
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

FASTCUDA: Open Source FPGA Accelerator & Hardware-Software Codesign Toolset for CUDA Kernels / Mavroidis, I.;
Mavroidis, I.; Papaefstathiou, I.; Lavagno, Luciano; Lazarescu, MIHAI TEODOR; de la Torre, E.; Schafer, F.. -
ELETTRONICO. - (2012), pp. 343-348. (Intervento presentato al convegno 15th Euromicro Conference on Digital
System Design tenutosi a Izmir, Turkey nel September 2012) [10.1109/DSD.2012.58].

Original

FASTCUDA: Open Source FPGA Accelerator & Hardware-Software Codesign Toolset for CUDA
Kernels

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/DSD.2012.58

Terms of use:

Publisher copyright

©2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2507481 since: 2020-07-02T16:21:27Z

IEEE / Institute of Electrical and Electronics Engineers Incorporated:445 Hoes Lane:Piscataway, NJ 08854:

FASTCUDA: Open Source FPGA Accelerator & Hardware-Software
Codesign Toolset for CUDA Kernels

Iakovos Mavroidis1, Ioannis Mavroidis1, Ioannis Papaefstathiou1,

Luciano Lavagno2, Mihai Lazarescu2, Eduardo de la Torre3, Florian Schäfer4
 1Microprocessor and Hardware Lab, Technical University of Crete, Chania, Greece

2Department of Electronics, Politecnico di Torino, Torino, Italy
3Centre of Industrial Electronics, Universidad Politécnica de Madrid, Madrid, Spain

4FSResult GmbH i.G., Germany
http://www.fastcuda.eu/

Abstract

Using FPGAs as hardware accelerators that
communicate with a central CPU is becoming a common
practice in the embedded design world but there is no
standard methodology and toolset to facilitate this path yet.
On the other hand, languages such as CUDA and OpenCL
provide standard development environments for Graphical
Processing Unit (GPU) programming. FASTCUDA is a
platform that provides the necessary software toolset,
hardware architecture, and design methodology to
efficiently adapt the CUDA approach into a new FPGA
design flow. With FASTCUDA, the CUDA kernels of a
CUDA-based application are partitioned into two groups
with minimal user intervention: those that are compiled and
executed in parallel software, and those that are
synthesized and implemented in hardware. A modern low
power FPGA can provide the processing power (via
numerous embedded micro-CPUs) and the logic capacity
for both the software and hardware implementations of the
CUDA kernels. This paper describes the system
requirements and the architectural decisions behind the
FASTCUDA approach.

1. Introduction
The ever increasing design complexity, where

embedded systems consist of several complex components,
some of which are implemented in software and others in
hardware, makes the task of a designer more and more
difficult. Tools that can combine the flexibility and low cost
of software solutions with the performance and power
characteristics of hardware approaches are becoming
imperative in the embedded design world.

In order to solve today’s challenges of high-complex
embedded system designs, a number of approaches have
been proposed. Hardware-software codesign is the first big
step and an essential enabling technology towards this end.
Electronic System Level (ESL) design is the next big step
which addresses the complexity problem by elevating
design to a higher level of abstraction, resulting in a more
predictable and productive design process. Finally, parallel
hardware platforms such as Graphical Processing Units

(GPUs) and Field Programmable Gate Arrays (FPGAs) are
becoming very popular within PC-based heterogeneous
systems for speeding up numerous compute-intensive
applications.

FASTCUDA combines all above approaches by
enabling hardware-software codesign and ESL design
methodologies onto a low power parallel FPGA-based
platform.

CUDA[1] is a data parallel programming model that
supports several key abstractions (thread blocks,
hierarchical memory and barrier synchronization) for
allowing efficient applications development. In CUDA, the
routines of an application are split into two groups: those
that can benefit from a multi-threaded parallel execution
and those that can not. The first group of routines, called
the “CUDA kernels”, are written in standard C/C++ using
special annotations and constructs to specify the parallelism
and the memory hierarchy. The second group of routines,
called the “CUDA host program” are written in standard
C/C++.

