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Stochastic Model Predictive Control of LPV Systems
via Scenario Optimization 1
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Abstract

A stochastic receding-horizon control approach for constrained Linear Parameter Varying discrete-time systems is proposed in this paper.
It is assumed that the time-varying parameters have stochastic nature and that the system’s matrices are bounded but otherwise arbitrary
nonlinear functions of these parameters. No specific assumption on the statistics of the parameters is required. By using a randomization
approach, a scenario-based finite-horizon optimal control problem is formulated, where only a finite number M of sampled predicted
parameter trajectories (’scenarios’) are considered. This problem is convex and its solution is a-priori guaranteed to be probabilistically
robust, up to a user-defined probability level p. The p level is linked to M by an analytic relationship, which establishes a tradeoff between
computational complexity and robustness of the solution. Then, a receding horizon strategy is presented, involving the iterated solution
of a scenario-based finite-horizon control problem at each time step. Our key result is to show that the state trajectories of the controlled
system reach a terminal positively invariant set in finite time, either deterministically, or with probability no smaller than p. The features
of the approach are illustrated by a numerical example.

Key words: Model Predictive Control, Linear Parameter-Varying Systems, Randomized Algorithms, Scenario Optimization, Random
Convex Programs.

1 Introduction

In the last decade, several approaches have been proposed
for the design of Model Predictive Control (MPC) laws for
Linear Parameter Varying (LPV) systems, see, e.g., [7–9,11–
13,16]. The existing techniques have the following common
features: they are deterministic algorithms, in the sense that
for given state value x and parameter value θ they always
provide the same optimal control sequence; they guarantee
robust stability and satisfaction of constraints; finally, they
assume convexity of the sets Σ containing the time-varying
system matrices A(θ), B(θ) and affine dependence of the
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matrices on the parameter θ. Some approaches are also able
to reduce conservativeness when a bound on the rate of vari-
ation of the parameters is available, see, e.g., [7,12].
However, there exist in practice control problems in which
Σ is not convex, and A(θ), B(θ) depend nonlinearly on θ.
In these cases, the existing approaches cannot be applied
directly (they may possibly be applied indirectly, by first
overbounding Σ with its convex hull, at the cost of poten-
tially introducing conservatism). In order to cope with this
issue, we present an approach for the design of MPC laws
for LPV systems, in which only boundedness (but not con-
vexity or even connectedness) of the set Σ is assumed. Fol-
lowing an idea common to stochastic MPC techniques (see,
e.g., [6,10,14]), we assume that the time-varying parameters
θ have known stochastic nature, and exploit this knowledge
in the control design. The characterization of θ is quite gen-
eral, since not only bounds on its rate of variation, but also
complex nonlinear models of its time-evolution can be ac-
counted for. Yet, the problem to be solved at each time step
is still convex and of manageable size, and constraint sat-
isfaction and convergence of the state to a terminal set are
still achieved, with at least a user-defined probability p. The
key point for achieving these features is a shift of paradigm,
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from a deterministic algorithm to a randomized one, i.e., an
algorithm that relies on some random choices, see [2,17]
for a thorough survey of randomized methods in control. In
particular, we here rely on the solution of a scenario Finite
Horizon Optimal Control Problem (FHOCP), in which we
do not consider all possible outcomes of parameter values,
but only a finite number M of randomly chosen instances of
them, named the “scenarios.” We provide a precise guide-
line on how to choose M in order to have the guarantee that
the probability of success is indeed at least p, and then we
describe a receding-horizon implementation of the scenario
FHOCP, named MPCS (MPC via Scenario optimization),
and prove its constraint satisfaction and convergence prop-
erties. The approach we propose here is similar to the one
recently presented in [4], where uncertain linear time invari-
ant systems were considered (i.e., the uncertain parameters
were assumed to be constant and not measured for feedback
control), and where a non-standard cost function based on
the distance of the predicted states from a terminal set was
used. Here, we extend the results of [4] to the stochastic
LPV framework, and we employ a more standard quadratic
cost function. To the best of our knowledge, randomized ap-
proaches for MPC in the LPV case have never been studied
before.
The paper is organized as follows. The problem formulation
is described in Section 2; the scenario FHOCP, the MPCS
algorithm and their properties are treated in Sections 3, fi-
nally Section 4 contains a numerical example.

