA generally has a similar particle size distribution to that of a sand, or 

at least to that of a sand-fine gravel mixture (Monteiro et al. 2008; Dominijanni et 

al., 2009; Xue et al. 2009), the possibility of mixing BA with sodium bentonite was 

considered aimed at decreasing the hydraulic conductivity of BAs. The aim of the 

research was to verify whether the high swelling potential of sodium bentonite, in 

the presence of water, can produce a low hydraulic conductivity soil matrix for 

compacted BA-bentonite mixtures, as typically is the case of compacted sand-

bentonite layers. The results of this research are summarized in chapter 5. 
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The role of physical pretreatments, such as pre-hydration, pre-consolidation and salt 

removal, applied to sodium and polymer modified bentonites, has been analyzed in 

this paper. Moreover, the effect of the presence or absence of needling across the 

bentonite layer has been studied.  

All these variables have been shown to influence the hydraulic performances of 

bentonite through hydraulic conductivity evaluation in both short and long term 

conditions. Physical pretreatments, in fact, influence the swelling behaviour of 

bentonite and its response to the cation exchange phenomenon. 

The hydraulic conductivity tests, performed on specimens containing natural 

bentonite, have shown that the presence of needling deteriorates the hydraulic 

performances of a material to a great extent particularly in long term conditions, 

while the pre-consolidation process greatly improve the long term behaviour.  

The specimen subjected to salt removal (K = 0.8·10-11 m/s) in short term conditions 

showed a better hydraulic performance than the other specimens, whose hydraulic 

conductivity value appeared almost equal to 1.5 - 2.0·10-11 m/s. 

The tests performed on polymer modified specimens showed conductivity values in 

short term conditions that were approximately one order of magnitude lower than 

those obtained on natural specimens. During the permeation with water and Calcium 

solution, the polymer was solubilised and removed from the specimen by the 

volumetric flux. Spectroscopy results also highlighted the absence of the polymer in 

the exhumed specimens and confirmed its complete solubilisation during the 

hydraulic conductivity test. 
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Geosynthetic clay liners (GCLs) are the most common manufactured barriers used in 

landfill applications. GCLs generally contain a thin layer of sodium bentonite (dry 

thickness of between 5 and 10 mm), needled between two geotextiles or glued to a 

geomembrane, which ensures excellent containment performances, in the short term, 

regarding both volumetric flux and contaminant advective transport. The excellent 

performance of GCLs has to be attributed, in the absence of a glued geomembrane, 

to the sodium bentonite characteristics (Shackelford et al. 2000). 

Bentonite is a clay soil that usually contains at least 70% of the three layered (2:1) 

clay mineral montmorillonite. Isomorphic substitution in montmorillonite usually 

results in the replacement of a portion of the trivalent aluminium (Al3+) in the 

crystalline structure with a divalent metal, such as magnesium (Mg2+), and this 

causes a permanent negative surface charge. This electric charge per unit solid 

volume can be expressed as sk ,0F c⋅ , where F is Faraday�s constant (96,485 

1C mol−⋅ ) and sk ,0c  is the molar concentration of the solid skeleton electric charge, 

which is assumed to have unitary valence (i.e. skz 1= − ). �

 Montmorillonite crystals consist of parallel-aligned elementary alumino-silicate 

lamellae, which are approximately 10 Å thick and 1000-2000 Å wide, and this 

crystalline structure determines a very high specific surface (� 760 m2
�g-1). 

Dominijanni and Manassero (2012) have shown that sk ,0c  is proportional to the 

effective specific surface of the solid particles and decreases when the 

montmorillonite lamellae aggregate to form tactoids. 

Due to the permanent negative charge and the very high specific surface, a large 

quantity of water penetrates between the bentonite lamellae during imbibitions, 

determining a dispersed structure of individual platelets or small tactoids, which are 

characterized by considerable swelling behaviour. Moreover, the hydrated and 

swollen material shows very low hydraulic conductivity to permeation with water 

and diluted aqueous solutions. 

Since the swelling ability of sodium bentonite is induced by the negative electric 
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charge of the platelets, it is influenced to a great extent by the electrical 

characteristics of the pore solution, such as the cation concentration and valence in 

the pore solution, and, as a consequence, by the chemical composition of the landfill 

leachate and of the water contained in the soil surrounding the barrier. The main 

problem concerning the use of sodium bentonite as a sealing material is in particular 

represented by the cation exchange of Sodium with Calcium, which is dominant in 

the pore water of many soils. The cation exchange produces a transformation of 

sodium bentonite into calcium bentonite and, consequently, a reduction in the 

repulsion forces between the lamellae, the formation of tactoids and a decrease in 

the molar concentration of the electric charge of the solid skeleton ( sk ,0c ). The most 

obvious effects of this phenomenon are a reduction in the swelling pressure, which 

leads to the consolidation of the material and the expulsion of water, and an increase 

in hydraulic conductivity. 

A landfill bottom barrier is required to ensure hydraulic and pollutant containment 

during the entire active life of a landfill (i.e. during the waste storage phase) and 

over decades in the post-closure period. During this period, the barrier must 

guarantee performances according to the regulations in force and the cation 

exchange phenomenon can mean that this requirement is not guaranteed in long term 

conditions. 

Several authors (Jo et al. 2001; Petrov et al. 1997; Shackelford et al. 2000) have 

studied the behaviour of untreated sodium bentonite and GCLs in long term landfill 

conditions and reported good hydraulic performance and swelling ability 

degradation induced by the permeation of electrolyte solutions containing divalent 

cations.  

Many recent studies have been aimed at improving the chemical resistance of 

sodium bentonite through the addition of large organic molecules, such as polymers, 

that join to the lamella surface and maintain a wide inter-particle distance, even in 

the presence of strong electrolyte and divalent pore solutions (Schroeder 2001; 

Kolstad et al. 2004, Katsumi et at. 2008; Di Emidio 2010; Scalia et al. 2011). 

In this work, physical pretreatments, such as pre-hydration, pre-consolidation and 

salt removal, have been applied to sodium and polymer modified bentonite 
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specimens. Moreover, the effects of the presence or absence of needling across the 

specimen have been studied. All these variables can influence the swelling 

behaviour of bentonite and its response to the cation exchange phenomenon. 

Hydraulic conductivity tests have been performed to assess how these factors may 

affect the hydraulic performance of the specimens in both short and long term 

landfill conditions. 
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Natural, pre-treated and polymer modified bentonite materials have been used in this 

study. The natural specimens were: a commercial geosynthetic clay liner, GCL, and 

a sodium bentonite specimen, NaB, made up of the powdered material (the same 

contained in the GCL), prepared in a dry state, without needling or geotextiles. The 

laboratory pre-treated specimens were: a natural bentonite specimen subjected to a 

pre-hydration and a pre-consolidation process, C-NaB, and a bentonite specimen, 

deprived of soluble salts and then subjected to pre-hydration and pre-consolidation, 

SQ-C-NaB. The laboratory polymer modified specimens were: a polymer modified 

bentonite specimen, NS-NaB, made up of powdered modified material, prepared in a 

dry state, without needling or geotextiles, and a polymer modified bentonite 

specimen subjected to a pre-hydration and pre-consolidation process, NS-C-NaB.  

The main features of the tested materials, the pre-treatments and the polymer 

modification procedures are described in this paragraph. The main characteristics of 

the specimens are reported in Table 2.1. 
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The GCL used in this study is reinforced (needle-punched) and contains powdered 

sodium bentonite, encapsulated between a non-woven polypropylene geotextile and 

a woven polypropylene geotextile. The GCL is characterized by a thickness of 6 mm 

and an average bentonite mass per unit area of 5000 g/m2 (12% average water 

content). 

The powdered bentonite, tested in loose and consolidated specimens, is the same 

that was used for the production of the previously mentioned GCL. The bentonite is 

characterized by a cation exchange capacity (CEC, measured using the methylene 

blue adsorption method) of 105 meq/100g.  

The mineralogical composition, evaluated through the x-ray diffraction analysis 

reported in Figure 2.1, shows a bentonite that is primarily composed of smectite (> 

98%) with traces of calcite, quartz, mica and gypsum. 
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The bentonite is characterized by a liquid limit (LL) of 525% with deionised water 

and 113% with a 0.5 M NaCl solution. 

The swelling behaviour of the natural bentonite (NaB) is reported in Figure 2.3, in 

terms of swell index as a function of the NaCl concentration. Turbid samples (�T� in 

the graph) do not present a precise interface between the settled bentonite and the 



�22��


!7


�"+*"8*,-"'
I


�"+0"05$�%"'


upper clear solution. In these cases, bentonite forms a stable suspension and it is not 

possible to evaluate a value of SI. As a consequence, a conventional value of SI of 

100 mL/2g has been assigned to the turbid solutions. The results highlight that the 

stability of bentonite suspensions decreases when the electrolyte concentration 

increases: the material behaves as a stable suspension for very low molarity values 

and for deionised water, while swelling behaviour is inhibited for a higher NaCl 

concentration than 0.5 M. 

�
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Calcium and Sodium solutions were prepared with dehydrated calcium chloride and 

sodium chloride (ACS reagent, purity � 99%) and de-ionized water (DW). The 

calcium solution had the purpose of simulating in situ sodium bentonite degradation 

due to cation exchange phenomenon. A 250 mM CaCl2 solution was assumed for 

this application in order to induce the degradation process in an acceptable time. The 

DW (pH = 6.95; EC at 20 °C = 0.6 mS/m) consisted of tap water processed through 

a series of activated carbon filters, a reverse osmosis process and, finally, a UV lamp 

(Elix Water Purification system).  

#606-���('!(��"�(����$�4�(�

One of the specimens tested in this study (the �squeezed and compacted specimen�, 

or SQ-C-NaB), was obtained by submitting natural sodium bentonite to a process 

that had the aim of removing the soluble salts, mainly sodium, which are naturally 

present inside the material, due to its marine origin. The treatment prevents soluble 

salts from interfering with the swelling ability of sodium bentonite. 

Several authors (Malusis et al. 2001; Malusis and Shackelford 2002a, 2002b; 

Shackelford and Lee 2003; Yeo et al. 2005; Kang and Shackelford 2009; Di Emidio 

2010) have used the �flushing� method to remove soluble salts. This method consists 

of an initial permeation phase, performed before measuring the actual hydraulic 

conductivity, which requires a long period (i.e. from months to a year), because of 

the low bentonite hydraulic conductivity. 

In this study, the �squeezing� method has been used with the aim of reducing the salt 

removal time. The �squeezing��method consists of a series of consecutive phases of 
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powder bentonite hydration with DW, at a higher water content than the liquid limit, 

and drained consolidation, performed in a consolidometer under a maximum load of 

500 kPa. The drained solution is sampled daily and the EC is monitored to evaluate 

the soluble salt concentration in the bentonite pore water. After the �squeezing�

process, the material is oven dried at 105 °C and pulverized once again. When a 5 L 

consolidometer is used, the above procedure can produce about 500 g of dry powder 

squeezed bentonite, characterized by a lower EC value than 50 mS/m, corresponding 

to a lower NaCl solution molarity than 5 mM, in 40-50 days. The results of the EC 

monitoring during the squeezing process are reported in Figure 2.2. 
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Two of the specimens tested in this study were polymer modified. The modified 

material mainly consists of sodium montmorillonite prepared by adding 10% of an 

organic polymer named Nanosponge, NS, [F. Trotta, W. Tumiatti, R. Vallero. Italian 

Patent: MI2004A000614]. In order to obtain modified bentonite, the materials were 

dried separately at 60°C and then mixed in the dry state. 

Two polymer modified specimens were obtained: a �modified powder specimen�, or 

NS-NaB, constituted by the powdered modified material, prepared in a dry state, 
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without needling or geotextiles, and a �modified compacted specimen�, or NS-C-

NaB, subjected to a pre-hydration and pre-consolidation process. 

Polymer modification induces a variation in the index properties of the material. The 

LL value of the 10% nanosponge-bentonite mixture results in 367% for DW and 

135% for the 0.5 M NaCl solution. 

The swell index trend obtained for the polymer modified bentonite is reported in 

Figure 2.3 as a function of the NaCl concentration. 
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The swelling behaviour of the modified material was similar to that obtained for 

natural bentonite: stable suspensions were obtained for solutions characterized by a 

lower molarity value than 5 mM while, for higher molarities than 0.5 M, the 

swelling was completely inhibited. 

#6061����+�*)��� �����)����+&��"�( )�� ���

Pre-hydrated and pre-consolidated specimens were prepared from the powdered 

materials (the same materials that constitute the loose samples) through saturation 

with DW, at a lower water content than the LL value, and then by means of static 
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consolidation, performed in a compaction mould or in a oedometer, which allowed 

excess water release.  

The loose specimens (NaB, NS-NaB) were used to analyze the effect of the absence 

of needling on the hydraulic performance of natural (or modified) bentonite, while 

the consolidated specimens were used to study the influence of the great 

modification induced by the static drained consolidation of the saturated material on 

the bentonite microstructure. This consolidation, in fact, produced alignment of the 

lamellae of a clayey soil in a face-to-face fabric.

#61�����������	���������������������	�8����
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The hydraulic conductivity tests performed in this study allow the barrier 

performances to be quantitatively evaluated in both short and long term landfill 

conditions. The former was simulated by permeating the specimens using DW, 

while the latter was obtained by subjecting the specimens, after permeation with 

DW, to a 250 mM CaCl2 solution. The tests were performed accordingly to ASTM 

D 5887 and ASTM D 5084 for the GCL and the bentonite specimens, respectively, 

using flexible wall permeameters and the �falling head� method.  

