
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A compilation-based software estimation scheme for hardware/software co-simulation / Lajolo, M.; Lazarescu, MIHAI
TEODOR; Sangiovanni Vincentelli, A.. - ELETTRONICO. - (1999), pp. 85-89. (Intervento presentato al convegno
Hardware/Software Codesign, (CODES '99) tenutosi a Rome, Italy nel 1999) [10.1109/HSC.1999.777398].

Original

A compilation-based software estimation scheme for hardware/software co-simulation

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/HSC.1999.777398

Terms of use:

Publisher copyright

©1999 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2507486 since: 2018-10-12T16:00:51Z

IEEE

A Compilation-based Software Estimation Scheme
for Hardware/Software Co-Simulation

Marcello Lajolo
Politecnico di Torino

Torino, Italy
lajolo@polito.it

Mihai Lazarescu
Politecnico di Torino

Torino, Italy
lazarescu@polito.it

Alberto Sangiovanni-Vincentelli
University of California at Berkeley

Berkeley, CA, USA
alberto@eecs.berkeley.edu

Abstract

High-level cost and performance estimation, coupled with a fast
hardware/software co-simulation framework, is a key enabler to a
fast embedded system design cycle. Unfortunately, the problem of
deriving such estimates without a detailed implementation avail-
able is very difficult.

In this paper we focus on embedded software performance esti-
mation. Current approaches use either behavioral simulation with
(often manual) timing annotations, or a clock cycle-accurate model
of instruction execution (e.g., an instruction set simulator). The
former provides greater flexibility (no need to perform a detailed
design) and high simulation speed, but cannot easily consider ef-
fects such as compiler optimization and processor architecture. The
latter provides high accuracy, but requires a more detailed imple-
mentation model, and is much slower in general. We hence devel-
oped a hybrid approach, that incorporates some aspects of both. It
provides a flexible and fast simulation platform, considering also
compilation issues and processor features.

The key idea is to use the GNU-C compiler (GCC) to generate
“assembler-level” C code. This code can be annotated with timing
information, and used as a very precise, yet fast, software simula-
tion model.

We report some experimental results that show the effectiveness of
our approach, and we propose some future improvements.

Keywords: compilation, software estimation, delay modeling.

1 Introduction

The design of a complete hardware/software system is becoming
more and more complex, due to the progress made in various areas
of hardware and software technology. In particular with the ability
to mix processors, complex peripherals, and custom hardware on
a single chip, it is unthinkable to address full-system design and

analysis with a manual approach. This complexity demands a new
methodology and set of tools.

Co-simulation at an early design stage, using apredictiveperfor-
mance model plays a key role in a complete system-level design en-
vironment. It can evaluate the feasibility of a particular hardware/soft-
ware partition, processor choice and so on, earlier than by using the
traditional methodology, based on separate implementation paths
for hardware and software.

However, this high level performance estimation of hardware/soft-
ware real-time embedded systems is very difficult. On the software
side (the focus of this paper), the main problem is the prediction of
the performance of a program written in a high-level language (in
this case C) on a given processor architecture. It must take into ac-
count several architectural effects, such as compiler optimization,
memory hierarchy (registers, caches, . . .), pipelines, multiple func-
tional units, just to name few of them.

The approach presented in this paper is aimed at filling the per-
formance estimation gap in the POLIS [1] embedded system de-
sign environment. POLIS uses two different software estimation
schemes, that are representative of much broader classes of tech-
niques:

1. a high-level estimation methodology, based on source code
analysis (software delay macromodeling) [2];

2. an approach based on the link with an Instruction Set Simu-
lator [3].

The rest of the paper is organized as follows. Section 2 gives an
overview of related work. Section 3 describes in detail the proposed
methodology and one possible implementation scheme. Section 4
shows some experimental results. Section 5 provides some conclu-
sions and an overview of future extensions and improvements.

2 Related Approaches

The main techniques for software performance estimation fall into
four groups:

1. using a cycle-accurate ISS together with a hardware simula-
tor, and filtering the information that is passed between them
(e.g., by suppressing instruction and data fetch-related activ-
ity in the hardware simulator) [4, 5];

2. compiling the software description and annotating the gen-
erated control flow graph (CFG) with information useful for
deriving a cycle-accurate performance model (e.g., consider-
ing pipeline and cache) [6, 7];

3. trying to guess the compiler optimizations and annotating the
original C code with timing estimates [2];

4. using a set of linear equations to implicitly describe the fea-
sible program paths [8].

