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Abstract ~ When indoor
environments, robotic platforms generally rely solely
on information provided by onboard sensors to
determine their position and orientation. However, the
often leads to the
introduction of severe drifts in estimates computed,
making autonomous operations really hard to
accomplish. This paper proposes a solution to alleviate
the impact of the above issues by combining two
vision-based pose estimation techniques working on
relative and absolute coordinate systems, respectively.
In particular, the unknown ground features in the

moving in generic

lack of absolute references

images that are captured by the vertical camera of a
mobile platform are processed by a vision-based
odometry algorithm, which is capable of estimating the
Then,
accumulated in the above step are corrected using

relative frame-to-frame movements. errors
artificial markers displaced at known positions in the
environment. The markers are framed from time to
time, which allows the robot to maintain the drifts
bounded by additionally providing it with the
navigation commands needed for autonomous flight.
Accuracy and robustness of the designed technique are
demonstrated using an off-the-shelf quadrotor via
extensive experimental tests.
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1. Introduction

The increasing importance of the role played by many
kinds of robotic platforms is witnessed not only in the
growing amount of research works on this subject in the
literature, but also in everyday news about military
issues, urban
exploration operations, and so on, where ever more
advanced robotic artefacts are used to support and
complement
especially devoted to Unmanned Aerial Vehicles (UAV),
which, thanks to their great versatility, can be exploited in
many different contexts. Such contexts generally require
the ability to remotely operate the robot [1], although
having platforms capable of autonomous flight is often
considered of great importance [2]. In order for the robot
to be
environment, follow a target, perform automatic take-off
and landing, etc., it has to be provided in real time with
accurate information about its position and orientation in

security, territory monitoring, sea

human tasks. Particular attention is

capable of independently exploring the
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the surrounding world [3]. This goal may be easier to
achieve in outdoor environments, where information
produced by onboard sensors can be complemented by
external data about global positioning. The situation is
rather more complex in GPS-denied scenarios (e.g., in the
case of indoor flight), where reliable positioning data are
often harder to obtain. In this case, orientation, speed and
height information generated, for instance, by the inertial
measurement unit (IMU), the altimeter, etc., are generally
enriched with data extracted from onboard cameras,
when available. Hence, various kinds of image processing
techniques are used to process images, e.g., in the visible
or infrared spectrum, for improving the knowledge about
the platform’s trim [4, 5]. Unfortunately, the lack of
absolute generally may lead to an
accumulation of errors introduced with determining
position and orientation [6]. All of the above is
particularly critical when working with the lightweight
and low-cost flying platforms that have been recently
developed. In fact, despite their clear advantages, because
of budget and payload constraints the accuracy of sensors
available onboard is often very limited.

references

Taking the above considerations into account, this paper
presents a vision-based technique to estimate the six
degrees of freedom (6 DoF) describing the trim of an
indoor flying robot in absolute coordinates. The devised
technique uses the video flow captured by the low-
resolution vertical camera of the robotic platform and, on
each frame extracted, runs both a marker-less and a
marker-based pose estimation algorithm. The marker-less
algorithm uses odometry-based methods to determine
relative frame-to-frame robot movements by working on
changes that occur in visual features present on the floor.
It is also designed to look for artificial markers positioned
in the explored environment at known positions, thus
providing the robot with absolute
information. The novel contribution of this paper is in the
combination of the above methods, which lets the overall
technique fully benefit from their respective advantages.

positioning

The image feature-based approach allows the platform to
explore an unknown environment by supplying the
navigation unit with the data required for performing the
control, while drifting errors are reset and kept within
controlled bounds by means of isolated markers
identified by the complementary method.

