
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Network-aware design-space exploration of a power-efficient embedded application / Sayyah, P.; Lazarescu, MIHAI
TEODOR; Quaglia, D.; Ebeid, E.; Bocchio, S.; Rosti, A.. - ELETTRONICO. - (2012), pp. 567-574. (Intervento presentato
al convegno CODES+ISSS '12 tenutosi a Tampere, Finland nel October, 2012) [10.1145/2380445.2380531].

Original

Network-aware design-space exploration of a power-efficient embedded application

ACM postprint/Author's Accepted Manuscript, con Copyr. autore

Publisher:

Published
DOI:10.1145/2380445.2380531

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2507479 since: 2020-10-22T12:06:56Z

Association for Computing Machinery (ACM)

Network-aware Design-Space Exploration of a
Power-Efficient Embedded Application

Parinaz Sayyah
Politecnico di Torino, Italy

parinaz.sayyah@polito.it

Mihai T. Lazarescu
Politecnico di Torino, Italy

mihai.lazarescu@polito.it

Davide Quaglia
EDALab, Italy

davide.quaglia@edalab.it
Emad Ebeid

University of Verona, Italy
emad.ebeid@univr.it

Sara Bocchio
STMicroelectronics, Italy
sara.bocchio@st.com

Alberto Rosti
STMicroelectronics, Italy
alberto.rosti@st.com

ABSTRACT
The paper presents the design and multi-parameter opti-
mization of a networked embedded application for the health-
care domain. Several hardware, software, and application
parameters, such as clock frequency, sensor sampling rate,
data packet rate, are tuned at design- and run-time accord-
ing to application specifications and operating conditions
to optimize hardware requirements, packet loss, power con-
sumption. Experimental results show that further power ef-
ficiency can be achieved by considering also communication
aspects during design space exploration.

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance Anal-
ysis and Design Aids; C.4 [Performance of Systems]:
Modeling techniques

General Terms
Design, Measurement, Performance

Keywords
HW/SW Timing and Power Simulation, Virtual Platform,
Network Simulation, Wireless Sensor Network, Body Sensor
Network

1. INTRODUCTION
The design of embedded systems is becoming increasingly

complex in case of distributed applications made of several
nodes consisting of hardware and software components in-
teracting over a network. A realistic example of this kind of
application is the health care wireless sensor network pre-
sented in Figure 1.

Each monitored person wears a number of wireless nodes
that capture and process different kinds of body-related in-
formation; they exchange data and commands with a base

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’12, October 7-12, 2012, Tampere, Finland.
Copyright 2012 ACM 978-1-4503-1426-8/12/09 ...$15.00.

Figure 1: Example of distributed application based
on networked embedded systems.

station over a radio channel which is shared among different
unrelated data flows.

The wireless nodes are based on the open source Sig-
nal Processing in Node Environment (SPINE [8]) frame-
work specification. It supports flexible and distributed sig-
nal processing for Wireless Body Sensor Network applica-
tions through a set of customizable functions for data acqui-
sition, processing and communication.

The European project COMPLEX [3] uses SPINE-based
software running on a 32-bit system-on-chip architecture
from ST-Microelectronics as a case study for HW/SW design-
space exploration (DSE) of the sensor node. Power con-
sumption is key aspect in a mobile health care application
to ensure long-time unattended operation of the sensor node.
As described in Section 3.3, the ReISC SoC is highly config-
urable to save power when some components are not used.
For each component, the definition of low-power or power-
off periods usually depends on application timing constraints
such as system promptness to asynchronous events or sam-
pling rate of continuous values. In the specific case of wire-
less nodes transmitting on a shared channel, the network be-
havior plays a crucial role in determining the time behavior
of the nodes with potential impact on their power consump-
tion. Such network behavior depends on several causes and
mainly by the number of concurrent data sources; an ana-
lytical approach to this study can become complex as the
number of nodes increases. Therefore, network simulation
is the most viable approach to make this timing analysis.
Hence simulation must take into account the following as-
pects:

Figure 2: Generation of SystemC models from dif-
ferent domains: hardware, software and network.