2 Problem Setting and Assumptions

Consider the following uncertain, discrete time LPV system:

xt+1 = A(θt)xt +B(θt)ut (1)

where t ∈ Z is the discrete time variable, xt ∈ R
n is the

system state, ut ∈ R
m is the control input, θt ∈ Θt ⊆

R
g is the vector of uncertain parameters, and A(θ), B(θ)

are matrices of suitable dimensions. The (generally time
varying) sets Θt, containing the values of parameter θt at
time t, are subsets of a time invariant set Θ. Let us consider
the following assumptions.

Assumption 1 (Model set) The set Σ
.
= {A(θ), B(θ) : θ ∈

Θ} is bounded.

Assumption 1 is quite mild as compared with the literature
(see e.g. [7–9,11–13,16]), since only boundedness of Σ is
required, and not convexity or even connectedness, and there
is no restriction on how the parameter θ influences the ma-
trices A(θ), B(θ) (e.g., affinely). We will later on ask for
another assumption on the system, related to the presence of
a (possibly parameter-dependent) affine state feedback law,
under which the origin of (1) is stable. The next Assumption
characterizes the time-varying parameter θ t.

Assumption 2 (Time varying parameters) We assume that
the parameter θt is measured at each time step t. Also,

{θt}t=...,−1,0,1,... is assumed to be a strict-sense stationary
stochastic process and, for any time instant τ , we denote with
Pτ the conditional distribution of the forward sequence δτ =
(θτ+1|τ , . . . , θτ+N−1|τ), given the past sequence P(τ)

.
=

{θt}t≤τ , whereN is some given integer, and we let∆τ be the
support set of Pτ , that is, the set containing the conditional
values of δτ , givenP(τ). We assume further that it is possible
to obtain sampled values of δτ according to Pτ .

One common situation arises when {θt} is an iid (indepen-
dent, identically distributed) sequence of random variables,
where each variable θt has the same distribution Pθ. In this
case, we simply have that Pτ = Pθ × · · ·×Pθ (the N -times
product measure), and ∆τ is the N -fold cartesian product
of the support set of Pθ. Another relevant case is when {θt}
is a Markovian stochastic model produced by a recursion of
the type θt+1 = Ωθt+Υξt, where {ξt} is an iid process with
marginal Pξ. Typically, Pξ is a standard Normal (Gaussian)
with zero mean and unit variance, in which case the condi-
tional distribution Pτ of δτ is still Normal, with mean given
by [Ω� Ω2� · · · ΩN�]�θτ and covariance matrix given by
the square of a suitable Toeplitz matrix depending on Ω and
Υ. As a particular case, such a model can be useful to im-
pose restrictions on the rate of variation of the parameter, by
taking Ω = I . Notice that we make no specific assumptions
on Pt and on the support sets ∆t, which may be unbounded
and of any form, as long as Assumption 1 holds. The prob-
ability measure Pt itself can be also not known explicitly,
as long as there is some mechanism to obtain samples of
δt. This can be the case of many application fields, where
there exists some complex stochastic model to sample pre-
dicted trajectories of the time-varying parameters, but the
underlying probability distribution and support set are dif-
ficult to compute. We provide an example of this situation
in Section 4. We further make the following assumption on
the (stochastic) input and state constraints sets.

Assumption 3 (Convexity of the constraint sets) For any
θt ∈ Θt and any t, X(θt) ⊆ R

n and U(θt) ⊆ R
m are

convex; they contain the origin in their interiors and they
are representable by:

X(θt) = {x ∈ R
n : fX(x, θt) � 0}

U(θt) = {u ∈ R
m : fU (u, θt) � 0} ,

(2)

where � denotes element-wise inequalities, each entry of
the functions fX : Rn × Θt → R

r, fU : Rm × Θt → R
q

is convex in x and u, respectively, and r, q are suitable
integers.

We note that no assumption on the form of the convex sets
X(θt), U(θt) (e.g. polytopic, ellipsoidal,...), for given θ t ∈
Θ, is made. Indeed, the constraint sets are even allowed to
change their form, e.g., from ellipsoids to polytopes, as a
function of θt. The control problem we consider is to regulate
the system state to the origin, subject to satisfaction of the
constraints (2) with a probability higher than a user-defined
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value p. The latter can be either prescribed by the problem
at hand, for example when the input and state constraints are
expressed in probability (chance constraints), or it can be
interpreted as a relaxation of robust deterministic constraints,
such that a small chance of constraint violation is traded off
to obtain a tractable problem formulation.

