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We investigate thickness and surface anchoring strength influence on pitch transitions in a planar cholesteric
liquid crystal layer. The cholesteric-nematic transition is also investigated. We assume planar boundary conditions,
with strong anchoring strength at one interface and weak anchoring strength at the other. The surface anchoring
energy we consider to describe the deviation of the surface twist angle from the easy axis induced by a bulk
deformation is a parabolic potential or Rapini and Papoular periodic potential, respectively. We show that under
strain, all pitch transitions take place at a critical thickness that is equal to the quarter of the natural cholesteric
pitch. The latter result does not depend on the anchoring strength, the particular surface potential, or material
properties. The twist angle on the limiting surface characterized by weak anchoring varies with strain either
by slipping and or in a discontinuous manner according to the thickness of the sample. The position of the
bifurcation point depends only on the ratio of the extrapolation length over the layer thickness, but its value is
model dependent. Multistability and multiplicity of the transition are discussed.
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I. INTRODUCTION

The effect of an external field on a unbounded cholesteric
liquid crystal (CLC) has been discussed long ago by de
Gennes [1] and independently by Meyer [2]. They saw that the
presence of a magnetic field is responsible for a continuous
increasing of the pitch of the CLC. The pitch diverges when
the external field reaches a critical value that depends on the
magnetic and elastic properties of the CLC. The analysis has
been extended to a sample of finite thickness by Dreher [3]
and Stewart et al. [4,5], who predicted that the pitch increases
by finite steps, due to the boundary conditions imposed on
the limiting surfaces. According to their analysis, the CLC
expels a pitch all the time the external field reaches well
defined critical values. Pitch transitions in a CLC can also be
induced by the variation of the temperature that influences the
intrinsic periodicity of the CLC. Temperature-induced pitch
transitions have been investigated by Belyakov et al. [6–8]
and Palto [9]. The instability mechanism underlying the pitch
transitions has been discussed by Kiselev and Sluckin in [10].
Recently, Scarfone et al. [11,12] have shown that in the limit
of infinite thickness the analysis presented in [3,4] yields the
results reported in [1]. Experimental observations of CLC pitch
transitions have been reported in [13–18].

Under the presence of an external field, magnetic or electric,
the nematic director tends to orient parallel or perpendicular
to the applied field direction, according to the diamagnetic or
dielectric anisotropy of the CLC [19,20]. In order to minimize
the total energy, including both elastic and external bulk field
contributions, the CLC distorts its structure up to destroy its
intrinsic periodicity [3,11]. In the present paper, we inves-
tigate the effect of the sample thickness in conjunction with
the anchoring strength on the CLC pitch transitions. In the case
that anchoring is strong enough, reducing the thickness of the
sample, the CLC has to pay a price in elastic energy to maintain
its natural periodicity. As soon as this price becomes too large,
the CLC expels a half pitch in order to avoid divergences in the

elastic energy contribution. Our aim is to analyze the role of
the surface anchoring, taking into account the direct interaction
between the CLC and the limiting surfaces, in this instability.
We assume that the surface energy (i) is proportional to the
square of the deviation of the actual surface twist angle from
the easy direction imposed by the surface treatment (parabolic
potential) or (ii) is well approximated by the functional form
proposed by Rapini and Papoular [21]. In both cases we show
that reducing the thickness of the sample, the surface twist
angle is slipping to reduce the strain elastic energy of the
confined CLC or/and is presenting discontinuous variations
as soon as the thickness reaches a well defined value that
depends on the elastic and surface properties of the sample.
Finally, we show that the position of the critical point between
the two regimes is model dependent and therefore it could
be used in order to determine the most adequate surface
potential.

II. THE MODEL SYSTEM

We consider a CLC confined between two infinite parallel
plates with spacing d. The Cartesian reference frame used
for the description has the z axis perpendicular to the plates,
with the bounding surfaces located at z = 0 and z = d. Both
plates are supposed to induce planar alignment, with the easy
direction e along the x axis. The interface at z = 0 is assumed
with infinitely strong anchoring, whereas the one at z = d is
assumed with finite azimuthal anchoring energy. The nematic
director n, describing the average molecular orientation, is
assumed to be everywhere parallel to the (x,y) plane even in
the strained state. The angle formed by n with the x axis is
indicated by φ(z). The helical axis is in the z direction. The
total energy per unit area of the sample is given by

F = K

2

∫ d

0

(
dφ

dz
− π

λ0

)2

dz + fs(n,e), (1)
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where K is the twist elastic constant, λ0 the natural half-pitch of
the CLC, and fs the surface energy describing the anisotropic
part of the surface tension at the upper (z = d) CLC-substrate
interface.

