
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

HEAP: A Highly Efficient Adaptive Multi-processor Framework / Lavagno, Luciano; Lazarescu, MIHAI TEODOR;
Papaefstathiou, I.; Brokalakis, A.; Walters, J.; Kienhuis, B.; Schaefer, F.. - ELETTRONICO. - (2012), pp. 509-516.
(Intervento presentato al convegno 15th Euromicro Conference on Digital System Design tenutosi a Izmir, Turkey nel 5-
8 settembre 2012) [10.1109/DSD.2012.71].

Original

HEAP: A Highly Efficient Adaptive Multi-processor Framework

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/DSD.2012.71

Terms of use:

Publisher copyright

©2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2507483 since: 2020-11-03T18:30:43Z

IEEE

HEAP: a Highly Efficient Adaptive multi-Processor
framework

(Invited Paper)

Luciano Lavagno, Mihai Lazarescu
Politecnico Di Torino, Italy

{luciano.lavagno,mihai.lazarescu}@polito.it

Ioannis Papaefstathiou, Andreas Brokalakis
Synelixis Solutions Ltd, Greece

ygp@ece.tuc.gr, brokalakis@synelixis.com

Johan Walters, Bart Kienhuis
Compaan Design, Netherlands

{jwalters,kienhuis}@compaandesign.com

Florian Schaefer
FS Result, Germany

florian.schaefer@fsresult.com

Abstract—Writing parallel code is difficult, especially when
starting from a sequential reference implementation. Our re-
search efforts, as demonstrated in this paper, face this challenge
directly by providing an innovative toolset that helps software
developers profile and parallelize an existing sequential imple-
mentation, by exploiting top-level pipeline-style parallelism. The
innovation of our approach is based on the facts that a) we use
both automatic and profiling-driven estimates of the available
parallelism, b) we refine those estimates using metric-driven
verification techniques, and c) we support dynamic recovery of
excessively optimistic parallelization. The proposed toolset has
been utilized to find an efficient parallel code organization for a
number of real-world representative applications, and a version
of the toolset is provided in an open-source manner.

I. INTRODUCTION

Writing parallel programs has traditionally been considered
a difficult task, even when parallelism is taken into account
from the beginning. Moreover there is an urgent need to
parallelize the massive amounts of legacy sequential code so as
to increase its performance on processors and systems that re-
focus from single-thread acceleration to increasing the overall
throughput. Automated software parallelization has been tack-
led extensively at the instruction level and loop level, which
are appropriate for VLIW and vector processors. However,
only some past work, namely the Compaan approach [1], has
actively sought parallelization opportunities at the task level,
which are most appropriate for modern multi-core processors.
A main limitation of the latter techniques is that so far they
required loops enclosing the main computational bottlenecks
to have very simple internal control (no early exit, limited
support for conditionals, etc.), and data access patterns (very
limited use of pointers, only affine array indices, etc.)

The HEAP project faces these challenges directly, by de-
veloping an innovative toolset that helps software developers
profile and parallelize existing sequential implementations by
exploiting top-level pipeline-style parallelism. It synergisti-
cally uses and extends with respect to past work:

1) The above mentioned Compaan approach [1], [2], ex-
tended to support a significantly larger set of control

structures (as detailed in Section III), to provide auto-
matic parallelization capabilities based on full compile-
time dataflow analysis on a reduced scope of the appli-
cation with a reduced complexity (in HEAP referred to
as the pessimistic approach).

2) A novel approach, related to [3] and [4] and described
in Section IV, which uses run-time, full scope data-
dependency tracing and sophisticated graph visualization
techniques to enable the code developer to optimistically
find the best manual parallelization opportunities.

3) Coverage analysis and runtime tracing, as described in
Section V, to help the developer verify the manually or
automatically parallelized code.

The HEAP project also covers the multi-core computer
architecture side, by providing innovative cache coherency
strategies, described in [5]. They exploit the data access
information provided by the parallelization tools mentioned
above to provide improved performance at a dramatically
reduced cost with respect to current directory-based methods.