The first approach is precise, but suffers from a low simulation
speed, and requires a detailed model of the hardware and the soft-
ware. Performance analysis can be done only after completing the
design, and hence it is very difficult to modify architectural choices,
such as the type of processor, the choice of peripherals, and so on.

The second approach is based on analyzing the code generated for
each basic block in the program, trying to incorporate information
about the optimization performed by an actual compilation pro-
cess. This can consider register allocation, instruction selection
and scheduling, and so on. In our approach we partially use this
scheme, and couple it with a high-level co-simulation framework.

The third approach has the advantage of not requiring a complete
design environment for the chosen processor(s), since the perfor-
mance model is relatively simple (an estimated execution time on
the chosen processor for each high-level language statement). How-
ever, it cannot consider compiler and complex architectural features
(e.g., pipeline stalls due to data dependencies). The method cannot
be applied easily to unrestricted C code, but provides good results
on code with a very simple structure (e.g., without loops and recur-
sive procedure calls) [2, 6].

The fourth approach has the advantage of not requiring a simulation
of the program, and hence can provide conservative worst-case ex-
ecution time information. However, so far it has been applied only
to single programs, and not to multi-tasking environments common
in embedded systems.

Sometimes it is also possible to use mixed approaches like in [9],
where a software estimation methodology tries to approach each
step in the analysis with the best methods currently known is pre-
sented.

Our approach fits in the second category, thus this one will be de-
scribed more in detail below.

In [6] a program timing analyzer for control applications is pre-
sented. Given a task written in a subset of C, a compiler constructs
the CFG and generates assembly code that is further translated into
an executable file. An instruction-level timing analysis is then per-
formed on the CFG and the assembly code for each basic block.
The results are labels on the CFG, representing the description of
the pipeline state at the entry and exit of each basic block. Data flow
analysis is also performed in order to predict data and instruction
cache performance.

In [7] a compiled hardware/software co-simulation is presented.
This approach is based on generating a C program from the tar-
get binary code, and then compiling it on the host enviroment for
the co-simulation. This simplifies the translation process with re-
spect to the classical binary-to-binary approaches and improves its
portability. It differs from the classical interpreted ISSs, because
it translates each target assembly instruction into one or more host
instructions, thus eliminating the fetch and decode steps, and re-
sulting in a faster simulation. Moreover, by using the C code as

the intermediate format for software simulation, and a behavioral
C model of the hardware, it is possible to use a standard source
level debugger to debug both hardware and software.

Our approach inherits features of both the approaches described
above. We construct a C simulation model by using a modified
back-end of the GCC compiler. This allows us to solve some draw-
backs of [7], where the CFG of the program is not available and
must be re-constructed from the final executable. This is a diffi-
cult process, especially in the presence of sophisticated compiler
optimizations.

By embedding a C compilation suite in a co-design tool, we also
avoid the need to purchase a specific compiler for each target pro-
cessor. We have identified GCC as an interesting compilation suite
for our purposes due to the fact that it has been ported to almost
every embedded processor and also due to its good optimitazion
capabilities on several existing architectures.

Anyway, it is important to underline that our approach does not
depend on the choice of the compiler.

As in [6], we perform a pipeline analysis for each basic block in the
program, and we use a caching mechanism to avoid recomputing
timing information within each basic block at every execution.1

We also provide the user with the possibility to examine the perfor-
mance of the code with different compiler optimizations, that can
be specified on a task-by-task basis by attaching parameters to tasks
in our co-simulation framework. To the best of our knowledge, this
is the first software estimation methodology where a codesign en-
vironment is tightly integrated with a compiler.

3 The integration of the GCC suite in the POLIS frame-
work

A prototype of the proposed software performance methodology
has been implemented for the MIPS R3000 architecture, using the
GCC compiler and the POLIS co-design environment.

In POLIS [1], the system is described using a formal behavioral
model based on a network of communicating entities called Code-
sign Finite State Machines (CFSMs). The user can map each CFSM
to either hardware or software, choose the processor type and cache
architecture, estimate the performance and evaluate each mapping
with little effort. Finally, a hardware or software implementation,
including the real-time operating system (RTOS), is synthesized by
POLIS.

The simulation flow of the methodology proposed in this paper is
shown in Figure 1.

