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Introduction 
 

Disasters are crises that cause widespread damages and are beyond our ability to prevent or 

control. A progressive strategy for managing disasters ensures that loss of life and property is 

reduced in a disaster event: the primary goals of disaster management are to minimize losses 

from the disaster, to provide help to the victims and to facilitate a rapid recovery. Pre-disaster 

phases aim at identifying potential risks and the actions that can be taken before a disaster event 

in order to reduce its impact; post-disaster phases, instead, are aimed at providing assistance to 

people affected by a disaster, saving lives, protecting properties, making an affected area safe, 

and subsequently to regain a proper level of functioning at medium-long term.  

The study, performed in collaboration within ITHACA (Information Technology for Humanitarian 

Assistance, Cooperation and Action) association, a research center that works in the field of 

emergency management by providing methods, tools and services for both pre and post-disaster 

phases, is inserted in the framework of the rapid mapping activities performed by the association 

itself. 

The aim of the study is to provide reliable information about areas affected by the disaster in a 

few hours after it occurs; this information, properly used by civil protection operators, can help in 

better managing the first-aid in the field, enhancing the knowledge about extension of the 

affected area and occurred damages, particularly in less accessible zones. Satellite remote sensing 

data are a key element in rapid mapping activities (Ajmar et al. 2010b); space-based information 

are sources for mapping the impact of disaster, and can potentially provide the earliest 

information about the impact of disaster, but they can be used effectively only when the spatial 

data on other aspects (for example administrative boundaries, infrastructure details, settlements 

etc.) are integrated with the space-based information; these data layers can be used also for 

analysis and modelling along with scientific information to prepare risk maps related to various 

hazards (Ravan 2010). Where there is a lack of this kind of information, it’s necessary to derive it 

from different data source, such as archive satellite imagery: even if automatic classification 

techniques (both pixel based and object-oriented) have been successfully tested in several case 

studies, the most common approach in an operational context is still visual interpretation 

(Boccardo and Giulio Tonolo 2012). Participatory mapping through media such as OpenStreetMap 

or Google Map Maker are very useful when data are missing on large extent: in cases such as 

Haiti earthquake, the city was mapped within few days thanks to these sources (Ajmar et al. 

2010a). This kind of support rarely comes, and therefore the digitalization operations could 

become very heavy. Here’s why the creation of procedures for extracting thematism in automatic 

or semi-automatic way is so important. 

Between all necessary information, those related to the extent of urban areas are particularly 

relevant for supporting crisis management because it’s important to know where buildings and 

population are placed in order to provide information about the extent of damaged areas and 

population potentially involved during an emergency situation: all the crisis management cycle - 

including damage assessment, recovery, reconstruction and planning should benefit from an 

improved and globally-consistent description of human settlements (Pesaresi and Halkia 2012). 



Introduction 

2 
 

The mapping of human settlements has gained more and more importance due to increasing and 

rapid global urbanisation and the various effects of this development (Felbier et al. 2012); as a 

matter of fact in 2011 the global population passed the 7 billion mark, with more than half of the 

population living in urban areas. Between 2011 and 2050, the world population is expected to 

increase by 2.3 billion, increasing to 9.3 billion and, at the same time, the urban population is 

projected to gain 2.6 billion, passing from 3.6 billion in 2011 to 6.3 billion in 2050. A study 

performed by the Population Division of the Department of Economic & Social Affairs of the 

United Nations (World Urbanization Prospects – the 2011 revision) in order to understand the 

connection between urbanization and natural hazards, using a sample of  633 cities with more 

than 750.000 inhabitants in 2011, demonstrated that of the more than 450 urban areas with 1 

million inhabitants or more (representing 1.4 billion people), 60%, or about 890 million people, 

were living in areas of high risk of exposure to at least one natural hazard. In particular, cities in 

Latin America and the Caribbean, in Northern America, and in Asia, are the more located in areas 

exposed to natural hazards. Flooding is the most frequent and greatest hazard; drought, cyclones 

and earthquakes follow.  

When looking for data about built-up areas, mostly for what mapping at small scale is concerned, 

the need is to have freely available data, complete over the globe, at proper resolution and in a 

format suitable to be used in a GIS environment: sometimes it’s preferred to gain with 

information at lower resolution but available with global extent without any gaps rather than 

using costly high resolution data. Different projects made available global maps where urban 

areas were represented: until about fifteen years ago, global land cover datasets were based on 

pre-existing maps and atlases compiled from ground surveys, national mapping programs, and 

highly generalized biogeographic maps (Matthews 1983; Wilson M. and Henderson-Sellers A. 

1984). In the 1990's, small scale land cover maps were, for the first time, based on land surface 

properties observed from remote sensing (Stone et al. 1994; Defries et al. 1995; Hansen et al. 

2000; Loveland et al. 2000). Nowadays, nearly all global urban maps exploit remotely sensed 

imagery, either directly as input data or indirectly using remote sensing-based products 

(Schneider et al. 2010). 

Actually, best resolution to map Urban areas at global level is 300 m (GlobCover, Arino et al. 

2009); best resolution is available when mapping is performed at continental or country level, but 

this lead to gap of information: not all areas are covered in the same way and often data are 

missing where more necessary, like in developing countries. 

Although high resolution (HR, < 10 meter spatial resolution) and even very high resolution (VHR, < 

1 meter) imageries with an almost global coverage are available, no consistent global coverage of 

settlements derived from those datasets exists. This is due to the fact that HR and VHR satellite 

data are operated on a commercial basis and consequently complete global coverage is costly; 

moreover, for some applications like change detection, urban sprawl characterization, urban 

vegetation monitoring and (partially) disaster management, the availability of low-cost images as 

well as expensive fine resolution data sets is equally important, and the lower cost of coarser-

resolution images makes them more appealing for these applications. In the public sector a need 

emerges to find out possible uses of available sensors for new, interesting characterizations, and 

this is the case of urban studies using Landsat multispectral data (Lisini et al. 2005). Multi-spectral 

data, ranging from 20 meter to 100 meter ground pixel size, have proven to be very effective in 
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environmental analysis at local to regional scale, particularly in areas where human influence on 

the natural environment is heavy, as in the case of urban and sub-urban areas, due to the good 

compromise between the spatial and spectral details provided (Villa 2012). 

The main aim is therefore to develop algorithms for the classification of medium-resolution data 

that can be applied at global level. 
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Aim of the research 
 

This research work is performed in the above-mentioned framework with the aim of developing 

algorithms for the extraction of urban layer by means of medium spatial resolution Landsat data 

processing; decision tree is investigated as classification technique, due to its ability in 

establishing which are the most relevant information to be used for the classification process and 

its capability of extracting rules that can be later applied to any desired input.  

The classifier, that is constituted by rules that, once applied to the image, allow to generate the 

classification, is created on the basis of a sample that contains classified elements: the algorithm 

evaluates which are the most significant attributes in order to separate classes, together with 

thresholds that have to be used in order to create rules for the land cover extraction. 

The aim of this work is to evaluate which steps to perform in order to obtain a good classification 

procedure, mainly focusing on processing that can be applied to images and on training set 

features.  

Therefore, the training set is evaluated on the basis of: 

1. Number of classes with whom it is created; 

2. Temporal extension; 

3. Input attributes; 

While images are subject to: 

4. Different kind or radiometric pre-processing; 

5. Different post-processing 

For what the different variables examined for the training set generation is concerned, the 

following elements are considered: 

1. The aim of the classification process is to generate a Urban/Non urban binary mask; 

from a theoretical point of view, it could be enough to use a training set with only 

Urban and Non Urban elements in order to learn the classifier, taking into account 

land cover classes such as residential areas, industrial areas and streets for what 

Urban is concerned, and vegetation, cultivated fields, bare soil and everything else for 

what Non urban is concerned. Since very different classes would be joined together, 

mainly for what Non urban class is concerned, it wonder if this wouldn’t cause any 

problems in detecting rules. The first test is therefore aimed at analyzing this task: 

taking into consideration different land cover classes, from one side classifiers will be 

learned on the basis of two macro-classes of Urban/Non urban, from the other they 

will be learned on the basis of all considered land cover classes and than rules for the 

desired land cover class extracted. 

2. Since the aim is to create rules that can later be applied to scenes acquired at 

different times and in different locations, it is necessary to consider what are the 
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most suitable scenes for the training sets extraction. The concept of time is 

considered in this second part. From one side there is the need to extract information 

about the different land cover classes that is representative of more than one 

acquisition, from the other side the aim is to evaluate if the change that necessarily 

occours in some land cover class according to the season (e.g. vegetation) and less in 

other (e.g. urban) could be a useful element to separate classes and detect built-up 

areas. In order to analyze this task, information from a single image will be extracted 

in one case, in the other information will be extracted as a mean over a multitemporal 

set. 

3. The third test concern input attributes. Spectral information constitutes the first 

element to be used in order to characterize the different land cover classes. Other 

elements can be considered: indexes were evaluated in this framework. They allow 

enhancing some kind of behaviour and are derived from pixel spectral information. 

The aim is, in this case, to evaluate how to combine indexes and spectral information 

in order to create the training set (that is to determine if it’s better to use only 

spectral information, only indexes, or both) and to determine which are the most 

suitable indexes to better separate classes (that is indexes that are, more frequently, 

chosen by the algorithm to be part of the classifier). 

The second macro-analysis is related to the detection of best processing for input data (satellite 

images) and for the classification process output (urban layer). 

4. Images need, before being used, to be corrected from some errors that are inherent 

to the acquisition process; particularly, the focus is on radiometric errors that 

depends upon sensor, system geometry and atmosphere. Effects due to sensor and 

system geometry are corrected through a calibration into reflectance (thus allowing a 

better comparison between different scenes) while effects due to the presence of 

atmosphere have to be removed in order to better compare images acquired in 

different moments. Atmospheric correction can be performed with simplified 

methods or with rigorous models: the aim is here to evaluate if the application of 

more complex pre-elaborations (thus more time-demanding) is needed in this specific 

context in order to enhance classification accuracies.  

5. Classification results can be further submitted to post-processing in order to reduce 

the noise typical induced by pixel-based classifiers. This happens when single pixels 

are classified differently than the surrounding area and homogenous regions cannot 

be generated: post-processing can help in reducing this effect. When applying post-

processing with a clustering effect, the Minimum Mapping Unit is increased. In this 

framework different post-processing were tested on small areas, then the best one 

applied to all images in order to compare classification results with or without post-

processing.  

The work is performed on medium spatial resolution Landsat ETM+ data; above-mentioned 

variables are compared and results evaluated on the basis of reached accuracies. Data used for 

the validation is derived from the Digital Regional Technical Map. The validation mask, generated 

from a more refined data (one order of magnitude larger), is a very accurate data to be used for 
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validation purpose:  the mask itself or the procedure used to obtain it, can be used for further 

applications.  

Therefore, the thesis is subdivided in the following sections: 

Chapter 1 – it aims at providing an overview of built-up areas dataset freely and globally available 

to be used for mapping purposes; the review is extended also to dataset covering only Europe, in 

order to provide examples on how spatial resolution can be improved focusing on a smaller 

coverage. A second part is aimed at describing the main phases of a classification process, as well 

as providing a review of the available classification methods; lastly, the final part is devoted at 

describing which methods were used for the production of the above mentioned datasets, 

focusing on the ones derived from remotely-sensed imagery. 

Chapter 2 analyzes data, methods and software used in the framework of this research. The 

classifier, the classification process, the algorithm used for the study together with its main 

features are analyzed in the first part; data used for the study, both in input and for the validation 

phase, are described later. As far as input data is concerned, the main technical features, 

information about the mission, and reasons that led to the choice of this data are analyzed; data 

used for the validation are instead examined also on the basis of elements that are part of the 

dataset itself. In the end, main software used for data analysis and management are briefly 

described. 

Chapter 3 describes methodology used to examine the above mentioned tasks; all phases are 

analyzed in the detail, and a summary of created procedures is also provided. A section is also 

devoted to provide detailed information about the study area and specific used scenes.  

Chapter 4, at last, provides results of the performed analysis. They are evaluated both in 

qualitative way, in order to evaluate the generated output and to obtain information about most-

common errors of the classification process, both in quantitative way, using the Confusion Matrix 

and accuracy measures derived from it. An overview about rules generated by classifiers that 

provided better results is also given. 
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1 Literary review 

1.1 Introduction 
 

Satellite imageries are considered a key element in the framework of emergency mapping 

services, but a great importance is also given to reference data that are essential in order to 

provide a base upon which add information about damages caused by the event. Updated and 

reliable data inventory are desirable in this framework: freely available data, provided at global 

level and in a format suitable to be used in a GIS environment is the three main requirements.  

This work focuses on a particular thematism that is built-up areas. Built-up areas can be intended 

in two different ways: as a cartographic base layer, where elements are grouped in different 

categories and coded, or as a thematism, where the information is linked to the concept of land 

cover: elements are not coded in this case, just built-up area boundaries are provided. 

Cartographic base layers, that contain a huge amount of information, are usually provided with a 

limited extension; on the contrary, “built-up areas” thematism can be produced on a wider 

extent. Since our interest is to have information about the extension of urban areas, and not to 

single elements that are in the urban area, and since our aim is to deal with data available at 

global level, we will refer to urban with the meaning of urban thematism.  

The aim of this chapter is to provide the state of the art of urban areas datasets available at global 

level (chapter 1.2.1); a section is also devoted to provide an inventory of dataset available at 

European level (chapter 1.2.2), in order to point out how spatial resolution can be improved 

focusing on smaller extent. A general overview of the main phases of a classification process and 

taxonomy of image classification methods and techniques is instead provided in chapter 1.3.1 and 

1.3.2; a wide description of how the described methods and techniques were used for the 

production of the global and continental urban maps is provided in chapter 1.3.3. 

  



1  Literary review 

8 
 

1.2 Urban areas: inventory of existing dataset 
 

Until about fifteen years ago, global land cover datasets were based on pre-existing maps and 

atlases compiled from ground surveys, national mapping programs, and highly generalized 

biogeographic maps (Matthews 1983; Wilson M. and Henderson-Sellers A. 1984). In the 1990's, 

small scale land cover maps were, for the first time, based on land surface properties observed 

from remote sensing (Stone et al. 1994; Defries et al. 1995; Hansen et al. 2000; Loveland et al. 

2000). Nowadays, nearly all global urban maps exploit remotely sensed imagery, either directly as 

input data or indirectly using remote sensing-based products (Schneider et al. 2010). 

Satellite remote sensing, in fact, made it possible to gather information about not accessible areas 

(like mountainous area, foreign or dangerous country, etc.), offers wide regional coverage and 

good spectral resolution, enables continuous acquisition of data and serves as a large archive of 

historical data. 

Information about urban areas derived from remote sensing data can be extracted at different 

scales and with different coverage; usually, datasets available at global level suffer from lack of 

detail (ESA provides, with the Globcover dataset at 300 m resolution, the best dataset for built-up 

areas), while dataset at higher resolution are provided at country level or less. A wide percentage 

of landscape could not be covered with data at proper scale. 

 

This section provides an overview about datasets of built up areas; only datasets with the 

following features are considered: 

 freely available; 

 globally consistent; 

 in a format suitable to be used in a GIS environment 

Why are these features so important?  

The importance of having freely available data is easily explained: organizations not always have 

to possibility to sustain the cost necessary for the purchase of commercial data. 

The consistency of the data is necessary to be certain not having any gaps, and having all areas 

provided in the same way and with almost the same level of accuracy. Let’s think on data such as 

the one provided by OpenStreetMap: a huge amount of data is freely available, and information 

such as buildings and land use are provided. This kind of information could be very useful for 

emergency mapping purpose, after a preliminary quality check, but the coverage is not uniform: 

example of different coverage is provided in Figure 1 and Figure 2. 
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Figure 1 – Example of reference data necessary for the hypothetic production of cartography at medium-small scale 
(1:350.000) for emergency management: built up area boundaries and major roads are needed (on the right). Only 

two major roads and no information about built-up area is provided by OpenStreetMap (on the left) 

 

Figure 2 – Example of area where lot of information, provided by OpenStreetMap (on the left), can be used for the 
production of cartography at medium-small scale (1:250.000) for emergency management (on the right). Built-up 

areas appear in red colour 

  



1  Literary review 

10 
 

For what the third requirement is concerned, the way information is provided is very important: 

it’s necessary to deal with data in vector format, or in raster format with unique and coded values 

that allows easily extracting the thematism. Land cover datasets are a suitable type of 

information, while cartography, in a raster format, could be difficult to manage, also if 

georeferenced. 

The provided inventory focus on features such us the used source data (name and date of the 

resource), the dataset content (information that has been extracted from the satellite data), the 

dataset type (raster or vector), the scale or spatial resolution of the final output and the way to 

access the resource (link ftp or download from the website).  

The analysis was aimed at collecting information about dataset at global level; it order to provide 

examples of how much can the spatial resolution be improved focusing on smaller extent, a 

section was devoted to analyze data available in Europe.  

 

A first data inventory of global land cover datasets was performed by the author in the framework 

of a preparatory activity, promoted by the European Commission, in support to the GMES (Global 

Monitoring for Environment) initiative. The initiative, headed by the European Commission (EC) in 

partnership with the European Space Agency (ESA) and the European Environment Agency (EEA), 

is an Earth observation programme aimed at providing accurate, timely and easily accessible 

information to improve the management of the environment, understand and mitigate the 

effects of climate change and ensure civil security 

(http://www.esa.int/Our_Activities/Observing_the_Earth/GMES). The preparatory activity 

performed in this framework, “Implementation of an initial GMES service for geospatial reference 

data access covering areas outside Europe – Lot 2”, was aimed at realizing a geospatial reference 

data access through the following phases: data gathering activities, definition of a protocol for 

data quality checking, transformation of data into formats suitable for storage and their 

distribution. A part of the performed inventory, available in the Task 10 of the project delivery 

(Boccardo et al. 2012), was extracted and extended in this thesis in order to include also dataset 

specific for Urban thematism and to include datasets at higher spatial resolution:  Europe was 

chosen as test site.  

Therefore, the description of existing works is subdivided the following sub-sections: 

 Global urban maps (chapter 1.2.1); 

 Datasets of urban areas available in Europe at continental level (chapter 1.2.2). 
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1.2.1 Global Urban Maps 

 

In this section, the inventory performed in the framework of the GMES project (paragraph 1.2), 

adapted and extended according to our needs, is provided; information about urban maps 

available at global level is summarized in Table 1; Figure 3 represents the correlation between 

spatial resolution and reference data of global urban maps.  

Datasets of urban areas are usually provided at a global level as part of more complex databases 

that include not only this feature, but, generically, all information concerning land cover; only a 

few dataset are specific for the urban thematism. In land cover datasets, urban can be defined 

differently according to the adopted Classification System: for example, in the Land Cover 

Classification Scheme (LCCS, Di Gregorio and Jansen 2005) proposed by FAO, urban is defined as 

“Artificial Surfaces and associated areas”, according to the 17-class International Geosphere–

Biosphere Programme Classification (IGBP, Loveland and Belward 1997) is mentioned as “Urban 

and Built-up”, while in the 14-class University of Maryland classification (UMD; Hansen et al. 

2000), in the 10-class system used by the MODIS LAI/FPAR algorithm (Myneni et al. 2002; Lotsch 

et al. 2003),  in the 8-Biome classification proposed by Running et al. (1995) and in the 12-Class 

plant functional type classification described by (Bonan et al. 2002), it is simply mentioned as 

“urban”. 

Between selected global urban maps, one is a multi-thematic database that includes information 

about population and built-up areas (VMap0), six are general multi-class land cover maps that 

include an urban class (AVHHR Global Land Cover Classification, GLCC, GLC2000, GLCNMO, 

MCD12Q1, GlobCover 2009) while two are binary (presence/absence) maps devoted entirely to 

urban land:  MOD500 and the Dynamics of Global Urban Expansion. Among these, The Dynamics 

of Global Urban Expansion contains maps only for 120 cities in the globe with more than 100.000 

inhabitants. 

It’s important to mention other two projects devoted to the creation of global maps of urban 

settlements: the Global Human Settlement Layer (GHSL), performed by the Joint Research Centre 

(JRC) of the European Commission, and the Global Urban Footprint (GUF) of the German 

Aerospace Center (DLR). Since they are not actually complete or are only in a preliminary phase, 

they have been described but not mentioned in the following tables. 

 

Figure 3 - Representation of existing global urban maps with reference to scale (or spatial resolution) and reference 
date

Spatial 

resolution 

Reference date 



 

 
 

Product name Producer 
Source data  

(name and date of 
the resource) 

Dataset  
content 

Dataset 
type 

Scale or 
spatial 

resolution 
Access instruction 

Vector Map 
Level 0 

(VMap0) 
NGA 

Version 5 of  VMap0 
is based on the 

newest editions of 
the 1:1,000,000 

Operational 
Navigation Charts, 
published by the 

United States 
National Imagery 

and Mapping 
Agency on 

September 30, 2000 

Urban areas vector 1:1.000.000 http://www.mapability.com/info/vmap0_index.html 

AVHHR Global 
Land Cover 

Classification 

University of 
Maryland 

 Department of 
Geography (UMD) 

AVHRR imageries 
acquired between 

1981 and 1994 
land cover raster 

1° 
8 km 
1 km 

ftp.glcf.umiacs.umd.edu/data/landcover/data.shtml 
 

http://glcf.umiacs.umd.edu/data/landcover/data.sht
ml 

Global Land 
Cover 

Characterizatio
n database  

(GLCC) 

USGS, UNL, EC JRC 

AVHRR imageries 
acquired between 
April 1992 through 

March 1993 

land cover raster 1 km http://edc2.usgs.gov/glcc/glcc.php 



 

 
 

Product name Producer 
Source data  

(name and date of 
the resource) 

Dataset  
content 

Dataset 
type 

Scale or 
spatial 

resolution 
Access instruction 

Global Land 
Cover 2000 DB 

(GLC 2000) 

GVM Unit – JRC (in 
collaboration with 
over 30 research 
teams around the 

world including 
FAO, UNEP/GRID 

and CIESIN) 

GLC 2000 makes 
use of the VEGA 
2000 dataset: a 

dataset of 14 
months of pre-
processed daily 

global data acquired 
by the VEGETATION 

instrument on 
board the SPOT 4 

satellite 

land cover raster 1 km 
http://bioval.jrc.ec.europa.eu/products/glc2000/prod

ucts.php 

Global Land 
Cover by 
National 
Mapping 

Organizations 
(GLCNMO) 

- part of Global 
Map - 

Japan GSI (project 
coordination); 

National Mapping 
Organizations 

participating in 
Global Mapping 

project (data 
production) 

MODIS data 
observed in 2003 

land cover raster 
30 arc-sec  

(about 1 km 
at equator) 

http://www.iscgm.org/gmd/ 

MODIS Land 
Cover Type 

Product 
(MCD12Q1) 

University of 
Boston 

A full year of 
composites 8-day 

MODIS observation 
(from 2001 to 2010, 
one product every 

year) 

land cover raster 500 m 

REVERB: 
http://reverb.echo.nasa.gov/reverb/ 

 
DATA POOL: 

https://lpdaac.usgs.gov/get_data/data_pool 



 

 
 

Product name Producer 
Source data  

(name and date of 
the resource) 

Dataset  
content 

Dataset 
type 

Scale or 
spatial 

resolution 
Access instruction 

MODIS Urban 
Land Cover 

500m   
(MOD500) 

University of 
Wisconsin and 

Boston University 
(US-NASA) 

MODIS 500 m 
satellite data (2001-

2002) 
urban areas raster 500 m 

http://sage.wisc.edu/people/14chneider/research/da
ta.html 

Globcover 
2009 

GlobCover is an 
ESA initiative 

which began in 
2005 in 

partnership with 
JRC, EEA, FAO, 

UNEP, GOFC-GOLD 
and IGBP 

MERIS fine 
resolution mode 

data acquired 
between January 

2009 and December 
2009 

land cover raster 300 m http://ionia1.esrin.esa.int/index.asp 

The Dynamics 
of Global 

Urban 
Expansion 

This research was 
supported by the 
World Bank’s 

Urban 
Development 

Division and by 
the National 

Science 
Foundation 

Landsat TM  
(circa 1990) 

Landsat ETM+ (circa 
2000) 

urban areas 
(only for 120 

cities with 
more than 

100000 
inhabitants) 

raster 30 m 
http://clear.uconn.edu/projects/Urban_Growth/data.

htm 

Table 1 – Freely available urban maps actually distributed at global level 
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VMap0 

The Vector Map Level 0 (VMap0) database is an up-to-date and improved version of the NIMA's 

(National Imagery and Mapping Agency) Digital Chart of the World that provides worldwide 

coverage of vector geospatial data which can be viewed at 1:1.000.000 scale. The primary source 

for the database is the 1:1.000.000 scale Operational Navigation Chart (ONC) series co-produced 

by the military mapping authorities of Australia, Canada, United Kingdom, and the United States. 

The database contains data organized into 10 themes (Boundaries, Data quality, Elevation, 

Hydrography, Industry, Physiography, Population, Transportation, Utilities and Vegetation): 

information about urban areas is included in the class Population. Vmap0 is the earliest global 

map that includes an urban class.  

Urban areas are detected as built-up areas in the Population theme. 

 

AVHHR Global Land Cover Classification  

The first global land cover map compiled from remote sensing, AVHHR Global Land Cover 

Classification, was generated  by The University of Maryland, Department of Geography, in 1998; 

it made use  of the best  remote sensing data available at that time for global land cover 

applications. It was generated at 1° spatial resolution (DeFries and Townshend 1994) firstly, then 

at 8 km resolution (Defries et al. 1998), and lastly at 1 km resolution (Hansen et al. 2000). Data 

were acquired from the AVHRR satellites between 1981 and 1994.   

Urban areas are detected only in the 1km version and identified as “Urban and Built-up” (value: 

13). 

 

Global Land Cover Characteristics Data Base (GLCC) 

Developed by the U.S. Geological Survey (USGS), the University of Nebraska-Lincoln (UNL), and 

the European Commission's Joint Research Centre (JRC),  GLCC was developed on a continent-by-

continent basis using AVHHR NDVI composites covering 1992-1993 (Loveland et al. 2000).  All 

continental databases share the same map projections (Interrupted Goode Homolosine and 

Lambert Azimuthal Equal Area), have 1 km nominal spatial resolution, and are based on 1 km 

AVHRR data spanning April 1992 through March 1993. It was released in 1997.  

The database is provided with different classification legends (Global Ecosystems, IGBP, Biosphere 

Atmosphere Transfer Scheme, Simple Biosphere Model Scheme, Simple Biosphere 2 Model, USGS 

Land Use/Land Cover Scheme); urban areas are identified as “Urban” (value: 1) in Global 

Ecosystems, “Urban and Built-up” (value: 13) in IGBP, “Urban and Built-up land” (Code: 100) in 

USGS Land Use/Land Cover Scheme. 
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Global Land Cover Database 2000 (GLC 2000) 

Produced by the GVM (Global Vegetation Monitoring) Unit of the JRC in collaboration with over 

30 research teams from around the world with the aim to provide for the year 2000 a harmonized 

land cover database over the whole globe, GLC2000 (Bartholomé and Belward 2005) adopts a so 

called bottom-up approach: 19 Regional Land Cover datasets have been produced by regional 

experts and then harmonized into a full resolution global product. In order to guarantee 

consistency all partners used the global Land Cover Classification System (LCCS) provided by FAO. 

LCCS describes land cover according to a hierarchical series of classifiers and attributes. Coding 

each class with LCCS allows the map producer to create a regional legend, composed of individual 

classifiers, which hierarchically map into the more general global legend. The global scale 

GLC2000 legend documents 22 land cover types whereas the more detailed regional legends vary 

between 5 and 44 classes.  

Urban areas are detected as “Artificial surfaces and associated areas” (code 22) and provided with 

a resolution of 1km. The last release of the global version is dated January 2004, while regional 

versions can be more updated.  

 

Global Land Cover by National Mapping Organizations (GLCNMO), part of Global Map 

 

Proposed by the Ministry of Construction of Japan in 1992, coordinated by Geographical Survey 

Institute of Japan (GSI) and produced by the National Mapping Organizations (NMO) participating 

in the Global Mapping project, Global Map is a 1:1.000.000 scale framework dataset of the world. 

It consists of vector and raster layers of transport, administrative boundaries, drainage, elevation, 

vegetation, land use and land cover data. 

In Global Map, land cover layer is provided by the Global Land Cover by National Mapping 

Organizations (GLCNMO) dataset, a data of 1km grid with 20 land cover items. Data were created 

by using MODIS data observed in 2003.  

The classification is based on LCCS developed by FAO. Therefore, it is possible to compare and 

integrate GMLNMO and other land cover data products based on LCCS. Urban areas are identified 

with value: 18.  

 

MODIS Land Cover Type Product (MCD12Q1) 

With the launch, on December 1999, of Terra satellite that carried on the MODerate resolution 

Imaging Spectroradiometer (MODIS) sensor it was possible to have an improved basis for 

monitoring and mapping global land cover. MODIS land cover products were thereby generated 

firstly at 1 km resolution (Friedl et al. 2002), and later improved; the last version (Version 5), 

developed from the MODIS Land Cover group, Department of Geography and Environment at 

Boston University, has an increased  spatial resolution of 500 m. A lower spatial resolution climate 

modeling grid (MCD12C1) is produced at 0.05° resolution for user who do not require the spatial 
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detail afforded by the 500-m land cover product.  MCD12Q1 is provided at annual time steps for 

2001 – 2007 in Version 5, and for  2001 – 2010 in Version 5.1 (Friedl et al. 2010).  

It contains multiple classification schemes : IGBP ( Loveland and Belward, 1997), UMD from the 

University of Maryland (Hansen et al., 2000), MODIS LAI/FPAR scheme  (Myneni et al., 1997; 

Lotsch et al, 2001), the MODIS-derived Net Primary Production (NPP) scheme  proposed by 

Running et al. (1995) and the Plant Functional Type (PFT) scheme  described by Bonan et al. 

(2002).  

 

MODIS Urban Land Cover 500 m (MOD500) 

The MODIS 500-m global map of urban extent (Schneider et al. 2009; Schneider et al. 2010) was 

produced by Annemarie Schneider at the University of Wisconsin-Madison, in partnership with 

Mark Friedl at Boston Univeristy and the MODIS Land Group. The goal of this project was to 

generate a current, consistent, and seamless circa 2001-2002 map of urban, built-up and settled 

areas for the Earth’s land surface. This work builds on previous mapping efforts using Moderate 

Resolution Imaging Spectroradiometer (MODIS) data at 1-km spatial resolution (Schneider et al. 