The key observation that allows such an improvement is that
explicit classification (e.g., by means of a specific encoding of
some bits of the address) of each load or store as operating
on private or shared data leads to effective use of a write-
through policy for shared data, and of a write-back policy for
private data. Since all communication in the parallel model of
computation considered in this paper, namely Kahn Process
Networks (KPNs [6]), is via single-reader single-writer FIFOs,
this classification can be readily performed. In particular, all
local process variables are private, while all FIFO variables
(indices and buffers) are shared. Since most of the data
accesses are on private data, the more efficient write-back
policy can be applied for a majority of the accesses, thus
providing the claimed cache performance and cost gains.

Note that the HEAP approach is not limited to a KPN-
style parallelism. Only the automated parallelization path
uses it, while manual parallelization (helped by the tools
described in the rest of this paper) can use any style of parallel
code writing. In this paper, we will consider KPNs because
they are intuitive and, thanks to their deterministic behavior

independent of the execution timing and schedule, they make
manual parallelization easier and less error-prone.

II. RELATED WORK

Code parallelization is one of the most widely studied topics
in compilers for parallel machines since the 1970’s. Most of
the work so far has focused on the identification of code
sections within innermost loops (Fortran “do” or “for” and
“while” in C) which can be executed fully in parallel (“do-
all”) due to the lack of dependencies, or on a vector machine,
or as a software pipeline [7], [8], [9]. However, the level
of parallelism that can be identified using these techniques
is very limited, since it can be significant only for special
applications (physics, fluid dynamics, structure engineering),
and cannot fully exploit the current architectures dominantly
used for gaming and multi-media applications.

On the other hand, there is a strong need for techniques
which can help the developer to manually partition an appli-
cation, going beyond the limitations of automated analysis.
For example, we would like to work at the “main” program
level (as opposed to the innermost loop level) [10], [11].

One of the most effective automated approaches so far,
which is part of the background research of this proposal and
will provide us with the “lower bound” to the amount of par-
allelism, is the Compaan project run at the University of Lei-
den [1] which is being commercialized by Compaan Design.
The Compaan approach focuses on Static Affine Nested Loop
Programs (SANLP), which use affine loop bounds and index
expressions on non-aliased data. Originally the technology was
based on Matlab syntax as input specification and currently it
is based on ISO C.

A similar approach, but oriented to the discovery of par-
allelism in the outermost loops, is used by the PICO high-
level synthesis software, currently commercialized by Synop-
sys [11].

Another similar technique, proposed recently by Amaras-
inghe and others, provides the basic idea of the “upper bound”
to the discovery of parallelism [12]. In HEAP, we have
extended it by providing further techniques, based on data
compression and advanced visualization, to show the very
large amount of data that can be provided by a full data trace
of, e.g., a large video encoding or decoding technique.

Several compilation and debugging tools, often based on
dedicated proprietary extensions of the C language, have
also been proposed by dominant players in the industry. For
example, Apple has recently introduced the Grand Central
technology, and based it on a newly developed programming
language called OpenCL. The potential scope of this approach
is to parallelize C-like programming languages for execution
on graphics processors.

Besides investing millions of research dollars into the search
for a magic fully automated parallelizing compiler or reviving
an older language, chip vendors are coming up with stopgaps.
Unfortunately, these stopgaps are focused solely on their
own silicon. Nvidia has released CUDA in order to help
translate C languages into parallel instructions that can be

used by Nvidia’s GPUs for scientific computing (very similar
to Apple’s OpenCL), while AMD also has its own similar
offering called Stream.

