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Part I

Preface
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More than three centuries ago, Isaac Newton became the revered founder of
modern Mechanics due to his intuition, gathered by empirical evidence, about a
possible mathematical formalization for the law of universal gravitation. A very
simple equation, like the one by Newton, has allowed humankind to understand
those principles that rule the motion of celestial bodies as well as to predict
spectacular phenomena, such as solar eclipses, thousands of years in advance.
From then on, the scientific community has been pervaded by the idea that
many physical systems can be modeled in terms of a few fundamental principles
so that, given the present state, their future behavior can be forecast by means
of analytical calculations and numerical simulations.

However, we cannot deny the existence of several systems whose dynamics
is less straightforward and, hence, scarcely foreseeable. We can predict a solar
eclipse thousands of years in advance, but we are not able to predict the behavior
of cancer cells in a few years or the poll results in a few months; we can say
nearly nothing about the next day’s Dow Jones index or about the behavior of
a flock of birds in the next minutes. In one word, we are unable to precisely
know in advance the evolution of systems composed of many interacting living
agents.

What is the main difference between these systems and the ones whose evo-
lution is well described by the laws of Classical Physics? They are complex
living systems endowed with self-organizing abilities that result from the inter-
actions among the constituent individuals of the system, which behave according
to specific functions, strategies or traits. These functions/strategies/traits can
evolve over time, as a result of adaptation to the surrounding environment, and
are usually heterogeneously distributed over the individuals, so that the global
features expressed by the system as a whole cannot be reduced to the super-
position of the single functions/strategies/traits. Quoting Aristotle, we can say
that, within these systems, “the whole is more than the sum of its parts” [3]. As
a result, when we study the dynamics of complex living systems, there are new
concepts that come into play, such as adaptation, herding and learning, which
do not belong to the traditional vocabulary of physical sciences and make the
dynamics of these systems hardly to be forecast.

During the last fifty years the study of complex living systems has become
a major field of interdisciplinary research, which has considerably modified the
international scientific landscape by leading to a deep interplay between re-
searchers working in different areas. In particular, we have seen the arising
awareness that Mathematics could play an active role in tackling some of the
difficulties involved in studying these systems [6, 7]. In fact, consistent math-
ematical models can act as virtual laboratories, providing a framework where
mechanisms that determine the behaviors of large groups of living beings can
be understood more clearly. Moreover, mathematical models can be used to
define some hypothetical scenarios, whose dynamics can be analyzed to reveal
new insights into behaviors that have not yet been observed, thus reducing the
gap between theory and experimental observation. In particular, as it has been
pointed out in [6], while mathematical models of the inert matter have to re-
produce qualitatively and quantitatively empirical data, mathematical models
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of complex living systems should also reproduce, at least at a qualitative level,
emerging collective behaviors, which cannot be directly related to the dynamics
of a few individuals.

Modeling complex living systems requires, first of all, the definition of a
strategy for reducing complexity in an empirically consistent way. The strategy
here considered makes use of the mathematical formalisms for structured and
unstructured populations. Unstructured models rely on the assumption that the
individuals belonging to a given system can be treated as nearly identical and
provide a mathematical description in terms of state variables like individual
abundance, or density. As such, these models do not account for those func-
tions/strategies/traits that can vary from one constituent to another, which
can be useful to understand how mechanisms at the individual level generate
phenomena at the global one. These features can be taken into account by intro-
ducing an independent variable, or a set of independent variables, standing for
some characteristics that are heterogeneously distributed among the individuals
composing the system. In other words, as pointed out in the the germinal works
by Sharpe and Lotka in 1911 [62] and McKendrick in 1926 [51], unstructured
models can be structured by additional variables, the so-called structuring pa-
rameters, or structuring variables, here assumed to belong to a given subset of
Rd, with d ≥ 1, in order to define structured models.

Moving from the considerations drawn above, this work is conceived as a col-
lection of personal contributions to the mathematical modeling of complex living
systems, that is, models that we have presented in published/accepted/submitted
journal papers and book chapters. These models are aimed at showing how the
mathematical formalism under consideration allows to qualitatively reproduce
phenomena arising in the realm of complex living systems.

Three main parts follow an introduction meant to define a common con-
ceptual and mathematical background. These parts are divided into different
chapters, each one referring to a specific model and providing a brief summary of
the related aims, underlying assumptions and analytical/computational results.
For a detailed presentation of the models, we refer the reader to the last part of
this work, i.e. an appendix collecting the original papers. Let us point out that,
in order to make this work self consistent, at least to a certain extent, with re-
spect to the original papers, the contents here presented rely on notations stated
by the introductory part, while original, and actually heterogeneous, notations
have been maintained throughout the appendix.

In more detail:

Part II gives an overview on the critical aspects involved in the mathematical
modeling of complex living systems. In particular:

Chapter 1 highlights some properties that make living systems to be
complex, summarizes the possible representation scales for complex living
systems and describes the strategy used in this work to reduce complexity
in view of the mathematical modeling.
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Chapter 2 presents some models for continuous structured populations
so far developed to describe the dynamics of complex living systems, both
in the biological and in the socio-economic context. The focus is on
those structures that are actually used in this work only, i.e. phenotype-
structured equations, space-velocity-structured equations (i.e. kinetic-like
equations) and opinion-structured equations. A concise description of
the main underlying hypothesis, related analytical aspects and numeri-
cal methods to perform simulations is provided.

Part III deals with phenotype-structured equations for the dynamics of living
species. In particular:

Chapter 3 presents a class of integro-differential equations arising in
evolutionary biology to model the dynamics of specialist and generalist
species related by facultative mutualistic interactions. These equations
are able to reproduce Darwinian evolution and speciation.

Chapter 4 is about phenotype structured equations modeling the dynam-
ics of species related by predation. The effects of mutations, proliferation
through asexual reproduction and competition for resources are included
in the model, which can mimic the formation of evolutionary branching
patterns.

Chapter 5 introduces a multi-dimensional integro-differential equation
for the dynamics of habitat-specialist and habitat-generalist species en-
dangered by habitat shrinking and global warming. This equation can
be used to describe the evolution of endangered species under different
hypothetical scenarios.

Part IV presents some models for the dynamics of multicellular systems. Apart
from the ones introduced in Chapter 6 and Chapter 12, all these models rely
on a hybrid structured-unstructured population formalism. The focus is on
tumor cell dynamics, cancer-therapies, cancer-immune competition and immune
system diseases. In more detail:

Chapter 6 deals with an unstructured population model for the cell
dynamics inside colorectal crypts, which describes cancer progression as
well as the generation, through successive mutations, of multiple sub-
populations of cells at different progression stages.

Chapter 7 introduces a mathematical model for the dynamics of malig-
nant hepatocytes under the effects of cytotoxic and targeted therapeutic
agents. This model is aimed at enlightening the causes for emerging phe-
nomena commonly observed in cancer progression, in general, and hepa-
tocellular carcinoma, in particular.
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Chapter 8 presents a model for the dynamics of cancer hepatocytes ex-
pressing epithelial and mesenchymal phenotypes, which move via chemo-
taxis, proliferate and interact among themselves. The model is aimed at
mimicking, at least qualitatively, some collective behaviors experimentally
observed in cancer hepatocyte monolayers.

Chapter 9 deals with the derivation, by formal asymptotic methods, of
macroscopic equations for a space-velocity-structured equations describing
the dynamics of epithelial and mesenchymal cells. The resulting macro-
scopic equations are able to reproduce biologically consistent scenarios.

Chapter 10 presents a model for immune response against cancer, which
reproduces evolutionary scenarios related to the iterative selection exerted
by the immune system over cancer cells, including recognition, learning
and memory aspects of the immune response.

Chapter 11 describes a model that mimics the action of the immune
system against self and non-self antigens as well as the initiation of auto-
reactivity, with particular reference to the roles played by T-cells.

Chapter 12 introduces a phenotype-structured model motivated by the
theory of mutation-selection in adaptive evolution, which describes the
dynamics of healthy and tumor cells under the effects of cytotoxic and
cytostatic drugs. This model is meant to support the design of optimized
anti-cancer strategies.

It is worth noting that most of these models stem from direct collaborations with
biologists and clinicians. In particular, those presented in Chapter 7, Chapter
8 and Chapter 9 take advantage of fruitful discussions with W. Mikulits and
his co-workers (Institute of Cancer Research, University of Vienna, Vienna,
Austria); the models described in Chapter 10 and Chapter 11 rely on a direct
collaboration with U. Dianzani and M. Melensi (Interdisciplinary Research Cen-
ter of Autoimmune Diseases, Università del Piemonte Orientale, Novara, Italy);
finally, the model discussed in Chapter 12 has been defined in cooperation with
M.E. Hochberg (Institut des Sciences de l’Evolution, CNRS, Université Mont-
pellier 2, Montpelier, France).

Part V focuses on continuous structured population models for opinion forma-
tion within socio-economic systems. In more detail:

Chapter 13 deals with the asymptotic behavior of mathematical mod-
els for opinion dynamics under bounded confidence of Deffuant-Weisbuch
type. In particular, a theorem establishing the weak convergence of the
solution to a sum of Dirac masses and characterizing the concentration
points for different values of the model parameters is provided.

5



Chapter 14 presents a hybrid model for opinion formation in a large
group of agents exposed to the persuasive action of a small number of
strong opinion leaders. The model is defined by coupling a finite dif-
ference equation for the dynamics of leaders opinion with a continuous
integro-differential equation for the dynamics of the others. The asymp-
totic behavior in time of the related solution is characterized under distinct
scenarios, where different emerging behaviors can be observed.

Chapter 15 introduces a class of integro-differential equations modeling
the dynamics of a market where agents estimate the value of a given traded
good. Two basic mechanisms are assumed to concur in value estimation:
interactions between agents and some sources of public information and
herding phenomena. The asymptotic behavior in time of the related so-
lution is characterized for some general parameter settings, which mimic
different economic scenarios.

Part VI is devoted to draw conclusions and provide hints on future researches.

Appendix collects the published/accepted/submitted papers and book chap-
ters where the models summarized by Part III, Part IV and Part V have been
originally presented.
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Mathematical Foundations
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Introduction

All considered what is termed
wisdom to be conversant about

first causes and principles
Aristotle, Metaphysics

This part gives an overview on the critical aspects involved in the mathematical
modeling of complex living systems. In particular:

- Chapter 1 highlights some properties that make living systems to be com-
plex, summarizes the possible representation scales for complex living sys-
tems and describes the strategy used in this work to reduce complexity in
view of the mathematical modeling.

- Chapter 2 presents some models for continuous structured populations
so far developed to describe the dynamics of complex living systems,
both in the biological and in the socio-economic context. The focus is on
those structures that are actually used in this work only, i.e. phenotype-
structured equations, space-velocity-structured equations (i.e. kinetic-like
equations) and opinion-structured equations. A concise description of
the main underlying hypothesis, related analytical aspects and numeri-
cal methods to perform simulations is provided.
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Chapter 1

Preliminary aspects

This chapter presents preliminary aspects useful for the mathematical modeling
of complex living systems. In more detail:

Section 1.1 aims at highlighting some of those properties that make living sys-
tems complex and impact on the development of mathematical models.

Section 1.2 deals with a concise introduction to the possible representation scales
for complex living systems, from the microscopic to the macroscopic through
the mesoscopic one.

Section 1.3 describes the strategy used in this work to reduce complexity in
view of the mathematical modeling.

1.1 Complexity in living systems

Distinguishing features that make a system belonging to the realm of inert mat-
ter complex were already identified in the past [63]. In nomine omen, complex
systems are classically defined as made up of a large number of parts that in-
teract in a nonlinearly additive way. On the other hand, defining complexity
in living systems is a more challenging task. This is basically due to the wide
spectrum of behaviors expressed by living beings, which implies a lack of the
invariants characterizing the constituents of inanimate systems. Hence, those
properties that embody complexity in living systems need to be defined at a
general and qualitative level, so that they can be tailored for fitting to specific
cases.

A brief qualitative analysis of complex living systems is here developed,
which takes advantage of several inspirational ideas proposed in [6, 7]. This
analysis acts as a preparatory step toward the mathematical modeling. As
such, it does not claim to be exhaustive and includes only those aspects that
are effectively retained by the models presented in this work:
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1. Large number of components.
Complex living systems are composed of many interacting entities. Therefore,
because of the many degrees of freedom, a huge amount of variables is required,
in principle, to describe the overall state of such systems in mathematical terms.

2. Peculiar functions/strategies/traits.
Despite the constituents of inert matter, the individuals composing living sys-
tems express some peculiar functions/strategies/traits. For instance, several
species of birds have bright-colored feathers for reproductive purposes; hu-
man behaviors reflect personal opinions; firms follow precise marketing/pricing
strategies to achieve revenue optimization; cells are characterized by different
phenotypes and antigenic expressions. As a result, the mathematical modeling
of living systems implies a reinterpretation of those axioms and structures that
have been developed to describe the dynamics of inert matter.

3. Heterogeneity.
These functions/strategies/traits are heterogeneously distributed over the indi-
viduals belonging to the system. Namely, several gradations in color can be
found in the birds’ feathers; a plethora of different opinions with respect to
the same statement may be expressed by human beings; revenue optimization
strategies can strongly vary from one firm to another; cells holding the same
genotype may express several different phenotypes. Such heterogeneity is one
of the reasons why modeling the dynamics of living systems can be extremely
difficult.

4. Time evolving functions/strategies/traits and self-organized behaviors.
Individuals belonging to living systems are lead to modify their functions /strate-
gies/traits over time, in order to adapt to the evolution of the context defined
by the inner environment (i.e. the other individuals inside the system) and the
outer environment (i.e. exogenous actions). For example, focusing on socio-
economic systems, we can merely note that people can change their opinions
over time, both in a spontaneous way and due to the pressures exerted by their
social context or by the mass media. On the other hand, making reference to bi-
ological systems, an illuminating example of this fact is provided by Darwinian
adaptation:

“I can see no limit to the amount of change, to the beauty and
complexity of the co-adaptations between all organic beings, one
with another and with their physical conditions of life, which may
have been effected in the long course of time through Nature’s power
of selection, that is by the survival of the fittest” [23].

The evolution of individual functions/strategies/traits results into collective phe-
nomena highlighted by self-organized behaviors [16, 20, 21, 27, 29], such as
herding, adaptation and learning. Herding phenomena occur when individuals
observe and replicate the behavior of other individuals, while learning phenom-
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ena and adaptation take place when a subject is lead to modify a personal
strategy or a given trait as a result of the pressure exerted by the inner and/or
the outer environment.

5. Nonlinear interactions and emergent phenomena.
The overall behavior of complex living systems is determined by the interac-
tions occurring among their constituents. However, a traditional mathematical
modeling of individual dynamics does not lead to a straightforward description
of collective behaviors. In fact, individuals interact with each other in a non-
linearly additive way and the superposition principle is lost. As a consequence,
the dynamics of the system as a whole is more than the superposition of the
individual dynamics of its single constituents, i.e. “the whole is more than the
sum of its parts” [3]. This paves the way to the occurrence of self-organization
and emergent phenomena [19, 22].

6. Function/strategy/trait dependent interactions.
The laws ruling interactions in living systems, if it is possible to identify any
law, are strongly affected by the peculiar functions/strategies/traits expressed
by the interacting individuals. For instance, competition is stronger between
animal species that consume the same resources; people whose opinions are
too far apart do not trust each other, so they are used to avoid mutual in-
teractions; some immune cells are only able to recognize malignant cells ex-
pressing certain antigens; in many cases of practical interest for socio-economic
sciences, “interactions between individuals are channeled through specialized
communication-transportation networks” [65], which organize and select the in-
teracting subjects. Therefore, those laws that have been introduced to model
interactions among constituents of the inert matter do not suffice for describing
the dynamics of living beings in mathematical terms.

1.2 A matter of representation scales

Mathematical modeling requires a transition from real systems to the abstract
language of Mathematics; this implies a careful introductory analysis of the
system under consideration. Such analysis aims at identifying the phenomena
to be modeled, as well as a suitable representation scale, and it is a crucial
step toward a worthwhile description in terms of a reasonable number of key
variables.

The proper scale can be chosen among the ones traditionally used for model-
ing inert matter, i.e. microscopic scale, macroscopic scale and mesoscopic scale.
Representation at each scale relies on different mathematical structures, which
are grounded on technical approximations and suffer from either analytical or
computational drawbacks.

At the microscopic scale, each single constituent of the system is viewed as a
whole. Its physical state is characterized by means of some dependent variables,
whose evolution is generally ruled by a set of ordinary differential equations. On
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the contrary, the macroscopic scale refers to observable quantities which can be
mathematically recovered as local averages over the microscopic states, at least
in those cases where the system is composed of a sufficiently large number of
elements. Models at this scale are generally stated in terms of partial differential
equations, where macroscopic observables play the role of dependent variables.

Due to the very large number of components in the game within complex liv-
ing systems, dealing with single individuals, as at the microscopic scale, can be
mathematically unwieldy. On the other hand, the process leading to a macro-
scopic description is an averaging process and, as such, it hides the peculiar
properties expressed by the individuals belonging to living systems. Such lim-
itations can be overcome by the representation pertaining to the mesoscopic
scale. In fact, at this scale, the state of the whole system is characterized by a
suitable function, or a set of functions, describing the distribution of individuals
over the microscopic states, and macroscopic quantities are naturally recovered
as successive moments of these functions. Models at the mesoscopic scale are
stated in terms of partial differential equations, where even integral terms can
be included, which describe the evolution of this function, or these functions,
on the basis of microscopic interactions.

Although the constituents of microscopic and macroscopic scales are well
established in the case of inert matter, this distinction is usually more vague in
the case of living systems. In general, the microscopic representation can be re-
lated to an atomistic description in terms of single interacting agents (e.g. cells,
people, financial market and firms), while the macroscopic representation can
be referred to a systemic description involving those structures/processes that
result from the interactions among microscopic agents (e.g. organs, collective
opinions, market indexes and market trends). The mesoscopic scale is a sort of
intermediate scale; in fact, the related representation allows to bring to light the
existing connections between the microscopic interactions and the macroscopic
features of the system viewed as a whole.

1.3 A joint structured-unstructured population
approach to handle complexity

The development of mathematical models for complex living systems calls for
the definition of a strategy to reduce complexity in an empirically consistent
way. Our strategy makes use of the mathematical formalisms for structured and
unstructured populations (see for instance [42, 60] and references therein) and
takes advantage, from a conceptual perspective, of the idea presented in [6, 7].

At this stage, let us recall that unstructured models rely on the assumption
that the individuals of a given system, in particular a given population, can
be treated as nearly identical and provide a mathematical description in terms
of state variables like individual abundance, or density. As such, these mod-
els do not account for those functions/strategies/traits that can vary from one
individual to another, which can be useful to understand how mechanisms at
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the individual level generate phenomena at the population one. For this reason
an independent variable, or a set of independent variables, can be introduced,
standing for some functions/strategies/traits of interest that are heterogeneously
distributed among the individuals of the population, or more in general the sys-
tem, under consideration. In other words, as it has been noted in the germinal
works by Sharpe and Lotka in 1911 [62] and McKendrick in 1926 [51], unstruc-
tured models can be structured by additional variables, the so-called structuring
parameters or structuring variables, in order to define structured models. Such
variables are usually assumed to belong to a given subset of Rd≥1 and they can
be related both to certain characteristics that evolve over time and/or to some
other features whose rate of change with respect to time can be assumed equal
to zero, at least for modeling purposes.

Our strategy to reduce complexity consists of the following five steps:

Step 1. Selection of the representation scale.
As previously noted, the first step toward the mathematical modeling of real-
world systems consists in defining a proper representation scale. On the basis
of the considerations drawn in Section 1.2, we focus on the mesoscopic scale,
where the state of the whole system is characterized by a suitable set of functions
describing the distribution of the interacting individuals over the microscopic
states. Macroscopic quantities are recovered through integration.

Step 2. Partition of the system into subpopulations.
Living systems are usually composed of a large variety of interacting compo-
nents. In some cases, this variety can be so large that the analytical and numer-
ical tools developed for modeling cannot be effectively applied. However, this
difficulty can be tackled by grouping the interacting components into some sub-
populations, according to empirically consistent principles, and studying both
the interactions among subpopulations and the interactions within each sub-
population. In one word: divide et impera.

For instance, in cancer modeling, distinct subpopulations can be defined as
normal cells, cancer cells and immune cells that are able to recognize cancer cells.
On the other hand, focusing on models for living species, subpopulations can be
defined by groups of animals belonging to the same species and consuming the
same resources. Finally, with reference to models for socio-economic systems,
a subpopulation can be defined by investors in the same market or by people
belonging to the same social group. It is worth noting that this approach applies
both if the components of the system are individual subjects, such as single cells,
animals or people, or collective subjects, such as whole organs, species, market
or social groups.

Subpopulations and functions/strategies/traits should be properly identi-
fied according to the objectives of the investigations and the purposes of the
analysis to be developed. The functions/strategies/traits of interest can be
heterogeneously distributed among the components, that is, each individual ex-
presses the same function/strategy/trait of the other ones but in a different way.
With reference to the aforementioned examples, cancer cells can express differ-
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ent levels of malignancy, animal belonging to a given specie can consume the
same resources at different rates, investors in the same market can hold differ-
ent portfolios and people belonging to the same social group can have distinct
opinions about the same topic. However, according to the modeling purposes, in
order to provide a consistent description of the complex system under consider-
ation, there are some subpopulations where this heterogeneity needs to be taken
into account and some others where the identifying function/strategy/trait can
be seen as homogeneously distributed over the subpopulations, that is, individ-
uals can be seen as identical to each other (i.e. on average, they express the
functions/strategies/traits of interest in the same way).