The GCL specimen was prepared according to the procedure described in ASTM D 

5887, while the other loose and consolidated specimens were prepared using the 

following procedures: 

• Loose specimens: the powdered materials were deposited loosely in a dry 

state in a steel mold inside the permeameter. The bulk dry density was 

approximately equal to the gravimetric density (1 g/cm3 for natural and modified 

bentonite) in order to simulate the initial conditions of the bentonite in a GCL. The 

flexible membrane inside the mold adhered to the specimen, so that, after removing 

the mold, the flexible wall permeameter could be assembled completely. The 

specimen was saturated for 48 h and then permeated, so that a hydration phase with 

DW could be conducted before testing. 

• Pre-hydrated and pre-consolidated specimen: the powdered materials were 

saturated at a lower water content than the LL value and then statically consolidated 
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in a compaction mold (C-NaB and NS-C-NaB) or in an oedometer (SQ-C-NaB), to 

allow the excess water to be released. Since the high swelling pressure that develops 

in the hydrated bentonite specimens contrasts the consolidation and reduces 

consolidation process rate, the porosity reached for the compacted specimens, in an 

acceptable time for the laboratory scheduling (i.e. 3-4 weeks), was higher than that 

obtained for loose specimens in initial dry conditions. As a consequence, the initial 

bulk dry density of the consolidated specimens was lower than the dry density of the 

bentonite in the GCL. The compacted specimens were then placed inside the 

permeameter and after the swelling volumetric strain had been fully stabilized under 

constant isotropic stress (this phase takes approximately 48 h), the permeation was 

started.  

The specimens had a 101.6 mm diameter, except for SQ-C-NaB, which had a 

diameter of 70.0 mm, and an initial height approximately equal to 6 mm and 10-13 

mm for the GCL and bentonite specimens, respectively. The tests were performed 

using a maximum hydraulic gradient of 500, a confining stress of between 28 and 50 

kPa, depending on the test, following two consecutive stages: first the specimens 

were permeated with DW, in order to evaluate their short term behaviour, and then 

with a 250 mM CaCl2 solution, in order to evaluate the long-term landfill conditions. 

The termination criteria of the second stage was established on the basis of the 

simultaneous achievement of the following targets: (1) completion of the 

consolidation phase induced by cation exchange, (2) achievement of steady state 

hydraulic conductivity, (3) specimen permeation with a higher calcium mass than 

that necessary for complete saturation of the cation-exchange centres (calculated on 

the basis of the CEC value measured using the methylene blue adsorption method). 

Targets (1) and (2) are analogous to those indicated in many other studies (Dunn and 

Mitchell 1984; Peirce and Witter 1986; Bowders 1988; Daniel 1994; Shackelford 

1994; Shackelford et al. 2000). These authors recommended that the tests should not 

be terminated until steady hydraulic conductivity is achieved, the outflow/inflow 

ratio is approximately unitary and at least one or two PVs of flow have passed 

through the specimen. Moreover, when the electrolyte solution has been permeated, 

Bowders (1988), Daniel (1994) and Shackelford (1994) recommend that the 

chemical equilibrium should be established before a test is terminated. In this study, 
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chemical equilibrium establishment corresponds to cation exchange completion, 

which is controlled indirectly through targets (1) and (3). It was not possible to 

verify the attainment of the chemical equilibrium, as suggested by Shackelford et al. 

(1999) (i.e. monitoring of effluent/influent EC and pH, which should fall within 1.0 

± 0.1), because it was not possible to sample the outflow with the necessary 

frequency. However, as illustrated by Shackelford et al. (2005), through very long 

hydraulic conductivity tests, chemical equilibrium is reached very quickly (few PV) 

for bentonite specimens permeated with higher Calcium Chloride concentration than 

50 mM, because a high Calcium concentration results in a rapid exchange with 

Sodium. In this study, the specimens were permeated with a very high CaCl2

concentration (i.e. 250 mM) and, consequently, targets (1) and (3) can be considered 

adequate for the monitoring of chemical equilibrium. 

#62� ��������
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The data concerning the initial characteristics of the natural specimens and the test 

procedure parameters are listed in Table 2.2. 
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The comparison between the results obtained from the hydraulic conductivity tests 

performed on the GCL and the NaB specimens (made of by the same material 

contained in the GCL, but prepared in a dry state without needling or geotextiles) is 
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presented in Figure 2.4 as a function of the pore volumes of flow, PV. A comparison 

of the data underlines the influence of needling and geotextiles on the hydraulic 

performance of the GCL. 
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Since the results of the first test with NaB were affected by clogging of the porous 

stones, during the permeation with the 250 mM CaCl2 solution, a second test was 

performed, referred to as NaB2 in the graph. Clogging developed after the 

permeation of 0.4 PV of CaCl2 solution and the results obtained after clogging have 

not been presented in the graph. The second test was conducted by hydrating the 

specimen with DW and directly starting the permeation with the CaCl2 solution. The 

results obtained from NaB and NaB2 are very similar. 

The hydraulic conductivity value obtained with DW was approximately equal for the 

GCL and NaB specimens: K = 1.5·10-11 m/s for the GCL and K = 2.0·10-11 m/s for 

the NaB. On the contrary, the permeation with the 250 mM CaCl2 solution produced 

a greater increase in hydraulic conductivity in the case of GCL (K = 7.0·10-10 m/s) 

than in the case of NaB-NaB2 (K = 1.2 ÷ 1.6·10-10 m/s). 
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The relative volumetric strain, 
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=δε (positive for swelling), of the 

GCL and the NaB specimens is plotted in Figure 2.5 as a function of PV.  
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The vδε �of the GCL was calculated referring to the volume of the bentonite layer, 

under the hypothesis that the geotextile volume was approximately constant during 

the test since the effective confining stress was constant. 

Both specimens presented a positive volumetric strain (swelling), during hydration, 

of δεv = 0.36 and δεv = 0.38 for NaB and GCL, respectively. The specimen volume 

was approximately stable during the permeation with DW and started to decrease 

when the specimens were permeated with the CaCl2 solution, due to the compression 

effect induced by the reduction in the swelling pressure. NaB presented higher 

sensibility to the bulk volume reduction induced by the cation exchange 

phenomenon: at the end of the consolidation phase NaB had a residual volumetric 

strain of δεv = 0.14, while it was equal to δεv = 0.24 for the GCL.  
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The data obtained in these tests highlight that the presence of needling across a GCL 

sample does not hinder the swelling during hydration and does not influence the 

hydraulic conductivity of bentonite to DW. During the permeation with the calcium 

chloride solution, the presence of needling induced lower hydraulic performances: 

the hydraulic conductivity was 7 times higher than that measured on NaB. This 

result can be explained by the formation of preferential flow pathways in 

correspondence to the holes produced by needling, where macro-voids can develop 

during the consolidation phase. The formation of internal macro-voids, instead of a 

homogeneous consolidation, can also explain the lower reduction of the bulk volume 

measured for the GCL than for the NaB specimen. 

The results obtained from the tests on C-NaB and SQ-C-NaB are presented in Figure 

2.6 in terms of hydraulic conductivity coefficient as a function of PV. 
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The graph in Figure 2.6 has the purpose of showing the role of the pre-hydration and 

pre-consolidation process (C-NaB) and that of the salt removal process (SQ-C-NaB) 

on the hydraulic performances of bentonite. 

The hydraulic conductivity measured on C-NaB during the permeation with DW 

was equal to that obtained for the NaB specimen, K = 2.0·10-11 m/s,  and it can, 

therefore, be stated that pre-hydration and pre-consolidation processes do not 

influence the hydraulic performances of bentonite permeated with �standard� liquids. 

The salt removal process, carried out on SQ-C-NaB before pre-hydration and pre-

consolidation, produced a considerable reduction in the hydraulic conductivity 

value, measured with DW, that it was halved (K = 0.8·10-11 m/s at σ′v = 50 kPa). 

The permeation phase with the 250 mM CaCl2 solution did not produce any 

perceptible variation in hydraulic conductivity in the case of C-NaB. The 

conductivity value, in fact, remained approximately stable during the whole 

permeation phase, and, at the end of the test, was equal to K = 1.8·10-11 m/s. This 

value is one order of magnitude lower than that obtained for NaB. 

Moreover, the hydraulic conductivity value monitored for SQ-C-NaB during CaCl2 

circulation decreased from K = 0.8·10-11 m/s to K = 0.6·10-11 m/s.  

The trends of relative the volumetric strain, vδε , measured during the permeation of 

C-Nab and SQ-C-NaB, are plotted in Figure 2.7 as a function of PV.  

The results highlight more swelling during the saturation phase for C-NaB than for 

SQ-.C-NaB and for the other specimens reported in Figure 2.5. Confined swelling 

requires a force of repulsion that separates the bentonite particles and increases the 

volume of the specimen as the water content increases. This force, called swelling 

pressure, appears to be greater for specimens subjected to consolidation pressure, 

which produces parallel particle orientation.  

In the case of parallel orientation, swelling occurs primarily in the plane 

perpendicular to the flat surface of the particles, and induces anisotropic behaviour: 

horizontal swelling can only be computed for a few percent of the vertical swelling. 

A random particle configuration, such as that of a NaB specimen, should lead to a 

more homogeneous swelling. 
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Anomalous behaviour appears from a comparison of the C-NaB and the SQ-C-NaB 

specimens. SQ-C-NaB was expected to swell as much as C-NaB during saturation, 

or even more, due to the higher swelling pressure induced by the absence of soluble 

salt between the bentonite lamellae. Instead, SQ-C-NaB showed a lower volumetric 

strain than C-NaB. The different pre-consolidation method that was used can explain 

this behaviour: SQ-C-NaB was in fact consolidated in the oedometer while C-NaB 

and NS-C-NaB were consolidated in the compaction mold.  

#626#���(*$���$�) % �)�"��& $��"�

The data concerning the initial characteristics of the modified specimens and the test 

procedure parameters are listed in Table 2.3. 
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The hydraulic conductivity results, obtained from the tests performed on the 

polymer modified specimen, NS-NaB and NS-C-NaB, are reported in Figure 2.8.  
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The hydraulic conductivity values measured with DW on both specimens were 

extremely low, within the 1.7·10-12 m/s and 3·10-12 m/s range, a value approximately 

one order of magnitude lower than those obtained by permeating natural bentonite 

specimens (GCL, NaB and C-NaB) with DW. The permeameter used for the tests at 

these conductivity values was not accurate enough to define a single value of 
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hydraulic conductivity. For this reason, a range of values was chosen in order to 

characterize the hydraulic behaviour of the modified material with DW. However, 

no difference in hydraulic conductivity of NS-NaB and NS-C-NaB was shown in the 

tests performed with DW. 

When the modified specimens were subjected to the 250 mM CaCl2 solution, an 

immediate increase in hydraulic conductivity was registered for both specimens as 

well as a subsequent achievement of the steady state conductivity value of 1·10-10

m/s and 2.5·10-11 m/s for NS-NaB and NS-C-NaB, respectively. These values are 

similar to those obtained for the natural specimens. 

The trend of relative volumetric strain, vδε , measured during the permeation of the 

modified specimens, is plotted as a function of PV in Figure 2.9 and compared with 

the data obtained for the corresponding natural specimens. 
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The relative volumetric strain induced by the saturation phase (swelling) was 

approximately equal for the natural and modified specimens:                  for the loose 

specimens (NaB and NS-NaB) and           for the saturated and statically 

consolidated specimens (C-NaB and NS-C-NaB). The residual strain of the 

specimens after consolidation was slightly lower for the modified specimens than 

for the natural ones. An important point is that the consolidation phase of the 

modified samples starts during permeation with DW. During this phase, the 

consolidation is not induced by a decrease in the internal swelling pressure caused 

by the cation exchange phenomenon but instead precedes it. The consolidation of the 

modified specimens, during the permeation with DW, can be explained by the 

polymer solubilisation and its subsequent removal from the specimens by the 

permeant solution. This possibility was subsequently confirmed in the FTIR test, i.e. 

the Fourier Transform Infrared Spectroscopy test, performed on the NS-C-NaB 

specimen exhumed from the permeameter at the end of the test and on a natural 

bentonite sample used for comparison purposes. The results of the spectroscopy, 

reported in Figure 2.10, highlight the absence of the polymer in the exhumed 

specimen and confirm its complete solubilisation. 
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During the permeation with the CaCl2 solution, the consolidation phenomenon, 

registered through the specimen volume monitoring shown in Figure 2.9, was 

induced by both polymer solubilisation and a reduction in swelling pressure induced 

by cation exchange phenomenon. 

�
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The hydraulic conductivity tests were aimed at evaluating the hydraulic behaviour of 

different bentonite specimens in short and long term conditions. By �short term� we 

mean those conditions that represent the state of the bentonite layer in the first 

period of usage in a landfill barrier, while by �long term� we mean those typical 

conditions of a bentonite layer that emerge after years of use as a sealing layer in a 

landfill. The hydraulic conductivity value, corresponding to the hydraulic 

performance of the specimen in the first part of the test performed with DW, was 

assumed equal to the steady state conductivity value, i.e. the asymptote reached after 

a short transient phase.  

Other, more complicated considerations should be made on the termination criteria 

of the second stage. In the second part of the test, in fact, the long transient phase of 

the hydraulic conductivity parameter was caused by the slow cation exchange 

phenomenon, which started to act when the first Calcium ion was injected into the 

specimen, and stopped when all the exchange active centres were saturated with 

Calcium ions.  

The tests performed in this study were aimed at individuating the conductivity value 

of the specimen in a completely exchanged state. To this aim, the termination 

criteria of the second phase of the tests were established as: (1) the completion of the 

consolidation phase induced by cation exchange, which achievement was reached 

for all the specimens in the graphs that report the relative volumetric strain trend as a 

function of PV, i.e. Figures 2.5, 2.7 and 2.9; (2) steady state hydraulic conductivity 

achievement, which was reached for all the specimens, as highlighted in the graphs 

in Figures 2.4, 2.6 and 2.8; and, finally, (3) a higher permeation with calcium mass 

than that necessary for complete saturation of the cation-exchange centres.  
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The calculation procedure conducted to obtain the theoretical value of the solution 

PV necessary to bestow the correct Calcium mass to each specimen is reported 

below. 