The recently announced Prism tool from criticalBlue, which
focuses on the same problem of parallelization of legacy
sequential code, is bound to the quality of the provided
testbench, in order to assess the parallelization opportunities.
Moreover, this tool mainly displays the performance of an
application when used under different thread assignments
together with the corresponding dependencies in each case.
HEAP certainly goes far beyond that since it will provide both
lower bounds (using array index analysis) and metric-driven
coverage analysis to enhance the “quality” (i.e., coverage) of
the testbench itself, as well as interaction with the cache-
coherency protocols utilized, etc.

III. STATIC ARRAY-BASED DATA DEPENDENCY ANALYSIS

This section provides a short overview of how the Com-
paan compiler [1] performs its data dependency analysis and
identifies sections of code which can be safely executed
as concurrent Kahn Process Network (KPN [6]). In KPNs,
processes are allowed to communicate only via single-reader
single-writer FIFO queues with blocking read semantics, thus
ensuring deterministic behavior by construction, regardless of
the execution timing.

Compaan’s exact dataflow analysis operates at the proce-
dure level (reduced scope) and performs its analysis on C
code that adheres to the reduced complexity of Static Affine
Nested Loop Programs (SANLP). The Compaan compiler
converts a SANLP into an efficiently pipelined KPN. The
more repetitive the original program, the more effective the
Compaan approach is. Especially applications in the domain
of video, telecom and imaging can be easily fit in the SANLP
format. This provides a productive approach to convert these
applications into multithreaded, streaming implementations.

Within SANLP, control flow decisions and data access pat-
terns depend on compile-time known values, i.e., static affine
expressions. Therefore, a SANLP comprises the following:

• C loops equivalent to the form
for(it = e1; it < e2; it += e3) {...}
where it is the integer iterator, e1, e2 are static affine
(loop invariant) expressions and e3 is a constant.

• if-then-else statements in the form
if([!] e1 [<, <=, ==, >=, >, |, &] e2) {...}
else {...} where e1, e2 are static affine expressions,
i.e., all boolean expressions based on static affine values.

• Statements that read, write and compute locally declared
unaliased scalars s and/or unaliased multi-dimensional
arrays a[], b[][], c[][][]. . . indexed with
expressions that are static affine. A statement can con-
sist of procedure calls and standard unary or binary C
operators.

Expressions of the form: c0 ∗ it0 + c1 ∗ it1 . . . + ci ∗ iti + c
are static affine if c0, c1, . . ., ci, c are constants and it0, it1,
. . ., iti are one of the following:

• Static affine nested loop iterators

• Run-time constants
• One of the following pseudo-linear expressions, where s

is static affine and c is constant:
– s%c
– s/e
– div floor(s, c)
– div ceil(s, c)
– max(s, s)
– min(s, s)

All code outside the procedures analyzed by the Compaan
compiler does not need to be SANLP. Data dependencies
between procedures called by the SANLP need to be explicit
through their function arguments, rather than sharing any
global data.

For example, let us consider the following SANL program:

int a[10], b[10][10];
for (int i = 0; i < 10; i++) {

a[i] = Function1();
for (int j = i; j < 10; j++) {

b[i][j] = Function2(a[i]);
}

}

This example shows first the definition of the array variables
a[] and b[][]. This is followed by two nested loops with
two enclosed function calls. The for-loops define the loop
iterators i and j. The function call Function1 is placed
before the inner for-loop, which results in a non-perfect nested
loop. Compaan can handle such non-perfect nested loops. In
the example, all exchanges of data between the function calls
are through the arrays a[] and b[][]. The indexing of the
arrays is expressed in linear combinations of the loop iterators
i and j. Actual computations are hidden by the functions
Function1() and Function2().

Given a SANLP, Compaan can analyze the data dependen-
cies between any pair of statements using the theory described
in [2], and also show them graphically using its GUI, as shown
in Fig. 1.