As usual in MPC for LPV systems (see e.g. [7]), our ap-
proach relies on the existence of a convex positively invari-
ant terminal set Xf and an associated affine state-feedback
control law u = Kf(θt)x, possibly depending on the pa-
rameter θt, that renders the origin of (1) robustly asymptot-
ically stable:

Assumption 4 (Terminal set and terminal control law) A
set Xf , containing the origin in its interior, and a linear state
feedback terminal control law u = Kf (θt)x, Kf ∈ R

m×n,
exist for system (1), such that Xf = {x : fXf

(x) �
0}, where fXf

: R
n → R

l has convex components
and l is a suitable integer, and ∀θt ∈ Θt, ∀xt ∈
Xf , ∀t, A(θt)xt + B(θt)Kf (θt)xt ∈ Xf ; fX(xt, θt) �
0, fU (Kf (θt)xt, θt) � 0. The origin of the closed loop
system with the feedback law u = Kf (θt) is asymptotically
stable.

The terminal set and terminal control law in Assumption
4 are required to always be inside the state constraint set
and satisfy input constraints, respectively. Possible methods
to compute Xf and Kf rely on quadratic stability and ro-
bust state feedback laws for LPV systems (see, e.g., [7,15]).
As an example, by tolerating some conservativeness in the
computation of the terminal set, one can embed the set
Σ in a polytope, and apply the procedure used in [15] to
derive a static state feedback gain Kf and an associated
matrix Qf , such that the level sets of the Lyapunov func-
tion x�Qfx, Qf = Q�

f � 0, are robustly positively in-
variant ellipsoids for the closed loop system, and the ori-
gin is asymptotically stable. Finally, since the state and in-
put constraint sets are assumed to contain the origin in
their interiors (see Assumption 3) one can find an ellipsoid
Xf = {x : x�Qfx ≤ ρ}, for a sufficiently small ρ > 0,
such that constraints are satisfied for all x ∈ Xf , all θt ∈ Θt

and all t.

3 MPC for LPV systems via Scenario Optimization

3.1 The scenario finite-horizon optimal control problem

Let N ∈ N be a finite control horizon, chosen by the control
designer, let t ≥ 0 be the current time instant and let xt be the
system state observed at time t. We consider the predicted
evolution of (1) for N steps forward, under a control law
determined at the current time t: uj|t

.
= Kf(θj|t)xj|t +

vj|t, j = 0, . . . , N − 1, where uj|t is the predicted input at
time t + j computed at time t, x0|t = xt, θ0|t = θt and,
for j = 1, . . . , N , xj|t = Acl(θj|t)xj−1|t + B(θj|t)vj−1|t,
and Acl(θj|t) = A(θj|t) +B(θj|t)Kf (θj|t). Here, vj|t, j =

0, . . . , N − 1, are control corrections at time steps t + j,
computed at time t, which we collect in the vector V t =
[v�0|t · · · v�N−1|t]

� ∈ R
Nm. For given initial state xt and

sequence Vt, let us define the following (stochastic) cost
function:

J(xt, δt;Vt)
.
=

N−1∑
j=0

x�
j|tQxj|t + u�

j|tRuj|t (3)

where Q = Q� � 0, R = R� � 0 are weighting matrices
chosen by the control designer. Now, let us consider a finite
number M of randomly extracted scenarios of δ t at time
t, i.e., δ(1)t , . . . , δ

(M)
t , which we collect in the multisample

ωt
.
= (δ

(1)
t , . . . , δ

(M)
t ). The probability distribution of ωt ∈

∆M
t is given by P

M
t . Based on ωt, for a given state xt we

can formulate the scenario-based FHOCP, as follows (see
also [4]):

P(xt, ωt) : min
Vt,zt,qt≥0

zt + αqt s.t.: (4a)

J(xt, δ
(i)
t ;Vt) ≤ zt; i = 1, . . . ,M (4b)

fX(x
(i)
j|t, θ

(i)
j|t)− 1qt � 0; j = 1, . . . , N − 1, i = 1, . . . ,M (4c)

fU (u
(i)
j|t, θ

(i)
j|t)− 1qt � 0; j = 1, . . . , N − 1, i = 1, . . . ,M (4d)

fXf
(x

(i)
N |t)− 1qt � 0; i = 1, . . . ,M.. (4e)