As said, the focus of this paper is on the vision-based
aspects. Hence, in order to study the applicability of the
designed technique in a true application scenario with
remotely controlled aerial vehicles also capable of
autonomous flight, an off-the-shelf quadrotor was chosen,
namely the Parrot Ar.Drone (http://ardrone.parrot.com).
A control application was developed, using the SDK
provided by Parrot, which is capable of receiving the
video flow and sensor data from the robot, computing
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absolute position and rotation, and transmitting suitable
navigation commands back to the flying platform.
Moreover, the markers exploited for absolute positioning
purposes were additionally used as waypoints, by
directly linking explicit commands to them. In this way,
an autonomous navigation feature (customizable at
runtime) was also implemented, which was originally not
available for the considered platform. An extensive set of
experimental tests was carried out to comprehensively
assess Besides
effectiveness of the devised method, the results actually
demonstrated how easily and flexibly the devised
solution could be to other platforms,
technologies, and contexts as well.

system performance. proving the

extended

The rest of the paper is organized as follows. Section 2
reviews the main works in the literature concerning pose
estimation methodologies for robot platforms, specifically
focusing on vision-based methods. The section also
briefly introduces the Ar.Drone. Section 3 describes in
detail the marker-based and marker-less techniques that
are combined in the overall algorithm. In Section 4, the
experimental tests performed are analysed, a suitable
working setup is identified and performance is discussed.
Finally, conclusions are drawn in Section 5.

2. Related works and technologies

In recent years, a significant number of approaches have
been proposed in the literature to address the issue of
improving the accuracy of robotic platforms’ position and
orientation data obtained solely by sensors available
onboard. Such approaches can be roughly split into two
categories:
knowledge of the operating environment or any
constraint on it, and those which need to rely on the

those that can work without any prior

availability of reference information to compute the
updated status.

Techniques belonging to the first category generally
combine odometry-based motion data gathered by
multiple (often vision-based) sensors to alleviate the
impact of errors introduced by a single pose estimation
technique. This is the case, for instance, in [7], where
relative translation and rotation measures gathered by
matching frame-to-frame natural features in monocular
camera-based images are exploited to improve the
reliability of an IMU mounted on a quadrotor UAV
during autonomous flight in unknown environments.
Usually, robustness is further enhanced by improving the
amount and quality of sensor data used. Thus, for
instance, in [2] monocular images are replaced by stereo
images, enabling a direct computation of 6 DoF absolute
movements. Moreover, such a vision-based system is
accompanied by a laser odometry, making the overall
design suitable for both
environments. Independent of the specific sensors

indoor and outdoor
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adopted, solutions like those discussed above commonly
merge inertial and odometry-based information into a
data fusion stage (often implemented using an extended
Kalman filter) in order to obtain the estimates of the
platform’s configuration. The intrinsic drawback of these
approaches is linked to the lack for absolute references
that can be used to alleviate the effect of drifts due to the
error accumulation.

Solutions in the second category are designed to compute
absolute positioning and attitude information by
matching online sensor data with offline representations
of the environment or with (possibly artificial) easy-to-
recognize elements displaced at known positions. This is
the case, for instance, with simultaneous location and
mapping (SLAM) systems, where a reference map of an
unknown and unstructured environment is created
during so-called exploratory missions. The format of the
map and the algorithm used to perform the matching at
runtime clearly depend on the particular sensor/s used in
the map-building step. Thus, in [8] laser scan-measures
are exploited to create a 2D description of a wall-enclosed
indoor environment augmented with obstacles’ elevation
information; this is later crossed with online measures
within a particle filter. When vision-based sensors are
exploited, the map defines a visual memory of the
environment by storing raw images captured by the
camera during the preparatory flight (or a subset of them,
referred to as key frames); frame-to-frame comparison
and pose estimation is then performed by means of some
image matching techniques [4, 9, 10]. Often local image
feature descriptors are used, like Harris corners [11] or
Lowe’s scale-invariant feature transform (SIFT) [12],
because of their robustness to position, rotation and scale
variations. In some cases, local features are combined
with global descriptors (e.g., based on image gradient
information, as in [13]) to improve robustness to changes
in light conditions and other possible variations in the
operating environment. The main limitations of these
solutions lie in the fact that significant errors affecting the
final estimates can be introduced both in the generation
of the pre-recorded description of the initially unexplored
environment (only partially mitigated by corrections
occurring at loop closures, especially in outdoor
environments), as well as in the matching step.

