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Abstract  

The paper is aimed at investigating the effects of stitching or tufting on displacement and stress fields of 

sandwiches, whose homogenized mechanical properties are computed through virtual material tests with 

3D finite element analysis. After that, structural analysis is carried out using the adaptive model by the 

authors, which has variable representation of displacements across the thickness and fixed degrees of 

freedom. This choice is done considering its accuracy and computational efficiency. Numerical 

applications show that using these technical skills it is possible to considerably reduce stresses and 

displacements in sandwiches.  

Keywords: A. Fabrics/ textile; B. Stress relaxation; C. Analytical modelling; C. Finite element analysis;  

1 Introduction 

Composites find use as primary structural components in aerospace and other branches of engineering, 

because they ranked high in stiffness and strength. Sandwiches with laminated faces are widespread in 

lightweight design thanks to an outstanding specific stiffness compared to monolithic composite 

structures (see e.g. Heimbs et al. [1]). Regrettably, composites suffer from strong stress concentrations at 

the interfaces, which can have harmful effects on structural performance and service life, as exhaustively 

explained among many others in the works by De Borst and Remmers [2], Davies et al. [3] and Ajdari et 

al. [4]. 

Many technical skills have been developed with the aim of overcoming this problem. As far as laminates 

are concerned, stitching is largely employed. Gui and Li [5] demonstrated that this technique can improve 

the buckling behaviour, while Mouritz [6] showed that the fracture toughness of stitched laminates is 

much higher than the equivalent unstitched ones. Shah Khan and Mouritz [7] reported that the 
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translaminar strength of fibre reinforced polymer (FRP) composites can be improved considerably with a 

thread of carbon, glass or Kevlar.  

Many approaches have been suggested for sandwiches: folded core (Heimbs et al. [1]), stitching of faces 

and stitching through-the-thickness (Potluri et al. [8]), integrated pile core (Judawisastra et al. [9]) and 

vertical composite columns, 3D pins or shear keys implanted in the core (Wang et al. [10], Vaidya et al. 

[11] and Nilanjan [12]). These techniques have been proven successful in improving the performance of 

sandwiches under impact loading (Heimbs et al. [1], Potluri et al. [8] and Vaidya et al. [11] ), the fatigue 

behaviour (Judawisastra et al. [9]) and the shear properties (Wang et al. [10] and Nilanjan [12]). However 

the Advanced Composites Technology (ACT) program proposed by NASA [13] demonstrated that 

stitching through-the-thickness is the most effective technical skill in reducing costs and improving 

damage tolerance of aircraft structures. The stitching procedure requires the insertion of reinforcement in 

the through-the-thickness direction of the structure. It could be noticed that this technique is easy to use 

with the current manufacturing technologies and that stitching is mostly employed with dry fabric 

preforms, since the tackiness of the uncured resin makes sewing difficult in uncured pre-preg laminate. 

Another available technique, which inserts reinforcement in the through-the-thickness direction, is 

tufting. This procedure uses a single needle instead of a dual threading system. In this way the thread is 

introduced into the structures without tension, thus avoiding any detrimental effects on the mechanical 

performance of the 3D fibre architecture, as outlined in [14]. 

The insertion of a through-the-thickness reinforcement introduces the idea of 3D material. Within this 

framework, several approaches, validated by comparisons with experimental results or 3D FEA, have 

been suggested for modelling the mechanical behaviour of this kind of materials. According to 

Prodromou et al. [15], they can be broadly classified into four classes, here referred as: i) analytical 

methods, ii) methods based upon inclusion method, iii) methods based upon cell method and iv) FEM 

methods. The analytical methods (see, e.g. [16–18]) are based on laminate theory and orientation 

averaging techniques. In these models, the composite is discretized into small volume elements, which 

can be treated as a unidirectional lamina with transverse isotropic properties. Making the assumption of 

either iso-stress, or iso-strain, the macroscopic properties are determined by volume averaging the 

response of a composite representative body. These methods give an accurate prediction for in-plane on-

axis moduli, while shear and out-of-plane properties could be predicted with significant errors, as outlined 
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in [15] and [19]. Inclusion methods [20, 21] adopt a mean field approach based upon the equivalent 

inclusion theory [22], for evaluating the mechanical properties. However, comparisons with experiments 

showed that average errors relative to experimental results of at least 10 % can be found with this 

technique, as reported in [15].The cell method [15, 23] is based on the theory of continuum media. It 

firstly split the structure into representative volume elements, which repeat itself throughout the material. 