In (4), the slack variable qt ≥ 0 is used to guarantee feasi-
bility of the optimization problem, by transforming the hard
constraints of Assumption 3 into soft ones; the weighting
scalar α > 0 is chosen by the control designer; finally 1
denotes a column vector of appropriate length, containing
all ones. We denote with V∗

t (xt, ωt) = {v∗0|t, . . . , v∗N−1|t},
z∗t (xt, ωt) and q∗t (xt, ωt) an optimal solution to problem (4).
We note that, once the multisampleωt has been extracted, the
scenario FHOCP is a convex optimization problem, which
can be solved efficiently also with a large numberM of sam-
ples, even when the system’s matrices and the constraints
are not convex w.r.t. the time varying parameters θ t.

Now, denote with d = mN + 2 the number of decision
variables in problem P(xt, ωt), let p ∈ (0, 1) be a given
desired probability with which the constraints (4b)-(4e) shall
be satisfied, let β ∈ (0, 1) be a given, small probability level
(say, β = 10−9), finally let M be chosen such that

Φ(p, d,M) ≤ β, (5)

with Φ(p, d,M)
.
=

d−1∑
j=0

(
M

j

)
(1 − p)jpM−j . Then, the

solution to problem P(xt, ωt) enjoys the properties stated
in the following proposition (for further comments, see also
the discussion in [4] on a similar result for the case of linear
time-invariant systems).
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Proposition 3.1 (Finite horizon robustness) With probabil-
ity larger than 1 − β it holds that the computed control se-
quence V∗

t :
a) steers the state of system (1) to the terminal set Xf in N
steps, with probability at least p and constraint violation q ∗

t ,
i.e.: Pt{δt : fXf

(xt+N , δt)− 1q∗t � 0} ≥ p;
b) Satisfies all state constraints with probability at least p
and constraint violation q∗t , i.e.: Pt{δt : fX(xt+j , δt) −
1q∗t � 0, ∀j ∈ [1, N ]} ≥ p;
c) Satisfies all input constraints with probability at least p
and constraint violation q∗t , i.e.: Pt{δt : fU (u

∗
t+j , δt) −

1q∗t � 0, ∀j ∈ [0, N − 1]} ≥ p. �

The inequality (5) provides a precise guideline on how to
tune the value of M , for given values of p and β. A suitable
value of M can be derived either by inverting numerically
equation (5), or by using existing results on explicit bounds
for the sample complexity. For example, eq. (5.2) in [3]
provides

M ≥ 2

(1 − p)

(
log(β−1) +mN + 1

)
, (6)

(see also [1] for more details and tighter, although slightly
more involved, explicit bounds). We remark that the value
of M needed to satisfy condition (5) grows at most logarith-
mically with β−1, as it can be evinced by (6). Hence, the
parameter β can be fixed by the designer to a very low level
without increasing significantly the complexity of the result-
ing scenario FHOCP. More insights on this aspect and on
the related “certainty equivalence” principle can be found in
[4]. We will now present a receding-horizon algorithm that
embeds the scenario problem and allows to take advantage
of the measure of the state xt and of the parameter θt, at
each time step.

3.2 MPC for LPV systems via Scenario optimization
(MPCS)

We next use the following notation: “∗” variables, such as
z∗t , q

∗
t ,V∗

t = {v∗0|t, . . . , v∗N−1|t}, denote the optimal solu-
tion of the scenario optimization problem P(x t, ωt) at time
t, given xt; “∼” variables, z̃t, q̃t, Ṽt, denote, respectively,
two scalar values and a sequence of N vectors of dimension
m, as defined in the algorithm below; finally plain variables,
zt, qt,Vt, denote the running values of the variables z, q and
of the sequence V = {v0|t, . . . , vN−1|t} in the algorithm.
The first entry in Vt, namely v0|t, is the actual control cor-
rection that is applied to the system (1) at time t.

