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Abstract

A stochastic receding-horizon control approach for constrained Linear Parameter Varying discrete-time systems is proposed in this paper.
It is assumed that the time-varying parameters have stochastic nature and that the system’s matrices are bounded but otherwise arbitrary
nonlinear functions of these parameters. No specific assumption on the statistics of the parameters is required. By using a randomization
approach, a scenario-based finite-horizon optimal control problem is formulated, where only a finite number M of sampled predicted
parameter trajectories ('scenarios’) are considered. This problem is convex and its solution is a-priori guaranteed to be probabilistically
robust, up to a user-defined probability level p. The p level islinked to M by an analytic relationship, which establishes a tradeoff between
computational complexity and robustness of the solution. Then, a receding horizon strategy is presented, involving the iterated solution
of a scenario-based finite-horizon control problem at each time step. Our key result is to show that the state trajectories of the controlled
system reach a terminal positively invariant set in finite time, either deterministically, or with probability no smaller than p. The features
of the approach are illustrated by a numerical example.

Key words: Model Predictive Control, Linear Parameter-Varying Systems, Randomized Algorithms, Scenario Optimization, Random

Convex Programs.

1 Introduction

In the last decade, several approaches have been proposed
for the design of Model Predictive Control (MPC) laws for
Linear Parameter Varying (LPV) systems, see, e.g., [7-9,11—
13,16]. The existing techniques have the following common
features. they are deterministic algorithms, in the sense that
for given state value = and parameter value 6 they always
provide the same optimal control sequence; they guarantee
robust stability and satisfaction of constraints; finaly, they
assume convexity of the sets ¥ containing the time-varying
system matrices A(6), B() and affine dependence of the
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matrices on the parameter . Some approaches are also able
to reduce conservativenesswhen a bound on the rate of vari-
ation of the parametersis available, see, e.g., [7,12].

However, there exist in practice control problems in which
Y is not convex, and A(#), B(#) depend nonlinearly on 6.
In these cases, the existing approaches cannot be applied
directly (they may possibly be applied indirectly, by first
overbounding X with its convex hull, at the cost of poten-
tially introducing conservatism). In order to cope with this
issue, we present an approach for the design of MPC laws
for LPV systems, in which only boundedness (but not con-
vexity or even connectedness) of the set ¥ is assumed. Fol-
lowing an idea common to stochastic MPC techniques (see,
e.g., [6,10,14]), we assume that the time-varying parameters
6 have known stochastic nature, and exploit this knowledge
in the control design. The characterization of 6 is quite gen-
era, since not only bounds on its rate of variation, but also
complex nonlinear models of its time-evolution can be ac-
counted for. Yet, the problem to be solved at each time step
is still convex and of manageable size, and constraint sat-
isfaction and convergence of the state to a terminal set are
still achieved, with at least a user-defined probability p. The
key point for achieving these features is a shift of paradigm,
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from a deterministic algorithm to a randomized one, i.e., an
algorithm that relies on some random choices, see [2,17]
for a thorough survey of randomized methodsin control. In
particular, we here rely on the solution of a scenario Finite
Horizon Optimal Control Problem (FHOCP), in which we
do not consider all possible outcomes of parameter values,
but only afinite number A of randomly chosen instances of
them, named the “scenarios.” We provide a precise guide-
line on how to choose M in order to have the guarantee that
the probability of successis indeed at least p, and then we
describe a receding-horizon implementation of the scenario
FHOCP, named MPCS (MPC via Scenario optimization),
and prove its constraint satisfaction and convergence prop-
erties. The approach we propose here is similar to the one
recently presented in [4], where uncertain linear time invari-
ant systems were considered (i.e., the uncertain parameters
were assumed to be constant and not measured for feedback
contral), and where a non-standard cost function based on
the distance of the predicted states from a terminal set was
used. Here, we extend the results of [4] to the stochastic
LPV framework, and we employ a more standard quadratic
cost function. To the best of our knowledge, randomized ap-
proaches for MPC in the LPV case have never been studied
before.