The following step requires defining the macroscopic average stresses and strains from the microscopic 

ones, next continuity of traction and displacements should be imposed at the interfaces between the 

constituent volumes. In the final step the overall elasto-plastic behaviour is determined by expressing it as 

a constitutive relationship between the average stress, strain and plastic strain, in conjunction with the 

effective elastic stiffness tensor of the composite. With respect to the inclusion methods, it is possible to 

halve the average errors relative to experimental results, as shown in [15]. According to [15], the most 

accurate approach to date available is that based on material testing carried out with full scale finite 

element analysis (FEA), as proposed in [24] and [25]. This approach is also the most computationally 

expensive, since a complex finite element 3D model is required.  

The aim of this paper is to show that the insertion of a through-the-thickness reinforcement considerably 

reduces interlaminar stresses at critical interfaces, thus giving a possible explanation of the experimental 

results shown in literature dealing with the reduction of damage in sandwiches undergoing impact loading 

(e.g. [8] and [14]). For doing this, we choose to carry out virtual material tests using the 3D finite element 

[26], in order to get an evaluation of the homogenized mechanical properties of stitched or tufted 

sandwiches. Then we carry out the structural analysis using the adaptive model [29]. In this way, costs are 

affordable, as 3D FEA is required only once for any specific case, while, thanks to its efficiency, the 

adaptive model consistently speeds-up the structural analysis.  

It could be noticed that the use of techniques, which suppose a repetitive scheme in the material structure, 

cannot be always satisfactory since their basic assumption could be violated. For instance, methods based 

on repetitive schemes could be unsuited to simulate localized damages that are not spread throughout all 

the structure, such as core’s crushing, which strongly affects damage formation (see, e.g. [27] and [28]).  

The adaptive model [29] has a fixed number of functional degrees of freedom (d.o.f.), which are the same 

of classical plate models: the three mid-plane displacements and the two shear rotations. As a 

consequence, it is advantageous when a large number of iteration are required for computing the 
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structural response, like under impact loading (see, e.g. [1, 8]). The structural model is derived from that 

developed in [33], in order to preserve accuracy and considerably improve efficiency through a reduced 

processing time, as discussed forward. 

This model can be set among the high order layerwise (HLW) models, which are, at the present, adopted 

by many researchers (see e.g. [30], [31] and [32]), because they obtain refined estimates like 3-D models 

but with a much lower number of unknowns. The distinctive feature of HLW models is whether their 

number of functional d.o.f. depends or not on the number of physical or computational layers. In the 

former case computational costs rise increasing the number of layers, while in the latter the number of 

unknowns is fixed.  

The paper is structured as follows. First of all the basic steps for developing of the adaptive model by the 

authors are reviewed. Then, the method adopted for evaluating the homogenized mechanical properties of 

stitched or tufted sandwiches is described. Next, applications are presented, first of all, in order to assess 

whether the adaptive model can be employed for the analysis of textile composites and to assess the 

accuracy of the strategy adopted for modelling the through-the-thickness reinforcement. Finally, 

applications are presented to show the effects of stitching or tufting on stress and displacement fields of 

sandwich plates and beams.  