Execution starts with the CUDA host program running
single-threaded on the host CPU. Whenever a CUDA
kernel is invoked, the host CPU dispatches the execution of
the kernel to an accelerator (separate device) that supports
parallel execution of multiple threads. Traditionally these
are Nvidia’s GPUs or other multi-core platforms. However,
we believe that even higher acceleration can be obtained if
a CUDA kernel is synthesized into hardware and mapped
onto an FPGA for execution. Therefore, FASTCUDA
employs a hybrid approach: it uses an FPGA-based
accelerator for executing the time critical CUDA kernels
and a multi-core processor for executing the CUDA kernels
that could not fit in the FPGA fabric.

FASTCUDA is a design methodology and
accompanying toolset that allows CUDA programs to be
executed efficiently on a shared memory, multi-core CPU
communicating with an FPGA-based accelerator. A modern
FPGA provides all required resources; multiple embedded
micro-CPUs for the CUDA host program and the CUDA
kernels that will be executed on the multi-core processor,
referred to as "SW kernels" in the rest of the paper, and
large logic capacity for the CUDA kernels that will be

2012 15th Euromicro Conference on Digital System Design

978-0-7695-4798-5/12 $26.00 © 2012 IEEE
DOI 10.1109/DSD.2012.58

108

2012 15th Euromicro Conference on Digital System Design

978-0-7695-4798-5/12 $26.00 © 2012 IEEE
DOI 10.1109/DSD.2012.58

343

2012 15th Euromicro Conference on Digital System Design

978-0-7695-4798-5/12 $26.00 © 2012 IEEE
DOI 10.1109/DSD.2012.58

343

implemented on the FPGA accelerator, referred to as "HW
kernels" in the rest of the text. Toward this end
FASTCUDA will not develop everything from scratch but
it will join numerous on-going efforts in industry and
academia to create a unified efficient open-source
framework.

Note that, while in this project we focus on the CUDA
language, the overall approach can fit very well (and the
developed toolset can be easily adapted to) the competing,
and essentially equivalent, OpenCL standard.

2. Related Work
The use of FPGAs as hardware accelerators began in

late 1980’s and since then many FPGA-based embedded
systems and tools have been developed. While a 10x-100x
performance acceleration can usually be provided now by
Reconfigurable Computing (RC) the cost in terms of
difficulty in the development process increases significantly
over time due to the fact that the designs are becoming
larger and more complex.

A significant effort by the research community towards
an efficient solution to the design tool problem tackles the
hardware/software codesign process which provides a
unified path from the application description, done in an
abstract system model, down to a mix of hardware and
software. Many of the tools provide an automated path
from a parallel C-like code down to a hardware platform,
but in most cases there are many issues that can be resolved
only with the intervention of the designer.

FASTCUDA is distinct from other existing platforms
since it is the first to provide a unified environment for
programming both a multi-core processor and an FPGA-
based accelerator. In other words, the CUDA kernel code
may be flexibly mapped to a multi-processor or to
dedicated hardware resources. In this Section we
investigate related work to a) multi-core processors, b)
high-level synthesis and c) HW-SW communication.

Multi-core processor

FASTCUDA will employ a multi-core processor in
order to run the host program and the SW kernels as
described in Section 6. That processor may be, for example,
an embedded soft processor, a hard high performance
processor (for example Xilinx FPGAs incorporated ARM
processors [15]), or an external processor. In order to
facilitate the software-hardware communication,
FASTCUDA architecture employs an embedded multi-core
processor. AMD and Intel have followed similar hybrid
approaches[3] embedding a CPU and a GPU on the same
chip.

Research on multi-core platforms on FPGAs has been
performed in the past [4] [9][10]. FASTCUDA will adapt
the framework described in [14] which provides a multi-
core processor architecture tailored to the requirements of
the CUDA kernels. This innovative multi-core processor
features data parallel processing, a thread synchronization
mechanism, and shared memory access.