The paper is organized as follows. The problem formulation
is described in Section 2; the scenario FHOCP, the MPCS
algorithm and their properties are treated in Sections 3, fi-
nally Section 4 contains a numerical example.

2 Problem Setting and Assumptions

Consider thefollowing uncertain, discretetime LPV system:
Ti4+1 = A(Gt)xt + B(Gt)ut (l)

where t € Z is the discrete time variable, z; € R"” is the
system state, u; € R™ is the control input, 8, € ©; C
RY is the vector of uncertain parameters, and A(9), B(9)
are matrices of suitable dimensions. The (generaly time
varying) sets O, containing the values of parameter ¢, at
timet, are subsets of atimeinvariant set ©. Let us consider

the following assumptions.

Assumption 1 (Model set) Theset ¥ = {A(0), B(0) : 6 €
©} is bounded.

Assumption 1 is quite mild as compared with the literature
(see eg. [7-9,11-13,16]), since only boundedness of ¥ is
required, and not convexity or even connectedness, and there
is no restriction on how the parameter 6 influences the ma-
trices A(6), B(0) (e.g., afinely). We will later on ask for
another assumption on the system, related to the presence of
a (possibly parameter-dependent) affine state feedback law,
under which the origin of (1) is stable. The next Assumption
characterizes the time-varying parameter 6.

Assumption 2 (Time varying parameters) We assume that
the parameter 6, is measured at each time step t. Also,

{0t}+=...,—1,0,1,... iISassumed to be a strict-sense stationary
stochastic process and, for any timeinstant 7, we denotewith
IP- the conditional distribution of the forward sequenced ., =
(97'+1\7'7 sy 97’+N—1|T)' gle the past sequence P(T) =
{0:}+<-, Wwhere N issomegiveninteger, andwelet A . bethe
support set of P, that is, the set containing the conditional
valuesof o, given P (7). Weassumefurther that it ispossible
to obtain sampled values of §.. according to IP....

One common situation arises when {6,} is an iid (indepen-
dent, identically distributed) sequence of random variables,
where each variable 6; has the same distribution Py. In this
case, we smply havethat P, = Py x - - - x Py (the N-times
product measure), and A - is the N-fold cartesian product
of the support set of Py. Another relevant case is when {6, }
is aMarkovian stochastic model produced by arecursion of
thetype ;1 = Q0;+T&, where {&;} isaniid processwith
marginal P¢. Typicaly, P, is a standard Normal (Gaussian)
with zero mean and unit variance, in which case the condi-
tional distribution P~ of 4, is still Normal, with mean given
by [T Q2T ... QNT] 76, and covariance matrix given by
the square of a suitable Toeplitz matrix depending on 2 and
T. As a particular case, such a model can be useful to im-
pose restrictions on the rate of variation of the parameter, by
taking €2 = I. Notice that we make no specific assumptions
on IP; and on the support sets A, which may be unbounded
and of any form, as long as Assumption 1 holds. The prob-
ability measure P, itself can be aso not known explicitly,
as long as there is some mechanism to obtain samples of
d¢. This can be the case of many application fields, where
there exists some complex stochastic model to sample pre-
dicted trgjectories of the time-varying parameters, but the
underlying probability distribution and support set are dif-
ficult to compute. We provide an example of this situation
in Section 4. We further make the following assumption on
the (stochastic) input and state constraints sets.

Assumption 3 (Convexity of the constraint sets) For any
0; € ©, and any ¢, X(;) C R™ and U(d;) C R™ are
convex; they contain the origin in their interiors and they
are representable by:

X(0:) = {x e R": fx(x,0:) X0}

@)
U(@t) = {U c R™ . fU(U79t> ’_< 0},

where < denotes element-wise inequalities, each entry of

the functions fx : R" x ©; — R", fy : R™ x ©; — R¢

is convex in x and u, respectively, and r, ¢ are suitable

integers.

