
31 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Improving Key Negotiation in Transitory Master Key Schemes for Wireless Sensor Networks / Celozzi, Cesare; Gandino,
Filippo; Rebaudengo, Maurizio. - STAMPA. - (2013). (Intervento presentato al convegno 4th International Conference on
Sensor Systems and Software (S-CUBE 2013) tenutosi a Lucca nel June 11–12, 2013) [10.1007/978-3-319-04166-7_1].

Original

Improving Key Negotiation in Transitory Master Key Schemes for Wireless Sensor Networks

Publisher:

Published
DOI:10.1007/978-3-319-04166-7_1

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2507295 since:

Springer

Improving Key Negotiation in Transitory Master
Key Schemes for Wireless Sensor Networks

Cesare Celozzi, Filippo Gandino, and Maurizio Rebaudengo

Polytechnic of Turin, Department of Automation and Information Technology,
Corso Duca degli Abruzzi, 24, 10129 Turin, Italy

{cesare.celozzi,filippo.gandino,maurizio.rebaudengo}@polito.it

Abstract. In recent years, wireless sensor networks have been adopted
in various areas of daily life, and this exposes the network data and hard-
ware to a number of security threats. Many key management schemes
have been proposed to secure the communications among nodes, for in-
stance the popular LEAP+ protocol. This paper proposes an enhanced
variant of the LEAP+ protocol that decreases the key setup time through
the reduction of the number of packets exchanged. This improves the se-
curity of communications. The results obtained by network simulation
after extensive testing are compared to the corresponding data derived
from the LEAP+ protocol to quantify the improvements.

Key words: key management, wireless sensor networks, transitory mas-
ter key.

1 Introduction

Wireless sensor networks (WSNs) have obtained worldwide attention in recent
years due to the diffusion of Micro-Electro-Mechanical Systems technology which
has led to the manufacture of smart sensors. These sensors are smaller and more
affordable than the older generation sensors and can measure and collect informa-
tion from the environment, transmit this data through wireless communication
links and process them in order to take decisions. However, these sensor nodes
have limited computing resources and can only perform complex tasks in large
regions if organized in an interlinked network.

Nowadays this pervasive technology is exploited in various applications rang-
ing from infrastructure monitoring [1] to HVAC (heating, ventilation, and air
conditioning) for buildings [2]. WSNs have also been applied to military pur-
poses [3] due to the low costs and high scalability. In each of these contexts
communications security is crucial. In particular, WSNs must be protected from
threats that could compromise the integrity and confidentiality of the data or al-
ter the behavior of the nodes. Since WSNs are often deployed in unsafe or hostile
areas they are exposed to various security threats like eavesdropping, hardware
tampering or injection of malicious requests. Therefore, in order to protect the
integrity, confidentiality and reliability of WSNs an effective security scheme is
required.

2 Cesare Celozzi, Filippo Gandino, Maurizio Rebaudengo

The key aspect of the security in WSNs is the protection of the communi-
cations between pairs of sensor nodes. In principle, the network links can be
protected through asymmetric cryptography techniques which allow the key dis-
tribution to be managed efficiently. However, given the low computational re-
sources of the sensor nodes and the limited power supply [4], [5], symmetric cryp-
tography has been largely exploited in the majority of recent security schemes.
Symmetric cryptography can be used to satisfy the main security requirements,
such as authenticity and confidentiality. The adoption of a symmetric encryp-
tion scheme implies that each pair of nodes of the WSNs shares a secret key.
The negotiation of these cryptographic keys (key management [6][7]) is indepen-
dent of the employed encryption method and heavily affects the security, the
computational load and power consumption of the WSN.

Various approaches based on symmetric cryptography have been proposed in
the context of key management [8], [9], [10]. In transitory master key techniques
all nodes share a master key which is deleted after a certain amount of time (key
setup time). This is estimated to be the time required by the WSN to negotiate
a pairwise key for each pair of nodes. The security assumption is that the key
setup time is shorter than the time required by an attacker to extract the master
key from a compromised node.

Among the above mentioned approaches, LEAP/LEAP+ protocol and its
variants [11], [9], [12] have emerged as effective transitory master key protocols
for pairwise key negotiation in static WSNs which allow node addition. LEAP+
protocol relies on the difficulty in accessing the memory of a deployed node
containing the master key before its deletion which occurs few seconds after the
deployment. The secrecy of the master key is crucial for the security of links
since all the pairwise keys are derived from a pseudo-random function indexed
by the master key and applied to the IDs of the node. Therefore, a shorter
key setup time implies lower probability of key theft and higher security of the
communication links.

This paper proposes a modified version of the pairwise key negotiation pro-
tocol of the LEAP+ to reduce the key setup time. This goal is achieved through
a set of variations of the pairwise key negotiation handshake which decreases
the number of packets exchanged in the wireless channel reducing the number
of collisions and thus the handshake time. The reduction of the handshake time
allows the adoption of a shorter key setup time, keeping the percentage of nego-
tiated pairwise keys constant. The data extracted from network simulations of
the LEAP+ protocol and of the proposed enhanced variant have been illustrated
and compared in order to quantify the benefits of the modifications.