2003), which was included as part of the MODIS Collection 4  Global Land Cover Product (Friedl et 

al. 2002; Friedl et al. 2010). 

The classes are defined according to the IGBP program; urban areas are detected as “Urban 

areas” with code 13.  

 

Globcover 2009 

Began in 2005 as an ESA initiative in partnership with JRC, EEA, FAO, UNEP, GOFC-GOLD and IGBP, 

the GlobCover project (Arino et al. 2007) has developed a service capable of delivering global 

composites and land cover maps using as input observations from the 300 m MERIS sensor on 

board the ENVISAT satellite. Delivered for the first time in 2008 (Globcover 2005) as the very first 

300 m global land cover map, it has been updated in 2010 with the  time series of MERIS FR 2009 

mosaics (Arino et al. 2009). 

The land cover map counts 22 land cover classes defined with the United Nations LCCS.  Artificial 

surfaces and associated areas (urban areas >50%) are coded with the value: 190.  

 

 

The Dynamics of Global Urban Expansion 

 

The Dynamics of Global Urban Expansion is a study, commissioned by the World Bank, with the 

aim of examining how cities expand: developing country cities should be making realistic yet 

minimal plans for urban expansion, designating adequate areas for accommodating the projected 

expansion, investing wisely in basic trunk infrastructure to serve this expansion, and protecting 

sensitive land from incursion by new urban development. In the framework of this study, an 

universe of 3943 cities with population in excess of 100.000 was defined and stratified global 

http://www.sage.wisc.edu/people/schneider/schneider.html
http://modis-land.gsfc.nasa.gov/
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sample of 120 cities from this universe (Angel et al. 2005) was drawn. The 120 cities were 

identified from remote sensing data acquired in two different periods: circa 1990 and circa 2000. 

Data were acquired from Landsat TM in the first case and Landsat ETM+ in the second case. 

Also if this work doesn’t provide a consistent layer of built-up areas, it is equally mentioned since 

it can be useful for some applications and also because it deals with imageries at higher resolution 

than the previous mentioned works.  

 

 

Global Human Settlement Layer (GHSL) 

 

Performed by the Joint Research System (JRC) of the European Commission and released for the 

first time in November 2012, the Global Human Settlement Layer is the first ever compiled 

dataset of human settlement containing globally-consistent physical measurements describing 

human settlements at different scales, generated systematically and automatically. It’s provided 

with three nominal reference scales: 1:10.000 (local), 1:50.000 (regional) and 1:500.000 (global). 

It makes use of multi-resolution, multi-platform and multi-sensor image data: 75m ENVISAT-ASAR 

data, 30m Landsat TM, 2.5 m SPOT till to 0.5-0.6 GeoEye and Worldview data. The first version of 

the public GHSL platform is only experimental and is delivering a small subset of the information 

layers currently under test in the internal GHSL platform prototype. The public GHSL can be 

accessed using a web interface (http://ghslsys.jrc.ec.europa.eu/concept.php) but it can be 

requested access to the WMS service. Future versions will allow a ‘process on demand’, where 

interested users may process their satellite or airborne data to derive the GHSL information layers 

of their data. 

 

Global Urban Footprint (GUF) 

The German Aerospace Center (DLR) is developing the Urban Footprint Processor (UFP) in order 

to generate a global binary map of human settlements of the year 2011 and 2012 - the Global 

Urban Footprint (GUF). It will exploit the TanDEM-X (TerraSAR-X add-on for Digital Elevation 

Measurements) mission that acquired two complete coverages of the earth’s surface of the years 

2011 and 2012 (Felbier et al. 2012).  

The final product will be made available as a public domain product and will therefore have a 

resolution of 3 arc second, which corresponds to a resolution of about 75 m. 

 

1.2.2 Urban maps available at continental level: the case of Europe  

 

The outcomes of the performed inventory state that the best resolution available for dataset of 

urban areas currently completed and released at global level is 300 m (Globcover, Arino et al. 

2007);  layers of urban areas at higher resolution are provided with smaller geographic extent.  
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In this section an overview about dataset available at European level is provided; information is 

summarized in Table 2. Focusing on smaller extent, it’s possible to find datasets with improved 

spatial resolution. 

Between selected European urban maps, three are general multi-class land cover maps that 

include an urban class (GlobCorine, CLC, and Urban Atlas), while one, the High Resolution Soil 

Sealing Layer, characterize urban land as a continuous variable: the fraction of impervious surface. 

One of the three multi-class land cover maps, Urban Atlas, provides information only on cities 

with more than 100.000 inhabitants. 

 

GlobCorine  

The GlobCorine project builds on the GlobCover findings and aims to make the full use of the 

MERIS time series for frequent land cover monitoring at the pan-European scale. This dataset will 

not be as precisely as the Corine Land Cover (CLC), described later, but will significantly shorten 

the time response and expand the coverage. The main source is MERIS 300m Full Resolution Full 

Swath (FRS) composites as produced and delivered by the GlobCover processing chain (acquired 

between January and December 2009). 

The legend associated with the GlobCorine 2009, identical to the GlobCorine 2005 one, was 

defined to be as compatible as possible with the CLC aggregated typology and with the LCCS 

system. “Urban and associated areas” areas are identified with code 10. 

 

 

Corine Land Cover and High Resolution Soil Sealing layer 

Born at European level  for “for gathering, coordinating and ensuring the consistency of 

information on the state of the environment and natural resources in the Community” (Official 

Journal L 176, 6.7.1985), the first realization of the project date back at 1990 (CLC90); it has been 

further updated in 2000 through the project “Image & Corine Land Cover 2000” and again in 2006 

within the initiative “Fast Track Service on Land Monitoring” (FTSP) of Global Monitoring for 

Environment and Security (GMES) Program. 

Among services that have been realized through CLC2006, there are: 

- Corine land cover mapping 2006; 

- Corine land cover change mapping 2000–2006;  

- Built-up areas including degree of soil sealing, 2006 

Imageries provided by SPOT-4 and IRS P6 satellites acquired in 2006 +/- 1 year have been 

employed for the production of this dataset; they have, respectively, pixel size of 20 (multi-

spectral) and 10 meters (panchromatic)  in case of SPOT and pixel size of 23 meters in case of IRS 

P6 satellite. They have been resampled to 20 m and the output provided in vector format with a 

nominal scale of 1:100.000. Output is also provided in raster format resampled to 100 m or 250 

m. 
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The standard CLC nomenclature includes 44 land cover classes. These are grouped in a three-level 

hierarchy, with 44 classes at third level, 15 at second and 5 at first level. The five main (level-one) 

categories are: 1) artificial surfaces, 2) agricultural areas, 3) forests and semi-natural areas, 4) 

wetlands, and 5) water bodies.  

Information about urban areas is therefore available within this layer with increasing level of 

detail.  

In the framework of the same program it has been commissioned the production of a High 

resolution soil sealing layer; obtained from the same imageries acquired for CLC2006, it provides 

information about the sealing degree of built-up areas (ranging from 0 to 100%). 

 

Urban Atlas 

The European Urban Atlas is part of the local component of the GMES land monitoring services, 

one of the services planned in the framework of GMES to manage and protect the environment 

and natural resource, and ensure civil security.  It provides high-resolution land use maps for 305 

Large Urban Zones and their surroundings (more than 100.000 inhabitants as defined by the 

Urban Audit) for the reference year 2006 at scale 1:10.000. 

Urban is detected and subdivided in 5 levels according the density of buildings, other classes have 

been created for certain categories, such as industrial, commercial or sports and leisure facilities. 



 

 
 

Product 
name 

Producer 
Source data  

(name and date of the 
resource) 

Dataset  
content 

Dataset 
type 

Scale or 
spatial 

resolution 
Access instruction 

GlobCorine 

Launched by ESA in a joint 
initiative with EEA and 

implemented by Université 
Catholique de Louvain. 

MERIS 300m Full 
Resolution Full Swath 
(FRS) composites as 

produced and 
delivered by the 

GlobCover processing 
chain (acquired 

between January 2009 
and December 2009) 

land cover raster 300 m http://ionia1.esrin.esa.int/globcorine/ 

Corine Land 
Cover 
(CLC) 

The project is coordinated, at 
European level, by the European 
Commission  and the European 

Environment Agency 

For the last version 
(2006):  

SPOT-4 HRVIR at 10/20 
m resolution and/or 
IRS P6 LISS III at 23 m 
resolution acquired in 

2006 +/- 1 year 

land cover 
vector 

or 
raster 

1:100K 
(100 m or 
250 m for 

rater format) 

Data are distributed from EEA at:  
 

http://www.eea.europa.eu/data-and-
maps/data 

 
in vector or raster format (at 100 m or 
250 m resolution) in country files or as 

a unique layer 



 

 
 

Product 
name 

Producer 
Source data  

(name and date of the 
resource) 

Dataset  
content 

Dataset 
type 

Scale or 
spatial 

resolution 
Access instruction 

High 
resolution 

Soil Sealing 
Layer 

Commissioned in the framework 
of GMES Fast Track Service on 
Land Monitoring Programme 
from EEA, realized from an 

International Team composed by 
Infoterra GmbH (Germany), 

Planetek Italia, Metria (Sweden), 
Geoville (Austria), GISAT (Czech 

republic) e Tragsatec (Spain) and 
validated from single Member 

States 

SPOT-4 HRVIR at 10/20 
m resolution and/or 
IRS P6 LISS III at 23 m 
resolution acquired in 

2006 +/- 1 year 

degree of 
imperviousness 

raster 20 m - 100 m 

Raster version at 100 m resolution is 
distributed from EEA at:  

http://www.eea.europa.eu/data-and-
maps/data 

 
Version at 20 m resolution is visible at: 
http://www.eea.europa.eu/data-and-

maps/explore-interactive-
maps/european-soil-sealing-v2 

Urban Atlas 

It is a joint initiative of the EC DG 
for Regional Policy and the DG 

for Enterprise and Industry with 
the support of ESA and the EEA. 

The Urban Atlas was executed by 
the French company Systèmes 
d’Information à Référence 

Spatiale (SIRS). 

Earth Observation (EO) 
data acquired between 

2005 and 2007 with 
2.5 m spatial 

resolution 
multispectral or pan-

sharpened 
(multispectral merged 

with panchromatic) 
data. Multispectral 
data includes near-

infrared band. 

land use/ land 
cover 

(only for cities 
with more than 

100000 
inhabitants) 

vector 1:10K 
http://www.eea.europa.eu/data-and-

maps/data/urban-atlas 

Table 2 – Freely available urban maps distributed at European level 
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1.3 Image classification methods and techniques  
 

Basically, classification can be defined as the ordering of entities into groups or classes on the 

basis of their similarity. This means that a set of entities is arranged into groups, so that each 

group is as different as possible from all other group, but internally as homogeneous as possible 

(Bailey 1994). In remote sensing, the classification process brings to the creation of a thematic 

map, where each pixel is associated with semantic information related to a specific theme, class 

or category.  

Classifying remotely sensed data into a thematic map remains a challenge because of many 

factors, such as the complexity of the landscape in a study area, the selection of remotely sensed 

data and image-processing and classification approaches, may affect the success of a classification 

(Lu and Weng 2007). 

The major steps that may be involved in image classification are described in section 1.3.1;  an 

overview about major classification methods is provided in section 1.3.2, while section 1.3.3 

describes the classification approaches used by the urban maps described in sections 1.2.1 and 

1.2.2. 

 

1.3.1 Remote sensing classification process 

 

Remote-sensing classification process starts from the analysis of the observed ground in order to 

produce a thematic map. This process can be performed from the interpreter through visual 

interpretation or by means of automatic classification that reduce the subjectivity of the 

interpreter.  

In this case, the interpretation process may occur in different ways, but the major steps are the 

following (Lu and Weng 2007): 

 Determination of a suitable classification system;  

 Selection of training samples;     

 Image pre-processing;              

 Feature extraction;                 

 Selection of suitable classification approaches;       

 Post-classification processing;           

 Accuracy assessment.                          

A suitable classification system and a sufficient number of training samples are prerequisites for a 

successful classification. A classification system determine the system used in order to classify 

things; when planning a project involving remotely sensed data, it is very important that sufficient 

effort be given to the classification scheme to be used. In many instances, this scheme is an 

existing one; in other cases, the classification scheme is dictated by the objectives of the project. 

A few simple guidelines should be followed. First of all, any classification scheme should be 

mutually exclusive and totally exhaustive. In other words, any area to be classified should fall into 

one and only one category or class. In addition, every area should be included in the classification. 
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Finally, if possible, it is very advantageous to use a classification scheme that is hierarchical in 

nature. If such a scheme is used, certain categories within the classification scheme can be 

collapsed to form more general categories (Congalton 1991). 

A sufficient number of training samples and their representativeness are critical for image 

classifications (Hubert-Moy et al. 2001; Chen and Stow 2002; Landgrebe 2003; Mather 2004). 

Training samples are usually collected from fieldwork, or from fine spatial resolution aerial 

photographs and satellite images. When the landscape of a study area is complex and 

heterogeneous, selecting sufficient training samples becomes difficult. This problem would be 

complicated if medium or coarse spatial resolution data are used for classification, because a 

large volume of mixed pixels may occur. Therefore, selection of training samples must consider 

the spatial resolution of the remote-sensing data being used, availability of ground reference 

data, and the complexity of landscapes in the study area. 

Image pre-processing may include the detection and restoration of bad lines, geometric 

rectification or image registration, radiometric calibration and atmospheric correction, and 

topographic correction. Accurate geometric rectification or image registration of remotely sensed 

data is a prerequisite for a combination of different source data in a classification process, while 

atmospheric correction is mandatory when multitemporal or multisensor data are used. 

Selecting suitable variables is a critical step for successfully implementing an image classification. 

Many potential variables may be used in image classification, including spectral signatures, 

vegetation indices, transformed images, textural or contextual information, multitemporal 

images, multisensor images, and ancillary data, but the use of too many variables in a 

classification procedure may decrease classification accuracy (Hughes 1968; Price et al. 2002), and 

is therefore important to select only the variables that are most useful for separating land-cover 

or vegetation classes, especially when hyperspectral or multisource data are employed. 

The classification method should be selected taking into account many factors, such as spatial 

resolution of the remotely sensed data, different sources of data, a classification system and 

availability of classification software. Different classification results may be obtained depending 

on the classifier chosen; a detail summarization of major classification methods is provided in 

section 1.3.2. 

Post-classification processing is an important step in improving the quality of classifications (Harris 

& Ventura 1995; Murai & Omatu 1997; Stefanov et al. 2001; Lu & Weng 2004); usually, a majority 

filter is  applied to reduce the noise that come out from traditional per-pixel classifier (“salt and 

pepper” effect) or ancillary data are used to modify the classification image based on established 

expert rules (For example, data describing terrain characteristics can be used to modify 

classification results of forest distribution, or population density data to correct some 

classification confusions between commercial and high-intensity residential areas  in classification 

of urban areas).  

Evaluation of classification results is an important process in the classification procedure. 

Different approaches may be employed, ranging from a qualitative evaluation based on expert 

knowledge to a quantitative accuracy assessment based on sampling strategies. Three basic 

components are included in a classification accuracy assessment: sampling design, response 

design and analysis procedures. 
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The error matrix is one of the most widely used approach in accuracy assessment; after 

generation of an error matrix, other important accuracy assessment elements, such as overall 

accuracy, omission error, commission error, and kappa coefficient, can be derived. All these 

components are widely descript in section 3.2.8. 

 

1.3.2 Image classification approaches  

 

Classification methods can be grouped differently according to the considered criteria; this 

section aims at providing a first overview of image classification methods subdivided according to 

the selected criteria. For more information about each method, reference bibliography should be 

consulted (Brivio et al. 2006; Gomarasca 2009). As mentioned in Lu & Weng 2007, classifiers can 

be grouped as: 

 supervised or unsupervised; 

 parametric or non parametric; 

 hard and soft (fuzzy); 

 per-pixel or sub pixel; 

 objected-oriented or per- field; 

 spectral, contextual or both. 

 

Supervised/Unsupervised 

Classification can be supervised or unsupervised whether training samples are used or not. In a 

supervised approach classes are previously defined and a certain number of pixels is selected as 

representative for each class and then used to train the classifier in order to classify the spectral 

data into a thematic map: the classification method depend on the knowledge of the ground 

truth. Maximum Likelihood, Minimum Distance, Decision Tree  (Hansen et al. 1996; Friedl & C. 

Brodley 1997; Defries et al. 1998; Friedl et al. 1999; Defries & Chan 2000; Pal & Mather 2003; 

Lawrence et al. 2004) are example of supervised classifiers. 

Unsupervised classification approach makes use of clustering-based algorithms that are used to 

partition the spectral image into a number of spectral classes based on the statistical information 

inherent in the image. Spectral classes are then merged and labelled by the analyst. ISODATA and 

K-means clustering algorithms are unsupervised classifiers. 

 

Parametric/Non parametric 

Classifiers can be either parametric or non-parametric whether parameters (such as mean, 

standard deviation, etc.) are used or not. Parametric classifiers are based on distribution model 

(e.g. Gaussian) defined by geometric-statistical parameters that are generated from training 

samples. Maximum Likelihood, Minimum Distance, Parallelepiped are example of parametric 
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classifiers. In non-parametric classifier no assumption about data is required. They don’t employ 

statistical parameters to calculate class separation. Artificial neural network, Decision Tree 

classifier and Support Vector machine are good example. 

 

Per pixel/Sub pixel 

Classifiers are divided in per-pixel and sub-pixel according to which kind of pixel information is 

used. Traditional per-pixel classifiers typically develop a signature by combining the spectra of all 

training-set pixels for a given feature. The resulting signature contains the contributions of all 

materials present in the training pixels, but ignores the impact of the mixed pixels. Most of the 

classifiers own at this category. To overcome this problem, sub pixel classification approaches 

have been developed to provide a more appropriate representation and accurate area estimation 

of land covers than per-pixel approaches, especially when coarse spatial resolution data are used 

(Foody & Cox 1994; Binaghi et al. 1999; Ricotta & Avena 1999; Woodcock & Gopal 2000); the 

spectral value of each pixel is assumed to be a linear or non-linear combination of defined pure 

materials (or endmembers), providing proportional membership of each pixel to each 

endmember. The fuzzy-set technique (Foody 1996; Maselli et al. 1996; Mannan et al. 1998; Zhang 

& Kirby 1999; Shalan et al. 2003) and spectral mixture analysis (SMA) classification (Adams et al. 

1995; Roberts et al. 1998; Rashed et al. 2001; Lu et al. 2003)  are the most popular approaches 

used to overcome the mixed pixel problem. 

 

Hard/soft 

Classifier can be either hard or soft (fuzzy) whether the output is a definitive decision about land 

cover class or not. Hard classifier are based on the hypothesis that all pixel in the image have pure 

spectral characteristics, that every pixel belong to just one class, and that all land cover classes 

have constant spectral signatures (Brivio et al. 2006). Soft classifiers, instead, provide for each 

pixel a measure of the degree if similarity for every class. They provide more information and, 

potentially, a more accurate result especially for coarse spatial resolution data. Classifiers that 

provide this information are Fuzzy set classifiers and Spectral Mixture Analysis.  

 

Object oriented/Per-field 

Classifier can be either Object-oriented or Per-field according to which kind of pixel information is 

used. In object-oriented the classification is conducted based on object, instead of an individual 

pixel, and object are obtained from processing such as Image Segmentation. No GIS vector data 

are used. In Per-field classifiers, vector or raster data are integrated in the classification; for 

example, vector data can be used to subdivide an image into parcels, and classification is based on 

parcels. 
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Spectral/Contextual 

Depending on whether spatial information is used or not, classifier can be defined as spectral, 

contextual, or spectral-contextual; in spectral classifiers pure spectral information is used, while 

contextual classification exploits spatial information among neighbouring pixels to improve 

classification results (Flygare 1997; Stuckens et al. 2000; Hubert-Moy et al. 2001; Magnussen et al. 

2004). A contextual classifier may use smoothing techniques, Markov random fields, spatial 

statistics, fuzzy logic, segmentation, or neural networks (Binaghi et al. 1997; Cortijo and De La 

Blanca 1998; Kartikeyan et al. 1998; Keuchel et al. 2003; Magnussen et al. 2004). In general, pre-

smoothing classifiers incorporate contextual information as additional bands, and a classification 

is then conducted using normal spectral classifiers, while post-smoothing classification is 

conducted on classified images previously developed using spectral-based classifiers. The Markov 

random field-based contextual classifiers, such as iterated conditional modes, are the most 

frequently used approaches in contextual classification (Cortijo and De La Blanca 1998; 

Magnussen et al. 2004), and have proven to be effective in improving classification results. 

 

In order to improve classification accuracy, different characteristics of remote sensing data have 

been taken into consideration and employed in image classification. In particular, use of spatial 

information, integration of different sensor data, use of multi-temporal data, data transformation 

techniques and use of GIS have been taken into consideration and will be described. 

 

Use of spatial information 

Spatial resolution determines the level of spatial detail that can be observed on the Earth’s 

surface. Fine spatial resolution data greatly reduce the mixed-pixel problem, providing a greater 

potential to extract much more detailed information on land cover structures than medium or 

coarse spatial resolution data. However, some new problems associated with fine spatial 

resolution image data emerge: the high spectral variation within the same land-cover class is one 

of the major disadvantages. In order to make full use of the rich spatial information inherent in 

fine spatial resolution data, it is necessary to minimize the negative impact of high intraspectral 

variation. Exploiting the spatial information, information important for the understanding of an 

image is not represented in single pixels but in meaningful image objects and their mutual 

relations (Blaschke et al. 2000). Spatial information may be used in different ways, such as in 

contextual-based or object-oriented classification approaches, or classifications with textures. 

Many texture feature extraction methods exist. Tuceryan and Jain (1993) identify four major 

categories of texture feature analysis methods: 1) statistical (such as those based on the 

computation of the Gray-Level Co-Occurrence matrix, GLCM), 2) geometrical (including 

structural), 3) model-based, such as Markov random fields (MRF), and 4) signal processing (such 

as Gabor filters). GLCM is one of the most popular methods for extracting textural feature from 

images 
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Integration of different sensor data 

Images from different sensors contain distinctive features. Data fusion or integration of multi-

sensor or multi-resolution data takes advantage of the strengths of distinct image data for 

improvement of visual interpretation and quantitative analysis. Data fusion involves two major 

procedures: (1) geometrical co-registration of two datasets and (2) mixture of spectral and spatial 

information contents to generate a new dataset that contains the enhanced information from 

both datasets. Accurate registration between the two datasets is extremely important for 

precisely extracting information contents from both datasets, especially for line features, such as 

roads and rivers. Radiometric and atmospheric calibrations are also needed before multi-sensor 

data are merged. 

Fused images may provide increased interpretation capabilities and more reliable results since 

data with different characteristics are combined. The images vary in spectral, spatial and temporal 

resolution and therefore give a more complete view of the observed objects.  

Many methods have been developed to integrate spectral and spatial information in previous 

literature. In general, the techniques can be grouped into two classes: (1) Colour related 

techniques, and (2) Statistical/numerical methods (Pohl and Van Genderen 1998). 

The first comprises the colour composition of three image channels in the RGB colour space as 

well as more sophisticated colour transformations, e.g., IHS and HSV.  

Statistical approaches are developed on the basis of channel statistics including correlation and 

filters. Techniques like Principal Component Analysis (PCA) and Regression belong to this group. 

The numerical methods follow arithmetic operations such as image differencing and ratios but 

also adding of a channel to other image bands. A sophisticated numerical approach uses 

Wavelets-merging techniques. 

 

Use of multi-temporal data 

The use of different seasons of remotely sensed data has proven useful for improving 

classification accuracy; multitemporal data can be useful in classification in order to correct cloud 

cover, to enhance different behaviour of objects according to the season, to assess change 

detection and for monitoring issues.   

 

Data transformation techniques 

A large number of spectral bands provide the potential to derive detailed information on the 

nature and properties of different surface materials on the ground, but the bands also create 

difficulty in image processing and high data redundancy due to high correlation in the adjacent 

bands. An increase in spectral bands may improve classification accuracy, but only when those 

bands are useful in discriminating the classes (Thenkabail et al. 2004). Several techniques have 

been developed to transform the data from highly correlated bands into a dataset. Vegetation 

indices, principal component analysis, tasselled cap, and minimum noise fraction, are among the 

most commonly used ones (Oetter et al. 2000; Wu and Linders 2000). Wavelet transform and 
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spectral mixture analysis have also been used in recent years (Roberts et al. 1998; Rashed et al. 

2001; Lu and Weng 2004). 

 

Use of ancillary data 

Ancillary data, such as topography, soil, road, and census data, may be combined with remotely 

sensed data to improve classification performance. For example, topographic data are valuable 

for improving land-cover classification accuracy, especially in mountainous regions (Janssen et al. 

1990, Meyer et al. 1993, Franklin et al. 1994), and DEM-derived variables may be used in the 

image-pre-processing stage for topographic correction or normalization so the impact of terrain 

on land-cover reflectance can be removed (Teillet et al. 1982; S. 1996; R. 1997; Gu and Gillespie 

1998; Dymond and Shepherd 1999; Tokola et al. 2001). 

Moreover, data related to human systems such as population distribution and road density are 

frequently incorporated in urban classifications (V. 1998; Epstein et al. 2002; Zhang et al. 2002). 

GIS plays a critical role in handling multisource data, because it helps to manage multisource data, 

it’s able to convert different data formats into a uniform format and evaluating the data quality 

and it further develop suitable models for classification. 

 

1.3.3 Classification approaches used in global and continental urban maps 

 

Maps of land cover are usually produced with one of these three methods: clustering, maximum 

likelihood classification and decision tree classifiers. Maps of urban areas at higher spatial 

resolution (layer of land cover at European level) still exploit, sometime in consistent way, visual 

interpretation techniques (Corine Land Cover, High Resolution Soil Sealing Layer), while almost all 

makes use of different methodology or ancillary data derived from other sources for the 

extraction of urban areas: AVHHR and GLCC rasterized urban polygons from DCW, GLCNMO used 

population data and other satellite data, MCD12Q1, GlobCover and GlobCorine used a specific 

supervised approach for urban areas.   

Methods used for the production of above-mentioned urban datasets were analyzed and 

described below, focusing on the ones derived from remote sensing; Table 3 and Table 4 

summarize collected information (only for datasets currently completed). 
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AVHHR Global 
Land Cover 

Classification 

Maximum 
Likelihood  

Classification  
(1° version) 

o 
 

o 
 

o 
  

o 
 

o 
 

no no o o no 
 

  

Decision tree  
(8 km version) 

o 
  

o o 
  

o 
 

o 
 

no no o o no 
 

  

Decision tree  
(1 km version) 

o 
  

o o 
 

- o 
 

o 
 

no no o o o 
 

  

Global Land 
Cover 

Characterizatio
n database 

(GLCC) 

Unsupervised 
clustering  

o 
  

o 
 

- 
  

o 
 

no no o o o 
 

  

Global Land 
Cover 2000 DB  

(GLC 2000) 

Different according 
to region; mainly 

unsupervised 
clustering 

- - - - - - - 
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Global Land 
Cover by 
National 
Mapping 

Organizations 
(GLCNMO) 

- part of Global 
Map - 

Maximum 
Likelihood  

Classification 
o 

 
o 

 
o 

 
- o 

 
o 

 
no o o o o 

 
  

MODIS Land 
Cover Type 

product 
(MCD12Q1) 

Decision tree and 
boosting 

o 
  

o o 
 

- o 
 

o 
 

No no o o o 
 

  

MODIS Urban 
Land Cover 

500m 
(MOD500) 

Decision tree and 
boosting 

o 
  

o o 
  

o 
    

no o o o filter   

Globcover 2009 

Supervised for land 
cover that are not 
well represented 
(urban, wetland) 
and unsupervised 

for other 

o o - o 
 

- o 
 

o 
 

No no o o o 
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The Dynamics 
of global urban 

expansion 
ISODATA in 2 steps 

 
o 

 
o 

  
o 

  
No no no no o 

 
  

Table 3 – A survey of classification methods used in order to produce global urban maps derived from remote sensing described in Table 1 
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GlobCorine 
Supervised 

and 
unsupervised 

o o 
 
 

o 
 

 
 

 
 

o 
 

no no o o o 
 

  

Corine 
Land Cover 

(CLC) 

Photo 
interpretation 

o 
 

 
 

o 
 

 
 

o 
 

- no no no no no 
 

  

High 
resolution 

Soil 
Sealing 
Layer 

Maximum 
Likelihood 

classification 
and visual 

interpretation 

o 
 

o 
 

o 
 

 
 

o 
 

o 
 

no o o o no 
 

  

Urban 
Atlas 

Segmentation 
and clustering  

o 
 
 

o 
 

o 
 

o 
 

o 
 

no o no no o 
 

  

Table 4 – A survey of classification methods used in order to produce urban maps available at European level described in Table 2 
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AVHHR Global Land Cover Classification was produced with different methodologies according to 

the input used dataset; the version at 1° spatial resolution was produced using maximum 

likelihood classification of monthly composited AVHRR normalized difference vegetation index 

(NDVI) data (DeFries and Townshend 1994), while the 8km spatial resolution version was made 

using a decision tree classification technique (Defries et al. 1998). The 1 km version was obtained, 

more recently, with a supervised classification strategy using decision trees (Hansen et al. 2000). A 

set of 41 metrics, derived from bands 1-5 and NDVI was created for input into the decision tree, 

and pruning based on visual interpretation. The urban and built-up class wasn’t, however, derived 

from the AVHHR imageries but developed from the populated places layer that is part of the 

Digital Chart of the World (Danko 1992). 

 

The methods used for Global Land Cover Characteristics Data Base can be described as 

multitemporal unsupervised classification of NDVI data with post-classification refinement using 

multi-source earth science data (http://edc2.usgs.gov/glcc/globdoc2_0.php). Data are initially 

processed by recomposing the 10 day composites into monthly data sets. Masks representing 

water bodies, snow and ice, and barren or sparsely vegetated areas are then developed to 

eliminate NDVI data from the composites for those areas where the meaning of the NDVI values is 

ambiguous. An unsupervised clustering is then applied in order to segment the 12-month NDVI 

composites into seasonal greenness classes and a preliminary labeling performed in order to 

provide a general understanding of the characteristics of each cluster and to determine which 

classes have two or more disparate land cover classes represented within their spatial 

distribution. A post-classification stratification is used at this step in order to separate classes 

containing two or more disparate land cover types and initial criteria therefore refined and finally 

used to permanently modify the original class. 

As AVHHR Global Land Cover Classification, also GLCC rasterized the urban polygons from the 

Digital Chart of the World.  

