POLITECNICO DI TORINO

SCUOLA INTERPOLITECNICA DI DOTTORATO

Doctoral Program in Computer and Control Engineering

Final Dissertation

Generalized Bin Packing Problems

Mauro Maria Baldi

Tutor Co-ordinator of the Research Doctorate Course
prof. R. Tadei prof. P. Laface

February 2013

Contents

Ringraziamenti

1 Introduction

2 Literature review

3 The Generalized Bin Packing Problem: models and bounds

3.1 Problem Definition and Formulation

3.2

3.3

3.4

3.1.1
3.1.2
3.1.3
3.14

Notation
Assignment formulation of the GBPP
Generalization of classic bin packing and knapsack problems .
Set Covering formulation of the GBPP

Lower bounds

3.2.1
3.2.2

Lower bound through the Aggregate Knapsack Problem

Lower bound through column generation

Upper bounds

3.3.1
3.3.2
3.3.3

Upper bounds through constructive heuristics
Upper bounds through the lower bound LB;

Upper bounds through column generation-based heuristics

Computational results L.

3.4.1
3.4.2
3.4.3
3.4.4

Instance classes
Lower bounds
Upper bounds

Sensitivity analysis oo

IIT

4 Branch-and-price and Beam Search for the Generalized Bin Pack-

ing Problem 41
4.1 Introduction 41
4.2 Branch-and-price Lo 42
4.2.1 Bounds at the root nodeo 42
4.2.2 Branching o 42
4.2.3 Pricing 44
424 Rounding 46
4.3 Beamsearch 47
4.4 Computational resultso 47
4.4.1 Testing environment 47
442 GBPPresults. oo 48
4.4.3 VCSBPP comparison 51
5 The Stochastic Generalized Bin Packing Problem 54
5.1 Introduction 54
5.2 The assignment model of the Generalized Bin Packing Problem re-
visited . .. 95
5.3 The Stochastic Generalized Bin Packing Problem 57

5.4 Formulation of the probability distribution of the maximum shadow
random profit of any itemo 60

5.5 The asymptotic approximation of the probability distribution of the

maximum shadow random profit of any item 62

5.6 The deterministic approximation of the S-GBPP 64

6 On-line Generalized Bin Packing Problems 66
6.1 Introduction 66
6.2 Problems settingso 67
6.2.1 The asymptotic and the absolute worst case ratios 68

6.2.2 The On-line Generalized Bin Packing Problem 69

6.2.3 The Generalized Bin Packing Problem with item profits pro-

portional to item volumes and its on-line variant 70

VI

6.2.4 The Variable Cost and Size Bin Packing Problem and its on-

line varianto 70
6.2.5 Terminology 71
6.3 Algorithms for the On-line Generalized Bin Packing Problem 71
6.4 The On-line Generalized Bin Packing Problem with item profits pro-
portional to item volumeso 82
6.5 FIRST FIT algorithm for the On-line Variable Cost and Size Bin Pack-
ing Problem oo 89
7 Conclusions 94

VII

List of Tables

3.1
3.2
3.3
3.4
4.1
4.2
4.3
4.4
4.5

Lower bound resultso 30
Constructive heuristics upper bounds 31
Upper bound comparisons 33
Impact of the percentage of compulsory items on the best upper bounds 35

Branch-and-price results for Classes 0, 1, and 2 50
Branch-and-price results for Class 3 50
Beam search results L 52
VCSBPP results: comparison between BBpg and branch-and-price . 53

VCSBPP results: comparison between VN Spgp and beam search . 53

VIII

List of Figures

3.1 Class 4 gaps between Zsc and LBy, LBs, and LBj for varying U with

a time limit of 20 seconds oL 36
3.2 Class 4 gaps between Zsc and LBy, LB,, and LBj for varying U with

a time limit of 1000 seconds 37
3.3 Mean Zsc - LBy gap versus computing time for 500-item instances . 39

IX

Chapter 1
Introduction

Packing problems make up a fundamental topic of combinatorial optimization. Their
importance is confirmed both by their wide range of scientific and technological ap-
plications they are able to address and by their theoretical implications. In fact,
they are exploited in many fields such as computer science and technologies [Ullman,
1971, Francis, 1993, Hutton, 1993], industrial applications [Boutevin et al., 2003,
Freire Beirao, 2009], transportation and logistics [Akkas, 2004, Cochran and Ra-
manujam, 2006, Epstein, 2009, Baldi et al., 2012¢]|, and telecommunications [Huang
and Zhuang, 2000, Skorin-Kapov, 2007, Detti et al., 2009]. From a theoretical per-
spective, packing problems often appear as sub-problems in order to iteratively solve
bigger problems [Naddef and Rinaldi, 2001, Fukunaga and Korf, 2007].

Roughly speaking, they consist in loading a set of items into proper bins in
order to optimize a given objective function. Fundamentally, packing problems can
be classified into two families: the one of bin packing problems and the one of
knapsack problems. These two families are very different in terms of formulations,
objective functions, methodologies, and, above all, items nature. In fact, whilst in
bin packing problems items are compulsory (i.e., they all must be loaded into bins),

in knapsack problems they are non-compulsory.

Although packing problems play a fundamental role in all the aforementioned
settings, there is a gap in terms of comprehensive study in the literature. In fact,
the joint presence of both compulsory and non-compulsory items has not been con-

sidered yet. This particular setting arises in many real-life applications, not yet

1 — Introduction

addressed or only partially addressed by the current state-of-the-art packing prob-
lems. Furthermore, little has been done in terms of unified methodologies, and
different techniques have been used in order to solve packing problems with differ-
ent objective functions. In particular, none of these techniques is able to address
the presence of compulsory and non-compulsory items at the same time.

In order to overcome a noteworthy portion of this gap, we formulated a new
packing problem, named the Generalized Bin Packing Problem (GBPP), char-
acterized by both compulsory and non-compulsory items, and multiple item and bin
attributes.

Packing problems have also been studied within stochastic settings where the
items are affected by uncertainty. In these settings, there are fundamentally two
kinds of stochasticity concerning the items: 1) stochasticity of the item attributes,
where one attribute is affected by uncertainty and modeled as a random variable or
2) stochasticity of the item availability, i.e., the items are not known a priori but
they arrive on-line in an unpredictable way to a decision maker.

Although packing problems have been studied according to these stochastic vari-
ants, the GBPP with uncertainty on the items is still an open problem. Moreover,
to the best of our knowledge, also the on-line variant of the VCSBPP, the most
similar problem to the GBPP, has not been studied yet. Therefore, we have also
studied two stochastic variants of the GBPP, named the Stochastic Generalized
Bin Packing Problem (S-GBPP) and the On-line Generalized Bin Packing
Problem (OGBPP), and the on-line variant of the Variable Cost and Size
Bin Packing Problem (VCSBPP), the On-line Variable Cost and Size Bin
Packing Problem (OVCSBPP).

Our main results concern the development of models and unified methodolo-
gies of these new packing problems, making up, as done for the Vehicle Rout-
ing Problem (VRP) with the definition of the so called Rich Vehicle Routing
Problems, a new family of advanced packing problems named Generalized Bin
Packing Problems.

In the GBPP, a set of items, characterized by volume and profit, and a set of
bins, characterized by capacity and cost, are given. The item set is split into two
subsets: the subset of compulsory items (which must be loaded into bins) and the

subset of non-compulsory items (which may not be loaded). The bins are classified

2

1 — Introduction

by types, such that bins belonging to the same type have the same capacity and
cost. The goal is to properly select a subset of profitable non-compulsory items to
be loaded together with the compulsory ones into the appropriate bins in order to
minimize the total net cost and satisfying capacity and bin usage constraints. The
total net cost is given by the difference between the total cost of the selected bins

and the total profit of the loaded non-compulsory items.

The GBPP yields a relevant amount of contributions. The most relevant con-
tribution is the presence of both compulsory and non-compulsory items and of mul-
tiple item and bin attributes. This innovative feature allows us to address and
collect several bin packing and knapsack problems at the same time into a unique
structure. The GBPP, indeed, is able to gather the following packing problems:
the Bin Packing Problem (BPP), the Variable Sized Bin Packing Problem
(VSBPP), the VCSBPP, the Knapsack Problem (KP), the Multiple Knap-
sack Problem (MKP), and the Multiple Knapsack Problem with identical
capacities (MKPI). Moreover, the GBPP is able to address new applications.
In logistics, where changes arising in the supply chain and fleet management due
to cross-continental fleet flows and multi-modal and green logistics have forced re-
searchers and practitioners to redefine their processes [Cohn and Barnhart, 1998,
Shintani et al., 2007]. The GBPP is a contribution in this direction, as it defines a
packing problem able to simultaneously consider bin costs and item profits and takes
into account restrictions on the bin availability and their heterogeneity in terms of
cost and volume. The GBPP brings also innovation in the area of airfreight trans-
portation, where items are loaded according to their volume [Li, 2011]. Here, the
GBPP is able to describe the fundamental role played by the trade-off between
shipping costs and item profits, which arises in many transportation settings. The
GBPP also brings contributions in the waste collection problem at a tactical level.
In the literature, this problem is tackled at the operational level, where the routes
are determined solving a VRP [Bianchi de Aguiar, 2010, Bianchi de Aguiar et al.,
2012]. Given the demand of ordinary waste and hazardous and bulky waste (which
yield a profit to the waste company), the GBPP determines proper vehicles (rep-
resented by bins) in order to fulfill an optimized picking. Afterward, routes are

determined at the operational level, solving the VRP.

We give two formulations of the GBPP and we propose variegated methods in

3

1 — Introduction

terms of quality and computational time.

Furthermore, the availability of these methodologies for the GBPP yields the
great flexibility of using the same techniques to address different problems, avoiding
to change the solution methods every time the problem changes.

The Stochastic Generalized Bin Packing Problem is a further generaliza-
tion of the GBPP where item profits are no longer fixed, but depend on bins where
items will be loaded. Moreover, they are random variables with unknown probabil-
ity distribution. The goal is to maximize the expected total net profit, given by the
difference between the expected total profit of the loaded items and the total cost
of the used bins, while satisfying volume and bin availability constraints.

The S-GBPP is able to address a more general setting where each item profit
depends on the bin where the item is loaded and it is described by a random variable.
This generalization allows us to address new applications, in particular in logistics,
where the freight consolidation is essential to optimize the delivery process. Profit
random terms represent a series of handling operations for bin loading that must be
performed at the logistic platforms, and these operations could significantly affect
the final total profit of the loading [Tadei et al., 2002].

Moreover, the S-GBPP is able to address the Railway Track Maintenance
Planning Problem, where maintenance operations (named warnings) must be
scheduled into time-slots and their costs are uncertain and depend on the time-slots
where they are assigned [Heinicke et al., 2012, 2013].

For this problem, we give a stochastic model and, applying the extreme value
theory, we derive a deterministic approximation.

In the On-line Generalized Bin Packing Problem, the items arrive on-line
to a decision maker, therefore no information on the items is known a priori. Only
when an item has been received, its information is revealed.

This problem arises in all those applications where orders arrive on-line. This is
the case, for instance, of freight forwarders: specialized companies arranging ship-
ments between logistics providers and customers, and playing the role of intermedi-
ary between the involved parts.

We study a wide range of algorithms in order to test whether the available tools
in the literature (i.e., the asymptotic and absolute worst case ratios) are still effec-

tive when a richer setting as the OGBPP is tackled. Our study reveals a stronger

4

1 — Introduction

result than the one achieved in the On-line Knapsack Problem(OKP). In fact,
as Iwama and Zhang [2007, 2010] showed that the OKP is not competitive (i.e.,
its absolute worst case ratio is infinite), we prove that, for the proposed algorithms,
it is even impossible to apply the definition of these tools. This behavior occurs
also in the On-line Generalized Bin Packing Problem with item profits
proportional to item volumes (OGBPP,,), the on-line variant of the General-
ized Bin Packing Problem with item profits proportional to item volumes
(GBPP,,), a particular case of the GBPP where item profits are proportional to
their corresponding volumes through a positive coefficient . This particular prob-
lem arises in many real-life applications.

We believe that the ultimate packing problem for which it is possible to com-
pute a performance ratio is the On-line Variable Cost and Size Bin Packing
Problem, the closest problem to the GBPP, where items arrive on-line, but still
without the presence of non-compulsory ones. As for the OGBPP, this problem
arises in many settings where orders arrive on-line.

For this problem, we could generalize the work of Li and Chen [2006] to a more
general setting, still guaranteeing the same performance ratio.

This thesis is organized as follows. In Chapter 2, we present a detailed state of
the art of the GBPP and of the packing problems it is able to address.

In Chapter 3, we present the GBPP. After introducing the problem, we give
two models and propose bounds. In particular, we propose two lower bounds, one
solving an Aggregate Knapsack Problem (AKP) and a second one computed in
terms of column generation. Then, we show how, basing on these lower bounds, we
can also compute accurate upper bounds. We also compute upper bounds in terms
of constructive heuristics. Afterwards, we present new instance sets for tackling the
problem and extensive computational results.

In Chapter 4, we give an exact method, named branch-and-price, for solving
the GBPP. Our method, rooted on a previous work of Bettinelli et al. [2010],
consists in a two-layer branching strategy. We also propose an approximate method,
named beam search, which is based on the branch-and-price architecture. Extensive
computational results are also presented.

In Chapter 5, we present the S-GBPP. We first provide a more general deter-

ministic model, where the profit of each non-compulsory item depends on the bin

5

1 — Introduction

where it is loaded. Then, we present the stochastic model, where each profit be-
comes a random variable with unknown distribution. Starting from this model and
applying the extreme value theory, we derive a deterministic approximation of the
S-GBPP.

In Chapter 6, we present the OGBPP, the OGBPP,, and the OVCSBPP,
and we propose and study a wide range of algorithms addressing these problems.

Conclusions and future developments of the research activity are reported in
Chapter 7.

Chapter 2
Literature review

In this chapter, we recall the literature of the GBPP and of its related problems.
These are: the BPP, the VSBPP, the VCSBPP, the KP, the MKP, and the
MKPI.

The GBPP is a novel packing problem recently introduced by Baldi et al. [2012a].
In their paper, the authors propose two models and preliminary bounds. A branch-
and-price method and beam search heuristics have been proposed in [Baldi et al.,
2012b]. The stochastic variant of the problem has been studied by Perboli et al.
[2012].

The most classical bin packing problem addressed by the GBPP is the BPP. The
BPP is the simplest mono-dimensional bin packing problem, introduced by Ullman
[1971], which consists in finding the minimum number of bins (all having the same
capacity) in order to accommodate a set of items satisfying capacity constraints.
A noteworthy pioneering work has been conducted by Johnson who, in his papers
and PhD thesis, proposed and studied preliminary algorithms, some of them still in
the vanguard. In particular, in [Johnson, 1973a], he proposed the NEXT FiT (NF)
algorithm and proved that its performance ratio is 2. In [Johnson et al., 1974], he
proposed the FIrsT FiT (FF), BEST FIT (BF), FIRST FIT DECREASING (FFD),
and BEST FIT DECREASING (BFD) algorithms and showed that their performance
ratios are, 17/10 for FF and BF and 11/9 for FFD and BFD. FFD and BFD
are still very used nowadays, sometimes combined with local improvement heuris-

tics [Schwerin and Wascher, 1997]. Basing their studies on the work of Johnson,

7

2 — Literature review

several authors proposed improved algorithms in the years. Yao [1980] presented
the REFINED FIRST FIT algorithm, with performance ratio 5/3, and proved that
any on-line algorithm must have a performance ratio of at least 3/2. Afterward, van
Vliet [1992] increased the lower bound to 1.54014. Lee and Lee [1985] presented a
family of bounded space algorithms, named HARMONIC,,;, with performance ratio
approaching h., ~ 1.6910 from above as M — 400, and showed that h., is even
a lower bound for this class of problems. The authors also presented the REFINED
HARMONIC algorithm, with performance ratio 373/228 ~ 1.63597. To the best of
our knowledge the best result to date is due to Seiden [2002] who proposed the
HARMONICH++ algorithm with performance ratio at most 1.58889.

Preliminary bounds to the BPP were proposed by Martello and Toth [1990].
New lower bounds were developed by Fekete and Schepers [2001] by means of dual
feasible functions. On the basis of this paper, Crainic et al. [2007] developed fast
and more accurate lower bounds, able to reduce the optimality gap for a number
of hard instances. A different approach was defined in [Vanderbeck, 1996], where
the author proposed a formulation with an exponential number of variables and
a column generation lower bound procedure for the Bin Packing and the Cutting
Stock problems. Several heuristics were also proposed [Martello and Toth, 1990],
e.g., the polynomial-time approximation schemes of de la Vega and Lueker [1981]
and Karmarkar and Karp [1982] allowing to approximate an optimal solution within
1 + €, for any fixed € > 0. However, these results are difficult to apply in practice,
due to the enormous size of the constants characterizing the polynomials.

Han et al. [2010] studied a variant of the problem where items have also arrival
and departure time. Both the off-line and the on-line versions of the problem were
studied, with particular attention to the case of unit fraction items, i.e., when the
sizes of the items are at most 1/i, for some integer i.

The BPP has also been studied with respect to less standard ratios. Epstein and
van Stee [2005] studied the problem by means of resource augmentation. Kouakou
et al. [2005] studied the problem with respect to the differential competitivity ratio.
Finally, Gyorgy et al. [2010] studied a much more restrictive variant of the problem
with just one open bin and the decision maker can only decide whether to pack the
next item into the open bin or close the incumbent open bin and load the item into a

new bin (which, of course, becomes the new open bin). If the decision maker decides

8

2 — Literature review

not to close the current open bin and the next item does not fit into it, then the
item is lost. The goal is to minimize the wasted space plus the number of lost items.
This version of the problem is called on-line Sequential Bin Packing Problem.

Another variant of the BPP was studied by Li and Chen [2006], where the
bins have all the same capacity but they are also characterized by a non-decreasing
concave cost function. The authors proved that, for this variant of the problem,
FF and BF heuristics have absolute worst case ratio equal to 2, whilst FFD and
BFD have absolute worst case ratio equal to 1.5. For this problem, Leung and
Li [2008] developed a polynomial time approximation algorithm such that, for any
positive €, the asymptotic worst case ratio is 1 + e. Epstein and Levin [2012] have
recently designed an asymptotic fully polynomial time approximation scheme for
this problem. In their work, the authors have also proposed a fast approximation
algorithm with asymptotic worst case ratio of 1.5.

The stochastic variant of the BPP has been studied by Coffman Jr. et al.
[1980], Lueker [1983], Rhee and Talagrand [1993a,b]. In these papers, the source of
uncertainty is the item volume and strong hypotheses on the probability distribution
of the random terms are usually done. Recently, Peng and Zhang [2012] have studied
a more general stochastic variant, where both item volumes and bin capacities are
uncertain.

Another problem addressed by the GBPP is the VSBPP, where bins with
different sizes are available and the goal is to minimize the wasted space. This
problem was first investigated by Friesen and Langston [1986]. The authors provided
one on-line and two off-line algorithms and proved that their worst case ratio is
respectively 2, 3/2, and 4/3. Murgolo [1987] presented an approximation scheme
which, for any positive €, produces a scheme with performance ratio 1+¢. Moreover,
his algorithm is polynomial even with respect to 1/e. Chu and La [2001] proposed
four greedy approximation algorithms with absolute worst case ratio respectively
equal to 2, 2, 3, and 2+ In2. The authors also showed that these bounds are tight.
Seiden [2000] proposed an optimal on-line algorithm for the bounded space (i.e., the
number of open bins is constant) problem. Seiden et al. [2003] proposed improved
bounds but with two bin sizes only. Zha provided a lower bound of 2.245 with
respect to the absolute worst case ratio and proposed a simple on-line algorithm

with absolute worst case ratio equal to 3. The author also studied the problem from

9

2 — Literature review

another point of view: if one were allowed to design k bin sizes, what sizes should
be chosen such that, for any instance, the wasted space is minimized?

Monaci [2002] presented a series of lower bounds and solution methods (both
heuristic and exact) for the VSBPP. The author also introduced instance sets for
the problem considering up to 500 items. His exact method was able to solve most
instances to optimality.

The VSBPP can also be seen as a special case of the Multiple Length Cutting
Stock Problem(MLCSP). In this problem, the item demand can be more than one
and different types of stocks (which are equivalent to the bins) are available. Exact
methods for the MLCSP have been proposed by Belov and Scheithauer [2002]. Alves
and Valério de Carvalho [2007] first proposed an improved column generation tech-
nique trying to solve the VSBPP to optimality. One year later, the same authors
introduced a branch-and-cut-and-price algorithm for the MLCSP [Alves and Valério
de Carvalho, 2008].

An on-line variant of the VSBPP was introduced by Zhang [1997] where items
are known and this time are the bins to arrive on-line, one by one. The author
proved that, for this problem, both NF and FFD algorithms have performance
ratio 2.

The problem studied by Zhang [1997] was also the starting point for the work
of Epstein et al. [2011] who studied the on-line Variable Sized Bin Packing Problem
with conflicts.

The VCSBPP is a generalization of the VSBPP, where all items must be
loaded, but bins can be chosen among several types differing in volume and cost.
The total accommodation cost, computed as the total cost of the used bins, must
be minimized. A number of studies have been dedicated to the VCSBPP. Kang
and Park [2003] studied the problem assuming that the cost of the unit size of each
bin does not increase as the bin size increases. The authors proposed two greedy
algorithms and computed their asymptotic worst case ratio under three assumptions:
1) the sizes of items and bins are divisible (i.e., the succeeding item (bin) exactly
divides the previous item (bin)), 2) the sizes of bins are divisible, and 3) the sizes of
bins are not divisible. The authors proved that both algorithms yield an asymptotic
worst case ratio equal to 1 (i.e., the two algorithms are optimal) under assumption

1, equal to 11/9 under assumption 2, and equal to 3/2 under assumption 3. For

10

2 — Literature review

this problem, Epstein and Levin [2008] designed an asymptotic polynomial time
approximation scheme. Correia et al. [2008] proposed a formulation that explicitly
includes the bin volumes occupied by the corresponding packings, together with a
series of valid inequalities improving the quality of the lower bounds obtained from
the linear relaxation of the proposed model. The authors also introduced a large set
of instances with up to 1000 items and used them to analyze the quality of the lower
bounds. Crainic et al. [2011] proposed tight lower and upper bounds, which can be
computed within a very limited computing time, and were able to solve to optimality
all the instances proposed in [Correia et al., 2008]. The authors also presented a first
computational study of the sensitivity of the optimal cost with respect to the cost
definition [Crainic et al., 2011]. Approximation algorithms have been proposed by
Haouari and Serairi [2009] and Hemmelmayr et al. [2012]. Recently, Bettinelli et al.
[2010] introduced a branch-and-price algorithm for the resolution of a variant of the
VCSBPP with the addition of filling constraints. These constraints imply that, due
to stability reasons within the bins, each bin must be filled at least at a minimum
security level. To the best of our knowledge, the latest work dealing with exact
methods for solving the VCSBPP is due to Haouari and Serairi [2011], in which
the authors proposed lower bounds and an exact branch-and-bound algorithm. Fazi
et al. [2012] have recently studied the Stochastic VCSBPP, with the addition of

time constraints.