2 The adaptive model 

In this paper we use the model [29], whose most important merit with respect is overcoming of the 

drawbacks related to the algebraic computations, required to evaluate coefficients of higher-order terms 

and continuity functions of model [33]. The displacement field of the present model is similar to that 

presented in [33], but it is much more efficient since continuity functions and high-order terms are 

calculated apart in closed form once at a time, as explained forward. This consistently speeds-up 

computation of solutions as it allows reducing of up 20 times the computational effort with respect to the 

model [33]. In details, on a laptop computer with a 1800 GHz double-core processor and 2,96 GB RAM 

the analysis of a simply supported sandwich beam requires 1,35 sec using the present model, while it 

requires 22,5 sec using the model [33]. 

The present model is characterized by a variable representation from point to point across the thickness, 

with the aim to always accurately predict the stress field directly from constitutive equations, either for 

laminates or sandwiches ([30], [31] and [32]). In fact, the order of polynomials cannot be the same for 
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any point across the thickness, and in addition it should vary according to the type of loading, the 

boundary conditions, the thickness ratio and the constituent materials. Since the present model has the 

same five d.o.f. of equivalent single layer models, its processing time is minimal, thus it can be 

successfully applied to highly iterative analyses, like transient dynamics and non-linear analyses. This 

motivates our choice of the structural model. The displacement field is assumed as follows [29]: 

 
 


i in

k

n

k

k

k

ukk

k

x

i

x

i

xxx HyxCHzzyxOzzyxDzyxCwyxzyxuzyxu
1 1

432
,

000 ),())(,(...)(),(),()),((),(),,(   (1) 

 
 


i in

k

n

k

k

k

vkk

k

y

i

y

i

yyy HyxCHzzyxOzzyxDzyxCwyxzyxvzyxv
1 1

432
,

000 ),())(,(...)(),(),()),((),(),,(   (2) 













ii

i

n

k

k

k

w

n

k

kk

k

n

k

kk

kiiii

HyxCHzzyx

HzzyxOzzyxezyxdzyxczyxbyxwzyxw

11

2

1

54320

),())(,(

))(,(...)(),(),(),(),(),(),,(
 (3) 

The superscripts i mean that these terms are valid only in a specific range across the thickness, thus 

enabling different representation from point to point. This aspect together with the addition of the 

continuity functions 
k

uC , 
k

vC and 
k

wC  represents the new contributions with respect to the model [33], 

where just the higher-order terms were assumed to vary with position. Please note that Hk is the unit step 

function. 

Like for classical models, the functional d.o.f. still remain 5: the three displacements u
0
, v

0
, w

0
 and the 

two shear rotations 0

x , 0

y  of the points on the reference middle surface of the plate. Refinement of the 

solution can be obtained by an appropriate choice of the contributions (Oz
4
…) and (Oz

5
…) or by 

increasing the number of subdivisions across the thickness, in both cases avoiding a growth in the number 

of primary variables.  

The purpose of the terms in the summations, i.e. the zig-zag contributions, is to make discontinuous the 

derivatives of displacements at the layer interfaces. In this way it is possible to fulfil a priori the 

constraints prescribed by the elasticity theory: 
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The coefficients i

xC , i

yC , i

xD ,  i

yD , as well as the other high order terms are determined by enforcing the 

boundary conditions for transverse shear stresses, transverse normal stress and its gradient at the upper 

and lower bounding surfaces: 
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 (p
0
 represents the transverse distributed loading).  

In addition also the equilibrium condition at discrete points across the thickness should be enforced: 

000 ,,,,,,,,,  zzyyzxxzzyzyyxxyzxzyxyxx   (7) 

The constraint of Eq. (7) should be imposed in np=Nlay ∙ ord_u - 2 points across the thickness, where Nlay 

is the number of computational layers, while ord_u is the order of the expansion chosen for the in-plane 

displacements. The np points are chosen trying to fulfil the equilibrium condition (7) in all the points 

across the thickness of the structure. The np points should not be placed excessively near to the layers’ 

interfaces, in order to avoid singularity.  