 

As mentioned before, GLC2000 was created with a bottom up approach, by harmonizing 19 

regional land cover mapping performed by regional experts. Each partner had to use data based 

on SPOT-4 VEGETATION VEGA2000 dataset, with the opportunity to choose the preferred method 

of mapping and the regional legend. A less thematically detailed global legend was also created to 

harmonize regional legends into one consistent product. It derives a large amount of techniques 

that are summarized in Annex I: most of them exploit unsupervised classification techniques 

(clustering) with an a-posteriori labeling using available regional dataset as reference (Fritz et al. 

2003). 

 

In GLCNMO the source data were processed to remove cloud contamination, reprojected into 

latitude/longitude coordinate system, and mosaicked to make five continental data (Eurasia, 

North America, South America, Africa, and Oceania) and two island regions in the Ocean. 

Training data for supervised classification were collected using Landsat image, MODIS NDVI 

seasonal change pattern, and comments from National Mapping Organizations with the reference 
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of Google Earth, Virtual Earth and existing regional maps; a maximum likelihood method was 

applied.  

Six land cover classes, which are Water, Urban, Tree open, permanent snow/ice, Mangrove, and 

Wetland, were extracted independently. Particularly, urban areas were extracted using 

population density data (Landscan dataset, http://www.ornl.gov/sci/landscan/index.html ),  

MODIS/NDVI data to exclude large green area such as a park in populated area and DMSP/OLS 

data (http://www.ngdc.noaa.gov/dmsp/maps.html) to exclude villages in developing countries 

with large population (Tateishi et al. 2003). 

 

The MODIS Land Cover Type Product (MCD12Q1) is produced using a supervised classification 

algorithm that is estimated using a database of high quality land cover training sites (Friedl et al. 

2010). The training site database was developed using high resolution imagery in conjunction with 

ancillary data. The base algorithm is a decision tree (C4.5; Quinlan 1993) in conjunction with a 

technique for improving classification accuracies known as boosting. Boosting improves 

classification accuracies by iteratively estimating a decision tree while systematically varying the 

training sample. 

Input features used in the algorithm include spectral and temporal information from MODIS 

BRDF/albedo (Schaaf et al. 2002) product (that provides surface reflectance measurements 

normalized to a consistent nadir view geometry based on BRDF- models of surface anisotropy, 

thereby minimizing the effect of variable view geometry in surface reflectance data) bands 1–7, 

supplemented by the enhanced vegetation index (EVI; Huete et al. 2002) and Collection 5 MODIS 

Land Surface Temperature (LST; Wan et al. 2002), which was not used in previous Collections. 

Since some classes are particularly problematic and difficult to map (urban land use, wetlands, 

and deciduous needleleaf forests), they have been classified with different methods. Urban areas, 

in particular, were mapped using an ecoregion-based stratification with eighteen strata, where 

training data and supervised classifications were developed and tuned to each stratum.  

 

MOD500, the first map developed at global level specifically for urban areas, exploit a 

classification methodology based on a supervised decision tree algorithm (C4.5), in conjunction 

with boosting (Schneider et al. 2009; Schneider et al. 2010).  

To facilitate processing and classification of the MODIS data, a global stratification of the Earth's 

land surface was developed in order to define 16 quasi-homogeneous strata (urban ecoregions); 

regions were then processed on a case-by-case basis. The classification approach employs a one-

year time series of MODIS data to exploit spectral and temporal properties in land cover types: 

differences in temporal signatures for urban and rural areas (that result from phenological 

differences between vegetation inside and outside the city) were used. MODIS 8-day NBAR values 

for the seven bands, aggregated to 32 day averages, and EVI index were used, together with 

monthly and yearly minima, maxima and means for each band in order to increase classification 

accuracy. 

The classification algorithm was run twice: it first utilizes the full set of land cover exemplars that 

includes urban sites and then excludes the urban training sites. The first classification classifies 

both the urban core and mixed urban spaces correctly, with the caveat that some non-urban 

areas are erroneously labeled urban land (e.g. expanses of semi-arid shrubland). The urban class 

http://www.ornl.gov/sci/landscan/index.html
http://www.ngdc.noaa.gov/dmsp/maps.html
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probabilities are then extracted from the first classification and areas of confusion determined on 

the basis of low membership to the urban class. These pixels take advantage of the information in 

the second classification (without urban sites) to modify the urban class probabilities using Bayes 

rule. This step relies on the urban ecoregion stratification previously described. Regional post-

processing includes application of the MODIS 500-m water mask, use of a spatial filter to remove 

single, stand-alone urban pixels, and hand editing. 

 

GlobCover 2009 has been developed considering two major modules: a pre-processing module, 

leading to global mosaics of land surface reflectance at 300 m, and a classification module leading 

to the final land cover map at 300 m resolution (Bontemps et al. 2011). The pre-processing 

includes the following steps: geometrics correction of the input data to achieve at least 150 m 

geo-location accuracy, atmospheric correction, including aerosol correction, cloud screening and 

shadow detection, land/water reclassification and a correction of the smile effect, Plate-carrée 

projection, Bidirectional Reflectance Distribution Function (BRDF) effect reduction and temporal 

compositing. The classification module starts with the stratification of the world in equal-

reasoning areas, in order to reduce the land cover variability in the dataset and to improve the 

discrimination efficiency of the classification algorithm.  The classification process runs 

independently for each delineated equal-reasoning area. The spectral classification consists of a 

supervised and an unsupervised classification. The supervised classification aims at identifying 

land cover classes that are not well represented, i.e. urban and wetland areas. The pixels classified 

through this process are masked and an unsupervised classification is then applied on the 

remaining pixels to create clusters of spectrally similar pixels. Clusters produced by the 

unsupervised classification are then temporally characterized and then grouped together into a 

manageable number of spectro-temporal classes according to their similarity in the temporal 

space. The labeling procedure is automated and based on a global reference land cover database 

which is, in the GlobCover 2009 project, the GlobCover 2005 (V2.2) land cover map. Finally, gaps 

due to uneven acquisitions of MERIS data are filled out using the GlobCover 2005.  

 
In the Dynamics of Global Urban Expansion, input data (Landsat imageries) were first subset on 

the basis of an administrative district boundary map files, the Socioeconomic Data and 

Applications Center48 (SEDAC), part of Columbia University’s Center for International Earth 

Science Information Network (CIESIN); only those parts of the image that were in the subset of 

districts containing the metropolitan area were selected for classification. 

An unsupervised classification approach was then chosen for the classification; the ISODATA 

clustering algorithm was used to partition the subset scenes into 50 spectrally separable classes. 

Each of the 50 clusters was then placed, using the Landsat data themselves and independent 

reference data when available, into one of seven pre-defined cover classes: water, urban, 

vegetation, barren (including bare soil agriculture), clouds/ shadow, snow/ice, and 

“undetermined” (usually pixels confused between urban and barren). Those pixels labeled as such 

were extracted and submitted to a second clustering in an attempt to maximize the separability 

among those spectrally similar classes. The clusters from this second iteration were labeled into 

one of the six informational classes. The classification was further refined through a careful, 

section-by-section examination of the Landsat imagery (Angel et al. 2005).  
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Global Human Settlement layer is produced by automatic image information extraction 

techniques, using in input several different digital images coming from different satellite 

platforms. A reference set, that includes a global mosaic of Landsat image data, the Open Street 

Map (OSM) vector, the Landsacan population data, MODIS urban areas and a so called BURef data 

layer containing the best estimation of presence of built-up areas at the GHSL global scale, has the 

function to support the optimization of the spatial and thematic consistency during the GHSL 

production. In the pre-processing, Landsat data and the OSM are used to control the spatial 

consistency of the data; in the processing, three main image-derived characteristics are used: 

radiometric, textural and morphological/shape criteria. The textural features are derived from the 

GLCM matrix, while the morphological information is a product of a multi-scale morphological 

analysis protocol referred to as the “mtDAP” (http://ghslsys.jrc.ec.europa.eu/tecnology.php).  

The derived features are subsequently classified after they underwent a learning process, where 3 

different stages can be observed. In the ‘adaptive learning’ modality, the system optimizes the 

decision thresholds in the input features using a given reference layer. The ‘meta-learning’ 

modality is used to study the behavior of these decision thresholds in the set of scenes processed 

and to detect regularities: for example typical thresholds for a given sensor in specific regions. The 

output of the meta-learning is then exploited during the ‘discovery’ modality that can be activated 

in order to have the chance of recovering image information lost because of errors 

(incompleteness, inconsistencies) in the reference data, or different scale generalization of the 

image-derived information and in the available reference data. In practice, the adaptive learning 

optimizes consistencies between the image information under processing and the reference data, 

while the meta-learning and discovery modes take the risk of the image information recognition 

also in cases where reference data is not available with the necessary thematic, spatial precision. 

Prior to the final mosaicking and output data preparation all results are validated by combining a 

global reference data set with limited visual interpretation (Pesaresi and Halkia 2012). 

 

The Global Urban Footprint is generated by the Urban Footprint Processor. Two main processing 

stages are performed: the Basic Product Generation and the Final Product Generation.  

Within the Basic Product Generation, four processing steps are accomplished: An Amplitude 

calculation, a texture analysis to derive a Speckle Divergence image, a classification step to extract 

vertical urban structures and a multilooking step to reduce the immense amount of data. The 

second processing stage (Final Product Generation) is a post processing step, in which the final 

result – the Global Urban Footprint (GUF) – is generated. This processing stage consists of four 

processing steps again: a generalization is performed, which takes all image components of the 

first stage into account, to delineate a binary map of human settlements. Additionally, the Final 

Product Generation includes the geocoding of the generalized binary map and applies a slope 

correction based on a global DEM to eliminate false classifications in the map induced by highly 

textured mountainous regions. A mosaicking step merges various GUF maps of predefined spatial 

extent together (Felbier et al. 2012).  
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The methodology used for the creation of GlobCorine 2009 is based, as the one used for 

GlobCorine 2005, on both supervised and unsupervised techniques. The pre-processed daily 

images are composited into MERIS FRS seasonal syntheses, through a Mean Compositing (MC) 

algorithm and then merged to produce MERIS FRS seasonal mosaics. The pan-European continent 

is then stratified in 5 equal-reasoning areas from an ecological and a remote sensing point of 

view: each delineated equal-reasoning area is then classified independently. 

A supervised classification is performed on the land cover classes that are not well represented in 

the strata (urban areas and wetlands). An unsupervised spectral classification is then performed 

on the pixels that were not classified in the first step. The labeling procedure is automated. Pixels 

classified as crop or mosaic classes after the step 2 are then further processed with an 

unsupervised classification on MERIS 10-day NDVI profiles created in order to have clusters of 

pixels similar in the temporal space; new smaller and more homogeneous spectro-temporal 

classes are created and a second labeling procedure performed. An external dataset, the SRTM 

Water Body dataset (SWBD), was finally used to improve the “water bodies” delineation in the 

GlobCover classification (Defourny et al. 2010).  

A Corine Land Cover map for the year 2006 (CLC2006) has been produced by integrating the data 

of land cover changes 2000–2006 with the land cover map from the year 2000 (CLC2000). The 

map of changes in land cover between the years 2000 and 2006 has been based on visual image 

comparison in a dual-window environment. The CLC2006 database has then been generated in a, 

mostly, automatic way with some human interaction by combining CLC2000 and the 

photointerpreted CLC-Changes. Only land cover changes that are larger than 5 ha and wider than 

100 m are mapped (EEA 2007).  

 

Multi-sensor and bi-temporal, orthorectified satellite imagery (IMAGE2006) was used to derive 

the first soil sealing database for Europe, produced as part of the GMES Fast Track Service on Land 

Monitoring (Land FTS LM) in 2006-2008: the High Resolution Soil Sealing Layer. The database was 

implemented in three phases: Supervised classification of built-up areas followed by visual 

improvement of classification result performed by Member States and then derivation of degree 

of soil sealing on the basis of calibrated NDVI (Maucha et al. 2010). 

Urban Atlas makes use of Earth Observation data (SPOT,  ALOS, QUICK BIRD, RAPIDEYE) with 2.5 

m spatial resolution, topographic maps at a scale of 1: 50.000 or larger and COTS (commercial off 

the shelf) navigation data for the road network as input data; pre-processing on data mainly 

concern the geometry: all dataset should be congruent with the EO data. 

Automatic classification routines, such as segmentation and clustering, are applied whenever 

appropriate to achieve an initial differentiation between basic land cover classes (urban vs. forest 

vs. water vs. other land cover); then COTS navigation are used to generate the street and railroad 

network of the mapping product and finally objects are interpreted  using the EO data, 

topographic maps,  COTS navigation data and auxiliary information including local expertise 

(Pesaresi and Halkia 2012). 
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2 Data, methods and software 

2.1 Methods 

2.1.1 Urban classification using decision tree technology 

 

The main aim that of this work is the automation of procedures for features extraction. The 

approach that was chosen to deal with is related to the extraction of rules that allow identifying 

the desired land cover type. Rules are based on the definition of the attributes to include inside 

together with the choice of decision thresholds; if, on one side, thresholds could be obtained 

using the knowledge provided by experts, nevertheless it’s advisable to explore data mining 

approaches for the identification of suitable bands for classification as well as determining the 

decision thresholds. In fact, experts may disagree on the decision boundaries, while with the use 

of data mining techniques, reliable, transferable and reproducible decision thresholds can be 

obtained (Otukei and Blaschke 2010).  

Decision Tree have been widely used for remote sensing application, particularly for land cover 

mapping from coarse resolution data (Hansen et al., 2000; Friedl et al., 2002). Between global 

urban maps previously described, AVHHR, MCD12Q1 and MOD500 makes use of Decision Tree 

technology (Table 3). Decision threshold are also used in GHSL. 

This classification method is able to handle large, non-parametric datasets with noisy or missing 

data, complex, non-linear relationships between features and classes, and problems that require 

a many-to-one mapping approach (Fayyad and Irani 1992; Friedl and Brodley 1997b).  

This classifier was chosen for this study for the following reasons: first, it’s able to extract rules in 

an automatic way, that can be later applied to different images; second, the model built by the 

algorithm is easily interpreted, and can therefore been modified according to the user need; third, 

the choice of which attributes include in the classifier is performed by the algorithm, on the basis 

of the criteria used by each one. Finally, decision tree algorithms don’t require additional 

information besides that already contained in the training data (e.g. domain knowledge or prior 

knowledge of distributions on the data or classes) and generally display good classification 

accuracy compared to other techniques.  

The classifier, the classification process, the algorithm used for this study together with his main  

features, the parameters that can be set by the user according to his needs, the way used by the 

algorithm to perform a first accuracy assessment, are described in the following section. 

 

2.1.2 Decision Tree classifier: algorithm description  

 
Decision Tree is a tree structure, which is composed of a root node and a series of internal nodes 

and leaf nodes, each node with only one father node and two or more sub-nodes. Each leaf node 

in Decision Tree corresponds to one category attribute value, different leaf node being able to 

correspond to the same category attribute value (Figure 4). Decision Tree can be expressed as a 

group of rules with IF-THEN form in addition to the tree form (Shen et al. 2011).  
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Figure 4 – Representation of a Decision Tree classifier 

  

In classification, a set of example records is given, called the training data set, with each record 

consisting of several attributes. One of the categorical attributes, called the class label, indicates 

the class to which each record belongs. The objective of classification is to use the training data 

set to built a model of the class label such that it can be used to classify new data whose class 

labels are unknown (Figure 5).  

 

ID 
Attr 
1 

Attr 
2 

Attr 
3 

Attr 
4 

Attr 
5 

Attr 
6 

Class 

1 0.12 0.25 0.32 0.44 0.76 0.02 Urban 

2 0.25 0.34 0.2 0.54 0.12 0.07 Soil 

3 0.34 0.15 0.32 0.65 0.81 0.4 water 

… … … … … … … … 

 

 

ID 
Attr 
1 

Attr 
2 

Attr 
3 

Attr 
4 

Attr 
5 

Attr 
6 

Class 

25 0.44 0.02 0.12 0.25 0.12 0.44 ? 

26 0.54 0.07 0.25 0.34 0.25 0.54 ? 

27 0.65 0.4 0.34 0.15 0.34 0.65 ? 

… … … … … … … … 

 

 

Figure 5 – Creation of a model for classification 

 

The tree classifier used to perform the analysis is J48, an open source Java implementation of C4.5 

data mining algorithm developed by Quinlan (1993), one of the most popular decision tree 

algorithms. Also used in the MODIS Land Cover product (Schneider et al. 2009), it’s an extension 

of Quinlan’s earlier ID3 algorithm that is able to:  

Class1

Class2 Class1

Class3

root

Split 

leaf 

Att. 1

Att. 2

Att. 3

TRAINING SET 

TEST SET 

Learn 

model 

Apply 

model 

MODEL 

Learning 

algorithm 

http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Java_(programming_language)
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 Convert decision tree to equivalent production rules;  

  Handling both continuous and discrete attributes;  

  Handling training data with missing attribute values;  

 Pruning trees after creation; 

C4.5 performs classification in two phases: Tree Building and Tree Pruning. In tree building, the 

decision tree model is built by recursively splitting the training data set based on a locally optimal 

criterion until all or most of the records belonging to each of the partitions bear the same class 

label.  

The building phase constructs a perfect tree that accurately classifies every record from the 

training set. However, one often achieves greater accuracy in the classification of new objects by 

using an imperfect, smaller decision tree rather than one which perfectly classifies all known 

records (Quinlan and Rivest 1989). The reason is that a decision tree which is perfect for the 

known records may be overly sensitive to statistical irregularities and idiosyncrasies of the training 

set. Thus, most algorithms perform a pruning phase after the building phase in which nodes are 

iteratively pruned to prevent “overfitting” and to obtain a tree with higher accuracy (Rastogi and 

Shim 2000). 

There are two main operations during tree building: the first is related to the evaluation of splits 

for each attribute and selection of the best split, while the second concern the creation of 

partitions using the best split. The determination of the best split for each attribute is performed 

through the application of the splitting criterion to the data. Several splitting schemes have been 

proposed in the past (Rastogi and Shim 2000); the one used by C4.5 is named Gain RATIO (Kohavi 

and Quinlan 1999).  

It starts from the measures of the Entropy at each node that is the measure of homogeneity of a 

node. The Entropy, calculated as:  

Entropy (t) =  ∑  ( | )    ( | )           [2.1] 

Where p(j|t), that is the relative frequency of class j at node t, is minimum (0) when all records 

belong to one class, while is maximum (tends to 1) when records are equally distributed.  

Based on the entropy, the Information Gain, that measures reduction in entropy achieved 

because of the split, is computed. The measure of Entropy at each node is connected to 

determination of the best split in this way:  

                 ( )  (∑
  

 

 
          ( ))          [2.2] 

Where p is the parent node, ni is the number of records in partition, k is the number of partition of 

the parent node. 

The disadvantage, that is that it prefer splits that results in large number of partition (each being 

small but pure), is overtaken with the use of the following index:  

          
         

 ∑
  
 

 
      

  
 

          [2.3] 
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That penalizes the use of a large number of small partitions.  

In order to perform a first evaluation about the error rate of the learning technique, the so called 

“10-fold cross-validation” approach can be adopted. 

The data is divided randomly into 10 parts in which the class is represented in, approximately, the 

same proportions as in the full dataset. Each part is held out in turn and the learning scheme 

trained on the remaining nine-tenths; then its error rate is calculated on the holdout set. Thus the 

learning procedure is executed a total of 10 times on different training sets (each of which have a 

lot in common). Finally, the 10 error estimates are averaged to yield an overall error estimate 

(Witten and Frank 2005). With this method it’s possible to have first information about the 

performance of the classifier, also if it’s obviously essential to perform other kind of accuracy 

assessment.   

In order to obtain the final classifier, different parameters can be set by the user according to his 

needs. Particularly, the user can decide to use the Reduce Error Pruning technique instead of the 

one used by the C4.5 algorithm for pruning, to consider or not the Subtree raising operation when 

pruning, and, finally, the Minimum Number of instances that are demanded in each leaf. This last 

parameter allows performing a pruning acting on values that depend on the size of the initial 

training set.  

 

2.2 Data used for the analysis 
 

The aim of this work is the automation of procedures for urban land cover extraction; in spite this 

work just provides a first assessment about features to be considered for the classifier learning, 

the main project is conceived to be effective at a global level. Therefore, data to be used in the 

analysis should be provided with a global coverage. 

The use of medium resolution multispectral data for urban characterization has not been largely 

considered. It is customary to think that high and very high spatial resolution sensors have 

bypassed this kind of data, providing to the final users more accurate data sets. Although the 

availability in time of images from privately owned HR and VHR sensors is almost the same as for 

publicly owned medium resolution satellites, costs are different, and for some applications, like 

change detection, urban sprawl characterization, urban vegetation monitoring and (partially) 

disaster management, the availability of low-cost images as well as expensive fine resolution 

datasets is equally important, and the lower cost of coarser-resolution images makes them more 

appealing for these applications. Moreover, in the public sector a need emerges to find out 

possible uses of available sensors for new, interesting characterizations, and this is the case for 

urban studies using Landsat multispectral data (Lisini et al. 2005).  

Multi-spectral data, ranging from 20 meter to 100 meter ground pixel size, have proven to be very 

effective in environmental analysis at a local to regional scale. This is particularly true in areas 

where human influence on the natural environment is heavy, as in the case of urban and sub-

urban areas, due to the good compromise between the spatial and spectral details provided (Villa 

2012). 
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Therefore Landsat data have been chosen as input data; both Landsat 5 and Landsat 7 satellite are 

still in orbit today, but the following restrictions need to be considered: 

 The maximum spatial resolution of Landsat 5 data is limited to 30 meters; 

 Landsat 7, whose spatial resolution can be improved up to 15 meters resolution, had a 

failure in the Scan Line Corrector (SLC) in 2003 (as described in 2.2.1.2); therefore most 

update images need a gap-filling processing to remove black lines before their use. 

Landsat 7 data, however, were included in a collection, GLS2005, created in order to provide a 

global dataset with Landsat sensor in use at that time (2005); to be included in this collection, 

data were pre-processed in order to remove black line (as described in 2.2.2): data available in 

GLS2005 are therefore very suitable for this study and were used for the classification process, 

while Landsat 7 data in modality SLC-on (prior to 2003) were used for the training set on 

multitemporal data.  

The analysis was conducted on Piedmont region, thanks to the availability of an open source 

Regional Cartography (CTRN, section 2.2.3) in vector format for validation purpose, with an 

update compatible with data to be used in the classification phase.  

Data used for the analysis are described below.  

 

2.2.1 Landsat Archive Collection 

2.2.1.1 Landsat Mission 

 

Landsat represents the world's longest continuously acquired collection of space-based 

moderate-resolution land remote sensing data. Nearly four decades of imagery provides a unique 

resource for those who work in agriculture, geology, forestry, regional planning, education, 

mapping, and global change research. Landsat images are also invaluable for emergency response 

and disaster relief. 

The U.S. entered into a partnership with NASA in the early 1970's to assume responsibility for the 

archive management and distribution of Landsat data products.  

In July 1972, NASA launched the first in a series of satellites designed to provide repetitive global 

observations of the Earth's land masses.  Part of NASA's Earth Resources Survey Program, the 

Earth Resources Technology Satellite (ERTS) Program was later renamed Landsat to better 

represent the emphasis of the prime civil satellite program on remote sensing of land resources.  

Landsat satellites can be subdivided into 2 groups: 

 First generation satellite (Landsat  1, 2, 3), launched at an altitude of about  920 km, with 

an orbit period of 103 minutes and a revisit time of 18 days; Landsat 1, 2, and 3 carried 

the Multispectral Scanner (MSS) sensor and also included the experimental Return Beam 

Vidicon (RBV) cameras.   
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 Second generation satellite (Landsat 4,5,7), launched at an altitude of about  705 km, with 

an orbit period of 98.9 minutes and a revisit time of 16 days; the Landsat-4 satellite 

carried the MSS and Thematic Mapper (TM) sensors, as does the still currently orbiting 

Landsat-5 satellite.  Landsat 6 failed at launch in 1993, but his twin, Landsat 7, was 

successfully launched on 15 April 1999 carrying on-board the Enhanced Thematic Mapper 

Plus sensor (ETM+).  

Table 5 provides a summary of Landsat satellites series. 

Satellite Launched Decommissioned Sensors 

Landsat 1 1972 1978 MSS/RBV 
Landsat 2 1975 1982 MSS/RBV 
Landsat 3 1978 1983 MSS/RBV 
Landsat 4 1982 2001 MSS/TM 
Landsat 5 1984 - MSS/TM 
Landsat 6 1983 Did not achieve orbit ETM 
Landsat 7 1999 - ETM+ 

Table 5 – Mission dates and sensors achieved by Landsat satellites series (source: http://landsat.usgs.gov) 

 

The Landsat Data Continuity Mission (LDCM) is the next-generation of Landsat satellites and is 

scheduled no earlier than February 11, 2013. This mission will ensure the continued acquisition 

and availability of Landsat-like data well beyond the duration of the current Landsat 5 and Landsat 

7 missions.  

 

2.2.1.2 Landsat 7 

 

After the failure in the launch of Landsat 6 on 5 October 1993, Landsat 7 (Figure 6) was 

successfully launched on 15 April 1999, positioned on a repetitive, circular, sun-synchronous, 

near-polar orbit at 705 km altitude.  This generation of Landsat improved technical devices 

maintaining the same base characteristics (swath width of 185 km and 16 day temporal 

resolution), which ensure the continuity of Landsat missions since 1982. Configuration of Landsat 

7 and Landsat 5 orbits allows acquisition of an image on a certain area every 8 days, thus doubling 

the acquisition possibility. 

http://landsat.usgs.gov/


2  Data, methods and software 

 
 

45 
 

 

Figure 6 – Landsat 7 satellite (credits: NASA) 

Landsat 7 is equipped by 1 panchromatic (Pan), 6 multispectral (MS) reflective bands and 2 

thermal infrared (TIR) bands. Compared to his precursor Landsat 4 and 5, Landsat 7 makes use of 

an updated version of the TM, the Enhanced Thematic Mapper Plus (ETM+), a single nadir-

pointing instruments. 

The sensor is built in a “whisk broom” configuration (Figure 7). It uses rotating mirrors to scan 

from side to side perpendicular to the direction of the sensor platform. The rotating mirrors 

redirect the reflected light to a single or a few detectors (Gomarasca 2009). Data are collected 

one pixel at a time. 

 

Figure 7 – Whiskbroom scanner (used by Landsat satellites) 

 ETM+ sensor provides: 

 A panchromatic band at 15 meters geometric resolution with spectral resolution ranging 

from visible to near infrared, acquired simultaneously with the other 7 bands and thus 

being perfectly co-registered with them; 
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 A thermal band at 60 meters resolution, available in high and low restitution versions; this 

band is resampled at 30 meters resolution in imageries acquired after February 2010, in 

order to align the thermal band with the multispectral bands.  

The introduction of the panchromatic band is the most important innovation; covering the visible 

range (0.5 – 0.7 µm) as well as part of the near infrared (VIR: 0.7 – 0.9 µm), a better signal-to-

noise ratio is obtained, improving the image readability. Data fusion techniques such as pan-

sharpening make possible the integration of multispectral bands with the panchromatic one in 

order to create a single 15-meters resolution image. The simultaneous acquisition of 

panchromatic and multispectral images with homogeneous characteristics from the same satellite 

platform allows co-registration, time saving and processing cost reduction. The introduction of a 

thermal band with improved characteristics, both geometric and radiometric, allows enlarging the 

potential applications, such as pollution, thermal emissions, volcanic phenomena, etc. The 

improved geometric resolution and the confirmed temporal acquisition can give contribution to 

global change assessment, both providing elements for verifying land cover changes and defining 

local process that can induce these modifications (Gomarasca 2009).Bandwidth specifications 

related to Landsat 7 are provided in Table 6. 

 

Enhanced Thematic Mapper Plus (ETM+) 

Landsat 7 
Wavelength  

[µm] 
Resolution  

[m] 
Comparison with 

Landsat 5 

Band 1 (VIS) 0.45-0.52 30  
Band 2 (VIS) 0.52-0.60 30  
Band 3 (VIS) 0.63-0.69 30  

Band 4 (VNIR) 0.77-0.90 30  
Band 5 (SWIR) 1.55-1.75 30  
Band 6 (TIR) 10.40-12.50 60 120 meters 

Band 7 (SWIR) 2.09-2.35 30  
Band 8 (PAN) 0.52-0.90 15 Not available 

Table 6 – Landsat 7 ETM+ band designation (and comparison with the ones provided by Landsat 5).  

On 31/05/2003, the Scan Line Corrector (SLC), which compensates for the forward motion of 

Landsat 7, failed. Subsequent efforts to recover the SLC were not successful, and the failure 

appeared to be permanent. Without an operating SLC, the Enhanced Thematic Mapper Plus 

(ETM+) line of sight now traces a zig-zag pattern along the satellite ground track (Figure 8) with 

resulting data gaps that form alternating wedges that increase in width from the center of the 

image to the edge; an estimated 22% of any given scene is lost because of the SLC failure. 

 

Figure 8 – SLC failure occurred on Landsat ETM+ on 31/05/2003 
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However, Landsat 7 is still capable of acquiring useful imagery worldwide with the SLC turned off 

(SLC-off mode), particularly within the central part of any given scene, and these data are of the 

same high radiometric and geometric quality as data collected prior to the SLC failure. 

The USGS has provided the user community with methods to fill gaps, both for visualization or for  

scientific analysis; they makes use of other Landsat scenes acquired on the same site shortly 

before or after the gap. Band-specific gap mask files are included with every SLC-off standard data 

product. These ancillary data allow users identify the location of all pixels affected by the original 

data gaps in the primary SLC-off scene. Please refer to 

http://landsat.usgs.gov/using_Landsat_7_data.php for further information about available 

methods.  

A summary of Landsat 7 collection main features is represented in Table 7.  

Landsat scenes held in the USGS archive are available for download using USGS Global 

Visualization Viewer (GloVis) or EarthExplorer. 

 

Landsat Archive 
Collection 

Data availability 
Spatial 

resolution 
Access instruction 

Landsat 7 ETM+ SLC-off 2003 - present Until 15 m 
http://glovis.usgs.gov/ 

http://earthexplorer.usgs.gov/ Landsat 7 ETM+ SLC-on 
1999 - May 

2003 
Until 15 m 

Table 7 – Main features of Landsat 7 collections 

 

2.2.2 Global Land Survey (GLS) 

 

The USGS and the NASA collaborated on the creation of global land datasets using Landsat data 

from 1972 through 2008; the dataset is named Global Land Survey, and each collection that 

constitute is was created from the primary Landsat sensor in use at the time (Table 8): the 

Multispectral Scanner (MSS) in the 1970s, the Thematic Mapper (TM) in 1990, the Enhanced 

Thematic Mapper Plus (ETM+) in 2000, and a combination of TM and ETM+, as well as EO-1 ALI 

data, in 2005.  