We note that no assumption on the form of the convex sets
X(6:), U(0;) (e.g. polytopic, elipsoiddl,...), for given 6, €
O, is made. Indeed, the constraint sets are even allowed to
change their form, e.g., from ellipsoids to polytopes, as a
function of 8. Thecontrol problemwe consider istoregulate
the system state to the origin, subject to satisfaction of the
constraints (2) with a probability higher than a user-defined



value p. The latter can be either prescribed by the problem
at hand, for example when the input and state constraints are
expressed in probability (chance constraints), or it can be
interpreted asarel axation of robust deterministic constraints,
such that a small chance of constraint violation is traded off
to obtain a tractable problem formulation.

As usual in MPC for LPV systems (see e.g. [7]), our ap-
proach relies on the existence of a convex positively invari-
ant terminal set X, and an associated affine state-feedback
control law u = K(6;) z, possibly depending on the pa-
rameter 6,, that renders the origin of (1) robustly asymptot-
icaly stable:

Assumption 4 (Terminal set and terminal control law) A
set X, containingtheorigininitsinterior, and alinear state
feedback terminal control law u = K(6;) z, Ky € R™*",
exist for system (1), such that Xy = {z : fx,(v) =
0}, where fx, : R" — R! has convex components
and [ is a suitable integer, and V8, € O, Va; €
Xf,Vl‘,,A(et)l‘t + B(Gt)Kf(Ht)xt S Xf;fx(xt,et) =
0, fu(K¢(6)z¢,6,) =< 0. The origin of the closed loop
system with the feedback law u = K¢ (6;) is asymptotically
stable.

The termina set and terminal control law in Assumption
4 are required to always be inside the state constraint set
and satisfy input constraints, respectively. Possible methods
to compute X and K rely on quadratic stability and ro-
bust state feedback laws for LPV systems (see, e.g., [7,15]).
As an example, by tolerating some conservativeness in the
computation of the terminal set, one can embed the set
3 in a polytope, and apply the procedure used in [15] to
derive a stetic state feedback gain K ; and an associated
matrix Q #, such that the level sets of the Lyapunov func-
tion 2T Qsx, Qf = QT = 0, are robustly positively in-
variant elipsoids for the closed loop system, and the ori-
gin is asymptotically stable. Finally, since the state and in-
put constraint sets are assumed to contain the origin in
their interiors (see Assumption 3) one can find an ellipsoid
X; = {z: 2'Qsx < p}, for a sufficiently small p > 0,
such that constraints are setisfied for al - € X, al 6, € O,
and all ¢.

3 MPC for LPV systems via Scenario Optimization
3.1 The scenario finite-horizon optimal control problem

Let N € N beafinite control horizon, chosen by the control
designer, lett > 0 bethecurrenttimeinstant andlet = ; bethe
system state observed at time ¢. We consider the predicted
evolution of (1) for N steps forward, under a control law
determined at the current time ¢: w;;, = Kg(0;)v; +
Ve, = 0,..., N — 1, where u;; |sthe predlcte& input at
timet + j computed at time t, xo; = 4, 0oy = 0 and,
forj=1,....N, z; = Aa(O;1)zj—1)¢ + B(Oj10)vj—1e,
and Acl(ej‘t) = A(ej‘t) + B(Gj‘t)Kf(éﬂt). Here, Uj|t,j =

0,...,N — 1, are control corrections at time steps ¢ + 7,
computed at time ¢, which we collect in the vector V; =
[U0T|t v;_m]T € RN™, For given initial state z; and
sequence V;, let us define the following (stochastic) cost
function:

N-1

= Z ], Q1 + ), Ruyy, ©)

j=0

J(a:t,ét;vt)

where@Q = QT = 0, R = R" = 0 are weighting matrices
chosen by the control designer. Now, let us consider afinite
number M of randomly extracted scenarios of ¢, at time

tie, 6, ... 6™ which we collect in the multisample
we = (6, 6. The probability distribution of w, €
AM is given by PM. Based on w;, for a given state z; we
can formulate the scenario-based FHOCR, as follows (see
also [4]):

