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Abstract
In the last years much effort has been devoted by the scientific community to develop lead-

erless distributed strategies for solving problems involving interacting agents which need to

achieve a common goal. The advantages of these strategies, if compared with the centralized

ones, are in terms of robustness of the resulting systems with respect to communication

and/or agent failures, and in terms of adaptivity to environmental changes and simplicity in

the system tuning. In other terms, they do not require the presence of a central unit that has

to gather all the information from the network and process huge amounts of data, dealing

with reliability of multi-hops, reliability of the agents themselves, both from a security point of

view and a physical one. On the other hand, distributed strategies, based on local exchange

of information among peer agents, can be more difficult to design and optimize and often

exhibit slower convergence to the regime working conditions. We focus on relative localization

in sensor networks, investigating how the error due to noisy data propagates through the

network, in terms of the relative error on each component of the optimal estimator of the

position vector. The relative error is computed as a function of the eigenvalues of the network

using the DFT, and these tools are useful especially for the exemplary class of networks called

the Abelian Cayley networks. The role of the network topology and dimension has a leading

importance in the error characterization, that is investigated in this work. In this framework

of networked control systems, we focus on networks of autonomous cameras, in particular

we focus on Pan-Tilt-Zoom cameras (PTZ). A large set of cameras communicating each other

through a network is a widely used architecture in application areas like video surveillance,

tracking and motion capture Aghajan and Cavallaro [2009]. In a network of cameras one of the

most crucial problems is calibration. For each camera this consists in understanding what is

its position and orientation with respect to a global common reference frame. The importance

of this information is for instance if the camera network is used to track an external mobile

object, since neighboring cameras have to communicate whenever the target goes from one

field of view (f.o.v.) to another. Our aim is to propose an algorithm that makes the cameras
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complete this task autonomously, in a distributed fashion. This also allows the possibility to

re–calibrate periodically, especially if we deal with mobile cameras. The calibration problem

over Euclidean spaces has recently been studied by Barooah and Hespanha in a great detail

(see Barooah et al. [2006], Barooah and Hespanha [2007]). They achieve the network localiza-

tion using noisy relative measurements. Well–known methods in computer vision permit to

obtain quite easily and efficiently relative positions and orientations of pairs of cameras whose

sensing regions overlap. Then our problem is to determine, from these noisy input data, the

position and the orientation of the cameras with respect to a common reference coordinate

system. Cameras calibration can be casted into an optimization problem (or a consensus)

over the manifold SE(3). We decouple the latter in the estimation of the position and the

orientation, and we focus on the orientation calibration over the manifold SO(2), under mild

assumptions. In Sarlette and Sepulchre [2009b], Tron and Vidal [2009b] consensus algorithms

on the manifolds SO(2) and SE(3) based on the gradient flow of a potential defined using the

chordal or geodesic distance are studied. The drawback is that the proposed potentials exhibit

a great number of local minima.

Our first contribution is the design of a synchronous calibration algorithm, based on a non-

convex optimization problem. The set of available relative measurements is described by a

graph G = (V ,E ), where nodes represent cameras, and edges represent the available relative

orientation measurements. We break the estimation problem into two parts: first we estimate

a combinatorial object, which is a set of integers, each associated with an edge in E . Intuitively,

these integers take care of the fact that measurement noises along the cycles in the graph

in general do not sum to 0. Then, the original optimization problem over a manifold can

be reduced to a quadratic optimization problem, which can be easily solved using classic

algorithms. The idea of using cycles has already been proposed in Russell et al. [2010], Piovan

et al. [2011b]. In fact, we propose two versions of the algorithm, their difference lies in the

choice of the set of cycles, that can be minimal or associated with spanning trees. We gain

consistency, since the solution given by the algorithm coincides with the true one, if there is

no noise. A worst–case analysis of its performance and numerical experiments are provided,

comparing the the two different versions according to the chosen cycle basis. This research

has appeared in Borra et al. [2012a, a].

Our second contribution concerns the problem of calibrating a network of cameras with a

completely distributed and asynchronous random algorithm. We assume the communication

protocol to be random gossip-like, in which at each iteration only one link is updated gathering
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only the states of neighboring cameras. In the previous setup, we propose an asynchronous

gossip version of the algorithm proposed in Piovan et al. [2011b]. The leading idea is to obtain

a new set of relative orientations which is ensured to sum up to multiples of 2π over a chosen

family of cycles. The new set of relative orientations is then spread along a spanning tree

to obtain an estimate of the orientations. The algorithm is proved to converge in the mean

square sense for general graphs, with null cycle-error almost surely. If we focus on ring graphs,

the proposed algorithm converges for any realization, and the expected value of the limit

random variable equals the optimal solution, written in closed form. We also characterize the

convergence speed proving that the estimate approaches the limit values exponentially fast.

Numerical experiments validating our analysis and investigating non-planar topologies are

provided.

Our third and final contribution refers to the design of surveillance trajectories for a network of

autonomous calibrated cameras to detect intruders in an environment. Remote surveillance

of human activities for civil and military applications is receiving considerable attention from

the research, and one of the main challenges consists of developing efficient algorithms for

the cameras to autonomously and distributively complete tracking, surveillance, and recogni-

tion tasks. Given a network of PTZ cameras installed at important locations, we assume the

cameras to move their f.o.v. (subject to physical constraints) to cooperatively self-organize

in order to detect intruders in the environment, that appear at arbitrary locations and times.

We consider both static intruders and dynamic intruders, and our performance criteria is the

worst-case detection time, namely the longest time needed for the network to detect intruders.

Works related to our camera surveillance problem can be found in the mobile robotics and

computer science literatures, see e.g. Alberton et al. [2012], Pasqualetti et al. [2011b]). In this

context, the perimeter patrolling problem has recently been studied in Baseggio et al. [2010],

Carli et al. [2011], Spindler et al. [2012], and we extend their results to the case of general

topologies. Our graph partitioning problem differs from classical setups where the problem is

combinatorial and discrete, whereas we formulate continuous graph partitioning problems,

in which the partition is obtained by splitting the edges. Our results are applicable to different

problems, including dynamic load balancing for multiprocessor networks. We show that our

continuous graph partitioning problem is convex and non-differentiable, and we characterize

its solutions. Then, we derive an equivalent convex and differentiable partitioning problem,

which is amenable to distributed implementation. We exhaustively discuss any possible opti-

mal cameras trajectory against static intruders, showing that for tree and ring roadmaps, it is
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equivalent to solve a continuous graph partitioning problem. For general cyclic roadmaps,

our trajectories based on continuous partitions are proved to be optimal up to a constant

factor. For the case of dynamic intruders, we derive a necessary and sufficient condition on

the cameras locations for the existence of a trajectory with finite detection time. We design

optimal cameras trajectories up to constant factors, for ring and tree roadmaps. Finally, we

consider three different communication models (synchronous, asymmetric broadcast, and

gossip models), and we propose distributed algorithms for the cameras to partition the graph

in all these scenarios. The convergence analysis and a simulation study of these algorithms

are provided. These results appeared in Borra et al. [2012b, b].

In short. In the framework of networked control systems, we focus on networks of au-

tonomous PTZ cameras. A large set of cameras communicating each other through a network

is a widely used architecture in application areas like video surveillance, tracking and mo-

tion. First, we consider relative localization in sensor networks, and we tackle the issue of

investigating the error propagation, in terms of the mean error on each component of the

optimal estimator of the position vector. The relative error is computed as a function of the

eigenvalues of the network: using this formula and focusing on an exemplary class of networks

(the Abelian Cayley networks), we study the role of the network topology and the dimension

of the networks in the error characterization. Second, in a network of cameras one of the

most crucial problems is calibration. For each camera this consists in understanding what is

its position and orientation with respect to a global common reference frame. Well-known

methods in computer vision permit to obtain relative positions and orientations of pairs

of cameras whose sensing regions overlap. The aim is to propose an algorithm that, from

these noisy input data makes the cameras complete the calibration task autonomously, in a

distributed fashion. We focus on the planar case, formulating an optimization problem over

the manifold SO(2). We propose synchronous deterministic and distributed algorithms that

calibrate planar networks exploiting the cycle structure of the underlying communication

graph. Performance analysis and numerical experiments are shown. Third, we propose a

gossip-like randomized calibration algorithm, whose probabilistic convergence and numerical

studies are provided. Forth and finally, we design surveillance trajectories for a network of

calibrated autonomous cameras to detect intruders in an environment, through a continuous

graph partitioning problem.
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1 Introduction

The purpose of this Chapter is to give an overview of the dissertation. First, we review the

existing literature on cooperative multiagent agent systems, distributed estimation and con-

sensus computation, with a particular focus on network of cameras, patrolling problems and

related graph partitioning issues in Section 1.1. Second, we illustrate the organization of next

chapters in Section 1.2. We conclude the Chapter in Section 1.3 with a list of publications

partly containing the results presented in this thesis.

1.1 Literature synopsis

In this Section we review the existing literature regarding the topics treated in this thesis.

This will be instrumental to state more concretely the contributions here presented. In

the framework of cooperative multiagent systems, the considered agents may strongly vary,

spacing from robots, wireless sensors, computers linked by web connections, to swarms

of animals or human beings in the context of opinion dynamics. Nevertheless, all these

networked dynamical systems share the same distinctive features, characterizing complex

systems.

(i) There is a global goal for the network to be achieved, that could be the estimation of

a global quantity of interest in a (wireless) sensor network, or formation control for

robotic networks, optimization of a given cost function based on local data, and so on.

(ii) Each agent is able to process only a limited amount of data and computations, due

to memory and capability limitations, therefore a centralized algorithm can not be
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Chapter 1. Introduction

conceived, in order to avoid overload.

(iii) Only local information can be processed, namely only neighboring agents can commu-

nicate, for several reasons, including bandwidth limitations, physical constraints, huge

number of agents and unreliability of multihops.

(iv) For the previous fundamental features, it is not feasible to provide a central unit, able

to collect the necessary data from the whole network to achieve the global goal. In

other words, there is no chance to have a single “super-agent”, since the network is often

dynamic, changing in time and/or space, and such an iterative centralized decision-

making procedure would result too slow and badly performing in terms of noise/error

spreading.

Despite the fact that the latter characteristics are limiting constraints on the control of such

systems, the increasing interest of the scientific community towards these systems is due to

the global behavior that the networks have from simple local laws applying to some nodes,

unpredictable when looking at the single agent. Another reason is the real-life application of

these systems, since we take part and we are increasingly surrounded by such networks, in sev-

eral fields, from economics to social networks, from robotics to video surveillance networks. In

the last years much effort has been devoted by the scientific community to develop leaderless

distributed strategies to solve problems involving interacting agents which need to achieve a

common goal. The advantages of these strategies, if compared with the centralized ones, are

in terms of robustness of the resulting systems with respect to communication and/or agent

failures, and in terms of adaptivity to environmental changes and simplicity in the system

tuning. On the other hand, distributed strategies, based on local exchange of information

among peer agents, can be more difficult to design and optimize and often exhibit slower

convergence to the regime working conditions.

In the remainder of this Section, we first focus on distributed estimation from relative mea-

surements over a network of cooperative multiagent systems in Section 1.1.1. Second, in

Section 1.1.2 we focus on cooperative autonomous camera networks with a particular stress

on distributed calibration algorithms.Third and finally, we give an overview on surveillance

and patrolling problems, and related graph partitioning problems in Section 1.1.3.
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1.1. Literature synopsis

1.1.1 Distributed estimation on graphs from relative measurements

Natural candidates for distributed estimation algorithms are iterative consensus algorithms,

where each node maintains a local estimate of a parameter of interest, which is updated

distributively with a weighted average of the estimates from the local neighbors. Starting from

the pioneering work Tsitsiklis [1984], many variations can be found in herein cited literature. In

particular further study of this problem has been reported in Moreau [2004], Olfati-Saber et al.

[2007], and several applications can be found, among them in the field of management science

and statistics DeGroot [1974], in robotics Jadbabaie et al. [2003], in computer science and

parallel computing Lynch [1997], Bertsekas and Tsitsiklis [1997], in flocking phenomena Savkin

[2004]. The main advantage of consensus algorithms is that they converge exponentially to

the centralized solution under very mild communication assumptions, even in the case of a

time-varying network topology. Nevertheless, the quantities considered in literature generally

live in Euclidean spaces.

In literature, a wide spectrum of works propose distributed estimation algorithms with asyn-

chronous randomized mode of operation, see e.g. Tsitsiklis [1984], Fagnani and Zampieri

[2008], and the herein references. It should be pointed out that in many practical applications

a node can not simultaneously receive data from two different adjacent nodes (collision can

delete messages in wireless environment) and in general it cannot simultaneously transmit to

more than one node (for instance for processors nets). Hence, these fundamental limitations

must be taken into account even if the networks we consider are quite dense. The use of

randomized algorithms turns to be appealing, since they allow to achieve better performance

than deterministic ones with comparable complexity. These are some of the reasons why,

in Chapter 5, we provide a randomized distributed estimation algorithm. Random linear

schemes have been studied for instance in Boyd et al. [2005], Kempe et al. [2003], known as

gossip algorithms, in which the evolution matrix of the algorithm changes randomly at every

time step. Convergence has to be considered in a probabilistic sense and performance is

studied in mean square sense.