• software components, such as the operating system and
the application;

• hardware components, such as the CPU, memory, and
peripherals;

• networking scenarios that, for instance, consist of chan-
nel behavior (e.g., path loss, collisions), communica-
tion protocols (e.g., IEEE 802.15.4), concurrent traffic
and noise.

One approach for this kind of holistic simulation is the
co-simulation [1] that combines and synchronizes the execu-
tion of several simulation tools, such as an instruction set
simulator for software components, a VHDL simulator for
hardware components, and a network simulator (e.g., NS-
2 [5]) for the network. In [6] a co-simulation approach has
been used to show that power optimization can be achieved
by scaling CPU frequency according to the number of pack-
ets waiting to be transmitted because of network congestion.

With respect to past literature, the novel contributions of
this work are:

• an industrial-level virtual platform written in SystemC
[7] by STMicroelectronics is extended to simulate the
wireless node in a full network scenario without using
co-simulation;

• the hardware components and the network are mod-
eled in detail, in order to enable the tuning of the
power management strategy based on network timing
constraints.

The resulting simulation flow is shown in Figure 2. The
hardware blocks of the wireless node are modeled in Sys-
temC at the Transaction Level (TLM) to capture their func-
tional behavior at a high level. One of these blocks rep-
resents the CPU that executes the actual software com-
ponents with machine-instruction accuracy. The hardware
blocks are included in the SystemC model, together with
network elements (protocol and channel). The resulting sim-
ulation models a full network scenario in which several wire-
less nodes interact in a realistic way.

The rest of the paper is organized as follows. Section 2
introduces the health care application. Section 3 describes

the hardware platform of the wireless sensor node to be de-
signed. Section 4 explains how all the aspects of the de-
signed system and its operating environment can be modeled
in SystemC. Section 5 describes experimentally how timing
constraints derived from network simulation can be used to
refine some system parameters to save power. Finally, con-
clusions are presented in Section 6.

2. APPLICATION
The COMPLEX project proposes a use case based on a

complete and realistic Wireless Sensor Network (WSN) sce-
nario. Its architecture, presented in Figure 1, consists of
several nodes, namely SPINE Nodes and the Base Station
(BS). It couples all major aspects of WSNs (sensing, pro-
cessing, radio data transmission) with a non-trivial amount
of local computation on the node. The raw sensed data are
processed directly on the node, in order to reduce the energy
consumed by the radio, which is the major limiting factor
for the battery lifetime of WSN nodes.

The application is a virtual machine for health monitoring
that conforms to the open specification of the SPINE [8]
virtual machine for Wireless Body Sensor Network (WBSN)
applications. It provides the user with a customizable set of
functions that includes:

1. acquisition of various types of data (e.g., temperature,
acceleration, blood oxygenation level, hearth pulse rate)
and their storage in local circular buffers;

2. signal processing, including a variety of filtering, thresh-
old detection, and other mathematical functions over
the data in buffers;

3. communication via data packets with a base station
either regularly or when events of interest are detected
(e.g., emergency events).

The detailed application functionality is defined by the
Base Station (BS) node at run time by means of configura-
tion packets sent to each SPINE Node. The configuration
can include the sampling period of individual sensors, buffer
sizes, processing functions (e.g., max, mean, median) to be
applied on raw sensed data, window size (i.e., the number of
samples needed to compute a feature for the first time), shift
size (i.e., the number of samples needed to compute the fea-
ture after the first time). The various configured tasks (e.g.,
sampling, feature computation, radio packet dispatch) can
be selectively activated or deactivated at run time, depend-
ing on application demands.

One prominent application in the WBSN domain is fall
detection by monitoring the body movements of elderly pa-
tients. In this paper, this is achieved by configuring the
SPINE Node to collect and filter 3-axis acceleration samples
and transmit these data over the wireless channel to the
Base Station. The Base Station further processes the sensor
data and detects falls based on the changes in the accelera-
tion data over a timed window. The operator (physician or
other health care professional) can monitor the patient con-
dition by examining on the server the processed acceleration
data from several sensor nodes.