Recently, NASA and the USGS have again partnered to develop the Global Land Survey 2010 

(GLS2010), a new global land data set with core acquisition dates of 2008-2011. This dataset 

consists of both Landsat TM and ETM+ images that meet quality and cloud cover standards 

established by the earlier GLS collections. Data acquired in 2011 are used to fill areas of low image 

quality or excessive cloud cover. 

  

http://landsat.usgs.gov/using_Landsat_7_data.php
http://glovis.usgs.gov/
http://earthexplorer.usgs.gov/
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GLS Collections Images acquisition date Satellite/ Sensor 

GLS 1975 
1972 – 1983 
1982 - 1987 

Landsat 1-3 MSS 
Landsat 4-5 MSS (to fill gaps in Landsat 1 – 3 

data) 
GLS 1990 1987 - 1997 Landsat 4 – 5 TM 
GLS 2000 1999 - 2003 Lansdat 7 ETM+ 
GLS 2005 2003 - 2008 Landsat 5 TM; Landsat 7 ETM+; EO-1 ALI 
GLS 2010 2008 - 2011 Landsat 5; Landsat 7 ETM+ 

Table 8 – Global Land Survey collections (source: 
http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/GLS) 

 

GLS2005 was used in this thesis: the goal of this collection is to provide one clear image during 

leaf-on conditions for every location of the globe between 2004 and 2007, with priority on 2005. 

In this case, the choice of “primary” sensor was not obvious. Since the May 2003 failure of the 

scan-line corrector mechanism aboard Landsat-7, ETM+ images have been afflicted with cross-

track, wedge- shaped gaps that eliminate 24% of the image area. Although USGS EROS has 

implemented techniques to merge (“gap fill”) several ETM+ acquisitions from the same season, it 

was not clear if these products would be suitable for rigorous land cover change analyses. 

Conversely, although Landsat-5 TM is still in service, the radiometric and geometric properties of 

Landsat-5 TM images are worse than Landsat-7 ETM+ (Masek 2005). 

Thus, the priority assigned to the choice of the reference scene was the following: 

 One Landsat 5 image OR one gap-filled Landsat 7 pair;  

Where Landsat-5 was not available/suitable and no cloud free L7 pair was available: 

 Two Landsat 7 SLC-off images, without gap filling; 

For humid tropics where no cloud free L7 pair was available: 

 Three Landsat 7 SLC-off images, without gap filling; 

Where no Landsat data were available: 

 EO-1 ALI or ASTER image 

Images were gap-filled through an algorithm, created by EROS, which used one SLC-off image as a 

“base” image, and designated one or more images as “fill” images. Ideally base and fill images 

should have been acquired within 1-2 orbital cycles, or at least within the same season. In 

addition, since the position of the gaps varies randomly between images, merging any two images 

may not completely fill the missing area of the base image. Since the radiometry changed 

between the base and fill image (due to atmospheric effects, BRDF changes, phenology, etc) the 

fill images were radiometrically adjusted to match the base image before compositing. A small 

moving window (7-11 pixels) was applied to a pair of base and fill images, and a per-band linear 

regression applied. The regression was used to calculate a gain and bias, which were then applied 

to the fill image to radiometric match it to the base image. After radiometric adjustment, pixels 

http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/GLS
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from the fill image were substituted for the missing “gaps” in the base image, in order to create a 

gap-filled image; a “gap mask” was also created, in order to allow users to determine which pixels 

in the final scene were derived from which input scene (Figure 9). 

In GLS2005 a large majority of the scenes have less than 5% residual gap area after filling.  

. 

 

Figure 9 – a) Subset of gap-filled product (GLS 2010) acquired at Path/Row 195/29. Base image: 5/08/2009; Fill image: 
6/09/2009. Gap fill percent: 98.8%; b) Subset of the Base image as acquired by Landsat 7 ETM+ on 05/08/2009 

without gap-filling; c) Subset of gap mask 

  

a) b) 

c) 
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2.2.3 Digital Regional Technical Map (CTRN) 

 

The Digital Regional Technical Maps (Carta Tecnica Regionale Numerica - CTRN) of Piedmont 

Region is composed, approximately, by 800 sections at scale 1:10.000. 

CTRN was initially derived from aerial images acquired in 1991 for all the region except for the 

Susa valley whose images where acquired in 1995; later updates were derived from further 

acquisitions carried out between 1999 and 2005. Different places refer, therefore, to different 

acquisition dates; Figure 10 provides a summary of the actual frame.  

 

 

Figure 10 – Update of CTRN in Piedmont 

Dataset is provided in a vector format and organized into a hierarchic way; the first level is 

composed by 11 groups: 

1) Streets and Railways; 

2) Buildings and street forniture;  

3) Water and handiworks related to water; 

4) Lines and pipes for energy, liquid and soil material, people transport (lines); 

5) Ground divisions; 
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6) Ground elements; 

7) Vegetation; 

8) Altimetry (lines, points); 

9) Point of interest; 

10) Administrative boundaries (lines); 

11) Positioning network (points). 

The elements that constitute these groups can be punctual, linear or areal; since the cartography 

was converted into raster format for validation purposes, only areal elements have been taken 

into consideration. Groups 4, 8, 10, 11 are the only one not to contain any areal element.  

Data are georeferenced into WGS84/ UTM 32 Nord Reference system and accessible at: 

http://www.regione.piemonte.it/repcarj/welcome.do?ric=3&ric=3  

A detailed description of elements available in each group is provided in Annex II. 

2.3 Software 
 

A description of the software used for the study is provided below: 

 ENVI1 (ENvironment for Visualizing Images) 4.7, a commercial software for processing and 

analyzing geospatial imagery, commonly used for remote sensing application; it has been 

used for the pre and post processing, classification and validation phase. Procedures have 

also been implemented in IDL (Interactive Data Language), ENVI scientific programming 

language, in order to automatize the different steps of the workflow.  

 Weka (Waikato Environment for Knowledge Analysis) 3.6, a free data mining software 

available under the GNU General Public License, developed at the University of 

Waikato, New Zealand, by the Machine Learning Group (Hall et al. 2009); it provides a 

collection of machine learning algorithms for data mining tasks and contains tools for data 

pre-processing, classification, regression, clustering, association rules, and visualization. It 

has been used for the learning process: algorithms provided by the software have been 

used to learn the classifier, later applied to images through ENVI software.  

 ArcGis 10.02,  a commercial software property of Environmental Systems Research 

Institute, Inc. (Esri)  for working with maps and geographic information, usable for 

creating and using maps, compiling geographic data, analyzing mapped information, using 

maps and geographic information in a range of applications and managing geographic 

information in a database. It has been used for the creation of the validation mask. 

 

                                                           
1 © 2012 Exelis Visual Information Solutions 
2 © 1995–2012 Esri.  

http://www.regione.piemonte.it/repcarj/welcome.do?ric=3&ric=3
http://en.wikipedia.org/wiki/University_of_Waikato
http://en.wikipedia.org/wiki/University_of_Waikato
http://en.wikipedia.org/wiki/New_Zealand
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3 Methodology 

3.1 Introduction  
 

This research work was developed with the aim of supporting the production of cartography for 

emergency response, thus constituting a first step towards the definition of a methodology for 

automatic urban extraction. The step that was investigated through this work is related to the 

definition of a procedure for the classification of urban areas, that is the set of step to follow in 

order to obtain a good classification procedure. As previously mentioned in section 1.3.1, the 

classification method selection, together with the choice of variables and attributes to use as 

input to the classifier, are considered key elements in the classification process. 

The chosen classification method, Classification Tree, is based on the extraction of rules that allow 

identifying the desired land cover type; rules are, in turn, based on the definition of the attributes 

to include inside together with the choice of decision thresholds.  

 

This work examined the potentiality of different variables for the classification process: features 

for the learning process, as well as the use of different pre and post-processing. Considered 

features are: attributes in input to the classifier, use of multitemporal data and the selection of 2 

or more classes to train the classifier. A summary of the considered variables is provided in Figure 

11. 

 

Figure 11 – Summary of analyzed variables 

The first section of this chapter describes the methodology used in this work, while the second 

part describes how this methodology was applied to different case studies.  

  

Variables 

Features 

Attributes  
(indexes and spectral 

information) 

Classes 

Multitemporal stack 
Pre and post-

processing 
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3.2 Applied methodology 
 

The process of image classification may include, as previously described in section 1.3.1, seven 

main steps: determination of a suitable classification system, selection of training samples, image 

pre-processing, feature extraction, selection of suitable classification approaches, post-

classification processing and accuracy assessment; 

Taking into account the above mentioned steps, and adapting it to our needs, the workflow can 

be subdivided in eight steps, as reported in Figure 12; it starts from the definition of the classes to 

be mapped together with some information about the possible output of the procedure, than 

goes on with the selection of sample areas, that serve to learn the classifier, analyzes pre-

processing to apply to images and features to be used in the training set, and arrives to the 

creation of different training sets and corresponding models (classifiers) that are than applied to 

different images in order to provide thematic maps; finally, different kind of post processing are 

evaluated. 

In this work some of these steps are considered variables; which pre-processing allows obtaining 

higher accuracy? Which features can I use in my classification?  How can I improve my results with 

post-classification? All these variables are described in the following sections. 

More specifically, the procedure applied in this work is the following: first, sample areas, to be 

used to learn the classifier, are detected on satellite images with the help of higher resolution 

images. Training sets for the detected sample areas are then built taking into account different 

variables: the radiometric pre-processing applied to images, the attributes used as input, the 

number of classes use to learn the classifier and, finally, the temporal extension of the dataset. 

The combination of all these variables led to the creation of 36 different training set; in this work 

the term “sample area” is used to indicate the geographic location of elements that are in the 

training set, while the term “training set” is used to indicate the type of information associated to 

each pixel detected in the sample area. For example, if 3 different kind of radiometric correction 

are performed on the same image, three different training sets result: the radiometric 

information associated to the same pixel in different images is, indeed, different. 

Each training set is then used as input to the classifier; the application of the same algorithm to 

different training set led to the definition of different classifiers, each with given attributes and 

decision thresholds. Each classifier is then applied to one common image; it derives as many 

classifications as classifiers are. 

Finally, different kinds of post processing are applied, thus resulting in a further increase of 

thematic map produced. At the end, each thematic map is evaluated trough the accuracy 

assessment described in section 3.2.8; a schema of the above mentioned procedure is provided in 

Figure 13. The numeric label associated to the narrow serves as link between the main outputs of 

the process, as described in Figure 13, and the different steps of the workflow, as represented in 

Figure 12. 
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Figure 12 – Workflow of the applied methodology (processing) 
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Figure 13 – Output achieved at each step of the applied methodology (in black). Numbers refer to processing shown 
in Figure 12. In blu: intermediate steps. 

 

3.2.1 Preliminary observation 

 

It’s very important, when planning a project involving remotely sensed data, that sufficient effort 

is given to the classification scheme to be used. 

In this case, the aim is to distinguish between urban and non urban surfaces, but a definition of 

“urban” and “non urban” must be given. 

Within the context of this work, the term “urban” refers to all man-made features; the concept is 

linked to the definition of surface materials and properties, rather than to the actual land use. All 

impervious surfaces (residential buildings, industrial buildings, streets, pavement, etc.) are 

considered “urban areas”. 

Some consideration should be performed also on the scale suitable for the output: which is the 

ideal scale, or the accettable range of map scales, in funcion of the resolution of the input data? 

An image’s geometric resolution limit is given by the matrix cells size; enlargement over 2 

pixels/mm generate the perception of a single cell as a discrete  element (Gomarasca 2009). For 
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same applications where the spectral information is more important, it is possible to extend this 

resolution, producing out-of-focus, pixelated images. A relationship between the most frequently 

used satellite imagery, their applications and the most appropriate scales of cartographic 

restitution is provided in Table 9. 

Satellite/sensor 

Scale 

2.5 
Mil 

1 mil 500k 250k 100k 50k 25k 10k 5k 

AVHHR SPOT 
veg 

GC 
LC 
G 

        

Resurs – 01  
GC 
LC 
G 

      

Landsat MSS   
GC 
LC 
G 

     

Landsat TM   
GC             LC 
E                 G 

    

Landsat ETM+   
GC             LC 
E                 G 

  

SPOT XS, XI/IRS, 
LISS 

    
GC             LC 
E                 G 

   

SPOT Pan      
T 

LC 
G 

  

IRS Pan      
T 

LC 
G 

 

Ikonos, 
Quickbird, 

Orbview, DK 1-2 
       

T 
LC 
G 

GC: General cartography                            LC: Land cover                              G: Geological cartography              
E: Environmental thematic cartography               T: Topographic cartography 

Table 9 – Relationship between the most frequently used satellite imageries, their applications and the most 
appropriate scales of cartographic restitution (Gomarasca 2009) 

 

It gather that Landsat ETM+ imageries could be used to produce land cover maps at scales ranging 

from 1:25.000 to 1:100.000. 

Taking into consideration the guideline of the American Society for Photogrammetry and Remote 

Sensing (ASPRS Specification Standards Committee, 1990) based on the cartographic convention 

to fix the minimum readable tickness for graphic elements of a map to 0.2 – 0.3 mm, the ideal 

scale could be set to 1:120.000 (
    

         
) and, considering the maximum accettable scale 

corresponding to the dimension of 0.5 mm for each information pixel, the maximum scale could 

be set to 1:60.000. 
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Finally, also CLC2006 dataset, developed from SPOT-4 HRVIR at 10/20 m resolution and/or IRS P6 

LISS III at 23 m resolution and his predecessor, CLC2000, developed from Landsat 7 ETM+ data at 

30 m resolution, are provided for maps at scale 1:100.000.  

It stands to reason to fix the output scale of the urban maps at 1:100.000.  

3.2.2 Selection of the sample areas 

 

Sample areas are detected on the reference image in order to belong to these classes: 

1. Urban (residential buildings) 

2. Industrial areas (industrial buildings) 

3. Vegetation 

4. Water 

5. Bare soil 

In order to correctly identify sample areas, higher resolution maps (Google Earth) and the CTRN 

are used to perform a quality check on identified areas. 

3.2.3 Radiometric pre processing 

 

The data collected by sensors on board different platforms, before being used for the 

interpretation, need to be processed to correct errors due to the noise and distortions generated 

during acquisition and transmission. In this study, the attention was mainly focused on 

radiometric pre-processing: the aim is to obtain comparable units in order to analyze and 

measure the earth surface and its changes over the time. Radiometric errors depend on: 

 the sensor; 

 the system geometry; 

 the atmosphere. 

Effects due to the sensor acquisition can be removed through a radiometric calibration into 

radiance; this process transforms the image Digital Number (DN) into radiance (L) value measured 

by the optical systems’ detectors. This transformation, that is called radiometric calibration into 

radiance (Figure 14), is generally expressed by parametric linear functions related to calibration 

coefficients specific to each sensor and functional to the wavelength or the spectral band.  

Radiance (L) can be obtained as: 

 

  ( )    ( )      ( )        ( ) (3.1) 

 

Where: 

L( ): spectral radiance [
 

        
] 
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DN( ): Digital Number derived from the input spectral radiance 

gain( ): gain coefficient or system’s amplification [
 

           
] 

offset( ): movement coefficient [
 

        
] 

 : wavelength or spectral range [µm] 

 

Obtained radiance values are still affected by other factor, such as terrain characteristics, 

illumination and observation conditions, and the presence of atmosphere.  

A first reduction of the variability among the scenes can be obtained through the normalization 

with respect to the incident radiation, going from the spectral radiance (L) to the apparent 

reflectance (ρapp), with the process called radiometric calibration into reflectance (Figure 14). This 

correction is based on a flat surface patter.  

The relationship is the following:  

 

z

app
E

Ld






cos)(

)(

)(
0

2

  
(3.2) 

 

Where: 

ρapp( ): apparent reflectance (as perceived by the sensor) 

L( ): spectral radiance measured by the sensor above the atmosphere[
 

        
] 

d: Earth-sun distance during the scenes’ acquisition 

E0: solar irradiance above the atmosphere incident on a surface perpendicular to the radiation 

[
 

     
] 

Θz: incident angle of the solar flux directed towards the Earth Surface, defined as Sun zenith angle. 

 

This is just a first step in order to compare satellite data acquired at different times; atmospheric 

corrections are needed (Figure 14) in order to depurate the signal from the atmospheric effects 

and to obtain the albedo that is the ground reflectance (ρg). This correction, besides clearing the 

signal from atmospheric absorption and scattering effects, also includes the radiometric 

calibration and the normalization of the effects due to the system geometry. In practice, through 

the atmospheric correction, the main radiometric effects in remotely sensed images are 

normalized. There is no unique method for the atmospheric effect correction that is simple, 

accurate, and widely used (Gomarasca 2009). As a consequence, numerous methods have been 

developed, for specific kinds of problems and different levels of accuracy. Based on the quantity 
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and on the accuracy of atmospheric parameters needed to apply them, the methods for studying 

atmospheric effects can be distinguished into two groups: 

 Models based on the physics of the radiative transfer; 

 Methods based on the images (simplified methods). 

The first category includes the models solving the equation of electromagnetic energy radiative 

transfer through the atmosphere (Radiative Transfer Code). To accurately describe the radiation 

propagation, these models need in situ collection measures of the optical properties of the 

atmosphere acquired at the same time as the scene acquisition. In general radiative transfer 

codes combined with in situ atmospheric measures produce the most accurate assessment. 

Nevertheless, all these procedures are often too expensive and complicated to be commonly 

applied. The biggest disadvantage of this kind of correction is that it requires measures of 

atmospheric parameters simultaneously with each passing of the sensor. This is often impossible 

in monitoring programmes, or when historical series have to be analysed (Gomarasca 2009). In 

order to overcome this inconvenience, other correction methods have been proposed, where the 

information about the atmospheric properties can be retrieved from the image. Despite these 

methods produce less accurate results compared to radiative transfer models, however they are 

widely used and are a good alternative when the atmospheric properties during the image 

acquisition are not known. 

Among the most known image based methods, the Dark Subtraction method is based on the 

hypothesis that in the scene at least one pixel has reflectance equal to zero. This pixel’s radiance 

contribution hence depends only on the atmospheric component which is subtracted from all the 

image’s pixels. The operation is applied band by band. Among the surfaces that better reply to the 

dark pixel hypothesis, there are deep and oligotrophic water bodies or sharp shadowed areas. 

 

 

 

 

 

 

 

 

In this case study classification obtained with different level of radiometric pre-processing 

(calibration into reflectance, atmospheric  correction with a simplified method - Dark Subtraction 

and correction with a rigorous method - FLAASH) were compared (Figure 15). 

 

 

Figure 14 – Radiometric pre-processing needed to obtain comparable measures  
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Figure 15 – Radiometric pre-processing compared in the study 

Calibration is performed with the Landsat Calibration tool provided by ENVI© that automatically 

reads calibration parameters from the metadata associated to the image (Data acquisition, sun 

elevation, satellite sensor) and performs the pre-processing. 

Dark subtraction is performed with the Dark Subtraction tool provided by ENVI© that applies 

scattering correction to image data by subtracting the band minimum DN to every pixel in the 

selected band (alternatively, other values can be subtracted, depending on the user needs).  

Atmospheric correction using a model based on the physics of the radiative transfer code is 

performed using FLAASH, a first-principles atmospheric correction tool that corrects wavelengths 

in the visible through near-infrared and shortwave infrared regions, up to 3 μm. 

Unlike many other atmospheric correction programs that interpolate radiation transfer properties 

from a pre-calculated database of modeling results, FLAASH (Fast Line-of-Sight Atmospheric 

Analysis of Spectral Hypercubes) incorporates the MODTRAN4 radiation transfer code. 

It starts from a standard equation for spectral radiance at a sensor pixel, L, which applies to the 

solar wavelength range and flat, Lambertian materials or their equivalents. The equation is as 

follows:  

 
  (

    

      
)  (

    
      

)     (3.3) 

where:  

ρg is the pixel surface reflectance 

ρe is an average surface reflectance for the pixel and a surrounding region 

S is the spherical albedo of the atmosphere 

La is the radiance back scattered by the atmosphere 

A and B are coefficients that depend on atmospheric and geometric conditions but not on the 

surface.  

All these variables depend on the spectral channel; the first term in Equation (3.3 corresponds to 

radiance that is reflected from the surface and travels directly into the sensor, while the second 

Radiometric 
pre-

processing 

Calibration 

Dark 
Subtraction 

FLAASH 
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term corresponds to radiance from the surface that is scattered by the atmosphere into the 

sensor. The distinction between ρ and ρe accounts for the adjacency effect (spatial mixing of 

radiance among nearby pixels) caused by atmospheric scattering. The values of A, B, S and La are 

determined from MODTRAN4 calculations that use the viewing and solar angles and the mean 

surface elevation of the measurement, and they assume a certain model atmosphere, aerosol 

type, and visible range. The values of A, B, S and La are strongly dependent on the water vapor 

column amount, which is generally not well known and may vary across the scene. If no water 

information is available, it’s possible to select the known or expected surface air temperature 

which tends to correlate with water vapour. If the temperature is unknown, it’s possible to select 

a Model Atmosphere based on Latitudinal/seasonal dependence of surface temperature. This is 

the schema adopted to select the column water vapour amount. It starts from the detection of 

the latitude scene in order to select the correct Model Atmosphere (Table 11), and then connect 

the estimated water amount (Table 10). 

Since input images were acquired at about 45° latitude and in the period June-November, SAS and 

MLS models have to be used. 

 

Model Atmosphere Water vapour  
[g/cm2] 

Surface air temperature 
[°C] 

Sub-artic winter (SAW) 0.42 - 16 

Mid-Latitude Winter (MLW) 0.85 -1 

US Standard (US) 1.42 15 

Sub-artic summer (SAS) 2.08 14 

Mid-latitude Summer (MLS) 2.92 21 

Tropical (T) 4.11 27 

Table 10– Column water vapour amounts and surface temperatures for the MODTRAN Model Atmospheres 

Latitude [°N] Jan March May July Sept Nov 

80 SAW SAW SAW MLW MLW SAW 

70 SAW SAW MLW MLW MLW SAW 

60 MLW MLW MLW SAS SAS MLW 

50 MLW MLW SAS SAS SAS SAS 

40 SAS SAS SAS MLS MLS SAS 

30 MLS MLS MLS T T MLS 

20 T T T T T T 

10 T T T T T T 

Table 11– Selection of MODTRAN Model Atmosphere Based on Latitudinal/Seasonal Dependence of Surface 
Temperature 

 

FLAASH includes a method for retrieving the aerosol amount and estimating a scene average 

visibility using a dark pixel reflectance ratio method based on work by Kaufman et al. (1997). The 

dark-land pixel-retrieval method requires the presence of sensor channels around 660 nm and 

2100 nm. A dark-land pixel is defined to be one with a 2100 nm reflectance of 0.1 or less and a 
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660:2100 reflectance ratio of approximately 0.45. If the input image contains bands near 800 nm 

and 420 nm, an additional check is performed, requiring the 800:420 radiance ratio to be 1 or 

less, which eliminates pixels likely to be shadows and water bodies.  

In Landsat images, band 3 and band 7 corresponds to wavelength of 660 nm and 2100 nm. If no 

dark pixels are found, then an Initial Visibility (estimate of the scene visibility in km) is used. 

Finally, an aerosol model should be chosen; the choice of the model is not critical if the visibility is 

high. The model choices are the following: 

 Rural: Represents aerosols in areas not strongly affected by urban or industrial sources. 

The particle sizes are a blend of two distributions, one large and one small; 

 Urban: A mixture of 80% rural aerosol with 20% soot-like aerosols, appropriate for high-

density urban/industrial areas; 

 Maritime: Represents the boundary layer over oceans, or continents under a prevailing 

wind from the ocean. It is composed of two components, one from sea spray and another 

from rural continental aerosol (that omits the largest particles); 

 Tropospheric: Applies to calm, clear (visibility greater than 40 km) conditions over land 

and consists of the small-particle component of the rural model. For more details on 

MODTRAN aerosol models, see Abreu and Anderson (1996). 

To sum up, the following parameters were set to correct images from atmospheric effects using 

FLAASH:  

Subset Input image 
Acquisition  

time 
Model 

Atmosphere 
Aerosol 
model 

Ground 
elevation 

Scene center 
location 

Torino 

30/11/1999 10:10:04 SAS 

rural 0.4 
45°4'31.18'' N 
7°38'4.94'' E 

28/09/2002 09:58:52 SAS 

06/10/1999 10:04:09 SAS 

24/08/2001 09:59:54 MLS 

05/03/2000 10:09:54 SAS 

30/07/2001 10:06:28 MLS 

02/07/2005 10:00:00 MLS 

Asti 

01/05/2000 10:03:24 SAS 

rural 0.27 
45°49'40.57'' N    
8°12'13.47'' E 

06/10/1999 10:04:09 SAS 

21/06/2001 10:00:35 SAS 

23/11/1999 10:03:53 SAS 

24/08/2001 09:59:54 MLS 

28/09/2002 09:58:52 SAS 

02/07/2005 10:00:00 MLS 

Table 12 – Set parameters for the atmospheric correction with FLAASH 
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3.2.4 Feature extraction 

3.2.4.1 Attributes: indexes and spectral information 

 

Spectral indexes are often used in remote sensing applications in order to predict, model or infer 

surface process. They can be used to assess in the monitoring of several different land change 

processes, such as vegetation health and status, burned area, fire severity, or to help in the 

identification of a certain thematism. 

An optimal spectral index is very sensitive to the desired information (e.g., the amount of 

vegetation), and as insensitive as possible to perturbing factors (such as soil color changes or 

atmospheric effects). Since both the desired signal and the perturbing factors vary spectrally, and 

since the instruments themselves only provide data for particular spectral bands, optimal indexes 

should be designed for specific applications and particular instruments (Verstraete and Pinty 

1996). 

A spectral index should:  

 Maximize the sensitivity of certain surface properties. Ideally, such responses should 

change linearly to allow both ease of scaling and use over a wide range of surface 

conditions; 

 Normalize or reduce effects due to sun angle, viewing angle, the atmosphere, 

topography, instrument noise, etc, to allow consistent spatial and temporal comparisons; 

 Be linked to specific and measurable surface processes (e.g. biophysical parameter such 

as LAI, biomass, APAR, etc) – i.e. be related to a measurable parameter or process. 

In this study classifications obtained with different kind of information (only spectral information, 

only indexes, spectral information and indexes) were compared (Figure 16). 

The aim is dual: on one side, the purpose is to evaluate if indexes are selected as suitable 

variables from the algorithm, on the other it’s intended to know which indexes more easily allow 

to separate classes. 
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Figure 16 – Set of attributes compared in the study 

 

After a literary review, and according to our needs, indexes that were taken into account in the 

study are the following: 

 

 Normalized Difference Built-up Index (NDBI) 

Proposed by Zha et al. in order to automate the process of mapping built-up areas; it takes 

advantage of the unique spectral response of built-up areas and other land covers (Zha et al. 

2003).  

 
     

       

       
 (3.4) 

Used in conjunction with a traditional Normalized Difference Vegetation Index (NDVI), the NDBI 

was reported to be an effective technique to map urban built-up areas with the total accuracy 

92% in the city of Nanjing, eastern China. In this area, a binary image was created with the 

hypothesis that the positive value of NDBI should be built-up areas and the positive value of NDVI 

should be vegetation. Such recoding process made the approach unable to separate urban areas 

from barren and bare land and suggested the approach’s universality need to be tested in other 

geographic areas due to the complicated spectral response pattern of vegetation” (He and Xie 

2007)  

 

 Normalized Difference Blue Band Built-up index (NDBBBI) 

Suitable for detecting built-up areas, a normalized difference index accounting for the blue-band 

component in built-up areas and barren land (NDBBBI) was defined by Baraldi et al in 2006 as: 

 
       

       

             
 (3.5) 

Attributes 
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 Normalized Difference Vegetation Index (NDVI) 

One of the most frequently used vegetation index, NDVI relates the spectral absorption of 

chlorophyll in the red with a reflection phenomenon in the near infrared, influenced by the leaf 

structure type. It is defined as:   

 
     

       

       
 (3.6) 

Negative values corresponds to water, positive values near to zero corresponds to soils while 

higher values, between 0.2 and 0.6, are related to the presence of vegetation, till to 0.8 for very 

dense vegetation (Brivio et al. 2006).  

 

 Built-up index (BUI)  

Used in Lee et al. and defined as:  

               (3.7) 

BUI takes the form of high values in the urban areas and low values in the non-urban areas 

 

 

 Test_index 

 
              

   

   
 (3.8) 

   

The proposed index takes into account that in urban areas (such as in bare soil), reflectance in 

band 4 is similar to reflectance in band 7 but urban areas have lower values than bare soil in band 

5.  
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Table 13 – Attributes used for the classification process 

A summary of tested attributes is provided in Table 13. Spatial information and indexes ere used 

both individually, both together.  

 

3.2.4.2 Training of the classifier on multiple land cover types 

 

Sample areas were detected on the reference image in order to belong to these classes: 

 Urban (residential buildings) 

 Industrial areas (industrial buildings) 

 Vegetation 

 Water 

 Bare soil 

Two options were tested during the creation of the training set: in one case input related to 

residential and industrial buildings were merged together in order to create a unique “urban” 

class, and all the other merged together in order to create a unique “non urban” class, in the 

second case all classes were considered separately. We refer to a 2-class classifier or to a 5-class 

classifier (Figure 17), thus resulting in classifiers with two or five leaf nodes.  

 

Employed attributes Attributes Spectral range/formula 

Spectral information 

Band 1 0.45 – 0.52 µm 

Band 2 0.52 – 0.60 µm 

Band 3 0.63 – 0.69 µm 

Band 4 0.76 – 0.90 µm 

Band 5 1.55 – 1.75 µm 

Band 7 2.08 – 2.35 µm 

Indexes 

NDBI 
       

       
 

NDBBBI 
       

             
 

NDVI 
       

       
 

BUI NDBI - NDVI 

Test_index     
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Figure 17 – Number of classes used to learn the classifier 

 

This step allows assessing whether the use of a higher number of classes improves the 

classification accuracy compared to the use of two larger classes. 

 

3.2.4.3 Training of the classifier on multi-temporal data 

 

Sample areas detected on the reference image led to the creation of two training set:  

information were derived from a single scene in on one case, on the other information related to 

every single pixel were obtained as a mean over the chosen multitemporal stack (Figure 18). 