In the more general framework of distributed estimation problems on graphs Borkar and

Varaiya [1982], Notarstefano and Bullo [2011], Pasqualetti et al. [2010, 2011a], our focus is

on the problem of estimating a number of vector valued variables from a number of noisy

relative measurements, namely measurements of the difference between certain pairs of these
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variables. This problem is also known in literature as relative localization, and has attracted

much attention in the last decades. The main reason of this increasing interest is due to

its multiple applications in the area of sensor networks, among them position localization

(Barooah and Hespanha [2005, 2007, 2009]), or time synchronization in which each node has

a local clock and the goal is to globally synchronize the whole network clocks or non linear

oscillators Kuramoto [1975], R. Karp and Shenker [2003], Sundararaman et al. [2005], Barooah

et al. [2006], Giridhar and Kumar [2006], Moreno and Pacheco [2004]. Several localization

algorithms have been designed assuming only relative range information L. Doherty and

Ghaoui [2001], N. Patwari and Perkins [2003], Moore et al. [2004], and assuming only angle

measurements through the use of multiple ultrasound receivers N. B. Priyantha and Teller

[2001] or acoustic signals and corresponding time of arrivals Caffery and Stber [1998]. In

K. Chintalapudi and Sukhatme [2004] location estimation is performed using both relative

distance and angle measurements, which can substantially improve the accuracy of estimates.

A certain number of well placed anchor nodes that know their position and broadcast that to

the network is a usual requirement for many localization schemes.

In the context of position localization in Euclidean spaces, the first papers dealing with

noise in the relative measurements, and investigating the effect of network properties on

the estimation error applied the Cramer-Rao lower bound with Gaussian assumptions on

noise Niculescu and Nath [2004], N. Patwari and Perkins [2003], or provided numerical studies

focusing on node density and network size in A. Savvides [2005].

To our knowledge, the first and complete analytical results appeared in Barooah and Hespanha

[2005, 2007, 2009], in which they provide an unbiased estimator with minimum variance, that

can be computed in a decentralized fashion. They investigated the question of how the

estimation error of the optimal estimate scales with distance, and how it is affected by the

network topology. In Chapter 3, our concern is to investigate how the error on a fixed edge

is affected by the error corresponding to edges “far”in terms of length on minimum path

along the graph. We focus on a particular and exemplary class of graphs, the so-called Cayley

graphs, crf. Section 2.1.2, which can be embedded in a proper d-dimensional Euclidean space.

Cayley graphs show interesting geometric properties and easy spectral characterization of the

fundamental matrices describing such graphs.
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1.1.2 Distributed calibration

In the core of this dissertation (Chapter 4, 5, and 6) we focus on camera networks. Networks of

this kind are a widely used architecture, and could be used in a variety of applications, such as

3-D reconstruction of large environments, tracking of mobile targets, video surveillance and

motion capture Aghajan and Cavallaro [2009].

In a network of cameras one of the most crucial problems is calibration. For each camera

this consists in understanding what is its position and orientation with respect to a global and

common reference coordinate system.

The calibration problem over Euclidean spaces has recently been studied by Barooah and

Hespanha in a great detail (see Barooah and Hespanha [2005], Barooah et al. [2006], Barooah

and Hespanha [2007]), as already explained in Section 1.1.1. By means of well–known methods

in computer vision (see Ma et al. [2003]), we can tackle the calibration issue using as input data

the relative positions and orientations of pairs of cameras whose sensing regions overlap. The

latter can be formulated as a minimization problem on the manifold SE (3), since each camera

pose is mathematically formalized as the couple (R,T ), where R ∈ SO(3),T ∈R3 with respect

to a fixed external reference frame. In particular, one of the most interesting subproblems

of the latter is the calibration of the orientations, which can be seen as an optimization

problem in the manifold SO(3), Tron and Vidal [2009b], Tron et al. [2011], Scardovi et al.

[2007], Sarlette and Sepulchre [2009b]. In particular, this optimization problem consists in

minimizing a piece-wise convex cost function defined on SO(3), characterized by several

local minima. A straightforward consequence is that the standard gradient descent procedure

usually proposed in literature must be initialized correctly in order to avoid trajectories of the

estimate that get stuck in some local minima that are not global minima. A distributed method

for camera localization and calibration based on Belief Propagation (as opposed to consensus)

is proposed in Devarajan and Radke [2007]. However, no conditions for a consistent solution

are imposed and the non-Euclidean structure of the rotations is not rigorously exploited.

In Piovan et al. [2011b] the problem of calibration on SO(2) is considered when measurements

of relative orientations are affected by additive noise. the main idea is to exploit the cycles in

the graph, since the input noisy relative orientations my sum to zero on closed paths, up to

integer multiples of 2π. Chosen a particular family of cycles in the graph, they propose a novel

iterative algorithm solving a non convex constrained minimization problem. Such procedure
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is cycle-distributed, and converges exponentially to the manifold of relative orientations with

null cycle errors.

Finally, in Singer [2011] an estimation algorithm is proposed for a measurement model in

which some measures are ideal, while others are completely random. The estimate of the

orientations is obtained via the computation of the eigenvector associated with the largest

eigenvalue of a suitable Hermitian matrix.

1.1.3 Patrolling problem and graph partitions

Remote surveillance of human activities for civil and military applications is receiving con-

siderable attention from the research community. Many tasks requiring repetitive execution

can be achieved by cooperative multirobot and multicamera networks, including the moni-

toring of oil spills Clark and Fierro [2007], detection of fires Kingston et al. [2008], patrolling

of environments Susca et al. [2008]. Public areas such as banks, art galleries, private houses,

prisons, department stores, and parking lots, are now equipped with camera networks to

detect important activities, O’Rourke [1987], Susca et al. [2008]. From a technological perspec-

tive, one of the main challenges consists of developing efficient algorithms for the cameras to

autonomously and distributively complete tracking, surveillance, and recognition tasks.

In Chapter 6, we focus on the patrolling problem, considering one dimensional environments

embedded in the Euclidean space, and we tackle the issue of performing the surveillance

task by means of a fixed camera network. In mobile robotics, the patrolling problem consists

of scheduling the motion of a team of autonomous agents in order to detect intruders or

important events, e.g., see Alberton et al. [2012], Baseggio et al. [2010], Machado et al. [2003],

Pasqualetti et al. [2011b]. Nevertheless, when dealing with camera networks, there are several

differences, first our video devices are placed at fixed locations in the environment and

therefore there are additional conceivable physical constraints, in general not considered

in mobile robot networks. Our approach is also related to graph-clearing and graph-search

problems, see e.g. A. Kehagias and Singh [2009], Kolling and Carpin [2010], Parsons [1978], in

which agents are usually mobile robots, and therefore these results do not apply to the setup

we considered.

In the context of perimeter patrolling, there are several papers providing distributed strategies

for line topologies Baseggio et al. [2010], Carli et al. [2011], Spindler et al. [2012], Pasqualetti
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et al. [2013]. These works tightly resembles our setup, since they provide optimal cameras

trajectories that minimize the detection time for smart intruders, both static and dynamic

with a complete knowledge of the cameras trajectories. These optimal strategies are designed

by means of graph partitions, where the goal is to minimize the maximum load of all the

cameras, in terms of size of their patrolled region. In Chapter 6, our concern is to generalize

such approach to more general topologies.

Graph partitioning problems are classically combinatorial, see e.g. Andreev and Racke [2006],

Arkin et al. [2006], Even et al. [2004], G. Even and Schieber [1997] and the references therein,

where the goal is to partition the nodes set in a suitable way, depending on the size of the

partition. Our model has a novel formulation, namely we define the continuous partition of

a graph, meaning that, once each edge is parametrized by a continuous variable, the aim is

to provide a cut on each edge, in order to mathematically split the environment among the

cameras.

1.2 Contributions of this thesis

The main contributions of each chapter are as follows.

Chapter 2. In Chapter 2 we introduce the notations, and mathematical tools that will be

intensively used in the remainder of the thesis. We start recalling some standard results in

graph theory, with an emphasis on algebraic and topological characterization of the cycle

structure of a network in Section 2.1.1, and the Abelian Cayley graph class in Section 2.1.2. Af-

terwards, we report some linear algebra basics in Section 2.2. An overview of Markov Chains is

provided in Section 2.3, focusing on their analogy with electrical resistive networks in Section

2.3.2. Finally, Section 2.4 reports the main properties of the DFT (Discrete Fourier Transform)

used in Chapter 3.

Chapter 3. In this Chapter, we consider relative localization in sensor networks and its intrin-

sic performance limitations, in terms of the mean error on each component of the optimal

estimator of the position vector. The relative error is computed as a function of the eigen-

values of the network: using this formula and focusing on an exemplary class of networks

(the Abelian Cayley networks), we study the role of the network topology and the dimension

of the networks in the error characterization. If we assume to have sequences of graphs of
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increasing size (in terms of number of nodes), we investigate the asymptotic behavior of the

relative error and how ”far“(in terms of path along the graph) relative errors due to noise in

measurements affects the local relative error. The analysis, with a complementary numerical

study, is provided for different dimensions of the Cayley grid.

Chapter 4. In this Chapter we face the problem of calibrating in a distributed way a net-

work of autonomous cameras, namely the problem of estimating a common orientation

reference frame. We assume each camera obtains noisy measurements of its relative ori-

entation with respect to some other cameras. The set of measurements can be described

by a graph having the cameras as nodes and having an edge between two communicating

cameras. We propose a two-step estimation algorithm based on a choice of a basis for the

set of graph cycles. First we compute a set of integer numbers, which provides a first rough

estimate of the orientations. Second, this information is used to cast the estimation problem

in a suitable quadratic minimization problem. We propose two different implementations

of this main idea, corresponding to two different basis of cycles. Analytical performances

are described and compared in terms of the worst–case scenario. The final part of this Chap-

ter is devoted to a numerical study that deepen the comparison between the two versions

of our algorithm, and a third algorithm proposed in the literature for solving the same problem.

Chapter 5. This chapter focuses on the same problem of Chapter 4, with the difference

that the camera network is based on a different communication model. We design a dis-

tributed algorithm for the cameras to autonomously calibrate adopting an asynchronous

gossip-like communication protocol. The idea is to exploit the cycles in the graph, along

which all relative measurements must sum to zero, in order to reduce the noise. Probabilistic

convergence and numerical experiments are provided. For general planar graph topologies

the algorithm is proved to converge to the set of angles with zero cycle error, almost surely

and in the mean square sense. Numerical experiments investigate the performance of the

proposed randomized algorithm on non-planar graphs.

Chapter 6. In this final part, we deal with a calibrated camera network that tackles the issue

of patrolling an environment modeled by a graph embedded in the Euclidean plane. The

goal is to design surveillance trajectories for the camera network to detect intruders in the

environment, through a continuous graph partitioning problem. The proposed partitioning
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algorithms are decentralized, based on different communication protocols both deterministic

and probabilistic, and they rely on convex optimization tools. Analytical and numerical results

are provided.

Chapter 7. In this Chapter we draw the conclusions of this work, and we describe a wide

spectrum of possible research directions for all the treated topics.

1.3 Publications

The results of the present work are based on the following papers.

Journal Papers

• D. Borra, Fabio Pasqualetti, F. Bullo, Continuous graph partitioning for camera network

surveillance, Automatica, Note: submitted, July 2012.

• D. Borra, R. Carli, F. Fagnani, E. Lovisari, S. Zampieri, Autonomous calibration algorithms

for planar networks of cameras, Automatica, Note: submitted, July 2012.

Conference Papers

• D. Borra, F. Fagnani, Asynchronous distributed calibration of camera networks. In ECC’13,

Zurich, Switzerland, July 2013. Note: Accepted.

• D. Borra, Fabio Pasqualetti, F. Bullo, Continuous graph partitioning for camera network

surveillance, IFAC NecSys 2012, Santa Barbara, September 2012.

• D. Borra, R. Carli, F. Fagnani, E. Lovisari, S. Zampieri, Autonomous calibration algorithms

for networks of cameras, ACC 2012, Montréal, June 2012.

The research pursuit developed during my PhD course includes also opinion dynamics issues.

We studied a hybrid bounded confidence model for opinion formation in a large group of

agents exposed to the persuasive action of a small number of strong opinion leaders. In this

thesis the focus is on localization and detection problems dealing with camera networks,

thus the following work has not been included in order to maintain a consistent dissertation
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avoiding off-topic digressions. The contents and results achieved can be found in the following

articles.

Journal Papers

• D. Borra, T. Lorenzi, A hybrid model for opinion formation, Z. angew. Math. Phys., DOI:

10.1007/s00033-012-0259-z, 2012.

• D. Borra, T. Lorenzi, Asymptotic analysis of continuous opinion dynamics models under

bounded confidence, Commun. Pure Appl. Anal., 12, 1487-1499, 2013.

• D. Borra, F. Fagnani, S. Fosson, Analysis of a Krause-based one-dimensional model in the

presence of stubborn agents, Note: in preparation.

All publications are available online at: http://calvino.polito.it/~borra/.
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2 Mathematical tools

Before presenting the core of the work, this Chapter defines recurrent notation and collects

some specific tools that are important ingredients in the sequel. This includes, first, a brief

review of graph theory in Section 2.1, in which a deep characterization of the cycle structure

of a graph is provided (Section 2.1.1), and the definition and properties of Cayley graphs are

recalled (Section 2.1.2). Second, linear algebra tools and definitions are presented in Section

2.2. Third, in Section 2.3 an overview on Markov Chains is reported, with a particular focus on

the electrical analogy in Section 2.3.2. Forth and finally, Section 2.4 contains a brief overview

of the Discrete Fourier Transform, that will be extensively used in Chapter 3.

2.1 Graph theory preliminaries

In this Section we recall some known facts from algebraic graph theory which will be instru-

mental in the development of this work. Some basic definitions are here recalled. For further

details, see e.g. Diestel [2005], Gutin [2003].

An undirected graph is a couple G = (V ,E ), where V = {1, . . . , N } is the set of nodes, and E is

a subset of unordered pairs of elements of V called edges1. We let M := |E |. An orientation

on G = (V ,E ) is a pair of maps s : E → V and t : E → V such that e = {s(e), t(e)} for every

e ∈ E . According to this definition, s(e) and t (e) are called the source and terminal node of the

edge e, respectively. Assume from now on that we have fixed an orientation (s, t) on G . The

incidence matrix B ∈ {±1, 0}E×V of G is defined by putting Be,s(e) = 1, Be,t (e) =−1, and Be,v = 0

1More precisely an edge is a subset of V with two elements.
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if v 6= s(e), t (e).