As in Dominijanni and Manassero (2005), the molar concentration of the solid 

skeleton electric charge, with reference to the average pore volume of the specimen 

during consolidation, can be defined as a function of the cation exchange capacity 

and the void ratio: 

)cons(ave

wSx

)cons(ave

0,sk
sk

e

GCEC

e

c
c

ρ⋅⋅⋅φ
==                  (2.1) 

where: xφ � is the fixed charge coefficient,  CEC is the cation exchange capacity, 

expressed in meq/g, GS is the specific gravity of the bentonite (assumed equal to 

2.65, as proposed by Dominijanni and Manassero 2006), wρ  is the water density, 

which is equal to 1 g/cm3, and eave(cons) is the average void ratio during the 

consolidation phase, calculated as: 

2

ee
e

)cons(f)cons(i

)cons(ave

+
=                   (2.2) 

�

The fixed charge coefficient, xφ , is an adjustable parameter that accounts for all the 

uncertainties of the model and is expected to be less than 1 (Dominijanni and 

Manassero, 2005). In this case, it was set equal to 1 to obtain a prudential estimate 

of the pore volume necessary for the complete exchange of calcium with sodium. 

Since Calcium has a double valence in the CaCl2 compound, the Calcium 

concentration that saturates the fixed charge of the bentonite specimen can be 

expressed as follows: 

2

c
C sk

exc,Ca =                     (2.3) 

�

and the corresponding Calcium molar mass can be obtained by multiplying the void 

volume of the specimen, Vv,ave(cons): 
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)cons(ave,vexc,Caexc,Ca VCM ⋅=                   (2.5) 

�

Finally, the 250 mM CaCl2 solution pore volume theoretically required to provide 

the Calcium mass, MCa,exc, is obtained as: 

M25.0

C
PV exc,Ca

Th =                    (2.6) 

�

The calculation results are reported in Table 2.4. 

	�5-"
��<
�
��-&.-�*,+%
$"'.-*'
#+$
*3"
*3,$/
*"$0,%�*,+%
&$,*"$,+%�


�

#6?� �	�
���	�������
��
���	����

Except for SQ-C-NaB, i.e. the specimen subjected to the salt removal process, the 

hydraulic conductivity to DW of the natural bentonite specimens (GCL, NaB, C-

NaB) was approximately the same and the values ranged between 1.5·10-11 m/s and 

2·10-11 m/s. These results highlight that physical pre-treatments or the 

presence/absence of needling do not influence the hydraulic performance of 

bentonite layers in short term condition, i.e. during permeation with DW. 

The SQ-C-NaB specimens showed a higher hydraulic performance with DW than 

the other specimens: the hydraulic conductivity value was K = 0.8·10-11 m/s. The 

salt removal process, or squeezing procedure, reduced the cation concentration in the 

pore solution and, as a consequence, enhanced the repulsion between the 

montmorillonite lamellae and the exfoliation of the tactoids. The resulting 

montmorillonite lamellae configuration was more dispersed and homogeneous in 

order to justify the hydraulic conductivity reduction.  
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Further studies are required to investigate whether the low hydraulic conductivity 

value, obtained for SQ-C-NaB, can be univocally associated to the squeezing 

procedure or whether it can be induced by pre-consolidation stress and, 

consequently, by the initial void ratio, e0, which is lower for the SQ-C-NaB 

specimen than for the C-NaB specimen. 

Hydraulic conductivity tests with natural bentonite specimens have shown that both 

physical pre-treatments and the presence/absence of needling have a great influence 

on the hydraulic performance of a the material, particularly in long term conditions, 

i.e. during permeation with the 250 mM CaCl2 solution. 

Strong Calcium solutions are known to affect the hydraulic conductivity of natural 

bentonite. In particular, the performed hydraulic conductivity tests highlighted the 

negative impact induced by needling on GCL hydraulic performances when 

permeated with the 250 mM CaCl2: the hydraulic conductivity value of the NaB 

specimen (K = 1.2 � 1.6·10-10 m/s), made up of the powdered material contained in 

the GCL, prepared in a dry state as in the industrial production of GCL, but devoid 

of needling and geotextiles, was 7 times lower than that obtained for the GCL 

sample (K = 7.0·10-10 m/s). 

Neither C-NaB nor SQ-C-NaB, which were pre-hydrated and pre-consolidated 

specimens, showed any conductivity value variation during the consolidation phase 

induced by cation exchange phenomenon, a result that was in contrast to the trend 

registered for loose specimens (GCL and NaB). The hydraulic conductivity value 

obtained from the SQ-C-NaB specimen even seemed to decrease during permeation 

with CaCl2: the final value was equal to K = 0.6·10-11 m/s. 

During hydration, the consolidated specimens swelled more than the loose 

specimens, due to the face-to-face fabric induced by the drained consolidation pre-

treatment. The charged montmorillonite lamellae, in fact, manifested a higher 

repulsion force when the two charged surface were aligned parallel. It follows that, 

during the imbibitions phase, the specimens previously subjected to consolidation 

absorbed a greater amount of water in the interlamellae space and, consequently, 

swelled more. 

The SQ-C-NaB specimen showed anomalous swelling behaviour: it was in fact 

expected to swell like C-NaB, or even more, due to the higher swelling pressure 
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induced by the soluble salt removal pre-treatment. Further studies are necessary to 

assess whether that lower swelling behaviour was induced by the salt removal 

process or by the higher stress subjected during the pre-consolidation phase. 

The tests performed on polymer modified specimens showed conductivity values to 

DW that were approximately one order of magnitude lower than those obtained for 

natural specimens (1.7·10-12 m/s - 3·10-12 m/s), highlighting an excellent result with 

regard to the use of the polymer Nanosponge. Unfortunately, during the permeation 

with water and the Calcium solution, the polymer was solubilised and removed from 

the specimen by the volumetric flux. The final hydraulic conductivity values 

registered for NS-NaB and NS-C-NaB, at the end of the CaCl2 stage, were similar to 

those obtained with the respective natural bentonite specimens (NaB and C-NaB). 

The results of the spectroscopy substantially highlight the absence of the polymer in 

the exhumed C-NaB specimen and confirm its complete solubilisation during the 

hydraulic conductivity test. 
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The polymer selection and chemical analysis, which were essential for this study, 

were conducted with the help of Prof. Francesco Trotta and Dr. Marco Zanetti of the 

Chemistry faculty at the University of Turin.
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This chapter reports the contents of the Paper:  

Dominijanni, A., Manassero, M., Puma, S. (2013). 

Géotechnique 63, No. 3, 191-205 [http://dx.doi.org/10.1680/geot.SIP13.P.010].  

Titled: Coupled chemical-hydraulic-mechanical behaviour of bentonites. 

(Manuscript received 29 February 2012; revised manuscript accepted 22 October 2012). 

Other contents are reported at the end of the chapter, regarding the results and 

comments to further osmotic tests, which have not been included in the Paper, and 

the design of a new apparatus to measure both the swelling pressure and the 

reflection coefficient. 
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The common use of bentonites, which are clay soils characterized by a high specific 

surface and a permanent negative electric charge on their solid skeleton, as hydraulic 

and contaminant barriers for landfill and soil remediation applications, including the 

final disposal of nuclear waste, needs to be supported by adequate theoretical 

modelling of their mechanical behaviour and transport properties, in order to assess 

the expected performance in the long term. To this aim, a theoretical approach has 

been proposed in order to derive constitutive equations for their coupled chemical-

hydraulic-mechanical behaviour. The phenomenological parameters that govern the 

transport of electrolyte solutions through bentonites, i.e. the hydraulic conductivity, 

the reflection coefficient, which is also called the chemico-osmotic efficiency 

coefficient, and the osmotic effective diffusion coefficient, have been measured 

through laboratory tests on a bentonite with porosity of 0.81, over a range of sodium 

chloride concentrations in the pore solution that varied from 5 mM to 100 mM. The 

relevance of the osmotic phenomena has been shown to decrease when the salt 

concentration increases. The obtained results have been interpreted by assuming that 

the microscopic deviations of the pore solution state variables from their average 

values are negligible. In this way, it is possible to interpret the macroscopic 

behaviour on the basis of the physical and chemical properties of the bentonite 

mineralogical components. 

-6#� =��+7���  
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The term �bentonite� is commonly used to indicate a clay soil with a high content (> 

70%) of montmorillonite, a mineral of the smectite group. Montmorillonite particles 

are thin lamellae that are characterized by a high specific surface (defined as the 

surface per unit weight) and a permanent negative electric charge. Bentonite is used 

in hydraulic and contaminant barriers, because of its low hydraulic conductivity, k, 

to permeation with water and dilute aqueous solutions (k typically ⩽ 3·10-11 m/s). 

Geosynthetic clay liners (GCLs), which consist of a thin layer of bentonite (∼ 5- to 

10-mm thick) sandwiched between two geotextiles, are examples of such barriers. 

GCLs are currently used in bottom and cover landfill barriers to limit water 

infiltration and contaminant migration. 

Owing to its physical and chemical properties, the macroscopic mechanical 

behaviour and transport properties of bentonite cannot be modelled through classical 

soil mechanics approaches (Manassero and Dominijanni, 2003). In fact, bentonite 

swells or shrinks in response to changes in the chemical composition of the pore 

solution. Moreover, when a hydraulic pressure gradient, or a solute concentration 

gradient, is applied to it, both a volumetric flux and a diffusive solute mass flux 

occur, as in semipermeable membranes. For this reason, a theoretical approach that 

accounts for the electric interaction that occurs between the solid skeleton of the 

bentonite and the ions contained in the pore solution is proposed in the first part of 

this paper. The experimental determination of the swelling pressure and the transport 

properties of a natural sodium bentonite is described in the second part. The 

obtained results have been interpreted with the proposed theoretical model, in which 

the microscopic properties of the bentonite have been linked to the observed 

macroscopic behaviour.
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Montmorillonite lamellae are characterized by a negative electric charge, due to the 

isomorphic substitution of a portion of the tetravalent silicon (Si4+) and the trivalent 

aluminium (Al3+) in their crystalline structure, with metals, such as magnesium 

(Mg2+), which have a lower valence. This electric charge per unit solid volume can 

be expressed as sk ,0F c⋅ , where F is Faraday�s constant (96,485 1C mol−⋅ ) and sk ,0c

is the molar concentration per unit solid volume of the solid skeleton electric charge, 

which is assumed to have unit valence (i.e. skz 1= − ). 
0,skc  represents the moles of 

solid skeleton electric charge per volume of solids and, in order to be compared with 

the ion concentrations of the pore solution, it needs to be divided by the void ratio, e, 

which represents the pore volume per volume of solids. Dominijanni and Manassero 

(2012b) have shown that sk ,0c  is proportional to the effective specific surface of the 

solid particles and decreases when the montmorillonite lamellae aggregate to form 

the so-called tactoids. 

If the pore solution contains a single salt that is completely dissociated with the 

following stoichiometric reaction: 

( ) ( )1 2 1 2

1 2

z z
1 2z z

Cation Anion (Cation) (Anion)
ν ν

→ ν + ν

where 1z  and 2z  are the electrochemical valences of the cation and the anion, and 

1ν  and 2ν  are the stoichiometric coefficients of the cation and the anion, 

respectively, the following condition has to be satisfied in order to preserve 

electroneutrality within a saturated porous medium, even in the presence of the solid 

skeleton electric charge: 

sk,0
1 1 2 2

c
z c z c

e
+ =                    (3.1) 

where 1c  and 2c  are the molar concentrations of the cation and the anion, 

respectively, and e is the void ratio. 
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As a consequence, the solid skeleton electric charge influences the distribution of the 

ions contained in the pore solution. This phenomenon is known as the ion-partition 

effect and is expected to be more relevant for porous media characterized by higher 

solid skeleton charge concentrations. 

-606���>' ( !� '$�&��) � ��"�

When an electrically charged porous medium is placed in contact with an external 

bulk solution that contains the same ions that are present in the pore solution, a 

thermodynamic equilibrium condition is reached, after a certain period of time, in 

which the water chemical potential and the ion electrochemical potentials between 

the two solutions are equal. The external bulk solution can be considered as a 

�chemical thermometer� in order to evaluate the equilibrium conditions of the 

porous medium (Coussy, 2004). The electroneutrality condition in the external 

solution is given by: 

1 1 2 2z c z c 0+ =                    (3.2) 

where 1c  and 2c  are the molar concentrations of the cation and the anion that are 

contained in the bulk solution. 

It is convenient to define the salt concentration, sc , of the external solution as 

follows: 

1 2
s

1 2

c c
c = =

ν ν
                    (3.3) 

Using Eq. (3.3), the electroneutrality condition, Eq. (3.2), provides the relation 

between the electrochemical valences and the stoichiometric coefficients: 

1 1 2 2z z 0ν + ν = .                  (3.4) 

As a result, the equilibrium condition can be characterized by the following state 

variables of the external bulk solution: the absolute temperature, T, the hydraulic 

pressure (referenced to the atmospheric pressure, as is usual in soil mechanics), u, 
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and the salt concentration, cs. The corresponding variables of the pore solution can 

be evaluated from the following conditions: 

T T=                      (3.5) 

w wµ = µ                     (3.6) 

ec ec
i i           i = 1,2µ = µ                  (3.7) 

where T  and T are the absolute temperature in the pore solution and in the external 

bulk solution, respectively; wµ  and wµ  are the water chemical potential in the pore 

solution and in the external bulk solution, respectively; ec
iµ  and ec

iµ  are the 

electrochemical potentials of the i-th ion in the pore solution and in the external bulk 

solution, respectively. 

