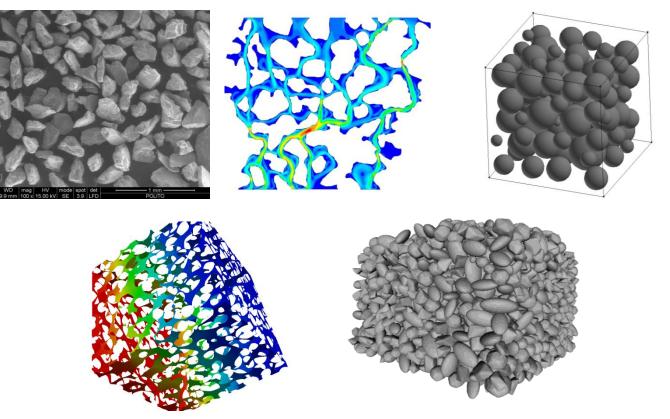
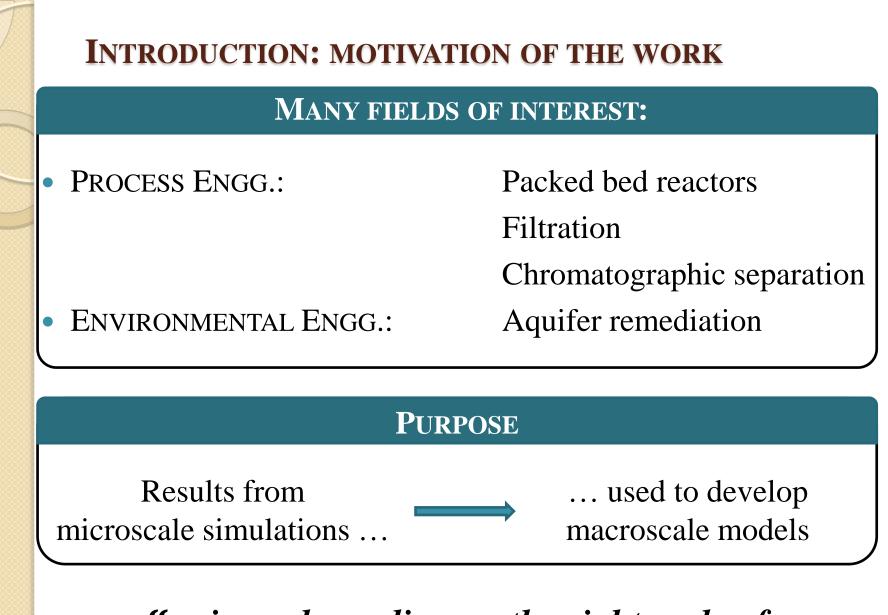
# SIMULATION OF FLOW AND PARTICLE TRANSPORT AND DEPOSITION IN POROUS MEDIA WITH COMPUTATIONAL FLUID DYNAMICS



<u>G. Boccardo<sup>1</sup></u>, M. Icardi<sup>2</sup>, D.L. Marchisio<sup>1</sup>, R. Sethi<sup>2</sup> <sup>1</sup>DISAT, <sup>2</sup>DIATI, Politecnico di Torino

> ECCE9/ECAB2 The Hague, Netherlands



"... since, depending on the right scale of observation, everything is porous. "



## **THEORETICAL BACKGROUND: FLUID FLOW**

#### MACROSCALE PSEUDO-CONTINUUM APPROACH

• Creeping flow (Re < 1): linear relationship

DARCY'S LAW 
$$\frac{\Delta P}{L} = \frac{\mu}{k} q$$

• Re > 1: nonlinear relationship

FORCHHEIMER'S LAW 
$$\frac{\Delta P}{L} = \frac{\mu}{k} q + \beta \rho q^2$$

Packed beds filter law (wide range of Re) ERGUN'S LAW  $\Delta P^* = \frac{\Delta P \rho D_g \varepsilon^3}{L G_0^2 (1 - \varepsilon^3)}$   $Re^* = \frac{D_g G_0}{(1 - \varepsilon)\mu}$ 