The remainder of the paper is organized as follows: in Section 2 the LEAP+
protocol together with an overview of the main security issues is described.
Section 3 presents the proposed modification of the handshake. Finally, in Section
4, the proposed approach is evaluated and compared with the original protocol,
and in Section 5 some conclusions are drawn.

Improving Key Negotiation in Transitory Master Key Schemes for WSN 3

2 Overview of LEAP+ protocol

The LEAP+ protocol is based on a transitory master key technique and on the
assumption that a newly deployed node cannot be compromised within a short
period of time (denoted by TMIN). This is the time required for neighbor dis-
covery and pairwise key negotiation. Therefore, TMIN represents the maximum
amount of time available to an attacker to access and copy the memory of a
sensor node. The security scheme presented in [9] proposes the adoption of four
kinds of key to manage different levels of communication among the nodes (in-
cluding the Base Station). This work is focused on the pairwise key negotiation
which is the most crucial security aspect of the LEAP+ protocol. In order to
increase the security level, the pairwise keys of each pair of nodes are negotiated
after the deployment, exploiting the transitory master key secrecy. In this way
each pair of nodes will have a different shared secret and the compromise of one
pairwise key will not affect the security of the other links of the network.

The pairwise key negotiation procedure is composed of 4 phases, as shown
in Fig. 1, where:

- a −→ ∗ : node a broadcasts a packet;
- a −→ b : node a unicasts a packet to node b;
- {m}K : message m cyphered with key K;
- MAC(m)K : Message Authentication Code of the message m indexed by the

key K;
- a|b|c : concatenation of a, b, c.

Before the deployment of the network an offline setup procedure (Phase 0) is
carried out. During this phase the central controller generates and loads the same
transitory master key on each node of the network. From the transitory master
key each node derives its own private master key Ku = fKIN

(u), where f(·) is
a pseudo-random function indexed by the key KIN . At the time of deployment
each node starts a timer which measures the lifetime of the master key. When
the timer elapses the master key is deleted from the memory. In this way the
node will no longer be able to start a handshake procedure for the negotiation
of a pairwise key since it is no longer capable of verifying the authenticity of the
ACK1 answer. However a node which is no longer in possession of the master key
can still answer to any HELLO message received from other nodes. Therefore,
this mechanism allows the addition of new nodes to a network that has already
completed the deployment phase.

After key initialization the nodes are ready for deployment. When a node
is activated and deployed it starts to exchange messages with its neighbors to
negotiate the pairwise keys. In order to start the handshake, a generic node u
periodically broadcasts a packet called HELLO. This packet contains the iden-
tification code IDu of the sender. Through this packet the node communicates
its presence to the neighbors (Phase 1). The frequency of the HELLO packets
(1/THELLO) has great impact on the performance of the handshake. In fact,
the transmission of a high number of messages increases the probability that

4 Cesare Celozzi, Filippo Gandino, Maurizio Rebaudengo

Phase 0, Key initialization

Phase 1, Send HELLO:
u −→ ∗ : IDu

Phase 2, Send ACK1:
v −→ u : IDv,MAC(IDu|IDv)Kv

Phase 3, Send ACK2:
u −→ v : IDu,MAC(IDv)Kv

Fig. 1. Handshake for pairwise key negotiation in LEAP+ protocol.

every neighbor will receive the HELLO message but also increases the number
of collisions on the wireless channel. Therefore, sending HELLO packets with
high frequency degrades the overall performance of the system. The choice of a
proper THELLO must be made taking into account the average node degree of
the network.

A generic node v which receives the HELLO message will reply with an ac-
knowledgment message ACK1 (Phase 2). This message is unicast to the sender
of the HELLO message and contains the IDv and a MAC indexed by the private
master key Kv. In order to avoid collisions the ACK1 packets are sent after the
backoff time which is a random time extracted from a uniform distribution with
range (0, TBACKOFF). At the same time the node starts a timer that will elapse
after an interval of time during which the node waits for an answers (ACK2)
from the HELLO sender (node u). If the node does not receive the ACK2 mes-
sage after the timer elapses, it retransmits the ACK1 message. This retransmis-
sion is scheduled in the interval of time (TBACKOFF +1s, 2·TBACKOFF +1s).

When the node u receives back the ACK1 message it verifies the integrity
and authenticity of the message computing the MAC and comparing it to the
one attached to the received message. In positive cases it generates and stores the
pairwise key and sends a response called ACK2 (Phase 3). The ACK2 contains
the IDu of the HELLO sender and the MAC for authentication. When the node
v receives the ACK2 and verifies the integrity and authenticity of the message
the handshake is completed and both nodes share the same pairwise key for
further secure communications.