In order to get the expressions of all the unknowns (i.e. continuity functions and hierarchic terms), the 

displacements are split into fixed contributes, layer’s contributes and summations’ contributes, as follows: 
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The expressions of the displacement continuity functions k

uC , k

vC  and k

wC  at a generic interface  are 

obtained enforcing Eq. (5): 
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As example, the explicit form of Eq. (4) for a beam at the generic interface   between the layers i and 

i+1 is reported:  
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From Eqs. (12) – (14) the expressions of the stress continuity functions are obtained. The procedure for 

plates is similar but it is here omitted for sake of brevity. The high order terms in Eqs. (1) - (3) are 

obtained by solving (7), whose explicit form for the evaluation of the generic higher order terms of a 

beam at the point zp is: 
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The solving system for plates is similar and it is here omitted being much lengthier. 

3 Numerical applications  

The goal is to show the effects of through-the-thickness reinforcement on stress and displacement fields 

of sandwiches. All the cases presented consider simply supported structures undergoing sinusoidal 

loading. This scheme is chosen because it is the only one for which exact elasticity solutions can be 

calculated and used for comparisons. As a consequence, it is customary chosen by researchers (see, e.g. 

[30], [34] and [35]) to validate their results. In order to respect the imposed constraints, the variation of 

the functional d.o.f. is assumed as a trigonometric series expansion:  
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The Rayleigh-Ritz method is used for solving. 

3.1 Evaluation of the mechanical properties through 3D FEA 

Virtual material tests are carried out using the mixed solid element developed in Ref. [26], in order to 

compute the elastic coefficients that will be used by the adaptive model of Section 2.  

The first step is creating the geometrical model of the structure, (Figures 1a and 1b). Please note that 

sandwiches are here treated as multilayered structures made of an arbitrary number of thin layers 



8 

 

constituting the faces and of a thick intermediate layer constituting the honeycomb core, whose properties 

are computed from the cellular properties, according to Gibson and Ashby [36]. Note that the 

reinforcement is modelled as an isotropic material. 

Once the geometrical model is created, the elastic coefficients of the structure are computed carrying out 

the analysis with the 3D FE model [26]. Its nodal d.o.f. are the three displacements and the three 

interlaminar stresses to meet the stress and displacements continuity requirements at the interfaces. The 

reason for this choice is that the computational effort required is not larger than that for displacement-

based counterpart solid elements, while accuracy and convergence are dramatically improved.  

The in-plane moduli are evaluated with the loading scheme of Figure 1c. Using stresses and strains 

computed with the FEA and the constitutive equation      C , the homogenized elastic properties 

are computed in a straightforward way. 

The loading scheme of Figure 1d is employed to compute the transverse modulus E3, while that of Figure 

1e is adopted to obtain the shear moduli G13 and G23. It could be noticed that through other loading 

conditions all the homogenized macromechanical coefficients of [C] are evaluated. 

The procedure explained is carried out using a specific value of the stitching spacing, but, as outlined in 

[8], this parameter plays a fundamental role in varying the stiffness of the structure. Accordingly, this 

effect is taken into consideration employing the rule of mixture proposed by Mori and Tanaka [20]: 

           12,13,23)(ij         ;    1,2,3);(i    12   12   1   stijbstijfijstijbstijfijstibstifi GGVkGGVkEEVkEE   (22) 

The subscripts “f”, “st” and “b” refer respectively to the stitched or tufted layer, to the standard layer and 

to the binder. The symbol “V” corresponds to the reinforcement percentage volume in the considered 

layer, thus V allows to account for the effects of the stitching spacing. Finally “k” is an index that enables 

to vary the mechanical properties of the material constituting the binder. Please note that the relation of 

Eq. (22) represents a conservative approach with respect to the effective correlation between elastic 

coefficients and stitching spacing, as shown in [39]. It could be remarked that no more than 60 seconds on 

a laptop computers are required to carry out each analysis.  

As shown in Tables 1 and 2 present 3D finite element model obtains an evaluation of the mechanical 

properties in a very good agreement with experimental and numerical reference results. 
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3.2 Validation of the models  

In this section first of all the mechanical properties of two stitched composites considered in literature are 

computed via 3D FEA using the method proposed in Section 3.1, in order to verify its accuracy. These 

two cases are chosen because their mechanical properties have been evaluated from experiments. Then a 

3D woven composite (3DWC) is considered with the aim to assess whether the adaptive model can be 

successfully employed for studying textile composites. 