Our aim is to examine the influence of the slab thickness
and of the anchoring strength on the CLC helix unwinding
when fs is approximated by (i) a parabolic potential, and
(ii) a periodic potential of the Rapini and Papoular form [21].
We use two forms for the surface anchoring energy in order
to investigate if the main features of the pitch transitions are
model dependent.

In case (i), fs has the form

fs = w

2
(φs − φe)2, (2)

where w is the anchoring energy strength, φs = φ(z = d)
the twist angle at the upper-interface, and φe the easy angle
between e and the x axis. Due to the symmetry of the CLC
phase, the easy angle is a multiple of π ; i.e., in the frame
of the present model system, φN

e = Nπ for a unstrained
cell that contains N half pitch (of thickness d0 = Nλ0). The
parabolic potential as it is introduced by Eq. (2) is not a
π -periodic potential. In the case (ii), the surface energy has the
functional form fs = (w/2) sin2(φs − φe), proposed by Rapini
and Papoular [21]. Since φe = mπ , where m is an integer, fs

reads

fs = w

2
sin2 φs. (3)

III. PARABOLIC POTENTIAL

To investigate the influence of the thickness of the sample
on the CLC structure it is necessary to find the dependence of
the twist angle φ(z) on d. By minimizing F given by Eq. (1) we
get d2φ/dz2 = 0, from which it follows that φ(z) = φs(z/d),
where we have taken into account that φ(0) = 0 from the
hypothesis of strong anchoring on the surface at z = 0. By
substituting the latter expression into Eq. (1) we obtain for the
rescaled energy G = 2F/K the expression

G =
(

φs

d
− π

λ0

)2

d + (φe − φs)2

L
, (4)

where L = K/w is the extrapolation length [22]. Equation (4)
gives G = G(φs). The actual φs is determined by minimizing
G(φs) with respect to φs . From Eq. (4) we get

G′ = dG

dφs

= 2

{(
φs

d
− π

λ0

)
− φe − φs

L

}
, (5)

G′′ = d2G

dφ2
s

= 2

(
1

d
+ 1

L

)
. (6)

The condition G′ = 0 gives

φs = Ld

d + L

(
π

λ0
+ φe

L

)
, (7)

relating φs to the thickness of the sample d. This solution
is always stable, since G′′ > 0 for all φe, as it follows from
Eq. (6). From Eq. (7) one obtains d in terms of the surface

twist angle, φs , minimizing G:

d = φs

π/λ0 + (φe − φs)/L
. (8)

By substituting Eq. (7) into Eq. (4) we get

G = d2

d + L

(
φe

d
− π

λ0

)2

, (9)

giving G versus the external field d and the easy direction φe.
First, let us consider φe = Nπ ; N = 0,1,2, . . . ,Nmax. In this
case, the surface twist angle φs is indicated by �N and Eq. (7)
reads

�N = Ld

d + L

(
1

λ0
+ N

L

)
π. (10)

From Eq. (10) it follows that when d decreases, �N decreases
too. From Eq. (9) the total energy can be rewritten as

GN =
(

N − d

λ0

)2
π2

d + L
� 0 (11)

and it follows that GN has a minimum at any d0 = Nλ0, where
it vanishes.

The condition for a pitch transition between two states
that differ by a half-pitch number �N (N ↔ N + �N pitch
transition) is given by the equality of the total energy of the
two configurations

GN = GN+�N ⇒ dc(N,�N ) =
(

N + �N

2

)
λ0. (12)

Note that, from the latter condition for the transition, the
critical thickness dc(N,�N ) does not depend on anchoring or
on material properties, and, therefore, it is purely topological.
The values of �N = ±1,±2, . . . are subjected to the condition
that the thickness is a positive real number. The absolute
value of �N is the multiplicity mp of the transition (mp =
|�N |). Transitions between stable states have always mp = 1.
Transitions with mp > 1 involve metastable states and at most
one stable state.