A weighted Laplacian of G is given by L = B T C B where C ∈RM×M+ is a diagonal matrix whose

(e, e) entry can be seen as the weight of edge e. We denote by Z the Green matrix of L, which is

the unique matrix such that Z1= 0 and Z L = I − 1
N 11

T . This definition can be generalized to

non symmetric Laplacians, but we will restrict to this case for simplicity. A graph G ′ = (V ′,E ′)

is a subgraph of G = (V ,E ) if V ′ ⊆ V and E ′ ⊆ E . A connected acyclic graph is called tree. A

spanning tree of a graph is a subgraph with N vertices and N −1 edges that form a tree. To

conclude, if v ∈ RN is a vector, then |v | ∈ RN is a vector whose i -th component is |vi |. The

symbol |v | ≤ p , where both v and p are vectors of the same dimension n, means |vi | ≤ p1 for

all i = 1, . . . , n.

Given a graph G = (V ,E ), a spanning tree T = (V , ET ) of G is a connected subgraph of G

which is a tree. Notice that |ET | = N −1.

A path h of length n is an ordered sequence of nodes h = (v1, v2, · · · , vn+1) such that {vi , vi+1} ∈
E for all i = 1, . . . ,n. A path h = (v1, v2, · · · , vn+1) is said to be closed if v1 = vn+1. A closed path

h = (v1, v2, · · · , vn , v1) is said to be a cycle if n ≥ 3 and vi 6= v j for all i , j ∈ {1, . . . ,n} with i 6= j .

The support of a path is given by the set of its edges, namely, if h = (v1, v2, · · · , vn+1), then

supp(h) := {e ∈ E |e = {vi , vi+1}, ∃i = 1, . . . ,n}.

A cycle is closed path, and let us denote the set of cycles of G as H . A graph G is said to be

planar if its nodes and edges can be embedded in the Euclidean plane without intersection

between edges (see Diestel [2005]). Given a planar graph G , its dual graph G̃ = (H , Ẽ ) is

defined by putting
{
h,h′} ∈ Ẽ if and only if h, and h′ are adjacent cycles.

In the following, we first focus on the cycle structure of a graph in 2.1.1, that will be extensively

used in Chapter 4 and 5. Second, we recall the definition and main properties of Cayley graphs

in 2.1.2, studied in Chapter 3.

2.1.1 Cycle structure of a graph

Consider now ZE , the Z-module of Z-valued row vectors whose components are labeled by E .

Given r ∈ZE , we define its support as

supp(r ) := {e ∈ E |r (e) 6= 0}

12
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We now associate with every path h, an element r h ∈ZE as follows. First, if h = (v1, v2), we put

r h(e) =
 Bev1 , ife = {v1, v2}

0, otherwise.

Then, for a generic path h = (v1, v2, · · · , vn+1) we define r h(e) as r h(e) = ∑n
i=1 r (vi ,vi+1)(e). In

particular, for paths h with non-repeating edges, r h is built by assigning r h(e) = 1 if the edge e

appears in h and it is crossed with the same orientation of G , assigning r h(e) =−1 if the edge

e appears in h and it is crossed with the reverse orientation of G and finally assigning r h(e) = 0

if the edge e does not appear in h.

We give some algebraic properties of the row vectors r h associated with the paths h. We start

by observing that,

(r (v1,v2) A)v = ∑
e∈E

r (v1,v2)(e)Aev = B{v1,v2},v B{v1,v2},v =


1, if v = v1,

−1, if v = v2,

0, if v 6= v1, v2.

In other words, r (v1,v2)B =1v1 −1v2 , where the symbol 1v means the column vector in RV with

the entry of position v equal to 1 and all the other entries equal to 0. Observe moreover that, if

h = (v1, v2, · · · , vn , vn+1), then

r hB =
n∑

i=1
r (vi ,vi+1)B =

n∑
i=1

1vi −1vi+1 =1v1 −1vn+1 .

The latter equality proves that r hB = 0, if h is a closed path.

Denote now by Γ the Z-submodule of ZE generated by all the vectors r h as h varies in the

set of closed paths. It holds true that Γ has dimension equal to M − N +1, i.e. there exist

r h1 , . . . ,rhM−N+1 forming a Z-basis of Γ. This fact is well known in the slight different context

where no orientation is considered and where vector spaces are used Diestel [2005]. The

following proposition clarifies the situation in our setting.

Proposition 2.1. (Cycle space characterization) We have that

(i) Γ= {r ∈ZE |r B = 0};

(ii) Γ has dimension equal to M −N +1.

13
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Proof. (a) The fact that Γ⊆ {r ∈ZE |r B = 0} follows from the previous arguments.

(b) Fix a spanning tree T = (V , ET ) of G and let e1, . . . ,eM−N+1 be the edges in E \ET . Select

the family cycles h1, . . . ,hM−N+1 by taking hi to be the only cycle in G with edges in

ET ∪{ei } and such that r hi (ei ) = 1. We now prove that the r hi ’s generate {r ∈ZE |r A = 0}.

Let r ∈ ZE such that r B = 0 and let r̃ := r −∑M−N+1
i=1 r (ei )r hi . Notice that r̃ B = 0 and

that supp(r̃ ) ⊆ ET . We show now that these facts imply r̃ = 0. Indeed, if supp(r̃ ) ⊆ ET

and supp(r̃ ) 6= ;, then supp(r̃ ) would include at least one leaf, namely a node v∗ such

that there exists only one edge e∗ ∈ supp(r̃ ) containing v∗. In this case

0 = (r̃ B)v∗ =∑
e

r̃ (e)Bev∗ = r (e∗)Be∗v∗ ,

which yields r̃ (e∗) = 0, a contradiction.

(c) It remains to prove the Z-independence of the row vectors r h1 , . . .r hMN +1 . Assume that

αi ∈Z are such that
∑

i αi r hi = 0. Then, for any `= 1, . . . , M −N +1, we have that

0 =∑
i
αi r hi (e`) =α`r h`

(e`) =α`,

which shows that αi = 0.

Proposition 2.2. (Connection between the cycle matrix and the incidence matrix)

Let r h1 , . . .r hM−N+1 be a Z-basis of Γ. Defined moreover R ∈Z(E \ET )×E to be the matrix having

r h1 , . . . ,rhM−N+1 as rows. Then

(i) kerR = ImB, where kerR := {K ∈ZE |RK = 0} and ImA := {K ∈ZE |K = Bh, ∃h ∈ZV }.

(ii) there exists X ∈ZE×(E \ET ) such that R X = I where I is the identity matrix.

Proof. 1) First observe that, if we have two matrices R,R ′ ∈Z(E \ET )×E formed by two different

Z-bases of Γ, then kerR = kerR ′ easily follows from the algebra of matrices overZ (see Newman

[1972]). It remains to prove the assertion for a particular choice of the Z-basis of Γ. Consider

the Z-basis r h1 , . . .r hM−N+1 of Γ, built from a spanning tree T of G as described in point b) of

the proof of Proposition 2.1. The fact that ImB ⊆ kerR follows from Proposition 2.1. At this

point, the only thing to be shown is that kerR ⊆ ImB . Let K ∈ kerR. Since rows in R form a

14
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basis of Γ, we have that r hK = 0 for every closed path h. Let us fix a node v0 ∈ V . Then for

each node v ∈ V , let γv be the path in the tree T connecting v0 to v . Define now the column

vector h ∈ZV with components

hv := r γv K = ∑
e∈E

r γv (e)K e ,

where r γv is the row vector in ZE associated with the path γv . We now show that K e = ht (e) −
hs(e), for each e ∈ E . A straightforward consequence is that K = Bh, i.e. K ∈ ImB . Consider

the closed path h defined merging the paths γs(e), (s(e), t (e)) and −γt (e), where we recall that

−γt (e) denotes the path obtained by reversing γt (e). Observe that r h = r γs(e) + r (s(e),t (e)) − r γt (e) .

It follows that

0 = r hK = r γs(e) K + r (s(e),t (e))K − r γt (e) K = hs(e) +Ke −ht (e)

whence the thesis holds.

b) This follows from the fact that ZE /Γ is a torsion free module, and consequently it is free,

being Z a principal ideal domain (see Hungeford [1980]).

Define the essential cycle matrix as the square (M −N +1)-dimensional matrix C := RRT .

Given a planar graph G = (V ,E ), its dual graph G̃ = (F , Ẽ ) is defined by putting {c,c ′} ∈ Ẽ if

and only if c and c ′ are adjacent minimal cycles.

Let V = {1, . . . N }. Given a symmetric matrix P ∈RN×N we define the graph associated with P

as GP = (V ,EP ) where EP := {{i , j } | Pi j = P j i 6= 0}.

The complementary part of the graph in the plane is a union of disconnected bounded

domains (called faces) and one unbounded one. In this case, a basis of Γ can be easily

obtained considering all the vectors r h as h varies in the set F of closed paths which are the

boundaries of the (bounded) faces all run in a clockwise fashion. Notice that if c and c ′ are

two such closed paths sharing edge e, then rc (e)rc ′(e) =−1. We will refer to the closed paths in

F as to the minimal cycles of G .

Given a cycle c ∈F , let |c| denote its length, and dc the number of adjacent minimal cycles,

namely the elements in F that share with c one edge. Clearly dc ≤ |c|. We define a border
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cycle, any element in F such that dc < |c|. A border edge will consequently be any edge in the

support of only one minimal cycle in F .

2.1.2 Cayley graphs

We introduce the concept of Cayley graph defined on Abelian groups, see Alon and Roichman

[1994], Babai [1979] for further details.

Let G be any finite Abelian group, denoted by (G ,+) of order |G| = N , and let S be a subset of

G containing zero. The Cayley graph G (G ,S) is the directed graph with vertex set V =G and

arc set E = {
(g ,h) | g −h ∈ S

}
. A Cayley graph is always in-regular and out-regular with degree

d = |S|, and it is strongly connected if and only if < S >= G , namely the set S generates the

group G . The graph is undirected if S is such that −S = S, and we say that S is inverse-closed.

A matrix p ∈RG×G is said to be a Cayley matrix over the group G if

Pi , j = Pi+h, j+h ,∀i , j ,h ∈G

and clearly it exists a function π : G → R, called generator of the Cayley matrix, such that

Pi , j = π(i − j ). Notice that if π1 and π2 are generators of the Cayley matrices P1 and P2

respectively, then π1 +π2 is the generator of P1 +P2 and π1 ∗π2 is the generator of P1 ·P2,

where

(π1 ∗π2)(i ) := ∑
j∈G

π1( j )π2(i − j ),∀i ∈G .

It implies that P1 and P2 commute.

Denote with GP the Cayley graph associated to P , whom generator isπ, then S = {h ∈G :π(h) 6= 0}.

Moreover a Cayley stochastic matrix is automatically doubly stochastic, in fact P1=1 if and

only if 1T P =1T , and in this case the function π is a probability distribution on the group G .

The simpler distribution is π(i ) = 1
|S| ,∀i ∈ S.

2.2 Linear algebra tools

Well known basic concepts from spectral theory are here recalled, see e.g. Hungeford [1980],

Gantmacher [1990]. Given a matrix A ∈RN×N , we denote by σ(A) = {λ1, . . . ,λN } the set of all
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the eigenvalues of A, called spectrum of A. Set λmax = maxi=1,...,N |λi |, then let us define the

spectral radius as

ρ(A) := sup{|λ| :λ ∈σ(A),λ 6=λmax } .

Given a matrix A ∈RM×N , we define the Moore-Penrose pseudo-inverse of A denoted by A† as

a general way to find the solution of the linear equations

Ax = b,b ∈Rm , x ∈RN .

The Moore-Penrose solution is of the form x = A†b, where A† satisfies the following

A A† A = A,

A† A A† = A†,

(A A†)T = A A†,

(A† A)T = A† A.

The following properties hold.

(i) If M = N , and if A is full rank, then A† = A−1.

(ii) If M > N , the solution is a minimizer of

‖Ax −b‖2.

Hence, in general it is not possible to find a solution to these equations, and x is such

that A†x is the closest to b.

(iii) M < N , then the Moore-Penrose solution minimizes the 2-norm ‖x‖. In other words,

there are more constraining equations than unknowns in x , thus some free variables

remain.

When A is full rank, the Moore-Penrose pseudo-inverse can be directly computed as

M < N : A† = AT (A AT )−1,

M > N : A† = (AT A)−1 AT .
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In general, A† can be calculated using the SVD (Singular Value Decomposition).

In order to estimate the spectrum of a matrix, let us recall the following well-known result, cfr.

Hungeford [1980].

Theorem 2.3. (Gershgorin Circle Theorem) Given a matrix A = (ai j ) ∈RN×N , define

ri =
N∑

j=1, j 6=i
ai j , Ri =∑

j 6=i

∣∣ai j
∣∣ , i = 1, . . . , N

c j =
N∑

i=1,i 6= j
a j i , C j =∑

i 6= j

∣∣ai j
∣∣ , j = 1, . . . , N

then the eigenvalues of A lie within
⋃N

i=1 D(ai i ,Ri ), where D(ai i ,Ri ) is the so-called Gershgorin

disc, defined as D(ai i ,Ri ) = {x ∈C | |x −ai i | ≤ Ri }.

In the remainder of this Section we focus on a particular class of matrices, called circulant,

for which the eigenvalues can be explicitly computed in a straightforward way. We define

C ∈M (n,R) as a circulant matrix, if it has the following form

C =



c0 cn−1 . . . c2 c1

c1 c0 cn−1 c2

... c1 c0
. . .

...

cn−2
. . .

. . . cn−1

cn−1 cn−2 . . . c1 c0


hence it is identified by the vector (c0 c1 . . . cn−1) of length n, which is the first column. The

other columns are cyclic permutations of the first one, with offset equal to the column index.

These matrices have several properties.