A number of other techniques requiring some reference
information have been developed, building on the
assumption that the pose estimation step can be
improved by relying on some a priori knowledge of
representative characteristics of the environment. Again,
different characteristics can be considered. For instance,
in [14] flight data are compared against a previously
available digital elevation map (DEM). In [15] virtual 3D
models are used, whereas in [3] robot localization is
achieved by exploiting offline multiple pictures of along-
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path known objects. When a high accuracy is needed, e.g.,
for indoor flight, natural references are replaced by
artificial ones, which can be generally tracked in a more
robust way [16]. Thus, in [17] and [18] square targets with
a significant contrast with the remaining environment are
considered. Better results can be obtained by using
special markers (like ARTags [19] or QRCodes [20]),
which can deliver additional information to the observer
system. Thus, in [21] a flying platform’s pose is estimated
by exploiting ARTag markers together with information
coming from the IMU. Despite the high precision that can
be achieved with this technique when at least one marker
is framed, severe drift is observed when markers fall
completely outside the camera’s field of view (also, a
sufficient number of markers/a suitable distribution can
be hard to guarantee).

The methodology presented in this paper aims to exploit
the strengths of each of the macro-approaches introduced
above to mitigate their respective weaknesses. It makes
use of image features naturally embedded in an unknown
environment to compute relative translation and rotation
estimates. It then exploits a limited number of artefacts
distributed ad hoc in the environment to reset the drift
errors introduced by the former technique, and to
determine platform’s position and attitude in an absolute
way. The effectiveness of the proposed approach has
been tested with the Ar.Drone quadrotor, which comes
with an ultrasound altimeter and two rigidly attached
cameras, a wide angle front camera with a 640x480 pixels
resolution (18 fps) and a high-speed vertical camera with
a 176x144 pixels resolution (60 fps). Camera frames are
transmitted over a Wi-Fi link, with an average latency of
about 120 ms.

3. The designed visual odometry technique

The vision-based pose estimation method proposed in
this paper is implemented as a dynamic library written in
C++. Software routines are invoked within a loop that
processes the frames gathered from the camera and
determines the flying platform’s 6 DoF. This information
is then exploited by a control unit, a program written in
C# and based on the Ar.Drone SDK, which runs on a
desktop computer and dynamically links the library. The
control unit supervises the communications with the
platform. It passes video frames received to the pose
estimation library, obtains tracking data, and dispatches
them to a mnavigation module producing control
commands for autonomous flight (more details on this
latter module can be found in [22]). The control unit also
integrates a graphics interface for manual guidance.

3.1 Pose estimation of the robotic platform: an overall view

The overall pose estimation process can be considered as
conceptually split into two processing flows, which work
on the same frame captured by the vertical camera. One
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of the flows is devoted to marker-based processing. When
a known marker is detected, it is used to determine the
position and orientation of the flying platform relative to
the marker itself. The other flow, in turn, works on the
image features that can be extracted from the unknown
environment, and is exploited to perform a separate
estimate of the robot’s pose. The two flows are designed
to be executed in separate threads. A communication
channel is established between the two flows, so that the
higher accuracy generally associated with the marker-
based approach can be used to correct errors that are
progressively accumulated by the marker-less technique.

The marker-based tracking flow has been implemented
using the ARToolKitPlus library [23], which provides a
set of functions for determining the roto-translation
matrix describing the relative position and orientation of
the camera with respect to the ARTag that is currently
framed. A further transformation is required to transform
the camera’s relative coordinates into absolute word
coordinates, i.e., to unambiguously localize and orient the
quadrotor in the environment being explored (under the
assumption that the marker’s absolute coordinates are
known). The output of this flow is passed to a switching
module, which will be described in the following.