2.1 Security issue

From a security point of view the main weak point of LEAP+ protocol is that
the compromise of the transitory master key during the deployment phase may
disrupt the security of the whole network. In fact, an attacker in possession
of the master key may decipher eavesdropped traffic and even fabricate new
nodes able to initiate the handshake for pairwise key negotiation. The threshold
TMIN represents the interval of time during which it can be assumed that it
is not physically possible to compromise the memory of a node. However, the

Improving Key Negotiation in Transitory Master Key Schemes for WSN 5

experiment realized in 2005 by [10] showed that it is possible to obtain a copy
of the memory of a node in tens of seconds. This study also showed that the key
setup time may last minutes depending on the average node degree and on the
number of messages exchanged. Since TMIN must not be longer than the time
estimated by [10] (which future technologies will lower), the reduction of TMIN

is a critical aspect for ensuring the security of the key management scheme. This
work focuses on this security issue and proposes a variation of the LEAP+ that
dramatically lowers the value of TMIN required by LEAP+ for networks with
same average node degree.

3 Proposed approach

From the analysis presented in the previous section it can be noticed that in
specific cases, especially those with high average node degree, the LEAP+ pro-
tocol does not allow the negotiation of all the keys actually available in the
system because TMIN is too short. The major cause of this behavior is the high
number of collisions generated by the large quantity of messages exchanged in
a small time interval during the negotiation phase. A possible solution for this
problem is the adoption of TMIN intervals with longer duration. However, this
solution increases the probability of compromising a node that is still in posses-
sion of the master key, thus allowing an attacker to break all network commu-
nications. Conversely, the violation of a node which is in possession of the sole
private master key only allows the violation of the communications that involve
the compromised node. Therefore, to increase the security of the network the
time interval TMIN should be minimized. To achieve this goal the handshake
(HELLO−→ACK1−→ACK2) should be as efficient as possible to maximize
the number of keys negotiated during the TMIN interval. In fact, if a node is not
able to negotiate a pairwise key with a neighbor node, it cannot communicate
directly with it and this may imply an increase of energy consumption deriving
from the resulting use of multi-hop communication.

Starting from the solutions adopted by LEAP+ a new handshake has been
proposed to reduce the number of packets exchanged and the duration of the
key negotiation phase.

3.1 Hello flag

As discussed above, the pairwise key negotiation of the LEAP+ protocol [9]
is composed of various phases (Fig. 1) but starts with the HELLO message
broadcast. The HELLO message is sent periodically during the time interval
TMIN .

When the nodes of the network are activated, a large amount of traffic
due to the broadcast of the HELLO messages and to the subsequent ACKs
is generated. For instance, in a network with n = 50 nodes, TMIN= 30s and
THELLO= 3s, the protocol generates n · (TMIN/THELLO) = 500 HELLO pack-
ets. For each HELLO message each node answers with an ACK1 message which

6 Cesare Celozzi, Filippo Gandino, Maurizio Rebaudengo

is received by all other nodes that are in the communication range. The com-
munication modules of the receiving nodes must perform the basic operations
to identify if they are recipients of the ACK1 message, regardless of whether
the communication is unicast or broadcast. This may be exploited to reduce the
number of HELLO messages in the network by simply interpreting a generic
ACK1 message with a destination address that is different from the receiver
address as a HELLO message. A HELLO flag was added to the header of the
ACK1 packet in order to enable or disable this feature. The HELLO flag is
necessary when a node is no longer in possession of the master key. In this case
the node is not able to initiate a handshake procedure since it cannot verify the
authenticity of the ACK1 replies. Therefore, the HELLO flag must be set to
false. Since the simulation experiments have shown that the variation of the
quantity and frequency of the HELLO messages have a significant impact on
performance in terms of time required for the negotiation of the keys, a period
THELLO= 0.33·TMIN was also applied to the ACK1 messages that have the
HELLO flag set to true.

When a node is deployed and the LEAP+ protocol starts the handshake, a
HELLO message is scheduled in the interval of time 0÷THELLO. If the node
receives a HELLO message from another node before sending its own HELLO
message it answers with an ACK1 message in which the HELLO flag is set
to true. The HELLO message which has been replaced by the ACK1 with the
HELLO flag set to true is rescheduled by a time equal to THELLO. Furthermore,
a proximity threshold was introduced to discard and replace a HELLO message,
which was scheduled for an instant of time that falls within the threshold, with
an ACK1 message. This threshold makes it possible to anticipate the beginning
of the handshake through the dispatch of an ACK1 message that must be sent
in any case. The implementation of this mechanism requires the capability to
disable the incoming packets filter which discard packets that are not meant
for the node. In the experimental phase a proximity threshold of 0.1·THELLO

was adopted. Tests showed that this mechanism reduces the number of HELLO
message produced by the protocol.

3.2 Composite ACK1

The security of LEAP+ protocol is based on the assumption that only the pos-
sessors of the master key can authenticate the ACK1 through the computation
of MAC(IDu|IDv)Kv

. The presence of IDu in the MAC argument is critical
from the security point of view because it prevents potential reply attacks. Since
each node performs this computation for each HELLO message received, the
number of packets in the network during the handshake and the power consump-
tion depend on the node degree distribution of the network. In networks with
high average node degree the performance of the handshake may suffer from a
high number of collisions and from resulting retransmissions.