After the network of CFSMs has been manually partitioned into
hardware and software, the very same C model (synthesized by PO-
LIS from the CFSM) is used for both hardware and software sim-
ulation. The only difference is the mechanism used to synchronize
the various CFSMs. Hardware CFSMs operate concurrently, and
require one clock cycle to execute a transition. Software CFSMs
require a variable number of clock cycles, as determined by clock
cycle counting code inserted by POLIS in the C model. Moreover,
their operation is coordinated by a scheduler modeling the RTOS
used in the final implementation.

1Of course, this involves some accuracy trade-off when instruction timing is data-
dependent, as in some multiplication, division and string manipulation instructions.

HW/SW
partitioning

HW/SW
partitioning

(ESTEREL + C/ASM)

CFSM

POLIS

SYSTEM SPECIFICATION

HW/SW
partitioning

COMPILATION

optimizationgeneration

Timing Analysis
Instruction level

(Labelled CFG)
C simulation model

Optimized RTL GCC−based

flow

RTL

The

co−simulation
HW/SW

HW SW

C model
HW C program

+ RTOS
Optimization

options
.md

description

SYSTEM
DESIGNER

SW synthesis

Figure 1: The simulation flow.

In [2], software performance estimates were obtained using a fixed
cost for each synthesized C code statement on a given processor
(the cost is obtained by executing a set of benchamrks on a cycle-
accurate model of the processor). In [3], an ISS-based refinement
scheme measures (instead of estimating) the performance of each
basic block in the C model, by using a cycle-accurate ISS.

In this paper we added to the original POLIS flow the shaded part
of Figure 1. The RTL generation and the optimization is part of
the normal GCC compilation process which we do not interfere
with. The optimization step can be controlled through a bunch of
parameters given by the user and that will be described later.

The optimization phase ends producing an optimized internal RTL
structure. We then use this intermediate representation to perform
an instruction-level timing analysis and generate a C simulation
model that includes bothfunctionalinformation (the assembler-like
C code) andtiming information (the added code for clock cycle
counting). This model can then be used in the POLIS co-simula-
tion framework without any change.

Note that in POLIS C code synthesized from a CFSM can co-exist

with hand-written C code. In this approach (unlike [2]) we can
estimate the performance of both kinds of code uniformly.

A significant difference with respect to the performance estimation
methodology described in [2] is that now we need a different sim-
ulation model for each processor choice and each compiler option
combination. This is not a serious drawback, as the model is gener-
ated automatically on the fly by the co-simulation environment, but
it means that evaluating different processors requires more time in
this case.

#define detect_e_RESET_to_z_BELT_0 \
(*(frozen_inp_events[proc]+0) & 1)

....
v__st_tmp = v__st;
startup(proc);
if (detect_e_RESET_to_z_BELT_0) {

goto L16;
}

sb $2,v__st_tmp.2
jal startup
lw $2,proc
#nop
sll $2,$2,2
lw $2,frozen_inp_events($2)
#nop
lbu $4,0($2)
#nop
andi $2,$4,0x0001
.set noreorder
.set nomacro
bne $2,$0,$L16
andi $2,$4,0x0004

DELAY(sb); v__st_tmp = r2;
DELAY(jal); // startup(proc); deferred
DELAY(lw+nop); r2 = proc;

startup(proc);
DELAY(sll); r2 = r2 << 2;
DELAY(lw+nop); gm_p = &frozen_inp_events+r2;

r2 = *gm_p;
DELAY(lbu+nop); gm_p = 0+r2;

r4 = *gm_p;
DELAY(andi); r2 = r4 & 0x0001;
DELAY(bne); _jcond = (r2 != r0);

// if (_jcond) goto L16; deferred
DELAY(andi); r2 = r4 & 0x0004;

if (_jcond) goto L16;

Figure 2: From top to bottom: C code, assembly code and the C
simulation model.

Figure 2 shows an example of a little portion of C code generated by
POLIS, the resulting assembly code and the corresponding C code
used as simulation model. This is mainly composed of DELAY
macros and a behavioral part.

The DELAY macros are used to accumulate clock cycles during
execution. They receive as argument an arithmetic expression com-
posed of assembly instruction names. A global variable, that rep-
resents the time elapsed from the beginning of the simulation, is
accordingly updated.

The behavioral part is an assembler-level C code that reconstructs
all the functionality of the module. It is possible to see the actual
machine registers, references to memory and control instructions.
This code is as close as possible to the assembler semantics, but it
is not possible to mantain an exact one to one correspondence.