: i st.. 43)

P(xt,wt) N (48)
J(Iﬂt;5t(i);vt)§2t; i=1,...,M (4b)

fx(z jl‘z,ﬁj(@)flqtj(); J=1,., N-1,i=1,..., M (4c)
fU( Jlt’ j‘Z)—lqth; j=1,..., N-1,i=1,....,m (4d)

Fxp(al]) = 1q: 205 i=1,..., M. (4e)

In (4), the slack variable ¢g; > 0 is used to guarantee feasi-
bility of the optimization problem, by transforming the hard
constraints of Assumption 3 into soft ones; the weighting
scalar o > 0 is chosen by the control designer; finaly 1
denotes a column vector of appropriate length, containing
al ones. We denote with Vi (z¢,wi) = {5, Vi1
2§ (x¢,w) and g; (x4, w; ) @n optimal solution to problem (4).
We notethat, oncethe multisamplew; hasbeen extracted, the
scenario FHOCP is a convex optimization problem, which
can be solved efficiently also with alarge number M of sam-
ples, even when the system’s matrices and the constraints
are not convex w.r.t. the time varying parameters 6 ;.

Now, denote with d = mN + 2 the number of decision
variables in problem P(z¢,w;), let p € (0, 1) be a given
desired probability with which the constraints (4b)-(4€) shall
be satisfied, let 5 € (0, 1) beagiven, small probability level
(say, B = 1077), finally let M be chosen such that

@(p,d,M) gﬂv (5)

=1 [ M . .

with ®(p,d, M) = > < _ ) (1 — p)ipM—J. Then, the
J=0 \ J

solution to problem P(z,w:) enjoys the properties stated

in the following proposition (for further comments, see also

the discussionin [4] on asimilar result for the case of linear

time-invariant systems).



Proposition 3.1 (Finite horizon robustness) With probabil-
ity larger than 1 — 3 it holds that the computed control se-
quence V;":

a) steers the state of system (1) to the terminal set X, in N
steps, with probability at least p and constraint violation g,
i.e. P{os: fx;(xe4n,00) —1gi 20} > p;

b) Satisfies all state constraints with probability at least p
and congtraint violation g7, i.e: Pi{0; : fx(@iyj,0:) —
lgf X0,Vj €[, N]} = p;

c) Satisfies all input constraints with probability at least p
and constraint violation ¢;, i.e: P:{d; : fU(u;‘+j,6t) —
1¢; 20,Vj€[0,N—1]} > p. |

The inequality (5) provides a precise guideline on how to
tune the value of M, for given values of p and 5. A suitable
value of M can be derived either by inverting numerically
equation (5), or by using existing results on explicit bounds
for the sample complexity. For example, eq. (5.2) in [3]
provides

M >

T (1og(ﬂ7 )+mN + 1) , (6)

(see aso [1] for more details and tighter, although dslightly
more involved, explicit bounds). We remark that the value
of M needed to satisfy condition (5) grows at most logarith-
mically with 3~1, as it can be evinced by (6). Hence, the
parameter /3 can be fixed by the designer to avery low level
without increasing significantly the complexity of the result-
ing scenario FHOCP. More insights on this aspect and on
the related “ certainty equivalence” principle can befoundin
[4]. We will now present a receding-horizon agorithm that
embeds the scenario problem and allows to take advantage
of the measure of the state x; and of the parameter 6,, at
each time step.

32 MPC for LPV systems via Scenario optimization
(MPCS

We next use the following notation: “x” variables, such as
25,45, Vi = {vglt,...,vj\,_llt}, denote the optimal solu-
tion of the scenario optimization problem P(x ¢, w;) at time
t, given x,;; “~" variables, Z;, G;, V;, denote, respectively,
two scalar values and a sequence of N vectors of dimension
m, as defined in the algorithm below; finally plain variables,
zt, ¢, V¢, denotethe running values of the variables z, ¢ and
of the sequence V = {vgy, ..., un—1}¢} in the agorithm.
Thefirst entry in V;, namely vy, is the actual control cor-
rection that is applied to the system (1) at time ¢.