For example, given the following code:

void accumulator2d(
short data_in[MAX_I][MAX_J],
int data_out[MAX_J])

{
int i, j;
short a[MAX_I][MAX_J];
int sum[MAX_J]; // Partial sum

// Initialize the sum array
for (j = 0; j < MAX_J; j = j + 1) {

sum[j] = 0;
}

// Stream in data_in and accumulate
for (i = 0; i < MAX_I; i = i + 1) {

for (j = 0; j < MAX_J; j = j + 1) {
a[i][j] = data_in[i][j];
accumulate(a[i][j],sum[j],&sum[j]);

}
}

Fig. 1. Data dependencies overlayed on source code by Compaan GUI

Fig. 2. Example of KPN for the accumulator2d function

// Copy the partial sums and stream out
for (j = 0; j < MAX_J; j = j + 1) {
data_out[j] = sum[j];

}
}

Compaan derives for this single-threaded, global memory code
the KPN described in Fig. 2. Each vertex in the graph repre-
sents a statement in the source code and will be implemented
as a separate thread. The data dependencies (expressed as
edges) are converted into FIFO communication channels. The
Compaan compiler automatically produces a KPN for each
SANLP and implements the KPN on a multithreaded envi-
ronment based on pthreads or Intel Thread Building Blocks
(TBB).

IV. DYNAMIC TRACE-BASED DATA DEPENDENCY
ANALYSIS

Static analysis techniques, as argued in the previous section,
can help the developer automatically parallelize data-intensive
code, with limited support for control structures or memory
access modes beyond affine indices within uniform vectors.
While many embedded applications fall into this category,
there is a large amount of legacy software which includes a
significant amount of control and decisions, or uses pointers
and dynamic memory allocation intensively.

The optimistic software parallelization toolset has been
developed specifically to address this second class of ap-

plications. It can be applied to any existing sequential C-
language code and helps the software developers to profile and
parallelize it by exploiting top-level pipeline-style parallelism.

The parallelized code considered in this paper (only for the
sake of easier illustration, as mentioned above) uses the KPN
model of computation as the code produced automatically
by the tools described in Section III. This model ensures
deterministic behavior with arbitrary parallel process execution
times, i.e., completely avoiding data races, in order to ease the
verification task discussed in Section V. Note that even though
in general the deadlock-free executability of a KPN model in
finite memory is undecidable, a KPN derived from the paral-
lelization of an existing reference sequential implementation
is guaranteed to be schedulable.

The sequential code is manually split (as illustrated in
Section VI) into multiple sequential processes that are assigned
to parallel resources of the architecture and use FIFO channels
for inter-process communication.

Basically, the tool operation consists in the acquisition at run
time of several execution data, such as the execution frequen-
cies and data dependencies between the program instructions,
as depicted in Fig. 3. This is achieved by annotating the C

Fig. 3. Basic operation of the data dependency tracing tool.

source with data dependency profiling API calls, as follows:
• heap_enter_function(char *funcName,
int sourceLine, ...) and
heap_exit_function(char *name, int
sourceLine, ...) used to trace the call stack.

• heap_declare(char *varName, int
sourceLine, void *address, ...) and
heap_alloc(int sourceLine, void*
address, ...) used to trace the address of
static, automatic and dynamically allocated variables.
For the first two categories, the name is the same as

in the source code. For the latter category, the name
is dynamically generated upon every execution of the
memory allocation call (based on the source code line
where it occurs).

• heap_read(int sourceLine, void

*address, ...) and
heap_write(int sourceLine, void

*address, ...) used to trace at runtime the
reads and writes to an address performed by a statement.

Note that the tracing technique completely solves the aliasing
issue. For example, assume that the following source code:

1 int a, *b;
2 a = 2;
3 b = &a;
4 ... = *b;

is annotated as follows1:

int a, *b;
heap_declare("a", 1, &a);
heap_declare("b", 1, &b);

a = 2;
heap_write(2, &a);

// heap_read(3, &&a);
b = &a;
heap_write(3, &b);

heap_read(4, b);
... = *b;

The dependency is correctly identified as going from line 2 to
line 4 of the original code, through variable a. Line 3 does
not generate any read dependency, since &a is effectively a
constant at that point of the code, and &b is not read any
further in the code fragment.