# **THEORETICAL BACKGROUND: PARTICLE DEPOSITION**

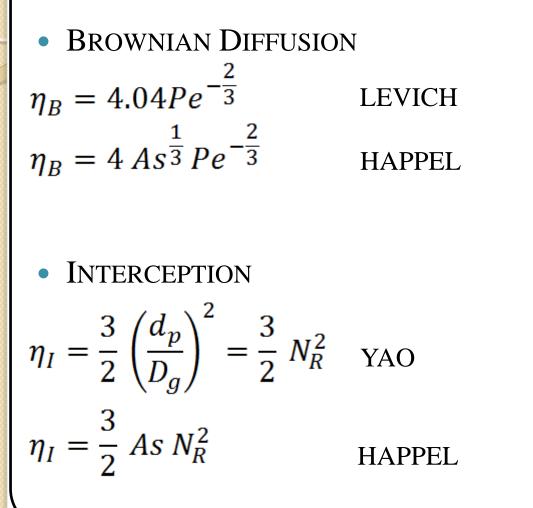
#### **MACROSCALE 1D ADVECTIVE-DIFFUSIVE EQUATION**

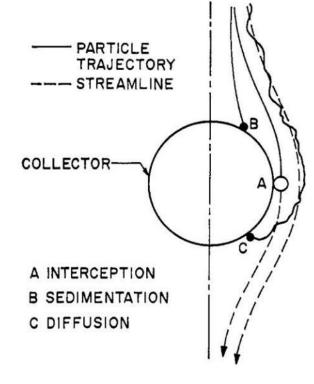
$$\frac{\partial C}{\partial t} + q \frac{\partial C}{\partial x} - D \frac{\partial^2 C}{\partial x^2} = Source$$
  
Source =  $-K_d C$   
 $K_d = \frac{3}{2} \frac{1 - \varepsilon}{\varepsilon} \frac{q}{D_g} \alpha \eta$ 

 $\eta$ : <u>Collector Deposition Efficiency</u>

# **THEORETICAL BACKGROUND: PARTICLE DEPOSITION**

#### **DEPOSITION EFFICIENCY**



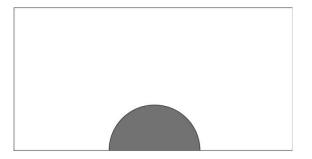


# **METHODOLOGY: MICROSCALE GEOMETRIC MODELS**

#### **INCREASING COMPLEXITY**

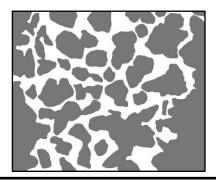
- SINGLE COLLECTOR
- CIRCULAR SHAPE

(under axial simmetry)



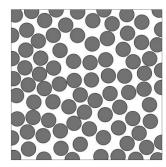
- IRREGULAR SHAPES
- REALISTIC  $\mu$ -CT/SEM SCANS

(planar geometry)

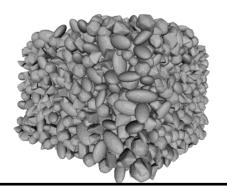


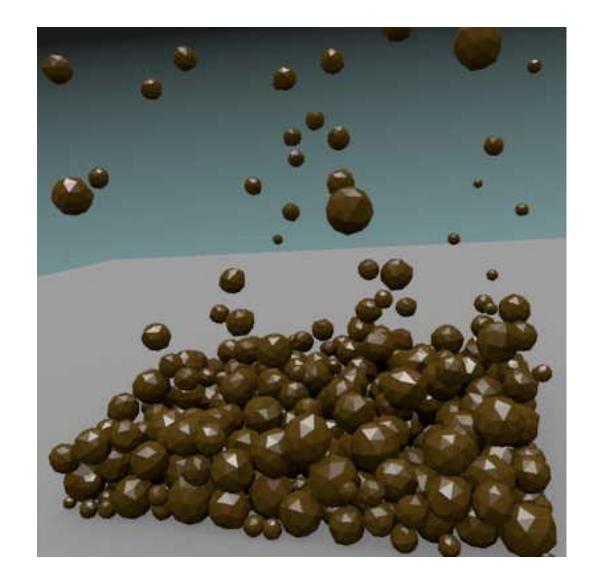
- CIRCULAR SHAPE
- ARTIFICIAL PACKING

(planar geometry)



- IRREGULAR SHAPES
- ARTIFICIAL PACKING





# **METHODOLOGY: OPERATING CONDITIONS**

## SOLVERS AND MESHING

• Finite volume CFD codes:

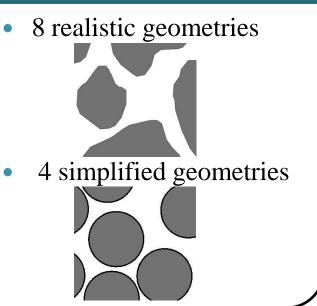
# FLUENT, OPENFOAM

• Body-fitted meshers:

GAMBIT, SNAPPYHEXMESH

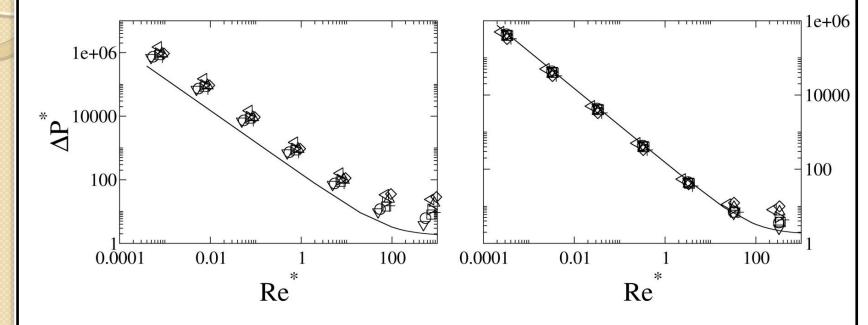
# **OPERATING CONDITIONS**

- $D_g = 100 \text{ m} \div 300 \text{ m}$
- $= 0,3 \div 0,5$
- $q = 10^{-6}$ ,  $10^{-5}$ , ...,  $10^{-1}$  m s<sup>-1</sup>
- Laminar model
- T = 293 K
- Viscosity =  $0.00103 \text{ Kg m}^{-1}\text{s}^{-1}$



# **RESULTS: FLUID FLOW**

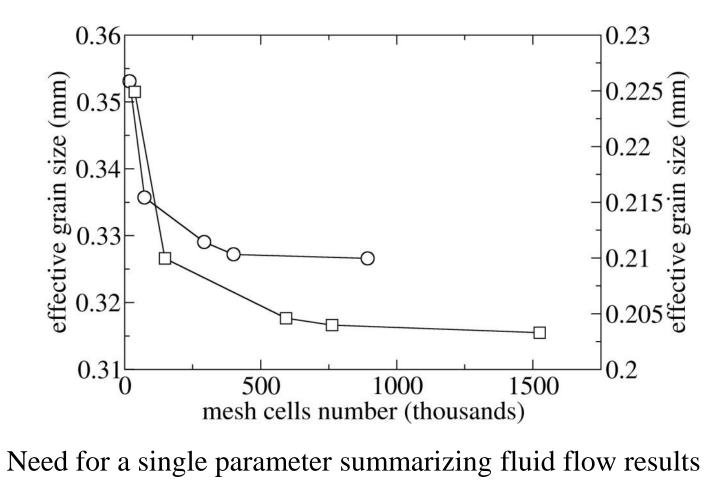
#### **COMPARISON WITH ERGUN'S LAW**



- Results show good agreement with Ergun's law
- Fitting on Ergun's law to obtain an <u>effective</u> grain diameter,  $D_g^*$

## **RESULTS:** FLUID FLOW

#### **GRID INDEPENDENCE VERIFICATION**



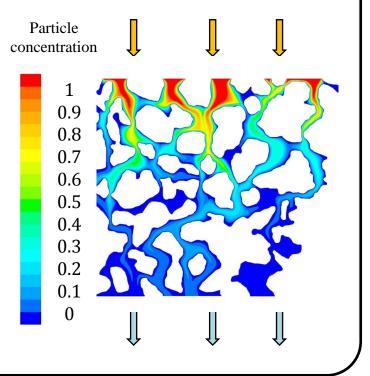
Grid independence assessed with changes in  $D_g^*$ 

# **METHODOLOGY: OPERATING CONDITIONS**

## **PARTICLES MODELING**

- Particles are transported by convective and diffusive phenomena
- C = 1 at inlet
- C = 0 on grain surface
  - Assumed "perfect sink" condition
- Particle diameter

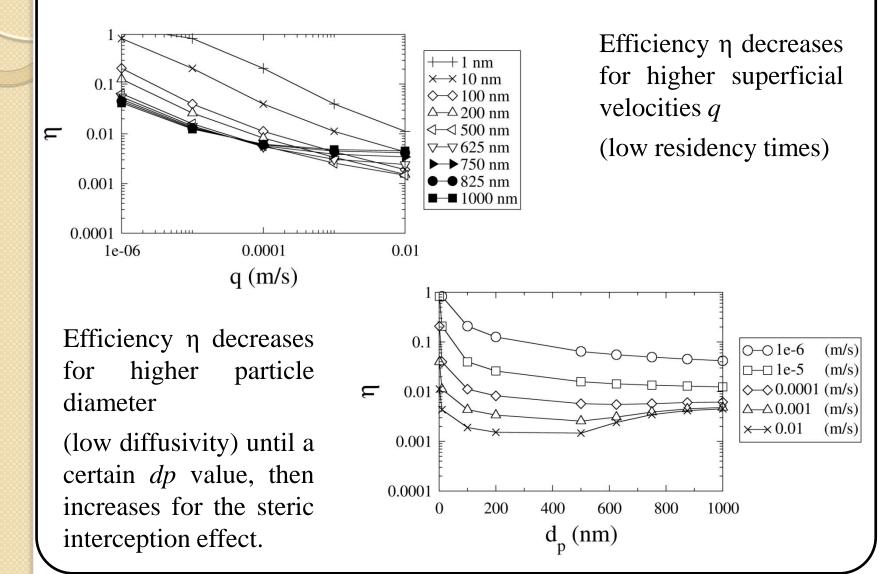
 $d_p = 1, 10, 100, 200, 500, 625, 750, 875, 1000 \text{ nm}$ 