 

Figure 1. a) 3D model of stitched sandwich. b) Transverse section. Loading scheme for calculating c) in-plane moduli, d) 

transverse modulus and e) shear moduli with 3D FEA.  

 

Table 1. Comparison between the mechanical properties calculated by Yudhanto et al. [37] and the 

present ones. 

 
Stitch pitch (mm) 

 
6 3 

Ex (MPa) 
Experiment [37] 

 
51,1 ± 1,9 51,7 ± 3,1 

Present 
 

52,2 52,7 

υxy (MPa) 
Experiment [37] 

 
0,314 ± 0,013 0,324 ± 0,005 

Present  0,317 0,325 

 

 

Table 2. Comparison between the mechanical properties calculated by Lascoup et al. [38] and the present 

ones. 
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Stitching step= 12,5 mm 

   
α=45°  

Ez (MPa) 

Experiment [38] 
 

206,7 ± 13,3  

Analytical [38]  208,1  

Present 
 

207,5  

Gxz (MPa) 

Experiment [38] 
 

28,0 ± 2,1  

Analytical [38]  42,1  

Present  26,4  

Stitching step= 25 mm 

   
α=45° α=60° 

Ez (MPa) 

Experiment [38] 
 

95,5 ± 2,1 133,5 ± 9,9 

Analytical [38]  93,9 149,3 

Present 
 

96,1 134,1 

Gxz (MPa) 

Experiment [38] 
 

19,4 ± 2,3 14,8 ± 1,7 

Analytical [38]  21,9 13,4 

Present  20,1 15,4 

Stitching step= 50 mm 

   
α=45°  

Ez (MPa) 

Experiment [38] 
 

57,9 ± 4,8  

Analytical [38]  36,9  

Present 
 

59,9  

Gxz (MPa) 

Experiment [38] 
 

15,9 ± 0,7  

Analytical [38]  10,9  

Present  16,2  

 

 

As first case, let us consider the stitched laminate analysed by Yudhanto et al. in [37], who proposed 

experimental evaluations of the in plane moduli for a T800SC-24kf dry preforms with tow orientation of 

[+45°/90°/-45°/02/+45°/90°2/-45°/0]s, stitched with a 200 denier Vectran
®
 thread. The preform is 

impregnated with epoxy resin XNR/H6813. Table 1 reports comparisons between the experimental results 

and the coefficients computed using the method explained in Section 3.1. From these numerical results it 

could be noticed that virtual material tests provide results in good agreement with experiments. 

For a further assessment, we consider the sandwich studied by Lascoup et al. in [38]. This paper presents 

experimental results for a sandwich with a 20 mm polyurethane foam core and 1 mm E-glass fibre faces. 

Different configuration are analysed by varying the stitching spacing (i.e. three values of the stitching step 

in the X direction are considered) and the angle between through-the-thickness reinforcement and faces 

(here indicated with α). The reinforcing thread is made of 2400 TEX glass fibre (E=13,7 GPa) and its 

diameter is 2,7 mm. The stitching step in the Y direction is fixed and its value is 24 mm. Accordingly to 

the behaviour shown in [8], reducing the stitching spacing has a significant bearing in increasing 

transverse and shear modulus. From Table 1, it could be noticed that virtual material tests provide results 
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included in the natural dispersion of experiments, therefore the accuracy of the method proposed in 

Section 3.1 can be considered satisfactory. 

Now we want to verify whether the structural model [29] can be successfully employed for studying 

textile composites, after having obtained an evaluation of the homogenized mechanical properties with 

3D FEA or any another suitable technique. To this purpose let us consider the case presented in 

Bogdanovich and Pastore in [35], where the stress field of a 3DWC is computed using homogenized 

mechanical properties, whose values are explicitly provided by the authors. In details, Bogdanovich and 

Pastore compare three different methods, namely: case a) considers totally homogenized material, while 

cases b) and c) consider artificial division into three and four layers. In [35], all the elements of the 6-by-6 

stiffness matrix for the three cases are specified. Thus they can be employed by the adaptive model [29] 

to compute the stress field. A square plate characterized by a length to thickness ratio of 10 is considered. 