Starting from these considerations a new typology of ACK1 packet called
composite ACK1 (ACK1C for brevity) was proposed. The ACK1C packet is
a special ACK1 packet that contains the IDu of every node from which the

Improving Key Negotiation in Transitory Master Key Schemes for WSN 7

sender received a HELLO message, with the corresponding MAC. The ACK1C
ensures the same security features of the ACK1 packet but is able to manage all
the pending handshake initiation requests with a single message. Only a node in
possession of the master key can generate the ACK1C message and the recipi-
ents can verify the authenticity of such a packet through the same mechanisms
adopted for the ACK1 message. Each ACK1C packet can carry a maximum
number S of node IDs for which S slots are reserved IDu1

. . . IDuS
|IDv. In this

way the maximum dimension of the packet is constant.
The adoption of the ACK1C packet reduces the total number of messages

required for key negotiation. Theoretically, the reduction of ACK1 messages is
equal to 1/S. This reduction also lowers the workload and the memory occupa-
tion required for the generation of the corresponding MAC. On the other hand,
there is a limited increase in the size of the message which does not significantly
affect the processing time for the computation of the MAC. The ACK1C pack-
ets are broadcast in the network as a response to multiple HELLO message
received by a node. Each node that receives an ACK1C packet verifies whether
its own IDu is contained in one of the slots of the packet and decides to drop
it or further develop the handshake protocol. If the HELLO flag is set to true
and if the receivers have not yet exchanged a pairwise key with the sender, the
ACK1C packet is interpreted as a HELLO message. Otherwise the receiver
verifies the authenticity of the message and continues the handshake described
in the LEAP+ protocol.

When a node receive a HELLO message or an ACK1C with the HELLO flag
set to true and no ACK1C is in the outgoing queue, it schedules a new ACK1C
packet and randomly chooses a backoff time from the interval 0÷TBACKOFF .
If the node receives further HELLOs from other nodes it adds new IDu in the
free slots of the scheduled ACK1C packet until there are no more free slots or
the backoff timer elapse. After sending the message, for each node whose IDu

has been added to the ACK1C packet the node awaits the ACK2 replies for
a certain amount of time. If some of the replies are missing, the free slots of
the next ACK1C scheduled in the outgoing queue are filled with the IDu of
the nodes associated to the missing replies and with the IDu of the HELLOs
received in the meanwhile. In order to maximize the number of useful slots of
the scheduled ACK1C , the IDs of the nodes with missing ACK2 replies near to
the expiration threshold are also added in the free slots of the ACK1C message.

3.3 Modified handshake protocol

Since ACK1C packets have the same security features of ACK2 packets but
allow multiple destinations, they can replace them. This led to a new version of
the handshake protocol: HELLO−→ACK1C−→ACK1C . With this handshake
it is possible to obtain improved performance especially in case of high-density
networks and short key setup time TMIN . These improvements cover the cases
highlighted as critical by the security analysis presented in the previous section.
In order to discriminate between ACK1C packets that require authentication
from nodes in possession of the master key and ACK1C packets which replace

8 Cesare Celozzi, Filippo Gandino, Maurizio Rebaudengo

HELLO

ID=u
1

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,t,f,true,f}
TminFlag=false
...

 }
MAC={Kv,msg}

ACK1/2
HELLO FLAG=true

HELLO

ACK2

ACK1M

ACK1M

ACK2
msg={

ID={u
1
,v}

 }
MAC={Kuv,msg}

HELLO

ID=u
1

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,t,f,true,f}
Tmin FLAG=true
...

 }
MAC={Kv,msg}

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,t,f,false,f}
Tmin FLAG=true
...

 }
MAC={Kv,msg}

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,t,f,true,f}
Tmin FLAG=true
...

 }
MAC={Kv,msg}

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,f,t,false,f}
Tmin FLAG=true
...

 }
MAC={Kv,msg}

ACK1/2
HELLO FLAG=true

ACK2
msg={

ID={u
1
,v}

 }
MAC={Kuv,msg}

ACK2

ACK1M

ACK1M

ACK1/2
HELLO FLAG=true

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,t,f,true,f}
TminFlag=false
...

 }
MAC={Kv,msg}

(a) LEAP+

HELLO

ID=u
1

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,t,f,true,f}
TminFlag=false
...

 }
MAC={Kv,msg}

ACK1/2
HELLO FLAG=true

HELLO

ACK2

ACK1M

ACK1M

ACK2
msg={

ID={u
1
,v}

 }
MAC={Kuv,msg}

HELLO

ID=u
1

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,t,f,true,f}
Tmin FLAG=true
...

 }
MAC={Kv,msg}

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,t,f,false,f}
Tmin FLAG=true
...

 }
MAC={Kv,msg}

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,t,f,true,f}
Tmin FLAG=true
...