High-level synthesis
High level design simulation languages such as

SystemC, SystemVerilog, Handel C and Streams-C are
usually used by High Level Synthesis tools in order to
describe the functionality of the system.

Several commercial tools provide answers to various
aspects of the high-level synthesis problem, ranging all the
way from sophisticated techniques for untimed to RTL
synthesis of C, C++ and SystemC models (Forte
Cynthesizer, Cadence CtoSilicon, and Mentor Catapult), to
synthesis of a declarative rule-based specification
(BlueSpec), to synthesis from Matlab and SystemC to
FPGA implementation (Celoxica and AccelChip) up to
synthesis of processors from C code (Tensilica Xpress and
LisaTek).

However, none of the above tools considers
software/hardware codesign in a holistic manner. Some
tools, such as Synopsys Platform Architect, or CoFluent
Studio, provide some level of hardware/software
interfacing and co-simulation. However, they do not
support effective design space exploration, due to the need
to implement manually the hardware part of the design,
which is a lengthy process, usually limiting such
exploration to a few design space points.

Recently, there is an increased interest for adapting
OpenCL-like and CUDA-like languages to FPGA-based
environments since using such languages for FPGAs has a
significant time-to-market advantage compared to
traditional FPGA development processes. Altera was the
first FPGA vendor that announced a development program
in order to enable, in the future, the use of OpenCL to
program its FPGAs [2].

Moreover, in [5] the authors describe a CUDA to FPGA
flow using AutoPilot as a high-level synthesis tool. The
authors extend their architecture in [6] proposing a novel
high-level synthesis framework which considers different
granularities of parallelism for mapping CUDA kernels
onto an FPGA-based accelerator. The framework employs a
design space search heuristic in tandem with the estimation
models as well as design layout information to derive a
performance near-optimal configuration. However this
work focuses only on the high-level synthesis framework
without providing details for the system memory and the
communication between the FPGA-based accelerator and
the host processor, while the first work relies on a specific
commercial tool for the synthesis part.

In [8] the authors describe an OpenCL to FPGA flow
where the proposed architecture decouples data accesses
and computations by using blocks with explicit FIFO
channels that produce and consume data elements.
Reconfigurable links are formed from the outputs of
producing functional units to the inputs of the next
consuming functional units. FASTCUDA also decouples
data accesses from computations in a simpler and more
efficient way.

HW-SW communication

The authors in [11] describe how to communicate and
instantiate a routine implemented in hardware using user

109344344

directives. In a similar way, CUDA supports memory
allocation and data transfer routines for instantiating a
CUDA kernel. Data transfers between the host processor
executing the CUDA host program and the accelerator
executing the CUDA kernels can be accelerated by using
both pinned and paged host memory buffers [12][13].
FASTCUDA provides an even faster communication
mechanism between the multi-core processor and the
FPGA accelerator through a shared memory infrastructure.
This can significantly boost the performance since no data
transfers are required in order to execute a HW kernel
(Section 7).

3. The FASTCUDA Approach
Today’s complex systems employ both software and

hardware implementations of components. General purpose
CPUs, or more specialized processors such as GPUs,
running the software components, will routinely interact
with special purpose ASICs or FPGAs that implement time-
critical functions in hardware. In these systems the
separation of duties between software and hardware is
usually very clear.

FASTCUDA aims to bring software and hardware
closer together, interacting and cooperating for the
execution of a common source code. As a proof of concept
FASTCUDA will focus on source codes written in CUDA.

Figure 1. Example CUDA code

CUDA is a single instruction multiple threads (SIMT)
architecture and programming model initially developed by
Nvidia for its GPUs. Figure 1 shows an example CUDA
code that adds two arrays, A and B, into a resulting array C.
The addition is performed in a CUDA “kernel” that runs in
parallel across multiple cores in a SIMT fashion. The
CUDA kernels are invoked by the CUDA “host program”
which runs serially on a single core.

