
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Asynchronous scheduling/binding using a genetic approach / Blunno, I.; Lazarescu, MIHAI TEODOR. - ELETTRONICO.
- (2002). (Intervento presentato al convegno MIPRO 2002 tenutosi a Opatija, Croatia nel May 2002).

Original

Asynchronous scheduling/binding using a genetic approach

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2507490 since:

Asynhronous Sheduling/Binding

Using a Geneti Approah

Ivan Blunno

Politenio di Torino

Torino, Italy

blunno�polito.it

Mihai Lazaresu

Cadene Design Systems

Milan, Italy

mihail�adene.om

Abstrat

In this paper a new approah to operation sheduling and bind-

ing in asynhronous High Level Synthesis (HLS) is presented.

We developed a geneti algorithm and integrated it inside Pip-

e�tter [5℄, an existing tool for the automated synthesis of asyn-

hronous iruit. A Control Data Flow Graph (CDFG), derived

by Pipe�tter from an HDL spei�ation, is the input format

for our algorithm. The designer an steer the searh of an op-

timized solution either in the diretion of minimum area or in

the diretion of maximum throughput. In the �nal solution

eah operation in the CDFG will be assigned to an operative

unit (stati binding), while the exeution sequene will be de-

termined run-time by the ontrol unit (dynami sheduling) in

order to improve performanes. This solution is then returned

to Pipe�tter that will omplete the synthesis proess down to

the layout level.

1 Introdution

The transition from \System-on-Board" to \System-on-Chip"

(SoC) approah an be onsidered a key element in the last few

years miroeletroni design trend. Basi devies like miroon-

trollers, DSP's, memories, FPGA's that one were plaed on the

same board an now be �tted onto a single die. However, the a-

pability of reduing the transistor size thereby reahing a higher

density of omponents on the same hip is two fold; smaller and

faster devies an be designed and �t on the same die allowing

to reah very high lok frequeny and level of integration, but,

at the same time, problems like Eletro Magneti Interferene,

interfaing and lok distribution are beoming more diÆult

to solve. Asynhronous systems seem to be better suited than

synhronous ones for helping the issues mentioned above for a

number of reasons:

� Operations are performed on a distributed time range,

avoiding the simultaneous swithing of logi gate and hene

reduing urrent and voltage glithes on the power supply

whih are responsible for high frequenies Eletro Mag-

neti Emissions.

� Asynhronous systems naturally adapt their speed and

performane to the environment in whih they are work-

ing and interfaing to eah other an be easily done with-

out the design of spei� units dediated to this purpose.

This properties makes also the reuse of devies easier (e.g.,

reusable IP ores).

� Asynhronous devies are synhronized using loal hand-

shakes instead of a global lok signal, takling the issue

of distributing a low-skew lok signal to a large number

of memory elements (i.e., ip-ops).

Despite the many advantages presented above, in the past

years, asynhronous iruits have just been taken in onsider-

ation for very few nihe appliations. Asynhronous design is

indeed made muh harder than synhronous one due to the pres-

ene of hazards. In the last deade, however, the interest for

the asynhronous world has signi�antly inreased yielding to

the development of some asynhronous Eletroni Design Au-

tomation (EDA) tools. The algorithm presented in this paper

is part of one of this tools. Setion 2 is meant to give a gen-

eral overview on existing synhronous and asynhronous HLS

approahes. Our approah will be desribed in detail in se-

tions 3 and 4. In setion 5 the results of the implementation of

our algorithm will be showed through an example. The inu-

ene of some parameters on the algorithm is shown in setion 6.

Finally, setion 7 onludes the paper disussing some possible

future improvements.

2 Asynhronous High Level Synthesis

High Level Synthesis is the design proess where a behavioral

desription is mapped onto a register transfer level (RTL) rep-

resentation that implements the spei�ed behavior [1℄. Three

main tasks an be identi�ed as part of HLS: alloation, shedul-

ing, and binding. In this paper we fous our attention only on

the automation of sheduling and binding tasks. In partiular,

only operative units (OU) and multiplexer binding is optimized,

while eah variable is synthesized as a separate register.