 }
MAC={Kv,msg}

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,f,t,false,f}
Tmin FLAG=true
...

 }
MAC={Kv,msg}

ACK1/2
HELLO FLAG=true

ACK2
msg={

ID={u
1
,v}

 }
MAC={Kuv,msg}

ACK2

ACK1M

ACK1M

ACK1/2
HELLO FLAG=true

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,t,f,true,f}
TminFlag=false
...

 }
MAC={Kv,msg}

(b) Proposed approach

Fig. 2. ACK1 retransmission in the handshake protocol.

ACK2 packets, an additional flag was introduced in the ACK1C packet for each
slot (ACK2 flag). This modified handshake still guarantees that the nodes that
terminate the key negotiation are authorized nodes in possession of the master
key.

Since one ACK2 flag is associated to each slot, both ACK1 and ACK2
acknowledgment messages can coexist in the same ACK1C packet. Therefore,
when a node receive an ACK1C packet it verifies if its IDu is present in one of
the slots and then checks the status of the corresponding ACK2 flag and of the
HELLO flag in order to correctly interpret the message. In the case of ACK1C
packet interpreted as ACK2 the node generates the appropriate pairwise key and
the handshake terminates. Otherwise, after the generation of the pairwise key
the node dispatches an ACK2-like packet (ACK1C with ACK2 flag or ACK2).

Summing up, there are different handshake configurations in which each node
may be involved. The negotiation procedure starts with a HELLO packet or
with an ACK1C packet with the HELLO flag set to true. After the first step,
the receiving nodes reply with an ACK1C packet. Then, the handshake is ter-
minated with an ACK2 packet in case the sender no longer has the master key.
Otherwise, the handshake is terminated with an ACK1C packet which improves
the efficiency of the protocol. If a node does not receive an ACK2-like packet it
must retransmit the ACK1C packet (Fig. 2). In Fig. 3 the possible handshake
configurations are summarized. The proposed handshake requires three different
packets: HELLO, ACK1C and ACK2. These packets contain the fields shown
in Tab. 1.

4 Comparison between LEAP+ and the proposed
approach

In this session the performance of LEAP+ and of the proposed handshake have
been analyzed and compared for different network configurations. The NS2 net-
work simulation software has been adopted to collect large quantity of data. This
software has been integrated with specific libraries for the analysis of Wireless
Sensor Networks. The network parameters that was taken into account for the
configuration of the simulator are:

Improving Key Negotiation in Transitory Master Key Schemes for WSN 9

HELLO

ID=u
1

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,t,f,true,f}
TminFlag=false
...

 }
MAC={Kv,msg}

ACK1/2
HELLO FLAG=true

HELLO

ACK2

ACK1M

ACK1M

ACK2
msg={

ID={u
1
,v}

 }
MAC={Kuv,msg}

HELLO

ID=u
1

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,t,f,true,f}
Tmin FLAG=true
...

 }
MAC={Kv,msg}

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,t,f,false,f}
Tmin FLAG=true
...

 }
MAC={Kv,msg}

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,t,f,true,f}
Tmin FLAG=true
...

 }
MAC={Kv,msg}

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,f,t,false,f}
Tmin FLAG=true
...

 }
MAC={Kv,msg}

ACK1/2
HELLO FLAG=true

ACK2
msg={

ID={u
1
,v}

 }
MAC={Kuv,msg}

ACK2

ACK1M

ACK1M

ACK1/2
HELLO FLAG=true

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,t,f,true,f}
TminFlag=false
...

 }
MAC={Kv,msg}

(a)

HELLO

ID=u
1

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,t,f,true,f}
TminFlag=false
...

 }
MAC={Kv,msg}

ACK1/2
HELLO FLAG=true

HELLO

ACK2

ACK1M

ACK1M

ACK2
msg={

ID={u
1
,v}

 }
MAC={Kuv,msg}

HELLO

ID=u
1

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,t,f,true,f}
Tmin FLAG=true
...

 }
MAC={Kv,msg}

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,t,f,false,f}
Tmin FLAG=true
...

 }
MAC={Kv,msg}

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,t,f,true,f}
Tmin FLAG=true
...

 }
MAC={Kv,msg}

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,f,t,false,f}
Tmin FLAG=true
...

 }
MAC={Kv,msg}

ACK1/2
HELLO FLAG=true

ACK2
msg={

ID={u
1
,v}

 }
MAC={Kuv,msg}

ACK2

ACK1M

ACK1M

ACK1/2
HELLO FLAG=true

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,t,f,true,f}
TminFlag=false
...

 }
MAC={Kv,msg}

(b)

HELLO

ID=u
1

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,t,f,true,f}
TminFlag=false
...

 }
MAC={Kv,msg}

ACK1/2
HELLO FLAG=true

HELLO

ACK2

ACK1M

ACK1M

ACK2
msg={

ID={u
1
,v}

 }
MAC={Kuv,msg}

HELLO

ID=u
1

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,t,f,true,f}
Tmin FLAG=true
...