Different modeling strategies, and so different mathematical structures, should
be introduced to describe the dynamics of subpopulations, according to the fact
that the heterogenous expression of the functions/strategies/traits of interest is,
or it is not, relevant to the system to be modeled. As a result, we divide sub-
populations into two wide classes: structured subpopulations and unstructured
subpopulations. From now on, we focus on a set of I structured subpopula-
tions and J unstructured subpopulations, labeled by index i = (1, ..., I) and
j = (1, ..., J), respectively.

Step 3. Assessment of the microscopic state.
For each ith subpopulation, a suitable set of variable has to be selected to model
the functions/strategies/traits of interest, which identify the microscopic state
of the individuals and act as structuring variables for the subpopulation. Here
we refer to such variables as s ∈ S ⊆ Rd≥1, which can be dimensionless or ex-
pressed in units of some suitable reference quantities depending on the system
to be modeled.

Step 4. Characterizing the state of each subpopulation.
Suitable mathematical structures are required to model the state of both struc-
tured and unstructured subpopulations, and so the state of the whole system.
Let us assume that the system is observed on a time interval [0,+∞), or even-
tually [0, T ], and introduce the following set of functions:{

fi = fi(t, s) : R+ × S → R+ for i = 1, ..., I
nj = nj(t) : R+ → R+ for j = 1, ..., J.

(1.1)

For any fixed time t, nj(t) stands for the number of individuals in subpopulation
j normalized with respect to the total number of individuals inside the system
at time t = 0. On the other hand, the quantity fi(t, s) ds stands for the number
of individuals in subpopulation i whose microscopic state belongs to the volume
element ds centered at s, again normalized with respect to the total number of
individuals inside the system at time t = 0. The state of subpopulations i and
j are described by functions fi and nj , respectively. The size of subpopulation
i and the total size of the whole system are computed, respectively, as

%i(t) =

∫
S

fi(t, s)ds, %(t) =

J∑
j=1

nj(t) +

I∑
i=1

%i(t); (1.2)
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thus, empirical consistency implies

fi(t, ·) ∈ L1(S), ∀ t ≥ 0,

or, at least, that fi(t, ·) ∈ L1
loc(S) for all t ≥ 0.

Step 5. Definition of suitable evolution equations.
The dynamics of each function nj(t) is governed by a model describing the net
inlet and outlet of individuals through the jth subpopulation at time t. These
models are stated in terms of ordinary differential equations and can be referred
to the following class of differential systems:

dtnj(t) = Nj [n](t), t ∈ R+, (1.3)

where n = {nj}Jj=1, while functional Nj describes the net flux of individuals
through subpopulation j at time t and it can be generally defined as follows:

Nj [n](t) := Pj [n](t)nj(t) +Mj [n](t), (1.4)

where functional Pj models the net proliferation rate at time t while functional
Mj stands for the net inflow of individuals in subpopulation j due to the fact
that individuals can modify their subpopulation over time, also due to interac-
tions among themselves.

In a similar way, the evolution of functions fi(t, s) is described by a suitable
set of partial differential, or integro-differential, equations modeling the net inlet
of individuals in the elementary volume ds centered in s of subpopulation i:

dtfi(t, s) = ∂tfi(t, s) +∇s · (Γ(s)fi(t, s)) = Fi[f ](t, s), t ∈ R+, s ∈ S. (1.5)

In the above equations, f = {fi}Ii=1, functional Γ is the evolution rate over
time (i.e. the evolution speed) of s, while functional Fi describes the net flux
of individuals of subpopulation i through the volume element ds centered in
s at time t, due to the phenomena and the interactions under consideration.
The definitions of Γ(s) and Fi[f ](t, s) depend on the system to be modeled and
can vary according to the empirical meaning of s. Some possible definitions are
provided by the following chapter, which rely on the mathematical formalism
for continuous structured populations.

The evolution of functions (1.1) can be described through suitable combina-
tions of Eqs. (1.3) and Eqs. (1.5) as the one given hereafter,

dth(t, s) = H[h](t, s), t ∈ R+, s ∈ S, (1.6)

where
h(t, s) = (f1(t, s), ..., fI(t, s), nI+1(t), ..., nI+J(t)) ,

and H[h](t, s) is componentwise defined by functionals {Fi}Ii=1 and {Nj}Jj=1,
eventually with suitable modifications allowing to include interactions between
structured and unstructured subpopulations.
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Before ending this chapter, let us briefly remark that the joint structured-
unstructured population approach here considered makes it possible to effec-
tively model the complexity aspects of living systems summarized in Section 1.2.
In fact, dividing the reference system into several interacting subpopulations, it
is possible to deal with complex systems composed of many interacting individ-
uals. Furthermore, the mesoscopic description and those structures that pertain
to the mathematical formalism for populations structured by continuous vari-
ables allow to take into account the heterogeneous functions/strategies/traits
expressed by living beings as well as to model those nonlinear interactions that
make these functions/strategies/traits evolve over time, leading to the emer-
gence of self-organized behaviors. These aspects will become more evident at
the end of this work, after the presentation of the results that we have so far
obtained through such a modeling approach.
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Chapter 2

Models and methods for
structured populations

The present chapter provides a brief overview on the mathematical structures
here used to model the dynamics of structured subpopulations. In particular,
we illustrate some of the models for continuous structured populations so far
developed to describe the dynamics of complex living systems, both in the bio-
logical and in the socio-economic context. Since the focus is on structures that
are actually used in this work, age- and size-structured equations are not con-
sidered and the contents of the chapter are organized as follows:

Section 2.1 deals with populations structured in phenotypes.

Section 2.2 focuses on populations structured in space position and velocity.

Section 2.3 refers to populations structured by the opinions of individuals.

Each section summarizes the underlying hypothesis and mathematical struc-
tures of the models as well as some of the related analytical aspects and numer-
ical methods to perform simulations.

2.1 Populations structured in phenotypes

In the biological context, there are many situations where populations can be
structured making use of traits that are inherited by the individuals from their
parents and that refer to the value for adults, the so-called phenotypic traits
(e.g. the ability of individuals to ingest specific resources). In these cases, the
s variables can be assumed to not vary over time and the identity below holds
true:

Γ(s) = 0, ∀ s ∈ S,
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where function Γ refers to Eq. (1.5). Furthermore, if sexual interactions can be
neglected and mutations from parents to offspring introduce only small changes
in the phenotypic traits, functional Fi in Eq. (1.5) can be defined in the following
general way

Fi[f ](t, s) := Pi[f ](t, s)fi(t, s) +Mεi[f ](t, s), (2.1)

where functional Pi denotes the net per capita growth rate of population i, while
functional Mεi describes the effects of mutations leading individuals belonging
to a certain population and expressing certain traits to give birth to offspring
that can be associated to a different population and/or that express different
traits. The average size of variations in the phenotypic traits is modeled by the
small parameter ε. Such functionals can be defined in different ways according
to the modeling purposes.

2.1.1 Mathematical models

For instance, focusing on the dynamics of one single population, i.e. I = 1 and
f(t, s) = f(t, s), we can take advantage of the considerations drawn in [47, 53, 60]
and introduce the following alternative definitions:

P[f ](t, s) := κ(s)−
∫
S

µ(s∗, s)f(t, s∗)ds∗ (2.2)

and

Mε[f ](t, s) :=

∫
S

θ(s∗)M(s, s∗; ε)f(t, s∗)ds∗ − θ(s), (2.3)

or

P(t, s) :=
r(s)

(1 + %(t))β
− d(s) (2.4)

and

Mε[f ](t, s) :=

∫
S

θ(s∗)r(s∗)

(1 + %(t))β
M(s, s∗; ε)f(t, s∗)ds∗ − θ(s)

r(s)

(1 + %(t))β
. (2.5)

In the above equations:

- Function θ(s∗) is the mutation rate of individuals expressing traits s∗,
while kernel M(s, s∗; ε) denotes the probability that mutations make a
parent individual with phenotypic traits s∗ give birth to offspring with
traits s. As a probability kernel, M satisfies the following identity∫

S

M(s, s∗; ε)ds = 1, ∀ s∗ ∈ S and ∀ ε > 0.

Since mutations introduce only small phenotypic changes from parents
to offspring, M can be considered negligibly small for s outside an ε-
neighborhood of s∗ and

M(s, s∗; ε) = M (s− s∗; ε) .
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- Function κ(s) stands for the proliferation rate of individuals expressing
traits s, while function µ(s∗, s) represents the death rate of individuals
with phenotypic traits s due to the competition, namely for space and
resources, with other individuals expressing traits s∗.

- Function r(s) is the proliferation rate of individuals assumed to be limited
by factor 1

(1+%(t))β
, which depends on the size of the population. Parameter

β measures, on average, how strongly the chance for the birth of new
individuals is influenced by the total size of the population. Function d(s)
models the death rate of individuals expressing traits s due to natural
causes.

Definitions (2.2) and (2.3) rely on the idea that population growth is hampered
by competitive interactions, while definitions (2.4) and (2.5) take into account
other saturation effects not mediated by interactions, such as reducing over time
those resources that are required by individuals to proliferate, which comes along
with population growth. Both modeling strategies mimic the same effects of net
proliferation/death and prevent the case %(t)→∞, that would correspond to a
not empirically consistent blow up in the number of individuals.

Definitions (2.2) and (2.4) can also be coupled to the following alternative
definition of functional Mε

Mε[f ](t, s) := ε2∆f(t, s), (2.6)

where the effects of mutations are modeled through the Laplace term, while
parameter ε2 stands for the average mutation rate.

2.1.2 Asymptotics

If the time scales of selection and mutation are assumed to be separated, i.e.
mutations are rare with respect to birth and death processes, parameter ε can
be used to model also the ratio between these two time scales. Then, if time is
rescaled setting

fε(t, s) = f

(
t

ε
, s

)
, (2.7)

in those cases where P does not depend explicitly on f , Eq.(1.5) can be rewritten
as follows:

ε∂tfε(t, s) = P(t, s)fε(t) +Mε[fε](t, s). (2.8)

Time rescaling (2.7) has been proposed in [26] to consider the dynamics
of populations on a time scale longer than the one of a single generation and
asymptotic analysis can be developed in the limit ε → 0 (i.e. in the limit of
large times and small/rare mutations), with the aim of proving the convergence

(in a suitable weak sense) of fε to a population density f̂ that concentrate as a
sum of Dirac masses, that is

f̂(t, s) :=

N∑
n=1

%n(t)δ(s− ŝn(t)),
N∑
n=1

%n(t) = %(t),

19



where δ(·) is the Dirac’s delta distribution and the set {ŝn(t)}Nn=1 defines the

support of f̂(t, s) at time t.
From an ecological perspective, this kind of convergence results provide a

possible mathematical formalization for the selection principle of evolutionary
biology: a population initially dispersed over several traits, concentrates, for
large time, along few of them, which can be interpreted as the fittest ones. Even
more, if fε is concentrated in one single point s0 at time t = 0 (i.e. the population
is monomorphic at the beginning of observations) and the assumptions over

functionals P andM allow the convergence to a sum of Dirac masses f̂ (i.e. the
population becomes polymorphic across time), then also branching processes
can be caught by this formalism.

Such concentration phenomena have been studied in [25] for one population
structured by a single phenotypic trait (i.e. S is defined as a compact subset
of R) without mutations. On the other hand, both mutation and competition
phenomena have been considered in [5, 26, 48, 61] again for one population but
structured by multiple phenotypic traits (i.e. S is identified with the whole space

Rd). The hypothesis introduced in [25] allow f̂ to be a sum of Dirac masses (i.e.
branching processes can be reproduced), while only one single Dirac mass can
be sustained under the assumptions considered in [5, 26, 48, 61] (i.e. only the
dynamics of monomorphic populations can be modeled).

2.1.3 Numerics

Cauchy Problems linked to phenotype-structured equations can be solved in-
troducing a suitable discretization {sk}k of the S domain and making use of
implicit-explicit finite difference schemes, such as the one given hereafter, which
refers to a one single population case where P does not depend explicitly on f :

f(t+ dt, sk)− f(t, sk)

dt
= [P+(t, sk)− P−(t+ dt, sk)] f(t, sk)

+ Mε[f ](t, sk).

Functions P+ and P− stand, respectively, for the positive and negative part of
the P function. In this way, the original integro-differential initial value problem
is approximated by a set of ordinary differential initial value problems, one for
each equation describing the evolution of {f(t, sk)}k, which can be solved using
standard methods for ODEs (see, for instance, [45]).

2.2 Populations structured in space and velocity

When the focus is on the motion of individuals, populations can be structured
by space and velocity variables, namely s := (x,v), so that S coincides with the
phase space X × V ⊆ Rdx × Rdv , with 1 ≤ dx, dv ≤ 3. In absence of external
forces acting on the individuals’ motion, the following identities hold true

Γ(x) = v, Γ(v) = 0, ∀ (x,v) ∈ X × V
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and Eq.(1.5) can rewritten as follows:

∂tfi(t,x,v) + v · ∇xfi(t,x,v) = Fi[f ](t,x,v), (2.9)

where the gradient term models the transport of individuals with their own ve-
locity v. Furthermore, neglecting birth-death processes, the following definition
can be introduced:

Fi[f ](t,x,v) := Qi[f , f ](t,x,v) +Ki(t,x,v),

where functionals Qi and Ki model, respectively, the net flux of individuals of
population i through the volume element dxdv centered in (x,v) at time t ∈ R+

due to velocity changes mediated and not mediated by interactions.

2.2.1 Mathematical models

Focusing on the dynamics of one population only, i.e. I = 1 and f(t, s) = f(t, s),
as well as taking advantage of the considerations drawn in [35] and reference
therein, we can define Q[f ](t,x,v) as a Boltzmann-type integral operator and
make use of a velocity-jump formalism to define K(t,x,v):

Q[f, f ](t,x,v) :=

∫
V

∫
V

Q(v|v∗,v∗)f(t,x,v∗)f(t,x,v∗)dv∗dv
∗ +

−
∫
V

∫
V

Q(v∗|v∗,v)f(t,x,v∗)f(t,x,v)dv∗dv
∗ (2.10)

K(t,x,v) :=

∫
V

K(v|v∗)f(t,x,v∗)−K(v∗|v)f(t,x,v)dv∗, (2.11)

with ∫
V

F [f ](t,x,v)dv = 0, ∀ x ∈ X and ∀ t ∈ R+, (2.12)

so that, under assumption∫
V

f(t = 0,x,v)dv = %(t = 0, x) = 1, (2.13)

we have ∫
V

f(t,x,v)dv = %(t, x) = 1, ∀ t ∈ R+. (2.14)

In the above definitions:

- interaction kernel Q(v|v∗,v∗) describes the probability that an individual
moving with velocity v∗ acquire velocity v after a short range interaction
with an individual moving with velocity v∗;

- scattering kernel K(v|v∗) gives the rate of spontaneous turning from ve-
locity v∗ to velocity v;
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- analogous considerations hold for Q(v∗|v∗,v) and K(v∗|v).

If changes in velocity mediated by interactions can be neglected and the
system is exposed to an additional field c(t,x) that influences the orientation
of the individuals’ motion, we can follow [18] and focus on nonlinear transport-
scattering operators in the form given hereafter:

F [f ](t,x,v) :=

∫
V

K(c(t,x); v|v∗)f(t,x,v∗)−K(c(t,x); v∗|v)f(t,x,v)dv∗,

(2.15)
where the scattering kernel K now depends also on time and position through
a nonlocal dependency upon function c, whose evolution can be modeled by
means of an additional elliptic or parabolic equation. Identities (2.12)-(2.14)
apply to this case as well.

2.2.2 Asymptotics

From a formal standpoint, the integro-differential models resulting from the
coupling of Eq.(2.9) with definitions (2.10) and (2.11), or definition (2.15), are
kinetic models of Boltzmann-type, which have been originally introduced for
the study of moderately rarefied gases. The derivation of macroscopic models
(i.e. evolution equations for %(t,x)) from kinetic models is a classical topic and
an introduction to the mathematical aspects of Boltzmann-type equations and
their macroscopic limits is given in [59, 70] and references therein. Focusing
on transport-scattering models, a small parameter ε > 0 modeling the trans-
port/scattering ratio can be introduced, so that, under a diffusion scaling of
time and position

fε(t,x,v) = f
(
εt,

x

ε
,v
)
, (2.16)

Eq.(2.9) can be recast as follows

∂tfε(t,x,v) +
v

ε
· ∇xfε(t,x,v) =

1

ε2
F [fε](t,x,v), (2.17)

and macroscopic equations can be recovered in the limit ε → 0 (i.e. assum-
ing that the scattering part dominates transport). With reference to complex
biological systems, drift-diffusion limits have been used, for instance, in the con-
text of chemotaxis (i.e. the phenomenon whereby bacteria and cells direct their
movements according to a field defined by the concentration of certain chemicals
in their environment). See, for instance, [60] and related references. In partic-
ular, a rigorous derivation of the celebrated Keller-Segel model [41, 58] starting
from a kinetic transport-scattering model for chemotaxis has been presented in
[18].
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2.2.3 Numerics

Focusing on bi-dimensional space domains, i.e. dx = 2 and x = (x, y), velocities
can be approximated in polar coordinates as follows:

v(t) =

(
vx(t)

vy(t)

)
= v0

(
cos θ(t)

sin θ(t)

)
. (2.18)

Approximation (2.18) implicitly relies on the assumption that the velocity mod-
ulus is constant and equal to v0. If space and angular variables have been dis-
cretized, i.e. sets {(xk, yk)}k and {(θl)}l have been defined, and suitable bound-
ary conditions have been introduced, time splitting schemes can be adopted to
numerically solve the Cauchy Problems linked to kinetic-like equations as the
aforementioned ones. The advection term can be approximated in conservative
form using flux-limiting schemes (see, for instance, [46]) and standard inte-
gration schemes can be used to compute the integral terms. In this way, a
set of ordinary differential initial value problems is constructed, one for each
f(t, xk, yk, θl), which can be solved using standard methods for ODEs (see, for
instance, [45]).

2.3 Populations structured in opinion

Mathematical models for structured population in the context of opinion for-
mation rely on the idea that the state of each individual can be identified with
a single variable standing for the opinion with respect to a certain statement
(i.e. s := s), whose rate of evolution with respect to time can be set equal to
zero, i.e.

Γ(s) = 0, ∀ s ∈ S,
so that Eq.(1.5) can be rewritten as follows:

∂tfi(t, s) = Fi[f ](t, s) (2.19)

with
Fi[f ](t, s) := Qi[f , f ](t, s) +Ki(t, s),

where functionals Ki and Qi model, respectively, the net flux of individuals of
population i through the volume element ds centered in s at time t ∈ R+ due,
respectively, to spontaneous and mediated by interactions opinion changes.

2.3.1 Mathematical models

Here we focus on one single population where spontaneous changes of opinion
do not occur. Furthermore, we assume opinions to evolve through repeated
pairwise interactions involving only individuals at a distance smaller than a
threshold value R ∈ R+, i.e. the so-called bound of confidence, that tend to
average their current opinions, i.e. we focus on compromise models. In this
case, setting

S := [−σ1;σ2] ⊂ R, with σ1,2 ∈ R+,
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we can follow, for instance, [1, 12, 24, 49, 68] and use the below definition

Q[f, f ](t, s) :=

∫
S

∫
S

η(s∗, s
∗;R)Q(s|s∗, s∗)f(t, s∗)f(t, s∗)ds∗ds

∗ +

−
∫
S

∫
S

η(s∗, s;R)Q(s∗|s∗, s)f(t, s∗)f(t, s)ds∗ds
∗, (2.20)

where:

- η(s∗, s
∗;R) is the interaction rate between a couple of agents expressing

opinions s∗ and s∗, which can be defined as

η(s∗, s
∗;R) := 1{|s∗−s∗|≤R}, η(s∗, s

∗;R) = η(s∗, s∗;R) (2.21)

where 1 is the indicator function;

- interaction kernel Q(s|s∗, s∗) describes the probability that individuals
with opinion s∗ start to express opinion s due to interactions with indi-
viduals of opinion s∗ and it can be defined as

Q(s|s∗, s∗) := δ

(
s− s∗ + s∗

2

)
,

∫
S

Q(s|s∗, s∗)ds = 1, (2.22)

where δ(·) is the Dirac’s delta distribution;

- analogous considerations hold for η(s∗, s;R) and Q(s∗|s∗, s).

The average opinion s̄ at time t can be computed as the first moment of f(t, s),
i.e.

s̄(t) =

∫
S
sf(t, s)ds

ρ(t)
.

2.3.2 Asymptotics

Model (2.20) belongs to a large class of equations for continuous structured
populations, or one dimensional Boltzmann-like kinetic equations, that can be
derived from individual based models in the limit of large number of agents.
Asymptotic analysis can be developed in the limit t → ∞ (i.e. in the limit of
large time), with the aim of proving the convergence (in a suitable weak sense)
of function f to a distribution f∞ that concentrate as a sum of Dirac masses,
that is

f∞(s) :=

N∑
n=1

%nδ(s− ŝn), |ŝa − ŝb| > R, ∀ (ŝa, ŝb) ∈ {ŝn}Nn=1, a 6= b.

From a socio-economic perspective, this kind of convergence results provide a
possible mathematical formalization for the emergence of a steady compromise.
In fact, the population condenses, across time, into a finite set of distinct and
noninteracting opinion clusters.
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Several previous works have been devoted to study the existence of such
equilibrium configurations, see for instance [1, 12, 24, 49, 68] and references
therein, even in a discrete setting [9]. With particular reference to the model
under consideration, with σ1 = σ2 = σ ∈ R+:

- conservation of the total mass and the average opinion has been proved
for all values of R;

- it has been proved that, if R ≥ 2σ (i.e. all the individuals interact among
themselves), the opinion distribution converges to a single cluster located
in s̄(t = 0);

- it has been verified, by means of numerical simulations, that for R < 2σ
the opinion distribution may not condense into a single cluster, but rather
it might evolve into some isolated clusters separated by distances larger
than R.