3.2.1 MPCS Algorithm

(Initialization) Choose a desired reliability level p ∈ (0, 1)
and “certainty equivalence” level β ∈ (0, 1) (say, β = 10−9,
or β = 10−12). Choose an integer M satisfying (5). Choose
ε ∈ (0, 1] (see [4] for the meaning of ε and for tuning

guidelines). Given an initial state x0, extract ω0 accord-
ing to P

M
0 , solve problem P(x0, ω0) and obtain the op-

timal control sequence V ∗
0 = {v∗0|0, v∗1|0 . . . , v∗N−1|0}, and

the optimal objective z∗0 and constraint violation q∗0 . Set
z0 = z∗0 , q0 = q∗0 , V0 = V∗

0 , and apply to the system the
control action u0 = Kfx0 + v0|0.
(1) Let t := t+ 1, observe xt, and set
Ṽt = {v1|t−1, . . . , vN−1|t−1, 0},
z̃t = max

(
0, zt−1 − εx�

t−1Qxt−1

)
, q̃t = qt−1.

(2) Extract the multisample ωt according to P
M
t , and solve

problem P(xt, ωt). Let (V∗
t , z

∗
t , q

∗
t ) be the obtained optimal

solution.
(3) Evaluate the following collectively exhaustive and mu-
tually exclusive cases:
(3.a) If z∗t > z̃t and z̃t < x�

t Qxt, then set Vt = Ṽt; zt =
0; qt = q̃t;
(3.b) If z∗t > z̃t and z̃t ≥ x�

t Qxt, then set Vt = Ṽt; zt =
z̃t; qt = q̃t;
(3.c) If z∗t ≤ z̃t, then set Vt = V∗

t ; zt = z∗t ; qt = q∗t ;
(4) Apply the control input ut = Kf xt + v0|t, and then go
to (1). �

The next theorem provides the main result of this paper,
which concerns the guaranteed properties of the closed loop
system obtained by applying Algorithm 3.1. We note that,
by virtue of Assumption 4, under the terminal control law
u = Kf x the origin of system (1) is robustly asymptotically
stable with region of attraction equal to Xf , and constraints
are robustly satisfied for all x ∈ Xf . Therefore, only the
convergence of the state trajectories to Xf and the satisfac-
tion of constraints for x /∈ Xf are of interest here.

Theorem 3.1 (Properties of Scenario MPC) Let v0|t, t =
0, 1, . . . denote the sequence of control actions produced by
the MPCS Algorithm, and consider the closed loop system
obtained by applying to (1) the control law u t = Kfxt+v0|t.
Let x0 /∈ Xf . Then:

(a) With probability larger than 1− β, at all time steps t =
0, 1, . . ., the probability that the state and input constraints
are satisfied with constraint violation qt is at least p, that
is, for t = 0, 1, . . ., it holds that

Pt{δt : fX(xt+1, δt)−1qt � 0 ∩ fU (ut, δt)−1qt � 0} ≥ p.

(b) The MPCS Algorithm either: (i) makes the state trajec-
tory converge to the terminal set in finite time, i.e., xt+N ∈
Xf , for some N < ∞, or (ii) there exists a finite time t∗ such
that, with probability larger than 1−β, the forward control
sequence {v0|t∗ , v0|t∗+1, . . . v0|t∗+N−1} drives the state of
the closed-loop system to the terminal set at time t∗+N−1,
with probability at least p and constraint violation qt∗ . �

Proof 3.1 See the Appendix.
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4 Numerical example

We consider system (1) with

A(θt) =

[
θt,1 log(θt,2) θt,3 + eθt,4 sin(θt,5)

0 θt,6

]
, B(θ) =

[
θt,3 + eθt,4 cos(θt,5)

0.5θt,6

]
, where θt,i is the i−th component

of the parameter vector θt. We also consider the following
parameter-dependent constraints on the input and state vari-
ables:

X(θt =



x ∈ R

2 :




1 0.1θt,8

0.1θt,8 1

−1 −0.1θt,8

−0.1θt,8 −1


x ≤



2

0.12

2

2







,

U(θt) = {u ∈ R : |u| ≤ 2 + 0.1θt,7}. The parameter vector
θt has 300 components, characterized as shown in Table 1.

Table 1
Description of the time-varying parameters in the example (u.d.
stands for uniformly distributed, n.d. for normally distributed,
λ(A) is the maximum absolute value of the eigenvalues of A).