HLS basially onsists in deiding whih physial unit is re-

sponsible for eah logial operation (binding) and at whih time

eah operation has to be performed (sheduling). If the designer

is looking into an unonstrained implementation for the iruit

the two tasks an be onsidered separately from eah other. For

instane it ould be possible to alloate an OU for eah logial

operation and exeute them all sequentially. However, in most

appliations a small area oupation and a fast exeution time

are requested. In fat HLS aims at �nding a trade o� between

two oniting requirements:

� Using the minimum number of resoures in order to redue

the area of the implemented iruit (resoure-onstrained

sheduling/binding).

� Exeute as many operations as possible onurrently in or-

der to improve the performane of the implemented iruit

(time-onstrained sheduling/binding).

An approah that takes in onsideration both the onstraints

is referred to as time- and resoure-onstrained sheduling/bind-

ing.

The existing synhronous sheduling/binding algorithms are

based on the division of the time into ontrol steps [4℄. The

use of a global lok signal guarantees all the ontrol steps to

have the same length. On this basis some algorithms, suh

A

B C

++

Figure 1: Fragment of CDFG

A

B C

++

Figure 2: Fragment of modi�ed CDFG

as ASAP/ALAP sheduling, list sheduling, and fore-direted

sheduling have been developed.

Asynhronous operations, unfortunately, don't have a �xed

exeution time and therefore it is not possible to use approahes

similar to those used in the synhronous ase. Eah operation

an take any amount of time between a minimum and a maxi-

mum value. This harateristi makes asynhronous sheduling

and binding muh more ompliated and explains why in the

past only few attempts were made to solve this problem. A

number of algorithms have been developed all based on the idea

of traversing the CDFG as it was a timed Petri net [2, 3℄. Time

slots are assoiated with eah operation and a stati order for

their exeution is determined. The vagueness of this estimation

however an bring to very ineÆient solutions. For this reason

our approah was based on a ompletely di�erent idea: dynam-

ially modifying the order of exeution by means of arbitration.

Let's onsider, for example, the fragment of Control Flow

Graph (CFG) shown in �gure 1. After operation A has been

ompleted, two branhes an be exeuted simultaneously. That

means that operations B and C will start at the same time. The

sum operations present on eah branh an start at any time

inside a minimum and maximum time range, depending on the

end time of operations B and C. The duration of eah operation

an also be identi�ed by a minimum and a maximum value. We

an �nally de�ne two time slots identifying when the operations

an our: S

1

= (t

1

min

; t

1

max

) and S

2

= (t

2

min

; t

2

max

). If we

have only one OU able to perform the sum operation, we have

to deide whih of the two sums has to be performed �rst. If

the two slots are not overlapping, no onit an our between

the two operations, hene no ation has to be taken. Otherwise

we have to deide whih operation has to be performed �rst.

In order to do this, we have to add a ontrol edge in the CFG

going from the �rst operation to the seond one. We hoose the

order of exeution trying to optimize the average ase.

In �gure 2 is shown the ase in whih the left sum will always

be performed before the right one (i.e., operation B is in general

faster than operation C). However, one an order of exeution

has been hosen, even when operation C terminates before op-

eration B (and hene the right sum ould start) we will have to

F

+

+

J

*

F

*

+

J

+

F

J

* +

1

2

3

4

5

6

7

8

9

1110

12 13

14

Figure 3: Example of CFG

wait for operation B to end and therefore for the left sum to be

performed. In our approah, a non �xed order of exeution is

implemented by the ontroller. When either the B or C oper-

ation ompletes, the following sum will be enabled to exeute.

The other sum will wait until the �rst one has been ompleted.