To this end, the application should be configured by the
operator. The first step is to connect the base station with
the SPINE sensor node of interest. The operator selects
those SPINE capabilities which are needed to define the

Figure 3: Behavior of the SPINE sensor node.

monitoring of interest, e.g., 3D acceleration. These deci-
sions are then translated by the base station into configu-
ration packets for the SPINE sensor node, which starts the
requested measurements.

Specific menu items on the application user interface allow
the operator to stop and resume the measurements at any
time, or exit the sensor viewer altogether.

The base station can autonomously detect critical situ-
ations (e.g., the system detects that the monitored person
falls when the average acceleration over a short interval of
time exceeds a given threshold).

Figure 3 shows the behavior of the sensor node. After
the Initialization phase it enters the Receive mode where it
waits for configuration packets from the Base Station node.

The configuration packets are processed as received and
the configuration sequence ends with a StartSpine command
that changes the sensor node state to Data On. In this state,
the tasks requested by the Base Station are executed.

Then the SPINE Node briefly enters the TX mode in
which it samples and processes the sensor data and periodi-
cally sends packets with aggregated data to the Base Station.

Any incoming packets from the Base Station continue to
be processed. These commands can change the set of tasks
or their configuration, or can stop the processing altogether
(StopSpine command).

3. HARDWARE PLATFORM
The hardware platform of the SPINE Node consists of:

• the ReISC System-on-Chip that performs sensing and
data processing;

• the RF Module that provides wireless communications.

3.1 ReISC System-on-Chip
The ReISC SoC is the outcome of the design of a system

on chip by STMicroelectronics, resulting in a real silicon
chip which was taped-out at the end of 2009 using a 90 nm
technology. The ReISC SoC is the first system on chip which
drives a new family of ultra low power products.

The ReISC SoC encompasses the proprietary ReISC 3
core (Reduced energy Instruction Set Computer). It pro-
vides hardware support for 8/16/20/32 data sizes, variable
16 bit-based instruction length and secure data. ReISC 3 is
targeted at ultra-low power applications. It operates up to
50 MHz frequency, contains embedded memories (1 Mbytes
Flash memory and 32 Kbytes SRAM) and an extensive range
of enhanced I/Os and peripherals.

It offers one 12-bit ADC, three general purpose 16-bit
timers plus one internal timer, as well as standard and ad-
vanced communication interfaces: one I2C, two GPIOs, two
SPIs, one USART, and one USB. A comprehensive set of
power-saving modes allows the design of low-power applica-
tions.

The peripherals that are significant for the optimization
of the SPINE Node are:

• the Serial Peripheral Interface (SPI), which handles
the communication between the ReISC SoC and the
RF Module;

• the General Purpose Input/Output (GPIO);

• the timers, which are used for synchronization pur-
poses;

• the Analog-to-Digital Converter (ADC), which collects
samples from the sensors;

• the Reset and Clock Control Unit (RCCU);

• the Power Manager, which is used to manage the power
states of the ReISC SoC (CPU and peripherals).

The Serial Peripheral Interface (SPI) consists of a syn-
chronous serial communication interface with a 4-pin proto-
col. It allows half/full-duplex, synchronous, serial commu-
nication with external devices. There are separate buffers
for reception and transmission and the peripheral can oper-
ate in full-duplex mode. When the interface is configured
as master it provides the communication clock to the exter-
nal slave device. The interface is also capable of operating
in multi-master configuration. It may be used for a vari-
ety of purposes, including simplex synchronous transfers on
two lines with a possible bidirectional data line or reliable
communication with CRC checking.

The General Purpose Input/Output (GPIO) is a set of
pins whose behavior can be programmed through software.

There are up to four timers in the ReISC Soc platform,
which may be used for a variety of purposes, including mea-
suring the pulse length of input signals (input capture) or
generating output waveforms or counting events. The in-
ternal timer is the simplest one, having only simple down-
counting functionality.