2.3.3 Numerics

The Cauchy Problems linked to opinion-structured equations can be numerically
solved through spectral collocation methods (see, for instance, [17]). Roughly
speaking, a suitable discrete set of collocation points {sk}k ∈ S is first intro-
duced; after that, focusing on one single population, the f function is interpo-
lated by means of sinc functions, that is

f(t, s) ≈
∑
k

f(t, sk)sinc(s− sk),

and the integral terms are approximated by means of algebraic weighted sums in
the nodal points of the discretization. The evaluation of the opinion-structure
equation in each node and the enforcing of the initial conditions allow the con-
version of the original integro-differential initial value problem into a set of initial
value problems for ordinary differential equations, which describes the evolution
of each f(t, sk). These ordinary differential initial value problems can be solved
by means of standard methods for ODEs (see, for instance, [45]).
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Part III

Models for Living Species
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Introduction

We will now discuss in a little more
detail the Struggle for Existence

C. Darwin, The Origin of Species

This parts deals with phenotype-structured equations for the dynamics of living
species. In particular,

- Chapter 3 presents a class of integro-differential equations arising in evolu-
tionary biology to model the dynamics of specialist and generalist species
related by facultative mutualistic interactions. These equations are able
to reproduce Darwinian evolution and speciation.

- Chapter 4 is about phenotype structured equations modeling the dynamics
of species related by predation. The effects of mutations, proliferation
through asexual reproduction and competition for resources are included
in the model, which can mimic the formation of evolutionary branching
patterns.

- Chapter 5 introduces a multi-dimensional integro-differential equation for
the dynamics of habitat-specialist and habitat-generalist species endan-
gered by habitat shrinking and global warming. This equation can be
used to describe the evolution of endangered species under different hypo-
thetical scenarios.
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Chapter 3

Asymptotic dynamics in
continuous structured
populations with mutations,
competition and mutualism
[A5]

3.1 Motivations and models

This paper deals with a class of integro-differential equations arising in evolu-
tionary biology to model the dynamics of specialist and generalist species related
by facultative mutualistic interactions (i.e. the growth of a population affects
the proliferation of individuals in the other one, although both species can sur-
vive even in the absence of the other one) [36, 54]. Generalist species are able
to consume a wide range of nutrients, while specialist species concentrate on a
narrow band of resources [50]. The effects of mutations, proliferation through
asexual reproduction and competition for resources are included in the model
here considered.

In particular, the reference system is defined by one structured subpopula-
tion collecting specialist individuals and one unstructured subpopulation com-
posed of generalist individuals, which are labeled by indexes i = 1 and i = 2,
respectively. Subpopulation i = 1 is structured by a continuous phenotypic trait
s ∈ S ⊂ R related to the ability to ingest specific resources. Interval S is com-
pact, i.e. S := [0, 1], and, since mutations are assumed to be small and to occur
on a longer time scale than proliferation, a parameter ε is introduced to model
the ratio between these time scales as well as the average size of mutations.
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The states of the two subpopulations are characterized by functions

f1 = f1(t, s) : R+ × S → R+, n2 = n2(t) : R+ → R+,

and the dynamics of the system is described through the following Cauchy
Problem 

∂th(t, s) = H[h](t, s), (t, s) ∈ (0, T ]× S

h(0, s) = h0(s),
(3.1)

where
h(t, s) = (f1(t, s), n2(t)),

h0(s) = (f01 (s), n02), f01 (s) ∈ L1(S), f01 (s) > 0 a.e. on S, n02 ∈ R+

and H[h] is componentwise defined by the integro-differential equations given
hereafter:

∂tf1(t, s) =

∫
S

M(s− s∗; ε)f1(t, s∗)ds∗ − f1(t, s)︸ ︷︷ ︸
mutations and renewal

+κ1(s)n2(t)f1(t, s)︸ ︷︷ ︸
mutualism

+ f1(t, s)

(
β1(s)−

∫
S

µ(s, s∗)f1(t, s∗)ds∗
)

︸ ︷︷ ︸
proliferation and competition

(3.2)

dtn2(t) = n2(t)

∫
S

κ2(s∗)f1(t, s∗)ds∗︸ ︷︷ ︸
mutualism

+ (β2 − ζn2(t))n2(t)︸ ︷︷ ︸
proliferation and competition

.

With reference to Eqs. (3.2):

M(s− s∗; ε) :=

 αδ(s− (s∗ ± ε)) + (1− 2α)δ(s− s∗), if ε < s < 1− ε
αδ(s− (s∗ − ε)) + (1− α)δ(s− s∗), if 0 ≤ s ≤ ε
αδ(s− (s∗ + ε)) + (1− α)δ(s− s∗), if 1− ε ≤ s ≤ 1,

where α ∈ R+, δ is the Dirac’s delta distribution,

β1 : S → R+, β1 ∈W 2,∞(S), inf
s
β1(s) > 0, β2 ∈ R+, (3.3)

µ : S × S → R+, µ ∈W 2,∞(S × S), inf
s,s∗

µ(s, s∗) > 0, ζ ∈ R+, (3.4)

κi : S → R+, κi ∈W 2,∞(S), inf
s
κi(s) > 0, i = 1, 2 (3.5)

and
κ1(s)κ2(s∗) < ζµ(s, s∗), ∀(s, s∗) ∈ S × S. (3.6)

The above definition for M(s − s∗; ε) translates into mathematical terms the
idea that mutations are small, i.e. only small variations in the phenotypic trait
can occur from parent to offspring, while assumption (3.6) embodies the fact
that proliferative phenomena due to mutualistic interactions occur with a lower
rate than competition for resources.
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3.2 Main results

Using standard fixed point arguments, we prove that the Cauchy Problem (4.1)
is well-posed, in the sense of Hadamard, and admits a unique global in time
solution.

Then, in order to capture the slow evolutionary process leading to substantial
changes in the predominant traits, we use the following time rescaling

hε(t, s) = h

(
t

ε
, s

)
,

and rewrite Eqs. (3.1) as follows
ε∂thε(t, s) = H[hε](t, s), (t, s) ∈ (0, T ]× S

h(0, s) = h0(s),
(3.7)

with the aim of studying the asymptotic behavior, in the limit ε→ 0 (i.e. large
times and small mutations), of the solution to the Cauchy Problem (3.1). In
particular, after introducing the notation below

Rε(t, s) := β1(s)t+ κ1(s)

∫ t

0

n2ε(z)−
∫
S

µ(s, s∗)f1ε(z, s
∗)ds∗dz,

we show how an approach similar to the one proposed in [25] can be used to
study the asymptotic behavior of the solution to the initial value problem (3.7):

Theorem 3.2.1 There exist a subsequence of f1ε, denoted again as f1ε, and a
subsequence of Rε, denoted again as Rε, such that:

i) Establishing convergence.

f1ε ⇀ f̂1 on w∗ − L∞((0, T ),M1(S)), as ε→ 0,

Rε → R uniformly in [0, T ]× S, as ε→ 0,

where f̂1 ∈ L∞((0, T ),M1(S)),

R(t, s) = β1(s)t+ κ1(s)

∫ t

0

n2(z)−
∫
S

µ(s, s∗)f̂1(z, s∗)ds∗dz (3.8)

and

R(t, s) ∈W 2,∞((0, T )× S), max
s∈S

R(t, s) = 0, ∀ t ∈ [0, T ].

ii) Characterizing the support of the limit f̂1.

supp(f̂1(t, ·)) 6= ∅, supp(f̂1(t, ·)) ⊂ R(t, ·)−1(0), for a.e. t ∈ [0, T ].
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iii) Identifying the limit f̂1.
If functions β1 and κ1 have a positive maximum attained, respectively, at some
points {un}Nn=1 and {wn}Mn=1, with N,M ∈ N, then the measure f̂1 results as
follows:

f̂1(t, s) =

N∑
n=1

%βn(t)δ(s−un) +

M∑
n=1

%κn(t)δ(s−wn), %βn(t), %κn(t) ≥ 0. (3.9)

A characterization of factors {%βn}Nn=1 and {%κn}Mn=1 of (3.9) is provided by the
following

Proposition 3.2.2 If N = M and un = wn for all n, then for any value of n:

%βn(t) > 0 and %κn(t) > 0.

On the other hand, if µ(s, s∗) factorizes as µ(s, s∗) = µ1(s)µ2(s∗), with µ1, µ2 ∈
W 2,∞(S), N 6= M , {un}Nn=1 ∩ {wn}Mn=1 = ∅ and

β1(un)

µ1(un)
=
κ1(wn)

µ1(wn)
, ∀un ∈ {un}Nn=1, ∀wn ∈ {wn}Mn=1,

there exists T` such that one of these conditions is verified:

- if ζ < β2, then

%βn(t) = 0 and %κn(t) ≥ 0, ∀t > T`,

for any value of n;

- if ζ ≥ β2 + C3‖κ2‖L∞(S), with

C3 := max

(‖β1‖L∞(S) + β2/ζ‖κ1‖L∞(S)

inf |(κ1κ2)/ζ − µ|
, ‖f01 ‖L1(S)

)
,

then
%βn(t) ≥ 0 and %κn(t) = 0, ∀t > T`,

for any value of n.

In order to illustrate analytical results, we numerically solve the Cauchy
Problem (3.1) with

f01 (s) := C0
1e
−(s−0.5)2

0.01 , n02 := C0
2 , (3.10)

where C0
1 and C0

2 are positive real constants such that∫
S

f01 (s) ds+ n02 = 1.
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We set ε = 0.001 (i.e. ε→ 0),

µ(s, s∗) = µ1(s)µ2(s∗), µ1(s) := µC ∈ R+, µ2(s) := 1, (3.11)

κ2(s) := CM e−
[(s−0.5)2]

0.3 , (3.12)

β1(s) := CM e−
[(s−0.15)2+(s−0.85)2]

0.03 , κ1(s) := CM e−
[(s−0.35)2+(s−0.65)2]

0.03 , (3.13)

with CM ∈ R+. Numerical computations are performed in Matlab by means
of a collocation method with 200 points on [0, 1]. Interval [0, T ] is selected as
time domain, where T = 200 is an integer multiple of the unit time dt = 0.005.

Figure 3.1: Top panel. Trends of f1(t, s) in the limit ε→ 0 under assumptions
(3.13), with ζ ≥ β2 +C3CM , for t ∈ [0, 200] (left) and t = 200 (right). Bottom
panel. Trends of f1(t, s) in the limit ε → 0 under assumptions (3.13), with
ζ < β2, for t ∈ [0, 200] (left) and t = 200 (right).
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Chapter 4

Evolutionary branching
patterns in predator-prey
structured populations
[A10]

4.1 Motivations and model

Selective pressures exerted by the surrounding environment can make a popu-
lation initially composed of individuals expressing the same phenotype (i.e. a
phenotypically monomorphic population) to split into two or more distinct pop-
ulations, or phenotypic clusters. Such a dynamical process may occur several
times along the history of a living specie leading to the formation of evolutionary
branching patterns.

Predator-prey ecosystems represent, among others, a natural context where
evolutionary branching processes may arise. In fact, preys are parts of the
predators’ environment and, in turn, predators shape the environment around
the preys, so that a change in the relative distribution over the phenotypic traits
of the preys can induce a change in the predominant traits within the predators’
population. For instance, one can dynamically observe the selection for those
preys that are able to escape predation and those predators whose phenotypic
traits allow them to catch a large number of preys.

Moving from such observation, this paper deals with a class of integro-
differential equations modeling the dynamics of species related by predation.
The effects of mutations, proliferation through asexual reproduction and com-
petition for resources are included in the model here considered, which can
mimic the formation of evolutionary branching patterns.

The reference system is defined by two structured subpopulations labelled
by indexes i = 1, 2, which collect, respectively, predators and preys. The two
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subpopulations are structured by a continuous variable s ∈ S := [0, 1]. In
subpopulation i = 1, variable s stands for a certain phenotypic trait expressed
by the preys, while in subpopulation i = 2 the same variable refers to the trait of
the preys that predators are mainly able to catch. Since mutations are assumed
to be small and to occur on a longer time scale than proliferation, a parameter ε
is introduced to model the ratio between these time scales as well as the average
size of mutations.

The states of the two subpopulations are characterized by functions

f1 = f1(t, s) : R+ × S → R+, f2 = f2(t, s) : R+ × S → R+,

and the dynamics of the whole system is described through the following Cauchy
Problem 

∂tf(t, s) = F [f](t, s), (t, s) ∈ (0, T ]× S

f(0, s) = f0(s),
(4.1)

where
f(t, s) = (f1(t, s), f2(t, s)),

f0(s) = (f01 (s), f02 (s)), f01 (s), f02 (s) ∈ L1(S), f01 (s), f02 (s) > 0 a.e. on S

and F [f] is componentwise defined by the integro-differential equations given
hereafter:

∂tf1(t, s) =

∫
M(s− s∗; ε)f1(t, s∗)du∗ − f1(t, s)︸ ︷︷ ︸

mutations and renewal

+ f1(t, s)

(
κ1 − µ1

∫
f1(t, s∗)du∗

)
︸ ︷︷ ︸

proliferation and competition

− f1(t, s)

∫
η(s∗ − s)f2(t, s∗)ds∗︸ ︷︷ ︸

death through predation

(4.2)

∂tf2(t, s) =

∫
S

M(s− s∗; ε)f2(t, s∗)ds∗ − f2(t, s)︸ ︷︷ ︸
mutations and renewal

+ f2(t, s)

(
κ2 − µ2

∫
f2(t, s∗)du∗

)
︸ ︷︷ ︸

proliferation and competition

+ f2(t, s)

∫
η(s∗ − s)f1(t, s∗)ds∗︸ ︷︷ ︸

proliferation through predation

.

With reference to Eqs. (4.2):

M(s− s∗; ε) :=

 αδ(s− (s∗ ± ε)) + (1− 2α)δ(s− s∗), if ε < s < 1− ε
αδ(s− (s∗ − ε)) + (1− α)δ(s− s∗), if 0 ≤ s ≤ ε
αδ(s− (s∗ + ε)) + (1− α)δ(s− s∗), if 1− ε ≤ s ≤ 1,

where δ is the Dirac’s delta distribution, α ∈ R+,

κ1, κ2 ∈ R+, κ2 < κ1, (4.3)
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µ1, µ2 ∈ R+, µ1 ≥ 1, µ2 ≥ 1, (4.4)

η : S × S → R+, η ∈W 2,∞(S × S),
d

dw
η(w) ≤ 0. (4.5)

The above definition for M(s − s∗; ε) translates into mathematical terms the
idea that mutations are small, i.e. only small variations in the phenotypic trait
can occur from parent to offspring. Furthermore, assumption (4.3) mimics a
biological scenario where the predators’ proliferation mainly occurs through the
predation of preys rather than through the intake of other resources, while
assumption (4.4) embodies the fact that competition for resources among indi-
viduals of the same subpopulation is quite intense.

4.2 Main results

Following the strategy of the proof proposed in [8] for a different class of integro-
differential equations, we prove that the Cauchy Problem (4.1) is well-posed, in
the sense of Hadamard, and admits a unique global in time solution.

Then, in order to capture the slow evolutionary process leading to substantial
changes in the predominant traits, we use the following time rescaling

fε(t, s) = f

(
t

ε
, s

)
,

and rewrite Eqs. (4.1) as follows
ε
∂

∂t
fε(t, s) = F [fε](t, s), (t, s) ∈ (0, T ]× S

f(0, s) = f0(s),

(4.6)

with the aim of studying the asymptotic behavior, in the limit ε→ 0 (i.e. large
times and small mutations), of the solution to the Cauchy Problem (4.1). In
particular, after introducing the notations below

R1ε(t, s) = κ1t− µ1

∫ t

0

∫
S

f1ε(z, s
∗)ds∗ − (η ∗ f2ε)(z, s)dz

R2ε(t, s) = κ2t− µ2

∫ t

0

∫
S

f2ε(z, s
∗)ds∗ + (η ∗ f1ε)(z, s)dz,

we show how an approach similar to the one proposed in [25] can be used to
study the asymptotic behavior of the solution to the initial value problem (4.6):

Theorem 4.2.1 Let supp(f01 ) = supp(f02 ) and assume

‖f01 ‖L1(S) <
κ1
µ1
, ‖f02 ‖L1(S) <

κ2 + ‖η‖L∞(S×S) ‖f01 ‖L1(S)

µ2
. (4.7)

Then, there exist a subsequence of fiε, denoted again as fiε, and a subsequence
of Riε, denoted again as Riε, such that:
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i) Establishing convergence.

fiε ⇀ f̂i on w∗ − L∞((0, T ),M1(S)), as ε→ 0,

Riε → Ri uniformly in [0, T ]× S, as ε→ 0,

where f̂i ∈ L∞((0, T ),M1(S)),

R1(t, s) = κ1t− µ1

∫ t

0

∫
S

f̂1(z, s∗)ds∗ − (η ∗ f̂2)(z, s)dz,

(4.8)

R2(t, s) = κ2t− µ2

∫ t

0

∫
S

f̂2(z, s∗)ds∗ + (η ∗ f̂1)(z, s)dz

and
max
s∈S

Ri(t, s) = 0, ∀ t ∈ [0, T ],

for i = 1, 2.

ii) Characterizing the support of the limits f̂1 and f̂2.

Let us define Ωi(t) := Ri(t, ·)−1(0). Then, the following conditions hold true
for a.e. t ∈ [0, T ]

supp(f̂i(t, ·)) 6= ∅, supp(f̂i(t, ·)) ⊆ Ωi(t), i = 1, 2,

where:

Ω1(t) =
{
ω ∈ S | min

s
I1(t, s) = I1(ω, t)

}
,

Ω2(t) =
{
ω ∈ S | max

s
I2(t, s) = I2(ω, t)

}
and

I1(t, s) :=

∫ t

0

(η ∗ f̂2)(z, s)dz, I2(t, s) :=

∫ t

0

(η ∗ f̂1)(z, s)dz. (4.9)

In order to illustrate analytical results, we numerically solve, under different
parameter settings, the Cauchy Problem (4.1) with

f01 (s) = f02 (s) = C0e
−(s−0.5)2

ε , (4.10)

where C0 is a positive real constant such that∫
S

f01 (s) + f02 (s) ds = 1.
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We set ε = 0.001 (i.e. ε→ 0),

α = 0.5, κ1 = 0.8, κ2 = 0.4, µ1 = µ2 = 1, (4.11)

and define function η as

η(s, s∗) := e−
(s−s∗)2

ε . (4.12)

Numerical computations are performed in Matlab by means of a collocation
method with 200 points on [0, 1]. Interval [0, T ] is selected as time domain,
where T = 700 is an integer multiple of the unit time dt = 0.005.

Figure 4.1: Left panel. Dynamics of f1(t, s) (top) and f2(t, s) (bottom) for
t ∈ [0, 700], in the limit ε → 0, with initial data (4.10) and parameter setting
(4.11). Right panel. Trend of I1(t, s) (top) and I2(t, s) (bottom) at t=700, in
the limit ε→ 0, under the same parameter setting.
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Chapter 5

Asymptotic dynamics in
populations structured by
sensitivity to global
warming and habitat
shrinking [A11]

5.1 Motivations and model

The rise of average temperatures and the spread of human urbanization are
endangering the survival of habitat-specialist species [32]. In fact, in contrast
to habitat-generalists, which are more adapted to reduced biodiversity and new
environmental conditions, habitat-specialists are characterized by a stronger
sensitivity to nutrition variation. Therefore, they are often forced to move
poleward by global warming, in order to follow specific subsistence resources.
Moreover, generalist species may take advantage of man’s proximity and they
are able to live both in interiors and edges of habitat-patches. On the other
hand, specialist species used to live in the interior areas of patches and avoid
edges, since they are disturbed by those external factors that usually come along
with civilization.

This paper presents a possible modeling strategy to translate into mathe-
matical terms the idea that habitat shrinking affects the growth of individuals
by altering bio-diversity and space availability, while global warming diminishes
available resources, thus intensifying the competition among individuals.

The reference system is structured by two continuous variables

u ∈ U := [aU , bU ]k ⊂ Rk and w ∈W := [aw, bw]l ⊂ Rl,
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with

−∞ < aU , bU , aW , bW <∞, Z 3 k, l ≥ 1, s := (u,w) ∈ S, S := U ×W,

which represent the sensitivity to, respectively, habitat shrinking and global
warming. Habitat-generalists are assumed to be characterized by u and w close,
respectively, to aU and aW , whereas habitat-specialists are identified by u and
w close, respectively, to bU and bW . The effects of mutations, proliferation
through asexual reproduction and competition for resources are included in the
model. Since mutations are assumed to be small and to occur on a longer time
scale than proliferation, a small parameter ε is introduced to model the ratio
between these time scales as well as the average size of mutations.

The density of individuals with a sensitivity level s at time t is modeled by
the real function f(t, s) ≥ 0 that satisfies the Cauchy Problem given hereafter{

∂tf(t, s) = F [f ](t, s), (t, s) ∈ R+ × S
f(0, s) = f0(s) ∈ L1(S), f0(·) > 0 a.e. on S.