This kind of approah requires the use of arbiters and therefore

a larger area oupation but, in general, it leads to muh more

eÆient solutions.

3 The dynami sheduling approah

A generi CFG is a set of nodes and edges. Eah node represents

an operation, while eah edge represents a sequential relation

between operations. Eah operation must be performed by a

physial operative unit, while eah operative unit an perform

more than one operation, but only one at a time. The designer

has to speify how many resoures are available and list whih

operations they an perform. These spei�ations are usually

referred to as resoure alloation.

The example shown in �gure 3 an help us to explain how

our approah works.

Four kinds of nodes are shown in this CFG: F nodes, rep-

resenting fork operations, and J nodes, representing join oper-

ations are ontrol nodes, while the nodes labeled + and � are

sum and multipliation nodes.

Let's assume that we alloate two physial resoures: one

able to perform only sums, the other able to perform only mul-

tipliations. Thus, nodes 3, 4, 7, 9, and 13 will be assigned to

the �rst OU unit, while nodes 5, 8, and 12 will be assigned to the

seond one. The problem of managing the onits between the

operations that ould ompete for the same resoure is solved

using arbiters. When the algorithm establishes that two or more

operations are assigned to the same OU and may be onurrent,

an arbiter is generated. This arbiter will dynamially shedule

the requests that will ome to the OU. In this ase, a �ve-input

arbiter should be used for the adder and a three-input arbiter

for the multiplier (i.e., one input for eah node).

The same example an be ompliated further if two OU's

are able to perform a sum. In this ase, we have more than

one possible solution to the problem. We ould, for example,

hoose the one found before, where only one OU and a �ve-

inputs arbiter was used. Another possible solution ould be

to use two adders: one for operations 3 and 4 and the other

for operations 7, 9, and 13. In this ase, we wouldn't need an

arbiter for the �rst OU (sine the two operations are exeuted

one after the other) while we would need a two-inputs arbiter

for the seond one, where operations 7 and 9 ould try to aess

the adder at the same time.

Finding the optimal solution for suh a problem is a matter

of hoosing whether it is better to have one adder and one �ve-

inputs arbiter or two adders and one two-inputs arbiter. In order

to do this a ost funtion must be determined that provides the

algorithm with a riteria to evaluate eah solution.

It must be also taken in onsideration that the resoures

shared by more than one operation ould have to be provided

with input multiplexers. Swapping the two operators (whenever

possible) an help remove some multiplexers and redue the

total area for the iruit. For example, if we assign the two

operations Y = A+B and Y = C+A to the same adder, a two-

inputs multiplexer would be needed on eah input. Swapping

either the operands of the �rst sum or those of the seond one

would save one multiplexer (for both operations the register A

would be onneted to the same input of the adder).

4 A formal approah to the algorithm

Two nodes an be in onit when they are on onurrent

branhes. In order to identify all possible onits between op-

erations without traversing the graph every time the binding is

hanged, eah node is labeled with all the fork nodes that pre-

edes it and are still not losed by a join node. Therefore, a

fork-label L

N

of node N will be a list of ouples (F

k

; B

k

); F

k

is

the fork node on whose branh the node N is exeuted, while

B

k

is the atual branh on whih N is exeuted. Two nodes are

oniting when all of the following three onditions are met:

� They have one or more fork nodes in ommon in their

fork-labels.

� The two nodes are not on the same branh.

� The two operations represented by the two nodes have

been bound to the same operative unit.

In the example of �gure 3, the node N

3

has the fork-label

L

N

3

= f(F

1

; 1); (F

2

; 1)g, while the node N

7

has the fork-label

L

N

7

= f(F

1

; 2); (F

6

; 1)g. If these two nodes are bound to the

same resoure, they are oniting sine in their fork-label the

�rst element refers the same fork node but with a di�erent

branh value.

The labeling operation is performed only one at the begin-

ning, sine it depends only on the topology of the CFG and not

on the binding hoies performed by the algorithm.