The GBPP is also able to generalize three knapsack problems: the KP, the
MKP, and the MKPI. The KP is a deeply studied Combinatorial Optimization
problem where, given a set of items characterized by volume and profit, the goal is
to find a proper subset such that the profit is maximized and the sum of volumes
of the selected items does not exceed the capacity of the only available bin, namely
the knapsack. The MKP is a generalization of the KP due to the presence of more
than one knapsack. Finally, the MKPT is a particular case of the MKP, where all
the knapsacks have the same capacity. All these problems are thoroughly discussed
in [Martello and Toth, 1990, Pisinger, 1995, Kellerer et al., 2004].

The OKP has been studied by Iwama and Taketomi [2002], Iwama and Zhang
(2007, 2010]. In these papers, the authors prove that, for this problem, the worst case
ratio is infinite. For this reason, they also study the on-line variant with removable

items and resource augmentation and, for this variant of the problem, the proposed

11

2 — Literature review

algorithms show finite competitive ratios.

In the stochastic variant of the problem, named the Stochastic Knapsack Problem
(SKP), the source of uncertainty is usually the item profit, and strong hypotheses on
its probability distribution are made [Goel and Indyk, 1999, Ross and Tsang, 1989].
Some papers also consider the item volume stochasticity. Dean et al. [2008] present
some policies to decide whether to load the items into the knapsack, showing how
an adaptive loading policy outperforms a non-adaptive one. In Kosuch and Lisser
[forthcoming], a variant of the SKP with normally distributed volumes is presented.
The authors derive a two-stage SKP where, contrary to the single-stage SKP, items
can be added to or removed from the knapsack at the moment the actual volumes

become known (second stage).

12

Chapter 3

The (Generalized Bin Packing

Problem: models and bounds

In this chapter, we introduce the GBPP together with models and bounds. After
defining the problem in a formal way, we present two mixed integer programming
formulations. The first is based on item-to-bin assignment decisions and requires a
polynomial number of variables and constraints. This formulation shows how the
GBPP generalizes several packing problems, but is not computationally efficient.
It is, however, the starting point for computing the first lower bound. Moreover,
it is also the starting point for the S-GBPP, introduced in Chapter 5. We, thus,
introduce a second model, based on feasible loading patterns and set covering ideas.
Despite requiring an exponential number of variables, this formulation is much more
efficient. We then present several procedures in order to compute lower and upper
bounds to the GBPP and show their accuracy and efficiency through extensive
computational experiments. A large number of instance sets for the GBPP are
introduced. The instance sets are designed to challenge the proposed procedures

and thus provide insight into the impact of different parameters on the optima.

This chapter is organized as follows. The two GBPP formulations are intro-
duced in Section 3.1; lower and upper bounds are presented in Sections 3.2 and 3.3,
respectively. Instance sets and computational results are presented and discussed in
Section 3.4.

13

3 — The Generalized Bin Packing Problem: models and bounds

3.1 Problem Definition and Formulation

The GBPP considers a set of items characterized by volume and profit and sets of
bins of various types characterized by volume and cost. A subset of the items which
we call compulsory must be loaded, while a selection has to be made among the
non-compulsory ones. The objective is to select the non-compulsory items to load
and the bins into which to load the compulsory and the selected non-compulsory
items in order to minimize the total net cost. This is given by the difference between
the total cost of the used bins and the total profit of the loaded items.

In this section, we present a formal description of the GBPP and we introduce
two formulations of the problem. The first formulation extends to the GBPP the
assignment model of the BPP [Martello and Toth, 1990]. Although this kind of
formulation is not often used in practice, we exploit it to derive a first lower bound.
Then, we consider a set covering formulation of the problem, which is the starting
point for a column generation procedure, which allows us to derive a second lower

bound and upper bounds as well.

3.1.1 Notation

Let Z denote the set of items and w; and p; be the volume and profit of item ¢ € Z.
Define Z¢ C T the subset of compulsory items and ZN¢ = Z \ Z¢ the subset of
non-compulsory items. Let J denote the set of available bins and 7 be the set of
bin types. For any bin j € J, let o(j) =t € T be the type t of bin j. Define,
for each bin type t € T, the minimum L; and the maximum U; number of bins of
that type that may be selected, as well as the cost C; and the volume W; of the bin.
Finally, denote U < 3,7 U, the total number of available bins of any type.

The item-to-bin accommodation rules of the GBPP are stated as follows
o All items in 7€ must be loaded

o For all used bins, the sum of the volumes of the items loaded into a bin must

be less than or equal to the bin volume

e The number of bins used for each type t € 7 must be within the lower and

upper availability limits L; and U,

14

3 — The Generalized Bin Packing Problem: models and bounds

e The total number of used bins cannot exceed the total number of available
bins U.

Infeasibility may arise when the available bins are not sufficient to load all com-
pulsory items. To address this issue, we add a special bin v of volume W, =
> e 7c w;, thus able to load all compulsory items, and set its cost C), to a value
much higher than the costs of the remaining bins in order to discourage its use, e.g.,
Co>>erCh

3.1.2 Assignment formulation of the GBPP
Consider the following decision variables:
 Bin selection binary variables y; equal to 1 if bin j € J is used, 0 otherwise

 Item-to-bin assignment binary variables z;; equal to 1 if item ¢ € 7 is loaded

into bin j € J, 0 otherwise.

An assignment model of the GBPP can then be formulated as follows

min S Ciyi— > > pij (3.1)

jieTJ JET i€INC

subject to Zwixij < Wjy; JjeJ (3.2)
i€
Sy =1 ieIC (3.3)
JeT
Sy <1 i € IN¢ (3.4)
JeT

Z y; < U teT (3.5)

jeT:o(j)=t
jeJ:o(4)=t
Z y; <U (3.7)
JjeJ
y; €{0,1} jed (3.8)
z;; € {0,1} iel, jeJ. (3.9)

15

3 — The Generalized Bin Packing Problem: models and bounds

The objective function (3.1) minimizes the total net cost of the packing, given
by the difference between the total cost of the used bins and the total profit of the
selected non-compulsory items. The profit of the compulsory items is not considered
in the objective function because it is a constant. Regarding the type of optimization,
we choose to present the minimization version to follow the tradition of bin packing
problems. The equivalent formulation obtained by maximizing the total net profit
(total profit minus total cost) would recall the knapsack problem setting.

Constraints (3.2) have the double effect of linking the usage of bins to the ac-
commodation of items and bounding the capacity of each used bin. Constraints
(3.3) and (3.4) ensure that each compulsory and not-compulsory item is loaded into
exactly one and at most one bin, respectively. Constraints (3.5) and (3.6) enforce
the maximum and minimum number of available bins of each type, while Constraint
(3.7) limits the total number of selected bins. Constraints (3.8) and (3.9) enforce
the integrality nature of the decision variables. Notice that, Constraints (3.5) and
(3.6) could be implicitly managed, the former by limiting the number of y; vari-
ables to U; for type t (i.e., defining the appropriate number of bins only), and the
latter by setting y; = 1 for j = 1,..., L;. We prefer to keep the constraints in the
formulation, however, for consistency with the set covering model of Section 3.1.4.

The assignment model (3.1)-(3.9) is named AM and its continuous relaxation
R-AM. AM involves a polynomial number of variables and constraints. It is not
suitable for developing efficient algorithms, however, due to the significant solution-
space symmetry of the item-to-bin assignment variables, which is typical of these
packing models. Yet, as mentioned above, AM is the starting point to compute
our first lower bound named LB; and to formulate the S-GBPP in Chapter 5.
Furthermore, AM is also suitable to show how the GBPP generalizes some classic

bin packing and knapsack problems. This issue is addressed next.

3.1.3 Generalization of classic bin packing and knapsack

problems

The assignment formulation (3.1)-(3.9) is useful to show how the GBPP can gen-
eralize a number of classic packing problems. As mentioned in Chapters 1 and 2,
the GBPP is able to address the BPP, the VSBPP, the VCSBPP, the KP, the

16

3 — The Generalized Bin Packing Problem: models and bounds

MKP, and the MKPI. The BPP can be modeled by considering a single bin type
with C; = 1,5 € J and ZV° =), i.e., all items must be loaded. Constraints (3.4)
- (3.6) are then redundant and the objective function becomes the minimization of
the number of bins, which is characteristic of the BPP.

Allowing several bin types and ZV¢ = () yields the VCSBPP, where the total cost
of the selected bins 3¢ 7 Cjy; is minimized (Constraints (3.4) become redundant)
[Monaci, 2002, Crainic et al., 2011]. Notice that, an equivalent formulation for the
VCSBPP can be obtained by imposing Z® = () and setting the item profit higher
than the cost of any bin type, p; > max;cs C;, which makes any bin profitable even
when only one item is loaded into it.

The VSBPP can also be addressed setting ZV° = () and C; = W;, Vj € J.

The GBPP can similarly generalize a number of knapsack problems. Specifically,
the GBPP reduces to the KP by setting |T| =1, |J| = 1, and Z® = (). The MKP
can be modeled by setting |T| > 1, |J| = m, where m is the number of knapsacks,
and Z€ = (. Finally, the MKPI is addressed by setting |T] = 1, |J| = m, and
¢ =0.

3.1.4 Set Covering formulation of the GBPP

We introduce a set covering formulation of the GBPP based on feasible loading
patterns for the bins.

A feasible loading pattern k; for a bin of type t € T is a set of items that may be
loaded into the bin while satisfying all dimension restrictions and accommodation
rules. Let IC; = {k;} be the set of all feasible loading patterns for bin type t € T.
A feasible loading pattern k; is described by a vector ax, of indicator functions
a};t, i €L, ks € Ky, t €T, such that ait = 1 if item i is packed into pattern k;, 0
otherwise. The cost of pattern k; is then the difference between the cost of the bin

type t and the total profit of non-compulsory items in that pattern:

ek, = Cy — Z piazt. (3.10)

jeINC
We define the bin loading pattern selection variables A\, equal to 1 if pattern

k; € IC; is used, 0 otherwise. The set covering formulation of the GBPP may then

17

3 — The Generalized Bin Packing Problem: models and bounds

be written as follows

min S o An (3.11)

teT keky

subject to >N aj A, =1 i€ (dual variable p; free) (3.12)
teT ke
SN ab A, <1 i€ I8 (dual variable v; < 0) (3.13)
teT ke
M <U teT (dual variable oy < 0) (3.14)
ke
M >L teT (dual variable 3, > 0) (3.15)
ke
> A <U (dual variable € < 0) (3.16)
teT keky
A, € {0,1} ke, teT. (3.17)

The objective function (3.11) minimizes the total cost of the selected bin loading
patterns.

Since the feasibility of the item-to-bin accommodation is guaranteed by the fea-
sibility of the loading patterns, the constraints equivalent to (3.2) in the model
AM are not required anymore. Constraints (3.12)-(3.16) have the same meaning as
(3.3)-(3.7), and (3.17) are the integrality constraints.

The set covering model (3.11)-(3.17) is named SC and its continuous relaxation
R-8C. SC, when compared to AM, has the advantage to separate the feasibility
phase from the optimality one. The feasibility phase is already addressed by the
pattern generation, whilst the model is only devoted to find an optimal combination
of patterns.

Whilst, of course, models AM and SC have the same optimum, the optima of
R-AM and R-SC' are generally different. In the following, we prove that the lower
bound to the GBPP obtained by optimizing R-SC'is not weaker than that obtained
by optimizing R-AM.

Property 1. Given any solution x5 of R-SC (which is feasible by construction),
a corresponding feasible solution x1(x2) of R-AM can be built as follows. For any

Ak, = 1 of xy assign in R-AM the items of pattern k, to bin jy, by putting zi;, =

18

3 — The Generalized Bin Packing Problem: models and bounds

ay, Ak, in the solution x1(x2). The two solutions have the same value.
Proof. Trivial. O

Theorem 1. Let Lg.am = optimum(R-AM) and Lgsc = optimum(R-SC), then

Lr.am < Lp.sc.

Proof. By contradiction, let us suppose that an instance of R-AM such that Lg_4p >
Lg_sc there exists. Let Ty be the optimal solution associated to Lgr.gc. By using
Property 1, we can build a solution Z;(Z3) of R-AM with value Lg_g¢, which con-

tradicts the optimality of Lz 4. O

3.2 Lower bounds

We introduce two lower bounds that can be computed starting from each of the two
problem formulations. The assignment model AM is the basis for a lower bound
which can be calculated by solving an Aggregate Knapsack Problem (AKP). We
show how to derive the AKP from the model AM in Section 3.2.1.

The second lower bound is derived from the set covering formulation SC and is
calculated by applying a column generation technique where, at each step, a new
feasible pattern (i.e., a new column for the restricted master problem) is found by

solving a knapsack problem (see Section 3.2.2).

3.2.1 Lower bound through the Aggregate Knapsack Prob-
lem

To derive an Aggregate Knapsack Problem from the assignment model AM pre-

sented in Section 3.1.2, we aggregate Constraints (3.2) into a unique inequality by

summing them up. We thus consider an aggregate knapsack, which may be thought

of as a unique large bin with volume equal to the total volume of the bins. We have

oD wayg < Y Wiyy = Y wi Y wt Y w Yy wy <y Wiy

jeJiel jieJg i € IC jed i € INC jed jedg

19

3 — The Generalized Bin Packing Problem: models and bounds

Note that, by (3.3), for any compulsory item i, » x;; = 1, whilst, for any non-
jeT
compulsory item ¢, the variable z;; can be reduced to z;, which states whether item

7 is put into the aggregate knapsack or not. Therefore, we have

ie1C i€ INC jeJ

We drop Constraints (3.5) and (3.6) by implicitly managing them as indicated
in Section 3.1.2. Constraint (3.7) is kept, as one cannot implicitly manage it. A first

lower bound, named LBy, can then be found by solving the following AKP

min Z ijj — Z DiT; (319)

JjeTJ i€INC

subject to Z w; + Z wx; < Z Wy, (3.20)
ie€1¢ i e INC jeg
Sy <U (3.21)
JjeJ
y; € {0,1} jed (3.22)
z; € {0,1} i € INC. (3.23)

Since LB; comes from the resolution of the AKP, we also refer to it as an
aggregate knapsack lower bound. Note that, when all items are compulsory, one can

use bounds from the literature. In this case, (3.19)-(3.23) reduces to

min > Chy; (3.24)
JeT
subject to dow; <> Wiy, (3.25)
ieIC jeJg
Sy <U (3.26)
JjeJ
y; €{0,1} jeJ, (3.27)

which is the model used by Crainic et al. [2011] to compute lower bounds to the
VCSBPP.

20

3 — The Generalized Bin Packing Problem: models and bounds

3.2.2 Lower bound through column generation

This lower bound is computed from the R-SC model through column generation
and is named LBs. It is widely used in bin packing problems [Alves and Valério de
Carvalho, 2007, Vanderbeck, 1996] and provides the means to implicitly deal with
a large number of variables.

The column generation approach applied to the R-SC model consists in starting
with a relatively small set of feasible patterns P, which correspond to a restricted
problem named R — SCg. First we solve R — SCg and then attempt to generate
new feasible patterns with negative reduced cost. If successful, these are added to
P and the procedure is restarted. Otherwise, we have found an optimal solution of
R-SC and the procedure stops with a lower bound to the GBPP.

The main steps of the procedure are as follows

1. Find an initial feasible solution of the GBPP and the corresponding set P
2. Solve to optimality R — SCg and let L _ g¢,, be its optimum

3. For each bin type t € T

(a) Find the pattern variable \;, k; € K; with the smallest reduced cost
7%,, among all non-basic pattern variables Ag, of the optimal solution of
R —SCg

(b) If "%, < 0, P=PuU {)\Et}

4. If rz, > 0 for all bin types ¢, then stop and Lg — sc;, is the lower bound to the
GBPP, otherwise, go to 2.

Note that, in Step 3, the procedure adds at most |7| columns to P at each
iteration.

The main issue is how to find negative reduced cost feasible patterns. Consider
the dual variables associated to the constraints of the R — SCg model (see (3.11)-
(3.17)). The reduced cost 7, of a given pattern variable A, is ¢, — [p,T I/T} ay, —
[aT BT (—:} 1;, where ay, = [a},] and 1, is a vector of size 2|T| 41, with 1 in the rows
corresponding to bin type ¢ and in the last row, 0 otherwise. By (3.10), we expand

this expression as follows

21

3 — The Generalized Bin Packing Problem: models and bounds

ry, = Cp— Z Di afﬂ — {MT I/T} ak, — [aT BT e} 1,

i€INC

= Ci— > piay, — Y, Ml — Y, Vi, —op— B —¢€
i€INC i€ZC i€INC

= C,— Z (pi + vi) ay,, — Z i @y, — iy — By — €. (3.28)
i€INC i€ZC

We now define a column generation sub-problem. Given a bin of type t € T,
this sub-problem finds the non-basic pattern with the minimum reduced cost. Note
that, the vector ay, defining a not-yet-generated pattern k, € KC; is not known, but
it may be expressed in terms of the item-to-bin assignment variable x;, which is
equal to 1 if item ¢ € Z belongs to the pattern, 0 otherwise. Since the dual variables
ay, B¢, and €, as well as the bin cost C}, are constant for any given bin type t € T,
then finding the feasible pattern with the minimum reduced cost for bin type t € T

becomes the following knapsack problem

max { Z (pi +vi) x; + Z L xl} (3.29)

i€INC i€ZC
subject to Zwixi < W, teT (3.30)
ieT
€ {0, 1} ieT. (3.31)

Any feasible solution may be used to initialize the procedure, including the triv-
ial solution obtained by loading each compulsory item into a different bin. More
accurate heuristics are presented in Section 3.3.

Finally, note that a better lower bound can be obtained by taking the maximum

between the two previous lower bounds. We call this new lower bound LB3 =

H’laX{LBl, LBQ}

3.3 Upper bounds

We derive several upper bounds to the GBPP: 1) through constructive heuristics,
2) by making feasible some of the GBPP lower bounds, and 3) through column

22

3 — The Generalized Bin Packing Problem: models and bounds

generation-based heuristics.

3.3.1 Upper bounds through constructive heuristics

We propose constructive heuristics to load items into bins based either on the FFD
or the BFD heuristics for the BPP, with different sorting rules for items and bins.
We briefly recall how FFD and BFD work. Starting with items sorted by non-
increasing volume, FFD loads items one after the other into the first bin where
they fit. BFD attempts to load each item into the “best" bin, usually the bin
with the minimum free volume after loading the item. The free volume is defined
as the bin volume minus the total volume of the loaded items. Both heuristics
create a new bin when an item cannot be accommodated into the existing ones.
Despite their simplicity, the FFD and BFD heuristics offer good performances for
the BPP[Johnson et al., 1974, Martello and Toth, 1990].

Note that, whilst in the BPP items are sorted by non-increasing volume, many
item and bin sorting rules are possible for the GBPP, due to the presence of multiple

attributes. We exploit this characteristic in building our heuristics.

Given the sorted lists of items and bins, SIL and SBL (see Section 3.3.1 for
deriving these lists), our heuristics are composed of three main components displayed
in Algorithms 1, 2, and 3. Given a list S of selected bins (initially empty), for each
item belonging to SIL, Algorithm 1 (the MAIN procedure) looks for the first or the
best bin in S able to load such an item by using FFD or BFD, respectively. If
this bin exists, the item is loaded into it, otherwise a new bin is possibly selected.
Actually, a new bin is selected when the item is compulsory otherwise we evaluate
whether to select a new bin or not. This evaluation is performed by Algorithm 2
(the PROFITABLE procedure), which measures the profitability of the current item.
In particular, a new bin will be selected and the item will be loaded into it if the
profit of this item plus the profits of the remaining non-compulsory items in SIL is
greater than the cost of the new bin. Finally, the POST-OPTIMIZATION procedure of
Algorithm 3 attempts to improve the final solution by evaluating possible bin swaps

that replace loaded bins with available cheaper bins of sufficient capacity.

23

3 — The Generalized Bin Packing Problem: models and bounds

Algorithm 1 The MAIN procedure

S:=10
for all + € SIL do
Identify the bin b € § into which item ¢ can be loaded:

o« FFD: the first bin with enough empty volume to accommodate item ¢
o« BFD: the bin with the minimum free volume after loading item ¢

if b exists then
Load item ¢ into bin b
else
if i € I¢ then
Identify the first bin b € SBL \ S such that w; < W,
Load item 7 into bin b
S :=8SU{b}
else
Identify the bin b € SBL\ S such that PROFITABLE(Z, b) returns TRUE
if b exists then
Load item 7 into bin b
S :=SuU{b}
else
reject item ¢
POST-OPTIMIZATION

Algorithm 2 The PROFITABLE procedure for new bin selection

SIL; : sublist of SIL starting from the item i;
Load 7 into b and initialize the bin profit P, = p;;
for all i’ € SIL; do
if 7/ can be loaded into b then
Load 4" into b and update the bin profit P, = P, + py;
if P, > ¢, return TRUE else return FALSE.