The marker-less tracking flow has been developed using
a SIFT-based image matching technique, which exploits
robust local feature descriptors to determine the relative
transformation between two input images (in this case,
the current frame and a reference frame). Images to be
matched are processed to extract key points. Each key
point is then represented as a feature vector, consisting of
image measures that are invariant to image translation,
rotation and uniform scaling, and partially invariant to
affine distortion and illumination changes. For the SIFT
method to work, there must be a sufficient overlap in
terms of feature descriptors between the two images, so
that a suitable number of matches is found. Since the
structure of the environment is not known a priori, the
framed surface (the floor, in this case) has to be assumed
as planar. Under this assumption, from two consecutive
images a translation vector can be computed. In order to
determine the multiplication factor required to obtain the
relative 6 DoF estimate, continuous information from the
onboard altimeter is used, and pixel measures are
converted into metric units, as needed. The SIFT-based
flow receives absolute pose estimation data from the
marker-based flow whenever they are available; in this
way, drifting errors accumulated so far by the marker-
less tracking can be cleared. Then, the marker-less relative
pose estimation has to be converted to global coordinates.
For this purpose, the relative roto-translation matrix
obtained for a given frame is combined with the marker-
based reference matrix, and an absolute measure is
produced. Results generated by the SIFT-based tracking
method are passed to the switching module as well.
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The switching module is responsible for selecting the
estimates to be used in the next processing steps, by
choosing between those coming from the ARTag and the
SIFT-based processing flows. The selection criterion is
currently quite trivial: if available, the ARTag measure is
chosen; otherwise, the SIFT estimate is selected. The pose
estimation algorithm ends up with a filtering stage,
where position and orientation estimates are smoothed in
order to remove spikes that could possibly hinder the
proper behaviour of the navigation routines. The filter
has been designed to introduce an extremely limited
latency and is therefore relatively simple. More complex
approaches could be exploited to implement both the
switching function and the filtering stage, e.g., with
combined
encompassing motion prediction, etc.,, to introduce a
higher degree of control/intelligence in this step, at the
cost of a possibly higher latency. In the following, the two
flows will be analysed separately.

solutions  considering  historical data,

3.2 ARTag flow

When a new frame is extracted from the video flow
transmitted by the quadrotor and is passed to the pose
estimation library, a marker detection step is first carried
out. This step is particularly important, since its output
will be used to control the behaviour of the switching
module. A thresholding is initially performed to produce
a binary image. A corner detection step is then executed
to find the contours of the square shape possibly present
in the image. If this operation fails, this means that the
camera is not framing a (valid) marker, and the switching
module should select the 6 DoF data produced by the
marker-less flow. If the operation succeeds, then a marker
has been found, and the next marker-aware processing
stages are executed. Specifically, the next step consists in
identifying the marker, i.e., in finding its unique identifier
based on its internal structure (i.e., its black and white
sub-blocks). Since each identifier is associated with an
absolute position in the 3D world, with this information it
will be later possible to locate and orient the robot in the
environment using absolute coordinates.

Then, the pose estimation step is actually performed.
Here, the roto-translation matrix representing the
markers’ rotation and translation with respect to the
camera is computed. Pose estimation, which is based on
the approach in [24], relies on camera calibration
parameters that have been obtained for the quadrotor’s
camera using the Camera Calibration Toolbox for Matlab
(http://www.vision.caltech.edu/bouguetj/calib_doc/). The
matrix produced is inverted to get the position of the
camera relative to the marker. The next step determines
the position and orientation of the quadrotor in absolute
coordinates. It relies on knowledge of the position and
orientation of all the markers in the environment, and
allows for the computation of the absolute 6 DoF of the
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flying platform at the given time. Translation values are
expressed in millimetres, and describe the position of the
robot with respect to the origin of the reference
coordinate system, whereas roll, pitch and yaw angles
describe its orientation. The overall ARTag-based pose
estimation process, which takes less than 10 ms on an
Intel i5 2.3 GHz CPU, is illustrated in Figure 1.

~

(Perform marker-based pose estimation (ARTag)

Current frame
I:_l

Detect marker

Marker not found] Check marker avail.

Notify switching
mod. (no marker)

No marker

[Marker found]

Identify marker

Estimate pose in
relative coords

Configuration éompute absolute Marker-based
| \ posit.orient. estimate
No marker

Figure 1. Organization of the marker-based (ARTag) flow
3.3 SIFT flow

The SIFT flow is initiated, like the ARTag flow, with the
arrival of a new frame to be processed. According to [12],
the SIFT algorithm includes four major stages. The first
step consists in the selection of key points, which are
defined as maxima and minima of the result of the
difference of Gaussian functions applied in scale space to
a series of smoothed and resampled images. Poorly
representative points (such as low-contrast ones) are
discarded, since they would be hard to recognize and
match in the next stages. The second step determines the
location and scale of every key point, assigns dominant
orientations to them and finally creates the associated
feature vectors with all the gradient-orientation
histogram entries in a region around the key points
themselves. In the devised processing flow, the above
steps are applied to both the current frame and to a
reference frame, thus obtaining two sets of feature
vectors. The third step consists in searching for the best
candidate match for each feature vector in one of the sets,
by identifying its nearest neighbour in the other set based
on Euclidean distance. In the fourth step, an affine
transformation between all match pairs is estimated using
the Hough transform. From the full set of matches,
several verification steps are then executed to discard
outliers and to identify subsets of high-confidence key
points that agree on the geometric transformation giving
the best match between the two images.