 }
MAC={Kv,msg}

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,t,f,false,f}
Tmin FLAG=true
...

 }
MAC={Kv,msg}

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,t,f,true,f}
Tmin FLAG=true
...

 }
MAC={Kv,msg}

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,f,t,false,f}
Tmin FLAG=true
...

 }
MAC={Kv,msg}

ACK1/2
HELLO FLAG=true

ACK2
msg={

ID={u
1
,v}

 }
MAC={Kuv,msg}

ACK2

ACK1M

ACK1M

ACK1/2
HELLO FLAG=true

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,t,f,true,f}
TminFlag=false
...

 }
MAC={Kv,msg}

(c)

HELLO

ID=u
1

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,t,f,true,f}
TminFlag=false
...

 }
MAC={Kv,msg}

ACK1/2
HELLO FLAG=true

HELLO

ACK2

ACK1M

ACK1M

ACK2
msg={

ID={u
1
,v}

 }
MAC={Kuv,msg}

HELLO

ID=u
1

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,t,f,true,f}
Tmin FLAG=true
...

 }
MAC={Kv,msg}

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,t,f,false,f}
Tmin FLAG=true
...

 }
MAC={Kv,msg}

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,t,f,true,f}
Tmin FLAG=true
...

 }
MAC={Kv,msg}

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,f,t,false,f}
Tmin FLAG=true
...

 }
MAC={Kv,msg}

ACK1/2
HELLO FLAG=true

ACK2
msg={

ID={u
1
,v}

 }
MAC={Kuv,msg}

ACK2

ACK1M

ACK1M

ACK1/2
HELLO FLAG=true

ACK1M
msg={

IDs={u
2,
,u

3
,u

4
,u

1
,u

5
}

ACK2 FLAGS={f,t,f,true,f}
TminFlag=false
...

 }
MAC={Kv,msg}

(d)

Fig. 3. Possible handshake configurations for pairwise key negotiation.

– Nodes: number of active nodes in the network;
– Average node degree: average number of nodes in the wireless communi-

cation range of each node;
– X,Y: dimension of the deployment area (X · Y m2 with X = Y);
– TMIN : lifetime of the master key; after TMIN elapses the node erase the master

key and all the keys derived from it except its own private master key;
– Deploy interval: maximum time interval between the deployment and the

activation of a node;
– THELLO: time interval between two consecutive HELLO messages;
– TBACKOFF : maximum time interval between the reception of a HELLO mes-

sage and the forwarding of the ACK1 reply.

10 Cesare Celozzi, Filippo Gandino, Maurizio Rebaudengo

Table 1. Fields contained in the packets.

Packet Field Description Size (bits)

HELLO NodeID ID of the sender 16

ACK1C

NodeID ID of the sender 16

NodeIDslots IDs of the recipients 16 · S
NodeIDR ID of the recipient 16

Hello Flag If true the message can be interpreted as HELLO 1

TMIN Flag If true the sender has the master key and can still
receive ACK1C messages as acknowledgment to
ACK1C messages

1

Ack2 Flags If set to true the node with ID equal to the one
contained on the corresponding slot will not send
an ACK2 message since the ACK1C terminates
the handshake

16 · S

Mac Message Authentication Code obtained with the
master key of the node

256

ACK2

NodeIDS ID of the sender 16

NodeIDR ID of the recipient 16

Hello Flag If set to true the message can be interpreted as
HELLO

1

Mac Message Authentication Code obtained with the
private master key of the recipient node

256

4.1 Key setup time analysis

The goal of the proposed approach is to lower the time TMIN so that the period
of vulnerability of the nodes is reduced. In order to evaluate the performance
of the modified handshake, the number of negotiated pairwise keys have been
estimated for different values of TMIN . A completion percentage equal to 100%
corresponds to the negotiation of all the pairwise keys. The minimum values
of TMIN which guarantee a completion percentage of 99% have been shown in
Fig. 4 for different values of the average node degree. It can be noticed that the
adoption of the proposed handshake significantly reduces the time TMIN by a
factor that depends on the network configuration and on the protocol parameters
(i.e.: the number of slots in the ACK1C packet, etc...). For the configuration
shown in Tab. 2 the reduction of TMIN is greater than 30% respect to LEAP+.

Data collected through the simulations showed the better scalability of the
proposed approach due to the reduction of packets exchanged during the hand-
shake. This parameter may be further reduced determining an adequate number
of available slots in the ACK1C packet, thus acting on the trade-off between the
packet overhead and the performance. Furthermore, a detailed analysis on the
relationship between average node degree and TMIN has been performed. From
results presented in Fig. 5 it can be noticed that for low values of TMIN and high

Improving Key Negotiation in Transitory Master Key Schemes for WSN 11

0

2

4

6

8

10

12

5 10 15 20 25 30

T
m

in
(s

)

Averagefnodefdegreef(Lfnodes)

Proposedfsolution

Tmin associatedftofafcompletionfpercentagefoff99+

LEAP+

Fig. 4. TMIN in the case of completion threshold equal to 99%.