The water chemical potential, wµ , and the ion electrochemical potentials, ec
iµ , of 

the external solution can be related to the hydraulic pressure, u, and the salt 

concentration, cs, for a dilute solution, as follows (Katchalsky and Curran, 1965; 

Dominijanni and Manassero, 2012a): 

w

0
ww

c

)u(
)T(

Π−
+µ=µ                   (3.8) 

ec 0
i i i i i s iz F (T) RT ln( c ) z F                i 1, 2µ = µ + ϕ = µ + ν + ϕ =              (3.9) 

where 0
wµ  and 0

iµ  are integration constants that only depend on the absolute 

temperature T; wc  is the water molar concentration; 
2

i s
i 1

RT c
=

Π = ν�  is the osmotic 

pressure; iµ  is the chemical potential of the i-th ion; R is the universal gas constant (

1 18.314 J mol K− −⋅ ⋅ ); and ϕ is the electric potential. 

The state variables in the external bulk solution can be measured easily, whereas it is 

very difficult to determine the corresponding variables in the pore solution. 

Moreover, the relations obtained by linking the chemical potentials to the state 

variables of the pore solution are more uncertain, due to the interaction with the 
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solid skeleton charge, which alters the ion concentration distribution near the solid 

particles. The simplest assumption that can be adopted involves using analogous 

relations to Eqs. (3.8) and (3.9) as they are also considered valid for the pore 

solution. This assumption, which was first proposed by Donnan (1911), neglects the 

microscopic deviations of the ion concentrations from their average values that are 

induced by the electric potential distribution within the pores. If this approximation 

is accepted, the water chemical potential, wµ , and the ion electrochemical 

potentials, ec
iµ , of the pore solution can be expressed as follows:

w

0
ww

c

)u(
)T(

Π−
+µ=µ                 (3.10) 

ec 0
i i i i i iz F (T) RT ln(c ) z F                i 1, 2µ = µ + ϕ = µ + + ϕ =             (3.11) 

where 0
wµ  and 0

iµ  are integration constants that only depend on the absolute 

temperature T; wc  is the molar concentration of the water in the pore solution, 

which can be taken equal to the molar concentration of the water in the external bulk 

solution, i.e. w wc c≅ ; 
2

i
i 1

RT c
=

Π = �  is the osmotic pressure of the pore solution; 

iµ  is the chemical potential of the i-th ion in the pore solution; and ϕ  is the electric 

potential in the pore solution. 

The hydraulic pressure of the pore solution, u , and the ion partition factors, iΓ , 

defined as the ratio between the ion concentration of the pore solution and the ion 

concentration of the external bulk solution, can therefore be expressed on the basis 

of Eqs. (3.6) and (3.7), and using Eqs. (3.8)-(3.11), as follows: 

u u ( )= + Π −Π                  (3.12) 

i i
i i

i i s

c c F
exp z               i 1, 2

c c RT

� �
Γ = = = − ψ =� �

ν � �
             (3.13) 
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where ψ = ϕ− ϕ  is the electric potential of the porous medium, which is also called 

Donnan�s potential. 

On the basis of this approach, the hydraulic pressure of the pore solution is different 

from the hydraulic pressure of the external solution that is in equilibrium with it. 

The pressure difference between the pore solution and the external solution is called 

the swelling pressure, swu , and is given by: 

swu = Π − Π .                 (3.14) 

Eqs. (3.12) and (3.13) for i = 1.2, together with Eq. (3.1), constitute a set of four 

equations that can be solved to find the four unknown variables: the hydraulic 

pressure, u , the ion concentrations, ic for i = 1.2, and the electric potential, ψ . 

When the ion electrochemical valences are both unitary, such as for NaCl, Eq. (3.13) 

implies that 

1
1 2

−Γ = Γ .                  (3.15) 

Inserting Eq. (3.15) into Eq. (3.1) results in the following equation: 

sk,01
2 2

s

c
0

e c
−Γ − Γ − =

⋅
,                (3.16) 

which has a positive solution of the following form: 

2

sk,0 sk,0
2

s s

c c
1

2 e c 2 e c

� �
Γ = − + +� �

⋅ ⋅ ⋅ ⋅� �
               (3.17) 

and 

2

sk,0 sk,01
1 2

s s

c c
1

2 e c 2 e c
− � �

Γ = Γ = + +� �
⋅ ⋅ ⋅ ⋅� �

.              (3.18) 

On the basis of Eqs. (3.17) and (3.18), the swelling pressure can be expressed as 

follows: 
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( )
2

sk,0
sw s 1 2 s

s

c
u RTc 2 2RTc 1 1

2 e c

� 	
� �
 �= Γ + Γ − = + −� �
 �⋅ ⋅� �

� 

.            (3.19) 
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When the hydraulic pressure and/or the salt concentration are changed in the 

external bulk solution, a new equilibrium condition is restored in the porous medium 

after a sufficiently long period of time. In order to evaluate this new condition, the 

change in the free energy per unit initial (undeformed) volume of the porous 

medium, Vℑ , can be determined by assuming that it is a function of the 

macroscopic strain tensor, � , and the concentration of each fluid component 

(Dormieux et al., 2003). A second assumption that can be made refers to the 

reversible mechanical behaviour of the solid constituents: in such a case, the 

intrinsic dissipation, due to the solid skeleton strains, is zero (Dormieux et al. 2003; 

Dominijanni and Manassero, 2012a). On the basis of these assumptions, the 

increment in free energy per unit initial volume, under isothermal conditions, can be 

expressed as follows: 

2
k

V k
k w,1 0

d(e c )
d : d

1 e=

⋅
ℑ = + µ

+
�� �                (3.20) 

where �  is the total stress tensor and 0e  is the initial void ratio. 

In Eq. (3.20), the chemical potentials of the pore solution, iµ , can be substituted by 

the electrochemical potentials, ec
iµ , since the adding term given by 

[ ] sk,01 1 2 2

0 0

dcd e (z c z c )
F F

1 e 1 e

� �⋅ +
⋅ϕ = ⋅ϕ⋅� �

+ +� �

is null, if the solid skeleton charge, sk ,0c , is assumed constant. 

Then, applying Eqs. (3.6) and (3.7), the water chemical potential and the ion 

electrochemical potentials in the pore solution can be substituted by the 
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corresponding potentials in the external solution. If the electroneutrality condition, 

Eq. (3.2), is taken into account, the ion electrochemical potentials of the bulk 

solution can be substituted by the ion chemical potentials. As a result, Vdℑ  can be 

expressed using the readily available chemical potentials of the external bulk 

solution, instead of the chemical potentials of the pore solution. If the analysis is 

restricted to a unidimensional geometry, Eq. (3.20) becomes: 

2
k

V k
k w,1 0

d(e c )
d d

1 e=

⋅
ℑ = σ ⋅ ε + µ

+
� .               (3.21) 

The free energy of the solid skeleton, which accounts for the interaction with the 

fluid phase, sk
Vℑ , can be derived by subtracting, from Vℑ , the free energy of the 

fluid phase that is given as a function of the specific free energies of the components 

of the external bulk solution, kF  (k = w,1,2): 

2
sk
V V k k

k w,10

e
(c F )

1 e =

ℑ = ℑ − ⋅
+

� .               (3.22) 

The free energy change, due to the interaction between the solid skeleton charge and 

the ions in the pore solution, is included in sk
Vℑ  because the specific free energy of 

the equilibrium bulk solution is subtracted from Vℑ , instead of the specific free 

energy of the pore solution. 

Using the following thermodynamic relations: 

k
k k

k

u
F                k w,1, 2

c
µ = + =                (3.23) 

k
k

k

du
d                   k w,1, 2

c
µ = =                (3.24) 

k k
k

1
dF u d         k w,1,2

c

� �
= − =� �

� �
               (3.25) 
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where ku  represents the partial pressure of the k-th component of the bulk solution, 

the change in sk
Vℑ  can be expressed as follows: 

2
sk k k
V

k w,1 0 k

u e c
d d d

1 e c=

� �⋅
ℑ = σ⋅ ε + � �

+ � �
� .               (3.26) 

Observing that w wc c≅  and 

wu u= −Π ,                  (3.27) 

where the osmotic pressure represents the sum of the ion partial pressures, 

2

i
i 1

u
=

Π =� ,                  (3.28) 

the increment sk
Vdℑ  can be expressed as follows: 

2
sk i i
V

i 10 0 i

u e cde
d d (u ) d

1 e 1 e c=

� �⋅
ℑ = σ⋅ ε + − Π + � �

+ + � �
� .             (3.29) 

For infinitesimal strains, assuming that the solid component is incompressible, 

0

de
d

1 e
ε = −

+
                  (3.30) 

and, as a consequence, Eq. (3.29) can be expressed as follows: 

[ ]
2

sk i i
V

i 1 0 i

u e c
d (u ) d d

1 e c=

� �⋅
ℑ = σ − − Π ⋅ ε + � �

+ � �
�               (3.31) 

In order to derive the mechanical constitutive equations, it is convenient to work 

with the Gibbs free energy, sk
V� , which is the following Legendre transform of sk

Vℑ : 

[ ]
2

sk ski
V i V

i 1 0 i

ce
(u ) u

1 e c=

= σ − − Π ⋅ε + − ℑ
+

�� .              (3.32) 



�

7 


�"+*"&3%,@."


Taking into account Eqs. (3.31) and (3.24), the infinitesimal increment in sk
V�  is 

given by: 

[ ]

[ ]

2
sk i
V i

i 1 0

1 2
s

0 1 2

e c
d d (du d ) d

1 e

e (c c ) 1
        = d (du d ) d

1 e

=

⋅
= ε ⋅ σ − − Π + µ =

+

� 	⋅ +
ε ⋅ σ − − Π + µ
 �

+ ν + ν� 

��

,            (3.33) 

where sdµ  is the salt chemical potential increment, which is defined as follows: 

s 1 1 2 2
s

1
d d d d

c
µ = ν ⋅ µ + ν ⋅ µ = Π .               (3.34) 

The function sk
V�  can be considered to depend on the variables [ ](u )σ − − Π  and 

sµ ; therefore the simplest constitutive equations that can be inferred are: 

[ ]vv vs sd d (du d ) dε = β ⋅ σ − − Π + β ⋅ µ                (3.35) 

[ ]
[ ]1 2

sv ss s
1 2 0

d e (c c )
d (du d ) d

( )(1 e )

⋅ +
= β σ − − Π + β ⋅ µ

ν + ν +
             (3.36) 

Symmetry of the coefficients, i.e. svvs β=β , can be demonstrated by considering 

sk
V�  as a continuous function of the variables [ ](u )σ − − Π  and sµ  (Dominijanni 

and Manassero, 2012a). 

Eq. (3.35) can also be expressed in the following form: 

swd du du M dσ − − = ⋅ ε                (3.37) 

where 
vv

1
M =

β
 is the one-dimensional elastic modulus of the porous medium and 

swdu represents the swelling pressure increment, which is given by: 
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swdu d= −ϖ⋅ Π ,                 (3.38) 

where vs

vv s

1
c

β
ϖ = +

β ⋅
 is the swelling coefficient (Dominijanni and Manassero 

2012a). 

Since it is known, from experimental observations, that the swelling pressure tends 

to zero when sc → ∞ , the swelling pressure, swu , can be obtained as follows: 

swu d
∞

Π

= ϖ ⋅ Π� .                 (3.39) 

The effective stress principle can be restored, on the basis of Eq. (3.37), if the 

effective stress increment, d 'σ , is defined as follows: 

swd ' d du duσ = σ − −                  (3.40) 

The classical definition of effective stress, d ' d duσ = σ − , corresponds to the 

particular case for which swdu 0= , i.e. 0ϖ =  and vs vv scβ = −β ⋅ . 

Adopting Donnan�s assumptions and using Eq. (3.14), the swelling coefficient can 

be expressed as follows: 

d
1

d

Π
ϖ = −

Π
.                  (3.41) 

Dominijanni and Manassero (2012b) have demonstrated that Eq. (3.41) can also be 

expressed in the following form: 

1 2
1 2

1 2 2 1

d
1 1

d

ν + νΠ
ϖ = − = − Γ Γ

Π ν Γ + ν Γ
.               (3.42) 

-606#�����"������>'�� ��"�

If clay is interposed between two reservoirs with different hydraulic pressures or ion 

concentrations, a pore solution volumetric flux, q, and an ion mass flux, Ji, relative 
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to the solid skeleton, are generated. In order to derive appropriate flux equations, the 

linear momentum balance equations of the fluid components can be developed on 

the basis of a number of assumptions. If only unidimensional problems are 

considered and inertial effects are neglected, these equations can be expressed as 

follows (Ehlers, 2002; Dominijanni and Manassero, 2010): 

w
w w

(n u )
f m

x

∂ ⋅
− + =

∂
                (3.43) 

i
i i

(n u )
f m        i =1,2

x

∂ ⋅
− + =

∂
               (3.44) 

where n is the porosity, x is the spatial coordinate, wf is the external force per unit 

volume acting on the water, mw is the momentum supply of water, fi is the external 

force per unit volume acting on the i-th ion and mi is the momentum supply of the i-

th ion. 

The external forces are gravity, which can be considered to only act on the solvent 

(i.e. water) in the x direction, and the electric force, which is proportional to the 

electric potential gradient: 

w wf n g= ⋅ρ ⋅                   (3.45) 

i i if n c z F           i = 1,2
x

∂ϕ
= − ⋅ ⋅ ⋅ ⋅

∂
               (3.46) 

where wρ  is the water density and g is the gravity acceleration. 