The algorithm has been developed by using the SiftGPU
library (http://cs.unc.edu/~ccwu/siftgpu/), which implements
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the SIFT theoretical approach in [12] optimized for parallel
processing [25] (delay is less than 30 ms for a 176x144 pixels
image on a NVidia GeForce GTX 295). The reference frame is
initialized, at system start-up, with the first camera image
received, and is later updated when the number of matches
goes below a given threshold (i.e., when feature vectors’
overlap is not sufficient, frames are blurred, etc.). As will be
shown in the following, the threshold has been set in an
empirical way based on experimental tests. Basically, a
higher threshold requires a higher overlap, and the distance
that can be covered without updating the reference is quite
limited. On the other hand, a lower threshold allows the
maintaining of the same reference over larger distances, at
the cost of a reduced number of features for computing the
pose estimation when the reference is finally updated. If a
sufficient number of correspondences are found, the pose is
estimated using matches between these two images.
Otherwise, the current frame is compared to the previous
one (where, if quadrotor speed is not excessive, a sufficient
number of correspondences should be found). If even this
attempt fails, an alert is raised to notify the overall system
that a pose could not be estimated for the current frame, and
an automatic landing is executed.

Pose estimation is based on the method presented in [26],
and is implemented relying upon the IVT library
(http://ivt.sourceforge.net/). The global position and
orientation of the flying platform are finally updated with
the contribution determined for the current frame and
corrected using absolute pose information from the
ARTag-based flow. Errors accumulated in the marker-less
flow are inversely proportional to the number of key
points in the camera images and directly proportional to
the number of updates to the reference frame. The overall
SIFT flow is schematized in Figure 2.

(Perform marker-less pose estimation (SIFT) \
Compute
G feature vectors
Match f. vectors
w.r.t. reference
Match f. vectors [<thres.] No. of matches
w.r.t. prev. frame
No. of matches
[>thres.]
[>thres.]
No pose Gpdale reference
» pose in
Altitude relative coords
Marker-based Change to Marker-less
estimate Kabsolule coords estimate
No pose

Figure 2 Organization of the marker-less (SIFT) flow
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3.4 Configuration of the environment

As illustrated in the previous sections, in order to exploit
the dual marker-based/marker-less image processing, the
environment has to be configured by placing artificial
markers at known positions with known orientations.
This will let the ARTag flow estimate the absolute pose of
the flying platform in a reference system whose origin
corresponds to the centre of one of the markers. This
information is stored in a configuration file that reports,
for each marker, its unique identifier, the side of the
square’s edge (in millimetres), and the roto-translation
matrix with respect to the absolute coordinate system.
The marker defining the origin of the coordinate system
has zero rotations and zero translations. An excerpt of a
configuration file describing two markers is reported in
Figure 3, together with the resulting physical layout.

# MARKERS CONF FILE.TXT [mm] Vi

180 10481
200.00 3000

1.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00

0.00 0.00 1.00 0.00

481 1D 480
200.00

1.00 0.00 0.00 0.00 0 "
0.00 1.00 0.00 3000.00 "

0.00 0.00 1.00 0.00
[mm]
Figure 3. Configuration file describing two markers located in
the environment to be explored by the robotic platform (left) and
their physical position and orientation (right)

4. Experimental results and system setup

The performance of the developed approach has been
assessed under a number of different conditions. First, the
accuracy of the marker-based and marker-less pose
estimation methods is characterized separately under
static conditions. Then, the estimates produced by the
overall algorithm combining the two processing flows are
compared with real-time position and orientation
measures obtained by an IR tracking system under
dynamic conditions. Finally, the integration of the pose
estimation system with the navigation module providing
flight commands has been empirically experimented.