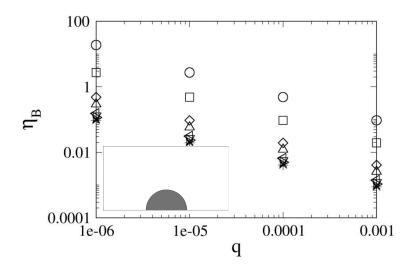


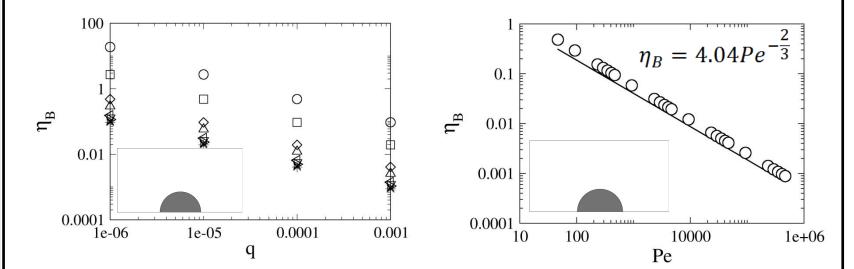
Collector deposition efficiency,  $\eta$  calculated with packed bed performance equation

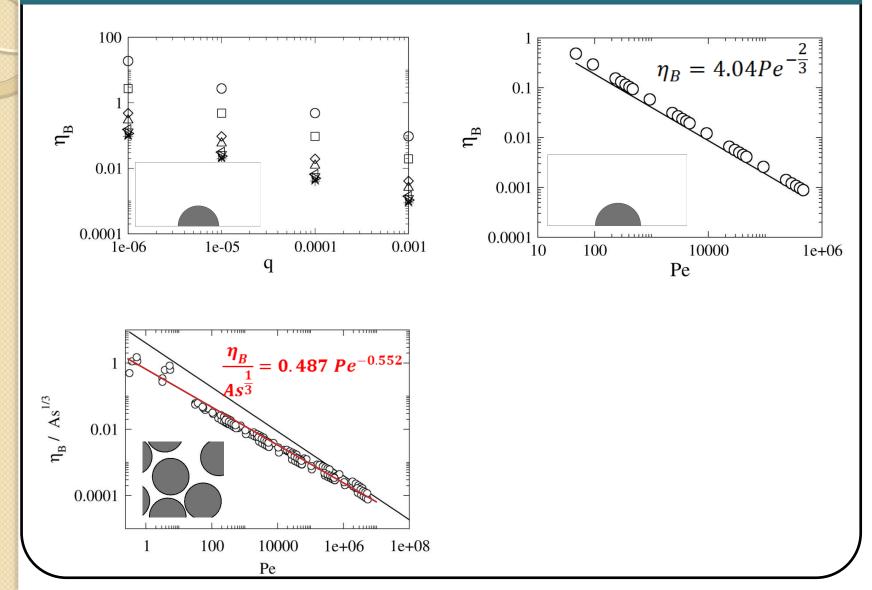
$$\frac{dC}{dx} = -\frac{3}{2} \frac{1-\varepsilon}{\varepsilon D_g} \eta C$$