Table 2. Network configuration.

Network parameters

Nodes 30 Average node degree 5-30

X=Y 200-900 m TMIN 1-12 s

Deploy interval 0 s THELLO interval Tmin · 0.33

TBACKOFF THELLO Number of slots S 5

values of average node degrees the percentages of completion are lower. However,
the proposed approach improves these percentages in each critical configuration
(see Fig. 5). For instance, in the case of TMIN = 4s the completion percentage
of LEAP+ original handshake is about 70% whereas the completion percentage
of the proposed handshake is about 100%.

From the charts shown in Fig. 5 it can be highlighted that very short TMIN

intervals do not allow the negotiation of all the pairwise keys. Adopting the
network parameters of Tab. 2 the LEAP+ handshake allows a completion per-
centage of 95% with TMIN = 6s while the proposed approach performs better,
allowing the same completion percentage with TMIN = 3s.

4.2 Deployment time analysis

In order to carry out a detailed analysis of the proposed handshake for different
values of the deploy interval, a network configuration with high average node
degree has been adopted (Tab. 3). In fact, in networks with high average node
degree the activation of a large number of neighbor nodes causes the generation
of a large number of packets in a limited time interval. In this context, the
high number of collisions in the communication channel dramatically increases

12 Cesare Celozzi, Filippo Gandino, Maurizio Rebaudengo

5
10

15
20

25
30

2
4

6

8
10

12

0

20

40

60

80

100

Completion7percentage

C
om

pl
et

io
n7

pe
rc

en
ta

ge
7(

%
)

Average7node7degree7(#7nodes)

min (s)T

0
10
20
30
40
50
60
70
80
90
100

(a) LEAP+

5
10

15
20

25
30

2
4

6

8
10

12

0

20

40

60

80

100

Completion7percentage

C
om

pl
et

io
n7

pe
rc

en
ta

ge
7(

%
)

Average7node7degree7(#7nodes)

min (s)T

20

30

40

50

60

70

80

90

100

(b) Proposed approach

Fig. 5. Completion percentage as a function of TMIN and of the average node degree.

the number of resent packets, thus stretching the negotiation time. Therefore,
this condition amplifies the differences between the two handshakes and allows
an effective comparison. As shown in Fig. 6, both LEAP+ and the proposed
approach present weak performance for low values of the deploy interval.

However, the adoption of ACK1C packets and of the modified handshake
HELLO−→ACK1C−→ACK1C makes it possible to increase considerably the
percentage of keys negotiated in the network, keeping the deploy interval con-
stant. This statement is also endorsed by the study of the average number of
packets received and sent by each node. In fact, the proposed handshake allows

Improving Key Negotiation in Transitory Master Key Schemes for WSN 13

0

20

40

60

80

100

0 20 40 60 80 100 120 140

C
om

pl
et

io
nA

pe
rc

en
ta

ge
A(

%
)

DeployAtimeA(s)

CompletionApercentage

ProposedAsolution
LEAP+

Fig. 6. Completion percentage as a function of the deploy time. Network with high
average node degree .

Table 3. Network configuration.

Network parameters

Nodes 70 Average node degree 70

X=Y 140-160 m TMIN 12 s

Deploy interval 0-140 s THELLO interval Tmin · 0.33

TBACKOFF THELLO Number of slots S 5

the reduction of the number of sent packet for each deploy interval, as shown in
Fig. 7.

From the analysis of Fig. 7(a) it can be noticed that the high number of re-
transmissions is due to the loss of ACK2 packets. The number of retransmissions
and collisions decreases as the deploy interval increases. However, the average
number of received packets per node increases in the new implementation (see
Fig. 8) since the ACK1C packets introduced in the proposed handshake are
broadcast and potentially received by S nodes.

It is worth noting that the quantities of packets sent and received as a func-
tion of the deploy interval, shown in the previous histograms, refer to different
completion percentages (data shown in Fig. 6). As highlighted in Fig. 7(a), a
high number of sent packets does not necessarily implies a high number of nego-
tiated keys. This is due to the increment in the number of collisions that occurs
when the number of packets exchanged in the communication channel increases.

14 Cesare Celozzi, Filippo Gandino, Maurizio Rebaudengo

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

A
ve

ra
ge

in
um

b
er

io
fis

en
tip

ac
ke

ts

DeployiintervaliCsK

Sentipackets
HELLO

ACK1
DELAYEDiACK1

ACK2

(a) LEAP+

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

A
ve

ra
ge

in
um

b
er

io
fis

en
tip

ac
ke

ts

DeployiintervaliCsK

Sentipackets
HELLO

ACK1
DELAYEDiACK1

ACK2

(b) Proposed approach

Fig. 7. Average number of packets sent by a node.