θt,1 u.d. in [0.9,1.1]

θt,2
u.d. in [2,2.6] if θt,1 < 0.95

n.d. and saturated in the interval [2.8,3] if θt,1 ≥ 0.95

θt,3 u.d. in [0.95,1.1] if θt,10 > 1, u.d. in [1.2,1.3] else

θt,4
u.d. in [-10,-6] if t > 2 and θt−3,9 + θt−2,9 < 1.7

and θt−2,9 + θt−1,9 > 0.2; u.d. in [-5,-2] else

θt,5 u.d. in [0,π
2

] if
300∑

i=11

θt,i ≥ 10, u.d. in [π,2π] else

θt,6
u.d. in [1,1.2] if t > 0 and λ(A(θt−1)) < 0.8

u.d. in [0.8,1.2] else

θt,7 u.d. in [-1,1]

θt,8 u.d. in [-1,1]

θt,9 u.d. in [0,1]

θt,10 n.d.

θt,i
with i = 11, 300; distributed according to logistic

functions with mean i−1 and variance pi
3
i2

We employ the following terminal control law and terminal
set satisfying Assumption 4: Kf = [−0.8057 − 0.8543],
Xf = {x ∈ R

2 : xTQfx ≤ 0.01}, where Qf =[
1.5452 0.1865

0.1865 0.9792

]
. We designed the MPCS law with

N = 10, Q =

[
1 0

0 1

]
, R = 1 and α = 104, β = 10−8

and ε = 0.01. By setting desired guaranteed probabilities
p = 0.3, p = 0.5 and p = 0.95 for the design, we obtained
from (5) values of M = 42, 77 and 840, respectively. We

carried out Ntrials = 50, 000 Monte Carlo simulations, start-
ing from the state value x0 = [−1, −2.5]�, which is outside
the state constraints and whose corresponding uncorrected
input, i.e., Kfx0 = 2.94, is also outside the input constraint
set. Indeed this initial condition is not feasible for the
deterministic robust counterpart of the scenario problem,
hence for some extractions of ω0 the constraint violation
q∗0 is not negligible. In the Monte Carlo simulations, the
empirical probability of success p̂ has been computed as
p̂ = (Ntrials −Nfailures)/Ntrials, where Nfailures is the number
of simulations in which some of the constraints were not
satisfied. We computed p̂ both for the finite horizon solu-
tion, i.e., the sequence V ∗

0 obtained at t = 0 and applied
without re-optimizing at the next time steps, and for the
receding horizon solution given by the MPCS algorithm.
In particular, we considered as a failure, for a given trial,
any constraint violation, i.e., input and/or state constraint
violations and the failure in reaching the terminal set either
within N steps (for the finite horizon solution) or within
N + 10 steps for the receding horizon approach, to ap-
proximately take into account the convergence results of
Theorem 3.1. The outcome of the Monte Carlo simulations
is reported in Table 2.

Table 2
Empirical probabilities p̂ of constraint satisfaction and convergence
to the terminal set, for three different values of p, and β = 10−8.

Finite Horizon MPCS algorithm

p = 0.3 (M = 42) 0.619 0.973

p = 0.5 (M = 77) 0.814 0.981

p = 0.95 (M = 840) 0.989 0.996

The obtained results confirm that the receding horizon imple-
mentation, by re-optimizing the control corrections at each
time step, yields higher probabilities w.r.t. the finite horizon
solution. It can be also noted that some conservativeness ex-
ists in the result, in the sense that the empirical probabilities
are larger (better) than the theoretical bound, especially for
the receding horizon implementation. In this regard, we note
that the bound (5) on the violation probability is actually
exact for the case of fully supported problems, i.e., random
convex programs where the number of support constraints
is equal to the number of optimization variables with prob-
ability one (see, e.g., [3] and [5]). In other cases, the bound
may not be tight in general. In the case of MPC, it is quite
unlikely to have a fully supported problem, due to the fact
that the control objective is to drive the states well inside
the state constraint set, towards the origin, hence the opti-
mal solution is typically supported only by the input and
state constraints for the very first time steps. Therefore, the
conservativeness comes from the settings of the example it-
self rather than from poor tightness of the bounds. In other
cases, e.g. if the control objective is such that the optimal
system’s operation is close to the boundary of the state or
input constraints, the empirical violation probability might
be closer to the bound. As it regards the MPCS algorithm,
another important aspect that contributes to outperforming
the theoretical bound is the use of state feedback through
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the receding horizon strategy, as one can intuitively expect.