The processing of the API calls at run-time results in
the collection of data dependencies, where each dependency
is a pair (producer statement, consumer statement) and is
annotated, to help the designer reason about the code structure,
with the name (and index in case of arrays) of the source
variable through which the dependency occurs. This process
of dynamic data flow graph creation is illustrated in Fig. 3.

At the end of the execution, the aggregated data are
displayed in an interactive graph cross-referenced with the
original source code and which is used to discover and analyse
the parallelism opportunities (see Fig. 4). In this graph every
node corresponds to a statement in the original source, and
every arc corresponds to a set of addresses (labeled with the
declared variable name, if applicable) written by the source
node statement and read by the sink node statement.

The resulting graph can obviously be very complex, and

1For the sake of simplicity we consider a very simple source line identi-
fication mechanism here. In reality the HEAP annotator uses both line and
column to precisely identify source code locations.

the HEAP Graphical User Interface provides sophisticated
mechanisms to:

1) collapse graph nodes at the block and function level (i.e.,
all the nodes belonging to a block or function become
a single node, with all dependencies correspondingly
accumulated). Fig. 5 shows an example of function-level
collapsing.

2) accumulate dependencies into caller nodes, like the
gprof tool does for execution times. In this mode, data
dependencies between statements of called functions
(properly uniquified based on the call tree) are attributed
to the callers when the developer requests so.

3) focus on a function (as will be shown in Section VI)
and walk over the statements that read data produced
by other graph nodes and write data consumed by other
graph nodes.

V. PARALLELIZATION VERIFICATION

The methodology used for verification of the optimistic
parallelization described above is based on annotations added
to both the initial sequential (“golden”) version of the program
and to the automatically or manually parallelized version. Note
that also in case of automated parallelization, which is correct
by construction, verification is desirable in order to discover
and correct tool bugs.

The annotations produce at runtime a log file that contains
data about the program execution that is then analyzed by
the analysis tool. The annotation statements are provided by a
verification API library. The places where a parallelization tool
(or a human developer) changes the code to split the program
into multiple parallel sections are the same places where the
annotation API calls need to be added in order to track the
program state before and after a parallel section. Consequently,
the information required to parallelize a program is sufficient
to also add the annotations.

Coverage analysis is performed by checking whether every
checkpoint in the program has been encountered. If a check-
point is encountered, the surrounding code has been executed.
By placing a checkpoint in every branch of the code, this
allows to verify that all branches have been executed. In
order to perform that check, the analysis tool requires the
checkpoint API calls in the program code, a structure file
giving the analyzer a list of all checkpoints and possibly
multiple resulting log files to check. The latter might be
required because depending on the program structure it might
not be possible to visit every branch of a program with a
single run – especially if error conditions are to be checked. In
this case, a successful standard run plus several runs to cover
corner cases might be required to achieve full coverage. In
these cases, multiple log files can be provided to the analysis
tool and coverage will be calculated over all of them.

The following steps need to be performed in order to
verify the parallelized version and the sequential version of
a program:

• segmenting the program – dividing the program into
logical areas (each purely parallel or sequential) by

adding the corresponding API calls,
• dumping data – adding API calls to the program to dump

the input and output data for later comparison,
• annotating the program – adding API calls to identify

checkpoints, assertions and so on,
• compiling and running – this will produce the required

coverage and dump data,
• analyzing the results – running the analysis tool with

the previously obtained log files as inputs.
An example of the annotations on the initial sequential

version of a hypothetical program (closely resembling the
basic structure of the ray tracing application described in the
next Section) is as follows:

int input[SIZE];
int output = 0;
// initialize input
...
// dump input and start parallel tracing
heap_report_data("area_1", "in", input);
heap_report_start_parallel("area_1");
// Iterate to perform some computation
for (i = 0; i < 10; i++) {

char task_name[32];
sprintf(task_name, "task_%i", i);

heap_report_start_task(task_name);
... = input[i];
// Do some work
...
result = ...
// Gather the result.
output += result;
heap_report_end_task(task_name);

}
// end of area
heap_report_end_parallel("area_1");
// dump output
heap_report_data("area_1", "out", output);
...