The momentum supply of the fluid components can be expressed as follows: 

E
k k km u n m             k w,1, 2= − ∇ + =                (3.47) 

where E
km  represents the extra-momentum supply of the k-th fluid component, 

which can be associated with the friction between the porous medium components 

that move with different velocities. 
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If the extra-momentum supply is associated with the frictional force per unit volume 

exchanged with the other components of the porous medium, it can be assumed to 

be equal to the sum of the binary interactions: 

2
E E E
w w,sk w,i

i 1

m m m
=

= +�                 (3.48) 

E E E E
i i,w i, j i,skm m m m            i,j 1, 2;  i j= + + = ≠               (3.49) 

where w is the water, sk the solid skeleton, and i and j are the i-th and j-th ions. The 

friction between the ions and between the ions and the solid skeleton can be 

considered negligible for a dilute solution compared to the friction between the ions 

and the solvent: 

E E E
i, j i,sk i,wm  ; m  << m            i,j 1, 2;  i j= ≠

E E
i i,wm m            i 1,2≅ =                 (3.50) 

Moreover, on the basis of the assumption of binary interaction, it can be assumed 

that 

E E
w,i i,wm m            i 1,2= − = .                (3.51) 

For the friction forces per unit volume, the following constitutive equations can be 

adopted: 

E
w,sk w skm n (v v ) q= α ⋅ ⋅ − = α ⋅                (3.52) 

E E
i,w w,i i i i wm m n c (v v )             i 1, 2= − = β ⋅ ⋅ ⋅ − =              (3.53) 

where α and βi are friction coefficients, while w sk iv ,  v  and v  are the water, solid 

skeleton and i-th ion velocities, respectively. 

The factors n and w sk(v v )−  in Eq. (3.52), as well as in c⋅  and i w(v v )−  in Eq. 

(3.53), have been picked out as an indication of the fact that E
w,skm 0=  if n 0=  or 
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w sk(v v ) 0− = , and E
i,wm 0=  if in c 0⋅ =  or i w(v v ) 0− = . However, this does 

not mean that the friction coefficients α  and iβ  are independent of n, ic  and the 

relative velocities. 

Taking into account these constitutive assumptions, and using the thermodynamic 

relation that relates the chemical potentials to the partial pressure 

k
k

k

du
d                   k w,1, 2

c
µ = = ,               (3.54) 

the following flux equations can be derived from Eqs. (3.43) and (3.44): 

ec2
w i

w sk w w i
i 1

n
q n(v v ) c g c

x x=

� �∂µ ∂µ
= − = − − ρ +� �

α ∂ ∂� �
�              (3.55) 

ec
i i

i i i sk i i

D
J nc (v v ) qc n c             i 1, 2

RT x

∂µ
= − = − =

∂
            (3.56) 

where i
i

RT
D =

β
 represents the macroscopic diffusion coefficient of the i-th ion. 

At this point, it is convenient to introduce the concept of a virtual external bulk 

solution that is in thermodynamic equilibrium with the pore solution at the generic 

position x within the porous medium (Dormieux et al., 1995; Yaroshchuk, 1995). 

The virtual solution coincides with the real bulk solutions in contact with the porous 

medium at the boundaries. The thermodynamic potentials in Eqs. (3.55) and (3.56) 

can be substituted with the corresponding potentials of this virtual solution, using 

Eqs. (3.6) and(3.7). This leads to a formulation that does not depend on the 

determination of the pore solution variables. Therefore, Eqs. (3.55) and (3.56) can be 

expressed as follows: 

2
sk,0i

w i
i 1

ccn u
q g RT F

x x x e x=

� �∂∂ ∂Π ∂ϕ
= − − − ρ + Γ +� �

α ∂ ∂ ∂ ∂� �
�             (3.57) 

i i
i i i i i i i i

c nD
J q c nD z c F             i 1, 2

x RT x

∂ ∂ϕ
= Γ − Γ − Γ =

∂ ∂
.            (3.58) 
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If an external electric current is not applied to the porous medium, the electric 

potential derivative in Eqs. (3.57) and (3.58) can be eliminated by means of the 

condition of electric current, Ie, equal to zero: 

2

e i i
i 1

I F z J 0
=

= =� .                 (3.59) 

The resulting flux equations can be expressed as follows: 

w

k u
q

x x

∂ ∂Π� �
= − − ω� �

γ ∂ ∂� �
                (3.60) 

* s
s s

c
J (1 )qc nD

x
ω

∂
= − ω −

∂
                (3.61) 

where 

w
2

1 2 1 2 s

1 2 2 2 1 1

n
k

( ) cRT
1

D D

⋅ γ
=

� 	Γ − Γ ν ν
α +
 �

α ν Γ + ν Γ� 

= hydraulic conductivity;            (3.62) 

1 2 2 1
1 2

1 2 2 2 1 1

D D
1

D D

ν + ν
ω = − Γ Γ

ν Γ + ν Γ
 = reflection coefficient;            (3.63) 

fluxmolar salt 
JJ

J
2

2

1

1
s =

ν
=

ν
=                (3.64) 

*
sD (1 ) Dω = − ω ⋅  = osmotic effective diffusion coefficient;            (3.65) 

1 2 1 2
s

1 2 2 1

( )D D
D

D D

ν + ν
=

ν + ν
 = macroscopic salt diffusion coefficient.            (3.66) 

Dominijanni and Manassero (2012b) have demonstrated that, if the microscopic 

deviations of the variables from their average values are assumed to be negligible, 

the macroscopic ion diffusion coefficients, iD , result to be equal to the ion effective 

diffusion coefficients, *
iD : 

*
i i m i,0D D D           i 1, 2= = τ =                (3.67) 
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* *
1 2 1,0 2,0* 1 2 1 2

s s m m s,0* *
1 2,0 2 1,01 2 2 1

( )D D( )D D
D D D

D DD D

ν + νν + ν
= = = τ = τ

ν + νν + ν
            (3.68) 

where mτ  is the dimensionless matrix tortuosity factor that accounts for the tortuous 

nature of the actual diffusive pathway through the porous medium (Malusis and 

ShacKelford, 2002b), i,0D  is the free (aqueous) solution diffusion coefficient of the 

i-th ion, *
sD  is the salt effective diffusion coefficient and s,0D  is the free solution 

diffusion coefficient of the salt. 

An interesting observation is that the reflection coefficient, ω, results to be equal to 

the swelling pressure coefficient, ϖ, when the ion free solution diffusion coefficients 

are equal. 

When the solid skeleton electric charge is equal to zero, the ion partition 

coefficients, Γi, are equal to 1 and Eqs. (3.60) and (3.61) reduce to the Darcy 

equation and the classical advective-diffusion equation, respectively. 

The osmotic effective diffusion coefficient, *Dω , results to be related to the 

reflection coefficient, ω, through Eq. (3.65), so that *D 0ω =  when 1ω = . As a 

result, the condition 1ω =  implies a null salt flux through the porous medium, 

which, in this case, can be said to act as a "perfect" or "ideal" barrier. 

If Eq. (3.65) is compared with the expression of *Dω  proposed by Malusis and 

Shackelford (2002b) and Malusis et al. (2012): 

* *
r sD Dω = τ                   (3.69) 

where rτ  is the restrictive tortuosity factor, rτ  results to be given by: 

s
r *

s

D
(1 )

D
τ = − ω .                 (3.70) 

Moreover, if the hypotheses implied by Eq. (3.68) are adopted, the expression of rτ

reduces to: 
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r (1 )τ = − ω .                  (3.71) 

The coefficient k can be measured, under steady state conditions, using traditional 

permeameters. Malusis et al. (2001) developed a testing apparatus to determine ω

and *Dω . This apparatus is able to impose the condition of no-volumetric flux (q = 

0) through a soil sample in contact with two external solutions, maintained at 

constant salt concentrations, so that the global or averaged values of the coefficients 

can be measured. The global values of ω and *Dω  are defined as follows (Auclair et 

al., 2002): 

t

b

c

g s
s c

1
dc

c
ω = ω⋅

∆ �                  (3.72) 

t

b

c
* *

g s
s c

1
D D dc

cω ω= ⋅
∆ �                  (3.73) 

where tc  and bc  represent the salt concentration at the top and the bottom 

boundaries of the clay sample, respectively, and s t bc c c∆ = −  is their difference. 

These coefficients can be determined by means of the following relations under 

steady state conditions: 

g
q 0

u

=

∆� �
ω = � �

∆Π� �
                 (3.74) 

* s
g

s q 0

JL
D

n cω

=

� �
= � �

∆� �
                 (3.75) 

where t bu u u∆ = −  and t b∆Π = Π −Π  represent the differences between the 

hydraulic pressure and the osmotic pressure at the boundaries of the clay sample, 

and L is the length of the sample. 
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It is interesting to observe that the relationship between *Dω  and ω is also 

maintained between their corresponding global values: in fact, inserting Eq. (3.65) 

into Eq. (3.73) with *
s sD D=  leads to: 

* *
g g s g m s,0D (1 ) D (1 ) Dω = − ω ⋅ = − ω ⋅ τ ⋅ .             (3.76) 

In the case of a salt constituted by monovalent ions, inserting Eq. (3.63) into Eq. 

(3.72) and using Eqs. (3.17) and (3.18), the following expression of gω  is obtained: 

sk,0 2 1
g 2 1 1

s 1 1

c Z 2t 1
1 Z Z (2t 1) ln

2 c e Z 2t 1

� 	� �+ −
ω = + − − − ⋅
 �� �

⋅ ∆ ⋅ + −� �� 
            (3.77) 

where 

1,0
1

1,0 2,0

D
t

D D
=

+
 = cation transport number,              (3.78) 

2

t
1

sk,0

2 c e
Z 1

c

� �⋅ ⋅
= + � �� �

� �
,                 (3.79) 

2

b
2

sk,0

2 c e
Z 1

c

� �⋅ ⋅
= + � �� �

� �
.                (3.80)
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The powdered bentonite tested in this study is an Indian sodium bentonite that is 

used for the production of a needle-punched GCL. The bentonite is characterized by 

a cation exchange capacity (CEC, measured using the methylene blue adsorption 

method) of 105 meq/100g. The mineralogical composition, evaluated through x-ray 

diffraction analysis, indicates a bentonite that is primarily composed of smectite (> 

98%) with traces of calcite, quartz, mica and gypsum. 

The bentonite is characterized by a liquid limit (LL) of 525% and a hydraulic 

conductivity of 8·10-12 m/s, measured at a 27.5 kPa confining effective stress using 

de-ionized water as the permeant liquid. 

Sodium solutions were prepared with sodium chloride (ACS reagent, purity � 99%) 

and de-ionized water (DW). The sodium solutions were prepared at different 

molarity values, in the 5 mM to 100 mM range, with the aim of investigating the 

effect of the monovalent cations on the osmotic behaviour of the bentonite. The DW 

(pH = 6.95; EC at 20 °C = 0.6 mS/m) consisted of tap water processed through a 

series of activated carbon filters, a reverse osmosis process and, finally, a UV lamp 

(Elix Water Purification system). Moreover, the DW was deaerated prior to use. The 

electrical conductivity (EC) measured at 20 °C for the NaCl solutions ranged from 

60.5 mS/m to 1.1 mS/m. 
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Prior to the osmotic property determination, the bentonite was submitted to a 

process with the aim of removing the soluble salts, mainly sodium, which are 

naturally present inside the material, due to its marine origin. The treatment prevents 

soluble salts from interfering with the determination of the osmotic properties. 

Previous studies (Malusis et al., 2001; Malusis and Shackelford, 2002a, 2002b; 

Shackelford and Lee, 2003; Yeo et al., 2005; Kang and Shackelford, 2009; Di 

Emidio 2010) have used the �flushing� method to remove soluble salts. This method 

consists of an initial permeation phase, performed under back pressure, which 
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requires a long period of time (i.e. from months to a year), because of the low 

bentonite hydraulic conductivity. 

In this study, the �squeezing� method has been used with the aim of reducing the salt 

removal time. The �squeezing� method consists of a series of consecutive phases of 

powder bentonite hydration with DW, at a higher water content than the liquid limit, 

and drained consolidation, performed in a consolidometer under a maximum load of 

500 kPa. Moreover, the drained solution is sampled daily and the EC is monitored to 

evaluate the soluble salt concentration in the bentonite pore water. After the 

�squeezing� process, the material is oven dried at 105 °C and pulverized once again. 

When a 5 L consolidometer is used, the above procedure can produce about 500 g of 

squeezed dry powder bentonite, characterized by a lower EC value than 50 mS/m, in 

40-50 days. The results of the EC monitoring during the squeezing process are 

reported in Fig. 3.1. 
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The specimen for the chemico-osmotic test is prepared by rehydrating the squeezed 

bentonite with DW at a lower water content than the liquid limit value and then by 
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The testing apparatus used to measure the global reflection coefficient and the global 

osmotic effective diffusion coefficient is described in detail in Malusis et al. (2001). 
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solutions to circulate through the top (NaCl solution) and the bottom (DW) porous 

stones with the aim of establishing a constant concentration gradient across the 

specimen. The third port is installed in both the top piston and the bottom pedestal to 

allow the differential pressure across the specimen to be measured. 

The flow-pump system, which consists of a dual-carriage syringe pump and two 

stainless steel accumulators (Model 33 - Twin syringe pump, produced by Harvard, 

Holliston, MA), prevents the volumetric flux through the specimen by 

simultaneously injecting into and withdrawing from the porous stones the same 

volume of solution. In order to obtain this result, the syringes have to move at the 

same rate. 

The test was performed according to the procedure proposed by Malusius et al. 

(2001): a solution containing a known electrolyte concentration (NaCl) was 

circulated in the top porous stone, while DW was circulated in the bottom porous 

stone. The concentration difference across the specimen was maintained constant by 

continuously infusing the two liquids at the boundaries of the specimen. 
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Since the specimen was preliminary squeezed with DW to remove the soluble salts, 

the EC of the electrolyte solutions in the flux exiting from the porous stones at the 

steady state was induced solely by the contributions of Cl− and Na+ ions. Moreover, 

the calibration reported in Fig. 3.3 shows that the relation between the EC and 

solution molarity was linear over the concentration range examined in the study. As 

a consequence, the EC of the withdrawn fluxes (i.e. from the top and bottom porous 

stones, respectively) was monitored by sampling the solution contained in the 

pistons, and the NaCl molar concentration was derived using a linear relation. Since 

the volumetric flux through the specimen was hindered, the global reflection 

coefficient could be calculated using Eq. (3.74). 