The Analog-to-Digital Converter (ADC) converts a con-
tinuous signal (voltage or current) into a sequence of num-
bers proportional to the magnitude of the voltage or current.
Its main feature is resolution, i.e., the number of discrete val-
ues it can produce over the range of analog values. ReISC
ADC provides 16 multiplexed channels, with 12 bit reso-
lution, interrupt generation at the end of conversion, and
DMA request generation during conversion.

The Reset and Clock Control Unit (RCCU) manages the
power-on reset for the ReISC SoC system, as well as gen-
erating the system clocks via PLLs. It allows also to en-
able/disable the peripherals and their clocks.

The Power Manager activates clock gating for each indi-
vidual peripheral which is not used, selects the power-down
state for analog hard macro when they are not required by
the application, and selects the appropriate system clock fre-
quency. In order to reduce power consumption to the mini-
mum value, the core can also shut off the power domains for
each ADC PLL and for the FLASH memory.

3.2 RF Module
The RF Module is connected through an SPI interface to

the ReISC SoC, in order to provide its networking capabil-
ity. The role and architecture of the RF Module inside the
SPINE Node is presented in Figure 4. It consists of three
components: the front-end, the network processor and the
back-end.

The front-end component manages the SPI protocol to
communicate with the ReISC SoC. It receives data from the

Figure 4: Architecture of the RF Module and inter-
connection with the ReISC SoC.

ReISC SoC to be sent to the network and those from the
network, through the back-end component, to be sent to
the ReISC SoC.

The SPI transmission uses simplex mode. The decision
about setting the SPI controller in master or slave mode is
made by the software running on the ReISC SoC. When the
ReISC SoC SPI controller is in slave mode, it waits to receive
data from the RF Module. When it enters the master mode
it cannot be interrupted by the RF Module. Therefore, the
RF module uses a local FIFO queue to temporally store the
data to be transmitted to the ReISC SoC.

The network processor implements the medium access con-
trol according to the IEEE 802.15.4 [4] standard.

The back-end component addresses all the low-level de-
tails to send/receive bits on the radio channel. The transmis-
sion time of a packet is not constant since the 802.15.4 pro-
tocol provides a statistical access approach based on random
wait with multiple re-transmissions in case of failure; there-
fore, the back-end component also contains a FIFO queue
to store packets when the production rate of the ReISC SoC
is higher than the transmission rate over the air.

3.3 Power consumption
To improve power consumption, the ReISC SoC can ap-

ply different power reduction techniques such as clock gating
and power gating. The architecture is in fact hierarchically
organized in power islands that can be switched off under
the control of the power manager; finer control on the con-
sumption can also be obtained by the RCCU that allows to
set the enabling status of the peripherals and to enable or
disable their clock.

The organization of the power islands is summarized here:

• An ALWAYS ON power island includes the ReISC
core, the RCCU, the Power Manager, Timers, all the
other components that must be kept always enabled.

• A FUNCTIONAL STATE power island (with reten-
tion flip-flops) contains the other peripherals that can
be switched on/off, e.g., the SPI and the GPIOs.

• An ANALOG power island includes the ADC.

Table 1 reports the power consumption values of SPI and
ADC peripherals as a function of the power mode.

Table 1: Power consumption values (in µW) of SPI
and ADC peripherals as a function of the power
mode.

Power mode SPI ADC

OFF 0 0
NO CLOCK 20 n/a

IDLE 40 30
WORKING 100 150

SystemC Network Simulation Library

ReISC Virtual
Platform

SPI

MEM

SPINE node

GNU
compiler

Binary
code

TLM task
implementing
the RF Module

TLM task
implementing

the Base Station

Node 1Node 0

Radio channel

HW components

SW components

Network components

Legend

Source
code

Figure 5: Modeling approach.