The multitemporal stack is a set of images acquired on the same area in different periods of the 

year: a spectral signature obtained as a mean over the chosen multitemporal stack is more 

representative of possible modifications as the season changes, but can also create confusion in 

the learning phase: the aim was to evaluate if the use of a multitemporal stack could be a pro or a 

con for the classification process. 

The conception was that certain kinds of land cover change more according to the season (e.g. 

vegetation, crops, etc), while other are more stable (e.g. urban, bare soil): the employment of a 

multitemporal stack could be able to detect this property.  

Cloud presence or possible variations of land cover in the multitemporal set were evaluated case 

by case. 

Classes 

2 classes 5 classes 
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Figure 18 – Temporal extension of the training set 

 

3.2.5 Training set generation 

 

Sample areas detected on the reference images have to be intended as geographic location of 

pixels where information (spectral or not) are extracted; in order to obtain training sets built with 

different kind of features, the step “Training set generation” was performed.  

Obtained training sets were later used as input to train the classifier. Since the software used to 

process the images (ENVI©, section 2.3) is different from the one used for the learning process 

(Weka, section 2.3), the procedure also takes into consideration the conversion in a format and 

structure usable in the following steps. 

Figure 21 shows procedures used to obtain the desired training sets; every image (X1 ... Xn) is first 

pre-processed in order to obtain a calibrated image, an atmospherically corrected with Dark 

Subtraction image and an atmospherically corrected with FLAASH image; then, indexes are 

computed from every image with the procedure Compute_index.pro; the procedures, 

Single_image_stat.pro and Multitemp_image_stat.pro were then used in order to obtain the 36 

training sets as represented in Figure 13. These procedures combine image pre-processing 

(Section 3.2.3) with the different chosen variables, that is the use of different attributes (Section 

3.2.4.1), the training of the classifier on two or more land cover types (Section 3.2.4.2) and the 

use of different temporal extension of the training set (Section 3.2.4.3).   

 

Indexes computation 

Indexes (NDBI, NDVI, NDBBBI, BUI, test_index, section 3.2.4.1) were computed from each pre-

processed image with the procedure Compute_index.pro (Figure 21). The procedure gives in 

output an image with 5 bands, one for each index.  In case of atmospherically corrected with 

FLAASH images, the input is first converted in a radiance value ranging from 0 to 1 (FLAASH 

Temporal 
extension 

Single image 
Multitemporal 

stack 
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automatically scale the output with a factor 10000), then a check is performed on DN values in 

order to set value out of the range (0;1) equal to null (-999). Infact, if very low radiance values are 

present in the image, then FLAASH may not be able to model the reflectance accurately and some 

negative reflectance values can be found on the image; the same thing can also happen to very 

high radiance value that are converted in values greater than 1.  

 

Statistics computation 

In this step, spectral information and indexes values are extracted from the regions of interest, 

the sample areas. Information must be provided in a format compatible with Weka, whose native 

format is an ARFF (Attribute-Relation file format) file. The bulk of an ARFF file consists of a list of 

independent, unordered instances (no relationship among instances is involved), and the 

attribute values for each instance, separated by commas. The header of the file (example in 

Figure 19c) is composed by the name of the relation (TO_2005_spectral_DS_5class) and by a block 

defining the attributes (B1, B2, B3, B4, B5, B7, target). Nominal attributes are followed by the set 

of values they can take on, enclosed in curly braces (for example, in target attribute: {'urban 

','industrial ','water ','vegetation ','bare soil '}). Numeric values are followed by the keyword 

numeric. 

After the attribute definitions there is an @data line that signals the start of the instances in the 

dataset. Instances are written one per line, with values for each attribute in turn, separated by 

commas.  

Nevertheless, CSV (comma-separated value) format is also accepted from Weka, thanks to the file 

format converters available in the software. The appropriate converter is used based on the 

extension and the .csv file is automatically converted in ARFF format.  

Figure 19 provides an example of the export of a spreadsheet (a) in CSV format (b); it consists in a 

list of records with commas between items. This file, readable from Weka, can be used as it is and 

eventually also exported in ARFF format (c).   

Single_image_stat.pro and Multitemp_image_stat.pro aim at creating the CSV files containing 

statistics of the sample areas. In the “single image” case (Figure 22, Figure 23, Figure 24), statistics 

are merely the values of the DNs, while in the “multitemporal image” case (Figure 25, Figure 26, 

Figure 27, Figure 28, Figure 29, Figure 30), DNs of the whole stack are considered and, for each 

DN, a mean between the values of that DN in all the images is computed. A “mean” image is also 

performed as an intermediate step.  
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(a) 

 

(b) 

(c) 

B1, B2, B3, B4, B5, B7, target 

0.0791598,     0.118760,     0.124161,     0.157488,     0.183836,     0.154629,urban  

0.0805990,     0.108997,     0.110691,     0.136829,     0.141449,     0.118370,urban     

0.0877954,     0.115506,     0.122665,     0.133385,     0.157596,     0.141270,urban     

0.0791598,     0.112251,     0.127155,     0.143715,     0.173744,     0.152720,urban     

0.0834776,     0.120387,     0.140625,     0.167818,     0.214113,     0.188979,urban     

0.0748420,     0.105743,     0.122665,     0.150601,     0.157596,     0.131728,urban  

     

@relation TO_2005_spectral_DS_5class 

@attribute B1 numeric 

@attribute ' B2' numeric 

@attribute ' B3' numeric 

@attribute ' B4' numeric 

@attribute ' B5' numeric 

@attribute ' B7' numeric 

@attribute ' target' {'urban ','industrial ','water ','vegetation ','bare soil '} 

@data 

0.07916,0.11876,0.124161,0.157488,0.183836,0.154629,'urban ' 

0.080599,0.108997,0.110691,0.136829,0.141449,0.11837,'urban ' 

0.087795,0.115506,0.122665,0.133385,0.157596,0.14127,'urban ' 

0.07916,0.112251,0.127155,0.143715,0.173744,0.15272,'urban ' 

0.083478,0.120387,0.140625,0.167818,0.214113,0.188979,'urban ' 

0.074842,0.105743,0.122665,0.150601,0.157596,0.131728,'urban ' 

 

Figure 19 – Input data in spreadsheet format (a), CSV format (b), ARFF format (c) 
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Land cover classes are automatically converted in Urban (urban and industrial) and Non Urban 

(water, vegetation, bare soil) classes in the 2-class version, or left as they are in the 5-class 

version. Detailed explanation of the different afforded cases is provided in Figure 22 to Figure 30; 

Table 14 provides a summary of the procedure used according to the case, while Figure 20 

provides the legend used in the above mentioned procedures.  

Procedure 
Temporal extension of 

the training set 
Attributes Pre-processing 

Figure 22a 

Single image 

Only spectral 
Calib, DS 

Figure 22b FLAASH 

Figure 23a 
Only indexes 

Calib, DS 

Figure 23b FLAASH 

Figure 24a 
Spectral and indexes 

Calib, DS 

Figure 24b FLAASH 

Figure 25 

Multitemporal stack 

Only spectral 
Calib, DS 

Figure 26 FLAASH 

Figure 27 
Only indexes 

Calib, DS 

Figure 28 FLAASH 

Figure 29 
Spectral and indexes 

Calib, DS 

Figure 30 FLAASH 

Table 14 – Overview of the different applied processing 

In general, workflows take into account that: 

1. If information is extracted from images (both spectral or index) calibrated or corrected 

with Dark Subtraction, no intermediate “filtering” process should be performed before 

extracting the CSV file (Figure 22a, Figure 23a, Figure 25, Figure 27). This is verified also 

when information is extracted from both spectral and indexes images together (Figure 

24a, Figure 29);  

2. If information is extracted from spectral images corrected with FLAASH (Figure 22b), DN 

values must be scaled of a factor 10000 and a preliminary check performed on the DN 

value: if it is not appropriate (out of the range [0;1]), it must be removed from the output; 

3. If information is extracted from the index images corrected with FLAASH (Figure 23b), not 

appropriate values are already set as null (-999): it’s enough to remove them from the 

output; 

4. If information is extracted from both spectral images and index images corrected with 

FLAASH (Figure 24b), step 1 and 2 are performed;  

5. If information is extracted from a multitemporal stack, a “mean” image is produced as 

intermediate output (Figure 25 to Figure 30); the cell in the “mean” image is set null (-

999) if almost one of the DN in the multi-temporal stack is not appropriate (out of the 

range (0:1) for spectral information with FLAASH (Figure 26), null for indexes with FLAASH 

(Figure 28), otherwise the mean is computed. When spectral information and indexes are 

used together, the above mentioned processing are both performed (Figure 24b, Figure 

30).  
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Figure 20 – Textual and graphic legend used in Figure 21 to Figure 29 



 

 
 

 

Figure 21 – Overview of the procedures used in order to create training sets to learn the classifier  with detail on the methodology used for image pre-processing and indexes computation 



 

 
 

 

Figure 22 – Methodology used from the procedure Single_image_stat.pro in order to create training sets with spectral information as attributes; detail on steps used for calibrated or 
atmospherically corrected with Dark Subtraction images (figure higher left) and for atmospherically corrected with FLAASH images (figure lower right) is provided. 



 

 
 

 

Figure 23 - Methodology used from the procedure Single_image_stat.pro in order to create training sets with indexes as attributes; detail on steps used for calibrated or atmospherically 
corrected with Dark Subtraction images (figure higher left) and for atmospherically corrected with FLAASH images (figure lower right) is provided. 



 

 
 

 

Figure 24 - Methodologies used from the procedure Single_image_stat.pro in order to create training sets with spectral information and indexes as attributes; detail on Single Image 
procedure for calibrated or atmospherically corrected with Dark Subtraction images (figure higher left) and for atmospherically corrected with FLAASH images (figure lower right) is 

provided. 



 

 
 

 

Figure 25 - Methodology used from the procedure Multitemp_image_stat.pro in order to create training sets with spectral information as attributes; detail on steps used for calibrated or 
atmospherically corrected with Dark Subtraction images is provided. 



 

 
 

 

Figure 26 - Methodology used from the procedure Multitemp_image_stat.pro in order to create training sets with spectral information as attributes; detail on steps used for 
atmospherically corrected with FLAASH images is provided. 



 

 
 

 

Figure 27 - Methodology used from the procedure Multitemp_image_stat.pro in order to create training sets with indexes as attributes; detail on steps used for calibrated or 
atmospherically corrected with Dark Subtraction images is provided. 



 

 
 

 

Figure 28 - Methodology used from the procedure Multitemp_image_stat.pro in order to create training sets with indexes as attributes; detail on methodologies used for atmospherically 
corrected with FLAASH images is provided. 



 

 
 

 

Figure 29 - Methodology used from the procedure Multitemp_image_stat.pro in order to create training sets with spectral information and indexes as attributes; detail on steps used  for 
calibrated or atmospherically corrected with Dark Subtraction images is provided. 



 

 
 

 

Figure 30 - Methodology used from the procedure Multitemp_image_stat.pro in order to create training sets with spectral information and indexes as attributes; detail on steps used  for 
atmospherically corrected with FLAASH images is provided.
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3.2.6 Classification 

 

The classification process involved the following steps: 

1) Each training set previously created was used as input to train the classifier; 

2) For each training set a model was created using the J48 algorithm; 

3) The generated model was converted in a procedure that associates the rules to the input 

image and that can be launched by ENVI software; 

4) Procedures were launched and thematic maps created. 

Since the first and the second steps had to be performed in the Weka environment, while the 

fourth had to be performed in ENVI environment, the third step was necessary in order to move 

from one environment to the other. 

Figure 31 shows the methodology and the procedures used for the classification process; training 

sets (CSV files) generated in the previous steps were used as input files for the classification; 

classified images were the images considered in the “single image” cases or the reference images 

(i.e. the same image of the “single image” case) of the multitemporal cases. 

 Procedures computed to automate this step are the following: 

 Tree extraction from output weka.pro 

 IDL codes generation.pro 

 

Tree extraction from output weka 

The output generated by j48 algorithm (example in Annex III) is a textual file composed by: 

 Run Information; a list of information giving the learning scheme options, relation name, 

instances, attributes and test mode that were involved in the process 

 Classifier model; a textual representation of the classification model that was produced 

on the full training data. 

 Summary; a list of statistics summarizing how accurately the classifier was able to predict 

the true class of the instances under the chosen test mode. 

 Detailed Accuracy By Class; a more detailed per-class break down of the classifier’s 

prediction accuracy. 

 Confusion Matrix; Shows how many instances have been assigned to each class. Elements 

show the number of test examples whose actual class is the row and whose predicted 

class is the column. 

This procedure aimed at extracting only information about the model, that is rules and decision 

thresholds (i.e. the tree) detected by the algorithm, to be used in the following step. 

IDL_codes_generation 

The tree extracted from the Weka output was then converted in a IDL procedure.  

It allowed applying the detected rules to the input image in order to obtain a thematic map. 



 

 
 

 

 

Figure 31 – Methodology and procedures used for the classification process 
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3.2.7 Post-processing 

 

Post-classification processing is an important step in improving the quality of classifications (Harris 

and Ventura 1995, Murai and Omatu 1997, Stefanov et al. 2001, Lu and Weng 2004); filters can be 

applied to reduce the noise that come out from traditional per-pixel classifier (“salt and pepper” 

effect).  

Essentially, two filter have were tested in this work: 

 Sieve 

 Majority analysis 

Sieve 

Sieve classes helps in solving the problem of isolated pixels occurring in classification images. It 

removes isolated classified pixels using blob grouping. The sieve classes method looks at the 

neighbouring 4 or 8 pixels to determine if a pixel is grouped with pixels of the same class. The 

four-neighbor region around a pixel consists of the two adjacent horizontal and two adjacent 

vertical neighbours, while the eight-neighbor region consists of all the immediately adjacent 

pixels.  If the number of pixels in a class that is grouped is less than the value entered, those pixels 

are removed from the class. 

Tests were performed with a group threshold of 4 pixels and 4 or 8 neighbours’ pixels. The 

processing performed with 4 neighbour pixels has a more “filtering effects”. 

Pixels removed from the class were set to null; a procedure was applied in order to assign the null 

values to “Non urban” class. 

 

Majority analysis 

Majority analysis changes spurious pixels within a large class to that class. A kernel size is used in 

order to replace the center pixel in the kernel with the class value that the majority of the pixels in 

the kernel has.  

The analysis can be applied only to certain classes: the cell value can be changed only if it owns to 

one of the selected classes, not otherwise. Nevertheless, if the unselected class is the majority 

class in the kernel, center pixels of selected classes can be changed into an unselected class. 

Since the aim was to eliminate areas at low urban density that are difficult to be detected, the 

class Urban was selected; a majority filter with a kernel size 3x3 was applied. 

 

Post-classification processings were applied on both classified images and validation mask; since 

performed test cases demonstrated a best efficiency of the majority analysis respect on the sieve, 

a procedure was created in order to post-process all thematic maps with the majority filtering 

(Figure 32).  



3  Methodology 

 

86 
 

 

Figure 32 – Post classification (majority filtering) procedure applied 

 

3.2.8 Accuracy assessment 

 

The main objective of accuracy assessment is to derive a quantitative description of the accuracy 

of the map. This is a nontrivial task, and it is recognized that there is no one universal “best” 

method of accuracy assessment, but rather a suite of methods of varying value and applicability 

for any given map and purpose (Strahler et al. 2006). An overall measure of map accuracy (a 

single statement to provide an index of the general quality of the thematic map) and measures of 

accuracy on a per-class basis are desired. 

The three basic components of an accuracy assessment are:  

1) The sampling Design used to select the reference sample; 

2) The Response Design used to obtain the reference land-cover classification for each sampling 

unit; 

3) The Estimation and Analysis Procedures. 

 

The Sampling Design is the protocol for selecting the locations at which the reference data are 

obtained. Implementing a probability sampling design contributes to a scientifically defensible 

accuracy assessment. 

The definition of probability sampling focuses on inclusion probabilities, where an inclusion 

probability is defined as the probability that a particular pixel will be chosen for the sample. 

Probability sampling requires these inclusion probabilities to be known for all pixels selected in 

the sample, and nonzero for all pixels in the population (the entire region mapped). Many 

probability sampling designs have been developed; simple random, stratified random cluster and 

systematic sampling are all probability sampling design where inclusion probabilities do not have 
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to be computed explicitly because they are already taken into account in the standard estimation 

formulas. 

The reference or “true” classification must be obtained for each sampling unit interpreting higher 

resolution data, using ground visits or other available ancillary data. The method used to 

determine this reference classification is called Response Design. Response design can be 

subdivided into two components: the Evaluation Protocol, which consists of procedures used to 

collect information contributing to the reference classification determination, and the Labelling 

Protocol, which assigns a land cover classification to the sampling unit based on the information 

obtained from the evaluation protocol.  

The land cover classifications from the map are compared to the reference classifications, and the 

extent to which these two classifications agree is defined as map accuracy (Stehman and 

Czaplewski 1998). 

The Analysis and Estimation Protocol applied to the reference sample data constitutes the third 

main component of an accuracy assessment. An error matrix effectively summarizes the key 

information obtained from the sampling and response designs providing a great wealth of 

information on a classification. It may be used to provide overall and per class summary metrics of 

land cover classification accuracy; moreover it is relatively easy to interpret and is familiar to both 

the map user and producer communities. 

In this research work, no Sampling Design was performed due to the availability of ancillary data 

on the whole area of interest.  

Concerning Response Design, since information to determine the reference classification were 

already available, no Evaluation Protocol was needed; conversely, the Labelling protocol was 

created in order to convert CTRN in a reference data suitable for validation. It’s described in 

paragraph 3.2.8.1. 

The confusion matrix and the derived measures of accuracy, thus resulting in the Analysis and 

Estimation Protocol, are instead depicted in paragraph 3.2.8.2. 

 

 

3.2.8.1 Creation of the validation mask (Response Design) 

 

The performed Response Design mainly focused on the definition of the Labelling Protocol, that is 

necessary in order to determine rules for assigning one or more reference classifications to each 

sampling unit. Reference data used for validation was Piedmont Region base cartography at scale 

1:10.000 in vector format, described in section 2.2.3. 

Some processing were needed in order to convert the cartography, in vector format and 

subdivided in a huge amount of different categories, into a raster with only elements of 

Urban/Non Urban. The following steps were considered: 
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1)   Labelling protocol: attribution of CTRN categories to the correct class (Urban/Non 

Urban). This step was performed automatically, when possible, and manually, when it was 

not possible to attribute the whole category to a final class; 

2) Conversion into raster format and re-sampling (Rasterization and resampling). 

 

Labelling protocol  

All areal features in  group 1 were assigned to Urban class, apart from some exceptions (Codes: 

2.01.25, 2.01.32, 2.01.35) where some processing where needed in order to correctly allocate 

features in the right class. 

In particular (Table 15): 

 Areas related to railways (code: 2.01.25, examples in Figure 33): features included in this 

sub-group were, in general, areas under the jurisdiction of railways authority 

(infrastructures, railways, storages); generally they were paved areas, but they could also 

be completely vegetated areas. Since only few features were coded in this group, they 

were manually checked and assigned to the right class. Only the feature represented in 

Figure 33a was assigned to Non Urban class since it represented a vegetated area;  

 Sports facilities (code: 2.01.35): features included in this sub-groups could be soccer 

fields, tennis courts, stadium or indoor sports arenas; all features were manually checked 

and assigned to Non Urban class apart from indoor sports areas or stadium coverage;  

 Not paved areas (code: 2.01.32, example in Figure 34): they represented one of the class 

with higher number of features; all areas not officially attributed to paved areas became 

part of this class. They could be both internal courtyards, both areas near to houses or 

vegetated areas (Figure 34). In order to correctly assign these features, a buffer of 10 

meters was applied to buildings (houses, industries, churches, castles, etc); all not paved 

areas that fall in this buffer were considered as Urban (example in Figure 35).  

 

GROUP  1: Streets and railways 

Assignment Name Code (2.01....) 

Elements assigned to 
Urban class without 

any modification 

Streets (paved and unpaved, tracks, 
under construction, intersections), 

traffic islands, manoeuvre areas 

01, 02, 03, 04, 041, 05,  
06, 07, 08, 42, 33 

Squares and parking 30 
Gas stations 41 
Paved areas 31 

Elements assigned to 
Urban class after some 

processing 

Areas related to railways* 25 
Not paved areas** 32 

Sport facilities* 35 

Table 15 – Assignment of CTRN group 1 features to Urban and Non urban class 

* Manually assigned at Urban or Not Urban class through visual interpretation 

** Assigned to Urban class within a buffer of 10 meters from buildings 
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Figure 33 – Example of features coded 2.01.25 (areas related to railways):  in one case (A) it’s a vegetated area, in 
another (B) it contains buildings, railways, paved and unpaved areas.  

A 

B 
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Figure 34 – Examples of a not paved areas (code: 2.01.32), in grey; in the image at the top (A) the feature is a 
courtyard, and it’s not vegetated; in the lower one (B) one feature is a green area while the other is a non-vegetated 

area in front of buildings.  

 

Figure 35 – Example of the buffer applied to buildings in order to assign Not Paved areas to urban class when close to 
buildings 

A 

B 
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Areal feature in group 2 were assigned to Urban class, apart from one exceptions: flights (codes: 

2.02.22). They could either be paved or vegetated fights so they were manually checked in order 

to assign each feature to the right class. 

GROUP  2: Buildings 

Assignment Name Code (2.02....) 

Elements assigned to 
Urban class without 

any modification 

Houses, industries, railway 
stations, religious buildings, 

historic buildings 
01, 011, 012, 013, 014 

Distribution substation, 
transformer room, silos and tanks 

015, 26, 027 

Sheds, greenhouses 07, 071 
Other 04, 06, 09 

Elements assigned to 
Urban class after some 

processing 
Flights* 21 

Table 16 - Assignment of CTRN group 2 features to Urban and Non urban class 

* Manually assigned at Urban or Not Urban class through visual interpretation 

 

The sole areal elements in Group 5 (Table 17) were cemeteries; they were assigned to Urban class 

apart from some more vegetated ones (Sassi, Monumentale, Parco, all in Turin).  

GROUP  5: Ground Elements 

Assignment Name Code (2.05....) 

Elements assigned to Urban 
class after some processing 

Cemetery* 06 

Table 17 - Assignment of CTRN group 5 features to Urban and Non urban class 

* Manually assigned at Urban or Not Urban class through visual interpretation 

 

 

All not mentioned above CTRN features were included in Non Urban class; in general, Non Urban 

areas were: 

 All features in group 3 (Water and handiworks related to water); 

 All features in group 6 (Ground Elements);  

 All features in group 7 (Vegetation); 

 The sole areal feature in group 9 (not defined areas, code: 2.09.80); 

 All features manually checked (as mentioned above); 

A complete list of entities making part of CTRN, together with their codes, can be consulted in 

Annex II (CTRN Piemonte codes list). 



3  Methodology 

 

92 
 

Rasterization and resampling 

The conversion of the new vector dataset into raster format and sub-sequent re-sampling was 

performed in one step, using the Conversion tool provided by ArcGis©; the conversion was based 

on the following parameters: 

 The field used in order to assign values to the output raster; in this case the just created 

Urban or Non Urban value; 

 The method to determine how the value has to be assigned to a cell when more than one 

features falls within a cell; a maximum combined area was chosen, in order to combine 

features that falls in a cell and to assign a value to the cell considering the combined 

feature with the largest area; 

 The alignment of the resulting raster; in order to perfectly align resulting classification and 

validation mask, a snap was performed between the two datasets during the execution; 

 Cell size of raster dataset; a 30 m spatial resolution was considered. 

 

3.2.8.2 Measures of accuracy (Analysis and Estimation procedures) 

 

A traditional procedure of verification of the classification accuracy is obtained from the confusion 

matrix analysis. The confusion matrix (or error matrix) represents a contingency table in which the 

diagonal entries represent correct classifications, or agreement between the map and reference 

data, and the off-diagonal entries represent misclassifications, or lack of agreement between the 

map and reference data. One benefit of a confusion matrix is that it is easy to see if the system is 

confusing two classes, i.e. commonly mislabelling one as another.  

The use of the confusion matrix in accuracy assessment applications is based on a number of 

important assumptions. In particular, it is assumed that each pixel can be allocated to a single 

class in both the ground truth and the thematic map and that these two data sets have the same 

spatial resolution and are perfectly registered.  

An example of confusion matrix for a two-class classifier is provided in Figure 23; it reports on the 

lines classes of the produced thematic map, and on the columns the ground truth classes.  

The diagonal elements in this matrix indicate numbers of sample for which the classification 

results agree with the reference data. Off diagonal elements in each row present the numbers of 

sample that were misclassified by the classifier,while the off-diagonal elements in each column 

are those samples being omitted by the classifier.  

  Ground truth  

Classification 
results 

 Class 1 (Urbano) Class 2 (Non urbano) 

Class 1 (Urbano) a11 a12 

Class 2 (Non urbano) a21 a22 

Table 18 – Example of confusion matrix to assess the classification accuracy 
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Various summary measures can be derived from the error matrix to describe accuracy; population 

parameters which represent well-defined probabilities of either correct classifications or various 

misclassifications are here described. 

 Overall accuracy (OA): it is the overall proportion of correctly classified area and it’s given 

by the sum of elements in the diagonal divided by the sum of all the elements. It 

represents the probability that a randomly selected point is classified correctly on the 

map. In a two-class classification, it can be expressed as: 

         

     Overall Accuracy 

 

Measures can also be derived for each class:  

 User’s accuracy (UA) for class i: it is defined by the ratio between pixel correctly classified 

as i and the total number of pixels that have been assigned to that class by the 

classification. It represents the probability that a randomly selected point classified as 

category i by the map, belongs to class i in the reference data. With reference to Table 18, 

it can be expressed as: 
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 Producer’s Accuracy (PA) for class i: it is defined by the ratio between pixels correctly 

classified as i and the total number of pixels that belongs to class i in the reference. It 

represents the probability that a randomly selected point classified as category i by the 

reference data is classified as category i by the map. With reference to Table 18, it can be 

expressed as: 
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 Commission Error (CE) for class i: it’s defined by the ratio between pixels that have been 

wrongly classified as i by the classifier and the total number of pixels that have been 

assigned to that class. 
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It represents the probability that a randomly selected pixel classified as i, belongs to another 

class in the ground truth. With reference to Table 18, it can be expressed as: 
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 Omission Error (OE) for class i, it’s defined by the ratio between pixels that belongs to 

class i in the reference but have been wrongly classified in the map.  

It represents the probability that a randomly selected pixel in class i in the reference, has 

been assigned to another class in the map. With reference to Table 18, it can be 

expressed as: 
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Often used in the field of Information Retrieval and Machine Learning, rarely in Remote Sensing, 

is the f-measure, defined as a harmonic mean of Precision and Recall; Precision (P) and Recall (or 

True Positive Rate, TP) measures are only related to the considered “positive” class, while other 

measures are related to the “negative” class (false positive rate, true negative rate, false negative 

rate). Since we were interested in classifying one specific land type (urban), the urban class was 

considered the “positive” class, and the concept of f-measure was thus adapted to our analysis in 

this way: 

   11
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This provides a combined measure of Producer’s and User’s Accuracy. 

The procedure confusion_matrix.pro (Figure 36) was created in order to carry out all the steps of 

the Accuracy Assessment; the procedure combine classes if the input is a 5-class classification 

(class are assigned to Urban or Non Urban class) and extracts measures of accuracy comparing the 

classification and the validation mask. The procedure was applied to both post-processed and not 

post-processed images: in the case where post-processed images where used, also the validation 

mask was post-processed in the same way (Figure 37). 



 

 
 

 

Figure 36- Methodology and procedure used to perform the Accuracy Assessment on not post-processed images 



 

 
 

 

Figure 37 - Methodology and procedures used to perform the Accuracy Assessment on post-processed images 
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3.3 Data collection and analysis 

3.3.1 Study area 

 

The Piedmont region, located in the north-west part of Italy, was chosen as study area.  

The proposed methodology, described in section 3.2, was applied to two different geographic 

areas, one including Torino administrative center, the other including Asti, one of the Region 

district. We thus refer to: 

 Torino case study 

 Asti case study 

Data used for the training phase are all part of Landsat ETM+ slc-off collection, described in 

section 2.2.1.2; data used for the classification process are instead part of GLS 2005 collection, 

described in section 2.2.2; data for validation is the CTRN, described in section 2.2.3, with 

different update according to the analyzed area.  

All data used in the case study are shown in Table 19. 

Case study 
Data for training set 
(date and path/row) 

Reference data Data for validation 

Torino 

06.10.1999 (194/29) 

GLS 2005  
date: 02.07.2005  
path/row: 194/29 

CTRN 2005 

24.08.2001 (194/29) 

28.09.2002 (194/29) 

30.11.1999 (195/29) 

05.06.2000 (195/29) 

30.07.2001 (195/29) 

02.07.2005 (194/29) 

Asti 

06.10.1999 (194/29) 

GLS 2005  
date: 02.07.2005  
path/row: 194/29 

CTRN 2004 
 

24.08.2001 (194/29) 

28.09.2002 (194/29) 

23.11.1999 (194/29)  

01.05.2000 (194/29) 

21.06.2001 (194/29) 

02.07.2005 (194/29) 

Table 19 – Data used for the analysis 

 

The dimension of the investigated area was influenced by the availability of the CTRN; 5 section of 

the CTRN were investigated in Torino case study, 61 in Asti case study, for a total of about 270 

km2 in Torino case study and 2.250 km2 in Asti case study.  

A representation of the investigated area is provided in Figure 38. 



3  Methodology 

 

98 
 

 

Figure 38 – Investigated area 
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4 Results 

4.1 Introduction 
 

Results are expressed in terms of accuracies reachable by each classifier; accuracies, obtained by 

comparing the resulting classifications with the validation mask, are expressed in terms of Overall 

Accuracy (OA), Producer’s and User’s Accuracy (PA and UA) and f-measure (reference to the 

Accuracy Assessment described in section 3.2.8). 

In this chapter, a general overview about classifiers performances is initially provided (section 

4.2); a summary of best classifiers and rules that constitute them is herein included. A qualitative 

analysis is then given in order to evaluate the spatial distribution of errors (section 4.3). The 

different testes variables are then evaluated (section 4.4): pre and post processing applied to 

images, as well other features, that are attributes, training of the classifier on multiple land cover 

types, use of a multitemporal stack.  

4.2 General overview 
 

The methodology was tested on two different cases, as described in section 3.3.1: 

 Torino case study; 

 Asti case study. 