The diffusive solute flux through the specimen was calculated for the n-th sampling 

interval as follows 

( )
n

m m
s n

n m 1
s n n

S

c V
Q

J
A t t

=

⋅∆
∆

= =
⋅∆ ∆

�
                (3.81) 

where n
sc  is the solute molar concentration measured by sampling the solution 

coming out from the bottom porous stone, mV∆  is the volume of the solution 

circulating in the porous stones in the mt∆  interval, SA  is the cross-section of the 

specimen and nQ∆ is the cumulative salt molar mass per unit area that passed 

through the specimen. The global osmotic effective diffusion coefficient, *
gDω , is 

calculated at the steady state as follows: 

( )
*

g

t,avg b,avg

Q L
D

t n c c
ω

∆
= ⋅

∆ ⋅ −
               (3.82) 

where t ,avgc  and b ,avgc  are the average top and bottom salt concentrations, 

respectively. 
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the oedometer), which allows access to the water th

cell is connected to a pressure panel that allows t

The rigid piston above the upper porous stone is co

The swelling pressure apparatus, shown in Fig. 3.4, primarily consists of a stainless 

steel oedometer cell, a NaCl solution supply tank that is placed above the pressure 

panel, a displacement transducer connected to the cell top piston, which is used to 

measure the axial strains of the specimen, a load cell and a data acquisition system.
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measures the pressure that has to be applied in order to hinder the axial strain of the 

specimen. 

The test procedure requires a known amount of dry material to be dusted inside the 

oedometer ring, the cell to be assembled and a NaCl solution to be supplied. The 

specimen, which is characterized by an initial dry height of 5 mm, is allowed to 

swell to 10 mm. The piston is then blocked, the sample is back-pressured and the 

steady state swelling pressure is recorded after a short transitional phase. 

Since the bentonite that is initially dusted inside the oedometer is dry, the pressure 

increases for a number of days, during the hydration phase, and the steady state 

swelling pressure is reached when hydration has been completed. 
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The chemico-osmotic test was performed using the oven dried squeezed material, 

rehydrated with DW and then statically compacted, in a drained compaction mould, 

at a porosity, n, equal to 0.81 (e = 4.26). After the preparation phase, the 17 mm 

thick specimen was transferred to the cell for the osmotic test. 

After assembling the cell, DW was circulated through the top piston and the bottom 

pedestal for two weeks in order to establish a steady baseline differential pressure, 

before a concentration gradient was applied to the specimen. A source concentration 

of NaCl then was injected into the top porous stone, while DW was continuously 

circulated in the bottom porous stone. 

A multiple-stage chemico-osmotic test was performed by sequential circulation of 

chemical solutions containing 5.16, 10.27, 20.24, 51.94 and 109.31 mM NaCl 

concentrations at a constant flow rate of 0.05 mL/min.  

The EC values of the salt mass fluxes withdrawn from the top and the bottom porous 

stones, measured during the testing stages, are shown in Fig. 3.5 (a+b). 

The measured values depend on the NaCl concentrations imposed at the boundaries 

of the specimen: the EC values progressively increase during the test as the NaCl 

concentration of the injected solution in the top porous stone rises. The trends of the 

electrical conductivity of the flux withdrawn from the top porous stone, ECt,exit, and 

the electrical conductivity of the flux withdrawn from the bottom porous stone, 

ECb,exit, both show that a steady state has been reached for each stage. 

Moreover, the difference between the EC values measured in the flux withdrawn 

from the top porous stone (ECt,exit) and the EC values of the solutions injected into 

the same stone (ECt,ref) is due to the loss in NaCl mass induced by the diffusion 

through the bentonite from the top to the bottom boundary. 
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The global reflection coefficient values, gω , obtained during the multiple-stage 

chemico-osmotic test, are shown in Fig. 3.6 as a function of time.  
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The gω  values are determined using Eq. (3.74), on the basis of the differential 

pressure, ∆u, measured during the test with a time step of 10 min, and the osmotic 

pressure, ∆Π, calculated from the average of the top and bottom NaCl 

concentrations. The steady state values of the variables are reported in Table 3.1 for 

each concentration stage. The NaCl concentrations were derived from the measured 

EC using the linear calibration reported in Fig. 3.3. 

As far as the EC measurements are concerned, the trend of the global reflection 

coefficient shows that a steady state has been reached for each stage. The steady 

state gω  values tend to decrease as the salt concentration in the top porous stone 

increases. The recorded values range from 68%, for a 5.16 mM NaCl source 

concentration, to 5%, for a 109.31 mM NaCl source concentration. The global 

reflection coefficient can be assumed approximately null for higher molarities. 
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The cumulative molar mass per unit area,� Q , of the NaCl that migrated through the 

specimen during the multiple-stage test is reported in Fig. 3.7. The values of the 

global osmotic effective diffusion coefficient, *
gDω , which have been obtained from 

the Q measurements shown in Fig. 7, are reported in Table 3.1. 

ct.ref 
ct.exit

(mM)

cb.exit 

(mM)

ct.avg 

(mM)

cb.avg 

(mM)

�u 
(kPa)

��

(kPa)

ωωωωg 

(-)

D
*
�g

(m
2
/s)

5.16 mM 5.12 0.83 5.14 0.42 15.65 23.02 0.68 - 

10.27 mM 9.61 0.85 9.94 0.43 26,87 46.33 0.58 2.54·10-10

20.24 mM 18.93 1.45 19.58 0.72 30.32 91.89 0.33 3.52·10-10

51.94 mM 47.39 4.39 49.67 2.19 32.38 231.30 0.14 4.19·10-10

109.31 mM 97.18 9.78 103.24 4.89 23.96 479.21 0.05 4.60·10-10
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The swelling pressure test was performed using dry specimens, prepared with the 

squeezed oven dried bentonite and characterized by an initial dry height of 5 mm, 

which were allowed to swell to 10 mm during hydration. The final hydrated volume 

of the specimens corresponded to n = 0.81. 

The test was performed by hydrating five different specimens with five different 

NaCl solutions, characterized by increasing concentrations, i.e. 5, 10, 20, 50 and 100 

mM. After hydration, the specimen volume change was inhibited and the value of 

the swelling pressure was recorded after a short transitional phase. 

The swelling pressure trend is reported in Fig. 3.8 for each test as a function of time. 

Since, during the tests, the load cell was unloaded until the specimen swelled to 10 

mm, the initial swelling/hydration phase of the dry material (from 5 to 10 mm) was 

characterized by null swelling pressure values. 

All the tests show that the swelling pressure increases for approximately 15-20 h, 

during the controlled hydration phase (i.e. when the volumetric strain is inhibited), 

and that the equilibrium swelling pressure is reached when the hydration phase is 

completed. Moreover, in the tests with lower NaCl concentrations (i.e. for 5 and 10 

mM NaCl equilibrium solutions), the specimens were successively back-pressurized 

to 300 kPa. The obtained results show that the swelling pressure value does not 

change after back-pressurization. 

In the test performed using the 100 mM NaCl solution, the bentonite specimen did 

not rise to 10 mm, as it stopped at a height of 9.5 mm, and the load cell was never 

loaded during the test. For this reason, the swelling pressure for this test was taken 

equal to zero. 
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The experimental results can be related to the physical and chemical properties of 

the tested bentonite under the assumption that the microscopic deviations of the state 

variables from their average values are negligible. In such a case, both the global 

reflection coefficient and the swelling pressure depend on the solid skeleton electric 

charge through Eqs. (3.19) and (3.77). Therefore, from the best fitting of the 

theoretical curves with the experimental data of both tests, a value of sk ,0c  equal to 

90 mM was found. The obtained theoretical curves are reported in Figs. 3.9 and 

3.10, together with the experimental data. 
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The salt concentration at the top boundary was taken equal to ct,avg to determine ωg, 

while the salt concentration at the bottom boundary was considered equal to zero, 

i.e. b b,avgc c 0≅ ≅ . The sodium transport number was calculated from the sodium 

and chloride free-solution diffusion coefficient values (Shackelford and Daniel, 

1991): 10 2
Na,0D 13.3 10  m / s−= ⋅ , 10 2

Cl,0D 20.3 10  m / s−= ⋅ . 

In Fig. 3.11, the experimental reflection coefficient data were also fitted with the 

empirical semi-log linear curve proposed by Shackelford et al. (2003) and Malusis et 

al. (2003): 
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g t ,avgA B log(c )ω = + ⋅                 (3.83) 

where A and B are the regression parameters. The value of the coefficient of 

determination R2 close to one confirms the ability of this empirical curve to fit the 

gω  experimental data, as it was found by Malusis et al. (2003) for the Kemper and 

Rollins (1966) and Malusis and Shackelford (2002a) data. However, the regression 

parameters A and B should  be intended as functions of the soil porosity (Malusis et 

al., 2003) and of the bottom boundary condition (i.e. b,avgc ). The advantage of 

interpreting the experimental data with the proposed theoretical model is that, when 

the single unknown parameter, sk ,0c , has been calibrated on a restricted 

experimental data set, the global reflection coefficient values can be estimated for 

different soil porosities and boundary conditions through Eq.(3.77). 
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The tortuosity factor was determined by plotting the measured values of *
gDω  as a 

function of the corresponding values of the complement to 1 of gω , i.e. g(1 )− ω

and finding the intercept of the linear regression with the ordinate axis at 

g(1 ) 1− ω = , i.e. g 0ω =  (Fig. 3.12). The tortuosity factor in Eq. (3.76) is in fact 

given by: 

g

*
g

m
s,0 0

D

D
ω

ω =

� �
τ = � �

� �
� �

                 (3.84) 

where s,0D  is the NaCl free solution diffusion coefficient, which is equal to 

10 216 10  m / s−⋅ (Shackelford and Daniel, 1991). 
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A value of mτ  equal to 0.31 was obtained from the data plotted in Fig. 3.12. The 

resulting theoretical curve of *
gDω  is reported in Fig. 3.13 as a function of the top 

boundary salt concentration. 
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The obtained values of sk ,0c  and mτ  are compared in Tab. 3.2 with those derived by 

Dominijanni and Manassero (2012b) from the interpretation of the experimental 

results of Malusis and Shackleford (2002a, 2002b), relative to a geosynthetic clay 

liner, with a bentonite porosity, n, of 0.79 for different concentrations of potassium 

chloride (KCl). The differences in the parameters obtained from the two studies can 
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be attributed to both the different mineralogical compositions of the tested 

bentonites and the different salts contained in the pore solutions. 

The theoretical linear relationship between *
gDω  and g(1 )− ω  in Fig. 12 is a 

consequence of assuming that the pore-scale variations in the hydraulic pressure, ion 

concentrations, and water velocity within the soil are negligible: as a result, the 

agreement of the experimental data with the linear relationship is an indication of the 

acceptability of this assumption. 
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Experimental data This study 
Malusis and Shackelford (2002a; 
2002b) 

Material Natural sodium bentonite 
Geosynthetic clay liner containing 
natural sodium bentonite 

Method for removing soluble 

salts
Squeezing Flushing 

Tests
Chemico-osmotic test and 
swelling pressure test 

Chemico-osmotic test 

Salt in pore solution NaCl KCl 
Porosity, n (-) 0.81 0.79-0.80 

Solid skeleton charge 

concentration, sk,0c (mM) 
90 46 

Tortuosity factor, m� (-) 0.31 0.14 

The goodness of the linear fitting shown in Fig. 3.12 (R2 = 0.9810) and the 

possibility of fitting both the global reflection coefficient and the swelling pressure 

data with a single value of sk ,0c  are indications of the ability of the proposed 

theoretical approach to simulate the bentonite behaviour. 
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A theoretical approach that takes into account the interaction between the electric 

charge of the bentonite solid skeleton and the ions contained in the pore solution has 

been proposed. The phenomenological parameters introduced in this theoretical 

approach were measured for a bentonite specimen with porosity, n, of 0.81, over a 

range in sodium chloride concentration in the pore solution varying from 5 mM to 

100 mM. Both the global reflection coefficient, gω , and the swelling pressure, swu , 

were found to decrease with an increase in the salt concentration. This result is in 

agreement with the trends given by the proposed theoretical model, assuming that 

the microscopic deviations of the pore solution state variables from their average 

values are negligible. If this assumption is accepted, the experimental data can be 

used to derive the electric charge of the solid skeleton (per unit solid volume), sk ,0c , 

and the tortuosity factor, mτ . The mechanical behaviour and the transport properties 

of bentonite can be estimated from these physical properties to evaluate its 

performance as a hydraulic and contaminant barrier in field applications. However, 

in order to verify the applicability of the proposed model under different boundary 

conditions and for different salts contained in the pore solution, further experimental 

evaluations must be conducted. Moreover, the results obtained for a single salt 

contained in the bentonite pore solution need to be extended to the more general 

problem of a solution containing an unspecified number of salts, in order to evaluate 

the performance of bentonites that are used as contaminant barriers for real 

leachates. 
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Two further chemico-osmotic tests have been performed during the development of 

the Ph.D. research activity.  

• The first one, performed on a calcium bentonite specimen, was aimed at 

analysing the osmotic behaviour of bentonite in long term landfill condition, 

i.e. when the cation exchange phenomenon has been developed completely 

and the bentonite exchange centres are entirely saturated with Calcium ions; 

• The second one, performed on a sodium bentonite specimen characterised 

by a low porosity value (i.e. n = 0.67), was aimed at analysing the effects 

induced by the stress-strain properties on osmotic behaviour. Unfortunately, 

during the test, a loss of materials from the specimen to the outer occurred 

through the edge of the top porous stone, as showed in the picture in Fig. 