According to [35] the stresses are reported in the following normalised form:  
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  (23) 

where p
0
 is the maximum intensity of the distributed loading. Figure 2a represents the through-the-

thickness variation of the in-plane stress x  while Figure 2b represents the through-the-thickness 

variation of the transverse shear stress xz . Please note that the results by the adaptive model reported in 

Figure 2b are obtained directly from constitutive equations, thus confirming the distinctive feature of this 

structural model, as discussed above. The numerical results confirm the accuracy of the adaptive model 

here adopted when applied to 3DWC, and therefore they validate the idea of carrying out structural 

analyses, after having obtained an evaluation of the homogenized mechanical properties of stitched 

materials.  
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Figure 2. Through-the-thickness distribution of a) in-plane stress x  and b) transverse shear stress 

xz  for the 3D woven composite plate considered by Bogdanovich and Pastore [35]. 
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Figure 3. Through-the-thickness distribution of a) transverse shear stress xz  and b) in-plane stress x for 

sandwich beam with damaged core. Through-the-thickness distribution of c) transverse shear stress xz  and d) 
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in-plane stress x for sandwich beam with damaged upper face (E1 degraded). Through-the-thickness distribution 

of d) transverse shear stress xz  and e) transverse displacement w for sandwich beam with damaged upper face 

(E3 degraded). 

 

3.2 Applications to sandwich structures 

Applications are presented to three simply supported sandwich beams undergoing sinusoidal loading and 

then to a square plate with the same boundary conditions and bi-sinusoidal loading. The beams are 

characterized by a length to thickness ratio of 4, which is quite unrealistic, but it is chosen since it 

represents a very severe test for the structural model (see, e.g. [30] and [34]). The beams have a (MAT 

1/2/3/1/3/4)s stacking sequence and the following thickness ratios of the constituent layers (0.010/ 0.025/ 

0.015/ 0.020/ 0.030/ 0.4)s. Where MAT 1, MAT 2, MAT 3 and MAT 4 have the following properties: 

MAT 1: E1=E3=1 GPa, G13=0.2 GPa, υ13=0.25; MAT 2: E1=33 GPa, E3=1 GPa, G13=0.8 GPa, υ13=0.25; 

MAT 3: E1=25 GPa, E3=1 GPa, G13=0.5 GPa, υ13=0.25; MAT 4: E1=E3=0.05 GPa, G13=0.0217 GPa, 

υ13=0.15. 

Damaged beams are simulated using the ply-discount theory as in [34]. In particular, three cases are 

studied: i) the damage of the core, simulated reducing G13 of MAT 4 of a 10
-2

 factor, ii) the damage of the 

upper face of the structures, simulated reducing E1 of the materials constituting the upper face of a 10
-2

 

factor, and iii) the damage of the upper face of the structures, simulated reducing E3 of the material 

constituting the upper face and the core of a 10
-2

 factor. This last case is considered like in [26] and [34], 

because it determines highly unsymmetrical shear distribution and stress concentration of interlaminar 

shears, thus constituting a severe test for the model. Displacements and stresses are reported normalised 

in the following form, according to Ref. [34], where the exact solutions for cases i) and iii) have been 

computed: 
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  (24) 

Stress and displacement fields are represented in Figure 3 and 4. In the first case a T300 reinforcement 

has been considered, while in the latter the reinforcement has parametric properties, namely, different 

values of the index “k” (see Eq. (22)) are chosen. In both cases the reinforcing thread has circular section 

with a 2,5 mm diameter, and the reinforcement percentage volume ‘V’ is 0.1. Please note that in Figure 3 



15 

 

 

 

 

 

 