(5.1)

Functional F is defined as follows:

F [f ](t, s) := α

∫
U

MU (u− u∗; ε)f(t,u∗,w)du∗ − αf(t,u,w)︸ ︷︷ ︸
mutations and renewal related to habitat shrinking sensitivity

+ β

∫
W

MW (w −w∗; ε)f(t,u,w∗)dw∗ − βf(t,u,w)︸ ︷︷ ︸
mutations and renewal related to global warming sensitivity

+ κ(t,u)− µ(t,w)

∫
S

f(t, s)ds︸ ︷︷ ︸
proliferation and competition

, (5.2)

where:

MU (u− u∗; ε) :=
k∏
i=1

MU (ui − u∗i; ε), (5.3)

with

MU (ui−u∗i; ε) :=

 δ(ui − (u∗i ± ε))− δ(ui − u∗i), if aU + ε < ui < bU − ε
δ(ui − (u∗i − ε)), if aU ≤ ui ≤ aU + ε
δ(ui − (u∗i + ε)), if bU − ε ≤ ui ≤ bU

for i = 1, ..., k, where δ is the Dirac’s delta distribution, and analogous defini-
tions apply to MW (w −w∗; ε),

κ(t, u) := κ3 + κ1(t)κ2(u) > 0, µ(t, w) := µ3 + µ1(t)µ2(w) > 0, (5.4)

with
κ3, µ3 ≥ 0, κ1, µ1 : [0, T ]→ R, κ1, µ1 ∈W 1,∞([0, T ]), (5.5)
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κ2 : U → R+, κ2 ∈W 2,∞(U), µ2 : W → R+, µ2 ∈W 2,∞(W ). (5.6)

Eq. (5.2) relies on the assumption that mutations in the u and w traits are in-
dependent from one another, while the definitions of MU and MW translate into
mathematical terms the idea that mutations cause small changes in the sensitiv-
ity to habitat shrinking and global warming. Definitions (5.4) are based on the
idea that habitat shrinking can be considered as an external pressure affecting
the growth of individuals by altering bio-diversity and space availability, while
global warming can be seen as acting over the competition among individuals
by modifying the quantity of available resources [31, 32, 57]. In fact, functions
κ(t,u) and µ(t,w) model, respectively, the proliferation rate and death rate due
to competition for resources of individuals with phenotypic expression (u,w) at
time t. Furthermore, the selective forces exerted by habitat shrinking and global
warming can evolve over time due, for instance, to human migratory fluxes or
to oscillations in average temperatures. For this reasons, κ and µ are defined as
functions of time.

5.2 Main results

Standard fixed point arguments can be used to show that Problem (5.1) is well-
posed, in the sense of Hadamard, and admits a unique global in time solution.

In order to capture the slow evolutionary process leading to substantial
changes in the predominant traits, we use the following time rescaling

fε(t, s) = f

(
t

ε
, s

)
,

and rewrite Problem (5.1) as follows ε∂tfε(t, s) = F [fε](t, s), (t, s) ∈ (0, T ]× S

f(0, s) = f0(s),
(5.7)

with the aim of studying the asymptotic behavior of the solution in the limit
ε→ 0 (i.e. large times and small mutations). Introducing the below notation

R(t, s) :=

∫ t

0

κ(z,u)− µ(z,w)

∫
S

f(z, s)ds dz,

an approach similar to the one proposed in [25] can be used to demonstrate that
f concentrates as a sum of Dirac masses in the maximum points of function
R(t, ·). A characterization of the concentration points can be developed, under
some additional technical assumptions, as established by the following

Proposition 5.2.1 If

κ3 = µ3 = 0, κ1(t) > 0, ∀ t ∈ [0, T ], µ1(t) > 0, ∀ t ∈ [0, T ] (5.8)
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and

max
(u,w)∈U

(
κ2(u)µ−12 (w)

)
= κ2(un)µ−12 (wn), {(un,wn)}Nn=1 ∈ U, (5.9)

then the measure f̂ results as follows:

f̂(t,u,w) =

N∑
n=1

%n(t)δ(u− ūn)δ(w −wn), %n(t) ≥ 0. (5.10)

Proposition 5.2.2 If
µ1(t) > 0, ∀ t ∈ [0, T ], (5.11)∫ t

0

κ1(z − τ)dz ≥ 0, ∀ t ∈ [0, τ ],

∫ t

0

κ1(z − τ)dz < 0, ∀ t ∈ (τ, T ] (5.12)

and there exist {un}Nn=1, {un}Nn=1 ∈ U , {wn}Nn=1 ∈W such that

min
u∈U

κ2(u) = κ2(un), max
u∈U

κ2(u) = κ2(un), min
w∈W

µ2(w) = µ2(wn), (5.13)

then the measure f̂ can be written as follows:

f̂(t,u,w) =

N∑
n=1

%n(t)δ(u−un)δ(w−wn), %n(t) ≥ 0, for 0 < t ≤ τ, (5.14)

f̂(t,u,w) =

N∑
n=1

%n(t)δ(u−un)δ(w−wn), %n(t) ≥ 0, for τ < t ≤ T. (5.15)

Analytical results are illustrated by means of numerical computations per-
formed in Matlab making use of an implicit-explicit finite difference scheme
with 200 points on the square [−0.5, 1.5]× [−0.5, 1.5]. Interval [0, T ] is selected
as time domain, where T is an integer multiple of the unit time dt = 0.005.
Simulations are developed assuming, alternatively,

f0(u,w) = 1, (5.16)

and

κ1(t) = µ1(t) = 1, ∀ t ∈ [0, T ], κ2(u) =
1

1 + u2
,

(5.17)

µ2(w) = 1 + w2, κ3 = µ3 = 0,

or

f0(u,w) = e−
(u−0.5)2

0.1 − (w−0.5)2

0.1 , (5.18)

and

µ1(t) = 0.005, ∀t ∈ [0, T ], µ2(w) = 1 + (w − 0.5)2, µ3 = 0, κ3 = 4, (5.19)

κ1(t− τ) = 10(τ − t), τ = 1 (5.20)

κ2(u) :=

{
1− u2(1− u)2, if 0 ≤ u ≤ 1,
1−min(0.06, u2(1− u)2), otherwise.
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Figure 5.1: Top panel. Dynamics of f(t, u, w), in the limit ε → 0, under the
assumptions of Proposition 5.2.1 with (5.17) and initial conditions (5.16). Plot of
f(t, u, w) for t = 0 is on the left and for t = T = 4 on the right. Bottom panel.
Dynamics of f(t, u, w), in the limit ε→ 0, under the assumptions of Proposition
5.2.2 with (5.19)-(5.21) and initial conditions (5.18). Plot of f(t, u, w) for t = 0
is on the left, for t = 0.99 < τ in the centre and for t = T = 1.4 on the right.
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Part IV

Models for Multicellular
Systems
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Introduction

The principles for successful cancer therapy
might lie not in the magic bullets of microbiology

but in the evolutionary dynamics of applied ecology
R. Gateny, A Change of Strategy in the War on Cancer

This part presents some models for the dynamics of multicellular systems. Apart
from the ones introduced in Chapter 6 and Chapter 12, all these models rely
on a hybrid structured-unstructured population formalism. The focus is on
tumor cell dynamics, cancer-therapies and cancer-immune competition as well
as immune system diseases. In more detail:

- Chapter 6 deals with an unstructured population model for the cell dynam-
ics inside colorectal crypts, which describes cancer progression as well as
the generation, through successive mutations, of multiple sub-populations
of cells at different progression stages.

- Chapter 7 introduces a mathematical model for the dynamics of malignant
hepatocytes under the effects of cytotoxic and targeted therapeutic agents.
This model is aimed at enlightening the causes for emerging phenomena
commonly observed in cancer progression, in general, and hepatocellular
carcinoma, in particular.

- Chapter 8 presents a model for the dynamics of cancer hepatocytes ex-
pressing epithelial and mesenchymal phenotypes, which move via chemo-
taxis, proliferate and interact among themselves. The model is aimed at
mimicking, at least qualitatively, some collective behaviors experimentally
observed in cancer hepatocyte monolayers.

- Chapter 9 deals with the derivation, by formal asymptotic methods, of
macroscopic equations for a space-velocity-structured equations describing
the dynamics of epithelial and mesenchymal cells. The resulting macro-
scopic equations are able to reproduce biologically consistent scenarios.

- Chapter 10 presents a model for immune response against cancer, which
reproduces evolutionary scenarios related to the iterative selection exerted
by the immune system over cancer cells, including recognition, learning
and memory aspects of the immune response.
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- Chapter 11 describes a model that mimics the action of the immune system
against self and non-self antigens as well as the initiation of auto-reactivity,
with particular reference to the roles played by T-cells.

- Chapter 12 introduces a phenotype-structured model motivated by the
theory of mutation-selection in adaptive evolution, which describes the
dynamics of healthy and tumor cells under the effects of cytotoxic and
cytostatic drugs.
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Chapter 6

A mathematical model for
progression and
heterogeneity in colorectal
cancer dynamics [A7,A9]

6.1 Motivations and model

A great deal of experimental evidence supports the idea that colorectal cancer
is initiated by genetics mutations involving the epithelial cells that line colonic
crypts (i.e. the millions of invaginations that are observed in the lining of the
colon). Effective malignant mutations lead the affected cells to gain a selec-
tive advantage. Genetic alterations that do not confer a selective advantage
(i.e. neutral mutations) or even alterations that confer a selective disadvantage
can also take place and they may play an active part in cancer evolution [56].
However, at this stage, we do not take into account these phenomena and we
analyze only the role played by successive mutations that confer increasingly
selective advantages to the mutated cells. Therefore, in the following, we refer
to mutated cells both as malignant cells and cancer cells.

Cells inside a crypt can be considered to be divided into three compartments
[40]: stem cells, Transit-Amplifying Cells or TACs (i.e. those cells that descend
from stem cells through cellular differentiation and that can be considered as
semi-differentiated cells) and highly differentiated cells (i.e. those cells that
result from the further differentiation of TACs and that are only able to migrate
out from the crypt and to die at the end of their life-cycle). Events taking place
in highly differentiated cells have a weak impact on crypt dynamics [52, 72]
and these cells do not contribute to the effective population size of the crypt.
Cells within each compartment are assumed to be homogeneously distributed in
space. Therefore, no explicit space structures are taken into account. According
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to the model that has been used by Nowak and his co-workers [52], we assume
that the alteration of three genes must occur to justify the onset of colorectal
cancer: the deactivation of two tumor suppressor genes (APC and p-53 ), which
requires the neutralization of both alleles of each gene, and the alteration of one
proto-oncogene (K-ras), which requires the alteration of only one allele of the
gene (see Figure 6.1).

Focusing on the dynamics of one single crypt, we assume cells to be divided
into several unstructured subpopulations. Each subpopulation is identified by
and index j, which identifies the cell compartment (i.e. stem cells with j = 1,
transit-amplifying cells with j = 2 and highly differentiated cells with j = 3)
and an index r = (1, ..., 6), which stands for the progression stage, as highlighted
by Figure 6.1.

Figure 6.1: Schematic representation of colorectal cancer progression.

The state of subpopulation (j, r) is characterized by function

nrj = nrj(t) : [0, T ]→ R+,

where the time variable t is normalized with respect to the life-cycle duration
of the cells in subpopulation (1, 1) (i.e. the life-cycle duration of normal stem
cells).

The evolution of the system is ruled by the initial value problem defined by
linking the following non-linear ODEs to suitable initial conditions:

dtn
1
1(t) = (γ1 − βS2 − βS3 )n11(t)− µn11(t)n21(t)

dtn
q
1(t) = (γq − βS2 − βS3 )nq1(t) + βS3 n

q−1
1 (t) +

− nq1(t)(µnq+1
1 (t) + µ∗nq1(t))

dtn
R
1 (t) = (γR − βS2 )nR1 (t) + βS3 n

R−1
1 (t)− µ∗nR1 (t)nR1 (t)

(6.1)
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dtn
1
2(t) = βS2 n

1
1(t)− (βT2 + βT3 )n12(t)− µn12(t)n22(t)

dtn
q
2(t) = (γq − βT2 − βT3 )nq2(t) + βS2 n

q
1(t) + βT3 n

q−1
2 (t) +

− nq2(t)(µnq+1
2 (t) + µ∗nq2(t))

dtn
R
2 (t) = (γR − βT2 )nR2 (t) + βS2 n

R
1 (t) + βT3 n

R−1
2 (t)− µ∗nR2 (t)nR2 (t)

(6.2)
dtn

1
3(t) = βT2 n

1
2(t)− ζn13(t)

dtn
q
3(t) = βT2 n

q
2(t)− ζnq3(t)

dtn
R
3 (t) = βT2 n

R
2 (t)− ζnR3 (t).

(6.3)

In the above equations 1 < q < R, whereR ∈ [2; 6] stands for the last progression
stage that can be reached by the cells during the considered time interval. For
instance, the dynamics of cells, when different numbers of the mutations under
consideration occur, can be described by varying the value of R (e.g. if R = 6,
all the mutations are assumed to occur). All the parameters of the model are
non-negative real numbers.

These equations should be linked to the following initial conditions in order
to define a biologically consistent initial value problem:

nrj(0) = n01 if r = 1 and j = 1
nrj(0) = n02 if r = 1 and j = 2
nrj(0) = n03 if r = 1 and j = 3
nrj(0) = 0 otherwise,

(6.4)

where n01, n02 and n03 are positive constant values. Initial conditions (6.4) mean
that the system is assumed to be in healthy equilibrium at t = 0 (i.e. only
normal cells are found inside the system) and carcinogenesis occurs at t > 0.

6.2 Main results

Well-posedness of the mathematical problem that is defined by linking Eqs.
(6.1)-(6.3) to initial conditions in the form of (6.4) can be proved by usual
Cauchy-Lipschitz theory. On the other hand, qualitative analysis and simu-
lations can be developed with the exploratory aim of stressing the emergent
phenomena that can appear within the complex system under consideration.
In particular, we aimed at studying how proliferaton and mutations, that oc-
cur among cells at different differentiation levels, can affect carcinogenesis, with
particular reference to progression and heterogeneity aspects.

Some mathematical models are defined, with the objectives above listed,
through Eqs. (6.1)-(6.3), for low values of R. These models, which ensure both
biological consistency along with analytical tractability, are linked to suitable
initial conditions and the asymptotic behavior of the solutions is analyzed by
means of standard methods of the dynamical systems theory.
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Proposition 6.2.1 Consider the mathematical problem that is defined by link-
ing Eqs. (6.1), with R = 3 and γ1 < βS2 + βS3 , to some initial conditions in
the form of (6.4). If γ2 ≤ βS2 and γ3 ≤ βS2 , n̂nul = (0, 0, 0) is the only stable
non-negative equilibrium point, while if γ2 > βS2 and γ3 > βS2 , the equilibrium
point n̂nul becomes unstable and two additional non-negative equilibrium points
occur, which are componentwise defined as:

n̂hom = (n̂1hom1 , n̂2hom1 , n̂3hom1 ) = (0, 0,
γ3 − βS2
µ∗

), (6.5)

n̂het = (n̂1het1 , n̂2het1 , n̂3het1 ) = (0,
γ2 − βS2 − βS3

µ∗
− µ

µ∗
n̂3het1 , n̄3het1 ), (6.6)

where

n̂3het1 =
(γ3 − βS2 −

µ
µ∗ β

S
3 ) +

√
(γ3 − βS2 −

µ
µ∗ β

S
3 )2 + 4βS3 (γ2 − βS2 − βS3 )

2µ∗
.

Let us define M =
γ2 − βS2 − βS3
γ3 − βS2

. If γ2 > βS2 , γ3 > βS2 and βS3 ≥ γ2 −

βS2 , equilibrium point n̂hom is stable for every value of 0 < µ, µ∗ < 1, while
equilibrium point n̂het is unstable. On the other hand, if γ3 > βS2 and βS3 <
γ2− βS2 , equilibrium configuration n̂hom is stable if µ ≥Mµ∗, while equilibrium
configuration n̂het is stable if µ < Mµ∗.

Superscripts hom and het stand for homogeneous and heterogeneous, respec-
tively. In fact, n̂hom identifies an homogeneous equilibrium configuration (i.e.
only one component of n̂hom is different from zero), while n̂het defines an het-
erogeneous configuration (i.e. more than one component of n̂het is greater than
zero).

Remark 6.3 For every value of βS3 , if γ2 ≤ βS2 and γ3 ≤ βS2 then n̂nul is
the only non-negative stable equilibrium point. On the other hand, if γ2 > βS2 ,
γ3 > βS2 and βS3 ≥ γ2 − βS2 , n̂hom is the only stable configuration.

Analytical results are extended by means of numerical simulations performed
in Matlab making use of a standard finite difference scheme. Interval [0, T ]
is selected as time domain, where T = 10000 is an integer multiple of the unit
time dt = 0.01.
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Figure 6.2: Dynamics of nr2(t) for r = (2, 3, 4, 6), i.e. time dynamics of the
densities of TACs that are found inside a crypt at progression stage r. The
simulations are developed allowing mutations to involve both the stem cells and
the TACs. The dashed lines are referred to the y-axis on the right and they
are related to numerical results that are obtained with the proliferation rate
γr < βS2 . The solid lines are referred to the y-axis on the left and they are
related to the simulations that are developed with γr > βS2 . If γr < βS2 , the
number of cancer cells at each progression stage r ≥ 2 tends to zero in time,
for every value of βS3 . On the other hand, if γr > βS2 the number of cancer
cells can reach a finite value in time. Therefore cancer development seems to
require an increase in the proliferation rate rather than in the mutation rate of
the malignant cells.
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Figure 6.3: Percentage distribution of TACs over progression stages r = (2, ..., 6)
for two different values of the mutation rate, at time t = 5000. The simulations
are developed allowing the mutations to involve both the stem cells and the
TACs. The grayscale refers to progression stage r and ranges from white (r = 6)
to black (r = 2). The two diagrams refer to the same value of γr, which is
chosen so that cancer growth can occur. DIAGRAM A is obtained by setting
the mutation rate equal to a lower value with respect to the one considered in
the case of DIAGRAM B. A higher mutation rate causes the tumor to progress
quickly; as a result, most of the cells are found at the same progression stage
at the end of the selected time interval. On the other hand, a lower mutation
rate leads to a slow tumor progression; therefore, cells are spread over different
progression stages at the end of the same time interval. Hence, a low mutation
rate provides the basis for intra-tumor heterogeneity.
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Chapter 7

A mathematical model for
the dynamics of cancer
hepatocytes under
therapeutic actions [A6,A8]

7.1 Motivations and model

Among tumor pathologies, HepatoCellular Carcinoma (HCC) has a poor prog-
nosis and represents the third most cause of death from cancer worldwide, due
to diagnosis at advanced stages and lack of effective therapy options [30]. The
evolution of epithelial cells into mesenchymal cells, the so-called Epithelial to
Mesenchymal Transition (EMT) [66, 67], has been postulated to be a crucial
event in HCC progression and recurrence [69]. A human model for the progres-
sion of hepatocellular carcinoma through EMT has been proposed in [69] and it
has been used to test the efficacy against cancer cells of two classes of therapeu-
tic agents: Targeted Therapeutic Agents (TTAs), which can be addressed to act
over cells that express some given genetic and epigenetic alterations, and Cy-
totoxic Agents (CAs), which work by leading cells to die almost independently
from their genotype or phenotype.

Taking advantage of such human model, in this paper we present a math-
ematical model for the in vitro dynamics of malignant hepatocytes under the
effects of anti-cancer therapies, which is aimed at enlightening the causes for
emerging phenomena that can be observed in cancer progression, in general,
and hepatocellular carcinoma, in particular. The model consists of a set of inte-
grodifferential equations describing the dynamics of tumor cells under the effects
of mutation, competition for space and resources, interactions with cytokines
regulating cell proliferation as well as the action of cytotoxic drugs and targeted
therapeutic agents.
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The reference system is defined by a well-mixed sample of epithelial and
mesenchymal cancer cells of the liver, which are considered as divided into two
structured subpopulations labeled, respectively, by indexes i = 1 and i = 2.
On the other hand, cytokines responsible for cell proliferation and produced by
cancer cells are supposed to be grouped into an additional unstructured sub-
population, identified by index i = 3. Subpopulation i = 1 and subpopulation
i = 2 are structured by a continuous variable s ∈ S := [0, 1] that represents
the genotypic-phenotypic profile of the cells. Since mutations are assumed to
be small and to occur on a longer time scale than proliferation, a parameter ε is
introduced to model the ratio between these time scales as well as the average
size of mutations.

The states of the subpopulations are characterized by functions

f1 = f1(t, s) : R+ × S → R+, f2 = f2(t, s) : R+ × S → R+,

and
n3 = n3(t) : R+ → R+,

where the time variable t is normalized with respect to the duration of the
average life-cycle of cancer cells. At any fixed time t, the quantity fi(t, s) ds
stands for the number of cells in subpopulation i = 1, 2 whose microscopic state
belongs to the volume element ds centered at s, normalized with respect to the
total number of particles (i.e. cells and cytokines) inside the system at time
t = 0. Thus, cell densities at time t can be computed as:

%i(t) =

∫
S

fi(t, s)ds, i = 1, 2. (7.1)

Cytotoxic drugs and targeted therapeutic agents are seen as particles be-
longing to two additional subpopulations labeled, respectively, by indexes j = 1
and j = 2. Subpopulation j = 1 is assumed to be unstructured, while subpop-
ulation j = 2 is structured by the continuous variable s, in this case related to
the genotypic-phenotypic profile of the cells that can be mainly recognized and
attacked by the curing agents. The states of these additional subpopulations
are described by functions:

g1 : R+ → R+, g1 ∈ L1([0,∞)) ∩ L∞([0,∞)), ‖g1(·)‖L∞([0,∞)) ≤ 1,

g2(t, s) = c2(t)b2(s), b2 : S → R+, b2 ∈ L1(S), ‖b2(·)‖L1(S) = 1,

c2 : R+ → R+, c2 ∈ L1([0,∞)) ∩ L∞([0,∞)), ‖c2(·)‖L∞([0,∞)) ≤ 1.(7.2)

We describe the dynamics of the system through the following Cauchy Prob-
lem 

∂th(t, s) = H[h](t, s), (t, s) ∈ (0, T ]× S

h(0, s) = h0(s),
(7.3)
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where

h(t, s) = (f1(t, s), f2(t, s), n3(t)), h0(s) = (f01 (s), f02 (s), n03),

with

f01 (s), f02 (s) ∈ L1(S), f01 (s), f02 (s) > 0 a.e. on S, n03 ∈ R+,

while H is componentwise defined by the set of integro-differential equations
given hereafter:

∂tfi(t, s) =

2∑
k=1

∫
S

Aik(s∗, s; ε)fk(t, s∗)du∗ − fi(t, s)︸ ︷︷ ︸
EMT, mutations and renewal

+ κ(s)n3(t)fi(t, s)︸ ︷︷ ︸
cell proliferation

− µ(s)fi(t, s)(%1(t) + %2(t))︸ ︷︷ ︸
cell-cell competition

− µT g1(t)fi(t, s)︸ ︷︷ ︸
destruction due to CAs

− µT fi(t, s)

∫
S

e−θ
T (s∗−s)2g2(t, s∗)ds∗︸ ︷︷ ︸

destruction due to TTAs

(7.4)

dtn3(t) = µK(%1(t) + %2(t))︸ ︷︷ ︸
secretion of cytokines

−n3(t)

2∑
k=1

∫
S

κ(s∗)fk(t, s∗)ds∗︸ ︷︷ ︸
consumption of cytokines

,

where:

Aik(s∗, s; ε) =


(1− γ1)Mk(s− s∗; ε), if i = k = 1

γ1Mk(s− s∗; ε), if i = 2 and k = 1

(1− γ2)Mk(s− s∗; ε), if i = k = 2

γ2Mk(s− s∗; ε), if i = 1 and k = 2,

(7.5)

Mk(s− s∗; ε) :=

 αkδ(s− (s∗ ± ε)) + (1− 2αk)δ(s− s∗), if ε < s < 1− ε
αkδ(s− (s∗ − ε)) + (1− αk)δ(s− s∗), if 0 ≤ s ≤ ε
αkδ(s− (s∗ + ε)) + (1− αk)δ(s− s∗), if 1− ε ≤ s ≤ 1,

where δ is the Dirac’s delta distribution,

κ : S → R+, κ ∈W 2,∞(S), inf
s
κ(s) > 0. (7.6)

and
µ : S → R+, µ ∈W 2,∞(S), inf

s
µ(s) > 0. (7.7)

The above definition for Mk(s − s∗; ε) translates into mathematical terms the
idea that mutations are small, i.e. only small variations in the phenotypic trait
can occur from parent to offspring.
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7.2 Main results

Standard fixed point arguments can be used to show that Cauchy Problem
(7.3) is well-posed, in the sense of Hadamard, and admits a unique global in
time solution.