(i) The determinant of a circulant matrix C can be computed as

det(C ) =
n−1∏
j=0

(c0 + c1w j + c2w2
j + . . .+ cn−1wn−1

j ) =
n−1∏
j=0

(
n−1∑
i=0

ci w i
j

)

where w j are the n-th roots of unity

w j = e
2πı j

n , j = 0, . . . ,n −1.

(ii) The eigenvalues of a circulant matrix can be calculated explicitly. The eigenvectors are
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the following

v j = (1,ω j , . . . ,ωn−1
j )T , j = 0, . . . ,n −1

and the corresponding eigenvalues are

λ j = c0 + cn−1ω j + cn−2ω
2
j + . . .+ c1ω

n−1
j , j = 0, . . . ,n −1.

2.3 Overview on Markov Chains

The basics on this topic can be found in Aldous and Fill, Norris [1998], Grimmett and Stirzaker

[2001]. First, we recall some basic definitions and properties in Section 2.3.1. Second, Section

2.3.2 presents the analogy between electrical networks and Markov Chains, and the well-

known notion of effective resistance.

2.3.1 Basic definitions

Let I be a countable, set called state space, and each i ∈ I is called state. We say that λ =
{λi : i ∈ I } is a measure of I , if 0 ≤ λi <∞ for all i ∈ I . If the total mass

∑
i∈I λi = 1, we call λ

distribution. Consider a probability space (Ω,F ,P), where Ω is the sample space, F is the

set of events, and P is a probability measure function (see Shiryaev [1989], Grinstead and

Snell [1997] for further details). Recall that a random variable X is a function X :Ω→ I , and

suppose λ defines a distribution of X , that is λi = P(X = i ) = P({ω ∈Ω : X (ω) = i }) for each

i ∈ I . Therefore X models a random state that takes value i with probability λi .

A matrix P = (pi j )i , j∈I is called stochastic if pi j ≥ 0 for all i , j ∈ I , and
∑

j pi j = 1 for all i . In

other words, every row (pi j : j ∈ I ) is a distribution. If we denote by 1 the vector with all

components equal to 1, the last row condition on P can simply be rephrased as P1=1. The

matrix P is instead called sub-stochastic if (P1)i ≤ 1 for all i , and there exists at least one index

i0 for which the inequality is strict. We can associated the matrix P with a directed graph GP

with |I | nodes, and weighted edges, namely edge (i , j ) has weight pi j . Whenever the weight

is null, there is no edge. If P is symmetric, the associated graph is undirected. We shall now

formalize the properties for a Markov Chain by means of the corresponding matrix P .

We define (Xn)n≥0 as a Markov Chain (MC for short) with initial distribution λ and transition
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matrix P , if

(i) X0 has distribution λ;

(ii) for any i0, . . . , in+1 ∈ I , the so-called Markovian property holds

P(Xn+1 = in+1 | X0 = i0, . . . , Xn = in) = pin ,in+1 .

Intuitively, condition (ii) states that, given the present state, the future and past states are

independent. We now address the problem of finding what is the probability that after n steps,

our MC is in a given state. It reduces to calculate the entries of the n-th power of the transition

matrix P n = (p(n)
i j )i , j∈I , in particular p(n)

i j is the n-step transition probability from state i to

state j . We can describe the MC, identifying the communicating classes of the chain, namely

the subset of states “connected”by positive transition probabilities. A class C ⊆ I is said to be

closed if, given i ∈C , pi j > 0, then j ∈C . The MC associated with P is said to be irreducible if I

is a single class. In other words, the associated graph GP is strongly connected, namely, for

all i , j ∈ I , there exists a path in GP connecting i to j . P is said to be aperiodic if the greatest

common divisor of the lengths of all cycles in GP is one. Note that if there exists at least one

loop, i.e. pi i > 0 for some i ∈ I , is a sufficient condition to have aperiodicity. Irreducibility and

aperiodicity are two independent properties.

Note that one of the standard examples of MC is the simple random walk on countable sets.

Given a weighted graph G = (V ,E ,W ) with weight matrix W , we can define a discrete-time

random walk on G to be the MC with transition matrix pi j = wi j /wi , for all j 6= i , where

wi =∑
j wi j . If W is the identity matrix, then P = AD−1, where A is the adjacency matrix and

D the degree matrix, see Section 2.1. Let (Xn)n≥0 be a MC with transition matrix P . The hitting

time of a subset A of I is the random variable H A :Ω→N∪ {∞} given by

H A(ω) = inf{n ≥ 0 : Xn(ω) ∈ A}

where inf;=∞ by convention. Furthermore h A
i =Pi (H A <∞) is the probability that, starting

from i , the MC ever hits A. If A is a closed class, h A
i is called absorption probability. The

mean time taken for (Xn)n≥0 to reach A, starting from i ∈ I , is given by E A
i := Ei (H A). Many

of the long-time properties of Markov Chains are connected with the notion of an invariant

distribution or measure. We say that the measure λ= (λi : i ∈ I ) is invariant (or stationary) if
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λP =λ. A discrete-time MC (Xn)n≥0, with transition matrix P , is reversible if

πi pi j =π j p j i , for all i , j ∈ I ,

whereπ is the stationary distribution. For this object a cyclic tour property holds, as enlighten

in the proof of Theorem 3.2. The theory of continuous-time MC closely parallels that of the

discrete-time chains, see [Norris, 1998, Chapter 2, 3]. There can be defined also continuous-

state MC, but this topic goes beyond the purpose of this work. A continuous-time chain is

specified by non-negative transition rates (qi j )i 6= j∈I , without constraints on the sum. Let us

define qi =∑
j 6=i qi j and extend (qi j ) to a matrix Q by putting qi i =−qi . The continuous-time

MC (X t : t ≥ 0) can be defined by the infinitesimal description: given X t = i , the chance that

X t+d t = j is qi j d t for each j 6= i . A chain is said to be ergodic if it is aperiodic and positive

recurrent, i.e. if the mean recurrence time is finite. We define the commuting time between

two states i , j ∈ I of an ergodic Markov chain as the expected time, starting from i , to go to j

and then back to i . Recall this result, that will be used in Chapter 3, Theorem 3.2.

Theorem 2.4. ([Aldous and Fill, Corollary 10, Chapter 2]) Denote with Pk (Ti < T j ) the prob-

ability to hit node i before node j , starting from k.

Pk (Ti < T j ) = Eki +E j i −Eki

E j i +Ei j

where Ei j denotes the average time to reach state j starting from i .

A classical result is the following. If P is a sub-stochastic matrix with GP connected, then

P t → 0 for t →+∞. This fact as a deeper meaning if the considered matrix is primitive, that is

irreducible and aperiodic.

In case the matrix is primitive, the left invariant measure π has a straightforward interpretation

as the asymptotic probability of the states in the chain. In other terms, starting from any state

and waiting for a sufficiently large time slot, the value πi gives the probability that the chain is

in the state i . More formally, from the well known Frobenius-Perron theory D.A. Levin and

Wilmer, if P is primitive, it has eigenvalue 1 with algebraic multiplicity 1, and all the other

eigenvalues have modulus smaller than 1, thus

P n n→∞−→ 1πT (2.1)
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where π is the invariant measure of P , namely the left eigenvector of P associated with 1, and

normalized such that
∑

i πi = 1. Moreover, for each i ∈ I , πi > 0.

If P is a stochastic and irreducible matrix, we call it consensus matrix. Given a consensus

matrix P , with invariant measureπ, the Green matrix Z of P is defined as

Z := ∑
t≥0

(P t −1πT ). (2.2)

From direct computations, the Green matrix G can be considered as a pseudoinverse of

the Laplacian L := I −P of the graph associated to the MC defined by P . For the sake of

completeness, let us recall the following Lemma.

Lemma 2.5. Green Matrix properties Given a consensus matrix P with invariant measure π,

and Z be the associated Green matrix, then Z is the unique solution of

 Z L = I −1πT ,

Z1= 0.

2.3.2 The electrical analogy

In this Section we present how the well-known notion of effective resistance may be exploited

to give bounds on errors in estimating quantities in a decentralized network. The analogy

between Markov Chains, and resistive electrical networks first appeared in the work Doyle

and Snell. This is a powerful tool to lead our intuitions on the behavior of the chain on the

basis of the physics underlying the corresponding electrical network. Furthermore, it allows to

give simple and linear proofs to many results. Out interest is to focus on the average effective

resistance, as already studied in Barooah and Hespanha [2005], Barooah et al. [2006], Barooah

and Hespanha [2007], from which we took many results, stated in Chapter 3 (Section 3.2)

without proof. Effective resistance is also a performance metrics as studied in Aldous and Fill,

Lovisari et al. [2012], Lovisari [2012], Ghosh et al. [2008], used e.g. for clock synchronization

algorithms, see Giridhar [2006], Giridhar and Kumar [2006]. In the remainder of this Section

we recall some basic definitions and known results, that are instrumental for Chapter 3, and

Chapter 4 (especially Section 4.4.3).

Let us define a resistive electrical network as a weighted graph GC = (V ,E ,C ), where C ∈RV ×V
≥0

is a symmetric matrix defining the conductance of the resistor connecting any two nodes. For
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each edge, the pair of nodes are connected by resistors, thus
{
i , j

} ∈ E if and only if Ci j 6= 0,

for some i , j ∈ V . In other words, each wire connecting i to j has conductance Ci j , i.e. resis-

tance 1/Ci j . The easiest design is to set Ci j = 1 whenever there is a link between two nodes.

Mathematically speaking, an electrical resistive network is defined by a weighted graph GC ,

together with a function on nodes called voltage, and a flow called current, satisfying some

physical constraints (see Eq. (2.3)). A flow f ∈RE on a graph is required to satisfy fi j =− f j i if

(i , j ) is an edge, and fi j = 0 otherwise. A conventional arbitrary orientation of edges is chosen,

in order to describe the current flow through the network, by means of Kirchhoff and Ohm

Laws. By abuse of notation, let us denote by E the oriented edges, given the initial undirected

edges and the two arbitrary functions s, t : E → V (starting and terminating node). Coherently

with Section 2.1, let B denote the incidence matrix respectively. We now define the diagonal

conductance matrix C̄ ∈RE×E , as follows

B T C̄ B = diag(C1)−C ,

that is
[
B T C B

]
i j =Ci :=∑

j∈V Ci j , if i = j ,
[
B T C B

]
i j =−Ci j if (i , j ) ∈ E , and it is null otherwise.

First, let us formalize the current flow, defining i ∈ RV , satisfying i T1 = 0, where the k-th

component of i is the current injected (extracted) if the sign is positive (negative) in node k.

Second, we define j ∈ RE and v ∈ RV to be the current flows on edges and potentials at the

nodes. Therefore, we can write Kirchhoff and Ohm Laws in matrix form, as follows B T j = i ,

C̄ B v = j .
(2.3)

If we consider the latter, with j , v as unknowns, we can find v by solving

B T C̄ B v = i . (2.4)

For connected networks, a solution can be found, from well-known works Doyle and Snell,

and it is unique up to additive constants. Given a connected electrical network GC , let us

define the effective resistance between nodes i and j as

Ri j (C ) := vi − v j ,
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where we set i = ei − e j ,2 and v is the solution of Eq. (2.4). Furthermore, let us define the

average effective resistance as

Rave(C ) = 1

2N 2

∑
i , j∈V

Ri j (C ),

where N is the number of nodes. Whenever G is an undirected graph, we fix C = A as the

adjacency matrix. Given a reversible MC with transition matrix P and invariant measure π, we

can define the associated electrical resistive network, setting the conductance matrix as

C := N diag(π)P,

where diag(π) ∈ RV ×V denotes the diagonal matrix with π on the main diagonal. As it is

described in Section 3.2, the effective resistance is tightly related to the Linear Quadratic cost

(LQ for short), an index to measure the performance of a consensus algorithm, widely used

in the control community. Consider a reversible MC with transition matrix P converging to

1πT , as stated in Eq. (2.1), then we define the LQ-cost J , by means of the Frobenius norm3, as

follows

J (P ) := 1

N

∑
t≥0

‖P t −1πT ‖2
F .

In Barooah and Hespanha [2008, 2009], Lovisari [2012], they prove how this index is related to

the effective resistance of a suitable electrical network. It depends on the topology of GP only,

and not on the values of P . We deepen these aspects in Section 3.2.

2.4 Discrete Fourier transform over finite Abelian groups

We briefly recall the basic concepts related to the theory of the Discrete Fourier transform

(DFT for short) over finite Abelian groups, see Terras [1999] for further explanations. Let χ be

any character of G , that is, a map χ : G →C ∗ such that χ(g +h) =χ(g )χ(h), for any g ,h ∈G . It

follows that χ(g )N = χ(N g ) = χ(0) = 1,∀g ∈G , which means that χ takes values on the N -th

roots of unity. The set of all characters of the group G forms an Abelian group with respect

to the point wise multiplication. It is called the character group, denoted by Ĝ . Since G is

2In our convention, ei ∈RN denotes the canonical basis vector, with (ei ) j = 1 if i = j , and zero otherwise.
3The Frobenius norm is defined as ‖A‖2

F := tr(AT A).
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2.4. Discrete Fourier transform over finite Abelian groups

isomorphic to its associated group of characters Ĝ , i.e. G ∼= Ĝ if G a locally compact abelian

group, there is a bijective correspondence φ : G → Ĝ such that φ(h) =χh : G →C ∗. Notice that

χ0(g ) = 1,∀g ∈G is the trivial character, and the zero of Ĝ . Now consider the vector space C G

with the canonical Hermitian form defined as

< f1, f2 >:= ∑
g∈G

f1(g ) f ∗
2 (g ), g ∈G .

It can be proven that B = {
N−1/2χ |χ ∈ Ĝ

}= {
N−1/2χh | h ∈G

}
is an orthonormal basis of C G .