For the simulation, the generated C code both DELAY macros and
behavioral gets compiled once again on the host machine (typically
different from the target machine for which the assembler was gen-
erated) and then executed. In an auxiliary header file we extracted
the delays associated in the.md file to each assembly instruction.
This choice results in a faster simulation in respect to an interpre-
tive simulation where for example the actual instruction fetches are
performed.

The drawback of this approach is that it is not possible to man-
tain the total separation between functional and delay information.
For example we have to defer some control instructions in order to
maintain the original functionality. This is necessary because we
have to undo delay slot fillings that expose some instructions to the
pipeline behavior in order to exploit the advantages of a pipelined
execution.

3.1 The GCC machine description format

Processor-dependent information for the GCC compiler is mostly
stored in a machine description file (.md) [10].

This is a textual description composed of instruction definitions and
instruction attributes. The instruction definitions define the instruc-
tion set of the target machine as RTL (Register Transfer List) ex-
pressions. RTL is the intermediate representation on which most
of the compilation algorithms operate. RTL uses five kinds of ob-
jects: expressions (RTX), integers, wide integers, strings and vec-
tors. Each instruction pattern is defined using an RTL expression
calleddefine insn , containing four or five operands:

1. anoptional name;

2. theRTL templatethat shows the effect of the instruction on
the processor state;

3. the condition (a C expression) that is used (in addition to
the RTL) to decide whether some fragment of compiled code
matches this pattern;

4. theoutput templatedetermines how to generate assembler
code. When simple general substitution is not general enough,
a piece of C code to compute the output can be used. This is
the only part of the.md file that we had to modify in order
to produce C instead of assembler;

5. an optional vector with the values of attributes (e.g., latency,
delay slots, . . .) for matching instructions.

3.2 User control of optimization parameters

One of the main advantages of our proposed methodology is to
give the user a tight control over the compiler optimization capabil-
ities, on a CFSM by CFSM basis. For this reason, the designer can
specify the parameters shown in Table 1 (corresponding to GCC
compilation options) for each CFSM in the netlist describing the
embedded system specification.

For example, the OPTIMIZE parameter selects whether to optimize
the code for speed or size. The OPTIMIZATIONLEVEL param-
eter selects the level of optimization (higher numbers correspond
to higher optimizations). The LOOPUNROLLING parameter is

(define_insn "addsi3_internal"
[(set (match_operand:SI 0

"register_operand" "=d")
(plus:SI (match_operand:SI 1

"reg_or_0_operand" "dJ")
(match_operand:SI 2

"arith_operand" "dI")))]
"! TARGET_MIPS16

&& (TARGET_GAS
|| GET_CODE (operands[2]) != CONST_INT
|| INTVAL (operands[2]) != -32768)"

"addu\\t%0,%z1,%2"
[(set_attr "type" "arith")

(set_attr "mode" "SI")
(set_attr "length" "1")])

Figure 3: A section of a.md description.

parameter name definition

OPTIMIZE SPEED, SIZE
OPTIMIZATION LEVEL 0-3
LOOP UNROLLING 0= not enabled, 1= enabled
INLINE FUNCTIONS 0= not enabled, 1= enabled
CALLER SAVES 0= not enabled, 1= enabled
FAST MATH 0= not enabled, 1= enabled

Table 1: Optimization options.

used to enable/disable the loop unrolling optimization (to improve
pipeline performance). The user is free to add or change parame-
ters. These are passed as pairs of name and action to the compiler.
The POLIS environment, based on UNIXmake, automatically re-
generates each simulation module when either its functional speci-
fication (CFSM model) or compilation options are changed.

3.3 Using the C simulation model for implementation

The accuracy of our approach depends on the ability to use the same
“structure” for the simulation model and for the final executable
that will be loaded on the target processor. Unfortunately, each
compiler can perform different kinds of optimizations on the code,
e.g., by using different register allocation strategies. This problem
can be solved in two different ways, depending on the requirements
of the final implementation environment:

1. if GCC is a suitable compiler for the target machine, it is
enough to compile the C code with the same options when
generating the simulation model and when generating the fi-
nal executable. This can be easily achieved automatically, by
a judicious use of automatically generatedMakefile s.