Then, we turn to the study of the asymptotic behavior, in the limit ε → 0,
of the solution to the Cauchy Problem (7.3). In particular, after introducing
the below notations

fε(t, s) = f

(
t

ε
, s

)
,

f0(s) = f01 (s) + f02 (s), fε(t, s) = f1ε(t, s) + f2ε(t, s),

Rε(t, s) =

∫ t

0

κ(s)n3ε(z)− µ(s)

∫
S

fε(z, s
∗)ds∗ − µT g1(z)dz

−
∫ t

0

µT
∫
S

e−θ
T (s∗−s)2g2(z, s∗)ds∗dz,

with i = 1, 2, we show how, under some additional assumptions, an approach
similar to the one proposed in [25] can be used to study the asymptotic be-
havior of the solution of Eqs. (7.3), which include the model studied in [25]
as a particular case. In fact, Eqs. (7.3) include, as additional elements, mu-
tation phenomena and interactions involving both structured and unstructured
populations. Such a result is established by the following:

Theorem 7.2.1 There exist a subsequence of fε, denoted again as fε, and a
subsequence of Rε, denoted again as Rε, such that:

i) Establishing convergence.

fε ⇀ f̂ on w∗ − L∞((0, T ),M1(S)), as ε→ 0,

Rε → R uniformly in [0, T ]× S, as ε→ 0,

where f̂ ∈ L∞((0, T ),M1(S)),

R(t, s) =

∫ t

0

P (z, s)dz ∈W 2,∞((0, T )× S) (7.8)

and
max
s∈S

R(t, s) = 0, ∀ t ∈ [0, T ].

ii) Characterizing the support of the limit f̂ .
Assume

µT < n03 <
µK‖f0(·)‖L1(S)∫
S
κ(s∗)f0(s∗)ds∗

, inf
s
κ(s) > 2ε ‖κ(·)‖L∞(S) = κC < 1, (7.9)
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then

supp(f̂(t, ·)) 6= ∅, supp(f̂(t, ·)) ⊂ R(t, ·)−1(0), for a.e. t ∈ [0, T ].

iii) Identifying the limit f̂ .
If the function κ(s) has a positive maximum κC attained at some points {ŝn}Nn=1,
with N ∈ N, then the measure f results as follows:

f̂(t, s) =
∑
n

%n(s)δ(s− ŝn), %n(t) ≥ 0.

In order to illustrate and extend analytical results, we numerically solve,
under different parameter settings, the Cauchy Problem (7.3). Numerical sim-
ulations are performed in Matlab by means of a collocation method with 200
points on [0, 1]. Interval [0, T ] is selected as time domain, where T = 100 is an
integer multiple of the unit time dt = 0.005. In particular, we set ε = 0.001 (i.e.
ε→ 0),

κ(s) := κC e−[(s−0.25)
2+(s−0.75)2]/0.3, κC ∈ R+, (7.10)

µ(s, s∗) = µ1(s)µ2(s∗) with

µ1(s) := µC1 ∈ R+, µ2(s) := µC2 ∈ R+ (7.11)

and assume, alternatively,

g1(t) = 0, c2(t) = 0, ∀t ∈ R+, (7.12)

or

g1(t) = 0, c2(t) := 1[50,100](t), b2(s) := C2e
− (s−0.25)2

0.01 , (7.13)

where 1 is the indicator function and C2 ∈ R+ is such that∫
S

b2(s) ds = 1.

Definitions (7.12) refer to the situation where therapeutic agents are not deliv-
ered, while definition (7.13) mimic a scenario where targeted therapeutic agents,
inoculated in the sample at time t = 50, are mainly able to act against can-
cer cells expressing the genotypic-phenotypic profile corresponding to s = 0.25,
while cytotoxic agents are not delivered.

Simulations are meant to:

- enlighten the role played by the biological phenomena under consideration
in cancer dynamics, with particular reference to progression and hetero-
geneity aspects;

- verify the consistency of our model with respect to the biological conclu-
sions drawn in [69];

- highlight some emerging behaviors related to the effects of therapeutic
actions on cancer dynamics.
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Figure 7.1: Top panel. Experimental trends of the number of epithelial (3p)
and mesenchymal (3sp) cells (figure reproduced from [69]). Bottom panel.
Dynamics of %1(t) and %2(t) for different values of γ1 − γ2 (i.e. the difference
between the probabilities for direct and reverse EMT). The parameter setting
under consideration ensures that, when γ1 − γ2 = 0, %2(t) increases faster than
%1(t) for lower cell numbers, while the opposite behavior is observed for higher
cell numbers.
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Figure 7.2: Trends of f1(t = 100, s) and f2(t = 100, s) in the limit ε→ 0 under
conditions (7.12) (solid lines) and conditions (7.13) (dashed lines). In the first
case function f1(t, s) and f2(t, s) concentrate, across time, around the points
where κ(s) (i.e. the probability for cell proliferation) attains its maximum. This
result supports the idea that, in the limit of small mutations, only cells endowed
with strong proliferative abilities can survive inside the sample. On the other
hand, in the second case, due to the fact that g2(t, s) is mainly concentrated
around point s = 0.25, the picks of f1(t, s) and f2(t, s) centered in s = 0.25
vanish over time. These results also suggest that targeted therapeutic agents can
select for resistance: if environmental conditions select for strong proliferative
abilities and two groups of highly proliferative clones are found inside the system,
and if therapeutic actions cause the targeted extinction of one group, the clonal
expansion of cells in the other group is intensified.
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Chapter 8

A mathematical model for
adhesion and diffusion in
cancer hepatocyte
monolayers [A13]

8.1 Motivations and model

Evidence is accumulating that the trans-differentiation of cancer epithelial cells
of the liver into motile and invasive mesenchymal cells, the so-called Epithelial to
Mesenchymal Transition (EMT) can play a crucial role in metastatic processes.
In particular, EMT seems also to be involved in the formation of those fibrous
capsules that are frequently observed in hepatocellular carcinoma (see Figure
8.1). This is suggested by histopathological evidence for the fact that such
capsules are mainly formed by mesenchymal cells [38].

As a result, the design of a mathematical model able to mimic this kind of
aggregation and diffusion behaviors may allow a deeper comprehension of some
mechanisms underling the progression of hepatocellular carcinoma [34, 69, 71].
With this aim, this paper proposes a model describing the dynamics of a mono-
layer culture of cancer hepatocytes expressing epithelial and mesenchymal phe-
notypes (i.e. on account of brevity, 3p and 3sp cells, respectively), which move
via chemotaxis on a flat surface, proliferate and interact among themselves. The
goal of the model is to reproduce, at least qualitatively, the opposite collective
behaviors expressed by these cells in co-culture: the ability of epithelial cells to
adhere to one another and the tendency of mesenchymal cells to diffuse through
the sample [69].

Epithelial and mesenchymal cells in motion are here grouped into two dis-
tinct subpopulations (i.e. i = 1, 2), structured by position x = (x, y) and
velocity v = (vx, vy) of the cells (i.e. (x,v) is a point in the phase space). Two
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Figure 8.1: Fibrous capsules as the ones typically observed in hepatocellular
carcinoma. Figure reproduced from [38].

additional subpopulations are introduced, which collect, respectively, epithelial
cells stuck together due to homotypic adhesion (i.e. the attachment among
identical cells) and cytokines, secreted by cancer cells, that are responsible for
chemotaxis, which are labeled by index i = 3, 4, respectively. The space variable
x is assumed to be normalized with respect to the average size of hepatocytes.
Therefore, we allow X to coincide with the whole space R2 to account for the
fact that the area of the dish can be much larger than the area covered by
the cell monolayer. Finally, following [18], we assume V to be compact and
spherically symmetric.

The states of these subpopulations are described by functions

f1 = f1(t,x,v) : R+ ×X × V → R+, f2 = f2(t,x,v) : R+ ×X × V → R+,

and

n3 = n3(t,x) : R+ ×X → R+, n4 = n4(t,x) : R+ ×X → R+.

where the time variable t is normalized with respect to the duration of the
average life-cycle of cancer cells. At any fixed time t, the quantity fi(t,x,v) dv
stands for the number of cells in x whose velocity belongs to the volume element
dv centered in v, normalized with respect to the total number of particles (i.e.
cells and cytokines) inside the system at time t = 0. Therefore, the local
densities of 3p and 3sp cells can be computed as follows:

%i(t,x) =

∫
V

fi(t,x,v)dv, i = 1, 2. (8.1)

On the other side, the quantities %1(t,x) dx, %2(t,x) dx, n3(t,x) dx and n4(t,x) dx
represent the normalized numbers of cells and cytokines inside the volume ele-
ment dx centered at x. As a result, the total density of cells and the normalized
size of the whole sample can be, respectively, computed as follows:

%(t,x) =

2∑
i=1

%i(t,x) + n3(t,x), N(t) =

∫
X

%(t,x) + n4(t, x) dx, (8.2)
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where normalization implies N(0) = 1.
Functions f1(t,x,v), f2(t,x,v), n3(t,x) and n4(t,x) evolve according to

the equations given hereafter, which describe the net inlet of moving epithelial
and mesenchymal cells through the volume element dx dv of the phase space
centered in (x,v), as well as the net flux of aggregated epithelial cells and
cytokines through the volume element dx centered in x, due to the phenomena
under consideration:

∂tf1(t,x,v) + v · ∇xf1(t,x,v) =(
α

|V |
+ βv · ∇xn4(t,x)

)
%1(t,x)− αf1(t,x,v)︸ ︷︷ ︸

random motion and velocity modification due the cytokines’ gradient

+ η
(1− γ)

|V |
%1(t,x)%1(t,x) + η

(1− γ)

|V |
%1(t,x)n3(t,x)︸ ︷︷ ︸

velocity modifications due to cell-cell interactions and homotypic adhesion

+
η

|V |
%1(t,x)%2(t,x)− η%(t,x)f1(t,x,v)︸ ︷︷ ︸

velocity modifications due to cell-cell interactions and homotypic adhesion

+

(
κ− µ

∫
X

%(t,x)dx

)
f1(t,x,v)︸ ︷︷ ︸

proliferation and competition

(8.3)

∂tf2(t,x,v) + v · ∇xf2(t,x,v) =(
α

|V |
+ βv · ∇xn4(t,x)

)
%2(t,x)− αf2(t,x,v)︸ ︷︷ ︸

random motion and velocity modification due the cytokines’ gradient

+
η

|V |
%(t,x)%2(t,x)− η%(t,x)f2(t,x,v)︸ ︷︷ ︸

velocity modifications due to cell-cell interactions

+

(
κ− µ

∫
X

%(t,x)dx

)
f2(t,x,v)︸ ︷︷ ︸

proliferation and competition

(8.4)

∂tn3(t,x) = ηγ (%1(t,x)%1(t,x) + %1(t,x)n3(t,x))︸ ︷︷ ︸
homotypic adhesion

+

(
κ− µ

∫
X

%(t,x)dx

)
n3(t,x)︸ ︷︷ ︸

proliferation and competition

(8.5)
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∂tn4(t,x) = ν%(t,x) + ∆xn4(t,x)︸ ︷︷ ︸
secretion and diffusion

−λn4(t,x)︸ ︷︷ ︸
decay

. (8.6)

All the above introduced parameters, are non-negative real numbers. The col-
lective behavior of cells and cytokines can be studied by analyzing the dynamics
of the solutions to the Cauchy Problem defined by endowing Eqs.(8.3)-(8.6) with
suitable initial conditions.

8.2 Main results

Taking advantage of the analytical methods presented in [18, 37], we establish a
weak global existence result for a biologically consistent Cauchy Problem defined
by endowing Eqs.(8.3)-(8.6) to the initial conditions given hereafter:

fi(0,x,v) = f0i (x,v) ≥ 0 on R2 × V, f0i ,∇xf
0
i ∈ L1 ∩ L∞(R2 × V ), (8.7)

n3(0,x) = n03(x) ≥ 0, ∀x ∈ R2, n03,∇xn
0
3 ∈ L1 ∩ L∞(R2), (8.8)

%(0,x) = %0(x), ‖%0‖L1(R2) <
κ

µ
, (8.9)

n4(0,x) = 0, ∀x ∈ R2. (8.10)

Theorem 8.2.1 Let us assume, without loss of generality, ν = α = β = η = 1
and X = R2. Then, the Cauchy Problem defined by Eqs.(8.3)-(8.6) endowed
with initial conditions (8.7)-(8.10) has a global weak solution componentwise
defined by

fi ∈ L∞loc((0,∞);L1 ∩ L∞(R2 × V )), ∇xfi ∈ L∞loc((0,∞);L1 ∩ L∞(R2 × V )),

for i = 1, 2,

n3 ∈ L∞loc((0,∞);L1 ∩ L∞(R2)), ∇xn3 ∈ L∞loc((0,∞);L1 ∩ L∞(R2)),

and
n4 ∈ L∞loc((0,∞);Lp(R2)), ∇xn4 ∈ L∞loc((0,∞);Lp(R2)),

for any 1 ≤ p ≤ ∞.

Then, we perform numerical simulations meant to reproduce, at least qual-
itatively, aggregation and dispersion phenomena usually observed in cell mono-
layers composed of epithelial and mesenchymal cancer hepatocytes. With this
aim, we approximate cellular velocities in polar coordinates as follows:

v(t) =

(
vx
vy

)
= v0

(
cos θ(t)

sin θ(t)

)
, (8.11)
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where, on account of simplicity, we assume that cells move at constant speed
normalized to the unity, i.e. v0 = 1, so that cell distributions can be computed
tracking space and velocity angles only.

Simulations are performed in Matlab. Making reference to the numerical
method, spatial and angular terms are discretized considering a spatial grid of
56× 56 nodes, with periodic boundary conditions, and 32 velocity angle points.
A time splitting scheme is adopted to treat the advection, source and conserva-
tive terms, i.e the right hand sides of the model (8.3)-(8.6). The advection term
representing cell movement is approximated in conservative form using a flux-
limiting scheme. Integral terms are computed using a trapezioidal scheme. Time
integration of the resulting large system of time dependent ODEs is performed
using a 4th order Runge Kutta scheme. The reaction-diffusion equation for the
cytokines is approximated by a classical second order finite difference scheme.
Simulations are performed until time T = 80, the square [−15, 15] × [−15, 15]
and the interval [0, 360] are selected, respectively, as x-domain and θ-domain.

We numerically solve the mathematical problem defined by Eqs. (8.3)-(8.6)
coupled to the following initial conditions:

f1,2(t = 0, x, y, θ(t = 0)) = 10e−(x
2+y2), n3,4(t = 0, x, y) = 0. (8.12)

The first ones mimic a sample where epithelial and mesenchymal cancer hep-
atocytes in motion are mainly concentrated in the center of the domain and
their velocities are homogeneously distributed over all directions at beginning
of observations. The second ones reproduce a situation where neither epithelial
cancer cells stuck together due to homotypic adhesion nor citokynes are initially
found within the sample.

All the parameters are set equal to suitable non-zero values selected with
exploratory aim:

- The average rates of velocity changes due to random motion and chemo-
taxis are set, respectively, as α = 0.001 and β = 0.1.

- The aggregation rate of epithelial cells through homotypic adhesion is set
as γ = 0.1.

- The average proliferation rate, net of apoptosis, is set as k = 0.008 and
the parameter related to apotosis due to competition for resources as µ =
0.003.

- Parameters related to cytokines responsible for cell movement are set as
λ = 0.1 and ν = 0.1.
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Figure 8.2: Profile of %1(t, x, y) + n3(t, x, y) at final time T = 80. Epithelial
hepatocytes tend to stay adhered one to the other through homotypic adhesion.
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Figure 8.3: Profile of %2(t, x, y) at final time T = 80. Mesenchymal hepatocytes
fail to aggregate and tend to form a propagating rim of cells. This emerging
behavior is consistent with the histopathological evidence suggesting that the
capsules frequently observed in hepatocellular carcinoma are mainly composed
of mesenchymal cells.
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Chapter 9

Drift-diffusion limit of a
model for the dynamics of
epithelial and mesenchymal
cell monolayers [A14]

9.1 Motivations and model

The term epithelial to mesenchymal transition refers to the process leading non-
motile epithelial cells, which tend to stay collectively embedded through cell-cell
junctions (i.e. the so-called homotypic adhesion), to convert into individual and
motile mesenchymal cells, which tend to avoid aggregation and diffuse following
cytokine gradients [72].

This paper is devoted to prove the diffusive scaling limit for a model that
describes the dynamics of a monolayer culture of epithelial and mesenchymal
cells, which move via chemotaxis on a flat surface, proliferate and interact among
themselves. With this aim, we introduce a small parameter ε, standing for the
ratio between the mean free paths of random motion and chemotactic reorienta-
tion, and we perform a diffusive scaling of time and position. Furthermore, we
assume chemotaxis along the cytokines’ gradient and motion reorientations due
to cellular interactions to be perturbations of order ε with respect to random
motion. Finally, we consider interactions leading to homotypic adhesion to be
a further perturbation of order ε with respect to those interactions that lead to
velocity reorientation [72].

The limit ε→ 0 is formally carried out to show how the macroscopic equa-
tions resulting from the underlying model can mimic a biologically consistent
scenario, where epithelial cells tend to stay aggregated via homotypic adhesion,
while mesenchymal cells diffuse through the sample.

The following notations hold:
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- Independent variables t ∈ R+, x ∈ R2 and v ∈ V ⊂ R2 denote, respec-
tively, time, position and velocity. The space domain is identified with the
whole set R2, since we normalize x with respect to the average cellular
size, which is much smaller than the size of the whole area where cells can
move. The set V of all admissible velocities is defined as a compact and
spherically symmetric set of measure |V |.

- The phase space densities f1(t,x,v) ≥ 0 and f2(t,x,v) ≥ 0 refer, respec-
tively, to epithelial and mesenchymal cells in motion, function n3(t,x) ≥ 0
stands for the density of epithelial cells at rest due to homotypic adhesion
and function n4(t,x) ≥ 0 models the density of cytokines that influence
cell motion.

- The local densities related to f1(t,x,v) and f2(t,x,v) and their summa-
tion with n3(t,x) are denoted, respectively, as follows:

%i(t,x) =

∫
V

fi(t,x,v)dv, i = 1, 2, %(t,x) =

3∑
i=1

ni(t,x). (9.1)

- Cells proliferate at rate κ ∈ R+ and die through competition for space
and resources at rate µ ∈ R+. On the other hand, cytokines regulating
cell motion are produced by the cells themselves at a unitary rate, diffuse
with a unitary diffusion constant and decay over time at rate λ ∈ R+.