The validation performed on Torino case study made use of 5 CTRN sections, and was centered on 

the area of Torino city and suburbs. The choice of the area to validate was uniquely due to the 

update of CTRN: these 5 sections were the only ones with an update suitable for our aims. Since 

Asti region was entirely update in 2004, all available CTRN sections were used (61); it resulted a 

validated area with a medium large urban area (Asti town, about ten times smaller than Torino in 

terms of inhabitants), many small towns, and endless sparse houses. Since in this case the urban 

density is very different from the other case, another subset was considered for the validation, in 

order to recreate a context more similar to the previous one; although the validation on the 

subset made use of 4 CTRN sections, that was more or less the same used for Torino, it must be 

taken into consideration that, again, the situation is very different: in the first case the analysis 

was centered in the metropolitan area of Torino and near surrounding, in the second case the 

analysis was centered on the town, the surrounding and, again, a huge part of countryside, with a 

different level of urban density.  

Results (Table 20) show that best classifiers in Torino allowed reaching Overall Accuracy round 

81%, while in Asti case study Overall Accuracy round 96% - 97% were reached. 

Overall Accuracy provides information about the whole classification, and it is representative of 

how all classes were classified; nevertheless, it happens that, if a class is badly classified but just 

few elements own to that class, this doesn’t stand out. If information about a single class are 

needed, it must refer to class accuracy measures, such as Producer’s and User’s Accuracy. Since 
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these two measures can have different trends, f-measure is a good way in order to have univocal 

information about reached accuracies. In Torino case study f-measure of 77% were reached, 

against just 48% in Asti case study. With the decreasing of the dimension of the validation subset, 

f-measure increased till to 66%; this is representative of the problem in detecting sparse urban. 

Results shown in Table 20 are related to post-processed classifications and are representative of 

best reached accuracies. 

 
TORINO ASTI ASTI subset 

N° validated pixel 

(km2) 

300.000 

(270 km2) 

2.500.000 

(2.250 km2) 

200.000 

(180 km2) 

N° used CTRN sections 5 61 4 

Best OA 81% 97% 96% 

Best f-measure 77 % 48% 66% 

Table 20 – Results: general overview 

Table from 23 to 28 shows results obtained from each classifier, for classification with and 

without post processing. Table 23 and Table 24 are related to Torino case study, while Table 25, 

Table 26,  

Table 27 and Table 28 are related to Asti case study, with or without post-processing, with the 

validation performed on the whole area or only on a subset. In the tables grey cells represent the 

three best f-measures and the three best OA; the green square underlines the best classifiers that 

are the ones that provided both better f-measure and OA. Results in bold types are instead 

related to procedure described in section 4.3; the orange squares underlines classifiers that 

provided good results as described in section 4.3.  

A summary of best classifiers, subdivided according to the case study, is provided in Table 21 (pp 

stands for post-processed classifications): 

Classifier 
Case study 

 
TO TO – pp AT AT - pp AT 

subset 
AT subset - 

pp 

1_index_DS_2cl X      
1_index_DS_5cl X X     
1_spectral_index_FLAASH_5cl   x  x  
1_ index_FLAASH_2cl    x   
1_ spectral_index_FLAASH_2cl    x   
1_ spectral_index_DS_2cl     x x 

Table 21 – Summary of best classifiers, shared according to the case study 

These are classifiers that provided, at the same time, both best f-measure and OAs.  

It’ noticeable how all best classifiers make use of indexes, both alone or together with spectral 

information; moreover, all considered classifiers exploit information from just one image and are 

obtained from an atmospherically corrected image.  
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The whole trees are shown in Figure 39 to Figure 44; rules for the detection of built-up areas 

extracted from the following trees are reported in Table 22. 

 

 

 

Figure 39 – Classifier “1 index DS 2class” 

 

 

 

Figure 40 – Classifier “1 index DS 5class” 
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Figure 41 – Classifier “1 index flash 2class” 
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Figure 42 – Classifier “1 spectral index flash 5 class” 

 

 



4  Results 

104 
 

 

Figure 43 – Classifier: “1 spectral index FLAASH 2 class” 
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Figure 44 – Classifier “spectral index DS 2 class” 
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Classifier Rules for the extraction of urban thematism 

1 index DS 2class NDBI ≥ -0.244853 and NDBBBI > -0.465424 

1 index DS 5class 
-0.465424 ≤ NDBBBI ≤ 0.006572 and  0.072057 ≤ NDVI ≤ 

0.458584 or NDBBBI ≤ 0.006572 and   NDVI ≤ 0.072057 

1 index FLAASH 2class 

Test_index ≤ 1.26211 or 1.26211 ≤ Test_index ≤ 1.64683 and 

NDBI ≤ 0.035247 and NDVI ≤ 0.194841 and NDBBBI ≥ -

0.234464 or 1.26211 ≤ Test_index ≤ 1.64683 and NDBI ≤ 

0.035247 and NDVI > 0.194841 

1 spectral index FLAASH 5 class 

B2 > 0.1561 and B1 > 0.2668 or B2 > 0.1561 and B1 ≤ 0.2668 

and test-index ≤ 1.27099 or B2 > 0.1561 and B1 ≤ 0.2668 and 

test-index > 1.27099 and B5 ≤ 0.312 or B2 ≤ 0.1561 and B5 > 

0.1327 and test-index ≤ 1.38704 or B2 ≤ 0.1561 and B5 > 

0.1327 and test-index > 1.38704 and NDBBBI > -0.608126 and 

B4 ≤ 0.2645 and NDVI > 0.183967 

1 spectral index FLAASH 2 class 

Test_index ≤ 1.26211 or Test_index > 1.26211 and NDBI ≤ 

0.035247 and test_index ≤ 1.64737 and BUI ≤ -0.176313 or 

Test_index > 1.26211 and NDBI ≤ 0.035247 and test_index ≤ 

1.64737 and BUI > -0.176313 and NDBBBI > -0.099105 or 

Test_index > 1.26211 and NDBI ≤ 0.035247 and test_index ≤ 

1.64737 and BUI > -0.176313 and NDBBBI ≤ -0.099105 and 

test_index ≤ 1.34558 

1 spectral index DS 2 class 

Test_index ≤ 1.38269 or Test_index > 1.38269 and B1 > 

0.070524 and NDBI ≤ 0.030258 and Test_index ≤ 1.89765 and 

B5 ≤ 0.222187 or Test_index > 1.38269 and B1 > 0.070524 and 

NDBI ≤ 0.030258 and Test_index ≤ 1.89765 and B5 > 0.222187 

and NDBBBI > -0.270233 or Test_index > 1.38269 and B1 > 

0.070524 and NDBI ≤ 0.030258 and Test_index ≤ 1.89765 and 

B5 > 0.222187 and NDBBBI ≤  -0.270233 and NDVI > 0.146606 

Table 22 – Rules for the extraction of urban thematism in the best classifiers 
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Table 23 –Classification without post-processing for Torino case study: validation results

     
URBAN 

 
NON URBAN 

   
OA 

 
PA UA f-measure 

 
PA UA 

2
 C

LA
SS

 

TO
 s

in
gl

e 
im

ag
e 

index_calib 69.85% 
 

91.35% 59.03% 71.71% 
 

54.40% 89.73% 

index_DS 79.86% 
 

86.90% 71.26% 78.30% 
 

74.79% 88.81% 

index_flaash 72.72% 
 

91.54% 61.73% 73.73% 
 

59.18% 90.68% 

spectral_calib 59.58% 
 

97.30% 50.88% 66.82% 
 

32.45% 94.36% 

spectral_DS 59.58% 
 

97.30% 50.88% 66.82% 
 

32.45% 94.36% 

spectral_flaash 59.46% 
 

97.34% 50.80% 66.76% 
 

32.21% 94.40% 

spectral_index_calib 59.58% 
 

97.30% 50.88% 66.82% 
 

32.45% 94.36% 

spectral_index_DS 58.28% 
 

97.63% 50.07% 66.19% 
 

29.98% 94.61% 

spectral_index_flaash 59.46% 
 

97.34% 50.80% 66.76% 
 

32.21% 94.40% 

TO
 m

u
lt

it
e

m
p

o
ra

l 

index_calib 77.02% 
 

87.37% 67.38% 76.08% 
 

69.58% 88.45% 

index_DS 78.55% 
 

72.09% 75.52% 73.77% 
 

83.20% 80.56% 

index_flaash 77.37% 
 

69.94% 74.42% 72.11% 
 

82.71% 79.28% 

spectral_calib 75.54% 
 

68.69% 71.67% 70.15% 
 

80.47% 78.14% 

spectral_DS 63.79% 
 

98.00% 53.68% 69.37% 
 

39.19% 96.46% 

spectral_flaash 77.45% 
 

81.33% 69.77% 75.11% 
 

74.65% 84.76% 

spectral_index_calib 79.20% 
 

65.30% 81.29% 72.43% 
 

89.19% 78.14% 

spectral_index_DS 78.55% 
 

72.09% 75.52% 73.77% 
 

83.20% 80.56% 

spectral_index_flaash 77.37% 
 

69.94% 74.42% 72.11% 
 

82.71% 79.28% 

5
 C

LA
SS

 

TO
 s

in
gl

e 
im

ag
e 

index_calib 71.14% 
 

85.93% 61.01% 71.36% 
 

60.51% 85.67% 

index_DS 80.49% 
 

85.62% 72.64% 78.60% 
 

76.81% 88.13% 

index_flaash 72.61% 
 

90.11% 61.85% 73.35% 
 

60.03% 89.41% 

spectral_calib 67.41% 
 

96.62% 56.46% 71.27% 
 

46.41% 95.02% 

spectral_DS 67.41% 
 

96.62% 56.46% 71.27% 
 

46.41% 95.02% 

spectral_flaash 58.74% 
 

97.55% 50.36% 66.42% 
 

30.84% 94.60% 

spectral_index_calib 68.23% 
 

90.50% 57.66% 70.44% 
 

52.21% 88.43% 

spectral_index_DS 67.93% 
 

89.21% 57.52% 69.95% 
 

52.63% 87.15% 

spectral_index_flaash 59.28% 
 

90.49% 50.75% 65.03% 
 

36.84% 84.34% 

TO
 m

u
lt

it
e

m
p

o
ra

l 

index_calib 77.72% 
 

66.78% 76.91% 71.49% 
 

85.58% 78.18% 

index_DS 78.36% 
 

74.98% 73.74% 74.36% 
 

80.79% 81.79% 

index_flaash 79.76% 
 

70.95% 78.59% 74.58% 
 

86.10% 80.47% 

spectral_calib 78.59% 
 

69.12% 77.29% 72.98% 
 

85.39% 79.36% 

spectral_DS 72.63% 
 

92.61% 61.48% 73.90% 
 

58.27% 91.64% 

spectral_flaash 77.50% 
 

79.73% 70.41% 74.78% 
 

75.90% 83.89% 

spectral_index_calib 78.59% 
 

69.12% 77.29% 72.98% 
 

85.39% 79.36% 

spectral_index_DS 73.21% 
 

92.48% 62.56% 74.64% 
 

58.88% 91.33% 

spectral_index_flaash 77.32% 
 

79.79% 70.12% 74.64% 
 

75.55% 83.87% 

  
Case study: Torino Post-processing: NO 

 
Best classifiers 
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Table 24 - Classification with post-processing for Torino case study: validation results

     
URBAN 

 
NON URBAN 

   
OA 

 
PA UA f-measure 

 
PA UA 

2
 C

LA
SS

 

TO
 s

in
gl

e 
im

ag
e 

index_calib 70.10% 
 

92.54% 56.71% 70.32% 
 

56.18% 92.39% 

*index_DS* 80.42% 
 

87.42% 69.38% 77.36% 
 

76.07% 90.70% 

index_flaash 74.03% 
 

92.72% 60.49% 73.21% 
 

62.43% 93.25% 

spectral_calib 57.90% 
 

97.64% 47.57% 63.97% 
 

33.25% 95.78% 

spectral_DS 57.90% 
 

97.64% 47.57% 63.97% 
 

33.25% 95.78% 

spectral_flaash 57.73% 
 

97.67% 47.47% 63.89% 
 

32.96% 95.80% 

spectral_index_calib 57.90% 
 

97.64% 47.57% 63.97% 
 

33.25% 95.78% 

spectral_index_DS 56.33% 
 

97.93% 46.65% 63.20% 
 

30.53% 95.97% 

spectral_index_flaash 57.73% 
 

97.67% 47.47% 63.89% 
 

32.96% 95.80% 

TO
 m

u
lt

it
e

m
p

o
ra

l 

index_calib 78.20% 
 

88.79% 66.00% 75.72% 
 

71.63% 91.15% 

*index_DS* 80.15% 
 

72.52% 74.85% 73.66% 
 

84.88% 83.28% 

index_flaash 78.91% 
 

69.88% 73.67% 71.73% 
 

84.51% 81.89% 

spectral_calib 76.33% 
 

66.69% 70.05% 68.33% 
 

82.31% 79.94% 

spectral_DS 62.42% 
 

98.58% 50.47% 66.76% 
 

39.99% 97.84% 

spectral_flaash 78.91% 
 

81.55% 69.00% 74.75% 
 

77.28% 87.10% 

spectral_index_calib 80.94% 
 

65.23% 81.28% 72.38% 
 

90.68% 80.79% 

*spectral_index_DS* 80.15% 
 

72.52% 74.85% 73.66% 
 

84.88% 83.28% 

spectral_index_flaash 78.91% 
 

69.88% 73.67% 71.73% 
 

84.51% 81.89% 

5
 C

LA
SS

 

TO
 s

in
gl

e 
im

ag
e 

index_calib 71.98% 
 

86.68% 59.15% 70.32% 
 

62.86% 88.39% 

*index_DS* 80.67% 
 

86.78% 69.95% 77.46% 
 

76.87% 90.36% 

index_flaash 73.23% 
 

91.60% 59.83% 72.38% 
 

61.84% 92.23% 

spectral_calib 66.60% 
 

97.26% 53.51% 69.04% 
 

47.59% 96.55% 

spectral_DS 66.60% 
 

97.26% 53.51% 69.04% 
 

47.59% 96.55% 

spectral_flaash 56.76% 
 

97.86% 46.90% 63.41% 
 

31.27% 95.93% 

spectral_index_calib 68.26% 
 

91.17% 55.17% 68.74% 
 

54.05% 90.80% 

spectral_index_DS 68.03% 
 

89.78% 55.06% 68.26% 
 

54.55% 89.58% 

spectral_index_flaash 58.15% 
 

90.75% 47.56% 62.41% 
 

37.92% 86.86% 

TO
 m

u
lt

it
e

m
p

o
ra

l 

index_calib 79.14% 
 

68.81% 74.70% 71.63% 
 

85.54% 81.55% 

*index_DS* 79.58% 
 

76.31% 72.01% 74.10% 
 

81.60% 84.74% 

*index_flaash* 81.51% 
 

71.61% 78.25% 74.78% 
 

87.65% 83.27% 

spectral_calib 79.62% 
 

70.73% 74.69% 72.66% 
 

85.14% 82.42% 

spectral_DS 71.00% 
 

94.22% 57.39% 71.33% 
 

56.60% 94.05% 

spectral_flaash 77.51% 
 

81.81% 66.86% 73.59% 
 

74.85% 86.90% 

spectral_index_calib 79.62% 
 

70.73% 74.69% 72.66% 
 

85.14% 82.42% 

spectral_index_DS 71.00% 
 

94.22% 57.39% 71.33% 
 

56.60% 94.05% 

spectral_index_flaash 77.34% 
 

81.87% 66.60% 73.45% 
 

74.53% 86.89% 

  
Case study: Torino Post-processing: YES 

 
Best classifiers Good classifiers 
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Table 25 - Classification without post-processing for Asti case study: validation results

     
URBAN 

 
NON URBAN 

   
OA 

 
PA UA f-measure 

 
PA UA 

2
 C

LA
SS

 

A
T

 s
in

gl
e 

im
ag

e 

index_calib 94.18% 
 

41.41% 38.86% 40.10% 
 

96.78% 97.10% 

index_DS 95.70% 
 

27.46% 59.19% 37.52% 
 

99.06% 96.51% 

index_flaash 95.01% 
 

38.01% 46.39% 41.78% 
 

97.83% 96.97% 

spectral_calib 95.14% 
 

26.97% 47.16% 34.32% 
 

98.51% 96.47% 

spectral_DS 95.14% 
 

26.94% 47.15% 34.29% 
 

98.51% 96.47% 

spectral_flaash 95.26% 
 

26.19% 49.26% 34.20% 
 

98.67% 96.44% 

spectral_index_calib 93.93% 
 

43.00% 37.40% 40.01% 
 

96.45% 97.16% 

spectral_index_DS 95.29% 
 

30.24% 49.96% 37.68% 
 

98.50% 96.62% 

spectral_index_flaash 95.01% 
 

38.95% 46.46% 42.38% 
 

97.78% 97.01% 

A
T

 m
u

lt
it

e
m

p
o

ra
l 

index_calib 90.56% 
 

52.42% 25.51% 34.32% 
 

92.44% 97.52% 

index_DS 80.65% 
 

68.85% 15.34% 25.09% 
 

81.23% 98.14% 

index_flaash 72.72% 
 

69.60% 11.25% 19.36% 
 

72.87% 97.98% 

spectral_calib 95.39% 
 

6.99% 58.34% 12.48% 
 

99.75% 95.60% 

spectral_DS 95.39% 
 

8.78% 56.56% 15.20% 
 

99.67% 95.68% 

spectral_flaash 94.80% 
 

16.65% 38.09% 23.17% 
 

98.66% 95.99% 

spectral_index_calib 95.66% 
 

16.38% 65.86% 26.23% 
 

99.58% 96.02% 

spectral_index_DS 95.31% 
 

11.13% 50.82% 18.26% 
 

99.47% 95.77% 

spectral_index_flaash 95.20% 
 

13.19% 46.61% 20.56% 
 

99.25% 95.86% 

5
 C

LA
SS

 

A
T

 s
in

gl
e 

im
ag

e 

index_calib 95.40% 
 

31.19% 51.87% 38.95% 
 

98.57% 96.67% 

index_DS 92.69% 
 

43.42% 30.55% 35.87% 
 

95.13% 97.15% 

index_flaash 91.86% 
 

49.96% 28.90% 36.62% 
 

93.93% 97.44% 

spectral_calib 94.74% 
 

29.37% 41.62% 34.44% 
 

97.97% 96.56% 

spectral_DS 94.74% 
 

29.37% 41.62% 34.44% 
 

97.97% 96.56% 

spectral_flaash 94.68% 
 

30.15% 41.08% 34.78% 
 

97.86% 96.60% 

spectral_index_calib 94.14% 
 

33.12% 36.51% 34.73% 
 

97.15% 96.71% 

spectral_index_DS 88.48% 
 

49.02% 20.18% 28.59% 
 

90.42% 97.29% 

spectral_index_flaash 95.40% 
 

34.19% 51.74% 41.17% 
 

98.43% 96.80% 

A
T

 m
u

lt
it

e
m

p
o

ra
l 

index_calib 83.89% 
 

54.41% 15.49% 24.12% 
 

85.35% 97.43% 

index_DS 92.59% 
 

40.64% 29.29% 34.04% 
 

95.15% 97.01% 

index_flaash 90.88% 
 

36.26% 21.82% 27.24% 
 

93.58% 96.75% 

spectral_calib 74.78% 
 

26.27% 5.38% 8.93% 
 

77.17% 95.49% 

spectral_DS 94.77% 
 

12.85% 34.86% 18.78% 
 

98.81% 95.83% 

spectral_flaash 94.35% 
 

16.85% 31.28% 21.90% 
 

98.17% 95.98% 

spectral_index_calib 95.30% 
 

5.84% 50.99% 10.48% 
 

99.72% 95.54% 

spectral_index_DS 92.05% 
 

19.45% 18.05% 18.72% 
 

95.64% 96.01% 

spectral_index_flaash 91.52% 
 

21.14% 17.27% 19.01% 
 

95.00% 96.06% 

  
Case study: Asti Post-processing: NO 

 
Best classifiers 
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Table 26 - Classification with post-processing for Asti case study: validation results

     
URBAN 

 
NON URBAN 

   
OA 

 
PA UA f-measure 

 
PA UA 

2
 C

LA
SS

I 

A
T

 s
in

gl
e 

im
ag

e 

*index_calib* 97.42% 
 

38.60% 56.49% 45.87% 
 

99.13% 98.23% 

index_DS 97.71% 
 

23.83% 83.09% 37.03% 
 

99.86% 97.83% 

*index_flaash* 97.71% 
 

35.18% 68.39% 46.46% 
 

99.53% 98.14% 

*spectral_calib* 97.52% 
 

31.64% 62.23% 41.95% 
 

99.44% 98.04% 

*spectral_DS* 97.52% 
 

31.60% 62.23% 41.91% 
 

99.44% 98.04% 

*spectral_flaash* 97.55% 
 

30.38% 64.11% 41.22% 
 

99.50% 98.00% 

*spectral_index_calib* 97.30% 
 

42.28% 52.75% 46.94% 
 

98.90% 98.33% 

*spectral_index_DS* 97.59% 
 

35.31% 63.25% 45.32% 
 

99.40% 98.14% 

*spectral_index_flaash* 97.73% 
 

37.14% 68.24% 48.10% 
 

99.50% 98.19% 

A
T

 m
u

lt
it

e
m

p
o

ra
l 

index_calib 95.89% 
 

50.62% 34.57% 41.09% 
 

97.21% 98.54% 

index_DS 85.07% 
 

74.39% 12.91% 22.00% 
 

85.38% 99.13% 

index_flaash 76.51% 
 

73.35% 8.37% 15.02% 
 

76.61% 99.00% 

spectral_calib 97.27% 
 

6.85% 68.21% 12.44% 
 

99.91% 97.36% 

spectral_DS 97.31% 
 

8.94% 69.13% 15.83% 
 

99.88% 97.41% 

spectral_flaash 97.06% 
 

18.97% 45.18% 26.72% 
 

99.33% 97.68% 

spectral_index_calib 97.51% 
 

16.40% 78.30% 27.11% 
 

99.87% 97.62% 

spectral_index_DS 97.30% 
 

12.46% 61.16% 20.70% 
 

99.77% 97.51% 

spectral_index_flaash 97.25% 
 

14.94% 55.29% 23.53% 
 

99.65% 97.57% 

5
 C

LA
SS

I 

A
T

 s
in

gl
e 

im
ag

e 

*index_calib* 97.41% 
 

35.44% 56.92% 43.69% 
 

99.22% 98.14% 

index_DS 96.49% 
 

47.24% 39.85% 43.23% 
 

97.92% 98.46% 

index_flaash 95.25% 
 

53.59% 30.64% 38.99% 
 

96.47% 98.62% 

*spectral_calib* 97.16% 
 

35.56% 49.85% 41.51% 
 

98.96% 98.14% 

*spectral_DS* 97.16% 
 

35.56% 49.85% 41.51% 
 

98.96% 98.14% 

*spectral_flaash* 97.05% 
 

36.34% 47.28% 41.10% 
 

98.82% 98.16% 

spectral_index_calib 96.93% 
 

39.04% 45.05% 41.83% 
 

98.61% 98.23% 

spectral_index_DS 91.59% 
 

58.50% 18.62% 28.25% 
 

92.55% 98.71% 

*spectral_index_flaash* 97.34% 
 

40.55% 53.93% 46.29% 
 

98.99% 98.28% 

A
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index_calib 87.26% 
 

58.00% 12.44% 20.49% 
 

88.11% 98.63% 

index_DS 95.19% 
 

48.55% 29.08% 36.37% 
 

96.55% 98.47% 

index_flaash 93.81% 
 

40.63% 20.32% 27.09% 
 

95.36% 98.22% 

spectral_calib 75.79% 
 

27.82% 3.43% 6.11% 
 

77.18% 97.35% 

spectral_DS 96.76% 
 

16.96% 35.11% 22.87% 
 

99.09% 97.62% 

spectral_flaash 96.32% 
 

21.99% 29.76% 25.30% 
 

98.49% 97.75% 

spectral_index_calib 97.18% 
 

7.70% 51.71% 13.40% 
 

99.79% 97.38% 

spectral_index_DS 95.07% 
 

21.46% 18.33% 19.77% 
 

97.22% 97.70% 

spectral_index_flaash 94.70% 
 

22.45% 17.00% 19.35% 
 

96.81% 97.72% 

  
Case study: Asti Post-processing: YES 

 
Best classifiers Good classifiers 
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Table 27 - Classification without post-processing for Asti case study: validation results performed on the subset 

 

     
URBAN 

 
NON URBAN 

   
OA 

 
PA UA f-measure 

 
PA UA 

2
 C

LA
SS

 

A
T
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e 

im
ag
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index_calib 91.77% 
 

48.69% 58.99% 53.34% 
 

96.38% 94.61% 

index_DS 92.89% 
 

39.49% 75.20% 51.79% 
 

98.61% 93.84% 

index_flaash 92.36% 
 

45.03% 65.16% 53.25% 
 

97.42% 94.31% 

spectral_calib 92.82% 
 

43.65% 70.84% 54.02% 
 

98.08% 94.21% 

spectral_DS 92.81% 
 

43.62% 70.84% 54.00% 
 

98.08% 94.20% 

spectral_flaash 93.15% 
 

42.62% 76.01% 54.61% 
 

98.56% 94.13% 

spectral_index_calib 91.57% 
 

50.24% 57.32% 53.55% 
 

96.00% 94.74% 

spectral_index_DS 93.18% 
 

48.59% 71.73% 57.94% 
 

97.95% 94.68% 

spectral_index_flaash 92.50% 
 

47.28% 65.54% 54.93% 
 

97.34% 94.52% 

A
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u
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e
m
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o
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index_calib 89.26% 
 

59.91% 45.76% 51.89% 
 

92.40% 95.56% 

index_DS 80.72% 
 

70.84% 29.38% 41.54% 
 

81.78% 96.32% 

index_flaash 74.38% 
 

67.79% 22.56% 33.85% 
 

75.09% 95.61% 

spectral_calib 91.46% 
 

17.25% 75.57% 28.09% 
 

99.40% 91.82% 

spectral_DS 91.82% 
 

21.56% 77.78% 33.76% 
 

99.34% 92.21% 

spectral_flaash 92.12% 
 

34.27% 68.53% 45.70% 
 

98.32% 93.32% 

spectral_index_calib 92.73% 
 

31.43% 82.56% 45.53% 
 

99.29% 93.12% 

spectral_index_DS 92.27% 
 

26.24% 80.79% 39.61% 
 

99.33% 92.64% 

spectral_index_flaash 92.28% 
 

28.17% 77.83% 41.36% 
 

99.14% 92.80% 

5
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SS

 

A
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e 
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index_calib 92.84% 
 

45.12% 70.20% 54.93% 
 

97.95% 94.34% 

index_DS 89.49% 
 

53.86% 46.25% 49.77% 
 

93.30% 94.97% 

index_flaash 90.80% 
 

61.72% 52.02% 56.46% 
 

93.91% 95.82% 

spectral_calib 93.08% 
 

48.44% 70.72% 57.50% 
 

97.85% 94.66% 

spectral_DS 93.08% 
 

48.44% 70.72% 57.50% 
 

97.85% 94.66% 

spectral_flaash 92.99% 
 

48.42% 69.84% 57.19% 
 

97.76% 94.66% 

spectral_index_calib 92.65% 
 

50.78% 65.43% 57.18% 
 

97.13% 94.86% 

spectral_index_DS 88.50% 
 

63.53% 43.51% 51.65% 
 

91.17% 95.90% 

spectral_index_flaash 93.39% 
 

50.13% 73.04% 59.45% 
 

98.02% 94.84% 
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index_calib 85.27% 
 

50.94% 33.03% 40.07% 
 

88.95% 94.43% 

index_DS 90.11% 
 

47.86% 48.82% 48.34% 
 

94.63% 94.43% 

index_flaash 88.79% 
 

45.12% 42.51% 43.77% 
 

93.47% 94.09% 

spectral_calib 72.31% 
 

44.17% 16.07% 23.57% 
 

75.32% 92.65% 

spectral_DS 91.84% 
 

29.83% 67.72% 41.41% 
 

98.48% 92.91% 

spectral_flaash 91.78% 
 

34.82% 63.64% 45.01% 
 

97.87% 93.35% 

spectral_index_calib 91.17% 
 

14.13% 72.10% 23.63% 
 

99.41% 91.54% 

spectral_index_DS 89.77% 
 

34.01% 46.08% 39.14% 
 

95.74% 93.13% 

spectral_index_flaash 89.35% 
 

34.98% 43.64% 38.83% 
 

95.16% 93.19% 

  
Case study: Asti subset Post-processing: NO 

 
Best classifiers 
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Table 28 - Classification with post-processing for Asti case study: validation results performed on the subset 

 

     
URBAN 

 
NON URBAN 

   
OA 

 
PA UA f-measure 

 
PA UA 
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e 
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index_calib 95.64% 
 

51.83% 75.62% 61.50% 
 

98.80% 96.61% 

index_DS 95.66% 
 

40.85% 88.16% 55.83% 
 

99.60% 95.90% 

index_flaash 95.74% 
 

47.13% 81.71% 59.78% 
 

99.24% 96.30% 

*spectral_calib* 95.97% 
 

52.56% 80.68% 63.66% 
 

99.09% 96.67% 

*spectral_DS* 95.96% 
 

52.52% 80.67% 63.62% 
 

99.09% 96.66% 

*spectral_flaash* 96.11% 
 

50.96% 85.24% 63.79% 
 

99.36% 96.57% 

spectral_index_calib 95.57% 
 

54.68% 72.58% 62.37% 
 

98.51% 96.79% 

*spectral_index_DS* 96.12% 
 

57.62% 78.90% 66.60% 
 

98.89% 97.01% 

*spectral_index_flaash* 95.95% 
 

51.47% 81.51% 63.09% 
 

99.16% 96.59% 

A
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m
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index_calib 94.92% 
 

63.78% 61.84% 62.79% 
 

97.16% 97.39% 

index_DS 85.20% 
 

76.50% 28.00% 40.99% 
 

85.83% 98.07% 

index_flaash 78.45% 
 

70.62% 19.51% 30.57% 
 

79.01% 97.39% 

spectral_calib 94.29% 
 

17.88% 86.20% 29.61% 
 

99.79% 94.40% 

spectral_DS 94.67% 
 

23.67% 88.91% 37.39% 
 

99.79% 94.78% 

spectral_flaash 95.24% 
 

40.27% 78.29% 53.19% 
 

99.20% 95.84% 

spectral_index_calib 95.35% 
 

34.71% 89.92% 50.09% 
 

99.72% 95.50% 

spectral_index_DS 95.09% 
 

30.87% 88.74% 45.80% 
 

99.72% 95.24% 

spectral_index_flaash 95.13% 
 

33.05% 85.58% 47.69% 
 

99.60% 95.38% 
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index_calib 95.60% 
 

53.54% 73.84% 62.08% 
 

98.63% 96.72% 

index_DS 94.56% 
 

60.19% 59.35% 59.77% 
 

97.03% 97.13% 

index_flaash 94.20% 
 

68.80% 55.52% 61.45% 
 

96.03% 97.71% 

*spectral_calib* 96.01% 
 

58.26% 76.73% 66.23% 
 

98.73% 97.05% 

*spectral_DS* 96.01% 
 

58.26% 76.73% 66.23% 
 

98.73% 97.05% 

*spectral_flaash* 95.89% 
 

58.12% 75.11% 65.53% 
 

98.61% 97.03% 

*spectral_index_calib* 95.86% 
 

60.65% 73.19% 66.33% 
 

98.40% 97.20% 

spectral_index_DS 91.98% 
 

74.94% 44.30% 55.68% 
 

93.21% 98.10% 

*spectral_index_flaash* 96.01% 
 

59.96% 75.57% 66.86% 
 

98.60% 97.16% 
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index_calib 89.01% 
 

52.71% 31.20% 39.20% 
 

91.63% 96.42% 

index_DS 93.54% 
 

57.17% 51.77% 54.33% 
 

96.16% 96.89% 

index_flaash 92.12% 
 

50.88% 42.76% 46.47% 
 

95.09% 96.41% 

spectral_calib 73.37% 
 

48.97% 12.42% 19.81% 
 

75.12% 95.34% 

spectral_DS 94.66% 
 

37.28% 69.00% 48.41% 
 

98.79% 95.63% 

spectral_flaash 94.53% 
 

43.51% 63.55% 51.66% 
 

98.20% 96.02% 

spectral_index_calib 94.01% 
 

16.45% 74.82% 26.97% 
 

99.60% 94.30% 

spectral_index_DS 93.51% 
 

41.12% 52.15% 45.98% 
 

97.28% 95.82% 

spectral_index_flaash 93.17% 
 

41.39% 49.05% 44.90% 
 

96.90% 95.83% 

  
Case study: Asti subset Post-processing: YES 

 
Best classifiers Good classifiers 
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4.3 Qualitative analysis of classification error (Spatial distribution of 

error/ quality control)  
 

The erroneous allocations made by a classification are typically not randomly distributed over the 

region (Congalton 1988; Steele et al. 1996). Often there is a distinct of thematic errors arising 

from the sensor’s properties (Foody 1988) and/or the ground conditions, with, for example, errors 

spatially correlated at the boundaries of classes (Congalton 1988; Edwards and Lowell 1996; 

Steele et al. 1996; Vieira and Mather 2000). Much of the error occurring at boundaries is 

associated with misregistration of the data sets and mixed pixels. 