An example of the annotations on the parallel version of the
same code is as follows:

int input[SIZE];
int output = 0;
// initialize input
...
// dump input and start parallel tracing
heap_report_data("area_1", "in", input);
heap_report_start_parallel("area_1");
// scatter and gather the data
for (i = 0; i < SIZE; i++) {

FIFOin[i].put(input[i]);
}
for (i = 0; i < 10; i++) {

output += FIFOout[i].get();
}
// end of area
heap_report_end_parallel("area_1");
// dump output
heap_report_data("area_1", "out", output);
...
// function executed by the i-th process
void process_func(int i)

Fig. 4. The graph displays the program instructions as nodes and their data dependencies as directed edges.

{
sprintf(task_name, "task_%i", i);
heap_report_start_task(task_name);
... = FIFOin[i].get();
// do work
...
result = ...
FIFOout[i].put(result);
heap_report_end_task(task_name);

}

This example illustrates all previously mentioned steps.
The execution of both versions of the code generates both
unordered checkpoints (starting and ending of tasks) and
data tracing points, which help identifying possible incorrect
parallelization results, due to human or tool errors.

VI. AN EXAMPLE: PARALLELIZING A RAY TRACING
APPLICATION

Ray tracing, which mimics the visual process by simulating
light rays from light sources, to objects, to the eye, is a
widely known “embarrassing parallel” application. However,
taking an existing sequential implementation without any prior
knowledge of the software, guided only by a classical source
code profiler can be a daunting task. The gprof output may
look like this:

% cumulative self self total
time seconds seconds calls s/call s/call name
16.61 2.79 2.79 788215425 0.00 0.00 Dot
13.78 5.12 2.32 141631877 0.00 0.00 IntersectQuad
8.26 6.50 1.39 281277610 0.00 0.00 intersectObject
8.02 7.86 1.35 139645733 0.00 0.00 IntersectSphere
7.90 9.19 1.33 69361053 0.00 0.00 NormalizeVec3
7.69 10.48 1.29 220258108 0.00 0.00 Cross
6.42 11.56 1.08 268195824 0.00 0.00 Mul1Vec3
6.12 12.59 1.03 350638670 0.00 0.00 Sub2Vec3
4.46 13.34 0.75 45257208 0.00 0.00 IntersectionShadowWithScene
4.22 14.05 0.71 191964084 0.00 0.00 Add2Vec3
3.77 14.69 0.64 330958926 0.00 0.00 UpdateStat
3.36 15.25 0.56 15085736 0.00 0.00 CastShadowRay

...

however, it does not provide any clue about how the data
flows through the code. On the other hand, the output of
the HEAP data dependency profiler, shown in Figure 5,
shows a clear uni-directional data flow through some of
the functions that are at the top in the cumulative profile
above, namely intersectObject, intersectQuad and
intersectSphere. This provides the developer with the
required clue about where to focus the parallelization efforts,
on loops involving these functions. These uni-directional data
dependencies are essential to highlight both pipeline and do-all
parallelism, because they clearly identify stateless paralleliz-
able computation.

A quick code inspection shows that intersectObject
is called exactly in two contexts, with essentially the following
code structure:

Fig. 5. Data dependency traces around the intersectObject function of the ray tracer.

RT_Object *obj = (RT_Object *)scene->m_firstObject;

while (obj != NULL) {
localData.m_distance = RT_MAX_FLOAT;
localData.m_hitFlag = 0;
localData.m_hitObject = NULL;

if(intersectObject(obj,ray,caster,&localData)==1)
if (localData.m_distance < data->m_distance)

*data = localData;
obj = obj->m_next;

}
...
int intersectObject(const RT_Object *obj,

const RT_Ray *ray,
const RT_Object *caster,
RT_IntersectionData *data)

{
...