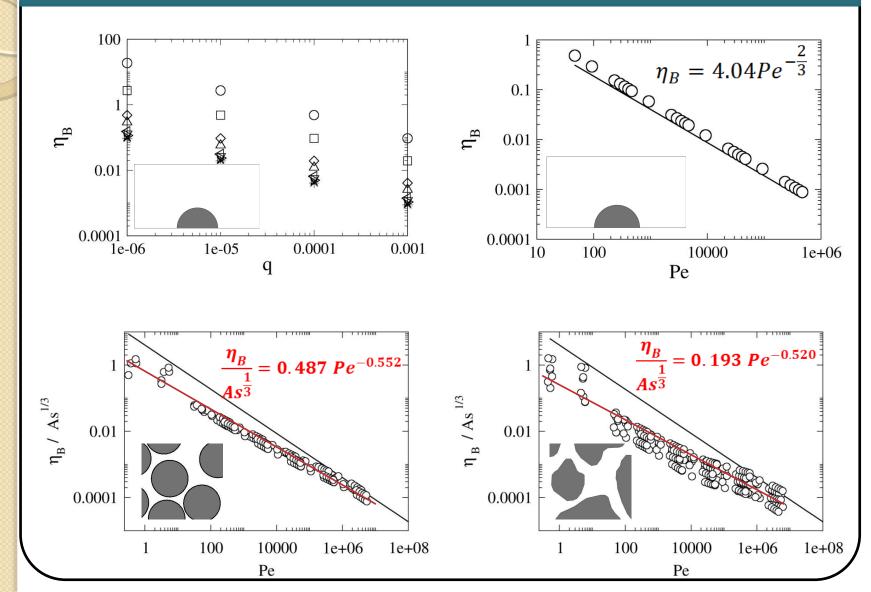
#### **DEPOSITION EFFICIENCY: OVERVIEW**



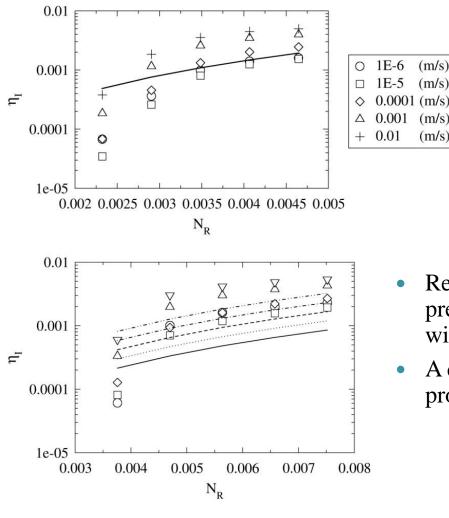








#### **DEPOSITION EFFICIENCY: INTERCEPTION**



# Theoretical law:

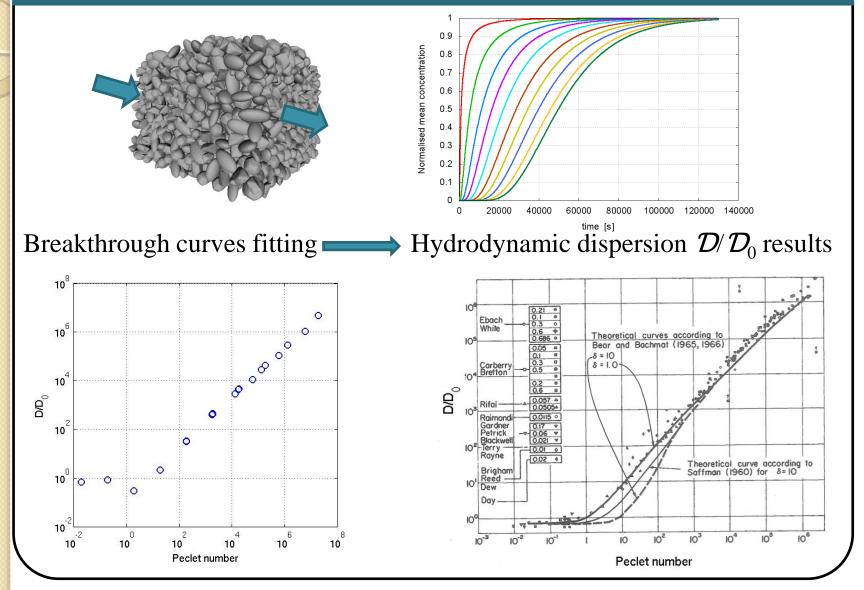
$$\eta_I = \frac{3}{2} As N_R^2$$

- Results appear in line with theoretical predictions but are strongly dispersed, with great variations at different *q*
- A dependency of η on q can be proposed

 $\eta_I = 3.377 \ As \ N_R^2 \ q^{0.145}$ 

# **CONCLUSIONS AND FUTURE WORK**

#### **FULLY 3D PARTICLE TRANSPORT SIMULATIONS**



# **CONCLUSIONS AND FUTURE WORK**

#### ACKNOWLEDGEMENTS

- AQUAREHAB (FP7, Grant Agreement no. 226565)
- PRIN Project 2008:

"Disaggregazione, stabilizzazione e trasporto di ferro zerovalente nanoscopico"

# Thanks for your attention!

Any questions?