Accuracy measures derived from the error matrix provide information on the quality of the map 

as a whole but cannot be used to characterize distinct areas of the map (Mayaux et al. 2006); as a 

consequence, quality control can be used in order to describe the spatial distribution of errors. 

The performed quality control was aimed at detecting more recursive errors in the resulting 

“good” classifiers. The questions were: 

 Where were my errors located?  

 Were there some land covers usually misclassified each-other?  

 Is it possible to detect at least the presence of a small-medium built-up area, in spite of 

classification errors? 

The analysis was performed on the resulting “good-classifiers”, taking into consideration only 

post-processed classifications. Good classifiers were pinpointed, for each case study, in the 

following way: first, nine best OA and nine best f-measures were selected; second, the accuracy 

percentage (both OA and f-measure) of the ninth classifier was considered and round down of, at 

maximum, 1%: this value represented the threshold detected not to exclude any classifier with 

accuracy measure very similar to the first nine classifiers; finally, among selected classifiers, those 

that were selected both for best OA and f-measures, were considered the “good classifiers”. The 

number of selected good-classifiers together with the selected thresholds is shown Table 29.  

Table 24, Table 26 and Table 28 show, in orange, selected good classifiers and, in bold type, best f-

measures and OA detected with the above mentioned criterion. 

Case study 

Number of 

selected “good 

classifier” 

OA threshold 
f-measure  

threshold 

Torino – post processed 6 79% 73% 

Asti – post processed 13 97% 41% 

Asti subset – post processed 10 95% 63% 

Table 29 – Number of “good” classifiers selected for the qualitative analysis and threshold fixed to determine “good 
classifiers” 
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The procedure created in order to perform the quality control, used, in input, both the “good 

classifiers” and the validation mask and gave, in output, an error mask: the information associated 

to each pixel was the membership to the Urban or Non Urban class, together with the number of 

times in which that pixel was correctly classified by the “good classifiers”. The concept was 

represented with two color ramps, one from white to dark grey for the Non Urban class, the other 

from red to yellow for the Urban class. Non Urban pixels correctly classified from all classifiers 

appear white, and the colour became more and more grey according to the percentage of 

classifiers that mis-classify that pixel: dark grey pixels were misclassified by all the classifiers (that 

is, classified as Urban). In the same way, Urban pixels correctly classified from all classifiers appear 

red, and the colour became more and more yellow according to the percentage of classifiers that 

mis-classify that pixel: yellow pixels were misclassified by all the classifiers (that is, classified as 

Non Urban). An example of the error mask legend is provided in Figure 45. 

 

 

Figure 45 – Legend to interpret the error mask 

 

The aim was to evaluate where most recurring errors were located. The analysis, performed both 

for Torino and Asti case study, is described in sections 4.3.1 and 4.3.2. 

 

4.3.1 Torino case study 

 

The error mask built for Torino case study provides results shown in  

Figure 46; the blue line represents the district boundaries, while the validated area is the non-

black one. The analysis shows that dense built-up area is correctly classified by almost all 

classifiers; most recursive classification errors are hooped in green and a zoom is provided in 

Figure 47 to Figure 51. A background imagery was used in the zoom (Source: Ikonos, Date: 

23.02.2001) in order to provide a quick understanding of the land cover, but it is not the one used 

for the mask construction and is 4 years prior the date of the classified image.  

 

 

 

Uncorrectly classified 

as Non Urban from all 

classifiers 

Uncorrectly classified 

as Urban from all 

classifiers 

Correctly classified as 

Urban from all 

classifiers 

Correctly classified 

as Non Urban from 

all classifiers 



4  Results 

115 
 

 

Figure 46 – Quality control performed on Torino case study: number of times in which each pixel is correctly classified 
by “good” classifiers. 

 

Figure 47 and Figure 48 provide example of Non Urban areas that were often incorrectly classified 

as Urban. 

Zoom A (Figure 47) represents a cemetery, while Zoom B (Figure 48) shows areas where 

excavation were performed or  quarries are present (lower green circles) or, even,  cultivated 

fields that were misclassified (higher green circles).  

Zoom A 

 

 

 

 

 

 

 

 

Figure 47 – Area often incorrectly classified as urban: cemetery 

A 

B 
C 

D 

E 
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Zoom B 

 

 

 

 

 

 

 

 

 

Zoom C (Figure 49) provides example of bare soil areas that were classified as urban: the 

confusion between bare soil and urban is a typical and frequent problem in urban classification. 

Zoom C 

 

Figure 49 – Areas often uncorrectly classified as urban: bare soil 

 

Zoom D and E (Figure 50 and Figure 51) shows examples where Urban areas were not detected; 

this is the case of sparse urban.   

 

Figure 48 – Areas often uncorrectly classified as urban: quarries or excavation site (lower circles) and cultivated 
fields (higher circles) 
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Zoom D 

 

Figure 50 – Urban areas often not detected: sparse houses. 

 

Figure 51 shows an example of a small built up area; it states that at least a small core part was 

always detected, while mis-classified pixels were located at the boundaries. 

 

Zoom E 

 

Figure 51 – Urban areas often not detected: low density built up area 
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4.3.2 Asti case study 

 

In Asti case study, the investigated area was very different from the previous one: the extent was 

larger and arranged by many small-medium built-up areas, unlike Torino case study where the 

analysis was centred on the city and near surroundings. 

The aforementioned quality analysis was here extended thanks to the availability of a municipality 

boundaries vector layer; the “error mask” was here superimposed to the vector layer in order to 

extract errors statistics for each municipality.   

The adopted Piedmont region municipality boundaries vector layer provides, among other things, 

information about the dimension of each municipality. 

759 districts own to Piedmont region; among them, 676 are very small (less than 250.000 m2, that 

means, more or less, a dimension of 500 m x 500 m), 77 are small (between 250.000 and 

1.200.000 m2, that is, more or less, a dimension of 1 km x 1 km), 3 are medium-small (between 

1.200.000 and 3.200.000 m2, that is, more or less, a dimension of 1.7 km x 1.7 km) and 1 is 

medium (Asti district). 

In the performed analysis, only small and medium small built-up areas were considered. The 

analysis was performed on the “good-classifiers”, as discussed in section 4.3. The number of 

“good-classifiers” on which the analysis was performed is reported in Table 29. For each district it 

was calculated: 

 

 The number of pixel detected as Urban in the validation mask; 

 The number of pixel detected as Urban in more then 80% of cases; 

 The number of pixel detected as Urban in more then 60% of cases 

Results are summarized in Annex IV; they are ordered according to the number of pixel in the 

validation mask. 

The outcome allowed identifying places where classifiers had good performances, and places 

(town) where this didn’t happened. Once places where bad performances occourred were 

identified, a visual analysis was performed in order to verify causes of bad classification.  

Figure 52 and Figure 54 shows example of good performances; districts of about 500.000 m2 and 

250.000 m2 had 42.5% and 49.5% of pixels correctly classified in 80% of cases. 

On the contrary, Figure 53 and Figure 55 are example of bad performances; districts of about 

540.000 m2 and 400.000 m2 had just 19.7% and 1% of pixels correctly classified in 80% of cases.  

 

The analysis allowed to verify how the core part of a small town can be identified if the built-up 

area density is quite high; on the contrary, where the built up area is sparser, the classifier has 

difficulty in detecting urban pixels. The application of post-processing techniques can help in 

recreating a more homogeneus texture, making use of clump or majority filtering procedures. 
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Figure 52 – Moncalvo, 528.400 m
2
. 42.5% of pixels were correctly classified as Urban by the majority of “good 

classifiers”. The dense built-up area was correctly classified in almost all cases. 
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Figure 53 – Castelnuovo Belbo, 541.600 m
2
. Only 19.7% of pixels were correctly classified in 80% of cases. This can be 

due to the high presence of vegetation in the whole area (lower built-up density) 
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Figure 54 – Rocchetta Tanaro, 263.257 m
2
. 49.5% of pixels were correctly classified as Urban by the majority of “good 

classifiers”. Errors were located where the presence of vegetation was higher.   
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Figure 55 - Dusino, 391.200 m
2
. Only 1% of pixels were correctly classified by almost all “good classifiers”. This is a 

clear example of where urban procedure classification fails. 
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4.4 Analysis of tested variables 
 

In order to evaluate the best variables to use for the classification process, the different obtained 

classifiers were compared by analyzing one by one each variable. For example, classifiers 

obtained: 

 with the same input features, from images with the same radiometric pre-processing but 

different post processing, or  

 from images with the same radiometric pre-processing, the training set learned on the 

same number of classes, post processed in the same way but with the use, or not, of the 

multitemporal stack, or 

 from images with the same radiometric pre-processing, post processed in the same way, 

the training set learned with the same temporal extension but on different number of 

classes, and so on.  

Results, available in Table 23 to Table 28, are combined in the following graphs according to 

examined variable.  

 

4.4.1 Post-processing 

 

Results analysis starts from the comparison between accuracy reached by the thematic maps as 

obtained from the classification process, and the ones that were post-processed with a majority 

filter with kernel size 3 x 3. Despite post-processing is only the final step of the classification 

process, results about its employment are placed before. The choice is aimed at simplifying the 

interpretation of the variables examined in the following sections. 

In order to evaluate improvement due to the application (or not) of the post-processing, the 

analyzed parameters in Asti case study state what follow:  

 Overall accuracy: post-processed classifications provided better results in terms of Overall 

Accuracy (Figure 56). Taking into consideration all classifications, Overall Accuracy in post-

processed thematic maps was, on average, 2.64% higher than other, up to a maximum of 

5.34%. This trend occurred in 100% of cases (Table 30).   

 f-measure: post-processed classifications provided better results in terms of f-measure 

(Figure 57) in 78% of cases. The mean improvement obtained in these cases was 4.70%, 

up to a maximum of 7.64% (Table 30). In remaining 22% of cases (8 occurrences), where 

classifications without post-processing provided better results, f-measure was very 

scarce: in 2 cases lower than 15%, in 5 cases between 15% and 30%, in one case between 

30% and 40% (better f-measure were round 48%). 

 Producer’s Accuracy: post-processed classifications provided better results in terms of PA 

(Figure 58) in 81% of cases. The mean improvement obtained in these cases was 4.05%, 

up to a maximum of 9.48% (Table 30).  In remaining 19% of cases (7 occurrences), where 

classifications without post-processing provided better results, f-measure was very low: in 
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2 cases lower than 30%, in 2 cases between 30% and 40%, in one case between 40% and 

55% (better PA are round 75%). 

 User’s Accuracy: post-processed classifications provided better results in terms of UA 

(Figure 59) in 75% of cases. The mean improvement provided in these cases was 10.36%, 

up to a maximum of 23.9% (Table 30). In remaining 25% (9 occurrences), classifications 

without post-processing provided better results, but with very low UA: in 8 cases lower 

than 30%, in 1 case between 30% and 40% (better UA were more than 80%).  

Post-processed thematic maps were particularly better than others in 2-class Single Image 

Classifiers. 

From the analysis resulted that the application of a majority filtering on the performed 

classifications generally improved all accuracy measures. The major improvement was in User’s 

Accuracy: the wrong allocation of pixels in the urban class was rather reduced with the 

employment of post-processing. 

The behaviour observed on the subset was approximately the same observed on the whole 

validation; a summary of the results is provided in Table 30.  

 

 

Figure 56 - Overall Accuracy comparison in the thematic maps obtained with or without post-processing. On the x-
axis, classifier names are shortened as follows: 1: single image classifier; n: multitemporal classifier; I: only indexes; S: 

only spectral information; IS: both indexes and spectral information; 2cl: 2 classes; 5cl: 5 classes. 
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Figure 57 - f-measure comparison in the thematic maps obtained with or without post-processing. On the x-axis, 
classifier names are shortened as follows: 1: single image classifier; n: multitemporal classifier; I: only indexes; S: only 

spectral information; IS: both indexes and spectral information; 2cl: 2 classes; 5cl: 5 classes. 

 

Figure 58 - PA comparison in the thematic maps obtained with or without post-processing. On the x-axis, classifier 
names are shortened as follows: 1: single image classifier; n: multitemporal classifier; I: only indexes; S: only spectral 

information; IS: both indexes and spectral information; 2cl: 2 classes; 5cl: 5 classes 
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Figure 59 - UA comparison in the thematic maps obtained with or without post-processing. On the x-axis, classier 
names are shortened as follows: 1: single image classier; n: multitemporal classifier; I: only indexes; S: only spectral 

information; IS: both indexes and spectral information; 2cl: 2 classes; 5cl: 5 classes 

The above mentioned analysis was performed for Torino case study too.  

The analyzed parameters stated what follows: 

 Overall accuracy: post-processed classifications provided better results in terms of Overall 

Accuracy in 64% of cases (Figure 60). When post-processed classifications  provided 

better result, Overall Accuracy was, on average, 0.95% better; on the other hand, when 

classifications without post-processing  provided better result, Overall Accuracy was, on 

average, 1.57% better (Table 30).   

 f-measure: classifications without post-processing provided better results in terms of f-

measure in 94% of cases (Figure 61). When post-processed classifications provided better 

result, f-measure was, on average, 0.18% better; on the other hand, when classifications 

without post-processing provided better result, f-measure was, on average, 1.53% better 

(Table 30). In both cases, improvements provided by the performed choice are very low. 

 Producer’s Accuracy: post-processed classifications provided better results in terms of PA 

(Figure 62) in 89% of cases. When post-processed classifications  provided better results, 

PA was, on average, 0.91% better; on the other hand, when classifications without post-

processing  provided better result, Overall Accuracy was, on average, 0.55% better (Table 

30). In both cases, improvements provided by the performed choice are very low. 

 User’s Accuracy: classifications without post-processing always provided better results in 

terms of UA (Figure 63). Taking into consideration all classification, UA in thematic maps 

without post-processing was, on average, 2.36% higher than other (Table 30).  
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From the analysis it resulted that the application of a majority filtering on the resulting 

classifications caused an improvement in Producer’s Accuracy and a decrease of User’s Accuracy. 

The increase or decrease of the different measures of accuracy was, anyway, quite low for the 

considered case study. 

 

Figure 60 - Comparison of the different thematic maps with or without post-processing on the basis of Overall 
Accuracy 

 

Figure 61 - Comparison of the different thematic maps with or without post-processing on the basis of the f-measure 
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Figure 62 - Comparison of the different thematic maps with or without post-processing on the basis of the Producer’s 
Accuracy 

 

 

Figure 63 - Comparison of the different thematic maps with or without post-processing on the basis of the User’s 
Accuracy 
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The application of post-processing caused, in general, two connected effects: the increase of the 

Minimum Mapping Unit both in the validation mask and in the classification itself.  

In Asti case study, the improvement in the use of post-processing was evident: where medium 

density urban land cover and very sparse urban land cover is present, it’s necessary to increase 

the Minimum Mapping Unit, because single urban pixels are difficult to detect and their 

identification can also be unuseful.  

Where urban density is very high, the application of a post-processing can, instead, be avoided.  

 

Table 30 provides a summary of the above mentioned results. In particular, it’s aimed at 

enhancing: 

 Better results with post-processing: number of times (expressed as % on the whole) in 

which classifications with post-processing provided better results than without post-

processing; 

 Better results without post-processing: number of times (expressed as % on the whole) in 

which classifications without post-processing provided better results than without post-

processing; 

For both of these groups: 

 Mean improvement: Mean improvement of considered measure of accuracy calculated 

only on classification that provided better results with post-classification (or without). 

Minus sign is insered when results without post-processing were better than others; 

In general: 

 Mean: mean improvement calculated on all classifications;  

 Max: maximum improvement (in cases in which post-processed classifications are better 

than other); 

 Min: minimum improvement (in cases in which not post-processed classifications are 

better than other). 

 

Table 30 – Information extracted from the comparison between the same classifiers, with or without post-
processing. The comparison was performed taking into consideration 4 measures of accuracy: Overall Accuracy, f-

measure, Producer’s Accuracy, User’s Accuracy 

  

TO AT
AT 

subset
TO AT

AT 

subset
TO AT

AT 

subset
TO AT

AT 

subset

Better results with post-

processing
64% 100% 100% 6% 78% 89% 89% 81% 100% 0% 75% 86%

mean improvement 0.95% 2.64% 3.27% 0.18% 4.70% 6.89% 0.91% 4.05% 6.12% - 10.36% 8.11%

Better results without 

post-processing
36% 0% 0% 94% 22% 11% 11% 19% 0% 100% 25% 14%

mean improvement -1.57% - - -1.53% -1.86% -2.11% -0.55% -1.96% - -2.36% -1.71% -2.00%

General improvement

mean 0.04% 2.64% 3.27% -1.44% 3.24% 5.89% 0.75% 2.88% 6.12% -2.36% 7.34% 6.70%

max 1.75% 5.34% 5.66% 0.21% 7.64% 10.91% 2.09% 9.48% 11.41% -0.01% 23.90% 16.64%

min -2.20% 1.01% 1.06% -3.31% -4.34% -3.76% -2% -3.64% 0.63% -5.18% -3.05% -3.66%

OA f-measure PA UA
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4.4.2 Radiometric pre-processing 

 

In order to detect which kind of radiometric pre-processing allowed to obtain better accuracy in 

the classification phase, if any, classifiers learned with the same number of classes, the same 

extension of the training set, the same attributes, but different kind of radiometric pre-processing 

were compared. As mentioned in section 3.2.3, images were calibrated into reflectance values, or 

depured from atmospheric effects with Dark Subtraction or with FLAASH.  

Post-processed classifications were compared; OA and f-measure were used for the comparison. 

Results state that: 

 In Asti case study, calibrated images provided better results then other in term of Overall 

Accuracy in 4 cases, corrected with Dark Subtraction images provided better results then 

other in 4 cases, while corrected with FLAASH images were better in 3 cases (Figure 64). 

For what f-measure is concerned, calibrated images provided better results in 2 cases, 

corrected with Dark Subtraction images provided better results then other in 4 cases, 

while corrected with FLAASH images were better in 5 cases (Figure 65). 

 In Torino case study, calibrated images provided better results then other in term of 

Overall Accuracy in 5 cases, corrected with Dark Subtraction images provided better 

results then other in 3 cases, while corrected with FLAASH images were better in 2 cases 

(Figure 66). For what f-measure is concerned, calibrated images provided better results in 

3 cases, corrected with Dark Subtraction images provided better results then other in 3 

cases, while corrected with FLAASH images were better in 4 cases (Figure 67). 

From the analysis it results that the distribution of best accuracies is independent from the type of 

applied radiometric pre-elaboration. 

Cases study without post-processing and “Asti subset” case study were examined but not 

reported since the trend was very similar to the one described above. 
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Figure 64 – Overall Accuracy comparison in thematic maps obtained with different kind of radiometric pre-processing  

 

Figure 65 – f-measure comparison in thematic maps obtained with different kind of radiometric pre-processing  
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Figure 66 - Overall Accuracy comparison in thematic maps obtained with different kind of radiometric pre-processing 

 

Figure 67 - f-measure comparison in thematic maps obtained with different kind of radiometric pre-processing  
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4.4.3 Number of classes  

  

In order to understand if it’s better to learn the classifier on two or more classes, accuracies 

reached from the classification obtained with the two kinds of learned-classifiers were compared. 

Overall Accuracy and f-measure were used for the comparison. The influence of the chosen 

number of classes was evaluated on both post-processed and not-post processed classifications 

and, in Asti case study, on both the whole area and the subset. 

Results (Table 31) state that: 

 In Asti case study, OA of “2-class” classifiers was better in 89% of cases (Figure 68), while 

f-measure was better in 78% of cases (Figure 69) in post-processed classifications. 

Considering only a subset, OA of “2-class” classifiers was better in 66% of cases (Figure 

68), while f-measure was better in 33% of cases (Figure 69). 

When no post-processing was applied, the trend was similar to the above mentioned 

(graphs were not provided but results are summarized in Table 31), with, in general, a 

reduced number of occurrences: OA of “2-class” classifiers was better in 72% of cases, 

while f-measure was better in 61% of cases when the validation was performed on the 

whole area; with the validation performed on a subset, OA of “2-class” classifiers was 

better in 55% of cases, while f-measure was better in 44% of cases. 

 In Torino case study, OA of “5-class” classifiers was better in 61% of cases (Figure 70), 

while f-measure was better in 61% of cases (Figure 71). 

When no post-processing was applied, OA of “5-class” classifiers was better in 61% of 

cases, while f-measure was better in 67% of cases (results are summarized in Table 31). 
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Figure 68 - Overall Accuracy comparison in post-processed thematic maps obtained with a “2-class” or “5-class” 
classifiers 

 

Figure 69 – f-measure comparison in post-processed thematic maps obtained with a “2-class” or “5-class” classifiers 
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Figure 70 - Overall Accuracy comparison in post-processed thematic maps obtained with a “2-class” or “5-class” 
classifiers 

 

 

Figure 71 - f-measure comparison in post-processed thematic maps obtained with a “2-class” or “5-class” classifiers 
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Table 31 provides a summary of the above mentioned behaviour, with information about the 

mean improvement provided in the different cases. In particular, it’s enhanced: 

 Better results with 2 class: number of times (expressed as % on the whole) in which 

classifiers learned with 2-class provided better results than when learned with 5-class; 

 Better results with 5 class: number of times (expressed as % on the whole) in which 

classifiers learned with 5-class provided better results than when learned with 2-class; 

For both these groups: 

 Mean improvement: Mean improvement of considered measure of accuracy calculated 

only on classifications that provide better results with 2 class (or with 5); 

From a more detailed analysis it can be gathered that:  

 2-class classifiers provided better results both in terms of Overall Accuracy and f-measure 

in Asti case study; the improvement obtained with the 2-class classifiers was particularly 

evident in post-processed classifications (better results with post-processing in 89% (OA) 

and 78% (f-measure) of cases). In classifications without post-processing, the statement 

was true in a reduced number of times (72% (OA) and 61% (f-measure) of cases).  

The mean improvement obtained when 5-class classifiers resulted best, is quite high (OA 

in post-processed case: -13.71%): this is due to two high gaps in two cases 

(“TO_multitemp_index_calib” and “TO_multitemp_index_flaash”). Otherwise, all other 

differences are round equal to zero. 

When a subset was considered for validation, the difference in using a 5-class classifier or 

a 2-class classifier was reduced; 2-class classifiers were better then other in 66% (taking 

into consideration OA) and 34% (taking into consideration f-measure) of cases in post-

processed classifications, and in 55% (OA) and 44% (f-measure) of cases in classifications 

without post-processing 

 Classifiers learned with a 5-class training set provided better results both in terms of 

Overall Accuracy and f-measure in Torino case study; 5-class classifiers were better than 

other in 61% of cases in post-processed classifications (for both OA and f-measure), and in 

61% (OA) and 67% (f-measure) of cases when no post-processing was applied. 

 

In general, the use of a 2-class classifier was better in Asti case study, particularly in classifications 

without post-processing, while the use of a 5-class classifier resulted better in Torino case study.  
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 Table 31 - Information extracted from the comparison between classifiers learned with same temporal extension of 
the training set, same performed radiometric pre-elaboration and same features but with different number of 

classes. The comparison was performed taking into consideration Overall Accuracy and f-measure, both for post-
processed and not post-processed classifications.  

  

TO AT
AT 

subset
TO AT

AT 

subset
TO AT

AT 

subset
TO AT

AT 

subset

Better results with 2-

class
39% 89% 66% 39% 78% 34% 39% 72% 55% 33% 61% 44%

mean improvement 2.25% 3.01% 3.29% 1.48% 5.84% 11.96% 1.03% 3.85% 4.03% 1.29% 5.08% 6.28%

Better results with 5-

class
61% 11% 34% 61% 22% 66% 61% 28% 45% 67% 39% 56%

mean improvement 5.22% 13.71% 3.74% 3.13% 9.92% 5.11% 4.63% 6.39% 3.42% 2.58% 3.10% 4.69%

Post processing: NO

OA f-measure OA f-measure

Post processing: YES
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4.4.4 Use of a multitemporal stack 

 

In this section, classifiers learned with the same number of classes, the same kind of features and 

the same radiometric pre-elaborations but different extension of the training set were compared, 

both for post-processed and not post-processed classifications.  

Results (Table 32) state that: 

 In Asti case study, OA of “single image” classifiers was better in 83% of cases (Figure 72), 

with a mean improvement of 5.01%, while f-measure was better in 100% of cases (Figure 

73) in post-processed classifications. 

Considering only a subset, OA of “single image” classifiers was better in 94% of cases 

(Figure 72), with a mean improvement of 4.36%, while f-measure was better in 94% of 

cases (Figure 73). 

When no post-processing was applied, the trend was similar to the above mentioned 

(graphs were not provided but results are summarized in Table 32), with, in general, a 

reduced number of occurrences: OA of “single image” classifiers was better in 55% of 

cases, with a mean improvement of 7.82%,  while f-measure was better in 100% of cases 

when the validation was performed on the whole area; with the validation performed on 

a subset, OA of “single image” classifiers was better in 83% of cases,  with a mean 

improvement of 5.03%, while f-measure was better in 83% of cases. 

 In Torino case study, OA of “multitemporal” classifiers was better in 89% of cases (Figure 

74), while f-measure was better in 83% of cases (Figure 75). 

When no post-processing was applied, OA of “multitemporal” classifiers was better in 

89% of cases, while f-measure was better in 83% of cases (results are summarized in Table 

32). 

 

Graphs for the above mentioned case study without post processing were not been provided 

since they were very similar to the post processed ones in terms of differences between 

accuracies reachable with a single image or a multitemporal stack. 
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Figure 72 - Overall Accuracy comparison in post-processed thematic maps obtained with a “single image” or a 
“multitemporal” classifier 

 

Figure 73 – f-measure comparison in post-processed thematic maps obtained with a “single image” or a 
“multitemporal” classifier 
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Figure 74 - Overall Accuracy comparison in post-processed thematic maps obtained with a “single image” or a 
“multitemporal” classifier 

 

Figure 75 – f-measure comparison in post-processed thematic maps obtained with a “single image” or a 
“multitemporal” classifier 
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was about 5.01% (OA), till to a maximum of 21.38%. The behaviour was the same when the 

validation was performed only on the subset. Generally, results provided from the “single image” 

classifiers were more stable, while with the use of a multitemporal stack some peaks of very low 

OA occurred (“AT_singleimage_index_flaash_2class” and “AT_singleimage_spectral_DS_5class”). 

The trend was confirmed also when the f-measure was considered: in 100% of cases “single 

image” classifier provided better f-measure with a mean increase of about 20.33%! %. The 

behaviour was the same when the validation was performed only on the subset. 

In Torino case study, the behaviour was exactly opposite: “multitemporal” classifiers provided 

better accuracies both in term of Overall Accuracy and f-measure. In 89% of cases, 

“multitemporal” classifiers provided better OA of, on average, 13.27%, till to a maximum of 

23.82%! The difference was particularly evident in 2-class classifiers that used only spectral 

information or both indexes and spectral information. The f-measure was affected in the same 

way for what the number of cases is concerned, but with lower differences: about 5.86%, with a 

peak of 11.04%.  

The trend was confirmed also in classifications without post-processing: Overall accuracy of single 

image classifiers was better only in 55% of cases, only because in 5 cases multitemporal classifiers 

were better than other of less then 0.2%.  

      

 

Table 32 - Information extracted from the comparison between classifiers learned with same number of classes, 
same performed radiometric pre-elaboration and same features but with different temporal extension of the training 

set are provided. The comparison has been performed taking into consideration Overall Accuracy and f-measure, 
both for post-processed and not post-processed classifications. 

  

TO AT
AT 

subset
TO AT

AT 

subset
TO AT

AT 

subset
TO AT

AT 

subset

Better results with 

single image
11% 83% 94% 17% 100% 94% 11% 55% 83% 17% 100% 100%

mean improvement 0.68% 5.01% 4.36% 2.85% 20.33% 20.93% 1.72% 7.82% 5.03% 3.47% 15.78% 15.78%

Better results with 

multitemporal stack
89% 17% 6% 83% - 6% 89% 45% 17% 83% - -

mean improvement 13.27% 1.32% 1.52% 5.86% - 1.29% 11.90% 0.90% 1.02% 4.53% - -

Post processing: YES Post processing: NO

OA f-measure OA f-measure
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4.4.5 Attributes 

 

The last analysis was performed on the attributes in order to understand: 

 The correlation, if any, between considered classifier (index, spectral, spectral and index) 

and reached accuracy; 

 Which attributes better allows separating classes (and are chosen by the algorithm). 