Figure 1 shows GN vs d, for L/λ0 = 1. The energy curves
intersect always at (N ± 1/2)λ0 or Nλ0. If the half-pitch
number N is conserved above the intersection point of
successive energy curves, the system enters the metastable
states indicated by dashed lines in Fig. 1. For instance, in a cell
with initially N = 10 that is strained, the transition 10 → 9
could happen at the point A where the two configurations
have the same energy. If the system is blocked at the state
N = 10 above A, then it becomes metastable and it could
attain the point B, if it does not relax in between, where a
transition 10 → 8 may happen. Of course, a transition 10 → 9
remains always probable even if the system has reached
the cross point B. This kind of bistability has also been
predicted for the RP potential in [10]. Transitions where the
initial strained state may relax towards three different states
(tristability) are also possible; e.g., see in Fig. 1 the energy
curve for N = 11, if the system crosses the point C it can
relax towards three configurations with N = 8,9,10, etc. To
reach this kind of multistability the system has to be trapped
in a state with high enough energy. At this point, it is useful
to introduce the number ms = 1,2, . . . that characterizes the
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FIG. 1. (Color online) Energy vs d/λ0. The CLC pitch transition
takes place at the crossing point between successive energy curves.
Above the crossing points of the energy curves the system enters in
the range of metastable states (dashed lines). Vertical arrows indicate
transitions from a metastable state towards another metastable (black
arrows) or a stable state (red arrows).

order of multistability. In absence of multistability ms = 1.
Note that multiplicity and multistability are permitted because
the parabolic potential is not assumed to be periodic.

The energy barrier �G = G(N − 1/2) − G(N,d) between
successive stable CLC states (ms = 1), as function of the
cell thickness is plotted in Fig. 2, for L/λ0 = 0,10,100. In
general, the energy G(N,d) of the initial state depends on
the sample thickness. For a unstrained system (d = Nλ0) the
energy vanishes G(N,Nλ0) = 0. As it is shown, the energy

4 4.5 5
0

0.2

0.4

d�Λ0

�
G
Λ 0

L � 0

L � 10Λ0

L � 100Λ0

FIG. 2. The energy barrier �G λ0 between successive CLC states
vs d/λ0 (ms = 1). For increasing values of L the energy barrier is
decreasing. If the cell is prestrained the energy barrier decreases.

0 10 20
0

1

2

L�dcN

�
�
�Π

�
G
d cN

FIG. 3. The energy barrier �G dN
c (dashed line) and surface twist

angle jump (continuous line) �� between successive CLC states vs
L/dN

c . ms = 1.

barrier increases when the extrapolation length decreases.
Figure 3 shows the energy barrier �G for an initially
unstrained system, dashed line, at the transition vs L/dN

c with
dN

c = dc(N, ± 1). The energy barrier of the N ↔ N − 1 pitch
transition increases with the relative anchoring strength, i.e.,
decreasing L and increasing N .

The surface twist angle at the critical thickness is given by

�
(
dN

c

) = (2N − 1)(L + Nλ0)

2L + (2N − 1)λ0
,

(13)

π = Nπ
1 + L/(Nλ0)

1 + L/dN
c

.

The latter equation shows that �(dN
c ) is an increasing function

of N . At the cholesteric-nematic (Ch-N) transition �(dN
c )

varies from π for strong anchoring (λ0 � L) towards π/2
for weak enough anchoring (λ0 � L).

The jump of the surface twist angle at dN
c is written as

�� = (2N − 1)πλ0

2L + (2N − 1)λ0
= π

1 + L/dN
c

. (14)

For L = 0, �� = π and for L = ∞, �� = 0. In Fig. 3
is also reported the dependence of the surface twist angle
discontinuity �� at the transition on L/dN

c (continuous
line). As it is shown the amplitude of �� depends on the
extrapolation length L and the number of half twist turns in
the cell. Combining Eqs. (13) and (14), one finds that the
relative surface twist angle variation at the pitch transition

��

�
= 1

N + L/λ0
(15)

decreases with the order N of the transition.
Finally, Fig. 4 shows the surface twist angle variation

with the thickness of the CLC cell for three values of the
extrapolation length, L/λ0 = 0.001,1,10. The discontinuity
�� of φs appears at the pitch transitions and increases with
N at constant L. For the same N , the jump increases with the
anchoring strength w.
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0

1
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d�Λ0

Φ
S�
Π

L � 0.001 Λ0

L � Λ0

L � 10 Λ0

FIG. 4. (Color online) Variation of the surface twist angle φS in
units of π with d/λ0 for L/λ0 = 0.001, 1, 10. ms = 1. The jump of
φS at the transition is increasing with N while decreasing with L.