We performed the computations in this example using a stan-
dard laptop under Yalmip and Matlab�. The average com-
putational times (including also the definition of the con-
straints in Yalmip) were of about 1.8 s for the case of 42
samples, 2 s for the case of 77 samples, and 10 s for the case
of 840 samples. However, we did not carry out any effort to
speed-up the computations, since this was not the primary
purpose of this work. The important features of the proposed
approach, as far as computational aspects are concerned,
are the convexity of the scenario problem and the presence
of a well precise structure of the constraints. Considering
these features, and given the recent developments in the field
of efficient on-line MPC (see, e.g., [18] and the references
therein) and the continuous improvements in terms of com-
putational power/cost of hardware, the computational times
of the method appear to pose little issues in perspective.

Appendix

Proof of Theorem 3.1. The proof of statements (a) and (b)-(ii)
follows a line similar to that of Theorem 4.1 in [4], whereas a
different reasoning should be made for statement (b)-(i). We next
report a full proof of Theorem 3.1.

Proof of statement (a). At time t = 0, Proposition 3.1 guarantees
with probability larger than 1− β that the first control correction
satisfies the constraints on u0 and x1 with probability no less than
p and constraint violation q0 = q∗0 . At any generic time step t ≥ 1,
the variables (Ṽt, z̃t, q̃t) are computed. Then, two cases may occur.
If z∗t ≤ z̃t, then case (3.c) is detected, and the first element v∗0|t
of the optimal sequence V∗

t is applied to the system. Being this
sequence the solution of a scenario optimization problem, with
probability larger than 1 − β the probability of satisfying state
and input constraints is no less than p, with constraint violation
qt = q∗t . If, on the other hand, z∗t > z̃t, then we are either in
case (3.a) or (3.b), and in both cases the element v∗k|t−k, for some
k ∈ [1, N−1], is applied to the system. Being this value part of the
solution sequence V∗

t−k, with corresponding constraint violation
q∗t−k, again the probability of satisfying state and input constraints
is no less than p, with constraint violation qt = q̃t = q∗t−k.

Proof of statement (b). Each run of the MPCS Algorithm may
have one of two possible behaviors, depending on whether or not
there exists a finite time t > 0 such that z∗t > z̃t and z̃t < x�

t Qxt,
that is, whether or not the situation in step (3.a) is ever satisfied.
We then name A the situation when condition in step (3.a) is
met at some finite t > 0, and Ā the complementary situation
when this condition is not satisfied at any finite time, that is when
z∗t ≤ z̃t or z̃t ≥ x�

t Qxt holds for all t > 0.
(b)-(i). Consider the situation Ā, and let us define the ellipsoid
XQf

.
= {x ∈ R

n : x�Qfx ≤ ρ} for some ρ > 0, such that
Qf = Q�

f � 0 and XQf ⊂ Xf . Such a set can always be found,
since the origin is assumed to be contained in the interior of the
terminal set Xf . At a generic time t, at step (3) of the MPCS
algorithm, if z∗t > z̃t, then, since it is assumed that we are in
situation Ā, it must be z̃t ≥ x�

t Qxt, thus case (3.b) occurs,
and the values Vt = Ṽt and zt = z̃t are set. Now, recalling
that z̃t = max(0, zt−1 − εx�

t−1Qxt−1), two cases may occur:

either z̃t = 0 or z̃t = zt−1 − εx�
t−1Qxt−1 > 0. If z̃t = 0,

we have 0 = z̃t ≥ x�
t Qxt, i.e., x�

t Qxt = 0, which would
imply that xt = 0 and that the terminal set has been reached,
since the origin is contained in its interior. Otherwise, if z̃t =
zt−1 − εx�

t−1Qxt−1 > 0, then we have:

zt ≥ x�
t Qxt ≥ βx�

t Qfxt, (7)

where β = λ(Q)

λ(Qf )
and λ(·), λ(·) are the minimum and maximum

eigenvalues, respectively. Moreover, we have

zt = zt−1 − εx�
t−1Qxt−1 ≤ zt−1 − εβx�

t−1Qfxt−1,

hence
zt < zt−1 − εβρ. (8)