Algorithm 3 The POST-OPTIMIZATION procedure

for all j € S do
for all k€ 7\ S do
Uj = 224 loaded into j Wi
if Wy, > U; and Cj, < C; then
Move all the items from j to k

S=8\{jtuik}

24

3 — The Generalized Bin Packing Problem: models and bounds

Building the sorted lists of items and bins

We define four sorting rules to embed into the constructive heuristics we propose.
All the rules have in common that compulsory items are sorted at the top of the
item list by non-increasing volume. The four rules are:
1. Bins: Non-decreasing C;/W; and non-decreasing volumes W;
Non-compulsory items: Non-increasing p; /w; and non-increasing volumes
w;
2. Bins: Non-decreasing C;/W; and non-decreasing volumes W;

Non-compulsory items: Non-increasing volumes w; and non-increasing p; /w;

3. Bins: Non-decreasing C;/W; and non-increasing volumes W

Non-compulsory items: Non-increasing p; /w; and non-increasing volumes

w;

4. Bins: Non-decreasing C;/W; and non-increasing volumes W

Non-compulsory items: Non-increasing volumes w; and non-increasing p; /w;.

3.3.2 Upper bounds through the lower bound LB,

To derive an upper bound from LB;, introduced in Section 3.2.1, we apply our
constructive heuristics to the two ordered lists of bins and items. We name this
approach lower bound-based constructive heuristics. We refer to L-FFD and L-
BFD when the constructive heuristics, which is based on the lower bound LB,
implements the FFD and the BFD principle, respectively.

The ordered lists of items and bins are obtained as follows. An optimal solution
of the AKP model (3.20)-(3.23) consists in a set of non-compulsory items, Z,4,,
and a set of bins, J,4g. Zuge contains the non-compulsory items associated to the
variables x; equal to 1 in the optimal solution of the AKP. Similarly, 7,4, contains
the bins associated to the variables y; equal to 1 in the optimal solution of the AKP.
We then extract two subsets Z! —and J/

agg agg
8°% of bins in Jagg, respectively. We then randomly select a particular sorting rule

by selecting 6 % of items in Z,,, and

s among the four ones, and order the item and bin lists as follows

25

3 — The Generalized Bin Packing Problem: models and bounds

« Order the items in Z; , according to s and put them at the top of the item

list, before any non-compulsory item. Then, order the remaining items Z\Z;,

according to s

e Order the bins in J/

agg
Then, order the remaining bins 7 \ J,,, according to s.

according to s and put them at the top of the bin list.

To state that L-FFD and L-BFD are characterized by 6%, 6°, and s, we write
L—FFD((Si,(Sb,s> and L—BFD(di,(Sb,S). The values of §' and ¢° are obtained by
calibration (see Section 3.4.3 for details), whilst s € {1, 2, 3, 4}, according to the

four sorting strategies presented in Section 3.3.1.

3.3.3 Upper bounds through column generation-based heuris-
tics

We present two approaches to compute upper bounds starting from the column
generation-based solution of the relaxation R-SC of the set covering model SC
(3.11)-(3.17).

The first approach is to solve SC exactly, e.g., by branch-&-bound, considering
only the columns obtained by the column-generation procedure while computing the
lower bound. This may still be quite time consuming, however. Consequently, we
might stop with the branch-&-bound after a given computing time and name Zg¢
the resulting value of the objective function, which is an upper bound to the GBPP.

The second approach is based on diving, a well-known method for finding good
quality integer solutions from the optimal continuous solutions [Atamturk and Savels-
berg, 2005]. The working principle is to iteratively round up variables and re-
optimize the continuous relaxation.

The diving heuristics assumes that the optimal bin loading patterns of the GBPP
are in the restricted set corresponding to the R — SC%, and iteratively slightly
perturbs the optimal continuous solution by fixing to integer some pattern-selection
variables. The key feature is how to choose the variables to be fixed. Two strategies
are obtained by selecting among the non-integral pattern variables the ones which
maximize the expressions (3.32) and (3.33). This generates two diving heuristics

named Divingl and Diving2, which are included in the final comparative experiments

26

3 — The Generalized Bin Packing Problem: models and bounds

of Section 3.4:

S viap, + > piag, (3.32)

i€ZINC i€Z®
(1—Ag,) (oy, + > i ait) (3.33)
1€INC i€ZC

3.4 Computational results

The goal of the numerical experiments is to explore the performance of the proposed
lower and upper bound procedures. Section 3.4.1 introduces the instance sets, whilst
detailed results of different variants of the lower and upper bound procedures are
given in Sections 3.4.2 and 3.4.3. We study the impact of a number of problem

parameters on our best bounds in Section 3.4.4.

3.4.1 Instance classes

No instances are present in the literature for the GBPP. We generated instances,
partially based on those for the VSBPP and the BPP [Monaci, 2002, Vanderbeck,
1996, Correia et al., 2008, Crainic et al., 2011]. The instances are grouped into 5

classes:

« Class 0: 300 instances by Monaci [Monaci, 2002]. We chose Monaci’s instances
because they are more challenging than Correia’s [Correia et al., 2008], as
shown in [Crainic et al., 2011]. Since these instances were conceived for the
VSBPP, all items of each instance are compulsory. Ten instances were ran-
domly generated for each combination of number of items, item profit, item
volume, and bin type for a total of 300 instances. For the sake of completeness,

we report here the details of Monaci’s instances:

— Number of items: 25, 50, 100, 200, and 500
— Item volume: I1: [1, 100]; I2:[20, 100]; 113:[50, 100]
— Item profit: not defined because all items are compulsory

— Bin type:

27

3 — The Generalized Bin Packing Problem: models and bounds

* 3 types of bins, with volumes 100, 120, and 150, respectively, and
costs equal to volumes
x b types of bins, with volumes 60, 80, 100, 120, and 150, respectively,

and costs equal to volumes.

For each bin type t, Ly = 0 and Uy = [Vip/V;], where V, is the total item

volume. No values for the total number of available bins U are given.

Class 1: same instances of Class 0, but with all items non-compulsory and item

profits generated according to the p; € [U(0.5,3)w;] uniform distribution.

Class 2: same instances of Class 0, but with all items non-compulsory and

item profit generated according to the p; € [U(0.5,4)w;| uniform distribution.

Class 3: a selection of 12 large instances (500 items) from Class 1 and Class
2 with a representative mix of characteristics in terms of item volume, item
profit, and bin types. For each instance, we randomly derived five more in-
stances with 0%, 25%, 50%, 75%, and 100% of compulsory items, for a total

of 60 instances.

Class 4: the aim of this class is to study the behavior of Constraints (3.7) and
(3.16) on the total number of available bins U. Thus, we select 24 instances
from Class 1 and Class 2. For each instance, we first computed the number
of bins U employed by the BFD constructive heuristics. We then solved the
GBPP varying the value of U as a percentage of U

U=U(1-X), X € {0,0.1,0.2, 0.3}, (3.34)
All these combinations make up Class 4 with 96 instances.

The algorithms were coded in C++ and the models implemented with CPLEX

12.1 ILOG Inc. [2009]. The upper bound Zs¢c was computed using Gurobi 4.0, due to

its efficiency in finding good feasible solutions within a quite limited computing time

(20 seconds) Gurobi Optimization [2010]. Experiments were made on a Pentium IV
3.0 GHz workstation with 4 GB of RAM.

28

3 — The Generalized Bin Packing Problem: models and bounds

3.4.2 Lower bounds

Table 3.1 shows the lower bound results, comparing the performance of the three
proposed lower bounds, LBy, LBs, and LBj3, relative to Zg¢, the best upper bound
(Section 3.3.3) or to the known optimum solution of Class 0 instances, named in
the following Monaci optima [Monaci, 2002]. Columns 1 to 3 display the instance
class, number of bin types, and number of items, respectively. Columns 4 and 5, 6
and 7, and 8 and 9 display the mean percentage gap to Zs¢c or the known optimum,
and the number of optima achieved by LB, LBsy, and LBs, respectively. Each row
of Table 3.1 gives the results of 30 instances (3 item volume types, I1, 12, and 13,
times 10 repetitions). For each class and globally, the table also displays the respec-
tive average gaps and the total number of optima attained (and the corresponding
percentage with respect to the total number of instances).

Table 3.1 reports very promising results. The overall percentage gap for LB is
quite tight (0.08%) and almost half (46%) of the instances are solved to optimality.

3.4.3 Upper bounds

Table 3.2 displays comparative results for the constructive heuristics upper bounds.
The first three columns display the same type of information as previously. Columns
4 to 7 and 8 to 11 display relative-gap results with respect to LBs (except for Class 0
instances with Monaci optima) for the FFD and the BFD procedures, respectively,
using the four item and bin sorting rules of Section 3.3.1.

The results summed up in Table 3.2 show that BE'D offers slightly better results
than FFD. Furthermore, we see that BFD(3) is the best performing constructive
heuristics.

We compare the remaining upper bounds, i.e., those obtained through the lower
bound LB; (Section 3.3.2) and those derived from the column generation-based
heuristics (Section 3.3.3) in Table 3.3. Column 1 shows the instance class, Column
2 the number of bin types, and Column 3 the number of items. For the remaining

columns of Table 3.3, we have:
BFD(3): BFD heuristics with the third sorting rule

L-BFD(1, 0.1, 3): Upper bound obtained from the lower bound LB1 with the

29

3 — The Generalized Bin Packing Problem: models and bounds

LB, LB, LBs3
CLASS BINS | ITEMS | % GAP oPT % GAP oPT % GAP OoPT
25 1.21 10 0.31 13 0.18 21
50 0.65 12 0.21 5 0.13 16
3 100 0.51 16 0.07 8 0.04 22
200 0.31 19 0.04 5 0.02 23
0 500 0.31 20 0.03 3 0.01 23
25 0.80 10 0.20 13 0.12 20
50 0.51 15 0.12 9 0.05 21
5 100 0.49 18 0.07 6 0.02 22
200 0.27 20 0.04 6 0.01 24
500 0.25 20 0.01 6 0.00 24
0.53 | 160 (53%) | 0.11 | 74 (25%) | 0.06 | 216 (72%)
25 2.16 4 0.27 16 0.19 20
50 0.86 1 0.17 6 0.15 5
3 100 0.72 2 0.12 3 0.11 5
200 0.45 1 0.13 6 0.12 7
1 500 0.33 0 0.10 3 0.10 3
25 1.42 5 0.18 13 0.13 16
50 0.75 3 0.10 12 0.09 13
5 100 0.57 5 0.04 10 0.03 13
200 0.29 4 0.03 6 0.02 9
500 0.29 2 0.08 6 0.07 8
0.78 27 (9%) 0.12 | 81 (27%) | 0.10 | 99 (33%)
25 1.31 5 0.18 14 0.16 17
50 0.61 4 0.12 4 0.10 8
3 100 0.41 3 0.06 7 0.06 8
200 0.30 1 0.10 5 0.10 5
2 500 0.26 0 0.08 4 0.07 4
25 0.98 4 0.12 14 0.09 16
50 0.52 8 0.06 8 0.05 15
5 100 0.40 6 0.04 6 0.03 11
200 0.18 4 0.05 5 0.04 9
500 0.19 1 0.05 5 0.05 6
0.52 36 (12%) 0.09 72 (24%) 0.07 99 (33%)
OVERALL 0.61 | 223 (25%) | 0.11 | 227 (25%)| 0.08 | 414 (46%)
Table 3.1. Lower bound results

30

3 — The Generalized Bin Packing Problem: models and bounds

CLASS | BINS [ITEMS | FFD(1) | FFD(2) | FFD(3) | FFD(4) | BFD(1) | BFD(2) | BFD(3) | BFD(4)
% GAP | % GAP | % GAP | % GAP | % GAP | % GAP | % GAP | % GAP

25 12.80 12.80 3.68 3.68 12.80 12.80 347 347

50 13.25 13.25 2.44 2.44 13.25 13.25 2.36 2.36

3 100 12.21 12.21 1.66 1.66 12.21 12.21 1.62 1.62

200 10.28 10.28 1.28 1.28 10.28 10.28 1.25 1.25

0 500 8.97 8.97 1.08 1.08 8.97 8.97 1.07 1.07
2 10.49 10.49 1.93 1.93 10.49 10.49 1.93 1.03

50 11.59 11.59 1.79 1.79 11.59 11.59 1.78 1.78

5 100 10.63 10.63 1.27 1.27 10.63 10.63 1.26 1.26

200 10.82 10.82 0.83 0.83 10.82 10.82 0.82 0.82

500 10.44 10.44 0.65 0.65 10.44 10.44 0.63 0.63

11.15 | 11.15 1.66 1.66 11.15 | 11.15 1.62 1.62

% 13.18 17.03 407 8.89 12.89 16.67 3.96 872

50 13.62 17.93 3.22 7.59 13.57 17.87 3.20 7.54

3 100 12.67 16.60 2.18 7.36 12.55 16.52 2.16 7.34

200 11.30 15.08 1.47 7.15 11.26 15.05 1.45 7.13

1 500 9.83 13.44 0.94 6.58 9.81 13.46 0.94 6.58
2 9.74 14.86 3.38 8.40 9.79 14.54 3.33 8.37

50 10.56 16.12 3.49 7.60 10.56 15.88 3.46 7.56

5 100 9.53 14.41 1.99 6.41 9.49 14.32 1.97 6.39

200 9.57 14.84 1.48 6.28 9.55 14.77 1.49 6.27

500 9.36 14.68 1.00 6.32 9.36 14.65 1.00 6.32

10.93 | 15.50 2.32 7.26 10.88 | 15.38 2.30 7.22

25 9.50 10.25 3.45 463 9.48 10.22 317 4.49

50 10.91 11.99 2.39 4.58 10.85 11.93 2.32 4.54

3 100 9.42 10.83 1.43 3.54 9.35 10.79 1.41 3.53

200 8.35 9.57 1.20 3.37 8.31 9.58 1.20 3.33

2 500 7.37 8.81 0.77 3.30 7.33 8.82 0.77 3.29
25 718 9.36 3.28 3.86 718 9.26 335 3.86

50 7.45 9.65 2.47 3.33 7.47 9.57 2.31 3.32

5 100 6.77 9.11 1.73 3.59 6.75 9.08 1.70 3.58

200 6.78 9.30 113 3.26 6.77 9.25 1.12 3.25

500 6.56 9.16 0.77 3.13 6.56 9.16 0.77 3.13

8.03 9.80 1.86 3.66 8.00 9.77 1.81 3.63

OVERALL 10.04 | 12.15 1.95 4.19 10.01 | 12.10 1.91 4.16

Table 3.2. Constructive heuristics upper bounds

31

3 — The Generalized Bin Packing Problem: models and bounds

constructive heuristics BFD(3) and §° = 1, 6® = 0.1. The values of 6’ and
8% were obtained by calibration performed by running L—BFD(éi, 5, 3) on a
number of selected instances, and varying 6° and 6° from 0.1 to 1 with a step

of 0.1. The pair (6i, 6”) which gave the minimum mean gap was then selected

C-BFD(3)= min {BFD(3), min {L-BFD (6%,6°3)}¢, where A’ = Ab =
Ste At sbeAb

{0.1,0.2,0.3}; These value combinations provided low mean gaps during the

calibration phase
Zsc : Upper bound obtained through the column generation-based heuristics

DIVE(1), DIVE(2): Upper bounds obtained through the column generation-
based heuristics using the diving strategies Divingl and Diving2, respectively

(Section 3.3.3)
B-DIVE(1)= Minimum {BFD(3), DIVE(1) }
B-DIVE(2)= Minimum {BFD(3), DIVE(2) }.

As far as computing times are considered, detailed results, available from the
authors, show that they are generally insignificant for small-size instances. For
larger instances (500 items), BFD(3), L-BFD(1, 0.1, 3), and C-BFD(3) require
computing times of less than 0.1 seconds. DIVE(1) and DIVE(2) require computing
times of 1 second, while B-DIVE(1) and B-DIVE(2) take about 0.3 seconds. Zs¢ is
the most time consuming heuristics with a computing time that may go to the time
limit of 20 seconds. We further discuss computing-time issues for Zgo in Section
3.4.4.

Fast solutions can thus be obtained through the BFD(3) heuristics, but the
quality is not very good since the overall average gap is 1.91%. L-BFD(1, 0.1, 3)
is, in principle, worse than BFD(3), with a gap of 2.18%. But, if exploited to com-
pute the C-BFD(3) heuristics, the quality improves and the gap reduces to 1.58%.
The best results are yielded by Zsc with an overall gap of 0.11%. Nevertheless, as
mentioned before, this is also the most time consuming heuristic. A good compro-
mise between accuracy and efficiency is offered by the diving strategies (DIVE(1),
DIVE(2), B-DIVE(1), and B-DIVE(2), with average gaps varying between 0.53%
and 1.22%.

32

3 — The Generalized Bin Packing Problem: models and bounds

CLASS | BINS | ITEMS | BFD(3) | L-BFD(1, 0.1, 3) | C-BFD(3) | Zsc | DIVE(1) | DIVE(2) | B-DIVE(1) | B-DIVE(2)
% GAP % GAP % GAP | % GAP | % GAP | % GAP % GAP % GAP
25 347 3.35 1.94 0.26 1.95 2.02 1.31 1.54
50 2.36 2.55 1.84 0.19 1.29 1.39 0.95 1.05
3 100 1.62 1.53 1.15 0.16 1.85 1.45 0.84 0.66
200 1.25 1.34 1.02 0.18 1.75 1.15 0.59 0.51
0 500 1.07 0.85 0.68 0.31 2.12 1.04 0.59 0.51
25 1.93 2.49 1.75 0.13 1.27 0.88 0.68 0.60
50 1.78 2.56 1.68 0.06 0.79 0.55 0.63 0.52
5 100 1.26 1.84 1.17 0.03 0.59 0.45 0.42 0.39
200 0.82 1.57 0.82 0.06 0.64 0.45 0.34 0.28
500 0.63 1.25 0.63 0.05 0.76 0.41 0.16 0.14
1.62 1.93 1.27 0.14 1.30 0.98 0.65 0.62
25 3.96 3.85 2.95 0.19 1.30 1.42 0.87 0.89
50 3.20 2.98 2.46 0.15 1.05 0.94 0.88 0.82
3 100 2.16 2.37 1.98 0.11 0.81 2.18 0.66 0.68
200 1.45 1.77 1.37 0.12 1.57 2.28 0.55 0.61
1 500 0.94 1.14 0.92 0.10 1.89 2.79 0.40 0.55
25 3.33 3.67 2.42 0.12 0.74 0.76 0.55 0.58
50 3.46 3.85 2.92 0.09 0.37 0.52 0.37 0.52
5 100 1.97 247 1.83 0.03 0.53 0.52 0.35 0.36
200 1.49 1.92 1.45 0.02 0.55 1.11 0.28 0.32
500 1.00 1.21 0.97 0.07 0.73 1.18 0.15 0.18
2.30 2.52 1.93 0.10 0.95 1.37 0.51 0.55
25 3.17 3.10 2.09 0.16 1.99 2.07 1.05 0.95
50 2.32 2.70 2.09 0.10 0.83 1.25 0.77 0.84
3 100 1.41 1.67 1.32 0.06 0.98 1.64 0.38 0.48
200 1.20 1.49 1.15 0.10 1.37 2.12 0.41 0.52
2 500 0.77 0.94 0.75 0.07 1.36 2.50 0.24 0.40
25 3.35 3.52 2.71 0.09 0.48 0.66 0.43 0.61
50 2.31 2.86 2.07 0.05 0.47 0.46 0.37 0.31
5 100 1.70 1.96 1.53 0.03 0.21 0.43 0.21 0.30
200 1.12 1.50 1.07 0.04 0.36 0.87 0.25 0.28
500 0.77 1.01 0.76 0.05 0.46 1.20 0.13 0.17
1.81 2.08 1.56 0.07 0.85 1.32 0.42 0.49
OVERALL 1.91 2.18 1.58 0.11 1.04 1.22 0.53 0.55
Table 3.3. Upper bound comparisons

33

3 — The Generalized Bin Packing Problem: models and bounds

3.4.4 Sensitivity analysis

This subsection is dedicated to the analysis of the impact on the performance of best
bound procedures on a number of important problem parameters: the percentage
of compulsory items, the total number of available bins. and the variability of item

volumes and profits.

Percentage of compulsory items

We consider the instances of Class 3, where 12 large instances (500 items) taken
from Class 1 and Class 2 are selected for each percentage of compulsory items set
at 0%, 25%, 50%, 75%, and 100%. Table 3.4 display comparative results for three
GBPP upper bounds:

BEST BFD: Best among the constructive heuristics BFD(3), L-BFD(1, 0.1,
3), and C-BFD(3)

Zsc : Our best upper bound
BEST DIVING: Best between the diving heuristics B-DIVE(1) and B-DIVE(2).

Table 3.4a displays the mean percentage gap between these upper bounds and the
lower bound LB; over the 12 instances, while Table 3.4b lists the corresponding
computing times in seconds.

The results clearly show a trend. The most difficult instances for all the upper
bounds are those where compulsory and non-compulsory items are more or less of
equal quantity. All upper bounds perform better when one type of items (compulsory
or non-compulsory) dominates the other. The ranking among the different upper
bounds previously observed is confirmed by these results: the best constructive
heuristics is extremely fast but yields worse results than the best diving method,

which is outperformed by the Zgq.

Total number of available bins

To test the impact of the total number of available bins on the accuracy of the
proposed bounds, we computed the relative gaps between our best upper bound

Zsc and the lower bounds LB, LB,, and LB3. Computations were performed on

34

3 — The Generalized Bin Packing Problem: models and bounds

% COMPULSORY ITEMS | BEST BFD Zsc BEST DIVING
% GAP % GAP % GAP
0 0.77 0.12 0.37
25 1.73 0.51 1.00
50 12.21 2.72 7.52
75 2.04 0.52 1.15
100 0.85 0.16 0.51
MEAN 3.52 0.81 2.11
(a)
% COMPULSORY ITEMS | BEST BFD Zsc BEST DIVING
(seconds) | (seconds) (seconds)
0 < 0.01 11.37 0.39
25 < 0.01 11.94 0.55
50 < 0.01 13.95 0.42
75 < 0.01 13.41 0.33
100 < 0.01 13.42 0.25
MEAN < 0.01 12.82 0.39

(b)

Table 3.4. Impact of the percentage of compulsory items on the best upper bounds

35

3 — The Generalized Bin Packing Problem: models and bounds

the 24 instances of Class 4. Recall that these instances were selected from Classes
1 and 2 for which we reduced the total number of available bins U by a percentage

ranging from 0% up to 30%, with a step of 10%.