A solution for the binding problem onsists in assigning eah

node whih performs an operation (i.e., non ontrol nodes) to

a physial resoure and in deiding whether to swap the oper-

ators for that operation or not. We an de�ne a binding ele-

ment as a ouple of variables, one representing the resoure to

whih the node is assigned and the other to de�ne if the in-

put must be swapped for that operation: B

j

= fR

j

;W

j

g. The

swapping variable W

j

an be assigned value 0 or 1 (swapped

or not-swapped). Suh a solution an be represented by a ve-

tor V = fB

N

1

; B

N

2

; :::; B

N

l

g, where l is the total number of

operation nodes.

As the number of nodes and resoures inreases, the num-

ber of solutions an beame very large and exploring them all

next to impossible. For example, a CFG with 15 nodes, eah

of whih an be assigned to 3 possible resoures (with 2 possi-

ble values for the swapping variable) has (2 � 3)

15

' 4:7 � 10

11

possible solutions! In these situations it is not possible to use

traditional linear programming algorithms [6℄. Self-adaptive al-

gorithms (e.g., geneti, neuro-fuzzy, simulated annealing, et.)

on the other hand, are a possible way to takle this problem.

A A A

B B B A A A A A B B

B B B B B A A

Figure 4: Crossover sheme

Geneti algorithms (GA) mimi the natural evolution pro-

ess of a population of hromosomes, where those whih are �t

for the \environment" survive and generate new ones, while the

others are deleted. The key aspet of this lass of algorithms is

the hoie of a good representation for both the solutions of the

problem and a good �tness funtion to evaluate them.

In our approah, the binding elements assoiated with eah

node play the role of genes, while a vetor of genes (i.e., a solu-

tion) play the role of a hromosome. A set of hromosomes will

be referred to as population. The environment whih applies a

sort of natural seletion on hromosomes is played by the CFG

itself in the form of the fork-labels introdued above.

The geneti algorithm an be summarized as follows:

1. New population generation. The initial population

is generated randomly. A larger population inreases the

probability to �nd the optimal solution, but the omputa-

tional e�ort inreases, too. A similar observation an be

made about the number of iterations of the proess. How

these parameters inuene the eÆieny of the algorithm

will be disussed in setion 6.

2. Population evaluation. The population is evaluated by

estimating the number of resoures, multiplexers and ar-

biters used. Eah of them must be assoiated with a ost.

A higher ost for OU's will result in a smaller iruit area,

sine solutions with fewer OU's will be preferred by the al-

gorithm. On the other hand, higher ost for arbiters will

result in higher iruit throughput, beause the algorithm

will favor solutions with more OU's and fewer arbiters (i.e.,

fewer onits). The hoie of osts is therefore a means

for the designer to diret the algorithm toward either a

small area or a high throughput solution.

3. Population sorting. The hromosomes in the popula-

tion are then sorted out. The worst ones are disarded

and replaed by new ones generated by mating the best

ones.

4. Chromosomes mating. The sheme used to mate hro-

mosomes is the typial two-points rossover sheme shown

in �gure 4, where two indexes are randomly hosen and

all the genes between them are exhanged.

5. Chromosomes mutation. In order to apply some ran-

dom variations to the population, some small hanges are

arried out over hromosomes. This proess an help the

algorithm to avoid getting stuk around loal minimums.

The probability whih haraterizes this proess is another

parameter that will be disussed in setion 6.

5 A simple example: an arithmeti unit

In this example, we will show the results of the use of our tool

on a simple arithmeti unit, whose CFG is shown in �gure 5.