3.14. The development of this phenomenon, on the one hand, highlighted 

the inadequacy of the osmotic cell in our possession to perform tests 

characterised by high values of swelling pressure and the necessity to design 

a new osmotic apparatus, that match with this need, on the other hand, have 

produced results that corresponds to a specimen porosity approximately 

equal to n ≈ 0.8, that can be compared with those obtained in the test 

showed in the Paper (paragraph 3.6.1). 
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The calcium bentonite was prepared in the laboratory starting from the sodium 

bentonite through a process of accelerated cation exchange of Sodium with Calcium, 

described in the paragraph 1.2.1. 

The chemico-osmotic test was performed using the oven dried squeezed material, 

rehydrated with DW and then statically compacted, in a drained compaction mould, 

at a porosity, n, equal to 0.67.  
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After assembling the cell, DW was circulated through the top piston and the bottom 

pedestal for two weeks in order to establish a steady baseline differential pressure, 

before a concentration gradient was applied to the specimen. A source concentration 

of CaCl2 then was injected into the top porous stone, while DW was continuously 

circulated in the bottom porous stone. 

A multiple-stage chemico-osmotic test was performed by sequential circulation of 

chemical solutions containing 5.37 and 10.40 mM CaCl2 concentrations at a constant 

flow rate of 0.05 mL/min.  

The EC values of the salt mass fluxes withdrawn from the top and the bottom porous 

stones, measured during the testing stages, are shown in Fig. 3.15 (a+b). 

The measured values depend on the CaCl2 concentrations imposed at the boundaries 

of the specimen: the EC values progressively increase during the test as the CaCl2

concentration of the injected solution in the top porous stone rises. The trends of the 

electrical conductivity of the flux withdrawn from the top porous stone, ECt,exit, and 

the electrical conductivity of the flux withdrawn from the bottom porous stone, 

ECb,exit, both show that a steady state has been reached for each stage. 

Moreover, the difference between the EC values measured in the flux withdrawn 

from the top porous stone (ECt,exit) and the EC values of the solutions injected into 

the same stone (ECt,ref) is due to the loss in CaCl2 mass induced by the diffusion 

through the bentonite from the top to the bottom boundary. 

The global reflection coefficient values, gω , obtained during the multiple-stage 

chemico-osmotic test, are shown in Fig. 3.16 as a function of time. The gω  values 

are determined using Eq. (3.74), on the basis of the differential pressure, ∆u, 

measured during the test with a time step of 10 min, and the osmotic pressure, ∆Π, 

calculated from the average of the top and bottom CaCl2 concentrations.  
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As far as the EC measurements are concerned, the trend of the global reflection 

coefficient shows that a steady state has been reached for each stage. The steady 

state gω  values tend to decrease as the salt concentration in the top porous stone 

increases. The recorded values are very low and range from 0.5%, for a 5.37 mM 

CaCl2 source concentration, to 0.2%, for a 10.40 mM CaCl2 source concentration. 

The global reflection coefficient can be assumed completely null for higher 

molarities. The results highlight that calcium bentonite has very low osmotic 

behaviour at the tested molarities values. 
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The test had been scheduled with the aim to analyse the effects induced by the 

stress-strain properties on osmotic behaviour. The specimen was characterised by an 

initial porosity of n = 0.67. Unfortunately, during the test, a loss of materials from 

the specimen to the outer happened and, as a consequence, the obtained results 

corresponded to a porosity approximately equal to n ≈ 0.8 (measured on the 
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specimen at the end of the test), that can be compared with those obtained in the test 

showed in the Paper (see Fig. 3.6). 

Therefore, the results reported in this paragraph have the only function of validation 

of the test results reported in the Paper. In particular, since the loss of materials 

developed during the second stage of the test, the result of the first stage (i.e. Ct,ref = 

5.31 mM) can be influenced by the initial low porosity value of the specimen and, 

indeed, in this case the global reflection coefficient results significantly higher than 

that obtained in the test reported in the Paper (see Fig. 3.6). 

A multiple-stage chemico-osmotic test was performed, using the same procedure 

adopted for the test reported in the Paper, by sequential circulation of chemical 

solutions containing 5.31, 10.06, 19.58, 51.22 and 106.96 mM NaCl concentrations 

at a constant flow rate of 0.05 mL/min.  

The global reflection coefficient values, gω , obtained during this multiple-stage 

chemico-osmotic test, are shown in Fig. 3.17 as a function of time for comparison 

purposes. 
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The values of the global reflection coefficient were slightly lower in this test than 

those recorded in the test reported in Fig. 3.6 with the exception of the first stage 

value that resulted higher. As the bentonite specimen was subjected to an anomalous 

swelling in this first stage, the differential pressure measurement, ∆u, could be 

affected by error. 
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In Figure 3.18 the chemico-osmotic test results reported in the Paper (red crossed 

symbols) are compared with the global reflection coefficient values reported for 

sodium and calcium bentonite specimens by Kemper and Rollins (1966), open 

symbols, and for a sodium bentonite GCL by Malusis and Shackelford (2002), 

closed symbols. 
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Fig. 3.18 shows a good agreement of the data obtained in the test performed on 

sodium bentonite during the research activity and those founded in Literature. In 

particular, the obtained data result in perfect agreement with those reported by 

Kemper and Rollins (1966) for the same porosity value while, for low molarity 

values, the obtained data result significantly higher than those reported by Malusis 

and Shackelford (2002) for a sodium GCL. The explanation of this last issue stays in 

the different specimen composition. The GCL is indeed a less homogeneous 

material than the consolidated sodium bentonite used in this study and, as a 

consequence, it presents lower chemico-osmotic performances even at the same 

stress-strain conditions. For higher molarities the specimen composition has lower 

influence. 

Concerning calcium bentonite results, the data obtained during the research activity 

appear to be significantly lower than those reported by Kemper and Rollins (1966). 

In this study, in particular, calcium bentonite was founded to have a very low 

osmotic behaviour, which can be defined approximately null. Contrariwise, the 

results reported by Kemper and Rollins (1966) showed a reflection coefficient of 

50% for the lowest molarity value at a porosity value similar to that used in the test 

performed in this study. Anyway, it is important to underline that the testing 

procedure and apparatus used by Kemper and Rolling (1966) was different to that 

proposed by Malusis et al. (2001) (see paragraph 3.5.2.1), used for both the tests 

reported by Malusis and Shackelford (2002) and the tests performed during this 

research activity. 
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During the Ph.D. research activity, starting from the knowledge achieved about both 

the osmotic and the swelling pressure tests, a new apparatus was designed aimed at 

measuring together the global reflection coefficient, ωg, the global effective 

diffusion coefficient, D*
ωg, and the swelling pressure, usw, of bentonites.  

As reported schematically in Figure 3.19, the new apparatus includes the new 

oedometer (see the more detailed sketch in Fig. 3.20), the flow pump system and the  
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pressure transducer, which are aimed at measuring the osmotic properties of the 

specimen, while the displacement transducer, the load cell and the pneumatic piston 

are aimed at measuring the swelling pressure. 

The design sketch in Figure 3.20 represents in detail the new oedometric cell. 
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The rigid wall permeameter, used in the chemico-osmotic test (see paragraph 

3.5.2.1), has been replaced with an oedometer which match with the need of 

containment of specimens characterized by very high swelling pressure without 

allowing loss of material. The oedometric cell will permit to study the osmotic 

properties of specimen characterized by very low porosity value and to analyse the 

effects induced by stress-strain properties on osmotic behaviour. 

The new oedometric cell is endowed of tree drainage lines in both the top and the 

bottom porous stones, which allow for the circulation of the solutions in the porous 

stones (i.e. through the two peripheral lines) and the simultaneous measurement of 

the differential pressure between the porous stones (i.e. through the central line).  

In order to measure the swelling pressure, the load cell needs to detect a very small 

piston movement. With the aim to allow that this movement develops without 

constrain, the new oedometric cell is equipped with a q-ring (the square ring in Fig. 

3.20).  
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The q-ring (see Fig. 3.21) has the same features of a more typical o-ring (e.g. 

hydraulic tightness), but, furthermore, presents a lower contact surface with the 

upper steel plate of the oedometer, which is rigidly connected to the piston and the 

load cell.  

As a consequence, the q-ring allows negligible friction forces for very small vertical 

strain of the specimen and permits the correct measurement of the swelling pressure 

in the load cell. 
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Background information on hydrocarbon behaviour in soils is reported in the first 

part of this chapter. In particular, the effects of capillary forces on the distribution of 

immiscible fluids in porous media and the theoretical aspects regarding the 

formation of tactoids induced by the low dielectric constant that characterized most 

of hydrocarbon species, are studied. 

Moreover, this chapter reports the contents of the Paper: 

S., Puma, A., Dominijanni, M., Manassero, D., Toncelli, (2011).  

Title: Hydraulic Performance of GCLs with Diesel Oil and Polymer Treatment 

Proposal.  

In Proceedings of the 4th International Conference Geosynthetics Middle East 2011. 

Abu Dhabi, United Arab Emirates, 24-25 October 2011. 
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Since hydrocarbons and water are immiscible fluids, hydrocarbons are generally 

defined Non Aqueous Phase Liquids, or NAPL. Mixed immiscible compounds do 

not produce a single phase but show two phases totally distinct and stable in time. 

NAPL are divided into two groups based on their density: 

- Light NAPLs (L-NAPLs) are characterized by a lower density than water and, as a 

consequence, they tend to float on water table; 

- Dense NAPLs (D-NAPLs) are characterized by a higher density than water and, as 

a consequence, they tend to sink in water. 

The bentonite behaviour with diesel oil was study in the experimental activity, 

developed during the Ph.D.. Diesel oil is a product of the primary distillation of 

petroleum and is classified as L-NAPL since it presents a density equal to 850 

g/dm3. 

The purpose of the first part of this chapter is to provide a physical introduction on 

the main features regarding the capillarity phenomenon in porous media and the 

hydrocarbon behaviour in charged material. 
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In a porous medium, containing in the pore space two (or more) immiscible fluids, 

the interface between two fluid phases acts as a membrane under tension, since the 

molecules closed to the interface own an excess of energy with respect to the 

molecules in the bulk phases. This surplus of energy, called interfacial energy or 

surface tension, is due to the attractive forces existing between the molecules of the 

same phase. A molecule placed in the bulk of the liquid, is subjected to attraction 

forces from all the surrounding molecules (on all directions) and, as a consequence, 

it is not subjected to a net force of attraction. Otherwise, if the molecule is placed 

close to the interface, it is attracted by the molecules of the same phase, since a fluid 

cannot exercise an attractive force on another fluid if they are immiscible. 

Consequently, there is a net attractive force acting on the molecules at the interface 

that tend to draw them to the bulk.  
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The phase, that presents a smaller contact angle along the contact of the interface 

with the solid matrix, takes the name of wetting phase. For the common soil, the 

hydrocarbons have an intermediate wettability between water and air. 

In porous media, capillary phenomena try to minimize the surplus of energy through 

minimizing the interfacial area (Charbeneau, 2007). As a consequence, the interface 

between two immiscible fluids is curved and there is a capillary pressure between 

the phases on either side (Charbeneau, 2007) which can be identified as the pressure 

difference between the nonwetting phase and the wetting phase. 

The capillary pressure, pc, is defined by the Young (1805) � Laplace (1806) 

equation as follows: 

c
c

2 cos( )
p

r

σ θ
=                    [4.1] 

as a function of: σ = the surface tesion; θc = the smaller contact angle and r = the 

mean radius of curvature of the interface. 

The relationship between pc and the wetting fluid saturation is called capillary 

pressure curve (or simply characteristic curve, since it is a very important 

characteristic of the porous medium and it is usually used to characterize the soils). 

As reported in equation 4.1, when pc increases in a porous medium, the interface 

between the two phases is pushed into the smaller pore space and the wetting phase 

saturation is reduced (in behalf of the nonwetting phase). Otherwise, when pc

decreases, the interface moves into the larger pores and the wetting phase saturation 

increases. 

In the test performed to evaluate the sodium bentonite characteristic curve, the 

material was firstly fully saturated with the wetting phase (water) and later the 

nonwetting fluid (air) was introduced at increasing capillary pressure. The wetting 

phase saturation decreases until the wetting-phase residual saturation is reached, 

which represents the wetting phase fluid that is held tightly at grain contacts and as 

fluid skins, so that the wetting phase is no longer continuous for flow (Charbeneau, 

2007), as represented in Figure 4.1. 
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The most popular model aimed at fitting the characteristic curve measurements was 

developed by van Genuchten (1980) in the following mathematical form: 

( )( )
MN

e cS 1 h
−

= + α                    [4.2] 

where: Se is the effective saturation of the wetting phase, which range between 0 and 

1, and is calculated as in equation 4.3; hc is the capillary pressure head; α, N and M 

are model parameters. M and N, in particular, are dependent parameters based on 

Mualem (1976) relationship, reported in equation 4.4. 

w wr
e

wr

S S
S

1 S

−
=

−
                   [4.3] 

1
Mualem:  M 1     ;    N > 1

N
= −                  [4.4] 
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The parameter α (L-1) modulates the pore dimension, higher value of α corresponds 

to larger pore size. Whereas the parameter N (-) specifies whether the pore space 

dimension is more or less heterogeneous: higher value of N corresponds to wider 

range in pose size. 

Characteristic curves are generally derived empirically for the air-water system but 

the model parameters (α and N) determined for the air-water system can be scaled to 

another fluid combination. In particular, if it is assumed that the distribution of pore 

sizes does not change for different fluid systems, that is, there is neither significant 

shrinkage nor swelling of the porous medium for different fluid systems, the 

parameter N will not change for different fluid combinations (Charbeneau, 2007). 