Figure 3.1 displays the gaps after 20 seconds of computing time. The behaviour
illustrated by the figure is that the tighter the constraint on the total number of
available bins, the more the accuracy of the gap degrades. The question then is
whether this degradation follows from inaccuracies in the values of the upper bounds
or from the tightness of the constraints on the bin supply. To start answering
this question, we need Zgso to be as close as possible to the optimal solution for
most instances; 20 seconds is too short for most cases, however. We therefore let
computations continue until a time limit of 1000 seconds. The corresponding gaps

between Zgc and the three lower bounds are displayed in Figure 3.2.

1.2

1 /
0.8
—4— | B1 without U
0.6 /‘\x —&—1B1
// LB2
0.4 .)/ —<LB3

0% 10% 20% 30%

0.2 ~

Figure 3.1. Class 4 gaps between Zgo and LBy, LBs, and LB3 for varying
U with a time limit of 20 seconds

The trend is similar to that of Figure 3.1 with just a small reduction (0.3%) in
the gap values. As the values of the upper bound Zgc are now close or equal to the
optimal ones, we conclude that the gap degradation is not due to the accuracy of

Zsc, but to the impact of the constrains on the total number of available bins.

36

3 — The Generalized Bin Packing Problem: models and bounds

0.9
0.8 /I/—.
0.7 ’/
0.6
/ =4—LB1 without U
0.5
/ —=—1B1
. / /.—-—/'\1 —4—1B2
0.3 o / i | B3
0.2

W& o o *

0.1

0% 10% 20% 30%

Figure 3.2. Class 4 gaps between Zgc and LBy, LBs, and LBs3 for varying U with
a time limit of 1000 seconds

37

3 — The Generalized Bin Packing Problem: models and bounds

Impact of item volumes and profits

The last set of experiments had a double objective. First, to inquire whether longer
computation times may improve the accuracy of Zso. Second, to evaluate the impact
of the variability in item volumes and profits on the performance of the same upper
bound procedure.

Experiments were thus performed by extending the time limit of the Zg- proce-
dure to 10000 seconds. All instances with up to 200 items were solved to optimality
in at most 60 seconds, independently of the parameters used to generate the instance
data. The behavior changed when the number of items was increased to 500, the
time required to reach the best solutions and the rate of improvement varying with

the problem characteristics.

Figures 3.3a and 3.3b plot the evolution of the mean percentage gap between
Zsc and LBy, when the computing time is increased. Instances are grouped by item
volume (I1, 12, and I3) in Figure 3.3a, whilst the item profit taken from Classes 0,

1, and 2 is used to group instances in Figure 3.3b.

The results indicate that the most challenging instances are characterized by a
large variance in item volume (I1), the method achieving very rapidly extremely
good results on all other problem instances. In this case, see Figure 3.3a, the Z.
heuristics achieves rapidly (around 100 seconds) a gap of less than 0.2%, requires
four times to drop to 0.1%, and then, until the 10000 seconds time limit, continues
to drop slowly to a gap of less than 0.1%. After this time limit, the convergence
process slows down considerably. This behavior is partially explained by the fact
that the column generation generates a large number of patterns when there is
significant variation in item volumes. Then, the general-purpose branch & bound
software used has to consider a large number of variables, causing the reduction of
its convergence rate. Moreover, a wide choice in terms of patterns also degrades the
lower bound precision.

Not surprisingly, see Figure 3.3b, Zg¢ is most challenged by problem instances
not displaying the characteristics the bounding procedures were developed for. In
our case, these instances are in Class 0 where all items are compulsory and for
which the procedure requires about 300 seconds on average to reach a gap of less

than 0.1%. It is very encouraging, however, to observe that, not only the procedure

38

3 — The Generalized Bin Packing Problem: models and bounds

0.80 \\
0.70

0.60 -

0.50 4 —Nnu

0.40 3

0.30 -

0.20 A

0.10 1

0.00 I e e e B L LA
10 20 100 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

(a)

0.70 ~

0.60 -

0.50

0.40 H

Class 0
—--—Class 1

0.30 - —-—-Class 2

0.20 1

0.10 A

0.00

(b)

Figure 3.3. Mean Zgc - LBy gap versus computing time for 500-item instances

39

3 — The Generalized Bin Packing Problem: models and bounds

performs very well on GBPP problem instances, but its behavior is also good on

instances lacking the characteristics it was designed for.

40

Chapter 4

Branch-and-price and Beam
Search for the Generalized Bin

Packing Problem

4.1 Introduction

In this chapter, we give an exact method, based on branch-and-price, for solving
the GBPP. Our method is characterized by a two-layer branching strategy — first
on the bins and then on the items — instead of a simple item to bin assignment
as previously done in the bin packing literature [Martello and Toth, 1990, Monaci,
2002]. This exact technique allows us to reach a mean gap of 0.03% and close most
of the instances in the GBPP literature. Exploiting the branch-and-price skeleton,
we then propose an approximate method, named beam search, which visits a portion

of the branch-and-price tree only.

Extensive computational tests obtained by varying the beam search parameters
allow us to find results comparable to the branch-and-price within a limited com-
puting time.

This chapter is organized as follows. In Section 4.2 we thoroughly discuss the
branch-and-price algorithm and in Section 4.3 the beam search heuristics. These

algorithms are both extensively tested in Section 4.4.

41

4 — Branch-and-price and Beam Search for the Generalized Bin Packing Problem

4.2 Branch-and-price

The branch-and-price [Barnhart et al., 1998] is an exact method which aims to find
an optimal solution of an integer linear problem by exploiting a tree structure where
an easier sub-problem is solved at each node. It is a development of the branch-and-
bound method [Lawler and Wood, 1966] with the addition of a column generation
procedure at each node. Our branch-and-price is based on the SC model (3.11)-
(3.17). At each node, we solve a sub-problem consisting in its continuous relaxation
R-SC with the addition of proper node constraints. Each sub-problem is solved
through a column generation procedure, as illustrated in Section 3.2.2.

In the following, we name LB(u) and UB(u) respectively the lower and the
upper bound associated to the sub-problem of node u (also called Master Problem
of node u), and U B the global upper bound to the problem. Note that LB(0) = LB;
since, at the root node of the search tree (node 0), the best lower bound is LBs.
We developed our branch-and-price algorithm for the GBPP extending the ideas of
Bettinelli et al. [2010] who proposed a branch-and-price technique for the VCSBPP

with minimum filling constraints.

4.2.1 Bounds at the root node

At the root node we compute the lower bounds LBy, LBy, LBs, and the upper
bounds BFD and Zg¢, as described in Section 3.3.

4.2.2 Branching

We adapted to the GBPP the branching strategy of Bettinelli et al. [2010]. At each
branching node we perform a binary branching through two criteria which consider
the patterns created by the column generation at that node. The first criterion
involves the number of bins for each bin type ¢ € 7. If it cannot be adopted (see
below) then we move to the second criterion, which works on the items. In Monaci
[2002], the author proposed another kind of branching based on the assignment of
critical items into bins, but, after preliminary experiments, this approach turned

out not to be very effective.

42

4 — Branch-and-price and Beam Search for the Generalized Bin Packing Problem

Branching on the number of bins

Given the patterns created by the column generation when solving the R-SC' model,
we compute 2, = Y ok, Ar and we consider the bin type ¢* such that z;« has its
fractional part the closest to 0.5. Then, in the first child node, we impose the
additional constraint to use at least Ly~ = [z | bins of type ¢*, whilst in the second
child node we impose the additional constraint to use at most Up = |2+ | bins of
type t*. If t* does not exist we consider the second criterion, which branches on the

items.

Branching on the items

Given the patterns created by the column generation when solving the R-SC model,
we compute fij = 2ieT 2k, ai —inai—1 M a0d we select the items ¢ and j* such
kT kT

that f«;« is the closest to 0.5. The additional branching constraints are then

Ljx = Tjx (41)

in the first child node and

in the second child node. Let us note that constraints (4.1) and (4.2) are not
explicitly added to each node. As we show in Section 4.2.3, they are implicitly
managed within the oracle in the pricing step.

Let us observe that (4.1) means that items i* and j* must be loaded together
in the same bin, otherwise they are not loaded at all. Vice versa, (4.2) states that
items ¢* and j* cannot appear together in the same bin. Note that the presence of
constraints (4.2) changes the type of pricing sub-problem, having to face a Knap-
sack Problem with Conflict Graph (also named Disjunctively Constrained Knapsack
Problem), a variant of the standard Knapsack Problem much difficult to solve [Hifi
and Michrafy, 2007]. Conversely, constraints (4.1) can be implicitly satisfied sub-
stituting the involved items by a macro item, say h, which volume wy, is the total
volume of the items, profit p, is the total profit of the non-compulsory items, and

which dual variable 7}, is the total of the dual variables of the items. This macro

43

4 — Branch-and-price and Beam Search for the Generalized Bin Packing Problem

item becomes compulsory if at least one of its items is compulsory.

4.2.3 Pricing

Pricing at a given node, say u, is performed by applying a column generation tech-
nique to try to tighten the lower bound of node u, LB(u).

As stated in Section 4.2.2; the pricing sub-problem at non-root nodes can be
a Knapsack Problem with Conflict Graph. Due to the high computational time
required to optimally solve this problem, three oracles with increasing computational
time are used. The first and the second oracles are simpler and faster than the third
one, but they can fail. The third oracle never fails but it is the most time consuming
one. If the first or the second oracle succeeds, we quit the sub-problem, otherwise
we go to the next oracle. This particular architecture of the sub-problem limits the
third oracle usage in order to reduce the computing time. In particular, the three

oracles are:

« Heuristic oracle
« Knapsack Problem without constraints (4.2)

» Knapsack Problem with constraints (4.2).

We remind that constraints (4.1) are implicitly managed in the three oracles
through the introduction of macro items (see Section 4.2.2), therefore, only con-
straints (4.2) may appear when solving the oracles. The first sub-problem, the
heuristic oracle, is a greedy procedure which produces a pattern by first sorting
items by non-increasing values of Z—Z and then by trying to insert the sorted items
into a bin of the current type ¢t € 7. Note that this oracle may fail due to two
reasons: a) the loaded items violate one of the additional constraints (4.2) (which
means that the new pattern is infeasible) or b) the oracle generated a pattern with
a positive reduced cost. Failure b) is a drawback due to the heuristic nature of the
oracle. Indeed, since this oracle is not exact, it does not generate, in principle, a
pattern yielding the minimum reduced cost. Therefore, if the first oracle generates
a negative reduced cost pattern, we however have (although it is not the one yield-

ing the minimum reduced cost) a profitable pattern for proceeding with the column

44

4 — Branch-and-price and Beam Search for the Generalized Bin Packing Problem

generation procedure and so we can quit the sub-problem. Vice versa, if the first
oracle generates a positive reduced cost pattern then, since it is not the pattern
yielding the minimum reduced cost, there could exist, however, a negative reduced
cost pattern. Since, in this particular case, we cannot predict whether such a neg-
ative reduced cost pattern exists, the first oracle fails and we move to the second

one.

The second oracle consists in solving a Knapsack Problem on the items. with-
out constraints (4.2). Since this is an exact oracle, it fails only if constraints (4.2)
are violated. Hence, if the solution satisfies these constraints we are done. Other-
wise two things may happen: a) the solution is not feasible but its reduced cost is
positive, b) even the second oracle fails if at least one among constraints (4.2) is
violated. In the first case, since this is an exact sub-problem, it means that also
the remaining patterns have positive reduced costs, even if the created pattern is

infeasible. Therefore we quit. In the second case, we undergo oracle three.

The third oracle consists in solving a Knapsack Problem with constraints (4.2).
By construction, it never fails. Nevertheless, the presence of constraints (4.2) makes
it time consuming. That is why we leave this oracle at the end, after the first two
oracles. Computational experience confirms that the third oracle is actually rarely

used.

To speed-up the whole pricing procedure, we exploit the fact that the lower
bound of a child node cannot be less than the lower bound of its father node. In
other words, let u — 1 be the father node of node u (different from the root node),
then LB(u) > LB(u— 1). This implies the addition to the Master Problem of node

u the following constraint:

teT kel
Note that the introduction of (4.3) in the Master Problem of node u modifies the
oracle (3.29)-(3.31). Let 6 > 0 be the dual variable associated to constraint (4.3)
then, following the same procedure presented in Section 3.2.2, the new column-

generation sub-problem becomes:

45

4 — Branch-and-price and Beam Search for the Generalized Bin Packing Problem

max { S [A=0)pi+vi] zi+ D ,uixi}

subject to

4.2.4 Rounding

i€ZINC ISIAS
ZU)Z’ZEZ' S Wt t € T
€T
z; € {0, 1} iel

This technique tries to tighten the lower bound yielded by the pricing procedure.

Let LBs(u) be the lower bound produced by the column generation at node w, then

a new lower bound can be found solving the following problem:

min

subject to

LBu)=> Ciy;— Y. pi

JjeT i€INC

> Ciyy— > piwi = [LBa(u)]

JjeJ i€INC

dowit Y ww <y Wy,

i€ZC i€eINC Jjeg

Li< Y y<U teT
JjeTwo(j)=t

oy <U

JjeTJ

z; € {0, 1} i € IN¢

Yj € {07 1}] € j>

(4.4)
(4.5)
(4.6)
(4.7)
(4.8)

(4.9)
(4.10)

where L; and U, are the bounds on the number of bins which have been previously

calculated in the branching step. This problem is based on the AKP presented in

Section 3.2.1, as it can be seen from (4.4) and (4.6), which, respectively, play the

same role of (3.19) and (3.20). Here, the main idea is to try to increase the lower

bound LBy(u) yielded by the pricing step. This is expressed by constraint (4.5).

Finally, through this problem, we also try to tighten the global upper bound by

solving a BFD heuristics with exactly Z y; bins for each bin type ¢ € T and

JET 0 (j)=t

46

4 — Branch-and-price and Beam Search for the Generalized Bin Packing Problem

considering the disjoint additional constraints on the items.

4.3 Beam search

Beam search is a particular heuristics that relies on a branch-and-bound or branch-
and-price tree [Della Croce et al., 2004]. The approximation behavior is due to
the fact that just a part of the search tree is explored. This means that, at a
given level of the tree, only v nodes are visited. The parameter « is the size of the
beam. The v nodes are selected according to a particular criterion. In our tests
we have considered a beam size up to 4 and selected those nodes showing the best
absolute gaps, computed as |LB(u) — UB(u)|. Since the philosophy we adopted
when developing the beam search was to save time, we decided to skip the Zg¢

computation and the rounding problem at each node.

4.4 Computational results

In this section, we present the computational results of our branch-and-price and
beam search methods. First, the testing environment is presented in Subsection
4.4.1, while detailed computational results of the branch-and-price and the beam
search are given in Subsection 4.4.2. Finally, being the GBPP a generalization of
the VCSBPP, in Subsection 4.4.3 we compare the results of the branch-and-price
and the beam search with the state-of-the-art methods for the VCSBPP in order
to show how much the generalization process affects the results both in terms of

efficiency and accuracy.

4.4.1 Testing environment

The algorithms were coded in C++ and the models implemented with CPLEX 12.1
[ILOG Inc., 2009]. Zsc was again computed within a limited computing time of 20
seconds, when needed. We ran our branch-and-price algorithm with a time limit of

one hour and our beam search with a time limit of three minutes. Experiments were
conducted on a Pentium IV 3.0 GHz workstation with 4 GB of RAM.

47

4 — Branch-and-price and Beam Search for the Generalized Bin Packing Problem

4.4.2 GBPP results

In Table 4.1, we report the branch-and-price results for classes 0, 1, and 2. In
particular, column 1 shows the class number; column 2 the number of bin types;
column 3 the number of items, column 4 the percentage gap at the root node,
column 5 the residual percentage gap at the end of the branch-and-price; column 6
the number of visited nodes on average, column 7 the number of instances solved to
optimality over 900; column 8 the number of instances solved to optimality where
the solution found at the root node is also an optimal solution; column 9 the average
computing time. Note that the percentage gap at the root node is computed as the
difference between the best lower and upper bound at the root node over the best
lower bound at the root node; i.e. %&B(O) -100. Note that, since LB(0) can
be negative, we compute the gap with absolute values. If LB(0) = 0, the gap is set
equal to UB(0).

To compute the residual gap at the end of the branch-and-price, we define the

best lower bound at the end of the branch-and-price LBpg as follows:

UB if the best solution found so far is optimal
LBp =
LB(0) otherwise.

Then the residual percentage gap is computed as ’UB#;BBB’ - 100, where UB is

the upper bound corresponding to the best solution found by the branch-and-price.

The results of Table 4.1 are quite satisfactory: not only we reduce the gap
from 0.13% (i.e. the gap calculated at the root node) to 0.03%, but we also solve to
optimality 702 instances over 900. The most difficult instances to solve are those with
500 items, and in particular those with 3 bin types. This is justified by the fact that
the more the number of items increases, the more the instances are difficult to solve.
Moreover, with 3 bin types the choice on the available bins is quite reduced. This
makes the problem harder due to the presence of equivalent patterns which increase
both the number of variables involved in any column generation iteration and the

fragmentation of these variables in the optimal solution of the pricing procedure.

In Table 4.2, the branch-and-price results for Class 3 are presented. We decided

48

4 — Branch-and-price and Beam Search for the Generalized Bin Packing Problem

to separate Class 3 results from the other classes because these instances are char-
acterized by the presence of both compulsory and non-compulsory items, while the
number of items is always 500. Therefore there is not a direct matching with the
columns of Table 4.1. In Table 4.2, the columns have the following meaning: column
1 shows the percentage of compulsory items; column 2 the percentage gap at the
root node; column 3 the residual percentage gap after the branch-and-price; column
4 the number of visited nodes on average; column 5 the number of instances solved
to optimality over 60; column 6 the number of instances solved to optimality where
the solution found at the root node is also an optimal solution; column 7 the average
computing time.

The percentage gap at the root node and the residual gap at the end of the
branch-and-price are computed as for Table 4.1. In this case, we solved to optimality
19 instances over 60, i.e. 31% of Class 3 instances. Although the absolute difference
of the gap reduction is approximately the same in the two tables (around 0.1%),
the residual gap is not as good as in Table 4.1. This is justified by two issues. First
one, the gap at the root node is already high. This is justified by the fact that,
for large size instances, 20 seconds of time limit are not enough to compute Zg¢ to
optimality. This implies a higher bound at the root node. The second issue concerns
the fact that, as in Class 3 instances, both compulsory and non-compulsory items
are present, two different sets of constraints are necessary: (3.12) for compulsory
items and (3.13) for non-compulsory items. This splitting of items with their relative
constraints makes the problem harder to solve and justifies the gap growth for Class

3 instances.

In Table 4.3, we report our beam search results. In particular, the columns have
the following meaning: column 1 shows the class number; column 2 the beam size;
column 3 the residual percentage gap after applying the beam search; column 4 the
number of instances solved to optimality over 960; column 5 the number of solutions
better than those found by the branch-and-price and, finally, column 6 the average
computing time. In this table, we report all the classes together because we aim
to show the overall gap depending on the beam size rather than on the instance
attributes. The residual percentage gap is computed in a similar way as for the
branch-and-price. Indeed, due to the previous branch-and-price calculation, now

we know the optima of many instances and we can refer to them when computing

49

4 — Branch-and-price and Beam Search for the Generalized Bin Packing Problem

CLASS | TYPES | ITEMS | % GAP(0) | % GAP | NODES | OPT | ROOT OPT | TIME
25 0.27 0.00 5.00 30 22 0.05
50 0.21 0.00 26.33 30 19 0.51
3 100 0.24 0.02 1190.93 | 28 13 80.62
200 0.18 007 | 4107.80 | 19 9 1057.24
0 500 0.25 0.20 901.67 | 13 7 2165.01
25 0.14 0.00 9.93 30 25 0.09
50 0.10 0.00 13.07 30 22 0.31
5 100 0.13 0.01 776.53 | 29 11 146.84
200 0.09 0.05 2970.27 22 13 680.71
500 0.06 0.03 1008.80 | 16 9 1908.28
0.17 0.04 | 1101.03 | 247 150 603.97
25 0.32 0.00 13.80 30 20 0.20
50 0.16 0.00 188.67 | 30 13 22.41
3 100 0.13 004 | 3297.87 | 19 6 963.22
200 0.09 003 | 3607.33 | 21 5 1115.82
1 500 0.21 0.21 1099.80 | 10 5 2560.55
25 0.20 0.00 100.07 30 23 9.16
50 0.06 0.00 429.73 | 30 24 45.65
5 100 0.05 0.01 1939.00 | 24 12 625.94
200 0.03 0.01 432293 | 18 6 1199.36
500 0.03 0.03 93347 | 14 9 2053.72
0.13 0.03 | 1593.27 | 226 123 859.60
25 0.15 0.00 13.20 30 22 0.30
50 0.19 0.01 79727 | 28 17 222.94
3 100 0.07 0.01 2246.07 22 9 744.96
200 0.07 004 | 4593.00 | 19 7 1209.31
2 500 0.21 0.19 1030.80 | 11 6 2404.29
25 0.07 0.00 23.07 30 26 1.81
50 0.06 0.01 726.67 | 28 19 106.84
5 100 0.03 0.01 1974.00 | 23 13 861.03
200 0.02 001 | 3462.60 | 22 6 1084.04
500 0.02 0.02 836.53 | 16 11 1959.58
0.09 0.03 | 1570.32 | 229 136 859.51
OVERALL 0.13 0.03 | 1421.54 | 702 409 774.36
Table 4.1. Branch-and-price results for Classes 0, 1, and 2
PERC. % GAP(0) | % GAP | NODES | OPT | ROOT OPT | TIME
0 0.11 0.10 1291.33 3 1 2820.44
25 0.32 0.31 1109.00 4 3 2472.01
50 2.11 1.86 1058.50 4 1 2525.91
75 0.47 0.41 1080.17 4 0 2749.93
100 0.21 0.15 1234.33 4 1 2626.93
OVERALL 0.65 0.57 1154.67 19 6 2639.04
Table 4.2. Branch-and-price results for Class 3

50

4 — Branch-and-price and Beam Search for the Generalized Bin Packing Problem

the final gap. In particular, given an instance, let UB be the best upper bound

found by the beam search. Then, the residual percentage gap can be computed as

UB-LBpg
LBy

and-price. If the branch-and-price could not find an optimal solution, the beam

’ - 100, where LBpg values are those computed when performing the branch-

search might find a better solution. However this is quite rare, as it can be seen in
column 5 of Table 4.3. The results show very promising gaps for classes 0, 1, and 2,
but not so good for Class 3. This time the high gaps are also justified by the fact
that, at the root node, to save time, we do not compute the Zg- upper bound which
would have improved the accuracy of the method. Of course, increasing the beam
size improves the final gap, to the detriment of the computing time. The relative
accuracy of the beam search is highly compensated by the small computing time,
which is less than 3 minutes, when the branch-and-price requires, on average, up to
45 minutes. Therefore, we can conclude that the proposed beam search is a good

compromise between accuracy and computational effort.