The geneti algorithm has been run on this spei�ation 3 times

with di�erent osts and alloations:

Run 1. Two adders and two multipliers have been provided for

the �rst run, and the ost of arbiters has been set to 0. As

a result all the sums have been bound on one adder and all

the multipliations on one multiplier. Two arbiters have

 <0> start

 <1> always

 <2> fork

 <4> fork <10> fork

 <6> X = A + B <8> Z = 3 * A

 <7> Y = X + 3

 <5> join

 <9> L = Y * Z

 <3> join

 <16> endalways

 <12> W = D + 1

 <13> K = C * 3

 <11> join

 <15> M = W + J

 <14> J = K + A

Figure 5: Arithmeti unit CFG

been spei�ed: a �ve-inputs arbiter for the adder and a

three-inputs one for the multiplier. The only interesting

result is the swapping of the input variables for operations

13 and 14 in order to redue input multiplexers area.

Run 2. For the seond run, the same number of funtional

units have been provided as the �rst run. In this ase,

however, their ost has been set to 0, while the ost of the

arbiters have been set to a greater value. The algorithm

found a solution where both multipliers have been used in

order to avoid onits (no arbiter was needed) and two

adders have been used in order to minimize the number

of onits. An arbiter was still neessary beause of the

onit between operations 12 and 14.

Run 3. For the third run the same osts have been used for

arbiters and funtional units as in the previous run. One

more adder has been alloated. A solution without on-

its and therefore without arbiters has been found by the

algorithm.

All the sheduling/binding proesses have been run using 100

hromosomes and 100 iterations, with a mutation probability of

5%. Eah run took less than a seond to omplete on a 800MHz

CPU. Table 1 summarizes the results for the example desribed

in this setion.

Available Used

Run ADD MUL ADD MUL Conits

1 2 2 1 1 7

2 2 2 2 2 2

3 3 2 3 2 0

Table 1: Results for examples of setion 5

6 Quality onsiderations

The problem of �nding the optimal alloation, sheduling, and

binding for an asynhronous iruit is of lass NP omplete.

The algorithms that explore the whole solution spae run into

serious eÆieny limitations when attempting to solve problems

of pratial size. The use of heuristis emerged as an eÆient

mean to limit the omputation load and improve the overall

algorithm eÆieny.

In this work we used geneti algorithms. Like many other

heuristis, these algorithms are not guaranteed to reah the best

solution. They have an inremental approah instead, attempt-

ing to improve the solution quality every new iteration. More-

over, using relatively few hardware resoures, the geneti algo-

rithms are able to ahieve high quality solutions even with a

oarse desription of what the optimum is (e.g., they an on-

verge even using just a riterion to disriminate any two valid

solutions, without quantifying their individual quality).

The onvergene of the geneti algorithms depends on many

fators, suh as: the representation hosen for the physial prob-

lem, the population size, the quality funtion, the algorithms

used for searhing the solution spae (typially mutation and

rossover), et. Tweaking all these parameters by hand often

prove to be time onsuming and a heuristi work by itself [7℄.

However, without exploring these parameters, we annot

know if the algorithm onverged on a loal optimum, far from

the overall best, nor even if the onvergene speed (i.e., the use

the algorithm makes of the hardware resoures) is good [8, 9℄.

In the sequel we will present some experimental results re-

garding the inuene of the variation of the geneti algorithm-

spei� parameters over the onvergene and the probability to

�nd the best solution. The goal of this exploration is to ob-

tain a fully adaptive algorithm, able to autonomously tune its

parameters on the lass of problem to solve.

In our experiments, the same problem was solved for 2000

times (full sale on the Y axis), using a random starting point

and 500 generations (full sale of the X axis). The sweep pa-

rameters were the mutation probability (0-100%) and the pop-

ulation size (4-1024 hromosomes). The best possible solution

for the problem was known, in order to be able to evaluate the

quality of the algorithms.

In �gure 6 are reprodued the results for two harateristi

ases. In these graphs, eah point P (x; y) measures how many

runs needed less than or at most x generations to �nd the best

solution. These graphs an also be seen as the umulative dis-

tribution of the probability density to �nd the best solution.