In this case, the choice of parallelization even without any
prior knowledge of the application is quite obvious. One can
create a pool of worker tasks, each implementing exactly the
same functionality, namely a call to intersectObject
with obj, ray, caster as inputs and localData as
output.

Note that even though the inputs to intersectObject
are const pointers, this is no guarantee a priori that they
are only used as inputs, since both C and C++ notoriously
allow one to cast away const-ness and subsequenty update
the data structures. Regardless, the HEAP data profiler allows
the precise identification (within the limitation of the execution
paths driven by the provided input data, of course) of which

pointers are accessed as inputs and outputs. In this case, it
shows (through a more detailed inspection of the profiling data,
available through the HEAP graphical user interface) that the
inputs are indeed only read and the output only written.

Assuming a FIFO-based KPN structure for parallelization
and assuming a goal of N-way parallelization, to match the
parallelism of an N-way core, the code above can be changed
to the following form:

FIFO(RT_Object) objIn[N];
FIFO(RT_Ray) rayIn[N];
FIFO(RT_Caster) casterIn[N];
FIFO(RT_InterSectionData) dataOut[N];
FIFO(int) resultOut[N];
RT_Object* obj = (RT_Object*)scene->m_firstObject;

while (obj != NULL) {
// Scatter outputs
for (i = j = 0; obj != NULL && i < N; i++, j++) {

objIn[i].put(*obj);
rayIn[i].put(*ray);
casterIn[i].put(*caster);

obj = obj->m_next;
}
// Gather inputs
for (i = 0; i < j; i++) {
localData = dataOut[i].get();
if (resultOut[i].get() == 1)
if (localData.m_distance < data->m_distance)
*data = localData;

}
}

...
void intersectObjectProcess(int i)

{
while (1) {
RT_Object *obj = objIn[i].get();
RT_Ray *ray = rayIn[i].get();
RT_Object *caster = casterIn[i].get();
int result;
RT_InterSectionData localData;

localData.m_distance = RT_MAX_FLOAT;
localData.m_hitFlag = 0;
localData.m_hitObject = NULL;
result =

intersectObject(obj, ray, caster, &localData);

resultOut[i].put(result);
dataOut[i].put(localData);

}
}

In the above code snippet, we assume that the runtime system
creates N concurrent processes, each executing the code of
the function intersectObjectProcess, each with a
different value of i from 0 to N-1.

This parallelization:

1) can be obtained very quickly. The entire process, in-
cluding the debugging, took less than two hours for
a programmer with no previous knowledge of the ray
tracing application.

2) is guaranteed to be correct as long as the only commu-
nication occurs via the FIFO queues.

The latter can be observed by analyzing the data dependency
information, but of course can never be guaranteed, because it
may be violated along some execution paths which were not
traversed due to a limitation of the input data provided to the
profiler.

Compaan parallelized the ray tracing application by choos-
ing a different procedure, after some code rewriting in order
to improve its automated parallelism discovery. The Compaan
parallelization is for a loop performed over all shadow rays,
while the manual parallelization is for a loop performed over
objects. Both are reasonable candidates, and the best choice
depends on the relative number of iterations, which can be
readily discovered by source code instrumentation.

However, it is interesting to observe that the Compaan
compiler can greatly benefit from the HEAP profiler. The user
of the Compaan compiler will need to do an educated guess on
which part to rewrite. Typically, these are compute intensive
parts which already resemble SANLP, but the HEAP profiler
may provide useful information on:

• where the compute intensive procedures are
• whether there are no data dependencies other than

through procedure arguments
• whether procedure inputs and outputs are truly unaliased
• whether procedure inputs are truly read-only and outputs

are write-only

This ray tracing application case study shows how the
HEAP approach can be used to discover multiple paralleliza-
tion opportunities, leaving to the developer the choice of the
one which best suits the underlying multi-core architecture.