The Fourier transform of a function f : G →C ∗ is defined as f̂ : Ĝ →C ∗ such that

f̂ (χ) = ∑
g∈G

χ(−g ) f (g ),∀χ ∈ Ĝ . (2.5)

The cyclic case is instrumental to study characters for any finite Abelian group, which is iso-

morphic to a finite direct sum of cyclic groups. Assume that G = ZN1 ⊕ . . .⊕ZNr , the characters

of G are precisely the maps χ : G → C such that χ((g1, . . . , gr )) = χ(1)(g1) . . .χ(r )(gr ), where

χ(i ) ∈ ẐNi , i = 1, . . . ,r . A Cayley matrix P can be seen as an endomorphism of C G , namely

P : C G →C G , such that

(P f )(g ) = ∑
h∈G

Phg f (g ), g ∈G .

It can be shown that each character χ is an eigenfunction of P , more precisely

Pχh = π̂(χh)χh ,h ∈G

where π̂(χh) is the corresponding eigenvalue. Explicitly

π̂(χh) = ∑
g∈G

π(−g )χh(g ),∀h ∈G .

Since B is a basis, P is diagonalizable and its spectrum is

σ(P ) = {
π̂(χ) :χ ∈ Ĝ

}
.
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Chapter 2. Mathematical tools

A character can be interpreted as a linear function χ : C →C G , such that χ(z) = zχ, and its

adjoint linear functional is χ∗ : C G →C , such that

χ∗( f ) =< f ,χ> .

Thus N−1χχ∗ : C G →C G is a linear function that projects C G onto the eigenspace associated

with χ. Hence P can be rewritten as

P = N−1
∑
χ∈Ĝ

π̂(χ)χχ∗.

If P represents the transition matrix of a simple random walk on an undirected graph, the

spectrum of the associated laplacian L is

σ(L) = {
1− π̂(χ) :χ ∈ Ĝ

}
and the corresponding spectrum of Z , Green matrix of L will be

σ(Z ) =
{

1

1− π̂(χ)
:χ ∈ Ĝ

}
.

Notice that if Z G denotes the Green matrix of the graph, and Z the Green matrix of the Markov

Chain associated to the simple random walk, it holds that Z G
v w = Zv w /dw .
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3 Error propagation for relative localiza-

tion over geometric networks

In this Chapter we present a general framework in which we aim to estimate the error of

relative localization algorithms in sensor networks, focusing on how it propagates through

the network. We consider the intrinsic performance limitations, in terms of the mean error

on each component of the optimal estimator of the position vector. The relative error is

computed as a function of the eigenvalues of the network: using this formula and focusing

on an exemplary class of networks (the Abelian Cayley networks, defined in Section 2.1.2),

we study the role of the network topology and the dimension of the networks in the error

characterization. If we assume to have sequences of graphs of increasing size (in terms of

number of nodes), we investigate the asymptotic behavior of the relative error and how ”far“(in

terms of minimal paths along the graph) relative errors due to noise in measurements affect

the local relative error. The analysis is provided for different dimensions of the Cayley grid.

3.1 Introduction

In the more general framework of distributed estimation problems on graphs Borkar and

Varaiya [1982], Notarstefano and Bullo [2011], Pasqualetti et al. [2010, 2011a], we want to

estimate vector valued variables from a certain number of noisy relative measurements,

namely measurements of the difference between certain pairs of these variables. This issue is

called in literature relative localization, and has attracted increasing interest in the last years.

The main causes of this attention are the multiple applications in various areas, including

sensor networks for position localization (Barooah and Hespanha [2005, 2007, 2009]), time

synchronization in network clocks or non linear oscillators Kuramoto [1975], R. Karp and
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Chapter 3. Error propagation for relative localization over geometric networks

Shenker [2003], Sundararaman et al. [2005], Barooah et al. [2006], Giridhar and Kumar [2006],

Moreno and Pacheco [2004]. Several localization algorithms have been designed assuming

only relative range information L. Doherty and Ghaoui [2001], N. Patwari and Perkins [2003],

Moore et al. [2004], and assuming only angle measurements through the use of multiple

ultrasound receivers N. B. Priyantha and Teller [2001] or acoustic signals and corresponding

time of arrivals Caffery and Stber [1998]. In K. Chintalapudi and Sukhatme [2004] location

estimation using both relative distance and angle measurements can substantially improve the

accuracy of estimates. A certain number of well placed anchor nodes that know their position

and broadcast this information to the network is a usual requirement for many localization

schemes.

The first papers investigating the effect of network properties on the estimation error applied

the Cramer-Rao lower bound with Gaussian assumptions on noise Niculescu and Nath [2004],

N. Patwari and Perkins [2003], or provided numerical studies focusing on node density and

network size in A. Savvides [2005].

To our knowledge, the most complete analytical results appeared in Barooah and Hespanha

[2005, 2007, 2009], in which they provide an unbiased estimator with minimum variance, that

can be computed in a distributed way.

In a relative localization problem, we have a group of sensors, and each of them is endowed

with a real value state, that we refer to as position, but the value may represent different

quantities, such as temperature, humidity, time, velocity, percentage of specific substances in

air, water or soil and so on. The measurement model can be expressed in terms of a graph.

Every node is allowed to take noisy measurements of the difference between its own state

and its neighbors states. The goal of the algorithm is to reconstruct the absolute position of

each sensor, with respect to a global reference frame, exploiting the noisy data, up to additive

constants. Inspired by Barooah and Hespanha [2005], we consider the optimal linear estimate

for the differences between the remaining variables and the reference, that is one particular

variable called anchor. This is called the least squares optimal estimator, and it is unbiased

with minimum variance among all possible estimators. In deriving these results, the authors

establish and exploit an analogy between the minimum variance optimal estimator of the

network and the effective resistance in the associated electrical network. We focus on an

exemplary class of graphs the Abelian Cayley graphs: this assumption turns out to be very

suitable to obtain sharp results on the role of the network topology (and specifically of the
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3.2. Relative vector localization

graph dimension) in determining how the relative error on a fixed edge is affected by the

noises along edges that ”far“in the graph, in terms of shortest path.

Our contribution is organized as follows. In Section 3.2, we present our model and we

recall the main achievements already known (Barooah and Hespanha [2005, 2007]) about the

optimal estimator of the global positions of the agents, which is unbiased, and it has minimum

variance, that shows asymptotic properties depending on the size of the geometric grid, as the

number of nodes asymptotically increases. Second, in Section 3.3 we provide analytical and

numerical results on the single component of the relative error in the case of Abelian Cayley

networks, according to different dimensions of the considered grid. Finally, in Section 3.4, we

draw the conclusion of this Chapter, summarizing the results.

3.2 Relative vector localization

In this Section, we formalize the problem of relative position localization in large networks,

recalling the main facts known for the Euclidean space case, cfr. Barooah and Hespanha [2005,

2007]. Let the sensor network be modeled by a graph G = (V ,E ), with N nodes and M edges,

and fix an arbitrary orientation, defined by the functions s, t : E → V . For each edge e ∈ E ,

s(e), t(e) are called starting and terminating node respectively (see Section 2.1). Suppose to

have relative noisy measurements on each edge, stacked in a vector η ∈RM , defined as follows

ηe := θ̄s(e) − θ̄t (e) −εe , for each e ∈ E

where the vector ε ∈ RM casts the noise that affects each relative measurement and θ̄ ∈ RN

are the true measurements at each node. In our assumptions the noise is bounded by a fixed

constant ε̄> 0 for each realization. The latter definition can be written in matrix form as

η= B θ̄−ε,

with B incidence matrix of the graph.

Suppose to implement the least squares algorithm that gives as output the optimal estimate

θ̂ ∈RN , that minimizes the cost function

V (θ) = ∥∥Bθ−η∥∥2 ,
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namely θ̂ = argminθV (θ). The global minimum θ∗ ∈RN can be computed explicitly as

θ∗ = (B T B)†(B Tη) = Z B Tη,

where B T B = L is the Laplacian of the graph, and its pseudoinverse is the so-called Green

matrix Z , see Section 2.1. The distributed algorithm proposed in Barooah and Hespanha

[2005], provides the optimal estimate, hence θ̂ = θ∗. Moreover such estimator is unbiased, i.e.

E[θ̂] = θ̄. We now recall some basic results from Barooah and Hespanha [2005, 2007], in which

they establish asymptotic upper and lower bounds on the estimation error variance of a node’s

variable as a function of the Euclidean distance in a drawing of the graph between the node

and the anchor. These bounds result in a classification of graphs (civilized and dense), based

on how the variance grows asymptotically with distance (linearly, logarithmically, or bounded

in grids of dimension 1,2 or d ≥ 3 respectively). These bounds, being true for the optimal

estimate, serve as a benchmark against which algorithms devised for specific applications can

be evaluated for large networks. In deriving these asymptotic behavior, the analogy between

the minimum variance and the effective resistance in the associated electrical network is

exploited, see Section 2.3.2. We briefly recall formally the latter in the following Theorem.

Consider an electrical network where on each edge there is a resistor of 1 Ohm, and denote by

Rv1 the effective resistance between node v and the anchor node 1.

Theorem 3.1. [Barooah and Hespanha, 2005, Th. 10, Th. 11]

(Asymptotic characterization of the optimal estimate variance) If G = (V ,E ) is d-dimensional

lattice embedded in Rd with N nodes and M edges, and if the noises εe along each edge are i.i.d.

with mean value zero, and variance σ2, then

1

N
Var(θ̂) := 1

N
E[‖θ̂− θ̄‖2] = 1

N
E‖Z B T ε‖2 = σ2

N

∑
v∈V

Rv1.

Furthermore,

1

N
Var(θ̂) ∼


N , if d = 1,

log(N ), if d = 2,

const, if d ≥ 3.
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3.3. Propagation of errors

3.3 Propagation of errors

The formula in Theorem 3.1 does not clarify at which extent cooperation is useful in this

context, and, more generally, how the various measurements of the network affect each other.

A basic question is to understand the effect of data fusion on a single edge measurement. An

interesting issue is to understand at which extent a single very bad measurement on an edge,

will affect the rest of the network. The idea underlying this study, is that local effect should take

place and the influence of other measurements should thus decay with distance in the graph.

The purpose of this Chapter is to investigate these issues. Our goal is to estimate the relative

error on each edge (misplacement of the estimate towards the correct relative difference, on

component e), in terms of

me := (B θ̂−η)e = θ̂s(e) − θ̂t (e) −ηe = xs(e) −xt (e) +εe (3.1)

where xi := θ̂i − θ̄i denotes the error on the state of each node v ∈ V .

In particular, we are interested in investigating how me depends on the measurements at-

tained at edges which are “far”in the graph.

First, we consider a simple random walk over the graph G , defined by the transition matrix

P = D−1 A, where D is the degree matrix and A the adjacency matrix (cfr. Section 2.3 and

Aldous and Fill for further details). In this framework, the relative error can be interpreted

componentwise in terms of transition probabilities, and in particular can be formulated as

a function of the effective resistance of the corresponding electrical network, as stated in

Theorem 3.2.

Second, in the case of a ring graph, we can explicitly compute the upper bound on the relative

error in the least squares optimal estimator (in Corollary 3.3), in terms of the elements of the

Green matrix G , using the tool of the Discrete Fourier Transform, recalled in Section 2.4.

From now on, we consider an undirected graph G with a fixed arbitrary orientation s, t : E → V ,

as described in Section 2.1. Let us denote by Pk (Ti < T j ) the probability to hit node i before

node j , starting from k. Given the edges (i , j ),e ∈ E , we now define the so-called amplifying

factor Γ(i , j ),e as

Γ(i , j ),e := 2Ri j (Ps(e)(Ti < T j )−Pt (e)(Ti < T j )), (3.2)
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Chapter 3. Error propagation for relative localization over geometric networks

where Ri j denotes the effective resistance from node i to node j . Such quantity arises from

computations in Theorem 3.2, and it describes how measurement on edge (i , j ) is affected

by the measurement attained at e. It is straightforward to notice that the amplifying factor is

bounded. Our purpose is to investigate how Γ(i , j ),e decays as the graphical distance between

the edges (i , j ) and e increases. From the following result, we can recover an explicit expression

for mi j = xi −x j +εi j , identifying edge e with (i , j ).

Theorem 3.2. (Propagation of errors in general topologies) Consider the graph G = (V ,E ),

for any edge (i , j ) ∈ E

xi −x j =
∑
e∈E

Γ(i , j ),eεe , (3.3)

where Γ(i , j ),e is the amplifying factor defined in Eq. (3.2).

Proof. Consider the simple random walk over the graph G with transition probabilities D−1 A

and invariant measureπ, see Section 2.3. The associated Laplacian matrix is LM = I −D−1 A

such that LG = D−B = DLM , where D = (d j ) j∈V is the degree matrix. The related Green matrix

is ZM , with ZG = ZM D−1, thus it holds that (ZG )i j = (ZM )i j
1

d j
.

We know that x is such that B T B x = −B T ε, or equivalently (I −1πT )x = −ZG B T ε, by the

definition of the Green matrix. Since B T B = LG is the Laplacian of the graph, let ZG be the

Green matrix of LG . Denote with (ZG )i and (ZG ) j the i -th row and the j -th row of ZG ,

xi −x j = ((ZG ) j − (ZG )i )B T ε=∑
k

((ZG ) j k − (ZG )i k )

(∑
e

B T
keεe

)
=∑

e
((ZG ) j ,s(e) − (ZG ) j ,t (e) − ((ZG )i ,s(e) − (ZG )i ,t (e)))εe .

(3.4)

Let us denote with E j k = E j (τk ) the expected hitting time τk needed to reach k starting from j ,

see Section 2.3 for further details.