In �gure 6 (a), a very thin population with respet to prob-

lem size was used. Coneptually, this population is not able to

maintain enough diversity to ensure a good exploration of the

solution spae, thus is prone to be trapped in loal optimums.

We an see that it needs a good inux of variations from out-

side (about 15% mutation ratio) to be able to perform enough

solution spae exploration to �nd the overall best solution.

On the other side, �gure 6 (b) shows that a large population

with respet to problem size is very likely to have intrinsially

enough diversity for �nding the best solution using a very few

0

200

400

600

800

1000

1200

1400

1600

1800

2000

50 100 150 200 250 300 350 400 450 500

S
ol

ut
io

ns

Generations

Cumulative distribution of the probability to find the best solution (8 chromosomes)

0% mutation
5% mutation

10% mutation
15% mutation
20% mutation
25% mutation
30% mutation
35% mutation
40% mutation
45% mutation
50% mutation
55% mutation
60% mutation
65% mutation
70% mutation
75% mutation
80% mutation
85% mutation
90% mutation
95% mutation

100% mutation

(a)

0

500

1000

1500

2000

50 100 150 200 250 300 350 400 450 500

S
ol

ut
io

ns

Generations

Cumulative distribution of the probability to find the best solution (1024 chromosomes)

0% mutation
5% mutation

10% mutation
15% mutation
20% mutation
25% mutation
30% mutation
35% mutation
40% mutation
45% mutation
50% mutation
55% mutation
60% mutation
65% mutation
70% mutation
75% mutation
80% mutation
85% mutation
90% mutation
95% mutation

100% mutation

(b)

Figure 6: EÆieny of the geneti algorithms with respet to the

population size and probability of mutation (2D representation)

generations and low (if any) external diversity (mutation ratios

very lose to 0%).

In both ases, as we would expet, a high mutation ratio

(lose to 100%) is pereived as a random fator, whih an over-

whelm the quality funtion feedbak and evenly distribute the

hanes to �nd the best solution with respet to the number of

generations. In �gure 6 this an be seen as an almost straight

line of onstant slope.

The optimum of the geneti algorithm parameters should

seek to minimize two negative e�ets:

� the mutation probability should be hosen suh way as

to bring enough diversity to avoid loal optimums on one

hand, but also avoid disturbing the seletion based on the

quality funtion feedbak;

� the population an drain out too many omputation re-

soures if oversize, while it may get easily trapped into

loal optimums if too thin.

In �gure 7 are presented the same results using 3D graphs.

This makes very easy to observe the impat the population size

and the mutation probability have on the quality of the geneti

algorithm.

Figure 7 (a) uses a very thin population, of only 4 hromo-

somes. The lak of intrinsi diversity makes almost impossible

Cumulative distribution of the probability to find the best solution (4 chromosomes)

50
100
150
200
250
300
350
400
450
500

Generations

00.10.20.30.40.50.60.70.80.91

Mutation probability

0
200
400
600
800

1000
1200
1400
1600
1800
2000

Solutions

(a)

Cumulative distribution of the probability to find the best solution (16 chromosomes)

50
100
150
200
250
300
350
400
450
500

Generations

00.10.20.30.40.50.60.70.80.91

Mutation probability

0
200
400
600
800

1000
1200
1400
1600
1800
2000

Solutions

(b)

Cumulative distribution of the probability to find the best solution (256 chromosomes)

50
100
150
200
250
300
350
400
450
500

Generations

00.10.20.30.40.50.60.70.80.91

Mutation probability

0
200
400
600
800

1000
1200
1400
1600
1800
2000

Solutions

()

Cumulative distribution of the probability to find the best solution (1024 chromosomes)

50
100
150
200
250
300
350
400
450
500

Generations

00.10.20.30.40.50.60.70.80.91

Mutation probability

0
200
400
600
800

1000
1200
1400
1600
1800
2000

Solutions

(d)

Figure 7: EÆieny of the geneti algorithms with respet to the

population size and probability of mutation (3D representation)

to �nd the best solution, even after many generations, in absene

of external variations (0% mutation probability). The best this

thin population an do is for around 15% mutation probability,

while for higher ratios the seletion feedbak from the quality

funtion is luttered by too muh randomness.