321 MPCSAlgorithm

(Initialization) Choose a desired reliability level p € (0,1)
and “ certainty equivalence” level 5 € (0,1) (say, 3 = 1077,
or B = 10~'2). Choose an integer M satisfying (5). Choose
e € (0,1] (see [4] for the meaning of  and for tuning

guidelines). Given an initia state x¢, extract wy accord-
ing to P3!, solve problem P(z,wy) and obtain the op-
timal control sequence Vi = {vg,9: v7j - - Vx_1)o}> ad
the optimal objective z§ and constraint violation ¢f. Set
zo = 23,490 = q5, Yo = V§, and apply to the system the
control action ug = K o + vo)o-

(1) Lett:=t+1, observe z;, and set

Vi = {vijt—1,-- -, UN—1Jt—1,0},

Z = max (0,21 — e 1Q-1), Gt = G—1.

(2) Extract the multisample w; according to P}, and solve
problem P (z;,w:). Let (Vf, 2f, qf ) be the obtained optimal
solution.

(3) Evauate the following collectively exhaustive and mu-
tually exclusive cases:

@Balf z; >z and 2, < 2] Quy, thenset Ve = Vi, 2z =
0; @ =qu :

(3b) If 2’2‘ > Zy and Z > x;th, then set Ve=Vy 2=
Zt; g =q;

(B0 If 2z <z, thenset Ve =V 2 =25 ¢ =q;;
(4) Apply the control input u; = Ky x4 + voj¢, and then go
to (). ]

The next theorem provides the main result of this paper,
which concerns the guaranteed properties of the closed |oop
system obtained by applying Algorithm 3.1. We note that,
by virtue of Assumption 4, under the terminal control law
u = Ky x theorigin of system (1) isrobustly asymptotically
stable with region of attraction equal to X ¢, and constraints
are robustly setisfied for all « € X;. Therefore, only the
convergence of the state trajectories to X ; and the satisfac-
tion of constraints for « ¢ X are of interest here.

Theorem 3.1 (Properties of Scenario MPC) Let v, t =
0,1,... denote the sequence of control actions produced by
the MPCS Algorithm, and consider the closed loop system
obtained by applyingto (1) the control law u; = K yz¢+voj:.
Let zq §é Xf Then:

(a) With probability larger than 1 — 3, at all time stepst =
0,1,..., the probability that the state and input constraints
are satisfied with constraint violation ¢; is at least p, that
is, for t =0,1,..., it holds that

Pe{0s : fx(@e41,00)—Lge 20N fu(ue,p)—1ge < 0} > p.

(b) The MPCS Algorithm either: (i) makes the state trajec-
tory converge to the terminal set in finitetime, i.e, z,, 5 €

Xy, for some N < oo, or (i) there exists afinitetime ¢* such
that, with probability larger than 1 — 3, the forward control
Sequence {voj¢+, Vo|++1, - - - Voje=+ N1} drives the state of
the closed-loop systemto theterminal set attimet* + N —1,
with probability at least p and constraint violation ¢;-. W

Proof 3.1 See the Appendix.



4 Numerical example

We consider system (1) with

0;.1log(0 0 0.4 5in (0
Al = | % 0g(fr2) O3+ e sin(fy5) B() -
0 0+ 6
0:.3 + €% cos(f
3+ €7 cos(0r,5) , Where 6, ; is the i—th component
0.50;

of the parameter vector §,. We also consider the following
parameter-dependent constraints on the input and state vari-

1 0168 2
0.10 1 0.12
X(0, = { v € R?: be < :
1 —0.10.5 2
0105 1 2

U(0:) ={u € R:|u] <2+ 0.16; 7}. The parameter vector
0, has 300 components, characterized as shown in Table 1.

Table 1

Description of the time-varying parameters in the example (u.d.
stands for uniformly distributed, n.d. for normally distributed,
A(A) is the maximum absolute value of the eigenvalues of A).