4. MODELING APPROACH
Figure 5 presents the whole simulation scenario, modeled

completely in SystemC. The model of the SPINE Node con-
sists of the ReISC SoC virtual platform provided by STMi-
croelectronics and the model of the RF Module. The former
is an accurate model of the hardware components of the
ReISC SoC, while the latter is modeled at the pure func-
tional level by using the blocks provided by the SystemC
Network Simulation Library (SCNSL) [2]. Software com-
ponents (i.e., application and system code) are compiled for
the target platform and then loaded into the memory module
of the virtual platform to be executed by the CPU module.
The network components, modeled by using SCNSL, consist
of:

• an SCNSL task to represent the functional model of
the RF Module of the SPINE Node;

• an SCNSL task to represent the functional model of
the SPINE base station;

• an SCNSL task to represent the functional model of a
source of concurrent traffic;

• the hosting nodes of the three previous tasks;

• the radio channel.

The simulation is performed at the TLM level; the ReISC
SoC virtual platform is connected to the RF Module through
two TLM sockets and each SCNSL task is connected to the
corresponding SCNSL node by using a TLM socket.

It is worth remembering that we aim at optimizing the
power consumption of the ReISC SoC and therefore we are

interested in modeling accurately its hardware components
and the software components while transmission components
are not part of the design goal.

4.1 ReISC Virtual Platform
The ReISC SoC platform is provided with a virtual plat-

form simulation framework, shown in Figure 6. It consists
of an ISS of the ReISC 3 processor which communicates
with the hardware models of the peripherals through a bus
model. A SystemC wrapper implements the interface among
the instruction-set simulator (ISS) and the rest of the sys-
tem, i.e. the peripherals, that are mostly modeled in Sys-
temC. Only the components that are more closely linked to
the ISS or to the memory, have been left under the direct
control of the ISS, rather than in SystemC. In Figure 6 the
SystemC peripherals are shown in orange, while the parts in
yellow are modeled in C within the ISS.

4.2 Network simulation
The simulation of the health care application involves

three network nodes:

• one Base Station (BS), with two main purposes:

1. to broadcast configuration packets to the SPINE
Node at initialization time;

2. to listen for incoming data packets from SPINE
Node;

• SPINE Node with three main purposes:

1. receive and process the configuration packets from
the BS;

2. perform the configured computations;

3. transmit the sample data to the BS;

• A traffic generation node which broadcasts packets on
the shared channel by using the same channel access
protocol of the first two nodes (i.e., IEEE 802.15.4).
Since the channel models collisions, this node is used
to evaluate the effect of concurrent traffic of the com-
munication between the SPINE Node and the Base
Station.

Figure 7 represents the network scenario described in Sys-
temC by using SCNSL primitives to create the nodes (lines 12–
14), the channel (line 17) and the tasks (lines 23–25). Node
instances are also connected to the shared radio channel
(lines 19–21).

In both BS and SPINE Node models, the interface to
the channel is implemented by inheriting the SCNSL Tlm-

Task_if_t interface and by using the corresponding trans-
mit and receive methods, i.e., Send() and b_transport(),
respectively.

Figure 8 shows the architecture of the Base_Station_t

class. It includes two main member functions, namely send-

ConfigPacket and receiveDataPacket. The model of the
BS includes a SystemC SC_THREAD which periodically calls
sendConfigPacket with an application-specific sequence of
node configuration packets for the SPINE Node.

4.3 Simulation of the software components
The simulation of the application is performed by running

the system software and the SPINE code on the ISS of the

Figure 7: Network scenario described in SystemC
by using SCNSL primitives.

Figure 8: Architecture of the SystemC model of the
Base Station.

Figure 6: Architecture of the ReISC SoC virtual platform.

ReISC SoC virtual platform. In this experiment, the ReISC
SoC is running at 50 MHz, with a timer configured to gen-
erate a periodic event for the SPINE application. After the
initialization phase, the SPINE Node listens to receive four
configuration 16-byte packets from the BS. The BS is con-
figured to send packets every 200 ms. After receiving each
packet, the radio sends it to the SPI controller which is con-
figured to work in slave mode to raise an interrupt. The SPI
interrupt handler copies the payload of the received packet
into the packet buffer of the SPINE, application allowing
the node to be customized and configured properly.