The first question was addressed by comparing accuracies reached by classifiers learned with the 

same number of classes, the same extension of the training set, the same radiometric pre-

processing and post-processing, but different attributes. Classifiers learned with only spectral 

information, only indexes, or both were compared in Figure 76 to Figure 79.   

Results state that:  

 In Asti case study, “Spectral” classifiers and “Index and spectral” classifiers provided very 

similar results in terms of Overall Accuracy, better than the ones provided by “Index” 

classifiers (Figure 76). 

By the comparison of f-measure, it resulted that none of the classifiers was clearly better 

than others (Figure 77). In general, it can be stated that in classifiers where higher 

accuracy were reached (that is single image classifier), the behaviour of “spectral” and 

“index and spectral” classifier was quite similar.  

 In Torino case study, “index classifiers” provided better results in most of the cases, both 

in terms of Overall Accuracy (Figure 78) and f-measure (Figure 79). 

From the above-mentioned results, it’s difficult to detect, in unambiguous way, which classifiers 

were better than other; the second part of the analysis was therefore focused on the single 

attributes. Which attributes were chosen by the J48 algorithm, on the basis of the training set, to 

be part of the classifier? Attributes and thresholds were chosen in order to maximize the 

GainRATIO, the splitting criterion used by the algorithm, as described in Section 2.1.2. 

Table 35 and Table 36 show, in detail, all attributes used by each classifier; Table 33 and Table 34, 

instead, provide a summary of each attribute occurrence according to the information used by 

the classifier (indexes, spectral information or both).  

Results in Table 33 and Table 34 state that:  

 Between considered indexes, BUI was used a very limited number of times, both in Asti 

and Torino case study (respectively 4 and 3 times); 

 NDVI and NDBBBI were widely used in both case study (respectively 15 and 17 in Asti case 

study, 14 and 10 in Torino case study); 

 Test-index was considered quite often, more in Asti than in Torino case study 

(respectively 16 and 13 times); 

 NDBI was considered quite often but only in Asti case study (14 times versus 5); 

 Between considered spectral information, band 1 was widely used in both cases 

(respectively, 21 and 19 times); 
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 Band 4, 5 and 7 were widely used in both cases (21, 15, 15 times and 10, 12, 12 times), 

while band 2 and 3 were less used than other (12 and 5, 3 and 11).  

 

 

 

Table 33 – Summary of attributes occurrence according to the used classifier (Asti case study) 

 

 

Table 34 - Summary of attributes occurrence according to the used classifier (Torino case study) 

 

B1 B2 B3 B4 B5 B7 NDBI NDVI BUI NDBBBI test_index

Indexes 10 10 2 10 10

Spectral information 12 6 1 12 9 12

Indexes and spectral information 9 6 4 9 6 3 4 5 2 7 6

TOT 21 12 5 21 15 15 14 15 4 17 16

Case study: Asti

Type of attribute used by the classifier
Spectral Information Indexes

B1 B2 B3 B4 B5 B7 NDBI NDVI BUI NDBBBI test_index

Indexes 5 8 3 9 10

Spectral information 12 2 7 6 7 6

Indexes and spectral information 7 1 4 4 5 6 0 6 0 1 3

TOT 19 3 11 10 12 12 5 14 3 10 13

Type of attribute used by the classifier

Case study: Torino

Spectral Information Indexes
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Table 35 – Detail on attributes used by each classifier (Asti case study) 

 

B1 B2 B3 B4 B5 B7 NDBI NDVI BUI NDBBBI test_index

 index_calib X X X

 index_DS X X X

 index_flaash X X X X

 spectral_calib X X X X

 spectral_DS X X X X

 spectral_flaash X X X X X

 spectral_index_calib X X X X X

 spectral_index_DS X X X X X X

 spectral_index_flaash X X X X

 index_calib X X X

 index_DS X X

 index_flaash X X X

 spectral_calib X X X

 spectral_DS X X X

 spectral_flaash X X X

 spectral_index_calib X X X X

 spectral_index_DS X X X

 spectral_index_flaash X X X

 index_calib X X X X X

 index_DS X X X

 index_flaash X X X X X

 spectral_calib X X X X X

 spectral_DS X X X X X

 spectral_flaash X X X X X

 spectral_index_calib X X X X X

 spectral_index_DS X X X X X X

 spectral_index_flaash X X X X X X X X

 index_calib X X X X

 index_DS X X X X

 index_flaash X X X

 spectral_calib X X X X X

 spectral_DS X X X X X

 spectral_flaash X X X X X

 spectral_index_calib X X X X X X

 spectral_index_DS X X X X X X

 spectral_index_flaash X X X X X

Spectral Information Indexes

Case study: Asti
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Table 36 - Detail on attributes used by each classifier (Torino case study) 

 

 

 

 

B1 B2 B3 B4 B5 B7 NDBI NDVI BUI NDBBBI test_index

 index_calib X X

 index_DS X X X

 index_flaash X X X

 spectral_calib X X X

 spectral_DS X X X

 spectral_flaash X X X

 spectral_index_calib X X X

 spectral_index_DS X X X

 spectral_index_flaash X X X

 index_calib X X

 index_DS X

 index_flaash X X

 spectral_calib X X X X

 spectral_DS X X X X

 spectral_flaash X X X X

 spectral_index_calib X X

 spectral_index_DS X X X

 spectral_index_flaash X X

 index_calib X X

 index_DS X X X X

 index_flaash X X X X

 spectral_calib X X X

 spectral_DS X X X

 spectral_flaash X X X X

 spectral_index_calib X X X X

 spectral_index_DS X X X X

 spectral_index_flaash X X X X

 index_calib X X X X

 index_DS X X X X

 index_flaash X X X X

 spectral_calib X X X

 spectral_DS X X X

 spectral_flaash X X X

 spectral_index_calib X X X

 spectral_index_DS X X X

 spectral_index_flaash X X X

Case study: Torino 
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Figure 76 – Overall Accuracy comparison in post-processed thematic maps obtained with  “index”, “spectral” or 
“spectral and index” classifiers 

 

Figure 77 – f-measure comparison in post-processed thematic maps obtained with  “index”, “spectral” or “spectral 
and index” classifiers 
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Figure 78 - Overall Accuracy comparison in post-processed thematic maps obtained with  “index”, “spectral” or 
“spectral and index” classifiers 

 

Figure 79 - f-measure comparison in post-processed thematic maps obtained with  “index”, “spectral” or “spectral 
and index” classifiers 
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4.5 Discussion 
 

The aim of this work was the evaluation of the usability of Decision Tree classifiers in order to 

automate the process of urban extraction from Landsat data.  

In particular, the focus was on variables to use for the classification process: different kinds of 

radiometric pre-processing were tested, as well as different post-processing. The training set to 

be used for the learning phase of the classifier was deeply analyzed: is it better to learn the 

classifier on the two class of interest (Urban and Non Urban), or it’s better to learn the classifier or 

more classes, and then to extract only the rules of interest? Which solution enables a better 

division between classes? Then, what if statistics from a multitemporal stack are extracted, 

instead than from the single image? is it possible to detect more “general” rules? Finally, which 

attributes can be used? Is it better to use only spectral information, only attributes (that can be 

derived from the image spectral information and that increase the sensitivity toward desired 

information), or best performances can be reached only when they are used together? 

Furthermore, which attribute or band is more frequently selected from the algorithm to be part of 

the model? This work was aimed at providing an answer to these questions. The classifiers were 

generated for two different cases study, named “Torino case study” and “Asti case study”, from 

the name of the greater town depicted in the scene.  

From a general point of view, best Overall Accuracies were high in both cases: round 81% in 

Torino case study, round 96%-97% in Asti case study. By the analysis of the f-measure, that is 

representative of how the Urban class was detected, it can be deduced that the Urban class was 

detected better in Torino case study (best f-measure: 77%) than in Asti case study (best f-

measure: 48%). The different behaviours can be attributed to the different urban land cover 

consistency: very dense in the first case, with a density from medium to low in the second case. 

This observation was confirmed by the following analysis: when the dimension of the validated 

area was reduced, and mainly focused on the greater town depicted in the scene (Asti), f-measure 

increased from 48% to 66%. The qualitative analysis later performed was aimed at detecting more 

recursive errors in the detection of built-up areas: cemeteries, excavation sites and bare soil were 

areas more frequently confused with the urban class. The analysis performed in Asti case study 

with the integration of the municipality boundaries vector layer, allowed to extend the 

investigation to each single municipality: results stated that major errors were located at the 

built-up area boundaries, and that the same built-up area detection is related to the built-up area 

density: the more dense it is, the more it’s easy to detect.  

In the second part of the analysis, the different tested variables were compared.  

Three radiometric pre-processing were compared: calibration into reflectance value, atmospheric 

correction with Dark Subtraction and atmospheric correction with FLAASH. Obtained accuracies 

showed that there was no trend in any of the tested pre-processing: no-one of the applied 

corrections could be considered better than others. 

Different post-processing were tested on some selected classifiers; after that, the majority 

filtering, that obtained better results in the performed tests, was applied to the whole set of data. 

The performances improvement is evident in Asti case study, where the application of a majority 
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filtering on the performed classifications generally improved all accuracy measures, particularly 

for what User’s Accuracy is concerned, less in Torino case study, where the improvement given by 

the post-processing application happened in a reduced number of times and, in general, with a 

lower efficiency: the post processing is particularly needed where medium density urban land 

cover and very sparse urban land cover are present, otherwise it can be avoided.  

The classifiers were then learned using 2 classes or 5 classes, and using a single image or a 

multitemporal stack. Obtained results diverged a lot: 2-class classifiers were better than others in 

Asti case study, particularly in post-processed classifications, less when the validation was 

performed only on a subset; on the contrary, in Torino case study accuracies were higher when 5-

class classifiers were considered in about 61% of cases. For what the use of a multitemporal stack 

was concerned, the situation was quite similar: in Asti case study single image classifiers provided 

better results than others in most of the cases, sometimes in a consistent way (the f-measure of 

post-processed images was, on average, 20% better in single image classifiers with respect to 5-

class classifiers), while in Torino case study multitemporal classifiers were better than other in 

most of the cases and with Overall Accuracy better, on average, of about 13%. Other test are 

necessary in order to decide which is the best approach to use. 

Finally, for what the use of different attributes was concerned, again, results differ in the two 

considered cases. “Index classifiers” were better in Torino case study, while “spectral” and 

“spectral and index” classifiers provided higher accuracy in Asti case study and, in most cases, 

very similar each other. Consideration could be performed, instead, on the attributes that were 

more often chosen by the algorithm to be part of the classifier: some indexes were considered a 

very few times (BUI), others were widely used in both cases (NDVI and NDBBBI). Among 

considered bands, band 1 was the most considered one, against band 2 and 3 that were less 

considered. This can be due to the high correlation between the three bands: one of the three can 

be considered representative for the whole set. Band 4, 5 and 7 were considered quite often in 

both cases.  

Classifiers that provided better results both in terms of OA and f-measure were: “1 index DS 

2class” and “1 index DS 5class” in Torino case study,  “1 index FLAASH 2class”, “1 spectral index 

FLAASH 5class”, “1 spectral index FLAASH 2class” and “1 spectral index DS 2class” in Asti case 

study. They are all derived from a single image, and makes use of indexes; most of all, they all 

have as source radiometric pre-elaborated images. 

If, from one side, it was not possible to detect a clear trend for what the use of a multitemporal 

stack and the use of different pre-elaboration was concerned, this results evaluation give some 

more information about efficient input variables. 

 

In order to better evaluate the results and to understand the potentiality of the method, a 

comparison was performed with the Corine Land Cover 2006.  

Corine Land Cover is a land cover data available for the whole Europe at scale 1:100.000; in its last 

version, it was derived from IRS p6 satellite data at 23 meters resolution and SPOT data at 20 

meters (multi-spectral) and 10 meters (panchromatic) spatial resolution (see section 1.2.2). 

Beyond the output scale and the input images spatial resolution, also the Minimum Mapping 
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Units (MMA) has to be considered. In the last version, the minimum mapping unit is set to 5 ha, 

that is about 55 pixel at 30 meters resolution (Landsat ETM+ spatial resolution).  

The analysis was performed in the following way: 

1) Two of the classifications that provided the best performances in Asti case study (“1 index 

FLAASH 2 class” and “1 spectral index FLAASH 5 class”) were post-processed in order to 

obtain a MMA comparable with the CLC2006’s one. A Clump procedure with an Operator 

Size 3x3 was initially applied to Urban class, then a Sieve with 50 as Group Minimum 

Threshold and 8 neighbour was used to complete the post-processing.  

2) The validation mask derived from the CTRN (as described in 3.2.8.1) was post-processed 

following the same steps as described in 1). 

3) Artificial Surfaces were extracted from CLC 2006, and then the vector layer was rasterized 

at 30 meters resolution in order to match with the classified data. 

4) The two post-processed classifications were compared with the new validation mask as 

well as the refined CLC2006 compared with the new validation mask. 

The following accuracies were reached (Table 37): 

Validated layer OA PA UA f-measure 

CLC2006 97.5% 45.57%  74.89% 56.66% 

1 index FLAASH 2 class 97.5% 50.51% 72.16% 59.42% 

1 spectral index FLAASH 5 
class 

97.35% 42.75% 72.10% 53.67% 

Table 37 – Comparison between accuracy reached by the resulting classifiers and CLC2006 (pre-processed as above-
described) 

Results are very encouraging to the obtained classifications. They state that the provided method 

is able to produce accuracies comparable with the ones provided by CLC2006 that is completely 

obtained from photo-interpretation, for what the interpretative part is concerned.  

 

 

 

 

 

 



Conclusion and future development 

 
 

151 
 

Conclusion and future development 
 

This thesis was inserted in the framework of algorithms development for the classification of 

urban areas from medium spatial resolution data.  

Decision Tree classifier was investigated as classification techniques, thus it allows to extract rules 

that can be later applied to different scenes. In particular, the aim was to evaluate which steps to 

perform in order to obtain a good classification procedure, mainly focusing on processing that can 

be applied to images and on training set features.  

The training set was evaluated on the basis of the number of classes to use for its creation, 

together with the temporal extension of the training set and input attributes, while images were 

submitted to different kind of radiometric pre and post-processing. The aim was the evaluation of 

the best variables to set for the creation of the training set, to be used for the classifier 

generation. Different procedures were created in order to perform all the above mentioned 

analyses; they mainly concern the automatic creation of training sets with all the possible 

combinations, the transformation of the rules generated by the algorithm into classification 

procedures that allow to generate the thematic maps, the automatic application of post 

processing and the automatic generation of confusion matrix in order to provide accuracy 

measures. 

The analysis of training set input features proved that: 

-for what the use of two or more classes for the training set generation and the use of a 

multitemporal stack is concerned, trends diverged a lot in the two applied cases study; other tests 

are therefore necessary in order to give an answer to this issue; 

- for what the use of input attributes is concerned, indexes revealed to be very important for the 

land cover extraction; particularly, indexes such as NDVI and NDBBBI demonstrated their ability in 

separating classes; 

The analysis of different radiometric pre-elaboration and post processing, stated that:  

- for what the use of different radiometric pre-elaboration is concerned, it’s not so evident the 

better efficiency of one respect to the others;  

- for what the use of different post-processing is concerned, the application of a majority filtering 

with a small window (3x3) allowed to increase classification accuracies thus creating a more 

homogeneous texture in a land cover otherwise very fragmented.  

Best reached Overall Accuracies were round 81% in Torino case study, round 96-97% in Asti case 

study. By the analysis of f-measure, instead, that is representative of how the urban class was 

classified, it resulted 77% accuracy in Torino case study and 48% in Asti case study: this value 

increased from 48% to 66% when the validation was performed only on the subset where the 

major town was depicted, thus demonstrating that major problems occurred in areas with low 

built-up density.  
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In order to analyze the method potentiality, a comparison was performed with Corine Land Cover, 

a land cover dataset available in Europe at scale 1:100.000. In order to perform the comparison, 

the generated validation mask and the classifications were adapted in order to be compliant with 

the Minimum Mapping Units used to generate CLC2006. Results obtained by the comparison of 

the adapted validation mask with the CLC2006 and by the comparison of the new adapted 

validation mask and the adapted classification, produced encouraging results since very similar 

results were obtained in the two cases. This is very positive, taking into account that CLC2006 was 

derived from photo-interpretation while our datasets were produced in a more automatic way. 

 

The performed qualitative analysis demonstrated that the most recursive errors are located in 

area with lower built-up density and that cemeteries, excavation sites and bare soil are the more 

frequently confused areas.  

 

Finally, for what classifiers that provided higher accuracies is concerned, it results that they are all 

derived from a single image, makes use of indexes and have, as source, radiometrically corrected 

images: if, from on side, it was difficult to detect a clear trend when the analysis was performed 

on all classifiers, on the other side it’s quite clear which variables were used by the best classifiers. 

 

Since this work constitute just a first phase for the creation of an algorithm for urban land cover 

extraction, many steps are still necessary. Future developments follow these directions: 

1. application of the generated methodology to other cases study in order to evaluate better 

trends for what the use of different number of classes and temporal extension of the 

training set is concerned;  

2. application of the generated rules to other scenes in order to evaluate reachable 

accuracies; in a first phase, this can be performed in areas where a cartography with 

features similar to the ones provided by the Digital Regional Cartography Map is available, 

in order to exploit the validation procedure already generated; 

3. consider, in the algorithm creation, other features, such as texture measures; 

4. consider, in the methodology creation, other pre-processing such as segmentation 

techniques that could allow to obtain more homogeneous areas. 

 

The automation of feature extraction procedures is always a challenge. The challenge become 

greater if the feature to be extracted is built-up areas: the presence of mixed pixels, typical or 

urban environment, makes more difficult to identify common features, particularly if only spectral 

information is considered.  

The possibility of having a procedure for the extraction of this thematism, also if not with very 

high accuracies, is anyway a good starting point specially in application such as emergency 

mapping, where information need to be extracted quickly and the elimination, also if partially, of 

manual digitalization procedures, can be considered a great breakthrough. 
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Annex I – Techniques used for the classification of each GLC2000 Regional Map 
 

Regional Windows Methods of mapping 

South America 
Classification based on multi-resolution satellite data where each source of data used contributes to 

mapping a specific ecosystem or land cover type. 

Africa 
Multi-sensor approach (SPOT VGT, radar and DMSP data). Synthetic images and NDVI profiles classified 

using unsupervised clustering. 

Northern Eurasia Clustering of seasonal mosaics 

Asia Supervised classification using monthly NDVI composites as an input 

South Asia 

ISODATA clustering carried out on the maximum NDVI composite layer of the above nine-month data 
to obtain the land use / land cover map. Clusters assigned to various classes on the basis of  ground 

truth and reference information available for the region. Stable night-time lights (derived from DMSP 
data) used to discriminate urban areas 

South East Asia 
Unsupervised digital clustering method. Mapping and labelling of the classes supported by Landsat TM 

image interpretation and field records. 

North East Europe 
Unsupervised classification;  40 classes created, by majority clustering, and then labelled according to 

relatively accurate reference data 

Europe 
Unsupervised classification, based on the simultaneous use of spectral and temporal patterns, applied 
to the composites that where were created using the mean compositing method and then corrected to 

remove coastal values and to discriminate permanent snow from temporary snow cover. 



 

 
 

Regional Windows Methods of mapping 

North West Europe 
Classification was based on thresholding with CART (Classification And Regression Tree). Thresholds 

defined for each class and for each sub region.  For water, urban areas and wetlands a mask was 
derived from the PELCOM land cover database (Mücher et al. 2001) 

Souther Europe 
Two-month mean composites created for the red, NIR and SWIR bands. Composites used as input data 
for an unsupervised classification with, initially, 110 clusters. Clusters labelled according to CORINE data 
as main reference data set. PELCOM and Landsat TM Quicklooks used as complementary ancillary data. 

China 
Classification undertaken by using an unsupervised clustering method; labelling of the classes 

supported by a 1:1000000 land use map in China along with expert opinion 

North America 

The mapping procedure for transforming satellite observations acquired by the SPOT4/VEGETATION 
sensor into land cover information includes:  

1) conversion of daily data into ten-day composites;  
2) post- seasonal correction and refinement of apparent surface reflectance in ten day composite 

images;  
3) extraction of land cover information from the composite images. 

Australia 
3-month average synthesis of the Red, NIR and SWIR channels clustered in 100 statistical classes. 

Labelling supported by the Vegetation Map of Australia. Composition of each cluster computed in a GIS 
and cluster assigned to the main land-cover class within the cluster. 

New Zeland 
Unsupervised digital clustering  performed. Spectral clusters  labeled and regrouped to eleven land 

cover classes, using the Waikato Region Landcover Database (LCDB) from the year 1997 as a reference. 

Greenland and Iceland 
The mapping method includes detection of pixels contaminated by clouds/snow and defective sensor 

detectors; a synthesis of spectral channels' mosaics; and hybrid supervised and unsupervised land 
cover classification with use of these mosaics 



 

 
 

Regional Windows Methods of mapping 

Solomon Island 
Unsupervised ISODATA classification used to create 25 clusters per image. Clusters assigned to classes 

by referring to freely available Landsat TM imagery, and to ancillary information describing the 
vegetation of the islands 

New Caledonia and Vanuatu ISODATA classification separating 20 Clusters. Clusters labeled by using ancillary data. 

Fijian Islands 
Unsupervised ISODATA classification performed, creating 25 clusters per image. Clusters assigned to 

classes using Landsat TM Quicklooks, and ancillary landcover data from the Management Services 
Devision of the Fiji Forestry Department.  

Hawaiian Islands 
Classification divided into 3 separate parts. Each part classified separately, using an unsupervised 
ISODATA classification, creating 25 clusters which were then assigned to classes using Landsat TM 

imagery, and ground truth data obtained from the Hawaiian land cover analysis project 

Northern Africa and South-Western Asia Data classification entirely based on the analysis of transformed NDVI temporal signal 
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Annex II – CTRN Piemonte code list 
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Annex III – Example of algorithm output generated from Weka 
 

=== Run information === 

Scheme:       weka.classifiers.trees.J48 -C 0.25 -M 20 

Relation:     TO_2005_index_calib_5class 

Instances:    1014 

Attributes:   6 

              NDVI 

               NDBBBI 

               NDBI 

               BUI 

               Sara 

               target 

Test mode:    10-fold cross-validation 

=== Classifier model (full training set) === 

J48 pruned tree 

------------------ 

 NDBBBI <= 0.08903 

|    NDBI <= -0.162264 

|   |    NDBBBI <= -0.510709: vegetation  (117.0) 

|   |    NDBBBI > -0.510709: water  (21.0) 

|    NDBI > -0.162264 

|   |   NDVI <= 0.096346: industrial  (184.0/9.0) 

|   |   NDVI > 0.096346 

|   |   |    Sara <= 1.27775: urban  (205.0/2.0) 

|   |   |    Sara > 1.27775 

|   |   |   |    NDBI <= 0.0304: urban  (31.0/5.0) 

|   |   |   |    NDBI > 0.0304: bare soil  (28.0) 

 NDBBBI > 0.08903: water  (428.0) 

 

Number of Leaves  :  7 

Size of the tree :  13 

Time taken to build model: 0.03 seconds 

 

=== Stratified cross-validation === 

=== Summary === 



Annex III 

162 
 

Correctly Classified Instances         981               96.7456 % 

Incorrectly Classified Instances        33                3.2544 % 

Kappa statistic                          0.9537 

Mean absolute error                      0.0196 

Root mean squared error                  0.1107 

Relative absolute error                  6.9735 % 

Root relative squared error             29.5088 % 

Coverage of cases (0.95 level)          97.929  % 

Mean rel. region size (0.95 level)      22.5641 % 

Total Number of Instances             1014      

 

=== Detailed Accuracy By Class === 

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 

                 0.945     0.015      0.949     0.945     0.947      0.986    urban  

                 0.966     0.011      0.95      0.966     0.958      0.985    industrial  

                 0.987     0.012      0.985     0.987     0.986      0.993    water  

                 0.991     0.002      0.983     0.991     0.987      0.999    vegetation  

                 0.794     0.003      0.9       0.794     0.844      0.944    bare soil  

Weighted Avg.    0.967     0.011      0.967     0.967     0.967      0.989 

 

=== Confusion Matrix === 

   a   b   c   d   e   <-- classified as 

 222   6   4   0   3 |   a = urban  

   4 170   2   0   0 |   b = industrial  

   1   3 446   2   0 |   c = water  

   0   0   1 116   0 |   d = vegetation  

   7   0   0   0  27 |   e = bare soil
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Annex IV – Results of qualitative analysis performed in Asti case 

study for each town 
 

Town 
Area 
(m2) 

Urban pixel 
(in the 

validation 
mask) 

Percentage of pixels 
correctly classified in 

more than 80% of 
cases 

Percentage of pixels 
correctly classified in 

more than 60% of 
cases 

NIZZA 
MONFERRATO 

2534052 1589 44.2% 53.9% 

SAN DAMIANO 1208636 716 40.6% 49.3% 

VILLANOVA D'ASTI 1592700 704 29.4% 38.8% 

CASTAGNOLE 
DELLE LANZE 

1154600 599 28.9% 35.6% 

VILLAFRANCA 913300 502 20.9% 30.7% 

STAZIONE 1121562 450 29.8% 40.9% 

VALFENERA 654373 394 20.6% 28.2% 

MONTEGROSSO 876446 381 24.9% 30.4% 

PIANO - MOLINI 
D'ISOLA 

979500 344 21.5% 25.9% 

COSTIGLIOLE 773910 336 20.5% 28.0% 

BOGLIETTO 579800 319 36.4% 53.3% 

CALLIANO 521000 298 19.5% 27.9% 

MONTECHIARO 473000 292 20.2% 24.0% 

MONCALVO 528400 268 42.5% 51.5% 

MOMBERCELLI 805200 251 37.5% 48.6% 

MONTEMAGNO 414600 250 30.0% 41.2% 

COCCONATO 444500 249 8.4% 10.0% 

CASTELLO 
D'ANNONE 

425840 241 49.8% 58.9% 

CASTELNUOVO 
BELBO 

541600 238 19.7% 31.9% 

GRANA 401300 232 21.6% 25.4% 

SAN PAOLO 
SOLBRITO 

394000 229 11.4% 17.9% 

REFRANCORE 494500 228 19.3% 27.2% 

BALDICHIERI 308927 222 23.4% 28.8% 

GHIARE - 
MADONNA 

496356 221 16.7% 29.9% 

VIARIGI 397600 216 26.9% 40.3% 

TONCO 450000 214 22.4% 25.7% 

CASTAGNOLE 
MONFERRATO 

475374 206 27.2% 34.0% 

ROCCHETTA 
TANARO 

263257 206 49.5% 58.7% 

DUSINO 391200 196 1.0% 5.6% 

AGLIANO 443981 187 12.8% 18.7% 

BRUNO 333200 186 6.5% 22.0% 
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Town 
Area 
(m2) 

Urban pixel 
(in the 

validation 
mask) 

Percentage of pixels 
correctly classified in 

more than 80% of 
cases 

Percentage of pixels 
correctly classified in 

more than 60% of 
cases 

QUARTO 704968 182 19.2% 24.7% 

SAN MICHELE 392240 175 14.3% 20.0% 

CISTERNA D'ASTI 436100 170 17.1% 20.6% 

MOMBARUZZO 337400 151 18.5% 31.1% 

GRAZZANO 
BADOGLIO 

367200 150 16.0% 24.0% 

SAVI 339700 148 0.0% 0.0% 

MOTTA 430700 142 23.2% 30.3% 

VILLA SAN 
SECONDO 

322100 141 7.1% 12.8% 

CUNICO 289800 132 3.0% 8.3% 

FERRERE 325500 130 18.5% 36.2% 

CALAMANDRA 275500 129 13.2% 21.7% 

SAN 
MARZANOTTO 

382000 125 6.4% 8.0% 

SAN MATTEO 629100 124 4.0% 10.5% 

MONTIGLIO 370100 124 11.3% 13.7% 

SCURZOLENGO 296100 122 15.6% 18.9% 

CALLIANETTO 378600 117 0.9% 5.1% 

CRIVELLE 355900 106 0.0% 0.0% 

VILLA 293606 106 1.9% 1.9% 

MONGARDINO 267400 103 13.6% 18.4% 

SAN PIETRO 826631 95 0.0% 0.0% 

VALENZANI 330800 94 6.4% 16.0% 

VAGLIERANO 362000 93 23.7% 36.6% 

CELLARENGO 407500 89 7.9% 41.6% 

MONTEMARZO 599400 87 40.2% 52.9% 

STAZIONE DI 
PORTACOMARO 

270500 87 21.8% 32.2% 

ANNUNZIATA 296877 81 0.0% 0.0% 

SAN MARTINO 
ALFIERI 

275800 78 3.8% 7.7% 

GORZANO 376700 76 0.0% 0.0% 

REPERGO 369700 70 1.4% 5.7% 

REVIGLIASCO 344200 70 21.4% 22.9% 

SERRAVALLE 371300 67 7.5% 7.5% 

TORRAZZO 571600 63 9.5% 11.1% 

SAN GRATO 482966 62 0.0% 0.0% 

CAMERANO 342600 57 0.0% 1.8% 

SANT ANNA 250442 56 0.0% 3.6% 

SAN 
MARZANOTTO 

278900 53 17.0% 20.8% 

VINCHIO 309700 50 10.0% 18.0% 

SAN CARLO 373285 38 0.0% 0.0% 
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Town 
Area 
(m2) 

Urban pixel 
(in the 

validation 
mask) 

Percentage of pixels 
correctly classified in 

more than 80% of 
cases 

Percentage of pixels 
correctly classified in 

more than 60% of 
cases 

CASORZO 607500 30 0.0% 0.0% 

MADONNA DI 
VIATOSTO 

384460 22 0.0% 0.0% 

SERRA 322758 21 0.0% 0.0% 

MOMBARONE 281800 21 0.0% 0.0% 

VASCAGLIANA 277000 20 0.0% 0.0% 

BRICCOLINO 336800 19 0.0% 0.0% 

CORTE 278859 19 0.0% 0.0% 

CASTIGLIONE 397200 15 0.0% 0.0% 

PALUCCO 285000 9 22.2% 44.4% 

BUTTIGLIERA 452380 0 0.0% 0.0% 

CASTELNUOVO 
DON BOSCO 

450200 0 0.0% 0.0% 
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