Our attention is focused on the Cauchy Problem derived by endowing the
following set of differential equations

ε2∂tf1ε(t,x,v) + εv · ∇xf1ε(t,x,v) = F1ε[f2ε, n3ε, n4ε](f1ε)

ε2∂tf2ε(t,x,v) + εv · ∇xf2ε(t,x,v) = F2ε[f1ε, n3ε, n4ε](f2ε)

ε2∂tn3ε(t,x) = N3ε[f1ε](n3ε)

∂tn4ε(t,x) = N4ε[f1ε, f2ε](n4ε)

(9.2)

to the following initial conditions

fi(0,x,v) ≥ 0 on R2× V, fi(0,x,v),∇xfi(0,x,v) ∈ L1 ∩L∞(R2× V ), (9.3)

for i = 1, 2,

n3(0,x) ≥ 0, ∀x ∈ R2, n3(0,x),∇xn3(0,x) ∈ L1 ∩ L∞(R2), (9.4)

‖%(0, ·)‖L1(R2) <
κ

µ
, n4(0,x) = 0, ∀x ∈ R2, (9.5)
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as well as to the definitions given hereafter:

F1ε[f2ε, n3ε, n4ε](f1ε) =

proliferation and competition︷ ︸︸ ︷(
κ− µ

∫
X

%ε(t,x)dx

)
f1ε(t,x,v)

+

random motion and velocity modification due the cytokines’ gradient︷ ︸︸ ︷(
1

|V |
+ εv · ∇xn4ε(t,x)

)
%1ε(t,x)− f1ε(t,x,v)

+

velocity modifications due to cell-cell interactions/homotypic adhesion︷ ︸︸ ︷
ε

(1− ε)
|V |

%1ε(t,x)%1ε(t,x) + ε
(1− ε)
|V |

%1ε(t,x)n3ε(t,x)

+

velocity modifications due to cell-cell interactions/homotypic adhesion︷ ︸︸ ︷
ε

|V |
%1ε(t,x)%2ε(t,x)− ε%ε(t,x)f1ε(t,x,v) ,

F2ε[f1ε, n3ε, n4ε](f2ε) =

proliferation and competition︷ ︸︸ ︷(
κ− µ

∫
X

%ε(t,x)dx

)
%2ε(t,x,v)

+

random motion and velocity modification due the cytokines’ gradient︷ ︸︸ ︷(
1

|V |
+ εv · ∇xn4ε(t,x)

)
%2ε(t,x)− f2ε(t,x,v)

+

velocity modifications due to cell-cell interactions︷ ︸︸ ︷
ε

|V |
%ε(t,x)%2ε(t,x)− ε%ε(t,x)f2ε(t,x,v) ,

N3ε[f1ε](n3ε) =

proliferation and competition︷ ︸︸ ︷(
κ− µ

∫
X

%ε(t,x)dx

)
n3ε(t,x) +

homotypic adhesion︷ ︸︸ ︷
ε2(%1ε(t,x) + n3ε(t,x))%1ε(t,x),

N4ε[f1ε, f2ε](n4ε) =

secretion and diffusion︷ ︸︸ ︷
%ε(t,x) + ∆xn4ε(t,x) −

decay︷ ︸︸ ︷
λn4ε(t,x) .

In particular, following closely the calculations developed in [18], we carry out
formally the limit ε → 0 in the set of equations (9.2), with the aim of deriving
the equations for the leading order terms provided by the asymptotic expansions
given hereafter:

fiε(t,x,v) = f0i (t,x,v) + εf1i (t,x,v) +O(ε2), i = 1, 2, (9.6)

niε(t,x) = n0i (t, x) + εn1i (t,x) +O(ε2), i = 3, 4, (9.7)
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with

%0i (t,x) =

∫
V

f0i (t,x,v)dv, i = 1, 2.

Let us notice that identities (9.6), (9.7) imply

%ε(t,x) = %0(t,x) + ε%1(t,x) +O(ε2), (9.8)

where, since we assume initial conditions (9.3)-(9.5) to hold,

%0(0,x) =

∫
V

f1(0,x,v) + f2(0,x,v)dv + n3(0,x).

9.2 Main results

The obtained results are summarized by the following

Theorem 9.2.1 There exists τ > 0 independent from ε such that the formal
limits for ε→ 0 of Eqs. (9.2) with initial conditions (9.3)-(9.5) can be written,
for all t ∈ (0, τ ] apart from an initial layer, as the convection- diffusion equation

∂t%
0
2(t,x) +∇x ·

(
D∇x%

0
2(t,x)− Γ[n04]%02(t,x)

)
= 0, (9.9)

with diffusivity tensor and convection field defined as

D :=
1

|V |

∫
V

|v|2dv, Γ[n04] :=

∫
V

v(v · ∇xn
0
4(t,x))dv, (9.10)

coupled to the following identities

%01(t,x) = 0,

∫
R2

%02(t,x) + n03(t,x)dx =
κ

µ
, (9.11)

n04(t,x) =

∫ t

0

∫
R2

1

4πs
e−
|x|2
4s −λs

[
%02(t− s,x− y) + n03(t− s,x− y)

]
dyds

(9.12)
and to the additional conditions

%0i (0,x) ≥ 0 on R2, %0i (0,x),∇x%
0
i (0,x) ∈ L1 ∩ L∞(R2), i = 1, 2,

n03(0,x) ≥ 0 on R2, n03(0,x),∇xn
0
3(0,x) ∈ L1 ∩ L∞(R2),

‖%0(0, ·)‖L1(R2) <
κ

µ
, n04(0,x) = 0, ∀x ∈ R2.

Macroscopic equations (9.9),(9.11) and (9.12) established by Theorem 9.2.1
can be interpreted more directly than the underlying system of equations (9.2)
and support the idea that the latter can effectively reproduce a biological con-
sistent scenario where epithelial cells adhere to one another via homotypic ad-
hesion, i.e. n10(t,x) = 0 for t ∈ (0, τ ], while mesenchymal cells tend to diffuse
through the sample, i.e. n20(t, x) evolves according to Eq.(9.9) for t ∈ (0, τ ].
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Chapter 10

Recognition and learning in
a mathematical model for
immune response against
cancer [A3]

10.1 Motivations and model

Cancer cells are native to the host body and substantially indistinguishable from
normal cells. However, evidence is rapidly accumulating that T-cells contribute
to the body multi-layered defenses against tumors. In more detail, T-cells are
lymphocytes that carry receptor molecules on their surface, which can recognize
the antigens expressed by foreign agents, such as tumor cells, that are presented
to them by specialized cells of the immune system, the Antigen Presenting Cells
(APCs).

The recognition process involving antigen presenting cells is not strictly se-
lective, i.e. APCs are able to recognize cancer cells expressing several different
antigens; however, each APC can present only a finite set of antigens at a time.
On the other, the recognition process involving T-cells is very selective and each
T-cell is mainly able to recognize only a specific antigen, i.e. its cognate antigen.
When an APC detects a cancer cell, the related antigen is presented to näıve
T-cells. Thus, those näıve T-cells that recognize this antigen as their cognate
one became active. Activated T-cells start to proliferate (i.e. a clonal expansion
of activated T-cells occurs) and, through a complex process chain, they become
able to selectively recognize and attack cancer cells that express the cognate
antigen. Here we consider the effects of in situ clonal expansion only. Due
to clonal expansion, the number of T-cells being able to destroy the detected
cancer cell is greatly increased, and a certain number of them survive even after
the eventual defeat of cancerous cells, thus allowing a quicker response in case
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of the formation of new cancer cells. As a result, T-cells retain memories of
their past experiences and are able to learn from their encounters with foreign
agents, in general, and with cancer cells, in particular.

This paper presents a mathematical model for immune response against
cancer aimed at reproducing some phenomena emerging from the interactions
between tumor and immune cells. In particular, the focus is on evolutionary
aspects related to the iterative selection exerted by the immune system over
cancer cells, which include recognition, learning and memory aspects of immune
response.

The reference system is defined by a sample composed of cancer cells, T-Cells
and APCs. The phenomena under consideration include genetic mutations that
drive cancer cells to modify their antigenic expressions, proliferation of cancer
cells and competition for resources, recognition of cancer cells and antigen-
presentation by APCs, activation of näıve T-Cells, clonal expansion of activated
TCs and destruction of cancer cells.

We assume such system to be divided into five subpopulations labeled by
index i = 1, ..., 5: cancer cells (i = 1), APCs that are not exposing any antigen
on their surface (i = 2), APCs that are exposing a certain antigen (i = 3), näıve
TCs (i = 4), and activated TCs (i = 5). Apart from subpopulation i = 2, which
is an unstructured one, the other subpopulations are assumed to be structured
by a real continuous variable s ∈ S := [0, 1], whose biological meaning varies
from one subpopulation to another:

- subpopulation i = 1: s models the antigenic expression of cancer cells;

- subpopulation i = 3: s identifies the antigen exposed by APCs;

- subpopulation i = 4: s stands for the cognate antigen of näıve TCs;

- subpopulation i = 5: s represents the antigen that an activated TC can
effectively attack.

The state of subpopulation i = 2 is modeled, at time t, by function

n2 : R+ → R+,

while the states of subpopulations i 6= 2 are characterized, at time t, by functions

fi : R+ × S → R+, i 6= 2,

so that the number density of subpopulation i 6= 2 at time t can be computed
as:

%i(t) =

∫
S

fi(t, s)ds. (10.1)

The time variable t is assumed to be normalized with respect to the average
life-cycle of cancer cells.
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The dynamics of the system is described through the following Cauchy Prob-
lem 

∂th(t, s) = H[h](t, s), (t, s) ∈ (0, T ]× S

h(0, s) = h0(s),
(10.2)

where
h(t, s) = (f1(t, s), n2(t), f3(t, s), f4(t, s), f5(t, s))

and
h0(s) = (f01 (s), n02, f

0
3 (s), f04 (s), f05 (s)),

with
f0i (s) ∈ L1(S), f0i (s) ≥ 0 a.e. on S, for i 6= 2, n02 ∈ R+,

while H is componentwise defined by the set of integro-differential equations
given hereafter:

∂tf1(t, s) =

∫
S

M(s− s∗; ε)f1(t, s∗)ds∗ − f1(t, s)︸ ︷︷ ︸
renewal and mutations

+ κ1(s)f1(t, s)︸ ︷︷ ︸
proliferation

− µ1(s)f1(t, s)%1(t)︸ ︷︷ ︸
cell-cell competition

−µIf1(t, s)

∫
S

e−θ
I(s−s∗)2f5(t, s∗)ds∗︸ ︷︷ ︸

cancer-immune competition

dtn2(t) = −γ2n2(t)%1(t) + µ3%
2
3(t)︸ ︷︷ ︸

recognition, presentation and homeostatic regulation

∂tf3(t, s) = γ2n2(t)f1(t, s)− µ3f3(t, s)%3(t)︸ ︷︷ ︸
recognition, presentation and homeostatic regulation

∂tf4(t, s) = κ4f4(t, s)− µ4f4(t, s)%4(t)︸ ︷︷ ︸
homeostatic regulation

− γ4f4(t, s)

∫
S

e−θ
I(s−s∗)2f3(t, s∗)ds∗︸ ︷︷ ︸

T-cell activation

∂tf5(t, s) = γ4

∫
S

e−θ
I(s∗−s)2f3(t, s)f4(t, s∗)ds∗︸ ︷︷ ︸
T-cell activation

+κ5f5(t, s)− µ5f5(t, s)%5(t)︸ ︷︷ ︸
clonal expansion

.

(10.3)

With reference to Eqs.(10.3), the following definitions and assumptions hold
true:

M(s− s∗; ε) :=

 γ1δ(s− (s∗ ± ε)) + (1− 2γ1)δ(s− s∗), if ε < s < 1− ε
γ1δ(s− (s∗ − ε)) + (1− γ1)δ(s− s∗), if 0 ≤ s ≤ ε
γ1δ(s− (s∗ + ε)) + (1− γ1)δ(s− s∗), if 1− ε ≤ s ≤ 1,

where γ1 ∈ R+, δ is the Dirac’s delta distribution,

κ1 : S → R+, κ1 ∈W 2,∞(S), inf
s
κ1(s) > 0 ‖κ1(·)‖L∞(S) = κC , (10.4)
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µ1 : S → R+, µ ∈W 2,∞(S), inf
s
µ1(s) = µC (10.5)

and
γ2, γ4, κ

C , κ4, κ5, µ2, µ3, µ4, µ5, µ
C , µI , θI ∈ R+. (10.6)

Since ε is a small real parameter, the above definition for M(s−s∗; ε) translates
into mathematical terms the idea that mutations are small, i.e. only small
variations in the antigenic expression can occur from parent to offspring.

10.2 Main results

Standard fixed point arguments can be used to show that Problem (10.2) is well-
posed, in the sense of Hadamard, and admits a unique global in time solution.

The asymptotic behavior in time of h for ε → 0, i.e. in the limit of small
mutations, is characterized by the following theorem, which can be proved by
means of standard methods of functional analysis together with some direct
computations involving the time derivative of h:

Theorem 10.2.1 There exists a subsequence of fi, denoted again as fi, such
that

fi(t, s) ⇀ f∞i (s) on w∗ − L∞((0, T ),M1(S)), as t→∞, ∀i 6= 2.

Furthermore, let ε→ 0 and consider functions κ1(·) and µ1(·) such that

S =

{
sj ∈ (ε, 1− ε), j = 1, ..., J ∈ N :

κ(sj)

µ(sj)
= max

s

κ1(s)

µ1(s)
=
κC

µC

}
, (10.7)

assume that function f01 (·) satisfies the following conditions

S ⊆ supp(f01 (·)), n1(0) ≤
∫
S
κ1(s)f01 (s)ds∫

S
µ1(s)f01 (s)ds

(10.8)

and make the additional hypothesis given hereafter

n3(0) = 0, µI = 0, n5(0) = 0. (10.9)

Then, the following identities hold:

f∞1 (s) =

J∑
j=1

%j1δ(s− sj),
J∑
j=1

%j1 =
κC

µC
, (10.10)

f∞3 (u) =

J∑
j=1

%j3δ(s− sj),
J∑
j=1

%j3 =

√
γ2
µ3

κC

µC
n∞2 , (10.11)

where n∞2 > 0 is the asymptotic limit of n2(t) for t→∞,

supp(f∞5 (·)) =
⋃
t∈R+

supp(f3(t, ·)) ∩ supp(f4(t, ·)). (10.12)

72



In order to illustrate and extend analytical results, we numerically solve,
under different parameter settings, the Cauchy Problem (10.2). Numerical sim-
ulations are performed in Matlab by means of a collocation method with 200
points on [0, 1]. Interval [0, T ] is selected as time domain, where T is an integer
multiple of the unit time dt = 0.005. In particular, we set ε = 0.003 (i.e. ε→ 0),
we assume function µ to be identically equal to a constant value and

κ1(s) := κCe−
[(s−0.35)2+(s−0.65)2]

0.001 , (10.13)

i.e. those cells that express the antigens corresponding to s = 0.35 and s = 0.65
can proliferate with the highest rate, or

κ1(s) := κC , ∀s ∈ S, (10.14)

i.e. all cancer cells proliferate with the same rate independently from their
antigenic expression.

Numerical simulations are meant to:

- test the capability of the model to reproduce and justify emerging behav-
iors depicted by laboratory experiments;

- verify the ability of the model to reproduce immune recognition and learn-
ing processes;

- analyze the effects of intra-tumor heterogeneity on immune response against
cancer.
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Figure 10.1: Dynamics of f1(t, s), f3(t, s), f4(t, s) and f5(t, s) in the limit ε→ 0.
Function f1(t, s) concentrates, across time, around the points where κ1(s) (i.e.
the probability for cell proliferation) attains its maximum. After an initial
transient, f3(t, s) replicates the distribution of f1(t, s) over S, while f5(t, s)
replicates the instantaneous distribution of f3(t, s) keeping memory of the past
configurations. These results support the idea that the present model is able
to mimic both the action of immune cells against cancer cells, in general, and
the recognition, learning and memory aspects related to immune response, in
particular.
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Figure 10.2: Left panel. Experimental trends of the response of T-cells to
activation stimuli (figure reproduced from [15]). Right panel. Dynamics of
%5(t) vs %3(t) for κ5 > κ4 and µ5 > µ4 (solid line), i.e. the dynamics of the
activated TCs is assumed to be faster than the one of näıve TCs, or κ4 > κ5
and µ4 > µ5 (dashed line), i.e. the dynamics of activated TCs is assumed to
be slower than the one of näıve TCs, with γ4 fixed and ε→ 0. As long as %3(t)
does not overcome a certain threshold value, the growth of %5(t) is slow. On the
other hand, when %3(t) crosses the threshold, %5(t) increases in a faster way.
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Figure 10.3: Dynamics of %1(t) under definition (10.13) (solid line) and definition
(10.14) (dashed line) in the limit ε→ 0. The saturation value of %1(t) is higher
under (10.14) rather than under (10.13). Since (10.14) refers to the situation
where all the cells are characterized by the same probability for proliferating, and
thus surviving, independently from their antigenic expressions (i.e. intra-tumor
heterogeneity is potentially higher), this result suggests that immune response
becomes less effective as long as the set of antigens expressed by cancer cells
gets wider.
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Chapter 11

A mathematical model for
immune and autoimmune
response mediated by
T-cells [A12]

11.1 Motivations and model

Human body is protected against infectious agents by the immune system, which
is composed of different cells and several molecules providing a strong defense
against pathogens. Among immune cells, T-cells carry receptor molecules on
their surface, which can recognize non-self antigens that are presented to them
by specialized cells of the immune system, the Antigen Presenting Cells (APCs).
The recognition process involving antigen presenting cells is not strictly selective,
i.e. APCs are able to recognize several different antigens; however, each APC
can present only a finite set of antigens at a time. On the other hand, the
recognition process involving T-cells is very selective and each T-cell is mainly
able to recognize a specific antigen, i.e. its cognate antigen.

When an APC detects a foreign antigen, this is presented to näıve T-cells.
Thus, those näıve T-cells that recognize this antigen as their cognate one become
active. Activated T-cells start to proliferate (i.e. they undergo clonal expansion)
and differentiate into effector T-cells. Effector T-cells act by eliminating the
target antigen and are led to apoptosis by specific molecules, whose production
is stimulated along with T-cells activation. In this way, after the elimination
of non-self pathogens, the number of effector T-cells is highly reduced through
cell death, i.e. immune response is switched-off [14]. However, some T-cells
survive from this switching-off and become memory T-cells remaining within
the peripheral tissues and circulation for an extended time after the elimination
of infectious agents, ready to respond to the same antigen upon future exposures
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and making immune response to this antigen faster and more efficient. As a
result, the immune system learns from its past experiences and immunological
memory is developed, which allows a quick response to a subsequent encounter
with the same pathogen. Such a process is called immunization.

The inability of the immune system to distinguish between host and for-
eign/infected entities (i.e. self and non-self agents [43]) leads to the elicitation
of immune cells (i.e. leukocytes or white blood cells) toward host components.
Such a process is called autoreactivity and causes the development of the so-
called autoimmunity.

The etiology of autoimmunity is multifactorial. Among others genetic sus-
ceptibility, molecular mimicry and somatic genetic mutations are all considered
important in its development. In particular, an individual can be born with a
genetic makeup that makes her/him more prone to develop autoimmunity and
some genes confer a level of risk much higher than others; molecular mimicry
occurs when T-cells react against self antigens having a sequence similarity with
a non-self antigen, so that cross-reactivity can take place; genetic factors can be
crucial determinant of autoimmunity as testified, for instance, by Autoimmune
LymphoProliferative Syndrome (ALPS), which is caused by genetic defects lead-
ing to autoreactivity by causing inability to trigger apoptosis of activated T-cells
[43].

The main goal of this paper consists in defining a mathematical model able
to mimic the action of the immune system against both self and non-self agents
and the initiation of auto-reactivity, with particular reference to the roles played
by T-cells. The reference system is defined by a sample composed of self cells,
non-self cells and immune cells. With the aim of modeling the action of the
immune system against self and non-self antigens as well as the initiation of
auto-reactivity, we include in the model homeostatic proliferation and death of
self and non-self cells, antigen-presentation by APCs, recognition and activation
processes involving näıve T-Cells (TCs), clonal expansion of activated TCs,
immune action against foreign cells, autoimmune action of activated TCs over
host cells, immunization and autoimmunization.

The multicellular system under consideration is assumed to be divided into
six subpopulations labeled by index i: host cells (i = 1), i.e. cells that express
self antigens only, foreign cells (i = 2), i.e. cells that express non-self antigens,
APCs that are not exposing any antigen on their surface (i = 3), APCs that are
exposing a certain antigen (i = 4), näıve TCs (i = 5), activated TCs (i = 6).
Apart from subpopulation i = 3, which is an unstructured one, subpopulations
i = 1, 2, 4, 5, 6 are assumed to be structured by a real continuous variable s ∈
S := [0, 1], whose biological meaning varies from one subpopulation to another:

- subpopulation i = 1: s models the antigenic expression of host cells;

- subpopulation i = 2: s is the antigenic expression of foreign cells;

- subpopulation i = 4: s identifies the antigen exposed by APCs;

- subpopulation i = 5: s stands for the cognate antigen of näıve TCs;
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- subpopulation i = 6: s represents the target antigen of each activated TC.

The state of subpopulation i = 3 is modeled, at time t, by function

n3 = n3(t),

while the states of subpopulations i 6= 3 are characterized, at time t, by functions

fi = fi(t, s), i 6= 3,

so that the number densities of subpopulations i 6= 3 at time t can be computed
as:

%i(t) =

∫
S

fi(t, s)ds. (11.1)

The time variable t is assumed to be normalized with respect to the average
life-cycle of host and foreign cells.

The dynamics of the system is described through the Cauchy Problem de-
fined by endowing the following set of integro-differential equations with proper
initial conditions:

∂tf1(t, s) = κCf1(t, s)− µCf1(t, s)(%1(t) + %2(t))︸ ︷︷ ︸
homeostatic proliferation and death

− ξ1f1(t, s)

∫
S

e−θ
C(s−s∗)2f6(t, s∗)ds∗︸ ︷︷ ︸

autoimmune action

∂tf2(t, s) = κCf2(t, s)− µCf2(t, s)(%1(t) + %2(t))︸ ︷︷ ︸
homeostatic proliferation and death

− ξ2f2(t, s)

∫
S

e−θ
C(s−s∗)2f6(t, s∗)ds∗︸ ︷︷ ︸

immune action

dtn3(t) = −n3(t)

2∑
k=1

∫
U

γk(s∗)fk(t, s∗)ds∗ + µ4%
2
4(t)︸ ︷︷ ︸

recognition, presentation and regulation

∂tf4(t, s) = n3(t)

2∑
k=1

γk(s)fk(t, s)− µ4f4(t, s)%4(t)︸ ︷︷ ︸
recognition, presentation and regulation

∂tf5(t, s) = κ5f5(t, s)− µ5f5(t, s)%5(t)︸ ︷︷ ︸
regulation

− γ5(s)f5(t, s)

∫
S

e−θ
C(s−s∗)2f4(t, s∗)ds∗︸ ︷︷ ︸

T-cell activation

∂tf6(t, s) = f4(t, s)

∫
S

e−θ
C(s−s∗)2γ5(s∗)f5(t, s∗)ds∗︸ ︷︷ ︸

T-cell activation

+κ6f6(t, s)− µ6f6(t, s)%6(t)︸ ︷︷ ︸
clonal expansion

+ f6(t, s)

2∑
k=1

λk

∫
S

e−θ
C(s−s∗)2fk(t, s∗)ds∗︸ ︷︷ ︸

immunization and autoimmunization

. (11.2)
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Functions γ1(s), γ2(s) and γ5(s) can be assumed to be real Lipschitz continuous
and such that

max
s∈S

γ1(s) = γC1 , max
s∈S

γ2(s) = max
s∈S

γ5(s) = γC ,

while all the other parameters of the model are assumed to be non-negative real
numbers.