Upon receiving the StartSpine command from the BS, the
SPINE Node engine starts by setting the SPI controller in
master mode and initializing the timer to schedule a periodic
task using the packet transmission interval defined at con-
figuration time by the BS. Then the ADC is activated and
configured to sample acceleration data over three channels.
At every sampled value, the ADC interrupt is raised and the
value is placed in the SPINE circular buffer. A window of
samples is then processed and filtered and the result is sent
to the SPI controller which sends it to the RF Module.

Note that the accelerometer sampling rate and the packet
transmission rate are independent. The former can be much
higher than the latter, in order to save radio power, possibly
at the expense of the quality of fall detection.

5. CASE STUDY
We simulated 2 seconds of the application scenario:

• from 0 s to 0.4 s the Base Station sends four configu-
ration packets;

• from 0.4 s to 2.0 s the SPINE Node sends sample pack-
ets to the Base Station;

• from 1.0 s to 2.0 s a third node transmits concurrent
traffic which tries to saturate the channel (such con-

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

D
el

ay
 (

m
s)

Time (s)

Instantaneous
Average

Figure 9: Instantaneous and average time spent by
the SPINE Node to send a packet on the channel as
a function of simulation time.

current traffic could represent the resulting effect of
several SPINE Nodes of the WBSN).

Figure 9 shows the instantaneous and average time spent by
the SPINE Node to send sample packets on the channel as
a function of simulation time. The value ranges from 1.9 ms
to 42 ms according to the congestion level of the channel;
the higher busy time during congestions is due to backoff
retries and retransmissions. In this test case, the trasmission
delay causes the loss of 76 packets during congested periods
since the production rate of the ReISC SoC is higher that
the transmission rate of the RF Module so that its output
queue becomes full.

This result suggests that in some cases the optimal out-
put rate is not determined only by application constraints
but also by channel condition and the knowledge of channel

Figure 10: SPI message structure between the
ReISC SoC and the RF Module: configuration com-
mand (a), data message (b), statistics request (c),
and statistics response (d).

statistics can allow to improve the scheduling of node activ-
ities thus decreasing energy consumption. In this section we
assume that the application requirements can be satisfied
with a range of network transmission delays, and examine
how an adaptive packet transmission scheduling strategy can
reduce contention on the channel and reduce overall energy.
In particular, we observed that transmission delays of up to
50 ms do not have a noticeable effect on the quality of fall
detection (percentage of correct detection over percentage
of false positives and false negatives). In order to use the
knowledge of channel statistics to improve energy consump-
tion, we need both a way to communicate network statistics
to the ReISC SoC and an algorithm to adapt the scheduling
of activities.

The SPI channel is not only used to send and receive data
on the radio channel but also to configure the RF Module
and to ask for transmission statistics. For this purpose, the
data transmitted on the SPI channel are organized in mes-
sages structured as depicted in Figure 10. The first byte of
the message determines its type. The first message is sent
by the application to the RF Module to configure 802.15.4
parameters, i.e., node role (coordinator, router, end device),
64-bit MAC address, network identifier, acknowledge trans-
mission, and behavior when it is not transmitting (idle or
listening). The second message is used to carry packets
to/from the network. The third message is sent by the appli-
cation to the RF Module to ask for statistics about packets
transmission. The fourth message is the reply which reports
the number of transmission failures over 255 requests, the
number of packets waiting in the output queue, and the av-
erage delay to complete a transmission (the metric shown
in Figure 9. Failures happen when either the channel is
found busy after a maximum number of attempts or when
the maximum number of re-transmissions is reached. All
these statistics can be used to estimate the channel condi-
tion.

Regarding the adaptive scheduling, in this work we as-
sume to delay the transmission of a data message by the
ReISC SoC according to the value of the variable named
Delay which changes its value based on the following algo-
rithm:

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

In
te

rv
a
l

(m
s)

Time (s)

Figure 11: Time interval between two SPI data mes-
sages as a function of simulation time.

Table 2: Transmission performance and energy con-
sumption of SPI and ADC peripherals as a function
of the transmission policy.