4.1 Characterization of the marker-based flow

The accuracy in the determination of the (robot) camera’s
position and orientation with respect to the marker that is
framed at a given time is particularly critical, since such
information is supposed to be used to correct estimates
computed by the marker-less tracking flow as soon as a
marker has been detected. Hence, the aims of the tests
performed were twofold. On the one hand, the goal was
to quantify the main contributions to the pose estimation
error, ie. the error introduced while passing from the
detected marker’s corners in the framed camera image to
position and orientation of the marker itself in the camera

Int J Adv Robotic Sy, 2013, Vol. 10, 260:2013

reference system (CRS), and, finally, to the position and
orientation of the camera in the marker reference system
(MRS). On the other hand, the objective was to identify the
best working conditions for the particular operating
environment and hardware available. When considered as
a whole, the above information enables the estimation of
the overall accuracy of the marker-based processing flow.

The first tests were performed in static conditions, by
framing a 20 cm square marker from a 1 m distance using a
camera with a 174x144 pixels resolution (i.e., that of the
considered flying platform) facing down and framing the
ground. Tests were performed several times under
different environmental conditions, and for each test about
2500 frames were captured. Environmental conditions
were maintained as stable as possible for the duration of
each test. Three plots obtained from one of the tests are
illustrated in Figure 4. The plot in the first row reports the
values of the roll, pitch and yaw angles in the CRS for the
various frames. The plots in the second and third rows
show how the position of the detected marker’s left corners
(second row) and right corners (third row) changes. Even
though data were gathered in stable conditions, significant
variations can be observed for orientation information,
especially concerning the roll and pitch angles (which vary
in the range -9 to 6 and -4 to 4 degrees, respectively).
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Figure 4. First row: rotation estimates in the CRS for a set of
video frames under steady conditions; second and third rows:
variation of corners’ position in the framed camera image

Looking at the plots, it can be noticed that variations in the
pose estimates are directly linked to fluctuations in the
detection of corners” positions. These fluctuations, which
might be due to small variations in scene illumination, the
effect of video compression and other factors, could lead
the thresholding algorithm to switch corners’ positions
over adjacent pixels. An example of this effect is illustrated
in Figure 5 where a one-pixel change in the detected
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corner’s position over consecutive frames is outlined
(right side of each square in both images).

Figure 5. Pixel error: even in stable conditions, detected corners’
positions might undergo discrete changes from frame to frame

It is worth observing that small errors in the identification
of true corners’ positions are amplified by the change of
reference system (i.e, in the matrix inversion step)
required to pass from pixel information in the framed
image to the CRS. Hence, a single pixel error (in one of
the eight neighbouring pixel positions) could translate
into a much more significant error over all the 6 DoF.
Experimental tests demonstrated that the impact of this
error can be reduced by augmenting the resolution of the
camera (i.e.,, reducing the impact of the error on one
pixel). In particular, with a 320x240 pixels camera, the
error on roll varies in the range 0 to 2 degrees, whereas
the error on pitch varies between 0 and 4 degrees.
Another possibility could be to increase the size of the
marker. Lastly, a further important factor is represented
by the camera-marker distance: the larger the distance,
the higher the error due to the matrix inversion.

Based on the above observations, other tests were carried
out to identify the best trade-off between these
parameters and determine the best configuration to be
used in the overall system. A physical setup was
prepared to keep the marker and the camera centred and
on parallel planes, and to vary their distance in the range
40 to 100 cm, steps 10 cm. A number of measures were
performed by using a 20, a 30 and a 40 cm marker. The
results obtained are illustrated in Figure 6.