4.4.3 VCSBPP comparison

As stated in Chapter 1 and shown in Section 3.1.3, the GBPP generalizes several
packing problems, in particular the VCSBPP. Due to its recent introduction, the
GBPP literature is quite limited, while for the VCSBPP several heuristic and
exact methods are available. In this section, we use the proposed branch-and-price
and beam search algorithms to address the VCSBPP and compare the results with
those of the state-of-the-art methods specifically designed for the VCSBPP, in
particular BBpyg, the branch and bound presented in Haouari and Serairi [2011]
and VNSysp, the VNS introduced in Hemmelmayr et al. [2012]. For the beam
search, we consider the setting with beam size equal to 4. We consider the instance
set of Monaci [2002], which was also used by Haouari and Serairi [2011] and by
Hemmelmayr et al. [2012]. Other available VCSBPP instances (see, e.g., Alves and
Valério de Carvalho [2007]) do not seem to be sufficiently challenging, as both the
branch-and-price and the beam search are able to solve them to optimality at the
root node with a negligible computational time.

Table 4.4 compares BBps with our branch-and-price. The table reports the

number of items in the instances and, for each method, the mean percentage gap

51

4 — Branch-and-price and Beam Search for the Generalized Bin Packing Problem

CLASS BEAM | % GAP | OPT | IMPROVING | TIME
1 0.33 130 2 23.35
0 2 0.29 150 3 28.59
3 0.28 159 3 31.12
4 0.26 170 3 33.94
0.29 176 4 29.25
1 1.25 99 3 39.29
1 2 1.16 109 3 54.10
3 1.10 114 2 59.71
4 0.98 124 2 64.58
1.12 128 3 54.42
1 0.93 103 4 42.43
2 2 0.84 113 3 53.64
3 0.79 119 2 60.22
4 0.74 123 2 65.89
0.83 129 4 55.54
1 4.97 7 1 145.74
3 2 4.72 9 0 155.54
3 4.70 11 1 157.95
4 4.68 11 1 158.63
4.77 11 2 154.47
OVERALL 1.75 444 13 73.42

Table 4.3. Beam search results

52

4 — Branch-and-price and Beam Search for the Generalized Bin Packing Problem

between the upper and lower bounds at the root node and the number of instances
solved to optimality. BBpgs performs better. This is due, as stated by the authors in
their paper, to a series of dominance criteria and lower bounds specifically designed
for the VCSBPP, which, unfortunately, cannot be extended to the GBPP. For
instance, the dominance criteria heavily used the hypothesis that the number of
available bins for each type is infinite, which is not the case for the GBPP. As
expected, since the GBPP is more general, it loses somewhat in efficiently proving
optimality, but preserves excellent performances in terms of gaps. A similar behavior
can be observed when comparing V N.Sygp and the beam search (Table 4.5). In this
case, the gap remains under 0.5%, within a competitive computational effort (about

two minutes in the worst case).

53

BByg B&P
ITEMS | % GAP OPT | % GAP OPT
25 0 60 0 60
50 0.01 59 0 60
100 0.02 59 0.1 57
200 0 60 0.6 41
500 0 60 0.11 29
Table 4.4. VCSBPP results: comparison between BBgg and branch-and-price
VNSysps BEAM
ITEMS | % GAP OPT TIME | % GAP OPT TIME
25 0.00 60 150 0.09 54 0.10
50 0.01 59 150 0.21 45 0.53
100 0.00 58 150 0.32 35 3.60
200 0.01 54 150 0.28 20 37.03
500 0.01 52 150 0.41 22 128.44
Table 4.5. VCSBPP results: comparison between VN Sysp and beam search

Chapter 5

The Stochastic Generalized Bin
Packing Problem

5.1 Introduction

In this chapter, we present the S-GBPP, a variant of the GBPP where the items
are characterized by volume and random profit, and, as for the GBPP, the bins
are characterized by volume and cost. Aim of the S-GBPP is to choose a subset of
items to be loaded into a subset of bins in order to maximize the expected total net
profit, given by the difference between the expected total profit of the loaded items
and the total cost of the used bins, while satisfying the volume and bin availability
constraints.

In contrast to the deterministic GBPP where we minimize the total net cost,
here, in the S-GBPP, we maximize the expected total net profit in order to use, at a
later stage, the cumulative left distribution function, which is a standard convention.
Vice versa, if we minimized the expected total net cost, then we should use the
cumulative right distribution function which, however, is not very common.

The item profits, which also depend on bins where the items will be loaded, are
random variables with unknown probability distribution. They are composed by a
deterministic profit plus a random term, which represents the profit oscillations due

to the handling operations needed for loading the items into the bins.

The S-GBPP frequently arises in real-life applications, in particular in logistics,

54

5 — The Stochastic Generalized Bin Packing Problem

where the freight consolidation is essential to optimize the delivery process. In this
case, a series of handling operations for bin loading must be performed at the logistic
platforms and these operations could significantly affect the final total profit of the
loading Tadei et al. [2002].

In this chapter, we introduce a stochastic model of the S-GBPP. In most papers
dealing with uncertainty, the probability distribution of the random variables is
given and their expected value can then be calculated. This is not the case of the
S-GBPP, where the probability distribution of the random item profit is unknown,
because it is difficult to be measured in practice and any assumption on its shape
would be arbitrary.

We show that, by using some results of the asymptotic theory of extreme values
Galambos [1978], the probability distribution of the maximum random profit of any
item becomes a Gumbel (or double exponential) probability distribution and the
total expected profit of the loaded items can be easily calculated. By using this
result a deterministic approximation of the S-GBPP is derived.

This chapter is organized as follows. In Section 5.2, we revisit the assignment
model of the GBPP. In particular, we give a more general model which takes
general item profits (i.e., depending on the bins into which each item is loaded) into
account. This model is the starting point in order to formulate a stochastic model
of the S-GBPP, introduced in Section 5.3. Section 5.4 derives the formulation of
the probability distribution of the maximum profit of any item, which can be then
computed by using the asymptotic approximation introduced in Section 5.5. Section

5.6 gives the deterministic approximation of the original stochastic problem.

5.2 The assignment model of the Generalized Bin

Packing Problem revisited

In this section, we provide a more general assignment model of the GBPP. This
model is the starting point for the stochastic model of the S-GBPP, introduced in
Section 5.3, and takes general item profits into account. In particular, now that
profits depend on the bins into which the corresponding items are loaded, we denote
by pi; the profit of item ¢ € Z when loaded into bin j € J.

55

5 — The Stochastic Generalized Bin Packing Problem

With the same notation presented in Section 3.1.1, the assignment model of the
GBPP becomes

maxgy) > > Pty — »_ Ciyj (5.1)

i€l jeJ JjeJ
subject to Y x; <1 i€X (5.2)

jeg
i€
Yowi <y, jeT (5.4)
i€

> y>Lg teT (5.5)
JET 0 (j)=t

ooy <U teT (5.6)
JET o (j)=t
Yy <U (5.7)
JjeJ
Ty € {0, 1} 1e€l,jedJ (58)
y; €{0,1} jeJ (5.9)

The objective function (5.1) maximizes the total net profit, given by the dif-
ference between the total profit of the loaded items and the total cost of the used
bins. As stated in Section 5.1, the objective function appears in a maximization
form in order to deal with the cumulative left distribution function when deriving

the deterministic approximation in the next Sections.

Constraints (5.2) ensure that each item is loaded into one bin at most. Con-
straints (5.3) limit the bin capacity. Constraints (5.4) prevent to load items into not
used bins. Note that, Constraints (5.3) and (5.4) are equivalent to Constraints (3.2)
in the original assignment model of the GBPP presented in Section 3.1.2. The
reason of this splitting will be clear in Section 5.3, where Constraints (5.3) will be
relaxed, according to a Lagrangian relaxation, in order to derive the deterministic
approximation of the S-GBPP. Constraints (5.3) prevent us to have variables y;
within the relaxed objective function. This would have not been the case if we had

used Constraints (3.2). Constraints (5.5) and (5.6) give bounds to the minimum and

56

5 — The Stochastic Generalized Bin Packing Problem

maximum number of used bins per type, respectively, whilst constraint (5.7) limits
the total number of used bins, regardless of their type. Finally, (5.8)-(5.9) are the

integrality constraints.

5.3 The Stochastic Generalized Bin Packing Prob-

lem

In the S-GBPP the item profit of the GBPP becomes a random variable. In fact, it
is composed by a deterministic profit (the one of the GBPP) plus a random term,
which represents the profit oscillations due to the handling costs for loading items
into bins. We assume that such profit oscillations randomly depend on the handling
scenarios which are adopted for bin loading. These random profit oscillations are
very difficult to be measured in practice, so that their probability distribution must
be assumed as unknown.

The data and variables of the S-GBPP are the same of the GBPP, but some

new data and variables must be considered as follows
e S: set of handling scenarios for bin loading
e 6% random profit oscillation of loading bin j under handling scenario | € S.

Let us assume, as it is usually done in this context, that 67! are independent
and identically distributed (i.i.d.) random variables with a common probability

distribution
F(z) = Pr{¢"' < x} (5.10)

The main feature of our approach consists, as stated above, in considering the
probability distribution F'(z) as unknown.
Without losing in generality, the random variables #7' can be scaled by a constant

a as follows
Pl=¢'—a jeJles (5.11)

The probability distribution of 67' then becomes
Prif' <z} =Pr{#' —a <z} =Pr{¢#"' <z +a} = F(z+a) (5.12)

57

5 — The Stochastic Generalized Bin Packing Problem

Let p;;(67') be the random profit of loading item i into bin j under handling

scenario [given by
pi(0") =py+0" i€IjeJles (5.13)

Let us define with & the maximum of the random profit oscillations of loading

bin 7 among the alternative handling scenarios [€ S

7 = max ' jeJ (5.14)

Clearly, @ is still a random variable with unknown probability distribution given

by

Bi(w)=Pr{f' <z} jeJ (5.15)

As, for any bin j, 7 <z <z | eS8 and #" are independent, using
(5.12) one gets

Bi(x)=[[Pr{#" <z} =[[Fz+a)=[Fz+a) jeJ (5.16)
les les

We assume that the bin loading policy is efficiency-based so that, for any item ¢
and bin j, among the alternative handling scenarios [€ S, the one which maximizes

the random profit 7;;(#7) will be selected.

Then, the random profit of loading item 7 into bin j becomes

The S-GBPP can be formulated as follows

58

5 — The Stochastic Generalized Bin Packing Problem

H{lj}xz Z pij(ej)xij] - Z ijj} (5.18)

i€l jeJ jeT

subject to (5.2) — (5.9) (5.19)

The objective function (5.18) maximizes the expected total net profit, given by
the difference between the expected total profit of the loaded items and the total

cost of the used bins.

Let us consider the Lagrangian relaxation of problem (5.18)-(5.19), obtained by
relaxing the capacity constraints (5.3) by means of the non negative multipliers
:ujaj eJ

ming,,>oymaxy,} {E{e} [I?Q?}XZ Z max (0,@3‘ @) — :ujwi) :L“ij] - Z (Cjyj — Mjo)}

€T jeT

subject to (5.2) and (5.4) — (5.9) (5.21)

The term maz (O,@j (gj) - ujwi> in (5.20) is named the shadow random profit
of loading item ¢ into bin j, due to the presence of the shadow prices ;.

Problem (5.20)-(5.21) gives an upper bound on the optimal value of problem
(5.18)-(5.19), but we know that, when the strong duality conditions are satisfied,
the two problems are equivalent.

For any item i, let us consider bin j = ¢* (for the sake of simplicity, we assume
it is unique), which gives the maximum shadow random profit for item i over all
the bins. This quantity represents an upper bound of the actual maximum shadow

random profit of item i and becomes

Pi(0) = pwi = max [max (0., (F) —pywi)| i€ (5.22)

If item 7 is loaded, it will select bin 7 which maximizes its shadow random profit,

i.e.

59

5 — The Stochastic Generalized Bin Packing Problem

1, if j=14" and p; gi* — upw; >0
v = j pi(0) —p (5.23)

0, otherwise

Using (5.22), (5.23), and the linearity of the expected value operator E, a valid

upper bound of the objective function (5.20) becomes

min{”zo}ma)({y} {ZE{G*} []7@(9*) - ,ui*wi:| - Z(ijj - ﬂjo)} =

i€l JjeJ
= Mg, >0} MAX () {Zﬁi =2 (Cyy; — NJWJ')} (5.24)
(= JjeT
where
pi=Eg, [0) — pew;] €I (5.25)

The calculation of p; in (5.25) requires to know the probability distribution of
the maximum shadow random profit of item 4, i.e. 7;(0) — pmw;, which will be

introduced in the next section.

5.4 Formulation of the probability distribution of
the maximum shadow random profit of any
item

By (5.17) and (5.22), let

Gi(z) = Pr{p,(0") — pow; < 2} = Pr {r?ea:;c i+ — Mjwir < x} ieT
(5.26)

be the probability distribution of the maximum shadow random profit of item .

o Y o n
As, for any item ¢, max ey |:pij +6 — //iji:| <z <— |:pi]' +6& — pdjwl} <

60

5 — The Stochastic Generalized Bin Packing Problem

r, 7 € J,and the random variables @ are independent (because 67! are indepen-
dent), due to (5.15) and (5.16), G;(z) in (5.26) becomes a function of the number

|S| of handling scenarios for bin loading

s +
— +

JjeT
= H Pr{?y Sx—pij—i-,ujwi} =

jejipij+§j—/ljwi>0
= 11 Bj (x — pij + pjwi) =

JET pij+0" —pujw;>0
_ 11 [F (z —pyj + pywi +)] ieZ (5.27)

JET pij+0" —pujw;>0

Let us now set the value of the constant a in (5.27) equal to the root of the
equation
1—F(a) =1/|5| (5.28)

Let us assume that |S| is large enough to use the asymptotic approximation

lim|g|— 400 Gi(2,|S]) as a good approximation of G;(z), i.e.

Gi(r) = Jm Gir|S)) ieZ (5.29)

The calculation of the limit in (5.29) would require to know the shape of the
probability distribution F'(.), which is still unknown. To overcome this problem,
in the next Section we will show that under a mild assumption on the shape of
the unknown probability distribution F'(.), the limit in (5.29) will tend towards a

specific functional form.

61

5 — The Stochastic Generalized Bin Packing Problem

5.5 The asymptotic approximation of the prob-
ability distribution of the maximum shadow

random profit of any item

The method we use to calculate the asymptotic approximation of the probability
distribution of the maximum shadow random profit of item i, G;(x), derives from the
asymptotic theory of extreme values Galambos [1978] and is based on the following
observation.

Under the assumption that F'(.) is asymptotically exponential in its right tail,
i.e. there is a constant 8 > 0 such that

im W — e P? (5.30)

the limit in (5.29) tends towards a specific functional form, which is a Gumbel
(or double exponential) probability distribution Gumbel [1958].

(5.30) is a very mild assumption for the unknown probability distribution F'(x)
as we observe that many probability distributions show such behavior, among them
the widely used distributions Exponential, Normal, Lognormal, Gamma, Gumbel,

Laplace, and Logistic.

Let us consider the following theorem, which provides the desired asymptotic

approximation for G;(x).

Theorem 2. Under assumption (5.30), the asymptotic approzimation of the proba-
bility distribution G;(x),1 € I, becomes the following Gumbel probability distribution

Gi(x) = lim Gy(z,|S|)) = exp (—Aie_ﬁa”) i€z, (5.31)

|S| =400

where
A = Z ePPij—pjwi) iel (5.32)

jEJ:pij+§j—;4jwi>0
is the “accessibility”, in the sense of Hansen [Hansen, 1959, of item i to the set of

bins.

62

5 — The Stochastic Generalized Bin Packing Problem

Proof. By (5.27) and (5.29) one has

Gile) = Jim Gi(z,|S])= lim H [F' (x = pij + pjw; + a)]
JET pij+0" —pjw; >0
— 11 lim [F (z — pi; + pyw; + a)]”! (5.33)
i |S|—+o0
JET pij+0" —pjw;>0
Let us consider in (5.33)
lim F(x — p;; + pjw; + a) (5.34)
|S|—=+o00

As by (5.28) limg|40c @ = +00 (because F(a) tends to 1), from (5.30) one

obtains
1—F(x—pij —i—/iji—i-a)

li — o= B(x—pijt+pjwi) 5.35
1Sifoo 1— F(a) ‘ (5:35)
Then, by (5.28) and (5.35), (5.34) becomes
i — D W — i N - —Blz—pijtujwi)| —
|S|15§OOF($ pij + pjwi +a) = g (1-[1-F(a)e)=
| — e B@—pij+pjwi) 36
= i 1 d.
N
Substituting (5.36) into (5.33) one gets
] _e*ﬁ(l"*pifrujwi) S|
Gi(z) = 11 |S|ll>I£l—oo (1 + S) (5.37)

JET pij+0" —pjw;>0

and, by reminding that lim,, (1 + £)" = exp(z), using (5.32) one finally gets

Gi(z) = 11 exp (—e‘mm_piﬁ"f“’i)) = exp (—Aie_ﬂf”) (5.38)

jEjlpij-i-g] —pjw; >0

63

5 — The Stochastic Generalized Bin Packing Problem

5.6 The deterministic approximation of the S-GBPP

Using the probability distribution G;(x) given by (5.31), we are now able to calculate
pi in (5.25) as follows

+00 +o0
P = / xdGi(x) = / T exp (—Aie*ﬁ‘r) Aje P Bdx 1€ (5.39)

—00 —0o0

Substituting for v = A;e#* one gets

D = —1/5/ n(v/A;)e dv =

= —1/5/0 e“lnvdv+1/ﬂlnAi/0+ooe”dv:
= v/8+1/InA; =
= 1/8(InA; +) (5.40)

where v = — [;F® e VInv dv ~ 0.5772 is the Euler constant.
By (5.40) and but the constant 7 |Z|, the objective function (5.24) becomes

mln{#>0}maX{y}{1/521nA Z Ciy; — :“J'Wj)} (5.41)

1€ JjeT

By defining the total accessibility of items to the set of bins as
o =] 4, (5.42)
i€T

(5.41) becomes

Min >0y MaX{y} { ZIHA Z iYi —)} =

1€I jeJ

= ming,>oymaxy,) { In H Ai — Z Ciy; — Mjo)} -

€L jeJ

= m1n{u>o}max{y}{61nfb > (Cyyy — ujo)} (5.43)
JjeJ

64

5 — The Stochastic Generalized Bin Packing Problem

which gives the desired deterministic approximation of the upper bound of the
S-GBPP.

By comparing (5.43) with (5.24), it is interesting to observe that the total ex-
pected shadow profit of the loaded items, > ;o7 pi, is proportional to the logarithm
of the total accessibility of those items to the set of bins ®.

Let us note that (5.43) requires to know a proper value of the positive constant
B, which is the same parameter that appears in the Gumbel probability distribution
(5.31). This can be obtained by calibration as follows.

Let us consider the standard Gumbel distribution G(z) = exp (—e™*). If one
accepts an approximation error of 0.01, then G(z) = 1 <= z = 4.60 and G(z) =
0=z =-1.52

Let us consider the interval [m, M|, where the shadow random profits p; (51) -
pi=w; are drawn from.

The following equations hold
B(m — () =-1.52, (M — () =4.60, (5.44)

where ¢ is the mode of the Gumbel distribution G(z) = exp (—6_5(”_0)

From (5.44) one finally gets
6.12

b= (5.45)

65

Chapter 6

On-line Generalized Bin Packing

Problems

6.1 Introduction

In this chapter, we present a detailed study on the on-line generalized bin pack-
ing problems: a new family of on-line problems not yet studied in the literature.
These problems are the On-line Generalized Bin Packing Problem (OGBPP), the
On-line Generalized Bin Packing Problem with item profits proportional to item
volumes (OGBPP,), and the On-line Variable Cost and Size Bin Packing Problem
(OVCSBPP), and arise in many applications where the orders, represented by the
items, arrive on-line in an unpredictable way to a decision maker.

We analyze these problems along a different research direction: we investigate
whether the tools used by researchers to qualify on-line algorithms are still effective
when applied to richer problems. These tools are the asymptotic and the absolute
worst case ratio. We propose a noteworthy number of algorithms and we show
that, for each of them, it is impossible to certify their performance when applied
to the OGBPP. In particular, we prove a stronger result than the one achieved
in the OKP. In fact, as Iwama and Zhang [2007, 2010] showed that the OKP is
not competitive (i.e., its absolute worst case ratio is infinite), we prove that, for
the proposed algorithms, it is even impossible to apply the definition of these worst

case ratios. Moreover, we prove that this behavior also holds for off-line algorithms

66

6 — On-line Generalized Bin Packing Problems

like the FFD and the BFD introduced in Section 3.3.1, and even if we consider the
maximization form of the OGBPP. The reason why we take into account both forms
of the problem is in accordance with previous works in the literature concerning the
on-line variant of other problems. For example, in the OKP, Han and Makino
[2010] proved that, switching from the maximization to the minimization form of
the same problem, the absolute worst case ratio becomes finite. We also show that,
even in the particular case of the OGBPP,, the available tools do not allow us to
estimate any performance ratio for the proposed algorithms. We believe that the
ultimate packing problem for which it is possible to compute a performance ratio is
the OVCSBPP. For this problem, we generalize the work of Li and Chen [2006] to
a more general setting, still guaranteeing the same performance ratio equal to 2.