Remind that (ZM ) j ,s(e) − (ZM )i ,s(e) = (E j ,s(e) −Ei ,s(e))πs(e), where πs(e) = ds(e)

|E | is the stationary

distribution for any undirected graph. Then (ZG ) j ,s(e) − (ZG )i ,s(e) = (E j ,s(e) −Ei ,s(e))
1
|E | and

consequently

xi −x j = 1

|E |
∑

e
((E j ,s(e) −E j ,t (e))−Ei ,s(e) +Ei ,t (e))εe . (3.5)
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Recall that Pk (Ti < T j ) denotes the probability to hit node i before node j , starting from k, and

recall Theorem 2.4 from Aldous and Fill. Moreover, from the cyclic tour property of reversible

Markov Chains we have that

E j ,s(e) −E j ,t (e) −Ei ,s(e) +Ei ,t (e) = Es(e), j −Et (e), j −Es(e),i +Et (e),i

we can derive

Ps(e)(Ti < T j )−Pt (e)(Ti < T j ) = Es(e), j −Es(e),i −Et (e),i +Et (e), j

E j i +Ei j
.

From the latter and (3.5), we obtain

xi −x j = 1

|E |
∑

e
(Ps(e)(Ti < T j )−Pt (e)(Ti < T j ))(E j i +Ei j )εe

where E j i +Ei j = 2 |E |Ri j is the commute time and Ri j is the effective resistance from node

i to node j .

As a result, Eq. (3.3) follows immediately. Moreover Ri j is bounded, precisely Ri j ≤ 1,

consequently xi − x j ≤ 2
∑

e (Ps(e)(Ti < T j )−Pt (e)(Ti < T j ))εe . Observe that Ps(e)(Ti < T j )−
Pt (e)(Ti < T j ) represents a potential difference, exploiting the analogy between Markov Chains

and electric resistive networks, cfr. Section 2.3.

Corollary 3.3. (Explicit relative error for ring graphs) If G is a ring graph, it holds the follow-

ing inequality for the misplacement of the estimate towards the correct relative position of node

i and node j , where C is a constant (C = 4),

∣∣mi j
∣∣ := ∣∣xi −x j +εi j

∣∣≤ ε̄C , for each e = (i , j ) ∈ E . (3.6)

Proof. Considering a ring graph, it holds

Pk (Ti < T j ) = k − j

i − j
,

hence the (3.6) follows easily observing that

xi −x j = 2Ri jεi j +2Ri j
∑

e 6=(i , j )

(
s(e)− j

i − j
− s(e)+1− j

i − j

)
εe

= 2Ri j εi j +2Ri j
∑

e 6=(i , j )

(
1

j − i

)
εe ≤ 2ε̄+2ε̄

∑
e 6=(i , j )

1

N −1
= 4ε̄
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since Ps(e)(Ti < T j ) = 1 if e = (i , j ).

From the expression derived in Eq. (3.4), it easily follows:

Corollary 3.4. (Explicit relative error for∆-regular graphs) Let G be a ∆-regular graph, then

the amplifying factor defined in Eq. (3.2) is

Γ(i , j ),e = 1

∆
(Z j ,s(e) −Z j ,t (e) − (Zi ,s(e) −Zi ,t (e))).

Let us take G =Zd
N and let S = {±e1, . . . ,±ed } be the subset of G generating the d-thorus graph,

cfr. Section 2.1.2 for the detailed definition of an Abelian Cayley graph. In this case∆= 2d , and

define S+ = {e1, . . . ,ed }, namely the set of all possible directions of connection in the graph,

thus
∣∣S+∣∣ = |S|/2. Due to the theory on DFT recalled in Section 2.4, we can explicitly write

the elements of Z in terms of the eigenvalues and the associated characters in the case of the

d-dimensional thorus.

Lemma 3.5. (Explicit Green matrix for Cayley graphs) If G is a d-dimensional Cayley graph,

given the simple random walk associated with G , then the elements of the Green matrix are

Zv w = 1

N d

∑
l∈Zd

N−{0}

1

1− 1
|S+|

∑
k∈S+

cos
(2π

N l ·k
)e

2πı
N l ·(v−w ), v , w ∈Zd

N

where λl is the eigenvalue of the character χl , for any l ∈Zd
N , and precisely (see Section 2.4)

λl =
1

1− 1
|S+|

∑
k∈S+

cos
(2π

N l ·k
) , l ∈Zd

N ,

χh(g ) = ∑
g∈Zd

N

exp

(
2πı

N

d∑
k=1

hk gk

)
,h ∈Zd

N .

First, we consider 1-dimensional Cayley grids in Section 3.3.1, and we provide an estimation

method for the relative error me defined in Eq. (3.1), along each edge of the graph. Second, we

investigate the same estimation problem for a 2-dimensional Cayley grid in Section 3.3.2.
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3.3.1 1-D thorus graph

In order to describe one dimensional thorus graphs, let us define G =ZN and S = {−1,+1}, see

Fig. 3.1 (left). The Cayley graph G (ZN ,S) is 2-regular and the eigenvalues of Z are

λh = 1

1− cos
(

2πh
N

) ,h ∈ZN .

It follows that the eigenvalues of ZG are given by λh/2,h ∈ZN , since ZG = 1
d Z , where d is the

uniform degree of each node. The associated generator of the simple random walk given by

the transition matrix P , is defined as follows

π=
(
0,

1

2
,0, . . . ,0,

1

2

)
∈ [0,1]N .

By means of explicit computations, we now prove that the relative error on one-dimensional

Cayley graphs is bounded, as already shown in Corollary 3.3. By isotropy properties, namely

swapping the nodes labels, it suffices to prove the latter for i = 0, j = 1.

Theorem 3.6. (Bound for relative error in ring graphs) Given an undirected ring graph G

with arbitrary orientation, and suppose |εe | ≤ ε̄, for each edge e ∈ E . Then,

∣∣xi −x j
∣∣≤ 2ε̄, for each (i , j ) ∈ E .

Proof. From Lemma 3.5, it holds

xi −x j = 1

2N

∑
h∈Z∗

N

∑
e∈E

1

1− cos
(

2πh
N

) (
e

2πıh
N ( j−s(e)) −e

2πıh
N ( j−t (e)) −e

2πıh
N (i−s(e)) +e

2πıh
N (i−t (e))

)
εe

= 1

2N

∑
h∈Z∗

N

1

1− cos
(

2πh
N

) ∑
e∈E

(
e

2πıh
N j −e

2πıh
N i

)(
e−

2πıh
N s(e) −e−

2πıh
N t (e)

)
εe .

Now keep fixed the edge (i , j ) ∈ E , and every edge e ∈ E is parametrized by t ∈ZN as e = (t , t+1).

Our aim is to study the asymptotic behavior as N goes to infinity of the generic addend of the

previous sum, defined as

Ch,t := 1

1− cos
(

2πh
N

) (
e

2πıh
N j −e

2πıh
N i

)(
e−

2πıh
N t −e−

2πıh
N (t+1)

)
.
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Furthermore we will study the asymptotic behavior of

xi −x j = 1

2N

∑
t∈ZN

∑
h∈Z∗

N

Ch,tεt = 1

2N

∑
t∈ZN

Ltεt , (3.7)

where

Lt := ∑
h∈Z∗

N

Ch,t . (3.8)

As already said, by isotropy arguments, it suffices to take i = 0, j = 1, then

Ch,t =
1

1− cos
(

2πh
N

) (
e

2πıh
N −1

)
e−

2πıh
N s(e)

(
1−e−

2πıh
N

)
= −e

2πıh
N (−t )

1− cos
(

2πh
N

) ∣∣∣e 2πıh
N −1

∣∣∣2

= −e
2πıh

N (−t )

1− cos
(

2πh
N

) ((
cos

(
2πh

N

)
−1

)2

+ sin2
(

2πh

N

))
=−2e

2πıh
N (−t ).

(3.9)

Notice that Ch,t ∈R if and only if 2πh
N (−t ) = kπ,k ∈Zwhich is equivalent to ask

t ∈ N

2h
Z,h = 1, . . . , N −1.

The latter is not necessarily true, but since x0 − x1 ∈ R, it must hold that the quantity in Eq.

(3.8) is a real number, i.e. Lt ∈R. It necessarily holds
∑

h∈Z∗
N
ℑ(Ch,t ) =∑

h∈Z∗
N

sin
(

2πh
N (−t )

)
= 0,

since we started from an algebraic sum of elements of Z , which is a real-valued function. Thus,

the following equality can be derived

|x0 −x1| =
∣∣∣∣∣ 1

2N

N−1∑
t=0

N−1∑
h=1

Ch,tεt

∣∣∣∣∣= 1

N

∣∣∣∣∣N−1∑
t=1

N−1∑
h=1

e
2πıh

N tεt + (N −1)ε01

∣∣∣∣∣ . (3.10)

Now we consider the N -th root of unity z = e
2πi t

N , such that zN = 1, then

N−1∑
h=1

zh =
N∑

h=0
zh −1 = 1− zN

1− z
−1 =−1

thus the following sum can be computed as follows

N−1∑
h=1

e
2πıh

N t =
 −1, if t 6= 0,

N −1, if t = 0.
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Finally, Eq. (3.10) becomes

|x0 −x1| = 1

N

∣∣∣∣∣N−1∑
l=1

(−εl )+ (N −1)ε10

∣∣∣∣∣≤ 1

N
((N −1)ε̄+ (N −1) |ε10|) ≤ 2(N −1)

N
ε̄< 2ε̄.

The same can be achieved choosing any (i , j ) ∈ E , then the corresponding error on the relative

edge remains bounded.

From Theorem 3.6, it is clear that the relative error of the optimal estimator remains bounded

as the number of nodes becomes asymptotically large. Therefore, a clear consequence is that

measurements attained at edge graphically far away from (0,1) ∈ E , do not affect the consid-

ered relative error. In other words, the amplifying factor defined in Eq. (3.2), progressively

decays with distance.

3.3.2 2-D thorus graph

In this case G =Z2
N ans S = {(−1,0), (1,0), (0,1), (0,−1)}, see Fig. 3.1 (center). The Cayley graph

G (Z2
N ,S) is 4-regular. Now the generator π associated to the reversible Markov Chain is the

following

π=

0,

2
1

4
,0, . . . ,0,

N−1
1

4
,0,

N+1
1

4
,0, . . . ,0,

N 2−1
1

4
,0

 ∈Z2
N

or equivalently π j = 1
4 , if j = 1, N − 1, N + 1, N 2 − 1, and π j = 0 otherwise. Such vector π

represents the probability distribution on the graph.

The eigenvalues of Z are

λh = 1

1− 1
2 cos

(
2πh1

N

)
− 1

2 cos
(

2πh2
N

) ,h = (h1,h2) ∈ZN

and the corresponding ones related to ZG are 4λh ,h ∈Z2
N . In the following Lemma, we cast

the relative error that we want to estimate in a simpler form.

Lemma 3.7. (Explicit relative error for 2D Cayley graphs) Given a 2-dimensional Cayley grid,

for each edge (i , j ) ∈ E , the relative error mi j = xi −x j +εi j can be computed from the following
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Chapter 3. Error propagation for relative localization over geometric networks

ev

eo

(0, 0) t1

t2

t1 + 1 N

N

t2 + 1

Figure 3.1: The figure shows different d-tori, one dimensional (left) and 2-dimensional (center)
respectively. In the right figure, we focus on the 2D Cayley grid, and we fix (i , j ) = ((0,0), (1,0)) ∈
E . In order to compute the quantity in Eq. (3.12), we consider two different kind of edges,
horizontal eo(t1, t2) = ((t1, t2), (t1+1, t2)) ∈Z2

N , and vertical ev (t1, t2) = ((t1, t2), (t1, t2+1)), where
the free parameters are t1, t2 ∈Z.

equality

x(0,0) −x(1,0) =
∑
e∈E

Γeεe (3.11)

where the amplifying factor defined in Eq. (3.2) is, by abuse of notation, Γe = Γ((0,0),(1,0)),e

Γe := 1

N 2

∑
h 6=0

Ch,e

and we parametrize the edge as e = (s(e), t(e)), s(e) = (t1, t2) ∈ Z2
N , defining Ch,e := C o

h,t if the

edge e is horizontal1, and Ch,e :=C v
h,t if e is vertical, with

C o
h,t =

cos( 2π
N ht )

(
cos

(
2πh1

N

)
−1

)
2−cos

(
2πh1

N

)
−cos

(
2πh2

N

) ,

C v
h,t =−1

2

ℜ
(
e−

2πı
N ht

(
1−e

2πı
N h1

)(
1−e−

2πı
N h2

))
2−cos

(
2πh1

N

)
−cos

(
2πh2

N

) .

1Edge e = (s(e), t (e)) ∈Z2
N is said to be horizontal if s(e)− t (e) = (±1,0).
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3.3. Propagation of errors

Proof. Starting from Eq. (3.4), we obtain

xi −x j = 1

4N 2

∑
h∈Z2

N−{0}

λh
∑
e∈E

(
e

2πıh
N ( j−s(e)) −e

2πıh
N ( j−t (e)) −e

2πıh
N (i−s(e)) +e

2πıh
N (i−t (e))

)
εe

= 1

4N 2

∑
h∈Z2

N−{0}

1

1− 1
2 cos

(
2πh1

N

)
− 1

2 cos
(

2πh2
N

) ∑
e∈E

(
e

2πıh
N j −e

2πıh
N i

)(
e−

2πıh
N s(e) −e−

2πıh
N t (e)

)
εe .

(3.12)

Let us keep fixed the edges (i , j ),e ∈ E . Define the distance d(h,k) = |h1 −k1|+ |h2 −k2| ,h,k ∈
Z2

N . Remind that i − j , s(e)− t (e) ∈ S, i.e. d(i , j ) = d(s(e), t (e)) = 1. W.l.o.g. two cases have to

be considered: firstly the edges (i , j ), (s(e), t (e)) have the same direction. Secondly they are

perpendicular. Due to the intrinsic isotropy of the system, suppose edge (i , j ) to be horizontal

and shifted to the origin without loss of generality: i = (0,0), j = (1,0). As depicted in Fig. 3.1,

the generic considered edge, horizontal eo and vertical ev respectively, is parametrized as

follows

eo(t1, t2) = ((t1, t2), (t1 +1, t2)),

ev (t1, t2) = ((t1, t2), (t1, t2 +1)).