Transmission TX Received PLR Energy
policy attempts packets (µJ)

Non-adaptive 332 256 23% 400
k=1 300 233 22% 369
k=4 216 189 12% 297
k=5 205 182 11% 287
k=6 186 173 7% 271

1. Initialize Delay to 1 ms.

2. If the last SPI transmission failed for buffer overflow
then Delay = Delay ∗ 2k (up to a maximum, in order
to preserve application functionality).

3. If the last SPI transmission was successful thenDelay =
Delay/2.

Figure 11 depicts the time interval between two SPI data
messages as a function of simulation time by using the adap-
tive transmission scheduling with k=1. The plot shows that
during channel congestion the SPINE Node sends less data.

Table 2 reports transmission performance and energy con-
sumption of SPI and ADC peripherals as a function of the
transmission policy. The second column reports the number
of transmission attempts made by the SPI controller of the
ReISC SoC. The third column reports the number of sample
packets actually received by the Base Station. The fourth
column reports the resulting packet loss rate (PLR). The
fifth column reports the energy consumption of the ADC
and SPI peripherals (the only components affected by the
delay since the ReISC core is always running at 50 MHz).
In fact, for each transmission attempt they are both work-
ing for 4.7 ms and idle until the next transmission attempt
(power values are taken from Table 1). The results show that
trasmission reliability increases by using a more aggressive
adaptive policy while energy is saved by avoiding to send
packets with a high loss probability.

Each scenario has been simulated in about 590 s on a
3 GHz Intel processor running Linus operating system.

6. CONCLUSIONS
We have presented a holistic approach to the simulation of

an application based on networked embedded system. The
simulation scenario has been written in SystemC/TLM and
included a detailed representation of a system-on-chip run-
ning actual software components and connected to a func-
tional representation of a wireless channel with interacting
nodes. This virtual platform has been used to evaluate dif-
ferent application design solutions to optimize energy con-
sumption of the SoC. In particular we adapted the transmis-
sion rate of a sensor node according to the congestion level
of the channel due to the presence of concurrent traffic. The
simulation approach allowed a fast exploration of different
adaptation policies which increased the transmission relia-
bility and reduced the energy consumption.

7. ACKNOWLEDGMENTS
This work has been partially supported by the COMPLEX

FP7 European Integrated Project,funded by the European
Commission under Grant Agreement 247999.

8. REFERENCES
[1] M. Chung and C.-M. Kyung. Enhancing performance of

HW/SW cosimulation and coemulation by reducing
communication overhead. IEEE Transactions on
Computers, 55(2):125–136, Feb. 2006.

[2] SystemC Network Simulation Library – version 1, 2008.
URL: http://sourceforge.net/projects/scnsl.

[3] European Commission. COdesign and power
Management in PLatform-based design space
EXploration - COMPLEX. URL:
https://complex.offis.de/, (FP7-IST-247999), 2009.

[4] LAN/MAN Standards Committee of the IEEE
Computer Society. IEEE Standard for Information
technology - Telecommunications and information
exchange between systems - Local and metropolitan
area networks - Specific requirements - Part 15.4:
Wireless Medium Access Control (MAC) and Physical
Layer (PHY) Specifications for Low Rate Wireless
Personal Area Networks (LR-WPANs). Sept. 2006.

[5] S. McCanne and S. Floyd. NS Network Simulator –
version 2. URL: http://www.isi.edu/nsnam/ns.

[6] F. Mulas, A. Acquaviva, S. Carta, G. Fenu, D. Quaglia,
and F. F. Network-adaptive management of
computation energy in wireless sensor networks. In
Proc. of ACM Symposium on Applied Computing
(SAC), pages 756–763, Mar. 2010.

[7] OSCI and IEEE. IEEE Std 1666 - 2005 IEEE Standard
SystemC Language Reference Manual. IEEE Std
1666-2005, pages 1–423, 2006.

[8] Signal Processing In Node Environment. SPINE home
page. http://spine.tilab.com/.