2. if GCC cannot be used for the final compilation (e.g., due
to company policy, availability of development tools such as
debuggers and emulators, limited optimization capabilities
of GCC on the selected architecture, . . .), the C simulation
model generated by our modified GCC can be compiled with
another compiler as it preserves the exact functionality of the
original C code. If a poorer compiler is used we can hope
that it will not undoany of the optimizations (it will make
good use of them), while a better compiler is free to further
improve the quality of the final code. In the latter case we
can expect less precise estimations.

task pixie macromodeling GCC-based

ODOMETER 42 72 44
BELT 41 76 40
FUEL 58 93 60

Table 2: Unoptimized code measurements.

task pixie macromodeling GCC-based

ODOMETER 40 72 39
BELT 38 76 36
FUEL 53 93 51

Table 3: Optimized code measurements.

4 Performance Simulation and Results

We performed several experiments to evaluate both the accuracy
of our approach and the simulation speed. We used a reasonably
complex embedded system distributed with POLIS, a dashboard
controller.

Table 2 and 3 report the results obtained for the average number of
cycles/task obtained for three modules of the dashboard. The first
one is for the case of non optimized code, while the second one
is for the case of optimized code. In both tables are reported re-
spectively the results obtained with thepixie tool profiler for the
MIPS architecture (considered a golden reference for this experi-
ment), the macromodeling approach of POLIS [2] and the GCC-
based approach.

The following conclusions can be drawn from these tables:

• as expected the impact of compiler optimizations is signifi-
cant and the macromodeling approach, that cannot take them
into account, results in a big discrepancy (an average error of
85%);

• the GCC-based estimation, features a good accuracy in both
cases (an average error of less than 4% for both optimized
code and unoptimized code) because it reflects the compila-
tion performance.

Regarding the simulation speed we can say that the GCC-based
estimation features an average of only 8% overhead with respect to
POLIS macromodeling. These results were obtained by using the
prof utility on a SUN SPARC-20 workstation.

5 Conclusions and Future Work

A new compilation-based software performance analysis method
has been presented. We believe that this is the first approach that
combines a state-of-the-art optimizing compiler with a high-level
co-simulation and co-design methodology.

In the future, we are planning to integrate our work with a front-
end that is currently under development in the GCC group. This
will eventually allow a processor model developer to generate a
machine description from a template file that is less dependent on
the internal compiler structure than the.md files.

Acknowledgements: The authors would like to thank Prof. Lu-
ciano Lavagno for his precious comments and suggestions. We also
thank all the members of the Software Estimation Group in the Fe-
lix Initiative of Cadence Design Systems: Ed Harcourt, Camille
Batarekh, Marek Ryniejski, Doug Dunlop, Neeti Bhatnagar and
Soumya Desai, for their help with defining the problem and outlin-
ing solutions. Finally we would like to acknowledge Jose Manuel
and Francisco Moya from Universidad Politecnica de Madrid for
their useful hints in using the GCC suite.

References

[1] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jureska, L. Lavagno,
C. Passerone, A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and
B. Tabbara,Hardware-software Co-Design of Embedded Systems: The POLIS
Approach. Kluwer Academic Publishers, Norwell, MA., 1997.

[2] K. Suzuki and A. Sangiovanni-Vincentelli, “Efficient software performance
estimation methods for hardware/software codesign,” inProc. Design
Automation Conf., pp. 605–610, Jun. 1996.

[3] J. Liu, M. Lajolo, and A. Sangiovanni-Vincentelli, “Software timing analysis
using hw/sw cosimulation and instruction set simulator,” inProc. Int. Workshop
on Hardware/Software Codesign, pp. 65–69, Mar. 1998.

[4] Mentor Graphics Seamless CVE Home Page.
http://www.mentorg.com/seamless/.

[5] Synopsys’ Eagle Home Page.
http://www.synopsys.com.tw/products/hwsw/eagleds.html.

[6] F. Stappert, “Predicting pipelining and caching behaviour of hard real-time
programs,” 1998. C-LAB internal document, Furstenalle 11, D-333102
Paderborn, Germany.

[7] V. Zivojnovic and H. Meyr, “Compiled hw/sw co-simulation,” inProc. Design
Automation Conf., 1996.

[8] S. Malik, M. Martonosi, and Y. Li, “Static timing analysis of embedded
software,” inProc. Design Automation Conf., pp. 147–152, Jun. 1997.

[9] R. Ernst and W. Ye, “Embedded program timing analysis based on path
clustering and architecture classification,” inProc. Int. Conf. Computer-Aided
Design, pp. 598–604, Nov. 1997.

[10] R. M. Stallman,Using and Porting GNU CC.
http://www.delorie.com/gnu/docs/gcc/gcctoc.html.