In conclusion, the parabolic potential predicts that for finite
L there is always a discontinuity of the surface twist angle at
the pitch transition of any order. For L = ∞ the transition is
continuous and independent of the thickness value (d 	= 0);
i.e., there is a critical point (CP) at infinity. However, the
system never becomes unstable [see Eq. (6)]. If the system
is blocked in a metastable state, then multiple half pitch
transitions may take place (see Fig. 1) as experimentally
observed in [13]. The critical thickness for the complete
unwinding N = 1 → 0 transition is calculated from Eq. (12),
as dc = λ0/2 in accordance to the prediction of [11].

IV. RAPINI-PAPOULAR POTENTIAL

If the anchoring energy is assumed of Rapini-Papoular
form, the rescaled energy G = 2F/K of the CLC is

G =
(

φs

d
− π

λ0

)2

d + 1

L
sin2 φs. (16)

Minimization of the energy (G′ = 0) leads to the depen-
dence of the cell thickness on the surface twist angle that
extremizes G(φs,d)

d

λ0
= φs

π

1

1 − λ0 sin 2φs/(2πL)
. (17)

The latter equation also gives the surface twist angle as a
function of the thickness of the cell in implicit form. This
relation is of some practical importance since in experiments d

plays the role of the external field. Figure 5 shows the surface
twist angle as function of the cell thickness. The diagonal
dashed line corresponds to L = ∞ while the bold continuous
sigmoidal line corresponds to L = λ0. Note that for finite
values of L, φs(d) presents strong nonlinearities for d > L.
From G′ = 0, the energy of the strained CLC as function of

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

d �Λ0

Φ
S
�Π

FIG. 5. (Color online) φs vs d/λ0 for L = ∞, dashed line, and
L = λ0, continuous line. The blue curves correspond to the spinodal
of the system for L = λ0.

φs is cast in the form

G(φs) = sin2 φs

L

(
1 + φs

1 + cos 2φs

(2πL/λ0) − sin 2φs

)
� 0. (18)

Figure 6 shows G as function of φs , for L = λ0. The energy
has absolute minima at φs = Nπ , where it takes the value
G(Nπ ) = 0. At φs = (2N − 1)π

2 , G has a local minimum if
L < d. The latter extremum becomes an absolute maximum
when L > d. In both cases, for φs = (2N − 1)(π/2) one gets
G = 1/L. The dependence of G on φs given by Eq. (18)
implies, in general, intervals of continuous variation of φs

separated by first order transitions when d is varied.
The thermodynamical stability of the system, G′′ � 0, is

given by the spinodal line

1 + d

L
cos 2φs = 0. (19)

c d
a b

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

ΦS�Π

G
Λ 0

FIG. 6. CLC energy vs surface twist angle, for L = λ0. The part of
the curve between the maxima a and b (c and d) represents metastable
and unstable states.
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a b
d e

c

f

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

d�Λ0

G
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FIG. 7. CLC energy as a function of the cell thickness d/λ0 for
L = λ0. When the thickness of the cell becomes larger than L multiple
solutions appear and the pitch transitions become of first order. The
branch between the cusp points a and b (d and e) represents unstable
states.

Note that G′′ is always positive for L > d; i.e., the surface
twist angle φs varies continuously at the transition. In the case
L < d, the system stability requires L � −d cos 2φs .

Figure 5 gives the spinodal lines (blue curves with a critical
end point at L = d) for the case L = λ0. The states inside
the spinodal line are unstable and therefore the surface twist
angle undergoes a discontinuity when the system crosses the
spinodal. The φs jump is indicated by the dashed arrows in
Fig. 5. The upward (N → N + 1) and downward (N + 1 →
N ) transitions occur at different values of the control parameter
(d/λ0) when d > L as indicated by the position of the arrows in
Fig. 5. Therefore, hysteresis loops are formed. The amplitude
of the twist angle jump �φs depends apparently on L and on
d. In fact, a precise calculation shows that �φs at the spinodal
depends only on the L/d ratio and varies from 0, for L � d,
up to π/2 for L/d = 0, i.e, for infinitely strong anchoring. For
L = 0 the instability condition gives a jump of �φs = π/2
that happens at φs = Nπ ± π/4. Note that for a given CLC
cell, if a jump of the surface twist angle is observed this should
disappear when the thickness decreases (see Fig. 5).