0¢.1 u.d. in [0.9,1.1]

ud. in[2,2.6] if 6;1 < 0.95
n.d. and saturated in the interval [2.8,3] if 6,1 > 0.95

03 | ud.in[0.951.1] if 6,10 > 1, ud. in [12,1.3] else

ud. in[-10,-6] if ¢ > 2 and O;_s.0 + Oy 2.0 < 1.7
and 6, 20+ 010 > 0.2; ud. in [-5-2] else

300
Oi5 | ud. in[0,Z]if > 0.; > 10, ud. in [r,27] else

=11

ud. in[1,1.2] if t > 0 and X(A(f:—1)) < 0.8
u.d. in [0.8,1.2] else

0:7 | ud. in[-11]

0.8 ud. in[-1,1]

0+.9 u.d. in [0,1]

91,710 n.d.

with 4 = 11, 300; distributed according to logistic

functions with mean i~* and variance &'i*

We employ the following terminal control law and terminal
set satisfying Assumption 4: K; = [—0.8057 — 0.8543],
Xy = {z € R? : 27Qsx < 0.01}, where Q; =
1.5452 0.1865

0.1865 0.9792

]. We designed the MPCS law with

10
N =10,Q = [01 ,R=1anda = 10% 8 =108
and ¢ = 0.01. By setting desired guaranteed probabilities
p=0.3,p=0.5and p = 0.95 for the design, we obtained
from (5) values of M = 42, 77 and 840, respectively. We

carried out Nyigs = 50,000 Monte Carlo simulations, start-
ing fromthe statevalue xo = [—1, —2.5] T, whichis outside
the state constraints and whose corresponding uncorrected
input, i.e., K yxo = 2.94, isaso outside the input constraint
set. Indeed this initial condition is not feasible for the
deterministic robust counterpart of the scenario problem,
hence for some extractions of wq the constraint violation
g5 is not negligible. In the Monte Carlo simulations, the
empirical probability of success p has been computed as
P = (Nuias — Nrailures) / Nirials, Where Neaiures 1S the number
of simulations in which some of the constraints were not
satisfied. We computed p both for the finite horizon solu-
tion, i.e., the sequence V; obtained at ¢t = 0 and applied
without re-optimizing at the next time steps, and for the
receding horizon solution given by the MPCS agorithm.
In particular, we considered as a failure, for a given trial,
any constraint violation, i.e., input and/or state constraint
violations and the failure in reaching the terminal set either
within N steps (for the finite horizon solution) or within
N + 10 steps for the receding horizon approach, to ap-
proximately take into account the convergence results of
Theorem 3.1. The outcome of the Monte Carlo simulations
is reported in Table 2.

Table 2
Empirical probabilities p of constraint satisfaction and convergence
to the terminal set, for three different values of p, and § = 1075,

Finite Horizon ~MPCS algorithm
p=0.3(M = 42) 0.619 0.973
p=05(M =77) 0.814 0.981
p=0.95 (M = 840) 0.989 0.996

The obtained results confirm that the receding horizonimple-
mentation, by re-optimizing the control corrections at each
time step, yields higher probabilities w.r.t. the finite horizon
solution. It can be also noted that some conservativeness ex-
istsin the result, in the sense that the empirical probabilities
are larger (better) than the theoretical bound, especialy for
the receding horizon implementation. In thisregard, we note
that the bound (5) on the violation probability is actually
exact for the case of fully supported problems, i.e., random
convex programs where the number of support constraints
is equal to the number of optimization variables with prob-
ability one (see, e.g., [3] and [5]). In other cases, the bound
may not be tight in general. In the case of MPC, it is quite
unlikely to have a fully supported problem, due to the fact
that the control objective is to drive the states well inside
the state constraint set, towards the origin, hence the opti-
mal solution is typically supported only by the input and
state constraints for the very first time steps. Therefore, the
conservativeness comes from the settings of the example it-
self rather than from poor tightness of the bounds. In other
cases, e.g. if the control objective is such that the optimal
system’s operation is close to the boundary of the state or
input constraints, the empirical violation probability might
be closer to the bound. As it regards the MPCS algorithm,
another important aspect that contributes to outperforming
the theoretical bound is the use of state feedback through



the receding horizon strategy, as one can intuitively expect.