5 Conclusion

This paper presented an enhanced version of the LEAP+ protocol which im-
proves the security of the handshake for pairwise key negotiation. The improve-
ment consists in the reduction of the vulnerability time during which an attacker
may stole the master key that is critical for the security of all the pairwise key
communications. The results, obtained through a network simulator, showed sig-
nificant improvements of performance in terms of reduction of the key setup time
and of number of packets exchanged for the key negotiation. The improvements
were more evident in the most critical contexts for the LEAP+ protocol such

Improving Key Negotiation in Transitory Master Key Schemes for WSN 15

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

N
um

be
r

of
re

ce
iv

e
d

pa
ck

et
s

DeploynintervalnAsC

Received packets
HELLO

ACK1
ACK2

(a) LEAP+

DeploycintervalcAsC

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

N
um

be
r

of
re

ce
iv

e
d

pa
ck

et
s

Received packets
HELLO

ACK1
ACK2

(b) Proposed approach

Fig. 8. Average number of packets received by a node.

as high density networks with low activation time. The higher efficiency in the
pairwise key negotiation made it possible to shorten the interval of vulnerability
of the nodes thus increasing the security of the entire network. The study carried
out showed the importance of the selection of proper network configuration pa-
rameters and algorithms parameter. The evaluation of optimal values for these
parameters as a function of specific constraints of the network will be the subject
of future research.

16 Cesare Celozzi, Filippo Gandino, Maurizio Rebaudengo

Acknowledgment

This work was supported in part by grant “Nano-materials and -technologies for
intelligent monitoring of safety, quality and traceability in confectionery products
(NAMATECH)” from Regione Piemonte, Italy.

References

1. X. Hu, B. Wang, and H. Ji, “A wireless sensor network-based structural health
monitoring system for highway bridges,” Computer-Aided Civil and Infrastructure
Engineering, vol. 28, no. 3, pp. 193–209, 2013.

2. S. Sultan, T. Khan, and S. Khatoon, “Implementation of hvac system through
wireless sensor network,” in Proceedings of the 2010 Second International Conference
on Communication Software and Networks, ser. ICCSN ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 52–56.

3. I. Bekmezci, Wireless Sensor Networks: A Military Monitoring Application.
Saarbrücken, Germany: VDM Verlag, 2009.

4. N. Gura, A. Patel, A. W, H. Eberle, and S. C. Shantz, “Comparing elliptic curve
cryptography and rsa on 8-bit cpus,” in Workshop on Cryptographic Hardware and
Embedded Systems 2004, 2004, pp. 119–132.

5. K. Piotrowski, P. Langendoerfer, and S. Peter, “How public key cryptography in-
fluences wireless sensor node lifetime,” in Proceedings of the fourth ACM workshop
on Security of ad hoc and sensor networks, ser. SASN ’06. New York, NY, USA:
ACM, 2006, pp. 169–176.

6. J. Zhang and V. Varadharajan, “Review: Wireless sensor network key management
survey and taxonomy,” J. Netw. Comput. Appl., vol. 33, no. 2, pp. 63–75, Mar. 2010.

7. S. Stelle, M. Manulis, and M. Hollick, “Topology-driven secure initialization in wire-
less sensor networks: A tool-assisted approach,” in Proceedings of the 2012 Seventh
International Conference on Availability, Reliability and Security, ser. ARES ’12.
Washington, DC, USA: IEEE Computer Society, 2012, pp. 28–37.

8. L. Eschenauer and V. D. Gligor, “A key-management scheme for distributed sensor
networks,” in Proceedings of the 9th ACM conference on Computer and communi-
cations security, ser. CCS ’02. New York, NY, USA: ACM, 2002, pp. 41–47.

9. S. Zhu, S. Setia, and S. Jajodia, “Leap+: Efficient security mechanisms for large-
scale distributed sensor networks,” ACM Trans. Sen. Netw., vol. 2, no. 4, pp. 500–
528, Nov. 2006.

10. J. Deng, C. Hartung, R. Han, and S. Mishra, “A practical study of transitory
master key establishment forwireless sensor networks,” in Proceedings of the First
International Conference on Security and Privacy for Emerging Areas in Commu-
nications Networks, ser. SECURECOMM ’05. Washington, DC, USA: IEEE Com-
puter Society, 2005, pp. 289–302.

11. S. Zhu, S. Setia, and S. Jajodia, “Leap: efficient security mechanisms for large-
scale distributed sensor networks,” in Proceedings of the 10th ACM conference on
Computer and communications security, ser. CCS ’03. New York, NY, USA: ACM,
2003, pp. 62–72.

12. C. Lim, “Leap++: A robust key establishment scheme for wireless sensor net-
works,” in Distributed Computing Systems Workshops, 2008. ICDCS’08. 28th In-
ternational Conference on. IEEE, 2008, pp. 376–381.

	Improving Key Negotiation in Transitory Master Key Schemes for WSN
	Authors' Instructions
	Introduction
	Overview of LEAP+ protocol
	Security issue

	Proposed approach
	Hello flag
	Composite ACK1
	Modified handshake protocol

	Comparison between LEAP+ and the proposed approach
	Key setup time analysis
	Deployment time analysis

	Conclusion
	References