11.2 Main results

As previously noted, molecular mimicry, genetic susceptibility and somatic ge-
netic mutations act, among others, as key players in the development of autoim-
mune diseases. Therefore, it is worth noting that the above described modeling
strategies allow to include these factors in the dynamics of the reference sample.
In fact:

- the effects of molecular mimicry can be taken into account by assigning to
parameters γC1 (i.e. the maximum of the probability for the presentation
of self antigens), ξ1 (i.e. the probability for autoimmune destruction) and
λ1 (i.e. the probability for autoimmunization) some non-zero values;

- the action of genetic susceptibility, which makes the presentation and
recognition abilities of APCs and näıve TCs to be mainly focused over
certain antigens, can be modeled by defining γ2(s) (i.e. the probability for
the presentation of non-self antigens) and γ5(s) (i.e. the probability for
recognition and activation phenomena involving näıve T-cells) so that the
related maximum value γC is attained only on a countable subset of S;

- the effects of those genetic alterations that cause an over-proliferation of
T-cells and a reduced cytotoxic activity can be included by reducing the
values of parameters µ6 (i.e. the probability for the programmed death of
activated T-cells) and ξ2 (i.e. the probability for immune destruction).

This is highlighted by the following figures, which summarize the results of
numerical simulations performed in Matlab by means of a collocation method
with 200 points on [0, 1]. Interval [0, T ] is selected as time domain, where T is
an integer multiple of the unit time dt = 0.005.

Along all simulations, the expressions of functions γ1(s), γ2(s) and γ5(s) are
chosen among the ones given hereafter:

γ1(s) := γC1 e
− [(s−0.1)2+(s−0.9)2]

0.01 , γ2(s) = γ5(s) := γCe−
[(s−0.1)2+(s−0.9)2]

0.01 , (11.3)

i.e. the antigens identified by u = 0.1 and u = 0.9 are the ones most presented
by APCs and most recognized by näıve TCs,

γ1(s) := γC1 , γ2(s) = γ5(s) := γC , (11.4)

i.e. all the possible antigens are presented by APCs and recognized by näıve
TCs with the same probability.
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Figure 11.1: Left panel. Experimental trends for T-cells activated against
certain non-self antigens (•, �) and T-cells acting over a self antigen similar
to the non-self ones (�) in presence of molecular mimicry. The concentrations
of T-cells is plotted as a function of antigens concentrations (figure reproduced
from [73]). Right panel. Comparison between experimental trends of the T-
cells response to activation stimuli in absence (•, N) and in presence (�) of
somatic genetic mutations (figure reproduced from [55]).
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Figure 11.2: Dynamics of %1(t) (left), %2(t) (center) and %6(t) (right) for γC1 =
λ1 = ξ1 = 0 (fixed lines) or γC1 6= 0, λ1 6= 0 and ξ1 6= 0 (dashed lines). Fixed
lines refer to normal conditions, while dashed lines are obtained in presence of
molecular mimicry and highlight over-proliferation of T-cells and over-reactivity
against host cells. The trends of %1(t) are in good qualitative agreement with
the experimental ones depicted by Figure 11.1.
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Figure 11.3: Dynamics of %2(t) (left) and %6(t) (right) with γ1(s), γ2(s) and
γ5(s) defined by (11.3) (fixed lines) or by (11.4) (dashed lines). In both the cases
γC1 = λ1 = ξ1 = 0. Fixed lines refer to normal conditions, while dashed lines are
obtained in presence of genetic susceptibility, which makes the presentation and
recognition abilities of APCs and näıve TCs to be focused over certain antigens.
This figure points out how genetic susceptibility can introduce a delay in the
activation of T-cells in those cases where APCs and näıve TCs are mainly able,
respectively, to present and recognize certain antigens, which are not the ones
most expressed by foreign cells.
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Figure 11.4: Dynamics of %2(t) (left) and %6(t) (right). Fixed lines refer to some
values of ξ2 and µ6 that are higher than the ones related to dashed lines. In both
the cases γC1 = λ1 = ξ1 = 0. Fixed lines are related to normal conditions, while
dashed lines are obtained in presence of genetic alterations that cause an over-
proliferation of T-cells and a reduced cytotoxic activity. The trends shown by
the figure on the right are in good qualitative agreement with the experimental
ones depicted by Figure 11.1.
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Chapter 12

Populational adaptive
evolution,
chemotherapeutic
resistance and multiple
anti-cancer therapies [A4]

12.1 Motivations and model

Depending on the nature of the tumor, different therapies can be used in combi-
nation with one other in order to reduce the probability of resistance emergence
along with the side-effects on healthy cells [64]. In particular, besides cytotoxic
drugs, here we focus on an additional class of therapeutic agents, the so-called
cytostatic drugs, which act by slowing down cancer cell proliferation and tumor
growth. Cytostatic drugs have lower toxicity for healthy cells and reduce the
emergence of resistance, which usually follows from treatments with cytotoxic
drugs. In fact, they allow the survival of a small number of chemosensitive cells,
which can reduce the growth of resistant clones through competition for space
and resources.

Motivated by the theory of mutation-selection in adaptive evolution, we
propose a mathematical model describing the selection/mutation dynamics of
healthy and tumor cells under the effects of cytotoxic and cytostatic drugs.

The reference system is defined by a well-mixed sample composed of healthy
and cancer cells, which are grouped, for modeling purposes, into two subpop-
ulations labeled, respectively, by index i = 1, 2. The two subpopulations are
structured by a real continuous variable s ∈ S := [0, 1] standing for the gene
resistance expression level. In the sequel we will use the term gene expression
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meaning not only expression of one supposed resistance gene, but more generally
of several genes yielding together a continuous drug resistance phenotype.

The state of the system at time t is described by functions f1(t, s) and
f2(t, s), whose evolution is ruled by the Cauchy Problem defined by linking the
following differential equations to suitable initial conditions

∂tf1,2(t, s) =

mutations and renewal︷ ︸︸ ︷
θ1,2

1 + α1,2g1(t)

(∫
r1,2(s∗)M(s∗, s; ε)f1,2(t, s∗)ds∗ − r1,2(s)f1,2(t, s)

)
(12.1)

+

(
r1,2(s)

1 + α1,2g1(t)
− d1,2(s)I1,2(t)

)
f1,2(t, s)︸ ︷︷ ︸

growth with cytostatic therapies and death

− g1(t)µ1,2(s)f1,2(t, s)︸ ︷︷ ︸
effect of cytotoxic therapies

,

where g1(t)/g2(t) stand for the concentration of cytotoxic/cytostatic drugs at
time t and

I1(t) := a11ρ1(t) + a12ρ2(t), I2(t) := a21ρ1(t) + a22ρ2(t). (12.2)

The following considerations and hypothesis are assumed to hold:

M(·, ·; ε) ≥ 0,

∫
S

M(·, s; ε)ds = 1,

∫
S

sM(·, s; ε)ds = ε, ∀ε > 0, (12.3)

0 ≤ θ1,2 < 1, µ1,2(·) > 0, µ′1,2(·) < 0, µ1(·) < µ2(·), (12.4)

a12, a21 ≥ 0, a11 > a12, a22 > a21, (12.5)

r1,2(·) > 0, r′1,2(·) < 0, (12.6)

d1,2(·) > 0, d′1,2(·) < 0, (12.7)

α1 < α2. (12.8)

The last one of assumptions (12.3) implies that ε is the average size of muta-
tions, while assumptions (12.4) on functions µ1,2 embody the fact that cytotoxic
agents are more effective against cancer than healthy cells and their efficiency
is lower on cells expressing higher resistance levels. Assumptions (12.5) mimic
a scenario where intra-population interactions occur at a higher rate than inter-
population ones; assumptions (12.6) translate into mathematical terms the idea
that producing resistance genes implies resource allocation both for healthy and
cancer cells; assumptions (12.7) account for the fact that mutations conferring
resistance to therapies may also provide cells with stronger competitive abilities.
Finally, assumptions (12.8) rely on the idea that cytostatic agents are designed
to be more effective against cancer cells rather against the healthy ones.
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12.2 Main results

We analyze the model (12.1) through numerical simulations illustrating how the
outputs can be influenced by different concentrations of cytotoxic and cytostatic
agents. From a biological perspective, this means to use the present model as
an in silico laboratory to highlight some mechanisms that may play a key role
in the development of cancer resistance to therapies, with the aim of providing
support to the design of optimal therapeutic strategies. Numerical simulations
are performed in Matlab using an implicit-explicit finite difference scheme with
2000 points on the interval [0, 1]. Interval [0, T ] with T = 2000dt is selected as
time domain, where the unit time dt is chosen equal to 0.1.

We choose the initial conditions

f1(t = 0, s) = f2(t = 0, s) := C0e−
(s−0.5)2

ε , ε = 0.01, (12.9)

where C0 is a positive real constant such that

%1(t = 0) + %2(t = 0) ≈ 1.

Parameter ε is set equal to 0.01 to mimic a biological scenario where most of
the cells are characterized by the resistant gene expression level corresponding
to s = 0.5 at the beginning of observations.

Assumptions and definitions given hereafter are used along all simulations:

M(s∗, s; ε) := CMe
− (s∗−s)2

ε2 ,

CM

∫ 1

0

e−
(s∗−s)2

ε2 ds = 1, ∀s∗ ∈ [0, 1],

θ1 = θ2 := 0.1, r1(s) :=
1.5

1 + s2
, r2(s) :=

3

1 + s2
, α1 := 0.01, α2 := 1,

a11 = a22 := 1, a12 := 0.07 a21 := 0.01,

d1(s) := 0.5(1− 0.1s), d2(s) := 0.5(1− 0.3s),

µ1(s) :=
0.2

0.49 + s2
, µ2(s) :=

0.4

0.49 + s2
.

Functions g1(t) and g2(t) are assumed to be constant, i.e.

g1(t) := g1 ∈ R+, g2(t) := g2 ∈ R+,

and the values of parameters g1 and g2 are chosen case by case according to the
aim of the analysis.
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Figure 12.1: Trends of f2(t, s) (left) and f1(t, s) (right) at t = 2000 for g1 = 0
(dashed-dotted lines), g1 = 1.75 (dashed lines) and g1 = 3.5 (solid lines), in
the limit ε → 0. In all cases, parameter g2 is set equal to zero. As parameter
g1 increases, functions f2(t = 2000, s) and f1(t = 2000, s) tend to be highly
concentrated around some increasing values of s and their maximum values
become smaller; this indicates higher resistance with higher doses of drug.
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Figure 12.2: Trends of f2(t, s) (left) and f1(t, s) (right) at t = 2000 for g2 = 1
(dashed-dotted lines), g2 = 3 (dashed lines) and g2 = 7 (solid lines), in the
limit ε → 0. In all cases, parameter g1 is set equal to zero. Increasing values
of parameter g2 lead the qualitative behavior of function f2(t = 2000, s) to
become closer to the one of f2(t = 0, s). On the other hand, the trend of
function f1(t = 2000, s) remains basically unaltered.
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Figure 12.3: Dynamics of f2(t, s) for g1 = g2 = 0 (top-left), g1 = g2 = 1 (top-
right), g1 = g2 = 1.5 (bottom-left) and g1 = g2 = 2 (bottom-right), in the
limit ε → 0. As long as parameters g1 and g2 increase, the maximum value of
f2(t = 2000, s) becomes smaller so that, under the choice g1 = g2 = 2, function
f2(t, s) tends to zero across time.

Figure 12.4: Dynamics of f1(t, s) for g1 = g2 = 0 (top-left), g1 = g2 = 1 (top-
right), g1 = g2 = 1.5 (bottom-left) and g1 = g2 = 2 (bottom-right), in the
limit ε → 0. As long as parameters g1 and g2 increase, the maximum value of
f1(t = 2000, s) becomes smaller but about one half of the healthy cells is still
alive at the end of computations.
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Part V

Models for Socio-Economic
Systems
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Introduction

“It has been more profitable for us to
bind together in the wrong direction

than to be alone in the right one”
N.N. Taleb, The Black Swan: The Impact of the Highly Improbable

This part focuses on continuous structured population models for opinion for-
mation within socio-economic systems. In more detail,

- Chapter 13 deals with the asymptotic behavior of mathematical models for
opinion dynamics under bounded confidence of Deffuant-Weisbuch type.
In particular, a theorem establishing the weak convergence of the solution
to a sum of Dirac masses and characterizing the concentration points for
different values of the model parameters is provided.

- Chapter 14 presents a hybrid model for opinion formation in a large group
of agents exposed to the persuasive action of a small number of strong opin-
ion leaders. The model is defined by coupling a finite difference equation
for the dynamics of leaders opinion with a continuous integro-differential
equation for the dynamics of the others. The asymptotic behavior in time
of the related solution is characterized under distinct scenarios, where
different emerging behaviors can be observed.

- Chapter 15 introduces a class of integro-differential equations modeling
the dynamics of a market where agents are called to estimate the value
of a given traded good. Two basic mechanisms are assumed to concur in
value estimation: interactions between agents and some sources of public
information and herding phenomena. The asymptotic behavior in time of
the related solution is characterized for some general parameter settings,
which mimic different economic scenarios.
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Chapter 13

Asymptotic analysis of
continuous opinion
dynamics models under
bounded confidence [A1]

13.1 Motivations and model

This paper deals with the asymptotic behavior of mathematical models for opin-
ion dynamics under bounded confidence of Deffuant-Weisbuch type, as reviewed
in [1, 12, 24, 49, 68] . Such models describe the dynamics of a population struc-
tured by a continuous parameter s ∈ S ⊂ R standing for the individuals’ opinion
with respect to a given statement. The opinion can be contrary (s < 0), neutral
(s = 0) or favorable (s > 0) and it evolves through repeated pairwise interac-
tions involving only agents at a distance smaller than a threshold value R, the
so-called bound of confidence. In particular, we focus on compromise models
(i.e. two interacting agents are supposed to average their current opinions) with
homogeneous bound of confidence (i.e. R is assumed to be a real number and
not a real function of s), where S is a compact set defined as

S := [−n1R;n2R] ⊂ R, with R ∈ R+ and n1, n2 ∈ R+.

The density of agents expressing opinion s at time t is modeled by a function
f(t, s)

f : R+ × S → R+,

which satisfies the following initial value problem: ∂tf(t, s) = Q[f, f ](t, s), s ∈ S, t > 0

f(0, s) = f0(s) ∈ L1(S), f0(s) ≥ 0 a.e. on S,
∫
S
f0(s)ds = 1.

(13.1)
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Functional Q[f, f ] is defined as

Q[f, f ](t, s) :=

∫
S

∫
S

η(s∗, s
∗;R)Q(s|s∗, s∗)f(t, s∗)f(t, s∗)ds∗ds

∗

− f(t, s)

∫
S

η(s, s∗;R)f(t, s∗)ds∗, (13.2)

whith:

Q(s|s∗, s∗) := δ

(
s− s∗ + s∗

2

)
,

∫
S

Q(s|s∗, s∗)ds = 1, (13.3)

where δ is the Dirac’s delta distribution,

η(s∗, s
∗;R) := 1{|s∗−s∗|≤R}, η(s∗, s

∗;R) = η(s∗, s∗;R), (13.4)

where 1 is the indicator function.

13.2 Main results

At first, we provide a well-posedness and global existence result for the Cauchy
Problem (13.1), which can proved, as in the case of kinetic equations for ho-
mogeneous granular gases, making use of standard a priori estimates and fixed
point arguments.

Then, we characterize the qualitative large time behavior of the solution to
Problem (13.1). In particular, we prove the convergence of f(t, s) to a non-
negative measure in the limit t → ∞ making use of standard techniques of
functional analysis. Furthermore, we develop a characterization of such a mea-
sure by means of direct computations involving the time derivative of f(t, s)
under different choices of S, i.e. for different values of n1 and n2 leading to dif-
ferent and not complementary asymptotic scenarios. These results are collected
in the following

Theorem 13.2.1 Let f solve the Cauchy Problem (13.1). Then, there exists a
subsequence of f , denoted again as f , such that:

i) (Establishing convergence)

f(t, s) ⇀ f∞(s), as t→∞,

where f∞ is a bounded non-negative measure.

ii) (Identifying the limit f∞)

Case 1 (one single Dirac mass).
If

n1 ≤
R− s̄(0)

R
and n2 ≤

R+ s̄(0)

R
, (13.5)
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with

s̄(t) =

∫
S
sf(t, s)ds

%(t)
,

then
f∞(s) = δ(s− s̄(0)). (13.6)

Case 2 (multiple Dirac masses).
If

n1 = n2 = n ∈ N and f0(s) =
1

2nR
, ∀s ∈ S, (13.7)

then

f∞(s) =

n−1∑
k=0

%kδ(s− ŝk), ŝk ∈ B(ck, R/2) (13.8)

and
n−1∑
k=0

%k = 1,

n−1∑
k=0

sk%k = 0, %a = %b if ca = −cb, (13.9)

where k = 0, 1, . . . , n − 1 and B(ck, R/2) denotes the ball of center ck = nR −

(2k + 1)R and radius
R

2
.

Asymptotic results are illustrated by means of numerical simulations per-
formed in Matlab making use of a collocation method. With reference to the
s variable, a uniform discretization of S consisting of 600 points is selected as
computational domain, while the set [0, T ] is the reference time domain, where
T varies case by case and it is defined as an integer multiple of the time unit
dt = 0.05.
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Figure 13.1: Large time behavior of f(t, s) under assumptions (13.5). Simula-
tions are performed with R = 1, n1 = n2 = 1 and for different initial conditions,
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Chapter 14

A hybrid model for opinion
formation [A2]

14.1 Motivations and model

The last fifty years have seen the arising awareness that consistent mathemat-
ical models can act as virtual laboratories, providing a framework where those
mechanisms that determine the behaviors of large groups of humans can be un-
derstood more clearly. Namely, such models may be used to define hypothetical
scenarios, whose dynamics can be analyzed with the aim of reducing the gap
between the classic Behavioral Theories and the actual behavior of the Modern
Society.

When dealing with multiagent systems with a discrete update clock, the
model is usually made by a set of finite difference equations describing the evo-
lution of locally interacting agents, whose states are represented by the related
opinion with respect to a certain statement. These models are defined on the
basis of phenomenological observations and refer to the dynamics of individual
opinions.

On the other side, continuous Boltzmann-like kinetic models consist of an
evolution equation for a distribution function over the space of microscopic
states (i.e. the space of the possible opinions of interacting agents), which
characterizes the global state of the system. Such an evolution equation is
derived by a balance of the inflow and outflow of agents in the elementary
volume of the space of microscopic states and its structure depends on the
interactions taken into account.

High flexibility of the related mathematical structures has made the appli-
cation field of these two classes of models to be extremely wide. However, their
applicability domains are significantly different. The former refers to systems
composed of a sufficiently small number of agents, while the latter can be ef-
fectively applied only in those cases where the number of agents is sufficiently
high to be assimilated, at least formally, to a continuum.
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This paper is meant to present a mathematical model for opinion formation
in a large social group exposed to the persuasive action of strong opinion leaders.
The following critical aspects related to the process of opinion formation are
included:

1. Humans develop very personal strategies, usually based on mental short-
cuts and rules of thumbs. This makes the set of strategies ruling decision-
making to be highly heterogeneous.

2. Individuals tend to rely on a relatively small subset of their social group,
which is made by those other agents whose opinions are not too much
different from their own ones.

3. Most people follow the opinions expressed by those individuals that are
recognized as leaders, who form a very small fraction of the whole popu-
lation and act as the primary source of information for the rest.

4. Interactions among leaders and other individuals, the so-called followers,
are highly asymmetric. In fact, strong opinion leaders influence most of
the followers, but they are only influenced by other leaders [39]. Moreover,
it may happen that a follower is influenced by a strong leader although
their opinions are consistently different.

5. Due to the resistance of leaders to change their mind, the dynamics of the
leaders’ opinions occurs on a longer time scale with respect to the one of
the followers.

Point 5 leads us assume the leaders’ time scale to be discrete and the one
of followers to be continuous. Therefore, also due to point 3, we model the
dynamics of the system by coupling a finite difference equation for the dynamics
of leaders’ opinion and a continuous integro-differential equation of Boltzmann-
type for the dynamics of followers. In this sense, the one here proposed is
a hybrid model and, within such a formalism, equilibrium is reached when the
opinions of leaders and followers condense, across time, into a finite set of distinct
and noninteracting opinion clusters. Thus, from a mathematical standpoint,
asymptotic analysis are developed with the aim of proving, in the limit of large
times, the convergence, in a suitable sense, to highly concentrated solutions.

The reference system is defined by a large social group divided into two
interacting subpopulations: one made by a few opinion leaders and the other
one composed of a large number of opinion followers. These subpopulations are
labeled, respectively, by indexes i = 1 and i = 2.

The followers change their opinion, along time, as a consequence of inter-
actions among themselves as well as because of interactions with the leaders.
On the other hand, due to the strong opinion leader hypothesis, the leaders are
assumed to be insensitive to the followers’ opinions and to update their own
ones through interactions among themselves only. Interactions are supposed
to be binary and synchronous, and to involve only agents whose opinions are
sufficiently close (i.e. confidence is assumed to be bounded). When one agent
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interacts with another one belonging to the same subpopulation, he/she updates
his/her opinion to make it closer to the one of the other.