Figure 7 shows the energy as a function of the reduced
thickness d/λ0 of the sample for L = λ0. Changing the sample
thickness, the stable states of the system for d > L go throw
a crossing point. If the system evolves monotonically beyond
the crossing point, it enters in a branch of metastable states
that ends at a cusp point. On the upper curve between two
cusp points the system becomes unstable (branches a and b).
As is shown in Fig. 7, the critical thickness for N ↔ N − 1
pitch transition is (N − 1/2)λ0. This result is obtained from the
condition of equal energies in the two states at the transition,
i.e.,

GN = GN−1 ⇒ dN
c

/
λ0 = N − 1/2, (20)

condition valid for all values of L and for each order N =
1,2,3, . . . of the transition. Apparently, the critical thickness
for the Ch-N transition is always dc = λ0/2 and independent

A

C

D
ab B

8.0 8.5 9.0 9.5 10.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

d�Λ0

G
Λ 0

FIG. 8. (Color online) Energy vs d/λ0 for L/λ0 = 1. An un-
winding transition with even multiplicity mp = 2 between the states
N = 10 and N = 8 is indicated by a red arrow at the point D. The
branches a and b between successive cusp points represent unstable
states.

on the form of the surface potential. This conclusion should
originate from the topological nature of the transition. If
transitions of higher multiplicity are of interest, one retrieves
Eq. (12) for the critical thickness. For the RP potential,
multiplicity and multistability are severely restricted from the
condition given by Eq. (19). In the following we calculate
the surface twist angle jump at the critical thickness, i.e.,
at the binodal for two limiting cases: L = ∞ and L = 0. In
the limit L → ∞, from Eq. (17) we get for the surface twist
angle at dN

c

φs

(
dN

c

) = π

λ0
dN

c = (2N − 1)
π

2
; (21)

i.e., �φs(dN
c ) = 0 in the limit L → ∞. In fact, �φs(dN

c ) = 0
for all L � d. The latter result is expected because the system
has no instability when L � d. In the opposite case, when
L → 0, from Eq. (17), we get

φs

(
dN

c

) = Mπ/2, (22)

where M is an integer. For odd M , the obtained value
corresponds to an unstable state. Therefore, φs(dN

c ) = Nπ ;
i.e., �φs(dN

c ) = π in the limit L → 0.
Figure 8 shows the possibility of pitch transitions of

higher multiplicity than one and of multistability. Suppose that
initially the system is at the state with 10 half turns (N = 10).
Under compression it could first transit to a state with N = 9
at a critical thickness d10

c = 9.5λ0, point A, but it can also
enter in the metastable range ABC and transit directly to
the state N = 8, either at the point B or at any point of the
segment BC. Of course, the system can also have a transition
towards the state with N = 9; i.e., in the segment BC the
system exhibits bistability [10]. The latter case is illustrated
at the point D where transitions to the states N = 9 and
N = 8 are indicated by arrows. The cusp point C corresponds
to the limit of metastability. In general, the multiplicity of
the pitch transition increases with the order of the transition
for fixed L and more generally with decreasing L/d. The
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FIG. 9. (Color online) The surface twist angle φs , vs d/λ0 for
L/λ0 = 0, 0.25, 0.5, 1, 2. The unwinding transition goes through a
CP at L/λ0 = 1. The middle part of each curve that has negative
slope corresponds to unstable states. The vertical dashed line gives
the transition points at the binodal. Once the transition has occurred
the twist angle varies almost linearly with the thickness of the
cell.

possibility to have transitions between states that differ by an
even number of half turns (even multiplicity) has already been
predicted [10] in both cases of a symmetric and an asymmetric
cell and experimentally observed in [13]. Note that transi-
tions with even multiplicity involve topologically equivalent
configurations [10].