As already stated, let us recall

Ch,e =
1

2

ℜ
((

e
2πıh

N j −e
2πıh

N i
)(

e−
2πıh

N s(e) −e−
2πıh

N t (e)
))

2− cos
(

2πh1
N

)
− cos

(
2πh2

N

)
and in particular, if edge e is horizontal, we have

C o
h,t =

1

2

ℜ
(
e

2πı
N h1 −1

)(
e−

2πı
N (h1t1+h2t2) −e−

2πı
N (h1(t1+1)+h2t2)

)
2−cos

(
2πh1

N

)
−cos

(
2πh2

N

)

=−1

2

ℜ
(
e−

2πı
N (h1t1+h2t2)

(
1−e

2πı
N h1

)(
1−e−

2πı
N h1

))
2−cos

(
2πh1

N

)
−cos

(
2πh2

N

) =−1

2

ℜ
(
e−

2πı
N ht

∣∣∣e 2πı
N h1 −1

∣∣∣2
)

2−cos
(

2πh1
N

)
−cos

(
2πh2

N

)
=

cos( 2π
N ht )

(
cos

(
2πh1

N

)
−1

)
2−cos

(
2πh1

N

)
−cos

(
2πh2

N

) .

otherwise, if e is vertical, C v
h,t can be analogously obtained. Note that, if h1 = h2, then C v

h,t =
1
2 e−

2πi
N hs(e).
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Chapter 3. Error propagation for relative localization over geometric networks

Conjecture 1. (Asymptotic error propagation in 2D Cayley grids) Suppose we are given a 2D

Cayley grid G , the estimated relative position x ∈RV , and the noise vector ε ∈RE with ‖ε‖∞ ≤ ε̄
for any realization. Then

|xi −x j | ≤ c,

where c is a positive constant.

In the following we give some hint to justify the latter conjecture. Equation (3.11) can be split

as follows

x(0,0) −x(1,0) = 1

N 2

∑
(h1,h2) 6=(0,0)

N−1∑
t1=0

N−1∑
t2=0

C o
h,tεeo + 1

N 2

∑
(h1,h2) 6=(0,0)

N−1∑
t1=0

N−1∑
t2=0

C v
h,tεev

and we proceed fixing t , thus the goal is to estimate the two quantities

1

N 2

∑
h 6=0

C o
h,tεt ∼Ot ,

1

N 2

∑
h 6=0

C v
h,tεt ∼Vt

and finally give a estimate of

x(0,0) −x(1,0) ∼
∑

t
(Ot +Vt )εt . (3.13)

In this formulation the amplifying factor is Γe =Ot +Vt since e is parametrized by t ∈Z2
N , t 6= 0.

Note that, for our purposes, it suffices to prove that the amplifying factor decays as t increases.

Passing to the limit N →∞, consider the following change of variable: x = h1
N , y = h2

N . Thus, as

the number of nodes N goes to infinity, we start considering the addends corresponding to

horizontal edges

∑
t

Ot ∼
∑

t
εeo

∫ 1

0

∫ 1

0

cos(2π(xt1 + y t2)) (cos(2πx)−1)

2−cos(2πx)−cos
(
2πy

) d xd y (3.14)

Given t1, t2 as parameters, study now the behavior of the function f : [0,1]× [0,1] →R, defined

as follows

ft (x, y) = cos(2π(xt1 + y t2)) (cos(2πx)−1)

2−cos(2πx)−cos
(
2πy

) , t = (t1, t2). (3.15)

The following Lemma describes some properties of the latter function, as shown also in Fig.
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3.4. Conclusions

3.2.

Lemma 3.8. (Properties of the approximating function) Consider ft defined in Eq. (3.15),

then

(i) | ft (x, y)| ≤ 1, for every (x, y) ∈ [0,1]2;

(ii) ft is periodic with period 1;

(iii) symmetry with respect to (0,0): ft (−x,−y) = ft (x, y);

(iv) symmetry with respect to ( 1
2 , 1

2 ): ft (1−x,1− y) = ft (x, y);

(v) ft has an integrable singularity in (0,0).

Figure 3.2: 3D plot and contour lines of the two variable function f , with t = (1,4) (left), and
t = (1,4) (right). It is clear that t1 and t2 are the frequency of oscillations along the x-axis and
y-axis respectively.

First, let us neglect the noise by considering the intrinsic upper bound we assumed, i.e. the

worst-case noise |εe | ≤ ε̄. Formally

∣∣∣∣∣ 1

N 2

∑
h 6=0

C o
h,tεeo

∣∣∣∣∣≤ ε̄

N 2

∑
h 6=0

|C o
h,t |.

From Fig. 3.3, it is clear that the relative error diverges, thus we have to consider the initial

expression in Eq. (3.13), in order to get a sharp upper bound.

3.4 Conclusions

In this Chapter, we provide estimates for component on each edge of the relative error of the

optimal least squares estimator. Concerning the exemplary class of graphs called Abelian
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Chapter 3. Error propagation for relative localization over geometric networks

Figure 3.3: The Figure (left) show how the quantity
∑

h 6=0 |C o
h,t |/N 2 goes to infinity as N asymp-

totically increases in a 2D Cayley grid. As opposite, in right plot it is shown the asymptotic
behavior of x(0,0) −x(1,0) as defined in Eq. (3.13), setting the maximum noise ε̄= 1. Note that,
as N is asymptotically large, the considered quantity remains bounded.

Cayley graphs, we explicitly compute such misplacement of the optimum with respect to

correct position vector, by means of the eigenvalues of the network. We used the Markov

Chains theory as mathematical tools, considering the simple random walk associated to

the graph, and then we exploited the DFT to compute the relative error in terms of the

eigenvalues of the network. We first considered a one-dimensional Cayley grid, and we

obtained analytically the boundedness of the relative error with an asymptotically large size of

the network. We conjecture that also in 2-dimensional Cayley grid, such quantity is bounded,

providing numerical experiments and analytical properties that suggest such conclusion. Of

course, further efforts may be needed to deeply analyze the 2-dimensional case. A possible

approach may be interpreting the expression in Eq. (3.14), as the real part of the Fourier

Transform of a certain function. The same has to be done for the addends corresponding to

the vertical edges in grid. Deriving this FT several times and applying standard properties, we

could find an estimate in terms of the parameter t , and then an estimate of the relative error

may be provided. Finally, among the author’s intentions, a detailed study must be carried out

in the case of Cayley grids of dimension d ≥ 3.
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4 Synchronous distributed calibration

algorithms

This Chapter deals with the problem of the angular calibration for a network of cameras,

namely the problem of estimating a common orientation reference frame. In the proposed

set–up each camera obtains noisy measurements of its relative orientation with respect to

some other cameras. The set of measurements can be described by a graph having the cameras

as nodes and having an edge between two cameras if a relative orientation measurement is

available. We propose a novel two-step algorithm based on a choice of a basis for the set of

graph cycles. The first step consists in computing a set of integer numbers, which provides a

first rough estimate of the orientations. The second step exploits this information to build up

a suitable quadratic minimization problem. Two actual implementations, corresponding to

two different basis of cycles, are described and compared in terms of the worst–case scenario.

Finally, through numerical simulations the algorithm is compared with another algorithm

proposed in the literature for solving the same problem.

4.1 Introduction

In a network of cameras one of the most crucial problems is calibration. For each camera this

consists in understanding what is its position and orientation with respect to a global and

common reference coordinate system. The importance of this information is clear in case

the camera network is used for instance to track an external mobile object. Indeed, in this

case, if the object is exiting from the sensing region of the i -th camera and it is entering in the

sensing region of the j -th camera, then, in order to avoid to loose the target, the camera i has

to communicate to the camera j where it has to move in order to see the object. It is manifest
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Chapter 4. Synchronous distributed calibration algorithms

that both cameras must share the same coordinate system in order this to be possible.

Usually, calibration is set off-line by human operators, or by a centralized unit. In any case it is

usually a rather time consuming stage of the system setting. The algorithm we propose in this

Chapter aims to complete this task autonomously, and requires no or very limited centralized

coordination. This also allows the possibility to re–calibrate periodically and this is useful

especially in case when some of the cameras are mobile.

The calibration problem over Euclidean spaces has recently been studied by Barooah and

Hespanha in a great detail (see Barooah and Hespanha [2005], Barooah et al. [2006], Barooah

and Hespanha [2007]). The problem considered there is the localization using noisy relative

measurements, namely determining the coordinates of a set of vectors in a Euclidean space

starting from the knowledge of some noisy differences of those vectors.

The cameras calibration problem is similar in the sense that each camera can be characterized

by a position and an orientation in space. Some well–known methods in computer vision

permit to obtain quite easily and efficiently relative positions and orientations of pairs of

cameras whose sensing regions overlap. Then the problem that has to be solved is to determine,

from these relative positions and orientations, the position and the orientation of the cameras

with respect to a common reference coordinate system. Cameras calibration can be casted into

an optimization problem (or a consensus) over the manifold SE (3). Under certain assumptions

one can show that this problem can decoupled into the estimation of the position and the

estimation of the orientation. The latter can be seen as an optimization (or a consensus) over

the manifold SO(3). Moreover, under some further assumptions, the calibration over SO(3)

can be reduced to the calibration over the simpler manifold SO(2).

This class of problems has already attracted much attention in the last years. In Sarlette

[2009b], Sarlette and Sepulchre [2009b] a consensus algorithm on SO(2) based on the gradient

flow of a potential defined using the chordal distance is studied. In Tron and Vidal [2009b]

a similar approach based on the geodesic distance is proposed in order to study the more

general calibration problem on SE (3). The drawback associated with both these approaches is

that, in case we have many cameras, the proposed potentials exhibit a great number of local

minima.

In Piovan et al. [2011b] the problem of calibration on SO(2) is considered when measurements

of relative orientations are affected by additive noise. The authors propose a procedure to
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4.1. Introduction

obtain a new set of relative orientations which is ensured to sum up to multiples of 2π over

a chosen family of cycles, an idea which closely resembles what we propose in the present

Chapter. The new set of relative orientations is then spread along a spanning tree to obtain an

estimate of the orientations. Finally, in Singer [2011] an estimation algorithm is proposed for

a model of the measurements in which some of them are ideal, while others are completely

random. The estimate of the orientations is obtained via the computation of the eigenvector

associated with the largest eigenvalue of a suitable Hermitian matrix.

The algorithm proposed in this Chapter is based on a non-convex optimization problem, as in

Sarlette [2009b], Tron and Vidal [2009b]. We restrict ourselves to the simple case of calibration

over SO(2), and the cost to be minimized is based on the geodesic distance over this manifold.

The set of available relative measurements is described by a graph G = (V , E ), where the set of

nodes V represents the set of cameras and where the set of edges E represents the available

relative orientation measurements between pairs of cameras. Our main idea is to break the

estimation problem into two parts: first we estimate a combinatorial object, which is a set

of integers, each associated with an edge in E . Intuitively, these integers take care of the fact

that measurement noises along the cycles in the graph do not sum up to 0, in general. Once

this is done, the original optimization problem over a manifold can be reduced to a quadratic

optimization problem, which can be easily solved using classic algorithms. The idea of using

cycles has already been proposed in Russell et al. [2010] in the context of localization over

Euclidean spaces in order to improve the quality of the estimates. In fact, we propose two

versions of the algorithm. One version is based on sets of cycles associated with spanning trees.

Another version instead is based on sets of minimal cycles. Notice finally that the proposed

method is consistent in the sense that, if there is no measurement noise, the solution given by

the algorithm coincides with the true one.

This research has previously partially appeared in Borra et al. [2012a], and it is here enriched

both in theoretical depth and as for simulative comparison with the existing literature.

We refer to Section 2.1 for several useful preliminary graph theoretical definitions and results.

This Chapter is organized as follows: in Section 4.2 and Section 4.3 we respectively formulate

the optimization problem to be solved and we explain how it relates with the cameras cal-

ibration problem. Section 4.4 is devoted to the description of the proposed algorithm and

to a worst–case analysis of its performance. In Section 4.5 it is shown how to distribute the

algorithm over the network for the two particular choices of the set of cycles mentioned above,
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Chapter 4. Synchronous distributed calibration algorithms

while in Section 4.6 we compare their performance. Finally, Section 4.7 proposes numerical

simulations and a comparison with the algorithm proposed in Piovan et al. [2011b]. Section 4.8

draws the conclusions.

4.2 Problem Formulation

The estimation problem over SO(2) we want to study can be described as follows. Assume we

have a graph G = (V ,E ) with an orientation s : E → V and t : E → V . With each node v ∈ V of

the graph we associate an angle θ̄v ∈ [−π,π) and similarly with each edge e ∈ E we associate an

angle ηe ∈ [−π,π). We call the angle θ̄v the orientation of v . Our aim is to find an estimate of

the angles θ̄v , v ∈ V , from the knowledge of ηe , e ∈ E , knowing that these represent a measure

of the relative orientation among s(e) and t (e), in the sense that

ηe = (θ̄s(e) − θ̄t (e) +εe )2π (4.1)

where εe ∈ [−π,π) are measurement noise terms, which have to be considered small and

independent, and where (x)2π := x − 2πq2π(x) with q2π(x) := b x+π
2π c, x ∈ R. Notice that the

function q2π(x) is a quantizer such that x ∈ [−π,π) if and only if q2π(x) = 0, so that (x)2π = x. If

we stack the angle θ̄v and ηe in suitable column vectors we can rewrite (4.1) in the compact

form

η= (B θ̄+ε)2π, (4.2)

where (·)2π is done componentwise, and B is the incidence matrix of G , cfr. Section 2.1.