Because of the tendency of leaders to retain their original opinions, we make
a temporal scale separation hypothesis, i.e. we assume that the dynamics of
leaders occurs on a longer time scale with respect to the one of followers. Thus,
the time scale of leaders is modeled by a discrete variable n ∈ N, while the one
of followers is described by a continuous variable t ∈ R+.

As previously noted, mathematical models based on a kinetic formalism rely,
as such, on the hypothesis that the system is composed of a number of agents
sufficiently high, so that its state can be characterized by means of a continuous
distribution function. In the present case, this assumption effectively applies to
subpopulation 2. As a result, the microscopic state of each follower is identified
by a continuous variable s ∈ S ⊂ R, which models the opinion expressed with
respect to a certain statement. This can be contrary (s < 0), neutral (s = 0) or
favorable (s > 0) and the agents support their opinions with a strength described
by the absolute value of s. The domain S is assumed to be a symmetric compact
set, say S := [−σ, σ], σ ∈ R+. The state of subpopulation 2 is identified, at
time t ∈ R+, by function

f : [0, T ]× S → R+,

∫
S

f(t, s)ds = 1, ∀ t ∈ R+,

Provided that spf(t, s) ∈ L1(S), macroscopic quantities can be computed as
p-order moments of f at time t. For instance, the total mass (i.e. p = 0) and
the mean opinion (i.e. p = 1) are defined as follows:

ρ(t) =

∫
S

f(t, s)ds = 1, s̄(t) =

∫
S

sf(t, s)ds.

With reference to opinion leaders, we take advantage of the previously drawn
considerations and assume subpopulation 1 to be composed of N agents, with
N negligible small with respect to the followers’ number. At each discrete time
instant n ∈ N, the state of each agent is represented by his/her opinion, which
is modeled by a real number Xj(n) ∈ S, j = 1, . . . , N .

The model here proposed is defined by coupling a finite difference equation,
for the dynamics of leaders’ opinions, with a time-continuous integro-differential
equation of Boltzmann-type, which models the evolution of the function f char-
acterizing the state of followers. Therefore, the dynamics of the system is de-
scribed by the following Cauchy Problem, which can be derived by providing
the model with suitable initial conditions:

Xj(n+ 1) = Xj(n) + Ξj [X(n)]

Xj(0) ∈ S, j = 1, . . . , N

∂tf(t, s) = Q[f, f ](t, s) +K(t, s)

f0(s) ∈ L1(S), f0(s) = 1
2σ ,

∫
S
f0(s)ds = 1.

(14.1)

95



In the above equations, X(n) = (X1(n), . . . , XN (n)) is the vector of the leaders’
opinions at time n and f0(s) is chosen to mimic a scenario where opinion is
uniformly distributed among followers at the beginning of observations, so that
the average opinion is neutral (i.e. s̄(0) = 0), and

Ξj [X(n)] =
τ

N

N∑
k=1

ξ (Xk(n)−Xj(n)) (Xk(n)−Xj(n)) , j = 0, . . . , N,

Q[f, f ](t, s) =

∫
S

∫
S

ηF (s∗, s
∗;RF )QF (s|s∗, s∗)f(t, s∗)f(t, s∗)ds∗ds

∗

− f(t, s)

∫
S

ηF (s, s∗)f(t, s∗),

K(t, s) =

N∑
j=1

∫
S

ηL(s∗, Xj ;R
L)KL(s|s∗, Xj)f(t, s∗)ds∗ −

N∑
j=1

ηL(s,Xj)f(t, s),

(14.2)

with:

τ ∈ R+, ξ : R→ R, ξ(·) ≥ 0, supp(ξ) := [−R,R], (14.3)

ηF (s∗, s
∗;RF ) := 1|s∗−s∗|<RF , ηF (s∗, s

∗;RF ) = ηF (s∗, s∗;R
F ), (14.4)

where 1 is the indicator function,

QF (s|s∗, s∗) := δ(s− sF ), S 3 sF = s∗+α(s∗− s∗), α ∈ (0, 1), (14.5)

where δ is the Dirac’s delta distribution,

ηL(s∗, Xj ;R
L) := χ|s∗−Xj |<RL , ηL(s∗, Xj ;R

L) = ηL(Xj , s∗;R
L). (14.6)

KL(s|s∗, Xj) = δ(s−sL), S 3 sL = s∗+
β

N
(Xj−s∗), β ∈ (0, 1). (14.7)

14.2 Main results

The existence of a unique non-negative solution for the Cauchy Problem (14.1)
is a classical matter, as it can be easily proved by means of standard fixed point
arguments.

If f(t, s) solves the Cauchy Problem (14.1), then function f(nt, s) = f(tn, s) =
fn(t, s) solves the following rescaled problem,

Xj(n+ 1) = Xj(n) + Ξj [X(n)]

Xj(0) ∈ S, j = 1, . . . , N

∂tfn(t, s) = nQ[fn, fn](t, s) + nK(t, s)

f0(s) ∈ L1(S), f0(s) = 1
2σ ,

∫
S
f0(s)ds = 1,

(14.8)
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The asymptotic dynamics of X(n) and f(t, s) in the limit of large times can be
characterized, in an equivalent way, by studying the behavior of X and fn(t, s)
for n→∞, as established by the following

Theorem 14.2.1 Assume conditions (14.4)-(14.7) to hold. Then, there exists
a subsequence of fn, denoted again as fn, such that:

i) ( Establishing convergence)

fn → f∞, in the weak sense of measure, as n→∞,

where f∞ is a bounded non-negative measure.

ii) ( Identifying the limit f∞)

Case 1 (Consensus under weak follower-leader interactions).
If RF = σ and β → 0, then:

f∞(s) = δ(s− 0). (14.9)

Case 2 (Separation under weak follower-leader interactions).
If RF = σ

2 and β → 0, then:

f∞(s) =
δ(s− s1)

2
+
δ(s− s2)

2
, s1 ∈ B(−σ/2, RF /2), s2 ∈ B(σ/2, RF /2),

(14.10)
where s1 = −s2 and B(a, b) is the ball of center a and radius b.

Case 3 (Consensus under weak follower-follower interactions).
If RL = 2σ, α→ 0 and

lim
n→∞

X(n) = X̄1, X̄ = X̄(X(0)) ∈ S,

where 1 denotes the constant vector whose components are all one, then:

f∞(s) = δ(s− X̄). (14.11)

Asymptotic results are illustrated by means of numerical simulations per-
formed in Matlab making use of a collocation method. With reference to the
s variable, a uniform discretization of S consisting of 600 points is selected as
computational domain, while the set [0, T ] is the reference time domain, where
T varies case by case and it is defined as an integer multiple of the time unit
dt = 0.05.
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Figure 14.1: Large time behavior of f(t, s) in Case 1 considered by Theorem
14.2.1. Function f concentrates, across time, around point 0, independently
from the influence of leaders. Within the framework of our model, this result
provides a mathematical formalization for the emergence of neutral consensus
among followers.
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Figure 14.2: Large time behavior of f(t, s) in Case 2 considered by Theorem
14.2.1. Function f concentrates, across time, around two points that are sym-
metric with respect to zero and independent from the leader’s dynamics. This
result provides a mathematical formalization for the idea that, if individuals
rely only on a subset of their social group and are weakly influenced by opinion
leaders, different parties supporting opposite opinions can emerge.
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Figure 14.3: Dynamics of X(n) in Case 3 considered by Theorem 14.2.1. All
components of X concentrate, across time, around a point X̄. This provides a
mathematical formalization for the emergence of consensus among leaders.
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Figure 14.4: Large time behavior of f(t, s) in Case 3 considered by Theorem
14.2.1. Function f concentrates, across time, around the point X̄. This provides
a mathematical formalization for the idea that an extremist consensus can be
reached in presence of extremist leaders.
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Chapter 15

A mathematical model for
value estimation with
public information and
herding [A15]

15.1 Motivations and model

Local and international markets can be seen as complex systems composed of
large numbers of interacting agents that try to estimate the value of traded
goods on the basis of public and private information as well as of personal
feelings.

Agents can be very different from each other and can use the same informa-
tion in several different ways; thus, the set of all possible estimation strategies
is highly heterogeneous.

In principle, if all agents would be fully rational, the value of goods estimated
by the market would faithfully reflect all known information about the traded
products. Loosely speaking, this is the basic feature that makes a market to be
efficient. However, rationality of agents is bounded [65]. This implies that the
available information is often not incorporated into those values that emerge
from interactions among agents [11].

As a result, the complexity of market dynamics is highly increased by the
non rationality that often pervades human behaviors, which can lead individuals
to emulate others (herding) or even to do what everyone else is doing regardless
what their sources of information suggest to do (näıve herding) [28, 44]. Herding
mechanisms can be particularly dangerous in those markets where agents are
highly confident in the product. In fact, they can reinforce positive feelings
leading the estimated value to grow over-exponentially fast in time; this can be
a prelude for the formation of economic bubbles.
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The reference system is here defined by a large market, where agents are
called to estimate the value of a given product under the influence of some
sources of public information, which can affect the evaluation process by sug-
gesting a value for the product under consideration. The market and the in-
formation sources are seen as two subpopulations structured, respectively, by
s ∈ S := [0, 1] ⊂ R+ and w ∈ S. Variable s stands for the value that an agent
assigns to the product normalized with respect to a suitable reference value,
while variable w models a suitable normalization of the value that information
sources suggest to the market. The state of the market at time t is characterized
by the function f(t, s)

f : R+ × S → R+,

so that the number density of agents at time t can be computed as

%(t) =

∫
S

f(t, s)ds

and the value estimated by the market is modeled by the function

s̄(t) =

∫
S
sf(t, s)ds

%(t)
. (15.1)

On the other hand, the state of the information sources is identified by function
g(t, w)

g : R+ × S → R+,

which is supposed to be a given non-negative function of its argument such that

g(t, s) ∈ C(R+;L1(S)),

∫
S

g(t, s)ds = 1. (15.2)

The estimated value s̄(t) results from a dynamical equilibrium and it can
be computed if f(t, s) is known. Function f evolves according to the following
initial value problem{

∂tf(t, s) = QI [f, g](t, s) +QH [f, f ](t, s) s ∈ S, t > 0
f(0, s) = f0(s) ∈ L1(S), f0(s) ≥ 0 a.e. on S,

∫
S
f0(s)ds = 1,

(15.3)

where:

QI [f, g](t, s) :=

∫
S

∫
S

ηI(s∗, s
∗;RI)QI(s|s∗, s∗;α)f(t, s∗)g(t, s∗)ds∗ds

∗ +

− f(t, s)

∫
S

ηI(s, s∗)g(t, s∗)ds∗,

QH [f, f ](t, s) :=

∫
S

∫
S

ηH(s∗, s
∗;RH)QH(s|s∗, s∗;β)f(t, s∗)f(t, s∗)ds∗ds

∗ +

− f(t, s)

∫
S

ηH(s, s∗)f(t, s∗)ds∗.

(15.4)
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With reference to Eqs. (15.4):

QI(s|s∗, s∗;α) := δ (s− (s∗ + α(s∗ − s∗))) , α ∈ (0, 1) ⊂ R+, (15.5)

where δ is the Dirac’s delta distribution. The above definition relies on the idea
that if agents in the market trust an information source, then they update their
value to make it closer the one suggested by the source.

ηI : S × S → {0, 1}, ηI(s∗, s
∗;RI) := 1{|s∗−s∗|≤RI}, RI ∈ (0, 1], (15.6)

where 1 is the indicator function,

QH(s|s∗, s∗;β) := δ (s− (s∗ + β(s∗ − s∗))) , β ∈ (0, 1) ⊂ R+ (15.7)

and

ηH : S × S → {0, 1}, ηH(s∗, s
∗;RH) := 1{|s∗−s∗|≤RH}, RH ∈ (0, 1], (15.8)

or
ηH : S × S → R+, ηH(s∗, s

∗;RH) := ξ(s∗, s
∗;RH), (15.9)

where function ξ is defined as

ξ(s∗, s
∗) :=


s∗(1− s∗)
RH(s∗ − s∗)

, if s∗ > s∗

0, otherwise.

(15.10)

Definitions (15.6) and (15.8) rely on the idea that interactions occur, at time
t, only among agents and informations sources, or among agents themselves,
whose estimated values are at a distance smaller than a threshold value RI ,
or RH . On the other hand, definition (15.9) mimics a socio-economic scenario
where agents are highly confident in the product.

15.2 Main results

The existence of a unique non-negative solution for the Cauchy Problem (15.3)
is a classical matter, as it can be easily proved by means of standard fixed point
arguments.

The asymptotic behavior of f(t, s) in the limit t→∞ is characterized by the
following theorem, whose proof relies on standard techniques of functional anal-
ysis together with direct computations involving the time derivative of function
f under different parameter settings:

Theorem 15.2.1 There exists a subsequence of f , denoted again as f , such
that:
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i) ( Establishing convergence)

f → f∞, in the weak sense of measure, as t→∞,

where f∞ is a bounded non-negative measure.

ii) ( Identifying the limit f∞)

Case 1 (efficient market).
If RI = 1, g(t, s) = g(s) = δ(s− ŝ) with ŝ ∈ S for any t ≥ 0 and β → 0, then:

f∞(s) = δ(s− ŝ). (15.11)

Case 2 (näıve herding).
If ηH is defined by (15.8) with RH ≥ max(s̄(0), 1− s̄(0)) and α→ 0, then:

f∞(s) = δ(s− s̄(0)). (15.12)

Case 3 (bubble formation).
If ηH is defined by (15.9) and α→ 0, then

f∞(s) = δ(s− 1) and
d

dt
s̄(t) ≥ Cs̄(t)(1− s̄(t)), C ∈ R+. (15.13)

Asymptotic results are illustrated by means of numerical simulations per-
formed in Matlab making use of a collocation method. With reference to the
s variable, a uniform discretization of S consisting of 600 points is selected as
computational domain, while the set [0, T ] is the reference time domain, where
T = 10 is an integer multiple of the time unit dt = 0.05. Throughout simulations
we assume g(t, w) = g(w) ≈ δ(w − 0.63) for all t ∈ [0, T ].
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Figure 15.1: Large time behavior (left) and evolution in time (right) of f(t, s)
in Case 1 considered by Theorem 15.2.1. Function f concentrates, across time,
around the point ŝ = 0.63 where g is highly concentrated. Thus, all the agents
concentrate, in the limit of large times, around the same value, which is the
one suggested by information sources. Within the framework of our model, this
result provides a mathematical formalization for the efficient market transition.
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Figure 15.2: Large time behavior (left) and evolution in time (right) of f(t, s)
in Case 2 considered by Theorem 15.2.1. Function f concentrates, across time,
around the point s̄(0) = 0.5, which is independent from g. Thus, in the limit
of large times, all the agents estimate the same value, which is equal to the
one defined by the market as a whole at the beginning of observations and
is independent from public information. This result provides a mathematical
formalization for the idea that the market efficiency hypothesis does not apply
in those cases where näıve herding occurs.
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Figure 15.3: Large time behavior (left) and evolution in time (right) of f(t, s)
in Case 3 considered by Theorem 15.2.1. Function f concentrates, across time,
around the point 1. Thus, as time goes by, all the agents tend to estimate the
same high value for the product. This result provides a mathematical formal-
ization for the idea that näıve herding can lead agents to estimate a very high
value for traded products in a weakly rational and highly confident market.
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Part VI

Conclusions and Research
Perspectives
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Mathematical models can act as virtual laboratories, providing a framework
where mechanisms that determine the behaviors of large groups of living beings
can be understood more clearly. Even more, these models can be used to define
some hypothetical scenarios, whose dynamics can be analyzed to reveal new
insights into behaviors that have not yet been observed, thus reducing the gap
between theory and experimental observations.

Moving from these observations, after a brief overview on the distinguishing
features of complex living systems, we have presented a possible strategy to
reduce complexity in view of the mathematical modeling. This strategy com-
bines the formal structures pertaining to mathematical models for unstructured
and structured populations. In particular, the focus has been on phenotype-
structured equations, space-velocity-structured equations (i.e. kinetic-like equa-
tions) and opinion-structured equations.

An overview over the models that we have so far defined making use of such a
strategy has been provided. The related reference systems belong to three wide
classes of complex living systems, that is, living species, multicellular systems
and socio-economic systems. Most of the models for multicellular systems stem
from direct collaborations with biologists and clinicians.

From an applicative perspective, we have highlighted the ability of these
models to mimic emergent behaviors and self-organizing abilities expressed by
the complex living systems under consideration. However, additional efforts are
needed to make the outputs of the present models more consistent with physical
reality. For instance, ad hoc experiments should be designed to assign precise
values to the model parameters. This could also be a first step to make the
present models useful not only to reproduce qualitative behaviors but also to
produce quantitative forecasts.

On the other hand, from a mathematical standpoint, besides local and global
existence results for the mathematical problems linked to the models, we have
developed asymptotic analysis meant, on the one side, to derive macroscopic
equations that can be interpreted more directly than the underlying mesoscopic
models and, on the other side, to prove the weak convergence of the solutions
to sums of Dirac masses over the space of structuring variables. This kind of
weak convergence results provides a possible mathematical formalization both
for the selection principle of evolutionary biology and the emergence of opinions.
Finally, we have performed numerical simulations with the aim of illustrating
and extending analytical results.

Future research activities will aim at extending and modifying the proposed
models in order to enlarge their application domains. Such extensions and mod-
ifications will require additional efforts from the modeling, the analytical and
the numerical point of views, as implied by the research lines below summa-
rized. Let us notice that investigations on these topics will be developed in
the framework of already established international collaborations, involving also
other scientists in addition to some of those who took part in the research here
presented.
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Living species

- Sexual reproduction. The models presented in Part III assume that pro-
liferation does not require any kind of interactions among individuals be-
longing to the reference system. This implies that these models effectively
apply only to living species proliferating through asexual reproduction and
causes a strong limitation in the model application domains. As a result,
it would be useful to extend the equations here presented in order to in-
clude the effects of sexual reproduction. In turn, this would requires the
design of new analytical approaches to develop the same kind of asymp-
totic analysis here proposed, with the aim of mimicking the emergence of
speciation and the formation of evolutionary branching patterns.

- Spatially heterogeneous environment. All of the models for living species
here considered implicitly rely on the assumption that individuals share
the same environment, independently from their space positions. However,
in several practical cases, living species are embedded into spatially hetero-
geneous domains and their evolutionary dynamics can be strongly affected
by local conditions. In this respect, it would be interesting to extend the
considered phenotype-structured equations to model, for instance, the evo-
lution of living populations also structured in space [4]. This may require
developing suitable analytical strategies that can handle, at the same time,
integro-differential formalism used to describe evolutionary dynamics as
well as differential formalism modeling space dynamics.

Multicellular systems

- Dimorphism and polymorphism. The phenotype-structured equations for
the evolutionary dynamics of healthy and cancer cells proposed in Chapter
12 need to be modified in order to describe the dynamics of multicellular
systems structured by higher dimensional variables, where multiple traits
can be selected at the same time (i.e. dimorphism and polymorphism
can arise), so that the emergence of intra-tumour heterogeneity can be
effectively reproduced. In particular, the case of cell populations struc-
tured also in space should be considered, where the dynamics of diffusing
nutrients and therapeutic agents are explicitly included.

- Resistance to anti-cancer therapies and therapy optimization. Taking again
advantage of the models presented by Chapter 12, it would be interesting
to consider phenotype-structured equations for the evolutionary dynam-
ics of cancer cells under the effects of adaptive therapies [33], metronomic
chemotherapy [2] and infusion protocols based on bang-bang control [10].
The underlying idea is to inspect the effects of these therapeutic strategies
looking for the design optimized anti-cancer treatments.

Starting from the specific model for hepatocellular carcinoma presented
in Chapter 7, a more general model for the dynamics of cancer cells under
the effects of targeted therapeutic agents could be designed, in order to
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deepen further the role that this kind of drugs plays in the development of
tumors. In this sense, the identification of a suitable asymptotic method
allowing to pass from integro-differential equations describing the dynam-
ics of the reference multicellular system at the mesoscopic scale to ordinary
differential equations for the macroscopic evolution could be useful. On
the one side, this would make it possible to analyze how mechanisms at
the cell level generate global phenomena at the whole tumor level. On the
other side, it would allow to take advantage of well established techniques
for optimal control problems in the ODEs context [10], which can provide
a better understanding of cancer response to therapies.

- Space organization of phenotypic traits. Structured equations modeling
the progressive growth of solid tumor aggregates should be considered. In
particular, in perspective to the results presented in [13], where a simple
reaction–diffusion equation has been used to study qualitative properties
of invasion fronts arising in ecology, equations presented in Chapter 8 and
Chapter 9 should be suitably modified in order to study the formation of
invasion fronts in cancer, where motility can vary from one cell to another
according to phenotypic criteria.

Socio-economic systems

- Intricate followers-leaders interactions. With reference to asymptotic re-
sults presented in Chapter 14, future works could be addressed to study
how the dynamics of the followers is affected by the leaders’ opinion in
those cases where the leaders reach consensus and the followers trust the
leaders if and only if their opinions are sufficiently close.

- Interactions over small networks. Social networks play nowadays a promi-
nent role in shaping public opinion. In this sense, focusing on networks
composed of small numbers of nodes, it would be interesting to identify
suitable modeling strategies to take into account the influence of the net-
work topology on the interactions among individuals. In particular, along
the lines of the model presented in Chapter 14, continuous structured
equations could be used to describe the opinion dynamics within each
node, while interactions among nodes could be characterized through an
agent-based formalism.

- Learning and memory aspects. The models here presented could be suit-
ably extended to account for the fact that individuals tend to learn from
their past experiences, so that the opinions expressed at the present time
also depend on the individuals’ memories of the past. This could lead
to define delayed integro-differential equations, whose qualitative analysis
should require the identification of new analytical approaches compared
to the ones that we have so far developed.
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