Each kernel implicitly describes multiple CUDA
threads that are organized in groups, called "thread-blocks".
Thread-blocks are further organized into a grid structure.

Threads within a thread-block are executed by a single
"streaming multiprocessor" inside a GPU and are
synchronized and share data through a fast and small
private memory of the streaming multiprocessor, called
"shared memory". On the other hand, synchronization
between threads belonging to different thread-blocks is not
supported. However, a slow and large "global memory", is
accessible by all thread-blocks. Similar to a GPU,
FASTCUDA employs two separate memory spaces (global
and local) as well as a similar mapping of the block-threads
onto the FPGA resources as described below.

Bringing software and hardware close together,
FASTCUDA will accelerate the execution of CUDA
programs by running some of the kernels in hardware. A
modern state-of-the-art FPGA will provide all required
resources; multiple embedded micro-CPUs for the host
program and the SW kernels, and logic capacity for the HW
kernels.

Figure 2 shows a block diagram of the overall system. A
multi-core processor, consisting of multiple embedded
cores (configurable small processors), is used to run the
host program serially and the SW kernels in parallel.
Threads belonging to the same CUDA thread-block are
executed by the same core. The HW kernels are partitioned
into thread-blocks, and synthesized and implemented inside
an “Accelerator” block. Each thread-block has a local
private memory while the global shared memory can be
accessed by any thread following the philosophy of the
CUDA model. This is more elaborated in Sections 6 and 7.

Figure 2. FASTCUDA Block Diagram

For our prototype version, we will be using the Xilinx
Virtex-6 FPGA with 500MB of external DDR memory
placed on a Xilinx ML605 evaluation board [17], and the
multi-core processor will consist of an array of Xilinx
Microblaze CPUs. However, the final product should use
faster embedded processors such as the ARM Cortex-A9
MPCore.

//kernel
__global__ void vectorAdd(float *A, float *B, float *C) {
int i = threadIdx.x;
C[i] = A[i] + B[i];
}
define N 100
#define M N*sizeof(int)
//host program
main() {
int A[N], B[N], C[N];
...
//copy input vectors from host memory to device memory
cudaMemcpy(d_A, A, M, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, B, M, cudaMemcpyHostToDevice);
// kernel invocation
vectorAdd<<<1,N>>>(d_A, d_B, d_C);
//copy output vectors from device memory to host memory
cudaMemcpy(C, d_C, M, cudaMemcpyDeviceToHost);
...
}

multi-core CPU Accelerator

global
shared
memory

dcache

HW Kernels

external DDR

cntrl
CUDA Host

Program

FPGA

DMA
SW Kernels

local
mems local

mems

110345345

4. FASTCUDA “Compilation”
The process that we use in FASTCUDA in order to

“compile” a CUDA source code for execution onto our
prototype platform is depicted in Figure 3.

Figure 3. FASTCUDA Design Flow

The FASTCUDA toolset is responsible for automating
most of this process, thus minimizing user intervention. The
following sections will discuss in greater detail the various
steps of this process.

5. Design Space Exploration
This first step basically needs to decide how to make the

best use of the available FPGA resources for a given
CUDA program; it needs to answer the following
questions:

� What percentage of the FPGA real estate should be

allocated to the multi-core processor for the SW
kernels, and what percentage should be allocated to
the Accelerator for the HW kernels?

� Which kernels should be run in software and which in
hardware?

� What area-speed tradeoff is best for each of the HW
kernels?

� What is the optimal configuration (number of cores,
cache sizes, memory banks, etc.) for the multi-core
processor?

In order to make these decisions each kernel is first

carefully examined and run through several simulation and
synthesis runs. The simulation tool provides runtime
estimates for the execution of each kernel in software, for
several configurations of the multi-core processor (with
varying cache sizes, memory banks, etc.). The synthesis

tool provides latency estimates for the execution of each
kernel in hardware, with varying hardware footprints (i.e.
trading area for speed).