Finally, we investigate the Ch-N transition that takes
place at d1

c = λ0/2. Figure 9 shows φs as function of the
reduced thickness d/λ0 of the sample in the case N = 1, for
L/d = 0, 0.25, 0.5, 1, and 2. The surface twist angle φs glides
continuously for L � d, as first predicted in [10] for the case
of an asymmetric cell, and it presents an instability for L < d;
i.e., there is a critical end point at L = d. The vertical dashed
line indicates the position of the unwinding transitions towards
the nematic phase, for L < d, defined from the equality of
energy for both phases (Maxwell’s rule). Note that for L 	= 0
the surface twist angle is different from zero even for very thin
films for the 1 → 0 transition; i.e., it seems that the CLC phase
persists (φs ∝ d).

V. DISCUSSION

Previous work on the strain induced pitch transitions in a
CLC by Belyakov reposes on the assumption that the pitch
transitions take place when φs = π/4 for a RP potential
[6,7]; i.e., the critical value of the surface twist angle is
independent of the anchoring strength and it is constant.
Therefore, the transition is always discontinuous. The critical
thickness in [6,7] is calculated proportional to the surface
extrapolation length dc = 2πL, i.e., for an infinitely strong
anchoring the cholesteric-nematic transition takes place for
dc = 0, while in the opposite limit L → ∞, the critical
thickness becomes infinite. These results are qualitatively
and essentially different from our conclusions. In fact, the
origin of the deviations between the two models is the

assumption of [6,7] that the condition for the transitions is
imposed from the surface potential alone. In our approach
the total energy of the system is minimized and the critical
surface twist angle is found to vary with the reduced surface
extrapolation length L/d, from φs = π/4 for L/d = 0 to
φs = π/2 for L/d = 1 while there is no jump of φs for
L � d. Therefore, the approach used in [6,7] should be valid
in the limit where L → 0. Nevertheless, even in this limit the
critical thickness predicted by the two models is qualitatively
different.

Let us now briefly investigate the role of the cell symmetry
with respect to the interfaces. In the case of a symmetric cell
where both interfaces are described by the RP potential and
are both characterized by the same extrapolation length L the
free energy simply takes the form

G =
(

2φs

d
− π

λ0

)2

d + 2

L
sin2 φs. (23)

Then the spinodal is given by the equation 1 + d
2L

cos 2φs =
0, and the critical end point is localized at d/L = 2 or
Lt/d = 1 with Lt = L + L. The critical thickness for the pitch
transitions is always given by Eq. (20).

As shown above, the parabolic and the RP potential
predict the same critical thickness for the Ch-N transi-
tion and in general for the pitch transitions. Neverthe-
less, the two models are not equivalent. In the parabolic
model the pitch transition ��/π = 1/(1 + L/dN

c ) is always
of the first order but for L = ∞ where �� = 0. In gen-
eral, the critical thickness does depend neither on the form
of the surface potential nor from the symmetry of the two
interfaces.

The position of the CP, that is at L = d for the RP potential
in the case of an asymmetric cell while at L = d/2 for the
symmetric case and at L = ∞ for the parabolic potential,
depends from the form of the potential itself and the symmetry
of the cell. This means that one could choose experimentally
the right potential by measuring L/d at the CP. Another
method to determine the adequate surface potential is based
on the calculation of the twist angle distribution in the cell
[23]. A discussion on the instability mechanism of the pitch
transition and the effect of fluctuations is reported in [9,10].
A transition between states that differ by an odd number of
half-pitch �N requires the nucleation of defects and/or their
propagation because the initial and final state are topologically
incompatible. On the contrary, transitions between states with
even �N do not require any defect. Therefore, transitions with
mp = 1 can be topologically blocked since the nucleation
of a defect may require more energy than the energy gap
for a transition with mp = 2, for instance. In general, one
expects that transitions with mp > 1 are possible as far as the
corresponding energy gap is smaller or of the same order of
magnitude than the weaker anchoring energy that enters the
problem. If anchoring is strong enough, then defect nucleation
energy and/or defect propagation should give an upper limit
for the pitch transition multiplicity and multistability.
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VI. CONCLUSION

We have investigated the strain induced pitch transitions in
a planar CLC cell with the helical axis perpendicular to the
confinement plates. The easy axis on the plates are parallel,
and out of plane director deviations are excluded. The critical
thickness, where pitch transitions take place, does not depend

on the surface potential form and/or other material properties
but the natural CLC pitch. The pitch transition is of topological
nature with a critical end point. The position of the CP is model
dependent via the ratio of the surface extrapolation length over
the thickness of the cell, and it also depends on the symmetry
of the cell with respect to the anchoring conditions.
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