Figure 4. Through-the-thickness distribution of transverse shear stress xz  and transverse displacement w  with parametric 

properties of the reinforcing thread for: a)-b) sandwich beam with damaged core, c)-d) sandwich beam with damaged upper face (E1 

degraded), d)-e) sandwich beam with damaged upper face (E3 degraded). 
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the sandwiches stitched or tufted considering k=1 are named as ‘reinforced’, those with no reinforcement 

are named as ‘standard’, while in the other cases k is explicitly defined. It could be noticed that the 

adaptive model provides accurate results directly from constitutive equations, as shown by the 

comparison with exact elasticity solution (Figs. 4a and 4e). Then, numerical results show that stitching or 

tufting can be effective ways in reducing the detrimental effects of out-of-plane stresses (Fig. 3a, 3c and 

3e) and transverse displacement (Fig. 3f). Stress recovery could be obtained with the insertion of 

viscoelastic layers (see, e.g. [40]), although at the expense of a consistent stiffness loss.  

The last case of analysis considers the sandwich plate examined in Ref. [30], where an accurate stress 

analysis has been carried out. Our aim is to show whether the beneficial effects of through-the-thickness 

reinforcement can be obtained also for sandwich plates. The mechanical properties of the Graphite/Epoxy 

faces are: E1=132.38 GPa E2=E3=10.76 GPa, G13=5.65 GPa, G12=5.62 GPa, G23=3.61 GPa, υ12=υ13=0.24, 

υ23=0.49; the mechanical properties of the foam core are: E1= E2=E3=0.035 GPa, G13= G12= G23= 0.0123 

GPa, υ12=υ13= υ23=0.4. T300 reinforcement with circular section and 2,5 mm diameter and a 

reinforcement percentage volume ‘V’ of 0.1 have been considered. The plate is square (Lx= Ly= 1 m) and 

characterized by a length to thickness ratio of 10, with the following thickness ratios of the constituent 

layers (0.1/0.4)s. Figure 5a represents the through-the-thickness variation of the transverse shear stress 

σxz, while Figure 5b represents the through-the-thickness variation of the transverse shear stress σyz. As in 

Figure 3 the sandwiches stitched or tufted considering k=1 are named as ‘reinforced’, while those with no 

reinforcement are named as ‘standard’. From the numerical results of Figure 5 it could be remarked that 

through-the-thickness reinforcement is effective in reducing the interlaminar shear stresses in sandwich 

plates.  

As general remarks, it could be outlined that stitching determines an increase of transverse shear stresses 

in the core, and a reduction in the faces. Since experimental results reported in [38]show that stitching 

through-the-thickness increases the strength of the structure, a great reduction of the delamination index 

can be obtained. This justifies the experimental results reported in [8] and [14], showing a reduced 

damage under impact loading.  
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Figure 5. Through-the-thickness distribution of a) transverse shear stress 
xz  and b) transverse shear stress 

yz for the square plate. 

 

4 Concluding remarks 

An advanced hierarchic model by the authors has been applied to the analysis of stitched or tufted 

sandwiches, with the purpose of studying the effects of these technical skills on stress and displacements 

fields. To this aim, we choose to carry out virtual material testing with 3D FEA, in order to get an 

evaluation of the homogenized mechanical properties of stitched or tufted sandwiches. Then we perform 

the structural analysis using the adaptive model by the authors. It has a variable representation across the 

thickness, thus it can adapt itself to the variation of solutions, without an increase in the number of 

functional d.o.f. These characteristics enable to obtain great accuracy also for the analysis of 3DWC, as 

shown in the numerical results presented. In fact, they show that the insertion of a reinforcing thread (with 
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stitching or tufting) in sandwiches considerably reduces the transverse shear stress as well as the 

transverse displacements.  

This behaviour together with the increase of the strength, reported in experimental results taken from 

literature, should determine a great reduction of the delamination index. This justifies the improved 

damage tolerance of sandwiches with through-the-thickness subjected to impact loading shown by 

experiments by other researchers.  
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