This chapter is organized as follows. In Section 6.2, we provide the formal
definitions of the asymptotic and absolute worst ratios and describe the problem
settings of the OGBPP, the GBPP, and its on-line variant, the OGBPP,, and
the VCSBPP and its on-line variant, the OVCSBPP.

In Section 6.3, we propose both on-line and off-line algorithms for the OGBPP
and we show that, for each of them, it is impossible to compute the asymptotic and
the absolute worst case ratio. In Section 6.4, we study the particular case of the
OGBPP,, where the item profits are proportional to the item volume through a
positive proportionality coefficient k. We show that, even in this particular case,
the same conclusions shown in Section 6.3 hold. In Section 6.5, we apply to the
OVCSBPP the on-line algorithm F1rsT FIT (FF'), which, as mentioned in Chapter
2, was initially proposed by Johnson et al. [1974] for the BPP. We prove that the
asymptotic worst case ratio of the FF when applied to the OVCSBPP is equal to
2 and that this bound is tight.

6.2 Problems settings

In this section, we first define the most common tools used to estimate algorithms
performance: the asymptotic and the absolute worst case ratios. Then, we give a
formal definition of the OGBPP, the GBPP,, the OGBPP,, the VCSBPP, and
the OVCSBPP.

67

6 — On-line Generalized Bin Packing Problems

6.2.1 The asymptotic and the absolute worst case ratios

Several denominations and definitions can be found in the literature for the asymp-
totic and the absolute worst case ratios. Sometimes they are named performance
ratios or, particularly in scheduling problems, competitive ratios. Roughly speaking,
they reveal how far is the solution value found by an algorithm from the optimum in
the worst case. Consequently, this estimation is guaranteed for any instance of the
problem to which the algorithm is applied. Formally, given a minimization problem
I1, an instance I € II of the problem, an algorithm A, the objective function value
of the solution yielded by the algorithm A(I), and the optimum OPT(I), then the
asymptotic worst case ratio is the smallest R such that the following relation be-
tween the optimum and the value yielded by the algorithm yields for any instance

of the problem:

A(I) <R-OPT(I)+0(1), VIeT, (6.1)

where O(1) is a constant independent of the instances. The absolute worst case
ratio is the smallest p such that the following relation between the optimum and the

value yielded by the algorithm yields for any instance of the problem:

A(I) < p-OPT(I), VIel (6.2)

The asymptotic and the absolute worst case ratios are also respectively defined,

sometimes, in terms of tight bounds as follows:

R = nl_l}l}_loo iléll_[) { OJ;'(T[()I) ‘ OPT(I) > n} (6.3)
_ A | _ A(I)
p—?elg{OPT(I)}—mf{rOPT(I)ST,VIGH} (6.4)

Unfortunately, there is not uniformity of definitions among authors in the literature
for the asymptotic and the absolute worst case ratio when applied to a mazimization
problem. In accordance to authors like [Fisher, 1980, Martello and Toth, 1990, Wang
and Xing, 2009, Wang, 2012], we believe that the most correct definition for the

asymptotic and the absolute worst case ratios applied to a maximization problem

68

6 — On-line Generalized Bin Packing Problems

are, respectively, the greatest R and p, such that, for any instance of the problem,

we have:

A(I)>R-OPT(I)+0O(1), VIell (6.5)

A(I)>p-OPT(I) VIE€ITl, (6.6)
where O(1) is a constant independent of the instance.

Nevertheless, authors like [Johnson, 1973b, Iwama and Taketomi, 2002, Twama

and Zhang, 2007, 2010] prefer to work with the ratio Oi(TI()I) rather than %. The

reason for this choice is that, both for minimization and maximization problems,

the computation of any performance ratio reduces to finding the smallest value of
the ratio itself for any instance of the problem. Throughout this paper we will refer

to definitions (6.5) and (6.6) when dealing with a maximization problem.

6.2.2 The On-line Generalized Bin Packing Problem

In this section, we provide a formal definition of the On-line Generalized Bin Packing
Problem with item profits proportional to item volumes. The OGBPP, is the on-line
variant of the GBPP where the items arrive on-line to a decision maker. When the
decision maker receives an item, its information is revealed. Information disclosed
on item arrival is: item volume, item profit, whether the item is compulsory or non-
compulsory, and whether the received item is the last one. According to the on-line
variants of the BPP and of the VSBPP, we assume that the number of available
bins for each bin type is unlimited (see, for instance, Friesen and Langston [1986]).
Moreover, the case with a limited number of bins is easy to address. In fact, it can
be easily reduced to an OKP by setting | 7| = 1 (without loss of generality, we can
assume t = 1 only), L1 = U; = U =1, and C; = 0. As stated in Section 6.1, Iwama
and Zhang [2007, 2010] proved that the OKP is not competitive.

69

6 — On-line Generalized Bin Packing Problems

6.2.3 The Generalized Bin Packing Problem with item prof-
its proportional to item volumes and its on-line vari-

ant

In this section, we provide a formal definition of the Generalized Bin Packing Prob-
lem with item profits proportional to item volumes (GBPP,) with its on-line vari-
ant, the On-line Generalized Bin Packing Problem with item profits proportional to
item volumes (OGBPP,,). The GBPP, is a particular case of the GBPP where

item profits are proportional to item volumes through a positive constant x:

i = Kw;, VieT. (6.7)

This problem arises in all those applications where the cost for shipping an item is
proportional to the size of the item.

The OGBPP,, is the on-line variant of the GBPP,, where the items arrive on-
line to a decision maker. When the decision maker receives an item, its information
is revealed. Information disclosed on item arrival is: item volume (item profit is
consequently computed multiplying item volume by s, which is known a priori),
whether the item is compulsory or non-compulsory, and whether the received item
is the last one. As for the OGBPP, we study the particular case with an unlimited
supply of bins. In fact, as seen in Section 6.2.2, the case with a limited number
of bins can be easily reduced to the OKP which, as proven by [[wama and Zhang,
2007, 2010}, is not competitive.

6.2.4 The Variable Cost and Size Bin Packing Problem and

its on-line variant

In this section, we provide a formal definition of the Variable Cost and Size Bin
Packing Problem (VCSBPP) with its on-line variant, the On-line Variable Cost
and Size Bin Packing Problem (OVCSBPP). Although the VCSBPP has already
been described in Chapter 2 and in Section 3.1.3, for the sake of clarity we provide
here a more formal definition of the problem. In the VCSBPP, a set of items Z,
with |Z| = n has to be accommodated into bins, each characterized by volume (or

capacity) and cost. The goal is to find the best assignment among items and bins

70

6 — On-line Generalized Bin Packing Problems

in order to minimize the overall cost, given by the sum of the costs of the selected
bins. The bins are classified into types and, as for the GBPP, the set of bin types
is denoted by 7. Each item i € 7 is characterized by a volume w; and each bin of
type t € T is characterized by a cost C; and by a capacity W.

In the on-line variant of the problem, the OVCSBPP, the items arrive on-line
to a decision maker. When the decision maker receives an item, its information
is revealed. Information disclosed on item arrival is item volume and whether the

received item is the last one.

6.2.5 Terminology

Throughout this chapter, we introduce, in addition to that already presented in

Section 3.1.1, the following terminology. Given any instance I of problem II, with
IT € {VCSBPP, OVCSBPP, GBPP, OGBPP,GBPP,, OGBPP,}, we name

e B C J the set of bins selected by any algorithm applied to instance I € II,
with p = | B|

e B* C J the set of bins of an optimal solution of instance I € I, with g = | B¥|

o [(j) the level of bin j € B U B*, i.e., the sum of the volumes of the items
loaded into bin j

s the bin type with the least cost over volume ratio, i.e., s = arg minsc 1%

Moreover, according to the bin packing literature, we name open bins all those bins

containing items at a given moment.

6.3 Algorithms for the On-line Generalized Bin
Packing Problem

In this section, we present a wide variety of algorithms for the OGBPP. We start
extending to the OGBPP the FF algorithm introduced by Johnson et al. [1974] for
the BPP. We also propose and study advanced variants based on this algorithm.
These variants are the FIRST FiT wiTH REJECTIONS (FFR) and the BEST FIT

71

6 — On-line Generalized Bin Packing Problems

wITH REJECTIONS (BFR), where non-profitable bins are rejected at the end of
the process, the FIRST F1T WiTH BUFFER AND REJECTIONS (FFBR), where the
arrived items are stored into a buffer with a limited size before loading them into
any bin, and the FIrsT FIT wiTH TIME BUFFER AND REJECTIONS (FFTBR),
where the decision maker stores the received items into an unlimited buffer and
periodically load them into bins. We prove that for the FF algorithm and for all its
variants the most popular tools used to analyze algorithm performance cannot be
applied. In particular, we prove that it is impossible to compute both the asymptotic
and the absolute worst case ratios. This drawback also holds for off-line algorithms
such as the well known FFD and BFD. Moreover, we prove that the same issue is

encountered even when dealing with the maximization form of the problem.

The FF algorithm works as follows. Every time an item ¢ € Z arrives on-line,
we try to load it into the first bin (among the already open ones) able to contain
it. If none among the open bins is able to accommodate item ¢ € Z, then we select
a new bin. Whilst in the BPP all the bins are equal, here, since bins are classified
into types, several choices are possible. A possible choice, which is the one we will
make when addressing the OVCSBPP in Section 6.5, is to select a new bin of type
s, defined as in Section 6.2.5. Note that, this definition also generalizes the FF
introduced by Johnson et al. [1974] for the BPP. If fact, in this particular case,
bin type s coincides with the only bin type in the BPP. However, as we show in
the next theorems, even with instances of the OGBPP with just one bin type it is
impossible to apply the definition of the worst case ratios defined in Section 6.2.1.
Therefore, even selecting the next new bin according to a different criterion would
lead to the same conclusion. A variant of the FF algorithm is the BEST FIT (BF)
algorithm which works like the former with the only difference that, as for the BFD
presented in Section 3.3.1, it tries to accommodate a new item ¢ € Z into the best
bin; the one with the least residual space after placing, if possible, item ¢ € Z into
it. In Theorem 3, we show that it is impossible to compute the asymptotic and
the absolute worst case ratio for both FF and BF algorithms when applied to the
OGBPP.

Theorem 3. It is impossible to compute the asymptotic and the absolute worst case
ratio for the FF and BF algorithms for both forms of the OGBPP.

72

6 — On-line Generalized Bin Packing Problems

Proof. Consider instance I(va, vg, Vo), composed by one bin type (|7] = 1 and
t = 1) with Wy = W, C; = C, va type A compulsory items, vg type B non-
compulsory items, and v¢ type C non-compulsory items. Let wq = W, wg = W,
pg = C+e€ we = W, and pc = C — ¢, with € > 0. Since all the items have
volume equal to W, bins can accommodate only one item. Consequently, we must
employ v4 bins to accommodate all the v4 type A compulsory items and vg bins
to accommodate all the vg type B non-compulsory items, which are taken because
pp > C. Since no type C item is profitable and cannot be loaded with any other item,
the optimal solution will not contain any of them. Considering the minimization

form of the problem, we have:

OPT([(VA, VB, l/c)) =vaC + Z/B(C - pB) =vaC — vge (68)
Consider the following possible on-line sequence of items:

va times vp times ve times

A ... A B ... B C ... C

Applying either FF or BF to the above sequence, we have:

FF(I(va, v, vc)) = BF(I(va, v, vc)) = vaC+vp(C—pp)+ve(C —po)

= vAC —vpe+ voe (6.9)

According to (6.1), in order to compute the asymptotic worst case ratio, we have
to find a proper constant O(1) and the least R, both independent of the instances,
such that

vaC —vpge + voe < R(vaC — vge) + O(1) (6.10)

If we consider instance (0, 0, v¢), (6.10) becomes

vee < O(1), (6.11)

which is impossible because a constant cannot be greater than a linear (O(v)) term.

73

6 — On-line Generalized Bin Packing Problems

According to (6.2), in order to compute the absolute worst case ratio, we have

to find the least p, independent by the instances, such that

vaC — vpe + voe < p(vaC — vge) (6.12)

If we consider instance I(1, 0, v¢), (6.12) becomes

C+vee < pC, (6.13)

which implies p — +00, since v can be arbitrarily large. On the contrary, if we

consider instance (0, 1, v¢), (6.12) becomes

— e+ voe < —pe, (6.14)

which implies p — —o0, since vo can be arbitrarily large. But this contradicts
p — 400 in order to satisfy (6.13). Therefore it is impossible even to compute the

absolute worst case ratio.

Considering the maximization form of the problem we have

OPT(I(VA, vy, VC)) = VB(pB — C) —vAC = —vyC + vpe (615)

and

FF(I(va, vg, vo)) = BE(I(va, vB, vo)) —vAC+vp(pe —C) + ve(pe — C)

= —vaC+vpe—vce (6.16)

According to (6.5), in order to compute the asymptotic worst case ratio, we
have to find a proper constant O(1) and the greatest R, both independent of the

instances, such that

—v4C + vpe —vge > R(—vaC + vge) + O(1) (6.17)

If we consider instance 1(0, 0, v¢), (6.17) becomes

74

6 — On-line Generalized Bin Packing Problems

— vee > O(1), (6.18)

which is impossible because a constant cannot be less than a negative linear (- O(v))

term.

According to (6.6), in order to compute the absolute worst case ratio, we have

to find the greatest p, independent by the instances, such that

— vAC + vpe — voe > p(—vaC + vge) (6.19)

If we consider instance I(1, 0, v¢), (6.19) becomes

—vee—C > —pC, (6.20)

which implies p — +00, since v can be arbitrarily large. On the contrary, if we

consider instance (0, 1, v¢), (6.19) becomes

— Vo€ + € > pe, (6.21)

which implies p — —o0, since ¢ can be arbitrarily large. But this contradicts
p — +oo in order to satisfy (6.20). O

We also want to point out that, if one used definitions (6.3) and (6.4) to compute
the asymptotic and the worst case ratios, one respectively would find (just for in-
stances [(va, vp, v¢)) R(I) = 1+ and p(I) — +oo. However, definitions (6.3) and
(6.4) cannot be used for this problem because they implicitly assume that OPT(I)

is a positive number. This implicit assumption becomes explicit considering that

A <R-OPT()+0O(1), VIel (6.22)

Dividing by OPT(I), we get

A(l) o)
— < —_— Iell 2
opr(D) = T orray VIS (6:23)
However, this division is allowed only if OPT(I) > 0 for all the instances I of

problem II. Otherwise, either the division is impossible (when OPT(I) = 0), either

75

6 — On-line Generalized Bin Packing Problems

the inequality is violated (when OPT(I) < 0). Note that, when OPT(/) — +o0,
(6.23) becomes

. Al

R > OPT%III;IL—&—OO OPEF()I)’ VI ell (6.24)
Since this inequality must hold for all the instances I of problem II, we should
consider the upper extreme of the ratio, but this is equivalent to definition (6.3)
which, however, cannot be applied because, as shown in Theorem 3, OPT(/) can
also assume null and negative values. A similar conclusion holds for definition (6.4)
concerning the absolute worst case ratio.

Before proposing more sophisticated on-line algorithms, we prove a lemma to
which we will refer within the proofs of the next theorems. In particular, we show
that, due to the presence of non-compulsory items, there exist instances where the
optimum and the value yielded by an on-line algorithm differ by a linear term which,
in principle, can be arbitrarily large. In Lemma 1, we show that it is impossible
to guarantee both an absolute and an asymptotic worst case ratio in these circum-

stances.

Lemma 1. Given a minimization problem 11 and an algorithm A, let I(p, v) € 11
be an instance with p, v € N, such that A(I(u, v)) = aup, and OPT(I(u, v)) =
Bu—~v, with o, B, v > 0. Then, it is impossible to compute the asymptotic and the

absolute worst case ratio for algorithm A, even in the mazximization form of problem

IT.

Proof. We first prove the lemma considering problem II in its minimization form.
If there exists an asymptotic worst case ratio then, according to (6.1), we have to
find proper R and O(1) such that

ap < R(Bp—yv)+ O(1). (6.25)
If we consider the particular instance (0, v), then (6.25) becomes

0 < —Ryv+ O(1). (6.26)

Since v can be arbitrarily large and v > 0, then, independently of the constant O(1),

it must be R < 0. Vice versa, considering instance I(u, 0), (6.25) becomes

76

6 — On-line Generalized Bin Packing Problems

ap < RBu+ O(1). (6.27)

Since u can be arbitrarily large and 5 > 0, then, independently of the constant O(1),
it must be R > 5 Since, by hypothesis, both « and 3 are positive numbers, then
their ratio is a positive number. Hence requiring R > % contradicts the previous
requirement that R < 0. Therefore, it is impossible to compute the asymptotic worst
case ratio. Since this result holds independently of constant O(1) and, according to
(6.1) and (6.2), the absolute worst case ratio is the particular case when O(1) = 0,
then it is also impossible to compute the absolute worst case ratio.

If we consider the maximization form of problem II, we have that A(I(u, v)) =
—ayu, and OPT (i, v) = yv — fu. According to (6.5), we have to find proper R and
O(1) such that

—ap >Ry — Bp) + O(1). (6.28)

If we consider the particular instance 7(0, v), then (6.28) becomes

0>Ryv+ O(). (6.29)

Since v can be arbitrarily large and v > 0, then, independently of the constant O(1),

it must be R < 0. Vice versa, considering instance I(u, 0), (6.28) becomes

—ap > —-Rpp+ O(1). (6.30)

Since p can be arbitrarily large and $ > 0, the, independently of the constant O(1),
it must be R > % Since, by hypothesis, both o and 3 are positive numbers, then
their ratio is a positive number and we get to the same conclusion of the minimization

form of the problem. O

A natural improvement of FF and BF would be, at the end of the process, to
reject every bin with overall profit (i.e., the sum of the profits of the accommo-
dated non-compulsory items) less than its cost. We name these algorithms FIRST
FiT wiTH REJECTIONS (FFR) and BEST FIT wiTH REJECTIONS (BFR). In The-
orem 4, we prove that, even adopting this improvement, the asymptotic and the

absolute worst case ratios cannot be computed.

7

6 — On-line Generalized Bin Packing Problems

Theorem 4. Is it impossible to compute the asymptotic and the absolute worst case
ratio for algorithms FFR and BFR for both forms of the OGBPP.

Proof. Consider instance I(u, v) composed of one bin type (|7] =1and t = 1), u
type A compulsory items, 2v type B non-compulsory items, and 2v type C' non-
compulsory items. Let C; =C, Wy =W, wa =W, wp = %, PR = % + €, wo = %,
and pc = % — 2¢, with € small enough.

It can be easily verified that the optimal solution consists in u bins, each con-
taining one type A compulsory item, and v bins, each containing 2 type B non-
compulsory items. Type C' non-compulsory items are not selected because they are
not profitable. Thus,

OPT(I(u, v)) = puC + v(C — 2pa) = pC — 2ve (6.31)
Consider, now, the following possible on-line sequence of items of instance I(u, v):

» times 2v times

——
A...A B C ... B C

which, both for FFR and BFR, yields p bins, each containing one type A compul-
sory item, and v bins, each containing one type A and one type B non-compulsory
items. However, bins containing non-compulsory items will be discarded because

pg + pc = C — € < C. Therefore,

FFR(I(pu, v)) = BFR(I (s, v)) = uC. (6.32)

The theorem holds applying Lemma 1 with o« =C, § =C, and v = 2e.]

A further improvement of the algorithms presented so far consists in storing part
of the items arriving on-line into a buffer before loading them somewhere. Let & > 1
be the size of the buffer, that is the number of items the buffer is able to store. When
the buffer is full, the items are loaded into the already open bins or, if necessary,
into new bins with the least ratio of cost over volume. At the end of the process,
bins with an overall profit less than the cost of the bin itself will be rejected. We
name FIRST FIT wiTH BUFFER AND REJECTIONS (FFBR) this algorithm. To

show the utility of using a buffer before accommodating part of the arrived items

78

6 — On-line Generalized Bin Packing Problems

into bins, we give an example referring to instance I(u, v) of Theorem 4. Let the
buffer size be 4 and let u be a multiple of 4, and v a multiple of 2, i.e., u = 4£ and
v = 2vu, with £, v € N. Let the items arrive on-line to a decision maker according

to the following sequence:

4¢ times 4v times

A..A B C ... B C

After four type A compulsory items have arrived to a decision maker, the buffer
is full and, since the received items are compulsory, they are all loaded into the
bins. This process is repeated until all the type A items have arrived. Then, after
accommodating all the compulsory type A items, every time the buffer is full we
have two type B non-compulsory items and two type C' non-compulsory items into
the buffer. The decision maker will load the two type B items together into a bin
and will reject the two type C' items because they are not profitable. Consequently,
the final solution will be the optimal solution. Nevertheless, although this improved
approach seems to be very promising, in Theorem 5 we prove that even retaining
some items into a buffer is not enough to guarantee asymptotic and absolute worst

case ratios.

Theorem 5. [t is impossible to compute the asymptotic and the absolute worst case
ratio for algorithm FFBR for both forms of the OGBPP.

Proof. Given the size k > 1 of the buffer, consider instance I*(j, v) consisting of
one bin type (|7] = 1 and t = 1), 2uk type A compulsory items, 2vk type B
non-compulsory items, and 2vk(k — 1) type C non-compulsory items. Let C; = C,

2 with € > 0

— _ _w _cC _w _C
Wl—W,wA—W,wB—f,pB—E—i—e,wc—?,andpg_g—mp

small enough, and C > 2ke.

Note that at most k type B items can be accommodated into one bin. Also,
at most k type C' items can be accommodated into one bin. We have that kpg =
C+ke >C=Cyand kpe =C— ,ffel < C = (C;. Consequently, the optimum consists in
21k bins, each containing one type A compulsory item, and 2v bins, each containing

k type B non-compulsory items:

OPT(I*(u, v)) = 2ukC + 2v(C — kpp) = 2ukC — 2vke (6.33)

79

6 — On-line Generalized Bin Packing Problems

Consider the following on-line sequence of items of instance I*(u, v) for algorithm
FFBR:

2, times 2vk times
A ... A ... A ... A B C ... C .. B C .. C
—_—— —_—— —— ———
k times k times k—1 times k—1 times

Then, applying FFBR to the above sequence, we have 2uk bins, each contain-
ing one type A compulsory item, and 2vk bins, each containing one type B non-
compulsory item and k — 1 type C' non-compulsory items. However, bins containing
non-compulsory items will be rejected because pg + (kK — 1)pc = C —e < C = C;.