Figure 7 (b) shows how a larger population (of 16 hromo-

somes) is apable to make good use of external variations (muta-

tion ratios of 25-30%) to aelerate the searh for the optimum

solution. On this population size we an still see that there is

not enough intrinsi diversity to �nd the best solution in ab-

sene of mutations, as well as the negative impat of too muh

randomness indued by very high mutation ratios.

Higher population sizes (256 hromosomes in �gure 7 () and

1024 hromosomes in �gure 7 (d)) exhibit both enough intrinsi

diversity to �nd the best solution in absene of mutations, as

well as better resiliene to external random inuxes for higher

mutation ratios. However, large populations mean higher use of

omputational resoures and a trade-o� should be found.

7 Conlusions and future work

Asynhronous iruit alloation, sheduling, and binding is a

very omplex problem. In this paper, an e�etive method based

on geneti algorithms for sheduling and binding was presented.

The algorithm an be direted to optimize the iruit area

or the throughput. The hazards are avoided by automati in-

sertion of arbiters whenever neessary and the number of input

multiplexers for shared resoures is minimized as well.

Moreover, experimental results that illustrate the inuene

of main parameters on the geneti algorithm onvergene are

presented. These open the way to automati parameter tuning

at run-time, greatly improving the eÆieny and quality of the

algorithm.

Referenes

[1℄ D. D. Gajski, Loganath, and Ramahandran, \Introdu-

tion to High-Level Synthesis", in IEEE Design & Test of

Computers, Vol. 11, No. 4, Ot-De 1994, pp. 45-54.

[2℄ R. M. Badia and J. Cortadella, \High-Level Synthesis

of Asynhronous Systems: Sheduling and Proess Syn-

hronization", European Design Automation Conferene,

Feb 1993, pp. 70-74.

[3℄ J. Cortadella, R. M. Badia, E. Pastor, and A. Pardo,

\Ahilles: A High-Level Synthesis System for Asyn-

hronous Ciruits", 6

th

Workshop on High-Level Synthesis,

1992.

[4℄ R. A. Walker and S. Chaudhuri, \High Level Synthesis:

Introdution to the Sheduling Problem", IEEE Design &

Test of Computers, Vol. 12, Issue 2, summer 1995, pp. 60-

69.

[5℄ I. Blunno and L. Lavagno, \Automated synthesis of miro-

pipelines form Verilog HDL ", IEEE 6

th

Symposium on Ad-

vaned Researh on Asynhronous Ciruits and Systems,

April 2000, pp. 84-92

[6℄ K. H. Borgwardt, \The simplex method: a probabilisti

analysis", Springer-Verlag, 1987.

[7℄ A. E. Eiben, R. Hinterding, and Z. Mihalewiz. \Parame-

ter ontrol in evolutionary algorithms", IEEE Transations

on Evolutionary Computation, 3(2):124{141, 1999.

[8℄ S. F. S. Vinent, A. Ciirello, \Modeling GA Perfor-

mane for Control Parameter Optimization", Proeedings

of the Geneti and Evolutionary Computation Conferene

(GECCO-2000), Morgan Kaufmann, 10-12, pp. 235-242,

2000.

[9℄ T. Krink, B. H. Mayoh, and Z. Mihalewiz, \A Path-

work Model for Evolutionary Algorithms with Strutured

and Variable Size Populations", Proeedings of the Geneti

and Evolutionary Computation Conferene, vol. 2, 13-17,

Morgan Kaufmann, pp. 1321-1328, 1999.

[10℄ L. Davis, \Handbook of geneti algorithms", VNR, 1991.