The design space exploration tool uses these area and
performance estimates, along with its full knowledge of the
underlying platform’s resources and available
configurations, to heuristically search for the best answers
to the questions listed above. User experience can be used
to guide the tool, e.g. by restricting the search to a smaller
set with the most “interesting” multi-core configurations.

6. Multi-Core Processor
The CUDA host program as well as the SW kernels (the

subset of the kernels determined by the design space
exploration tool) will run in software on the multi-core
processor of Figure 2. In this section we first review the
architecture of this processor, and then we discuss the
required process in order to port the CUDA source code to
this architecture.

6.1. Architecture

Figure 4. Multi-Core Processor Architecture

Figure 4 shows our prototype’s multi-core processor
architecture. It uses Xilinx Microblaze soft cores
(configurable small processors) with separate instruction
caches and a shared data cache all communicating through
two AXI4-based buses [16]. FASTCUDA follows a similar
mapping of the threads with a GPU. Each core executes a
thread-block which can use the core's scratchpad memory
as a private local memory. All the threads from any thread-
block can access the global shared memory which can also
be accessed by the HW accelerator (notice the connection
on the AXI4 bus in the Figure).

The AXI4_Lite bus is used for the communication
between the multi-core processor and the Accelerator block
that is running the HW kernels. A simple handshake
protocol is employed to pass the arguments and trigger a

Microblaze1 MicroblazeN ...

icache

dcache

icache icache AXI4

AXI4

uart

AXI4_Lite

DDR controller

HW accelerator

HW kernel
invocation

Microblaze0

 scratch
pad

 scratch
pad

 scratch
pad

timer mutex

lmb lmb lmb

CUDA program

Design Space Exploration

Porting to multi-core High-level synthesis

Compilation

executable RTL

System Integration

physical design

multi-core

SW kernels HW kernels CUDA host program

111346346

specific HW kernel to start running, which will then
respond back when it has finished running.

Lastly, the timer and mutex blocks on the AXI4_Lite
bus are a requirement for the symmetric multiprocessing
(SMP) support of the runtime running on the processor as
we will explain in the following section.

Notice that the number of cores, as well as the data
cache size and organization (single or multiple banks), the
configuration of the Microblazes, and other configuration
parameters, are application-dependent and are determined
by the design space exploration tool of the previous section
according to the requirements of the CUDA application.

6.2. Implementing CUDA kernels on the multi-
processor

The OS-level software running on our multi-core
processor is a modified version of the Xilinx kernel
“Xilkernel”. Xilkernel supports POSIX threads, mutexes
and semaphores, but was meant to run on a single core, thus
having no support for a SMP environment like ours. We
consequently had to add SMP support to Xilkernel (see [14]
for a description of the methodology on how to do this).

CUDA kernels are supposed to run on SIMT devices
(i.e. GPUs), which are drastically different from our multi-
core processor. Thus, the next step is to port the CUDA
kernels to run on top of the multi-core multi-threaded
environment provided by our modified Xilkernel, using
MCUDA[7].

The compilation process that results in a single
executable code is shown in the following Figure.

Figure 5. Software Porting Process

MCUDA transforms the CUDA code into thread-based
C code that uses the MCUDA library in order to create a
pool of threads and coordinate the operations of the threads
as well as to provide the basic CUDA runtime functionality
for kernel invocation and data movements.

Xilkernel provides the mutex support required by the
MCUDA library and the thread-based support required by
the multi-threaded SW kernels.

7. Accelerator
In CUDA the host program is usually run on a separate

chip from the CUDA kernels; the first is run on a general-
purpose CPU and the latter on a GPU. Thus the CUDA
programming model assumes that the host and device

maintain their own separate memory spaces, referred to as
host memory and device memory respectively. The
execution of a kernel, involves a) memory transfers of the
input vectors from the host memory to the device memory,
b) the kernel execution which uses the input vectors in
order to generate the output vectors and c) memory
transfers of the output vectors from the device memory to
the host memory as shown in Figure 1. The addresses of the
input and output vectors are passed as arguments to the
CUDA kernel.