Therefore, we have:

FFEBR(I*(u, v)) = 2ukC (6.34)
and the theorem holds applying Lemma 1 with @ = 2kC, § = 2kC, and v = 2ke. [

A variant of the on-line algorithm FFBR is the temporary buffer, where items
are periodically loaded every time interval of length 7. We name this variant FIRST
Fir with TIME BUFFER AND REJECTIONS (FFTBR). FFTBR describes the
case of shipping freight through means of transport with cadenced departure times.
Note that, for FFTBR, the “capacity” of the buffer is not the maximum number
of items k (as for FFBR) but the length of the time-slot 7 between two departures.
We prove in Theorem 6 that even for the on-line algorithm FFTBR it is impossible

to guarantee an asymptotic and an absolute worst case ratio.

Theorem 6. [t is impossible to compute the asymptotic and the absolute worst case
ratio for algorithm FFTBR for both the forms of the OGBPP.

Proof. The theorem trivially holds considering instance I*(j, v/) of Theorem 5 where

k items fall within each time-slot of length 7. O

From Theorem 5 and Theorem 6, we can conclude that even the knowledge of
part of the instance through batches (i.e., the items into the buffer) is not enough
to compute the asymptotic and the absolute worst case ratios. The case limit is to

have the full knowledge of the instance but, at this point, any algorithm becomes

80

6 — On-line Generalized Bin Packing Problems

off-line. This is the case, for instance, of the FFD and BFD heuristics already
introduces in Section 3.3.1. In Theorem 7, we prove a very strong results: even for
the FFD and for the BFD heuristics, which are off-line algorithms, it is impossible

to guarantee asymptotic and absolute worst case ratios.

Theorem 7. It is impossible to compute the asymptotic and the absolute worst case
ratios for the FFD and the BED heuristics for both forms of the GBPP.

Proof. Consider instance I(u,v) consisting of two bin types, T = {1, 2}, u type
A compulsory items, 4v type B non-compulsory items, 6v type C' non-compulsory
items, and 2v type D non-compulsory items. Let W, = W, C; = C, W, = %W,
Co=2C, wa = ZW, wg = BEW = 20 we =2W = 32C wp = BW

2 so-r WA 75 ; WB 75 y PB 100 WC 75 y Pc 100Y WD 75)
15—070C . It is easy to verify that the optimal solution consists in u type 2 bins

each containing one type A compulsory item, and 2v type 1 bins each containing

and pp =
two type B non-compulsory items and one type D non-compulsory items:

49 C
OPT(I(p, v)) = pCs + 2v(Cy — 2pp — pp) = %C/i - (6.35)

=0
Applying any among the four sorting rules listed in Section 3.3.1, FFD and BFD
use type 1 bins and pack first all the type A compulsory items, then all the type
D non-compulsory, all the type C' non-compulsory items, and finally all the type
B non-compulsory items. After packing all the type A compulsory items, each into
type 1 bin, type D items must be accommodated. Since only one type D item
can be accommodated into one type 1 bin, the PROFITABLE procedure (cf. Section
3.3.1) scans the succeeding items: those of type C. Only one type C' item can be
accommodated with one type D item into one type 1 bin, say b. The level of bin b
is we +wp = BW and its residual space is not enough to load any type B item.

75

The overall profit of bin b is P, = pc + pp = %C < Cy. Therefore all type D
will be rejected from algorithms FFD and BFD. When scanning type C' items we
see that at most three of them can be accommodated into one type 1 bin, because
3we =W =W, but 3pc = %C < Cy; therefore the PROFITABLE procedure rejects
all the type C' items in the list SIL with two type C' succeeding items. Indeed this is
not the case for the next to last and for the last type C' items in the list SIL. More
precisely, when the next to last type C' compulsory item must be accommodated,

the PROFITABLE procedure computes the overall profit P, taking into account that

81

6 — On-line Generalized Bin Packing Problems

there are two more type C' items and then type B items follow in the list. Loading
two type C' items into one type 1 bin, there is room only for one more type B item

(because 2we +wp = %W < Wy, but 2wg + 2w = %W > W;). The overall profit

86
100

discarded. Even the last type C' bin will be discarded by the PROFITABLE procedure

Py is then 2pc + pp = +=C < Cy; therefore even the next to last type C' bin will be

because it can be loaded with at most two type B items, but pc + 2pp = %C < (.
Finally, all the type B items will be discarded because at most 4 of them can be
loaded into one type 1 bin but 4pp = %C < C;. Therefore,

FFD(I(p, v)) = BFD(I (s, v)) = uCy = pC (6.36)

and the thesis holds applying Lemma 1 with o =C, 8 = %C, and v = %. O]

6.4 The On-line Generalized Bin Packing Prob-
lem with item profits proportional to item

volumes

In this section, we analyze the algorithms studied in section 6.3 within the partic-
ular setting of the OGBPP,,, where item profits are proportional to item volumes
through a positive coefficient x. As mentioned in Chapter 1 and in Section 6.2.3,
this is an important setting because in several applications shipping costs are pro-
portional to item volumes. We prove that it is impossible to conduct a worst-case
analysis for all the algorithms already presented in Section 6.3, even in the simpler
setting of the OGBPP,, for both forms of the problem. We start with Theorem 8§,
where we prove that it is impossible to compute the asymptotic and absolute worst
case ratios for algorithms FF and BF when applied to the OGBPP,..

Theorem 8. It is impossible to compute the asymptotic and the absolute worst case
ratios for algorithms FF and BF for both forms of the OGBPP,.

Proof. Consider instance I(va4, vp, v¢), made up by one bin type with volume W
and cost C, vy type A compulsory items, vg type B non-compulsory items, and
ve type C' non-compulsory items. Let wy = (% +e> W, wg = (% —I—e) W, and
wozl—e,K:(1+26)%,and0<e<%‘/§.

82

6 — On-line Generalized Bin Packing Problems

We have kwp = (1 + 2¢) (% + e) C= 462*%6. Note that, by construction, any
item cannot be loaded with any other item, that is a bin can accommodate one item
only. In order to let type B items be profitable, one should have xwg > C, which,
after some manipulations, would imply € < ’1%‘/5 or € > ’1%\/5, both contradicting
the requirement that 0 < € < _1%‘/5 Therefore type B items are not profitable
and, since none of them can be loaded with any other item, they will not appear in
the optimal solution. Concerning type C' items, we have rwe = (1 + 2¢)(1 — €)C =
(1+ ¢ —2€*)C. Imposing kwe > C, we get €(1 — 2¢) > 0, which implies 0 < € < %

1

Thence, since _1%\/5 < 3, we have that, for any choice of € according to requirement

on €, type C' items are always profitable.
Therefore, the optimal solution consists in v4 bins, each containing one type A

compulsory item and v bins, each containing one tpye C' non-compulsory item:

OPT(I(va, vg, vc)) = vaC + ve(C — kwe) = val + vo (262 — e) C (6.37)

Note that 2€? — € is negative for 0 < € < %\/ﬁ For any on-line sequence of items,
FF selects v, bins, each containing one type A compulsory item, vg bins, each
containing one type B non-compulsory item, and v¢ bins, each containing one type

C non-compulsory item

FF(I(va, v, vc)) = BF{U(va,vp, ve)) =
= vAC+vp(C — kwp) + vc(C — Kwe) =
1 —de — 4€? 5
= vuC+ I/ch +vo (26 — 6) C (6.38)

&

Note that 1 — 4e — 4¢€? is positive for 0 < € < _15

According to (6.1), in order to compute the asymptotic worst case ratio, we have
to find a proper constant O(1) and the least R, both independent of the instances,
such that

vaC + VBl_‘LZJ‘Ezc +ve (2€ =€) C <R (vaC+wo (22 =€) C) + O(1) (6.39)

83

6 — On-line Generalized Bin Packing Problems

If we consider instance (0, v, 0), (6.39) becomes

_ _ 2
VBMZ%C <0(1), (6.40)

which is impossible because a constant cannot be greater than a linear positive
(O(v)) term.
According to (6.2), in order to compute the absolute worst case ratio, we have

to find the least p, independent of the instances, such that

vaC + VBM%WC + ve (262 — e) C<p (yAC + ve (262 — e) C) (6.41)

If we consider instance (1, vp, 0), (6.41) becomes

Ct+vp——— " C < pC, (6.42)

which implies p — +00, since vg can be arbitrarily large. On the contrary, if we
consider instance (0, vg, 1), (6.41) becomes

VBI_ZLZMC + (262 — e) C<p ((2(—:2 — e) C) , (6.43)
which, since 26 — e < 0 and since vg can be arbitrarily large, implies p — —oo. But
this contradicts p — +o0o in order to satisfy (6.42). Therefore it is impossible even
to compute the absolute worst case ratio.

Considering the maximization form of the problem we have

OPT(I(va, vp, vo)) = —vaC — ve(C — kwe) = —vAC — ve (262 - 6) C (6.44)

and

FF(I(va, v, vc)) = BFU(va, v, vo)) =
= —vAC —vp(C — kwp) —vc(C — kwe) =
1 —4e — 4€?
= —vaC— VB%C e (262 - e) C (6.45)

84

6 — On-line Generalized Bin Packing Problems

According to (6.5), in order to compute the asymptotic worst case ratio, we
have to find a proper constant O(1) and the greatest R, both independent of the

instances, such that

uaC v A (2=) €2 R (<l — v (26—) €) +.O(1) (6.40)

If we consider instance I(0, vg, 0), (6.46) becomes

1 — 4e — 4¢?
—@——{;—iczou% (6.47)
which is impossible because a constant cannot be less than a negative linear (- O(v))
term.
According to (6.6), in order to compute the absolute worst case ratio, we have

to find the greatest p, independent of the instances, such that

—vaC — VBFZLZ#C —ve (262 — 6) C>p (—I/AC — Ve (262 — e) C) (6.48)

Considering instance I(1, vg, 0), (6.48) becomes

1 — 4e — 4¢?

—C—WF—Q%—LCZ—W, (6.49)
which implies p — +00, since vg can be arbitrarily large. On the contrary, if we
consider instance (0, vp, 1), (6.48) becomes

1 — 4e — 4¢*) 5
—VBfC— (26 —E)C 2,0(26 —6) C, (6.50)

which, since 26 — e < 0 and since vg can be arbitrarily large, implies p — —oo. But

this contradicts p — 400 in order to satisfy (6.49). O

In Theorem 9, we prove that it is impossible to conduct a worst case analysis
even for algorithms FFR and BFR.

Theorem 9. It is impossible to compute the asymptotic and the absolute worst case
ratios for FFR and BFR for both forms of the OGBPP,.

85

6 — On-line Generalized Bin Packing Problems

Proof. Consider instance I(u, v) composed of one bin type with volume W and
cost C, u type A compulsory items, 2v type B non-compulsory items, and 2v type
C non-compulsory items. Let ws = W, wg = (% — 6) W, we = (% +e) W, and
K= (1—|—2€)%, with 0 < € < _1%@

It is easy to verify that the optimal solution consists in p bins each containing
one type A compulsory item and 2v bins each containing one type B and one type

C non-compulsory item. Indeed we have

r(wp +we) = (1426¢)C > C (6.51)
Thence
OPT(I(p, v)) = uC + 2v(C — k(wp + we)) = uC — 4evC (6.52)
The sequence
p times 2v times 2v times
A ... A B ... B C ... C

yields p bins each containing one type A compulsory items, v bins each containing
two type B non-compulsory items, and 2r bins each containing one type C' non-
compulsory item. Bins containing two type B non-compulsory are not profitable

because

26wp = (1-4€)C < C (6.53)

Similarly, bins containing one type C' non-compulsory item are not profitable because

(14202, (1427152
2 €< 2

Therefore only bins containing one type A compulsory item will be retained by both
FFR and BFR, and we have:

) cC<C (6.54)

RWo =

FFR(I(n, v)) = BFR(I(p, v)) = uC (6.55)

The theorem holds applying Lemma 1 with o« =C, § =C, and v = 4¢C.]

86

6 — On-line Generalized Bin Packing Problems

In Theorem 10, we prove that it is impossible to compute the asymptotic and

worst case ratios even for algorithm FFBR.

Theorem 10. [t is impossible to compute the asymptotic and absolute worst case
ratios for FFBR for both forms of the OGBPP,.

Proof. Given the size k > 1 of the buffer, consider instance I*(u, v) composed of
one bin type with volume W and cost C, uk type A compulsory items, 2v type B
non-compulsory items, and 2v(k — 1) type C' non-compulsory items. Let wq = W,
%, we = 1];_216%, and Kk = (1 + 6)%, with € > 0 small enough. It is easy

to verify that the optimal solution consists in pk bins each containing one type A

wp =

compulsory item, and v bins each containing two type B non-compulsory items:

OPT(I*(u, v)) = pkC + v(C — 2rwp) = ukC — veC (6.56)
The sequence
p times 2v times
A ... A ... A ... A B C ... C .. B C .. C
| S —— | S —— —_——— ~————
k times k times k—1 times k—1 times

yields pk bins each containing one type A compulsory items and 2v bins each con-
taining one type B and k —1 type C non-compulsory items. The profit of these bins
1S

r(wp + (k= Dwe) = (1-€)C <C (6.57)

Therefore only bins containing compulsory items are retained, and we have

FFBR(I*(u, v)) = ukC (6.58)
The theorem holds applying Lemma 1 with o = kC, § = kC, and v = €C. n

In Theorem 11, we show that it is impossible to compute the asymptotic and

absolute worst case ratios even for algorithm FFTBR.

Theorem 11. [t is impossible to compute the asymptotic and absolute worst case
ratios for FFTBR for both the forms of the OGBPP,.

87

6 — On-line Generalized Bin Packing Problems

Proof. The theorem trivially holds considering instance I*(yu, v) of Theorem 10

where k items fall within each time-slot of length 7. m

We conclude this section showing that even for the off-line algorithms FFD
and BFD presented in Section 3.3.1 it is impossible to guarantee asymptotic and

absolute worst case ratio when applied to the GBPP,..

Theorem 12. [t is impossible to compute the asymptotic and absolute worst case
ratios for the FFD and BFD algorithms for both forms of the GBPP,.

Proof. Consider instance I(u, v) composed of one bin type with capacity W and
cost C, pu type A compulsory items, 4v type B non-compulsory items, v type C
non-compulsory items, and v type D non-compulsory items. Let wq = W, wg =
(i — e) W, we = (% — 36) W, wp = (% + 26) W, with k = (1—1—6)%, and 0 < € < i.
The optimal solution consists in p bins each containing one type A compulsory item
and v bins each containing two type B non-compulsory items and one type D non-

compulsory item. Indeed we have

k(2wp +wp) = (1 +€)C > C. (6.59)

To prove that this combination is optimal, we show that other profitable combina-

tions do not exist. Combination (C, D) is not profitable because

k(we +wp) = (1-¢*)C<C (6.60)

Moreover, it is not possible to fill the residual space (equal to €) with one type B

item. To do that, we should have wg < €, which would imply ¢ > é; but this is

impossible because, by construction, ¢ < %. Combination (D, D) is clearly not

possible because 2wp = (1 + 4¢)V > W. Combination (C, C, C) is not possible
because 3wc = 2 — 9e. It would be possible if we had 3we < W, which implies

2
€ > contradicting ¢ < . Combination (C, C, B) is not possible because,

L
18” 28"

L
287

Combination (B, B, C') is not profitable because

imposing 2we + wp < W we get € > contradicting the requirement ¢ < —.

28

K(2wp +we) = (1+€)(1-5)C < (1+e)(1-€e)C=(1-¢)C<C (6.61)

88

6 — On-line Generalized Bin Packing Problems

Finally, we can load at most 4 type B items into a bin. To be able to load more we

1

55» contradicting the requirement

should have 5wp < W, which would imply € >
€> %. However
drwp = (1-€*)C <C, (6.62)
which means that even combination (B, B, B, B) is not profitable. Therefore, the
only profitable combination is (B, B, D) and the optimum is
OPT(I(u, v)) = uC + v(C — k(2w +wp) = uC — veC. (6.63)

Applying any of the four sorting criteria shown in Section 6.3, we get the following

ordering of items:

p times v times v times 4v times

A ... A D ... D C ... ¢ B .. B

After placing all the type A compulsory items, the PROFITABLE function (cf. Sec-
tion 3.3.1) will scan all the non-compulsory items in the sequence above. One type D
item will be associated to one type C' item because type C' items are between type D
and type B items. Consequently combination (D, B, B) will never be encountered
when performing all the PROFITABLE functions. Since all the other combinations
of items are not profitable, then all the non-compulsory items will be rejected. We

then have

FFR(I(p, v)) = BFR(I(p, v)) = uC. (6.64)

The theorem holds applying Lemma 1 with o =C, § =C, and v = €C. O]

6.5 First Fit algorithm for the On-line Variable
Cost and Size Bin Packing Problem

In this section, we study the FF algorithm in the particular setting of the OVCS-
BPP. As mentioned in Section 6.3, FF works as follows. Every time an item ¢ € Z

arrives on-line, we try to load it into the first bin (among the already open ones)

89

6 — On-line Generalized Bin Packing Problems

able to contain it. If none of the open bins is able to accommodate item i € Z, we
select a new bin in order to load the received item. In the OVCSBPP, we choose
the new bin to be of type s i.e., as stated in Section 6.2.5, with the least cost over
volume ratio. Recall from Section 2 that Johnson [1974] proved that the asymptotic
worst case ratio for FF applied to the BPP is 17/10 and Li and Chen [2006] proved
that this ratio worsens to 2 when FF is applied to a variant of the BPP named Bin
Packing Problem with concave costs of bin utilization. Although the OVCSBPP
is a generalization of the problem studied by Li and Chen [2006], in Theorem 13
we prove that we can still guarantee an asymptotic worst case ratio equal to 2 for

algorithm F'F. Moreover, we prove that this bound is tight.

Theorem 13. The asymptotic worst case ratio of algorithm FF applied to the
OVCSBPP is 2 and this bound is tight.

Proof. Given two consecutive bins j and j + 1 in the solution yielded by FF for
instance I, the sum of the levels of these bins must be greater than W, otherwise

the items in bin 5 + 1 could have been accommodated into bin j. Formally:

BU)+ B +1) > W.. (6.65)

Summing side by side (6.65) with j ranging from 1 to f — 1 we get

f-1 f-1 f—1
2 AU+ 2B+ > D W (6.66)

Note that j ranges up to f — 1 and not up to f otherwise we would get S(f + 1)
for j = f in the second summation on the left side of inequality (6.66), which does
not exist. Changing the range within the second summation on the left side of the

inequality and computing the summation on the right side of inequality (6.66) we

have
f-1 !
2. BU)+ 2 B80) > (f = DWW (6.67)

The two summations on the left side of inequality (6.67) are very similar. In
order to gather them into a unique summation of the form Z};l B(j), we add and
subtract both 5(1) and 5(f) on the first side of inequality (6.67) as follows

90

6 — On-line Generalized Bin Packing Problems

f-1 f

2 B0 +B(f) = B() + 2 BG) + A1) = (1) > (f = YW, (6.68)
f f
2 B() =B +2_60) =) > (f = YW.. (6.69)

It is now possible to collect the two summations into a unique one and develop the

following transformations:

2250‘) —BQ) = B(f) > (f = W, (6.70)
f
QZ_:B(J‘) > (f =W+ (1) + B(f) > (f =)W (6.71)
Therefore,
f
(f=1Ws <23 B@) =2 B8). (6.72)

j=1 JjEB

Since F'F uses f bins of type s, then the cost of its solution is f -Cs and we have

FF(I)=f-Co=(f—1+1)C=(f —1)Cs+C, = (f—l)WSVC\j +¢C,. (6.73)

S

Plugging (6.72) into (6.73) we get

Co <
W 2 B0) +Ce. (6.74)

s j=1

FF(I) < 2

Since all the items are taken, the sum of the levels of the bins employed by the
FF algorithm is equal to the sum of the levels of the bins (the set B*) of an optimal

solution. We then have

C, < C, &
=3 B3) +Co =22 B(j) + C. (6.75)

FF(I) <2
W j=1 W j=1

91

6 — On-line Generalized Bin Packing Problems

Since FF uses bins of type s, we have that

Cs Cy
< IAY
W, = W,

Considering the indicator function o(j) introduced in Section 3.1.1 and the set

VteT. (6.76)

of bins B* of an optimal solution, (6.76) becomes:

Cs _ Gol) :
=< 290 e Br (6.77)
Ws = We()

By means of (6.77), inequality (6.75) can be transformed as follows

Cs g . g Cs . g CO’() .
FF(I) < 2 C,=2 C, <2 J C,. (6.78
(1) < 295 328G) + € =230 55 00) +Co < 23055 E60) +Cor - (678)

The level of a bin must be less or equal the capacity of the bin itself, i.e., 5(j) <
W,(j)- Plugging this inequality into (6.78), we get

Co(i J
G) Woi) +Cs =2 Z Co(jy +Cs. (6.79)
We ()

FF(I) < 2 f:

But Y9_, Cy(j) is the cost of an optimal solution, therefore (6.79) becomes

FF(I) <2-OPT(I)+ C,, (6.80)

which means that algorithm FF has an asymptotic worst-case ratio of 2.