Note that the inequality in (8) holds true as long as x�t−1Qxt−1 >
ρ, i.e., as long as the state xt−1 is outside the ellipsoid XQf .
Indeed this condition is satisfied if xt−1 /∈ Xf , since XQf ⊂ Xf .
On the other hand, if at step (3) of the MPCS algorithm it happens
that z∗t ≤ z̃t, then case (3.c) occurs, and the optimal values V∗

t

and z∗t are retained, i.e., zt = z∗t , Vt = V∗
t . In this case, it

can be noted that the inequalities (7)-(8) still hold true. Then, as
long as the case z∗t ≤ (zt−1 − εd(xt−1,Xf )) or z̃t ≥ d(xt,Xf )
holds true as assumed, (8) can be applied recursively starting from
z0 = z∗0 (i.e., the worst-case cost computed at time t = 0), and,
by considering (7), we have:

x�
t+N

Qfxt+N ≤ zt+N

β
≤ z0

β
−Nερ. (9)

Therefore, for a finite N > z0
βερ

− 1
ε
, we have that x�

t+N
Qfxt+L ≤

ρ, hence xt+N ∈ XQf ⊂ Xf , i.e., the state has reached the
terminal set. This proves the statement (b)-(i).
(b)-(ii). Let us next analyze what happens in case A. Let t̄ > 0
be the time instant at which the case z∗t > z̃t and z̃t < x�

t Qxt

is met for the first time, and let t∗ < t̄ be the last time at which
case z∗t ≤ z̃t was satisfied, that is the last time previous to t̄
when an optimal command sequence was retained, together with
its constraint violation q∗t , according to case (3.c) of the MPCS
algorithm; let � = t̄ − t∗ ≥ 1. According to step (3.a) of the
MPCS algorithm, we set

Vt̄ = Ṽt̄, zt̄ = 0, qt̄ = q̃t̄. (10)

Thus, at step (4) of the algorithm, the control move ut̄ = Kfxt̄+
v0|t̄ is applied to the system at time t̄, where v0|t̄ = v∗�|t∗ , i.e., v0|t̄
is the optimal correction predicted for time t∗+� = t̄, computed at
time t∗. At time step t = t̄+1, the state variable xt̄+1 is observed
and (Ṽt̄+1, z̃t̄+1, q̃t̄+1) are computed as z̃t̄+1 = max(0, zt̄ −
εx�

t Qxt), q̃t̄+1 = qt̄, Ṽt̄+1 = {v1|t̄, . . . , vN−1|t̄, 0} =
{v∗�+1|t∗ , v

∗
�+2|t∗ , . . . , v

∗
N−1|t∗ , 0, . . . , 0}. Since (10) holds,

it must be z̃t̄+1 = 0. Then, z∗̄t+1, q∗̄t+1 and V ∗̄
t+1 are com-

puted at step (2), and we notice that, by definition, z∗̄t+1 ≥ 0.
Therefore, at step (3) of the algorithm either (i) case (3.a)
{z∗̄t+1 >

(
zt̄ − εx�

t Qxt

)
and z̃t̄+1 < x�

t Qxt} is detected
again, or (ii) one of cases (3.b) or (3.c) are detected,
which would imply, respectively, 0 = z̃t̄+1 ≥ x�

t Qxt, or
0 ≤ x�

t Qxt ≤ z∗̄t+1 = z̃t̄+1 = 0. In either sub-case of (ii)
we would have x�

t Qxt = 0, so that convergence to the termi-
nal set would be achieved. Consider then case (i): the values
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Vt̄+1 = Ṽt̄+1, zt̄+1 = 0 and qt̄+1 = qt̄ are set in the algorithm,
and the control move ut̄+1 = Kfxt̄+1 + v∗�+1|t∗ is applied to the
system. Now, the same circumstances actually reproduce for all
time steps t = t̄ + k, k ≥ 0, so that the optimal input sequence
V∗
t∗ , computed at time t∗ by solving a scenario FHOCP, is the

one actually next applied to the system, and the related constraint
violation q∗t is retained for all t ≥ t∗. Thus, in case A, there
exists a finite time t∗ such that the sequence V∗

t∗ is applied to the
system for all subsequent instants t = t∗ + k, k = 0, . . . , N − 1.
Now, the sequence V∗

t∗ is the result of the solution of the scenario
FHOCP P(xt∗ , ωt∗): we can hence claim, in virtue of Proposi-
tion 3.1, that with probability larger than 1−β this sequence will
satisfy the problem constraints and reach the terminal set within
the time window from t∗ to t∗ + N , with probability at least p
and constraint violation q∗t . This proves the statement (b)-(ii).
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