In contrast, FASTCUDA runs everything on the same
chip, thus favoring a different memory model where all the
threads of a kernel and the host program can share a single
global memory (see Figure 2). In this model, the HW
kernels inside the Accelerator have direct access to the
memory in order to read their input vectors and write their
output vectors.

7.1. Implementing CUDA kernels in hardware

In FASTCUDA, the code of the HW kernels is pre-
processed before it is synthesized. To aid in this pre-
processing the programmer is required to use “#pragma“
directives in order to specify which ones among the kernel
arguments are inputs and outputs, as well as their sizes.

The result of translation from CUDA to SystemC is
shown in Figure 6. An advanced memory interface, using a
SystemC interface called fcMem, will be provided to
coalesce global memory accesses, like in a modern GPU, in
order to better exploit the AXI interface bandwidth.

Note how argument pointer accesses are transformed
into reads and writes to and from a base address (A, B and
C) and an offset (i) using the global memory port.

Figure 6.Example CUDA to SystemC transformation

This simple example does not show the use of shared
memory on the GPU, which is generally used to perform
computations on fast local data, and which will also be
modeled in SystemC as a port implementing the fcMem
interface. Transfers between global memory and shared
memory are managed by CUDA programmers by hand, and
thus can be considered akin to sophisticated application-
specific DMA engines. Our translation strategy naturally
exploits the fast local BRAM (FPGA Block RAM), where
the shared CUDA memory is mapped, by converting the

//SystemC module
SC_MODULE(addMod) {
 sc_in<int> A, B, C, threadIdx_x;
 sc_port<fcMem> sMem, gMem;
 sc_in<bool> clk, start;
 sc_out<bool> done;
 SC_CTOR(addMod) {
 SC_CTHREAD(add, clk);
 reset_signal_is(start);
 }
// kernel
void add() {
 int i = threadIdx_x;
 gMem.writeFloat (C+i,
 gMem.readFloat(A+i) + gMem.readFloat(B+i));
}

CUDA host program

Thread-based C MCUDA lib Xilkernel

MCUDA

Compile

Executable

SW kernels

112347347

CUDA transfers between global and shared memory into
SystemC accesses to global memory and local vectors.

CUDA assumes that the GPU supports three distinct
device memories referred to as global, shared and constant
memories. These will be implemented as global memory
(shared with the host processor and the multi-processor,
and implemented in an external DRAM), local per thread-
block memory (implemented in BRAM or registers) and
constants (translated directly to logic by the synthesis tool).

Any high-level synthesis tool that takes SystemC as
input and can perform the synthesis required, such as the
AutoPilot tool which has been recently acquired by Xilinx
[19], can then be used for synthesis.

The aforementioned flow is depicted in Figure 7.

Figure 7.CUDA to FPGA flow

8. Applications
Software developers, scientists and researchers are

finding broad-ranging uses for GPU computing with
CUDA. Most of the CUDA applications mentioned in [18]
should run on the FASTCUDA platform. However,
FASTCUDA provides performance and power advantages
over GPUs only for applications that exhibit some specific
characteristics.

A GPU supports a sophisticated memory interface
which coalesces accesses to speed up bulk memory
transfers. Therefore, memory intensive applications may
run faster on a GPU than on the FASTCUDA platform. On
the other hand FPGAs can provide enormous parallelism
and much lower power and energy consumption when
performing the computations of a kernel. Hence, compute
intensive applications may run faster and with lower power
consumption on FASTCUDA than on a GPU.