To prove that the bound is tight consider instance I composed of n items with
volume w = % + ¢ and two bin types, 1 and 2, with C; =1, Wy =1+¢, C, = % + €,
and W, = % + €. Note that

a_ 1 ,_6
W1 1+e™ W2

Therefore, FF selects bins of type 1. Nevertheless, these bins are not big enough

(6.81)

to accommodate two items because 2w = 1 + 2¢ > 1 + ¢ = W,;. Thence we have

FF(I) =nC =n. (6.82)

92

6 — On-line Generalized Bin Packing Problems

On the contrary, the optimal solution consists in accommodating the n items each

into a type 2 bin because, for € small enough, C, < C;. Then

OPT(I) =nC = n (;). (6.83)

The worst case ratio is then

(6.84)

which approaches 2 as € — 0. O

93

Chapter 7
Conclusions

In this thesis, we have introduced and studied a new family of packing problems
named Generalized Bin Packing Problems. These problems are the Generalized Bin
Packing Problem (GBPP), the Stochastic Generalized Bin Packing Problem (S-
GBPP), the On-line Generalized Bin Packing Problem (OGBPP), the Generalized
Bin Packing Problem with item profits proportional to item volumes (GBPP,), the
On-line Generalized Bin Packing Problem with item profits proportional to item
volumes (OGBPP,,), and the On-line Variable Cost and Size Bin Packing Problem
(OVCSBPP). We have addressed these new problems in order to overcome a note-
worthy portion of a gap in the packing literature in terms of comprehensive study
concerning the joint presence of both compulsory and non-compulsory items, and
in terms of unified methodologies in order to solve packing problems with different
objective functions. Moreover, we could address new real-life applications not yet
addressed or only partially addressed by the current state-of-the-art packing prob-
lems. For this reason, we have both studied deterministic and stochastic problems,
with two kinds of stochasticity concerning the items: 1) stochasticity of the item
attributes, where one attribute is affected by uncertainty and modeled as a random
variable, and 2) stochasticity of the item availability, i.e., the items are not known

a priori but arrive on-line in an unpredictable way to a decision maker.

Our main result concerned the development of models and unified methodologies
of these new packing problems characterized by (with the only exception of the

OVCSBPP) the joint presence of both compulsory and non-compulsory items. This

94

7 — Conclusions

innovative feature allowed us to address and collect several bin packing and knapsack
problems at the same time into a unique one: the GBPP. These problems are the
Bin Packing Problem (BPP), the Variable Sized Bin Packing Problem (VSBPP),
the Variable Cost and Size Bin Packing Problem (VCSBPP), the Knapsack Problem
(KP), the Multiple Knapsack Problem (MKP), and the Multiple Knapsack Problem
with identical capacities (MKPI). Moreover, the GBPP allowed us to address new
applications and to bring new contributions in logistics, in transportation, and in
the waste collection problem. For this problem, we gave two formulations and
we proposed variegated methods in terms of quality and computational time. We
created new instance classes in order to test all these methods and we achieved
excellent results, with an overall percentage mean gap of 0.03%. Moreover, we could
close most of the instances in the GBPP literature.

The S-GBPP allowed us to address new applications where each profit depends
on the bin where it is loaded and it is described by a random variable. These
applications arise in particular in logistics, where the freight consolidation is essential
to optimize the delivery process, and in the Railway Track Maintenance Planning
Problem, where maintenance operations must be scheduled into time-slots and their
costs are uncertain and depend on the time-slots where they are assigned. For this
problem, we provided a stochastic model and, applying the extreme value theory,
we derived a deterministic approximation.

Finally, we studied the on-line variant of the GBPP, the OGBPP. This problem
arises in all applications where orders arrive on-line, in particular in logistics, with
freight forwarders. For this problem, we studied a wide range of algorithms in order
to test whether the available tools in the literature (i.e., the asymptotic and absolute
worst case ratios) are still effective when a richer setting as the OGBPP is tackled.
Our study revealed a strong result: we proved that, for all the proposed algorithms,
it is even impossible to apply the definition of these worst case ratios. This behavior
occurred also in the OGBPP,,, a particular case of the OGBPP where item profits
are proportional to their corresponding volumes through a positive coefficient.

We believe that the ultimate packing problem for which it is possible to compute
a performance ratio is the OVCSBPP, the closest problem to the GBPP, where
the items arrive on-line, but still without the presence of non-compulsory ones. For

this problem, we could generalize the work of Li and Chen [2006] to a more general

95

7 — Conclusions

setting, still guaranteeing the same performance ratio.

The study on the OGBPP is still an open problem. A very challenging devel-
opment is to give a formal answer to the question whether there exists at least one
on-line algorithm with any worst case ratio. This study will be the topic of future

research.

96

Bibliography

A. Akkas. Transportation Resource Scheduling in Food Retail Industry. PhD thesis,
Massachussets Institute of Technology, 2004.

C. Alves and J. M. Valério de Carvalho. Accelerating column generation for variable
sized bin-packing problems. Furopean Journal of Operational Research, 183:1333—
1352, 2007.

C. Alves and J. M. Valério de Carvalho. A stabilized branch-and-price-and-cut
algorithm for the multiple length cutting stock problem. Computers & Operations
Research, 35:1315-1328, 2008.

A. Atamturk and M. W. P. Savelsberg. Integer programming software systems.
Annals of Operations Research, 140:67-124, 2005.

M. M. Baldi, T. G. Crainic, G. Perboli, and R. Tadei. The generalized bin packing
problem. Transportation Research Part E, 48(6):1205-1220, 2012a. doi: 10.1016/
j.tre.2012.06.005.

M. M. Baldi, T. G. Crainic, G. Perboli, and R. Tadei. Branch-and-price and beam
search algorithms for the variable cost and size bin packing problem with optional
items. Annals of Operations Research, 2012b. doi: 10.1007/s10479-012-1283-2.

M. M. Baldi, G. Perboli, and R. Tadei. The three-dimensional knapsack problem
with balancing constraints. Applied Mathematics and Computation, 218(19):9802—
9818, 2012c.

97

BIBLIOGRAPHY

C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsberg, and P. H.
Vance. Branch-and-price: Column generation for solving huge integer programs.
Operations Research, 46(3):316-329, 1998.

G. Belov and G. Scheithauer. A cutting plane algorithm for the one-dimensional cut-
ting stock problem with multiple stock lengths. Furopean Journal of Operational
Research, 141:274-294, 2002.

A. Bettinelli, A. Ceselli, and G. Righini. A branch-and-price algorithm for the
variable size bin packing problem with minimum filling constraint. Annals of
Operations Research, 179:221-241, 2010.

M. T. Bianchi de Aguiar. Optimization Techniques for the Mized Urban Rural Solid
Waste Collection Problem. PhD thesis, Faculdade de engenharia da Universidade
do Porto, 2010.

M. T. Bianchi de Aguiar, M. A. Caravilla, and J. F. Oliveira. Municipal waste
collection in ponte de lima, portugal - a vehicle routing application. OR Insight,
25:185-198, 2012.

C. Boutevin, M. Gourgand, and S. Norre. Bin packing extensions for solving an
industrial line balancing problem. In Assembly and Task Planning, 2003. Pro-
ceedings of the IEEE International Symposium on, pages 115-121, 2003.

C. Chu and R. La. Variable-sized bin packing: Tight absolute worst-case perfor-
mance ratios for four approximation algorithms. SIAM Journal on Computing,
30:2069-2083, 2001.

J. K. Cochran and B. Ramanujam. Carrier-mode logistics optimization of inbound
supply chains for electronics manufacturing. International Journal of Production
Economics, 103(2):826-840, 2006.

E.G. Coffman Jr., K. So, M. Hofri, and A.C. Yao. A stochastic model of bin-packing.
Information and Control, 44(2):105-115, 1980.

A. M. Cohn and C. Barnhart. The stochastic knapsack problem with random
weights: A heuristic approach to robust transportation planning. In Proceedings

of the Triennial Symposium on Transportation Analysis, 1998.

98

BIBLIOGRAPHY

I. Correia, L. Gouveia, and F. Saldanha-da-Gama. Solving the variable size bin pack-
ing problem with discretized formulations. Computers & Operations Research, 35:
2103-2113, 2008.

T. G. Crainic, G. Perboli, W. Rei, and R. Tadei. Efficient lower bounds and heuristics
for the variable cost and size bin packing problem. Computers € Operations
Research, 38:1474-1482, 2011.

T.G. Crainic, G. Perboli, M. Pezzuto, and R. Tadei. New Bin Packing Fast Lower
Bounds. Computers & Operations Research, 34(11):3439-3457, 2007.

W.F. de la Vega and G.S. Lueker. Bin packing can be solved within 1 + ¢ in linear
time. Combinatorica, 1(4):349-355, 1981.

B. Dean, M. Goemans, and J. Vondrak. Approximating the stochastic knapsack
problem: The benefit of adaptivity. Mathematics of Operations Research, 33:
945-964, 2008.

F. Della Croce, M. Ghirardi, and R. Tadei. Recovering beam search: Enhancing
the beam search approach for combinatorial optimization problems. Journal of
Heuristics, 10:89-104, 2004.

P. Detti, C. Hurkens, A. Agnetis, and G. Ciaschetti. Optimal packet-to-slot assign-
ment in mobile telecommunications. Operations Research Letters, 37(4):261-264,

2009.

L. Epstein. On online bin packing with lib constraints. Nawval Research Logistics,
56:780 — 786, 2009.

L. Epstein and A. Levin. An aptas for generalized cost variable-sized bin packing.
SIAM Journal on Computing, 38(1):411-428, 2008.

L. Epstein and A. Levin. Bin packing with general cost structures. Mathematical
Programming, 132:355 — 391, 2012.

L. Epstein and R. van Stee. Online bin packing with resource augmentation. In
Proceedings of the Second international conference on Approximation and Online
Algorithms, pages 23-35. Springer-Verlag, 2005. ISBN 978-3-540-24574-2.

99

BIBLIOGRAPHY

L. Epstein, L. M. Favrholdt, and A. Levin. Online variable-sized bin packing with
conflicts. Discrete Optimization, 8(2):333 — 343, 2011.

S. Fazi, T. van Woensel, and J. C. Fransoo. A stochastic variable size bin packing
problem with time constraints. Technical report, Technische Universiteit Eind-
hoven, 2012.

S. P. Fekete and J. Schepers. New classes of lower bounds for bin packing problems.
Mathematical Programming, 91(1):11-31, 2001.

M. L. Fisher. Worst-case analysis of heuristic algorithms. Management Science, 26
(1):1 — 17, 1980.

R. J. Francis. Technology Mapping for Lookup-Table Based Field-Programmable Gate
Arrays. PhD thesis, University of Toronto, 1993.

J. F. Freire Beirao. Packing Problems in Industrial Environments: Application to
the Expedition Problem at INDASA. PhD thesis, Universidade Técnica de Lisboa,
2009.

D. K. Friesen and M. A. Langston. Variable sized bin packing. SIAM Journal on
Computing, 15:222-230, 1986.

A. S. Fukunaga and R. E. Korf. Bin completion algorithms for multicontainer pack-
ing, knapsack, and covering problems. Journal of Artificial Intelligence Research,

28(1):393-429, 2007.

J. Galambos. The asymptotic theory of extreme order statistics. John Wiley, New
York, 1978.

A. Goel and P. Indyk. Stochastic load balancing and related problems. In 40th
Annual Symposium on Foundations of Computer Science, pages 579-586, 1999.

E. J. Gumbel. Statistics of Extremes. Columbia University Press, 1958.
Gurobi Optimization. Gurobi solver 4.0 reference manual, 2010.

A. Gyorgy, G. Lugosi, and G. Ottucsak. On-line sequential bin packing. J. Mach.
Learn. Res., 11:89-109, 2010.

100

BIBLIOGRAPHY

X. Han and K. Makino. Online minimization knapsack problem. In Evripidis Bampis
and Klaus Jansen, editors, Proceedings of the 7th international conference on
Approzimation and Online Algorithms, volume 5893 of WAOA’09, pages 182 —
193. Springer Berlin Heidelberg, 2010.

X. Han, C. Peng, D. Ye, D. Zhang, and Y. Lan. Dynamic bin packing with unit
fraction items revisited. Inf. Process. Lett., 110(23):1049-1054, 2010.

W. Hansen. How accessibility shapes land use. Journal of the American Institute of

Planners, 25:73-76, 1959.

M. Haouari and M. Serairi. Heuristics for the variable sized bin-packing problem.
Computers € Operations Research, 36:2877-2884, 20009.

M. Haouari and M. Serairi. Relaxations and exact solution of the variable sized
bin packing problem. Computational Optimization and Applications, 48:345-368,
2011.

F. Heinicke, A. Simroth, and R. Tadei. On a novel optimisation model and solution
method for tactical railway maintenance planning. In Proceedings of the 2nd Inter-
national Conference on Road and Rail Infrastructure, pages 421-427. Department

of Transportation, Faculty of Civil Engineering, University of Zagreb, 2012.

F. Heinicke, A. Simroth, R. Tadei, and M. M. Baldi. Job order assignment at opti-
mal costs in railway maintenance. In Proceedings of the 1st International Confer-

ence on Operations Research and Enterprise Systems (ICORES 2013), Barcelona,
Spain, 16-18 February, 2013. SciTePress, 2013. forthcoming.

V. Hemmelmayr, V. Schmid, and C. Blum. Variable neighbourhood search for the
variable sized bin packing problem. Computers & Operations Research, 39:1097—
1108, 2012.

H. Hifi and M. Michrafy. Reduction strategies and exact algorithms for the dis-
junctively constrained knapsack problem. Computers € Operations Research, 34:

2657-2673, 2007.

V. Huang and W. Zhuang. Optimal resource management in packet-switching tdd

cdma systems. IEEE Personal Communications Magazine, 7:26—-31, 2000.

101

BIBLIOGRAPHY

M. D. Hutton. Notes on integer bin-packing for technology mapping on trees.
http://www.eecg.toronto.edu/~mdhutton/papers/binpack.pdf, 1993.

ILOG Inc. IBM ILOG CPLEX v12.1 User’s Manual, 2009.

K. Iwama and S. Taketomi. Removable online knapsack problems. In Peter Wid-
mayer, Stephan Eidenbenz, Francisco Triguero, Rafael Morales, Ricardo Conejo,
and Matthew Hennessy, editors, Automata, Languages and Programming, volume
2380 of Lecture Notes in Computer Science, pages 773 — 773. Springer Berlin /
Heidelberg, 2002.

K. Iwama and G. Zhang. Optimal resource augmentations for online knapsack.
In Proceedings of the 10th International Workshop on Approximation and the
11th International Workshop on Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques, APPROX '07/RANDOM °07, pages 180 — 188.
Springer-Verlag, 2007.

K. Iwama and G. Zhang. Online knapsack with resource augmentation. Information
Processing Letters, 110:1016 — 1020, 2010.

D. S. Johnson. Near-Optimal bin packing algorithms. PhD thesis, Dept. of Mathe-
matics, M.I.T., Cambridge, MA, 1973a.

D. S. Johnson. Approximation algorithms for combinatorial problems. In Proceedings
of the fifth annual ACM symposium on Theory of computing, pages 38-49. ACM,
1973b.

D. S. Johnson. Fast algorithms for bin packing. Journal of Computer and System
Sciences, 8(3):272-314, 1974.

D. S. Johnson, A. Demeters, J. D. Hullman, M. R. Garey, and R. L. Graham. Worst-
case performance bounds for simple one-dimensional packing algorithms. STAM
Journal on Computing, 3:299-325, 1974.

J. Kang and S. Park. Algorithms for the variable sized bin packing problem. Euro-
pean Journal of Operational Research, 147:365-372, 2003.

102

BIBLIOGRAPHY

N. Karmarkar and R. M. Karp. An efficient approximation scheme for the one-
dimensional bin packing problem. In Proceedings of 23rd Annual Symposium on
Foundations of Computer Science, pages 312-320. IEEE Comput. Soc. Press.,
1982.

H. Kellerer, U. Pferschy, and D. Pisinger, editors. Knapsack Problems. Springer
Verlag, 2004. ISBN 3-540-40286-1.

S. Kosuch and A. Lisser. On two-stage stochastic knapsack problems. Discrete
Applied Mathematics, d0i:10.1016/j.dam.2010.04.006, forthcoming.

B. Kouakou, M. Demange, and E. Soutif. On-line bin-packing problem : maximizing
the number of unused bins. Technical report, Université Panthéon-Sorbonne (Paris
1), 2005.

E. L. Lawler and D. E. Wood. Branch-and-bound methods: A survey. Operations
Research, 14(4):699-719, 1966.

C. C. Lee and D. T. Lee. A simple on-line bin-packing algorithm. J. ACM, 32(3):
562-572, 1985.

J. Y.-T Leung and C-L Li. An asymptotic approximation scheme for the concave
cost bin packing problem. European Journal of Operational Research, 191(2):582
— 586, 2008.

C-L. Li and Z-L. Chen. Bin-packing problem with concave costs of bin utilization.
Na, 53(4):298-308, 2006.

Z. Li. Optimal Shipping Decisions in an Airfreight Forwarding Network. PhD thesis,
University of Waterloo, Ontario, Canada, 2011.

G. S. Lueker. Bin packing with items uniformly distributed over intervals [a,b].
In Proceedings of 24th Annual Symposium on Foundations of Computer Science,
pages 289-297. IEEE Comput. Soc. Press., 1983.

S. Martello and P. Toth. Knapsack Problems - Algorithms and computer implemen-
tations. John Wiley & Sons, Chichester, UK, 1990.

103

BIBLIOGRAPHY

M. Monaci. Algorithms for packing and scheduling problems. PhD thesis, Universita
di Bologna, Bologna, Italy, 2002.

F. D. Murgolo. An efficient approximation scheme for variable-sized bin packing.
SIAM - Journal on Computing, 16:149-161, 1987.

D. Naddef and G. Rinaldi. Branch-and-cut algorithms for the capacitated vrp. In
Paolo Toth and Daniele Vigo, editors, The vehicle routing problem, pages 53—84.
Society for Industrial and Applied Mathematics, 2001. ISBN 0-89871-498-2.

J. Peng and B. Zhang. Bin packing problem with uncertain volumes and capacities.
http://orsc.edu.cn/online/120601.pdf, 2012.

G. Perboli, R. Tadei, and M. M. Baldi. The stochastic generalized bin packing
problem. Discrete Applied Mathematics, 160:1291-1297, 2012.

D. Pisinger. Algorithms for Knapsack Problems. PhD thesis, University of Copen-
hagen, Copenhagen, Denmark, 1995.

W. T. Rhee and M. Talagrand. On-line bin packing of items of random size, part i.
SIAM Journal on Computing, 18:438-445, 1993a.

W. T. Rhee and M. Talagrand. On-line bin packing of items of random size, part
ii. SIAM Journal on Computing, 18:473-486, 1993b.

K. M. Ross and D. H. K. Tsang. Stochastic knapsack problem. IFEE Transactions
on Communications, 37:740-747, 1989.

P. Schwerin and G. Wascher. The bin-packing problem: A problem generator and
some numerical experiments with FFD packing and MTP. International Trans-
actions in Operational Research, 4:377-389, 1997.

S. Seiden. An optimal online algorithm for bounded space variable-sized bin packing.
In Ugo Montanari, JosA© Rolim, and Emo Welzl, editors, Automata, Languages
and Programming, volume 1853 of Lecture Notes in Computer Science, pages 283—
295. Springer, 2000.

S. Seiden. On the online bin packing problem. J. ACM, 49(5):640-671, 2002.

104

BIBLIOGRAPHY

S. Seiden, R. Van Stee, and L. Epstein. New bounds for variable-sized online bin
packing. SIAM Journal on Computing, 32(2):455-469, 2003.

K. Shintani, A. Imai, E. Nishimura, and S. Papadimitriou. The container ship-
ping network design problem with empty container repositioning. Transportation
Research Part E: Logistics and Transportation Review, 43:39-59, 2007.

N. Skorin-Kapov. Routing and wavelength assignment in optical networks using
bin packing based algorithms. FEuropean Journal of Operational Research, 177(2):
1167-1179, 2007.

R. Tadei, G. Perboli, and F. Della Croce. A heuristic algorithm for the auto-carrier
transportation problem. Transportation Science, 36(1):55-62, 2002.

J. D. Ullman. The performance of a memory allocation algorithm. Technical Report
100, Princeton University, 1971.

A. van Vliet. An improved lower bound for on-line bin packing algorithms. Info
Process. Lett., 43(5):277-284, 1992.

F. Vanderbeck. Computational study of a column generation algorithm for bin
packing and cutting stock problems. Mathematical Programming, 86:565-594,
1996.

Z. Wang. Worst-case performance of the successive approximation algorithm for
four identical knapsacks. Journal of Industrial and Management Optimization, 8
(3):651 — 656, 2012. doi: 10.3934/jimo.2012.8.651.

Z. Wang and W. Xing. A successive approximation algorithm for the multiple
knapsack problem. Journal of Combinatorial Optimization, 17:347-366, 2009.

A. C. Yao. New algorithms for bin packing. J. ACM, 27(2):207-227, 1980.

G Zhang. A new version of on-line variable-sized bin packing. Discrete Applied
Mathematics, 72(3):193 — 197, 1997.

105

	Ringraziamenti
	Introduction
	Literature review
	The Generalized Bin Packing Problem: models and bounds
	Problem Definition and Formulation
	Notation
	Assignment formulation of the GBPP
	Generalization of classic bin packing and knapsack problems
	Set Covering formulation of the GBPP

	Lower bounds
	Lower bound through the Aggregate Knapsack Problem
	Lower bound through column generation

	Upper bounds
	Upper bounds through constructive heuristics
	Upper bounds through the lower bound LB1
	Upper bounds through column generation-based heuristics

	Computational results
	Instance classes
	Lower bounds
	Upper bounds
	Sensitivity analysis

	Branch-and-price and Beam Search for the Generalized Bin Packing Problem
	Introduction
	Branch-and-price
	Bounds at the root node
	Branching
	Pricing
	Rounding

	Beam search
	Computational results
	Testing environment
	GBPP results
	VCSBPP comparison

	The Stochastic Generalized Bin Packing Problem
	Introduction
	The assignment model of the Generalized Bin Packing Problem revisited
	The Stochastic Generalized Bin Packing Problem
	Formulation of the probability distribution of the maximum shadow random profit of any item
	The asymptotic approximation of the probability distribution of the maximum shadow random profit of any item
	The deterministic approximation of the S-GBPP

	On-line Generalized Bin Packing Problems
	Introduction
	Problems settings
	The asymptotic and the absolute worst case ratios
	The On-line Generalized Bin Packing Problem
	The Generalized Bin Packing Problem with item profits proportional to item volumes and its on-line variant
	The Variable Cost and Size Bin Packing Problem and its on-line variant
	Terminology

	Algorithms for the On-line Generalized Bin Packing Problem
	The On-line Generalized Bin Packing Problem with item profits proportional to item volumes
	First Fit algorithm for the On-line Variable Cost and Size Bin Packing Problem

	Conclusions