By comparing the plots in the two columns, the impact of
the matrix inversion step on angle errors introduced in the
corner detection phase can be easily estimated. In fact,
variations in the order of some millimetres are transformed
into variations in the order of some centimetres. As
expected, the larger the distance, the higher the error. With
larger markers, however, the impact of such errors can be
effectively reduced. Since the best flying altitude for the
Ar.Drone is about 65 cm, the optimal size for a marker’s
edge is 20 cm. The advantage associated with the use of a
larger marker would be limited by the fact that it would
easily fall out of the camera’s field of view at that altitude
(hence, the platform should fly at higher altitudes, with
poorer performance). Under such conditions, the error
along the X, Y and Z axes varies in the ranges 0.5 to 2.5, 0 to
2, and 1 to 10 mm in the CRS, and 10 to 60, 20 to 70, and 5
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to 15 mm in the MRS. The roll, pitch and yaw angles vary
in the ranges 1 to 6, 0 to 5, and 0.1 to 0.9 degrees in both the
CRS and the MRS.
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Figure 6. Left column: average errors along the X, Y and Z axes
in the MRS; right column: errors in the CRS

The last set of tests aimed to characterize the overall
accuracy of the ARTag-based pose estimation system
(considering a flying altitude of 65 cm and a 20 cm square
marker). The focus was on translations along the X and Y
axes as well as on rotations around the Z axis (which are
more relevant for the platform). Results obtained by
moving the camera 15 cm along the X axis or rotating it
around the Z axis are illustrated in Figure 7.
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Figure 7. Translation of 15 cm along the X axis (first row) and
rotation around the Z axis, i.e., yaw angle (second row): average
estimate error and standard deviation
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4.2 Characterization of the marker-less flow

Further tests were performed to study the accuracy of the
SIFT-based pose estimation flow, with the aim of finding
the operating conditions and configurations potentially
able to provide the best performance. A set of measures
was gathered by working on images with a resolution of
176x144 pixels while moving the flying platform over a
purely straight and planar path. Estimates resulting from
the marker-less odometry were compared with reference
measures obtained by using a laser meter. Two sample
plots comparing results (for a movement along the Y axis,
back and forth) over a 1.5 m and 4.5 m approximate total
distance are reported in Figures 8 and 9. Here, the effect
of the drifting errors can be easily appreciated.
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Figure 8. Comparison between laser meter measures and SIFT-
based estimates (distance covered about 1.5 m, translation along
the Y axis, threshold set to 10 matches, resolution 176x144 pixels)
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Figure 9. Comparison between laser meter measures and SIFT-
based estimates (distance covered about 4.5 m, translation along
the Y axis, threshold set to 10 matches, resolution 176x144 pixels)

As said, the error is due to the fact that relative
measures are always referred to a dynamic reference (a
frame that is updated based on a quality threshold, or
the previous frame), which is relative as well. The lack
of an absolute reference makes the distance between the
two curves tend towards infinity. This trend is neither
proportional to time passed, nor exactly proportional to
distance covered. In fact, drifting error is related to the
number of updates to the reference image, and becomes
particularly high when the update is performed (hence,
the error does not grow in steady conditions). As can be
seen by comparing Figure 8 and Figure 9, the error grows
linearly, and with the same reference update threshold
(minimum number of matches) its impact is more
evident over larger distances. An interesting question is,
therefore, how to set up the update threshold. To
answer this question, the above tests based on a
threshold equal to 10 were repeated by varying the
threshold. A plot obtained with the threshold set to 40 is
shown in Figure 10.
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The results show that the distance between the SIFT
estimate and the laser meter measure becomes larger and
larger as the threshold value grows, thus suggesting that
it is preferable to accept a worse estimate when the
reference is updated, but to limit the number of updates.
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Figure 10. Comparison between laser meter measures and SIFT-
based estimates (distance covered about 4.5 m, translation along
the Y axis, threshold set to 40 matches, resolution 176x144 pixels)

The tests described above were repeated by using a
camera with a higher resolution in order to study the best
configuration for robots that might be different from the
one considered in the current paper. A camera with a
640x360 resolution was used. Considering Figure 11,
which has been obtained by using a threshold once again
set to 40, it is immediately evident how performance
significantly improves with a larger resolution.
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Figure 11. Comparison between laser meter measures and SIFT-
based estimates (distance covered about 4.5 m, translation along
the Y axis, threshold set to 40 matches, resolution 640x360 pixels)

This is due to the fact that, with a higher resolution, the
number of key points computed on a given image (and
the number of matches) grows. In fact, working with the
176x144 pixels camera, the average number of key points
per frame was about 120. With the 640x360 pixels camera,
this number was four times larger. Thus, with the 176x144
pixels camera, the average (maximum) error was about 65
mm (145 mm) over the 1.5 m distance and about 155 mm
(273 mm) over the 4.5 m distance. With the 640x360 pixels
camera, over the 4.5 m distance the average (maximum)
error was roughly 29 mm (48 mm).