9. Conclusion
In this paper we presented a novel open-source

framework, FASTCUDA, which aims to bring software and
hardware closer together, interacting and cooperating for
the execution of a common source code under a unified
environment and with minimal user intervention.
FASTCUDA will allow CUDA programs to be executed
efficiently on a multi-core processor communicating with
an FPGA accelerator. A shared memory infrastructure
provides a fast communication mechanism between the
multi-core processor and the FPGA accelerator. The
FASTCUDA framework provides a higher level
programming abstraction than traditional FPGA design
tools, combining a novel CUDA to FPGA flow that uses a
high-level synthesis tool with a CUDA to multi-core
compilation flow that employs a source to source
translation tool.

Acknowledgments
The research leading to these results has received

funding from the European Union 7th Framework
Programme [FP7/2007-2013], under the FASTCUDA
project (grant agreement no 286770).

References
[1] CUDA parallel programming model

http://www.nvidia.com/object/cuda_home_new.html
[2] Altera OpenCL Program for FPGAs

http://www.altera.com/corporate/news_room/releases/2011/pr
oducts/nr─opencl.html?GSA_pos=5&WT.oss_r=1&WT.oss=
OpenCL

[3] AMD Fusion http://en.wikipedia.org/wiki/AMD_Fusion
[4] Phil James-Roxby, Paul Schumacher, Charlie Ross, "A

Single Program Multiple Data Parallel Processing Platform
for FPGAs", FCCM'04, pp.302-303

[5] Alexandros Papakonstantinou, Karthik Gururaj, John A.
Stratton, Deming Chen, Jason Cong, and Wen-Mei W. Hwu.
2009, "High-performance CUDA kernel execution on
FPGAs", ICS '09

[6] Alexandros Papakonstantinou, Yun Liang, John A.
Stratton, Karthik Gururaj, Deming Chen, Wen mei W. Hwu,
and Jason Cong, "Multilevel Granularity Parallelism
Synthesis on FPGAs", FCCM'11, pp. 178-185

[7] John A. Stratton, Sam S. Stone, Wen-mei W. Hwu,
"MCUDA: An Efficient Implementation of CUDA. Kernels
for Multi-Core CPUs", Un. of Illinois, TR'08

[8] Muhsen Owaida, Nikolaos Bellas, Konstantis Daloukas and
Christos Antonopoulos, "Synthesis of Platform Architectures
from OpenCL Programs", FCCM'11, pp. 186-193

[9] Huerta P., Castillo J, Martinez I. J.,” Multi MicroBlaze
System for Parallel Computing”, ICC'05, pp. 1–6.

[10] Roger Moussali, Nabil Ghanem, Mazen A. R. Saghir,
“Supporting Multithreading in Configurable Soft Processor
Cores”, CASES 2007

[11] Cabrera D., Martorell X., Gaydadjiev GN., Ayguadé E.,
Jiménez-González D., "OpenMP extensions for FPGA
Accelerators", SAMOS'09, pp. 17-24

[12] Vasily Volkov and James W. Demmel, "Benchmarking
GPUs to Tune Dense Linear Algebra", SC'08

[13] Glenn Lupton, Don Thulin, "Accelerating HPC Using
GPU’s", High Performance Computing Division, 2008

[14] Pablo Huerta, Javier Castillo, Carlos Sánchez, Jose Ignacio
Martínez, "Operating System for Symmetric Multiprocessors
on FPGA", ReConFig'08, pp.157-162

[15] Xilinx Zynq-7000 family,
http://www.xilinx.com/products/silicon-devices/epp/zynq-
7000/index.htm

[16] ARM AMBA bus protocol
http://www.arm.com/products/system-ip/amba/amba-open-
specifications.php

[17] Xilinx Virtex-6 ML605 evaluation kit
http://www.xilinx.com/products/boards-and-kits/EK-V6-
ML605-G.htm

[18] CUDA applications
http://www.nvidia.com/object/cuda_app_tesla.html

[19] Xilinx acquires AutoESL
http://press.xilinx.com/phoenix.zhtml?c=212763&p=irol-
newsArticle&ID=1521536

CUDA
code

front
end

back
end

SystemC
code

synth
esis

RTL

CUDA
AST

transf
orm

SystemC
AST

113348348