VII. CONCLUSIONS AND FUTURE WORK

This paper described a flexible multi-paradigm approach to
the very difficult task of software parallelization. We discussed
how potential parallelism can be identified starting both from
a formal automated analysis of array indices within loops and
from a data dependency execution profile. We explained how
both the code changes required to apply the first approach
and the manual parallelization changes required by the second
approach can be verified by using a metric-driven approach.
Finally, we illustrated with a simple but realistic example, a ray
tracing application, how different parallelization options can
be obtained and quickly explored with the HEAP approach.

Future work will include (1) more extensive experimenta-
tion, using other applications provided by the partners of the
HEAP project, (2) analysis of the actual speedup obtained
by parallelization, including the effects of the HEAP cache
architecture, and (3) better support for the designer when
rewriting the code for manual parallelization or easier analysis
by automated tools, such as Compaan.

ACKNOWLEDGMENT

This work is supported by the European Commission in the
context of the FP7 HEAP project (#247615). The ray tracing
application described in this paper has been kindly provided
by ST Microelectronics within the HEAP project.

REFERENCES

[1] C. D. BV, 2012. See http://www.compaandesign.com/.
[2] B. Kienhuis, E. Rijpkema, and E. F. Deprettere, “Compaan: deriv-

ing process networks from matlab for embedded signal processing
architectures,” in Proceedings of the Eighth International Workshop on
Hardware/Software Codesign, pp. 13–17, 2000.

[3] W. Thies, V. Chandrasekhar, and S. P. Amarasinghe, “A practical ap-
proach to exploiting coarse-grained pipeline parallelism in c programs,”
in 40th Annual IEEE/ACM International Symposium on Microarchitec-
ture, pp. 356–369, 2007.

[4] J.-Y. Mignolet, R. Baert, T. J. Ashby, P. Avasare, H.-O. Jang, and J. C.
Son, “Mpa: Parallelizing an application onto a multicore platform made
easy,” IEEE Micro, vol. 29, no. 3, pp. 31–39, 2009.

[5] S. Kaxiras and G. Keramidas, “Sarc coherence: Scaling directory cache
coherence in performance and power,” IEEE Micro, vol. 30, no. 5,
pp. 54–65, 2010.

[6] G. Kahn, “The semantics of a simple language for parallel program-
ming,” in Proceedings of IFIP Congress, Aug. 1974.

[7] D. F. Bacon, S. L. Graham, and O. J. Sharp, “Compiler transformations
for high-performance computing,” ACM Comput. Surv., vol. 26, pp. 345–
420, Dec. 1994.

[8] R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M.
Anderson, S. W. K. Tjiang, S.-W. Liao, C.-W. Tseng, M. W. Hall,
M. S. Lam, and J. L. Hennessy, “Suif: an infrastructure for research on
parallelizing and optimizing compilers,” SIGPLAN Not., vol. 29, pp. 31–
37, Dec. 1994.

[9] V. H. Allan, R. B. Jones, R. M. Lee, and S. J. Allan, “Software
pipelining,” ACM Comput. Surv., vol. 27, pp. 367–432, Sept. 1995.

[10] D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy, S. Lumetta,
T. von Eicken, and K. Yelick, “Parallel programming in split-c,” in
Supercomputing ’93. Proceedings, pp. 262 – 273, nov. 1993.

[11] V. Kathail, S. Aditya, R. Schreiber, B. Ramakrishna Rau, D. Cronquist,
and M. Sivaraman, “Pico: automatically designing custom computers,”
Computer, vol. 35, pp. 39 – 47, sep 2002.

[12] W. Thies, V. Chandrasekhar, and S. Amarasinghe, “A practical approach
to exploiting coarse-grained pipeline parallelism in c programs,” in
Microarchitecture, 2007. MICRO 2007. 40th Annual IEEE/ACM Inter-
national Symposium on, pp. 356 –369, dec. 2007.