4.3 Overall characterization with an IR tracking reference

The goal of the last experimental tests performed was to
evaluate the performance of the combined marker-based/
marker-less tracking method during controlled flight. In
the tests, the quadrotor was guided by means of suitable
commands issued by the navigation module. ARTag and
SIFT-based tracking data were acquired over ten-minute
flying sessions. The robot was equipped with passive IR
reflective markers and followed with an external IR
tracking system [27]. This way, position and orientation
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data produced by means of the proposed pose estimation
approach were compared to reference values. The
configuration found in the previous sub-sections was
used. Tests were conducted using an artificially created
ground surface to roughly control the number of key
points (it has been proved that such a parameter has a
critical impact on the accuracy of the marker-less
tracking)!. A single marker has been placed in the
environment, which resets the drifting error when framed
by the robot’s camera. Plots of the estimates obtained by
the proposed system and of IR tracking measures for the
translation along X and Y axes, as well as for the rotation
around the Z axis, are reported in Figure 12. The frames
where the marker is detected are indicated by thicker
curve points and darker background.
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Figure 12. Estimates obtained with the designed visual odometry
system compared to IR tracking: translation along the X axis
(first row), translation along the Z axis (second row) and rotation
along the Z axis, yaw (third row)
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Figure 13. Ground with limited number of features: estimates by

the proposed system and IR measures (translation along the X

axis) to be compared with results in Figure 12 (first row)

1 Two videos (for manual and autonomous flight) are available at
http://youtu.be/f0c5pb3QzME and http://youtu.be/5Mazyz3LA0
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The results in Figure 12 can be easily compared with
those in Figure 13, where estimates for a translation along
the X axis over a ground with 1/3 of the key points in the
previous experiments are reported. Here, the frames
where drifting errors are reset by using information from
the framed marker can be easily observed. In fact, when a
marker is framed at the beginning of the flight, estimates
and reference measures roughly correspond. Then, the
distance between the two measures starts to increase.
However, when the marker is framed again around frame
1650, the error falls back into the 50 mm range.

6. Conclusion and future work

In this paper, a monocular camera pose estimation
technique was presented combining a marker-less visual
odometry algorithm exploiting SIFT descriptors with a
marker-based tracking method relying on ARTag markers.

The designed technique can be exploited to estimate
position and orientation of an off-the-shelf quadrotor
platform, and to endow it with autonomous flight
capabilities.  The
estimation algorithm has the benefit of being able to
incrementally estimate the quadrotor’s 6 DoF from the
take-off
characteristics of the surrounding environment. The main
drawback of this approach is that it is heavily influenced
by drifting errors. The marker-based pose estimation
algorithm, meanwhile, has the clear advantage of being
more precise than the feature-based one. Its main
drawback is that for the correct functioning, the
environment should contain artificial references (at known
positions). By coupling the two approaches, a novel
approach is obtained that can provide the robot with
absolute coordinates and maintain drifting errors within an
acceptable range by resetting them when a marker is
detected. Experimental tests showed that, by means of the
proposed approach, even low-cost flying platforms could
be used for purposes different than entertainment.

marker-less  feature-based pose

location without knowing a priori any

Future work will aim to further improve system
performance by introducing a SLAM technique into the
overall algorithm. This will provide the pose estimation
system with additional references to achieve more
accurate estimates. Moreover, the switching and
filtering stages following the two vision-based
processing flows will be improved by replacing the
simple functions currently used with predictive
filtering. In the experimental tests,
performed at 10 Hz (with a total processing latency
below 200 ms), which proved to be adequate for the
considered quadrotor. Nonetheless, the application of
the devised technique to other robotic platforms might
require the discovery of more sophisticated ways to deal
with the effect of processing and communication
latencies, thus achieving quicker feedback in the closed-

control was
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loop control. Finally, an approach designed to look for
(and not just accidentally discover) markers will be
developed: this would allow clearing drifts in a
systematic rather than a random way.
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