Otherwise, the parameter α presents a direct dependence on the capillary pressure 

and, as a consequence, needs to be scaled. 

The scaling equation aimed at obtaining the α parameter for the NAPL-water 

system, starting from the α for the air-water system, is reported in equation 4.5. 

[a w]
[N w] [a w]

[N w]

−
− −

−

σ
α = α

σ
                  [4.5] 
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During the Ph.D. research activity, the capillary phenomenon in sodium bentonite 

has been studied. The characteristic curve of powder sodium bentonite was 

determined using the vapour equilibrium technique, since the suction measurements 

required for bentonite are higher than those commonly measured with more 

traditional methods, such as the oedometer with suction control, the tensiometer and 

the axis translation method. 
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Six small specimens were prepared starting from dry powder bentonite by means of 

hydration with DW and drained consolidation in a compaction mold (diameter 101.8 

mm). The extruded consolidated specimens (1 and 2) was cropped with smaller 
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mold, characterized by a diameter of D = 38.1 mm. The average height of the final 

specimens (1A, 1B, 1C were obtained from specimen 1; 2A, 2B, 2C were obtained 

from specimen 2) was equal to Have = 13.7 mm. The saturation was measured on the 

extruded specimen and the average registered value was Save = 102 %. The specimen 

preparation steps are described in Fig. 4.2. 
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The vapour equilibrium technique is based on the relative moisture control in a 

closed system, which consists of an airtight container including three elements: a 

solution, the solution vapour phase and the pore fluid phase of the porous medium. 

Two equilibrium states develop between these three elements in the system: 

- The first one between the solution and the vapour phase, which is controlled 

by evaporation; 

- The second one between the vapour phase and the pore fluid phase of the 

porous medium. 

By this way, the vapour phase becomes a significant means between the solution and 

the soil specimen, which is able to spread the osmotic pressure of the container 

solution to the pore fluid phase even without contact between specimen and 

solution. 

The relative moisture of the system is regulated through the osmotic potential 

variation of the solution in the container, which is obtained using different chemical 

solutions. 

Several authors used the vapour equilibrium technique for suction control in many 

applications on clays: e. g. oedometric tests (Belanteur at al., 1997; Villar, 1999; 

Cuisinier and Masrouri, 2002) and triaxial tests (Blatz and Graham, 2000). 

Fine grained soils, i.e. clays, sodium bentonite, need higher suction measurements 

than those used for coarser materials, which can be studied with more traditional 

methods, such as the oedometer with suction control, the tensiometer and the axis 

translation method. The vapour equilibrium technique allows high suction 

measurements. 
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The test performed on sodium bentonite consisted in a static method, in which the 

vapour transport developed in a closed container merely through diffusion. In this 

method the steady state achievement takes a long time. 

A schematic view of the testing equilibrium cell is reported in Fig. 4.3. 
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Inside the vapour equilibrium cell, at the achievement of the state conditions, the 

total suction of the pore solution, �, inside the specimen is assumed equal to the 

osmotic pressure, �, of the electrolyte solution at the bottom end of the container. 

The osmotic pressure, �, of an ideal electrolyte solution is described by the Van�t 

Hoff equation: 

id C R TΠ = ν⋅ ⋅ ⋅ � � � � � � � �������������[4.6] 

  

where � is the number of ions derived from the salt complete dissociation, C is the 

molar concetration of the solution, R is the universal gas constant (R = 8.314 JK-

1mol-1) and T is the absolute temperature (K). 

While, for a non-ideal electrolyte solution: 

idΠ = ϕ⋅Π � � � � � �� � � �������������[4.7] 

where � is a correction coefficient for the mathematical deviation from the ideal 

case, ranging between 0 and 1.  

The total suction of the pore solution, �, inside the specimen is defined as in 

equation 4.8. 

AIRTHIGHT 
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w

w 0

R T p
ln

MM p

� �⋅ ⋅ρ
Ψ = ⋅ � �

� �
� � � �� � � �������������[4.8] 

where �w is the water density, MMw is the water molar mass, p is the vapour 

pressure and p0 is the solvent pressure in standard conditions (which is merely 

function of the temperature) 

Seeing as, at the achievement of the state conditions, � can be assumed equal to �, 

the correction coefficient, � can be derived as follows: 

w

w 0

w

w 0

R T p
C R T ln

MM p

p
ln

C MM p

� �⋅ ⋅ρ
ϕ⋅ν ⋅ ⋅ ⋅ = ⋅ � �

� �

� �ρ
ϕ = � �

ν ⋅ ⋅ � �

� � � �� � �������������[4.9] 
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The test was performed in six vapour equilibrium cells, containing six specimens 

and six different electrolyte solutions. In each cell, at the achievement of the 

equilibrium, the suction of the specimen pore solution was considered equal to the 

osmotic pressure reported in table 4.1. 

The electrolyte concentrations in Table 4.1 were selected with the aim to prepare an 

adequate range of suction, wide enough to draw an appreciable capillary pressure 

curve.  

The electrolyte solution filled the bottom of each cell, each specimen was weighted 

and placed on the plastic net in the container so that there was no contact between 

the specimen and the solution. Finally the cells were ermetically sealed. 

The initial weights (tare, gross and net) of  the six specimens were recorded. The 

initial saturations of the specimens ranged between 99% and 104%. 


 




�

 �6


	�5-"
 <� 
 )
 �'0+*,&
 4$"''.$"
 +#
 *3"
 "-"&*$+-�*"
 '+-.*,+%'
 .'"/
 /.$,%2
 *3"
 "84"$,0"%*�-


�&*,A,*�
&+%',/"$"/
"@.�-
*+
*3"
'.&*,+%
+#
*3"
'4"&,0"%
4+$"
'+-.*,+%'�





SALTS CONCENTRATION
OSMOTIC PRESSURE/

SUCTION

EQUILIBRIUM CELL AND 

SPECIMEN ID 

NaCl 0.1 mol 463 kPa 1A 

NaCl 0.2 mol 916 kPa 1B 

NaCl 1 mol 4,641 kPa 1C 

NaCl 2 mol 9,757 kPa 2A 

Ca(NO3)2 4H2O 156 g/ 100 g water 92,000 kPa 2B 

KOH  2H2O 128 g/ 100 g water 330,000 kPa 2C 

The gross weight of the specimens was initially measured about every week but, 

during the test, a decrease of monitoring frequency has been required. The specimen 

monitoring is reported in Fig. 4.4. 
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The monitoring of the specimen weights highlighted that the specimens subjected to 

higher suction reached earlier the equilibrium condition. The specimen subjected to 
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suction equal to � = 330 MPa reached the equilibrium condition in less than 10 days. 

The specimens 1A and 1B, subjected to suction lower than 1 MPa, swelled during 

the test and increased their weight through water absorption. Otherwise, all the other 

specimens decreased their volume (i.e. consolidated) during the test due to the water 

loss and pore space reduction. 

The results of the test are reported in Table 4.2. 
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INITIAL 

ID Tare, T [g] Gross weight, WG [g] Net weight, WN [g] Volume, VI [cm
3
] 

2C 5.12 28.28 23.16 16.47 

2B 5.11 28.27 23.17 16.47 

2A 5.21 27.81 22.61 16.47 

1C 5.14 27.25 22.10 14.80 

1B 5.16 27.23 22.07 14.80 

1A 5.05 27.25 22.20 14.80 

FINAL 

Volume, VF

[cm
3
] 

Solid weight, 

WS [g] 

Water weight, 

Ww [g] 

Water 

content, w [%]

Saturation, S 

[%] 

2C 6.10 11.35 1.04 6.04 37.67 

2B 7.26 11.41 2.76 21.47 83.07 

2A 8.38 10.95 3.96 31.59 81.56 

1C 11.05 11.36 6.44 58.72 98.65 

1B 18.68 11.13 14.20 128.57 98.80 

1A 17.63 11.29 14.03 128.51 100.00 

The results of the test, reported in Table 4.2, are: 

- the initial tare, gross weight and net weight measured for each specimen 

before starting the test; 

- the initial volume of each specimen measured before starting the test (the 

specimen diameter is constant and equal to 38.1 mm, while the specimen 

height was not equal because the specimens #1 consolidated until the height 

H1 = 12.98 mm and the specimen #2 consolidated until the height H2 = 

14.45 mm); 

- the final volume of each specimen measure after ending the test; 
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- the final solid weight and water weight of each specimen measured after 

ending the test; 

- the final water content of each specimen, calculated using equation 4.10. 

w

S

W
w 100

W
= ⋅ �� �� � � � �������������������������[4.10] 

- the final water saturation of each specimen, calculated using equation 4.11. 

S
S

F

S
S w

F

W
w G

V
S 100

W
G

V

� �
⋅ ⋅� �

� �= ⋅
� �

⋅ γ − � �
� �

� � � � �������������������������[4.11] 

The results in Table 4.2 are plotted in Fig. 4.5 in term of specimen water content, w, 

as a function of the total suction, �, and in Fig. 4.6 (continuous line) in term of 

specimen water saturation, S, as a function of the total suction, �. This last trend 

represents the characteristic curve of the studied material.  

The characteristic curve for diesel oil � water system was derived from the results 

obtained for air � water system using the scaling factor in equation 4.6. The 

characteristic curve for the diesel oil � water system has been reported in Figure 4.6 

(dotted line).  

Finally, the experimental data fitting with Van Genuchten-Mualem model (equations 

4.2, 4.3 and 4.4) is reported in Figure 4.7. The model fit gave Swr = 34%, α = 0.0004 

m-1 and N = 2.1. 
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Fig. 4.6 shows the characteristic curve for diesel oil-water system, derived using the 

scaling equation 4.6. This equation is founded on the assumption that the 

distribution of pore sizes does not change for different fluid systems and, if the fluid 

variation produces an increase of the average pore size, it tends to overestimate the 

wetting phase saturation for a given total suction value.  

The passage from the air-water system to the oil-water system can produce the 

variation of the pore size distribution as a consequence of a reduction of the 

dielectric constant (see paragraph 4.3) and, moreover, this phenomenon develops 

progressively as the oil saturation increases and the water saturation decreases in the 

porous medium (as experimentally demonstrated in paragraph 4.7.2). Based on the 

previous reflections, the characteristic curve for diesel oil-water system, reported in 

Fig. 4.6, acquires a qualitative valence. 
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The negative electric potential at the surfaces of bentonite particles is balanced by 

the charge of the cations in the pore solution, in order that the bulk clay results 

electrically neutral. 

The cations fill the area around the surface of bentonite lamella, or tactoid, where 

they are retained by the balance of electrical force and thermal diffusion. The former 

attracts the cations toward the particle surface, creating a concentration gradient (i.e. 

the cations concentration is higher near the surface and lower in far from the 

surface) while the latter attempts to remove this gradient and to establish an 

homogeneous concentration.  

Moreover, anion concentration gradient exists in this area with opposite sign. The 

area where the concentration of cations is a function of the electric potential of the 

negatively charged clay surface is called diffuse double layer. 

The Gouy-Chapman theory describes an approximate exponential decay of the 

electric potential until a certain distance from the charged surface. This distance is 

known as Debey length, λ, and corresponds to the centroid of the diffuse double 

layer (Mitchell, 1993): 

0
2 2

i i
i n

RT

F c z
=

εε
λ =

�
                  [4.12] 

where 	 is the dielectric constant of the pore water (also referred to as relative 

permittivity), 	0 is the permittivity in a vacuum, R is the universal gas constant, F is 

Faraday�s constant, T is absolute temperature, zi is the valence of the i-th ion,  ci is 

the i-th cation concentration. By convention λ usually is used as the �thickness� of 

the diffuse double layer, although in reality a distinct boundary does not exist 

between the diffuse layer and the bulk fluid (Shackelford et al., 2000). 

Equation 4.12 leads to an unreal concentration of cations in correspondence of the 

surface because point charge cations have been assumed. As a consequence, 

equation 4.12 has been modified with the Stern correction, which describes a layer 
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of finite sized cations adsorbed to the charged surface. In this way, the potential falls 

linearly from 
0 to 
s (Stern Potential) at the surface and after it decays 

exponentially, as shown in figure 4.8. 

As indicated by equation 4.12, the electrolyte concentration, cation valence, and 

dielectric constant affect λ which, in turn, effects the hydraulic conductivity and 

swelling of bentonite. When λ decreases a corresponding increase in hydraulic 

conductivity develops, induced by the aggregation of the lamellae and the 

consequent increase of the macro-porosity. Moreover, dramatic reduction 

in λ caused by liquids with low ε have resulted in shrinkage and cracking of clay 

with corresponding large increases in hydraulic conductivity (Bowders and Daniel, 

1987; Mitchell and Madsen, 1987; Broderick and Daniel, 1990; Shackelford, 1994). 
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In particular, the permeation of clays with solution containing aqueous miscible 

organic solvents (at a concentration higher than 50%) produces relevant increases of 

hydraulic conductivity (Bowders and Daniel, 1987; Mitchell and Madsen, 1987; 

Fernandez and Quigley, 1988; Shackelford, 1994; Shackelford et al., 2000). 

Moreover, clays permeated with non-polar (i.e. immiscible) organic liquids result 

very permeable (Fernandez and Quigley, 1985; Broderick and Daniel, 1990; 

Shackelford, 1994). In both cases, the hydraulic conductivity increase was attributed 

to the shrinkage and cracking of clay due to the compression of the adsorbed layer 

by the low ε of pure organic compounds (typically ε < 40)  relative to water (ε = 80) 

(Shackelford et al., 2000). 

In the experimental activity developed during the Ph.D. the hydraulic and swelling 

performances of sodium bentonite towards diesel oil (ε = 2 at 20°C) were evaluated. 

The study is reported in the following paper. 
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