We performed the computationsin this example using a stan-
dard laptop under Yalmip and Matlab®. The average com-
putational times (including also the definition of the con-
straints in Yalmip) were of about 1.8s for the case of 42
samples, 2 sfor the case of 77 samples, and 10sfor the case
of 840 samples. However, we did not carry out any effort to
speed-up the computations, since this was not the primary
purpose of thiswork. Theimportant features of the proposed
approach, as far as computational aspects are concerned,
are the convexity of the scenario problem and the presence
of a well precise structure of the constraints. Considering
thesefeatures, and given the recent developmentsin thefield
of efficient on-line MPC (see, e.g., [18] and the references
therein) and the continuous improvementsin terms of com-
putational power/cost of hardware, the computational times
of the method appear to pose little issues in perspective.

Appendix

Proof of Theorem 3.1. The proof of statements (a) and (b)-(ii)
follows a line similar to that of Theorem 4.1 in [4], whereas a
different reasoning should be made for statement (b)-(i). We next
report a full proof of Theorem 3.1.

Proof of statement (a). At time ¢ = 0, Proposition 3.1 guarantees
with probability larger than 1 — 3 that the first control correction
satisfies the constraints on uo and x; with probability no less than
p and constraint violation go = ¢g. At any generictimestept > 1,
thevariables (Vy, Z:, G:) are computed. Then, two cases may occur.
If z; < Z, then case (3.c) is detected, and the first element vg‘t
of the optimal sequence V; is applied to the system. Being this
sequence the solution of a scenario optimization problem, with
probability larger than 1 — 3 the probability of satisfying state
and input constraints is no less than p, with constraint violation
@ = ¢q;. If, on the other hand, z; > 2, then we are either in
case (3.a) or (3.b), and in both cases the element vy, ,_,,, for some
k € [1, N—1], isapplied to the system. Being this value part of the
solution sequence V;_,,, with corresponding constraint violation
q;_, again the probability of satisfying state and input constraints
is no less than p, with constraint violation ¢: = ¢ = ¢;_ -

Proof of statement (b). Each run of the MPCS Algorithm may
have one of two possible behaviors, depending on whether or not
thereexistsafinitetimet > O suchthat z; > %, and %, < z; Qxy,
that is, whether or not the situation in step (3.a) is ever satisfied.
We then name A the situation when condition in step (3.a) is
met at some finite ¢ > 0, and A the complementary situation
when this condition is not satisfied at any finite time, that is when
zf < 3 or z > a2 Qu, holds for al ¢ > 0.

(b)-(i). Consider the situation A, and let us define the ellipsoid
Xg, = {z € R" : 2" Qsz < p} for some p > 0, such that
Qr = Qf = 0and Xg, C X;. Such aset can dways be found,
since the origin is assumed to be contained in the interior of the
terminal set Xf At a generic time ¢, at step (3) of the MPCS
algorithm, if z; > Z:, then, snce it is assumed that we are in
situation A, it must be z, > z/ Qx:, thus case (3.b) occurs,
and the values V, = V, and 2z = 2, are set. Now, recalling
that 2z, = max(0,z:—1 — ex/_Qx¢—1), tWO Cases may occur:

either Zt = 0 or :Zt = Zt—1 — El';r_1Q1't71 > 0. If Zt = 0,
we have 0 = % > 2/ Qu, i.e, z/ Qz; = 0, which would
imply that x; = 0 and that the terminal set has been reached,
since the origin is contained in its interior. Otherwise, if z; =
21 —exy_1Qut_1 > 0, then we have:

ze > af Que > Bl Qpay, ()

where § = £ )) and A(+), A(-) are the minimum and maximum

eigenvalues, r%pectlvely. Moreover, we have

T T
2t = 2t—1 — €4 1QTi—1 < 2—1 — x4 1Qfxi-1,

hence
zt < zt—1 — €0p. 8

Note that the inequality in (8) holds true aslong as z;_; Qz¢_1 >
p, i.e, as long as the state ;1 is outside the ellipsoid Xq, .
Indeed this condition is satisfied if z:—1 ¢ X, since Xg, C X;.
On the other hand, if at step (3) of the MPCS agorithm it happens
that z; < Z, then case (3.c) occurs, and the optimal values V;
and z; are retained, i.e, z: = z7, V& = V;. In this case, it
can be noted that the inequalities (7)-(8) still hold true. Then, as
long as the case 2z < (z1—1 — ed(zi—1,Xy)) or Z¢ > d(m¢, Xy)
holds true as assumed, (8) can be applied recursively starting from
2o = z, (i.e., the worst-case cost computed at time ¢ = 0), and,
by considering (7), we have:

V4 20 J—
t+NQfmt+_ < HE < B Nep. ©)

B

Therefore, for afinite N > -2 wehavethaﬁxHNQfoL <
p, hence z, . x € Xq, C X‘f, |e the state has reached the
terminal set. This proves the statement (b)-(i).

(b)-(ii). Let us next analyze what happens in case A. Let £ > 0
be the time instant at which the case z; > %, and %, < =/ Qu:
is met for the first time, and let t* < ¢ be the last time at which
case z; < %, was satisfied, that is the last time previous to ¢
when an optimal command sequence was retained, together with
its constraint violation ¢;, according to case (3.c) of the MPCS
agorithm; let ¢ = ¢ — t* > 1. According to step (3.a) of the
MPCS algorithm, we set

Ve=V5, 26 =0, g = G. (10

Thus, at step (4) of the algorithm, the control move u; = Kyzz+
vo|7 is applied to the system at time ¢, where voj; = vy, i.€., voj¢
isthe optimal correction predicted for timet* + ¢ = ¢, computed at
timet*. Attimestep ¢t = ¢+ 1, the state variable zz ; is observed
and (Viir, Ze1, Gr1) are computed as Zp;; = max(0, 2z —
59UtTQ9€t)7 Givi = a5, Viq1 = {vl\z?wn:vN—l\f:O} =
{Vii1jees Vigopess- -+ Un—1jt+,0,...,0}. Since (10) holds,
it must be Z;1; = 0. Then, 27,,, ¢/, and V; , are com-
puted at step (2), and we notice that, by definition, z7,;, > 0.
Therefore, at step (3) of the agorithm either (i) case (3.a)
{z1 > (Z{,—EZ}TQZ}) and Z7,; < x/ Qui} is detected
again, or (ii) one of cases (3.b) or (3.c) are detected,
which would imply, respectively, 0 = %, > z Qz, oOF
0 < z{Qz¢ < 27, = Zg1 = 0. In either sub-case of (ii)
we would have z; Qz; = 0, so that convergence to the termi-
nal set would be achieved. Consider then case (i): the values



Vii1 = Vip1, zig1 = 0 and g1 = ¢; are set in the algorithm,
and the control move ug,; = Kz + v, IS applied to the
system. Now, the same circumstances actually reproduce for all
time stepst =t + k, k > 0, so that the optimal input sequence
V,~, computed at time t* by solving a scenario FHOCP, is the
one actually next applied to the system, and the related constraint
violation ¢; is retained for al ¢ > ¢*. Thus, in case A, there
exists afinite time ¢* such that the sequence Vj- is applied to the
system for al subsequent instants ¢t = t* + k, k=0,..., N — 1.
Now, the sequence V;- is the result of the solution of the scenario
FHOCP P (z+,w+): we can hence claim, in virtue of Proposi-
tion 3.1, that with probability larger than 1 — 3 this sequence will
satisfy the problem constraints and reach the terminal set within
the time window from ¢* to ¢t* + N, with probability at least p
and constraint violation ¢;. This proves the statement (b)-(ii).
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