The estimator is in principle a function θ̂ : [−π,π)E → [−π,π)V mapping the available data η

into an estimate θ̂(η) of θ̄. Its performance can be evaluated using the index

W (θ̂) = 1

N
‖(θ̂− θ̄)2π‖2 = 1

N

N∑
v=1

(θ̂v − θ̄v )2
2π. (4.3)

Notice that W is in principle a function of θ̄,ε, namely W =W (θ̄,ε). If we have a probabilistic

model of θ̄ and ε the considered index is the expected value of W .

Remark 4.1. The definition of W is reasonable since the values θ̄v ’s and θ̂v ’s are angles, so they

are coincident if they differ of integer multiples of 2π, namely if (θ̂v − θ̄v )2π = 0.
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4.2. Problem Formulation

The estimator here proposed is based on the minimization of the following least–square cost

V (θ) = ∑
e∈E

(θs(e) −θt (e) −ηe )2
2π = ‖(Bθ−η)2π‖2, (4.4)

through which one aims to find a set of estimates θ̂1, . . . , θ̂N whose differences along the edges

fit the measurements ηe .

Remark 4.2. Notice that V (θ+α1) = V (θ), ∀θ ∈ [−π,π)V and ∀α ∈ R, where 1 is the vector

with all entries equal to 1. This feature naturally arises from the fact that the cost is build on

relative measurements and is unavoidable unless we impose a further constraint. In fact, we

will assume in the sequel that node 1 is the anchor and knows its orientation, which, with no

loss of generality, can be assumed to be zero, i.e. θ̄1 = 0. By adding this constraint, namely

imposing that θ̂1 = 0, we can avoid this source of ambiguity.

Remark 4.3. Minimizing the cost V (θ) seems to be reasonable, since, in case of noiseless mea-

surements, we have V (θ) = 0 and θ1 = 0 if and only if θ = θ̄. In other words V (θ) has only one

global minimum for θ ∈ (−π,π]V such that θ1 = 0, which is θ = θ̄. However, V (θ) has, even in

the noiseless case, multiple local minima, as it will be shown in the next example. The same

problem occurs if we choose a slightly different cost based on the chordal distance, as it has

been shown in Sarlette [2009b]. In order to avoid such local minima, the classic approach is to

initialize the gradient based minimization algorithm in a suitable region in such a way that the

convergence to the global minimum is ensured. A deep analysis of this region for a large class of

manifolds is done in Tron et al. [2011], but it is beyond the scope of this work. Our approach is

different, and it is motivated by the following simple example.

Example 4.4. Consider the ring graph with 3 agents in figure 4.1, and assume for sake of

simplicity that θ̄1 = θ̄2 = θ̄3 = 0. Consider the ideal noiseless case, so that η12 = η23 = η31 = 0.

Assuming that we have fixed θ1 = 0, we have to find θ2,θ3 ∈ (−π,π] such to minimize the cost

V (θ1,θ2,θ3) = θ2
2 +θ2

3 + (θ2 −θ3)2
2π =


θ2

2 +θ2
3 + (θ2 −θ3)2 θ2 −θ3 ∈ (−π,π],

θ2
2 +θ2

3 + (θ2 −θ3 −2π)2 θ2 −θ3 ≥π,

θ2
2 +θ2

3 + (θ2 −θ3 +2π)2 θ2 −θ3 <−π.

(4.5)

It can be verified that this cost has three local minima θ2 = θ3 = 0, θ2 = 2
3π,θ3 = −2

3π and

θ2 =−2
3π,θ3 = 2

3π being θ2 = θ3 = 0 the global minimum in which V = 0 while the other two
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are only local minima where V = 4
3π

2.

1

2 3

Figure 4.1: A simple ring with 3 agents. On the right panel, the three regions in which [−π,π) is
partitioned, with the contour lines of the quadratic functions in (4.5).

4.3 Cameras calibration

The proposed problem has a certain interest in applications such as calibration Tron and Vidal

[2009b] or orientation localization Piovan et al. [2011b] of networks of cameras. In this Section

we describe the calibration problem and we relate it to the problem stated above.

Consider a group of cameras perceiving some environment for surveillance purposes. Each

camera is modeled as an ideal pin-hole device, which consists in a plane, called the image

plane, and a point, called the optical center. A point in the environment is sensed by the

camera through its radial projection, through the optical center, on the image plane. The

sensing region of the camera is the set of points for which this projection exists. To model the

perception of a point we endow each camera with a local reference frame, denoted by Σv , so

that a point in the sensing region of camera v is identified, by v , as a set of coordinates in Σv .

Fix now an external reference frameΣ0. Without loss of generality we can assume that its origin

lies on the ground, which is assumed to be a plane, and that it has one axis perpendicular to the

ground and pointing “upward”. In such a reference frame, the pose of the camera v is identified

by an element (gv ,Rv ) ∈ SE(3) =R3 ×SO(3). The set SO(3) = {R ∈R3×3 : RT R = I ,det(R) =+1},

is the set of rotations in 3D , while R3 denotes here the set of translations. The quantity (gv ,Rv )

maps the local reference frame Σv into the external reference frame Σ0. More precisely, given
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4.3. Cameras calibration

a point in the environment whose coordinates in Σ0 and Σv are, respectively, p0, pv ∈R3, then

p0 = Rv pv + gv . (4.6)

For coordination purposes, it is necessary that the cameras obtain as good as possible es-

timates of their (gv ,Rv ). Assume in fact that an agent is exiting from the sensing region of

camera v and is entering in that of camera u, and call pv its coordinates in Σv . Then u can

easily find the coordinates of the agent in its reference frame Σu using twice (4.6) to obtain

pu = RT
u Rv pv +RT

u (gv − gu). (4.7)

Thus, if each camera has a good estimate of its pose w.r.t. a common external reference

frame, they can exchange information on the position of agents in the environment they are

monitoring.

An estimate of the gv ’s can be obtained through the consensus-like optimization procedures

based on relative measurements as proposed in Barooah et al. [2006]. In this Chapter, instead,

we concentrate on the estimate of Rv , which we call from now on the rotational calibration

problem.

In order to estimate the Rv ’s, the cameras communicate and exchange information with

some of the others. The admissible communications are modeled through an undirected

communication graph G = (V ,E ) in which V = {1, . . . , N } is the set of nodes, and E is the set

of edges. An edge {v,u} ∈ E exists if and only if the cameras u and v are able to exchange

information and, moreover, their sensing regions overlap.

The mutual information used to achieved rotational calibration is the relative orientation

among pairs of cameras. Given the poses (gv ,Rv ) and (gu ,Ru) of cameras v and u, we define

Rvu := RT
u Rv the relative orientation of v with respect to u. Notice that Rvu appears in (4.7)

when relating the coordinates of a point in Σu given those in Σv , and that Ruv = RT
vu .

Assume now {u, v} ∈ E . Then the quantities Ruv and Rvu , as well as the relative translations

gu−gv and gv −gu , can be obtained by the cameras v and u through the so–called eight points

algorithm Ma et al. [2003]. In general, this relative orientation is corrupted by noise. In our
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Chapter 4. Synchronous distributed calibration algorithms

setting, the two cameras can thus only compute the following noisy version of Rvu

R̃vu = RT
u NvuRv , (4.8)

where Nvu ∈ SO(3) is a rotational error. Since the two cameras compute these quantities on

the basis of the same dataset, then we can assume that R̃uv = R̃T
vu , which implies Nuv = N T

vu .

Σ0

Σv

Σ′
v

Σu

Σ′
u

hv

hu

ḡv

ḡu

Figure 4.2: Description of a network of cameras satisfying the assumptions. It is shown the
external reference frame Σ0 and, for each camera, the “natural” local reference frame Σ′

v (in
dotted lines) and the chosen local reference frame Σv (in solid lines).

Rotational calibration in SO(2) is related to the previous problem when the following assump-

tions hold:

• each camera is deployed in the environment at a known height with respect to the

ground, which is assumed to be a plane;

• each camera knows the perpendicular to the ground, and sets its reference frame Σv to

have one specific axis (common to all the cameras) along this direction and pointing

“upward”.

Remark 4.5. The natural reference frame Σ′
v of camera v is the optical reference frame, which

has two axis lying on the image plane and the z-axis perpendicular to it and crossing the optical

center Ma et al. [2003]. Implicitly, we assume that the camera v knows its tilt and roll angles, so

that it is also able to compute the rotational matrix which transforms Σ′
v in Σv .

In the general case, the element (gv ,Rv ) ∈ SE(3) possesses six degrees of freedom in the

sense that gv and Rv can be parameterized using three independent scalars, and three angles,

respectively. The previous assumptions correspond to fixing one of such scalars (the height

with respect to the ground) and two of such angles (tilt and roll), in the sense that the pose
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4.3. Cameras calibration

(gv ,Rv ) of the camera v is such that, ∀v ∈ V ,

gv =
ḡv

hv

 Rv = R(θ̄v ) :=


cos θ̄v −sin θ̄v 0

sin θ̄v cos θ̄v 0

0 0 1

 (4.9)

Observe that ḡv ∈R2 is the position, projected on the ground, of camera v , hv ∈R is the known

height of the origin of the reference frameΣv , and the angle θ̄v ∈ [−π,π) represents the rotation

about the z axis needed to align Σv with Σ0.

Another consequence of the previous assumptions and the exact knowledge of the tilt and roll

angles is that the eight point algorithm naturally provides a matrix R̃vu having the structure

described in (4.9), namely there exists ηvu ∈ [−π,π) such that R̃vu = R(ηvu). By exploiting

now the relations R(θ)R(ϕ) = R(ϕ+θ) and R(θ)T = R(θ)−1 = R(−θ), the model in (4.8) for

measurement of the relative orientation can be rewritten, as in (4.1), as ηvu = (θ̄v − θ̄u +εvu)2π,

where εvu ∈ [−π,π) is such that Nvu = R(εvu).

Given two elements R1,R2 ∈ SO(3), their geodesic can be be seen as the shortest path joining

R1 and R2 on the manifold, and the geodesic distance d(R1,R2) between R1 and R2 is simply

the length of their geodesic (see do Carmo [1992] for more formal definitions and properties).

For elements of SO(3) of the type given in (4.9) we have

d(R(θ1),R(θ2)) = |(θ1 −θ2)2π|

Consequently, one can see that

∑
{u,v}∈E

d(R(θu)T R(θv ), R(ηuv ))2 =V (θ)

namely the cost function proposed in Section 4.2 corresponds to summing up the squared

geodesic distances between R(θu)T R(θv ) and the measurements R(ηuv ) along all the edges of

the graph. Notice that this cost already appeared in Tron and Vidal [2009b].
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4.4 Description of the proposed algorithm

4.4.1 The regions of convexity of the cost functions

For each K ∈ZE define the region

RK (η) := {θ ∈ [−π,π)V : Aθ−η−2πK ∈ [−π,π)E }. (4.10)

These regions are convex and form a partition of [−π,π)V . Most of them can actually be empty.

It can be seen that, if θ ∈ RK (η), and only for these points, we have

V (θ) = ‖Bθ−η−2πK ‖2,

therefore V (θ) is purely quadratic and convex in RK (η). For this reason, in each RK (η) there

can be at most one local minimum of V (θ).

Let K̄ ∈ ZE be such that θ̄ ∈ RK̄ (η), namely let K̄ identify the region in which the vector of

orientations θ̄ lies. Equation (4.10) yields to

q2π(Aθ̄−η) = K̄ .

On the other hand, from (4.2) we have that

η= B θ̄+ε−2πq2π(Aθ̄+ε).

Since we assumed that ε ∈ [−π,π)E , we can argue that

K̄ = q2π(B θ̄−η) = q2π

(
−ε+2πq2π(B θ̄+ε)

)
= q2π(B θ̄+ε)

where we used the fact that q2π(x +2πk) = q2π(x)+k, if k ∈ Z. Consequently, the vector of

measurements can be expressed as

η= B θ̄+ε−2πK̄ . (4.11)
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4.4.2 Estimation of the convexity region

The idea which inspires the algorithm we are going to propose is first to obtain an estimate K̂

of K̄ and then to obtain θ̂ by minimizing the reshaped cost

VK̂ (θ) := ‖Bθ−η−2πK̂ ‖2
2 (4.12)

which corresponds to restricting V (θ) to the region RK̂ (η) and then extending the quadratic

form to RV .

Example 4.6. Let’s consider again the Example 4.4. Assume we are still in the ideal noiseless

case, so that η12 = η23 = η31 = 0. Since we fixed θ1 = 0, then V is function only of θ2,θ3. As shown

above V (0,θ2,θ3) is quadratic in the three regions corresponding to the case θ2 −θ3 ∈ (−π,π], to

the case θ2 −θ3 ≥π and to the case θ2 −θ3 <−π. These three regions correspond to RK (0) in the

three cases K = (K12,K23,K31) = (0,0,0), K = (0,−1,0), and K = (0,1,0). The other regions are

empty. This is depicted in right panel on figure 4.1.

The idea of how to estimate K̄ comes from the observation that the relative differences of

the actual orientations θ̄v along a cycle must necessarily sum up to a multiple of 2π. More

precisely, let h be an oriented cycle and let r h be its representative vector as explained in

Section 2.1. Then, from (4.11), using the fact that r hB = 0, we obtain that

r hη+2πr hK̄ = r hε

and so we can argue that

q2π(r hη)+ r hK̄ = q2π(r hη+2πr hK̄ ) = q2π(r hε).

On the other hand, if it happens that the algebraic sum of the noise along the cycle h is below

π in modulus, namely if |r hε| <π, then we obtain that q2π(r hε) = 0. This yields

r hK̄ =−q2π(r hη). (4.13)

Observe that in this case r hK̄ could be exactly computed on the basis of the measurements

η along the cycle h. This would suggest to define implicitly the estimation K̂ by imposing

r hK̂ =−q2π(r hη) for any cycle h. However, the resulting system of equations would not be
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solvable in general due to the non–coherence of the noises along cycles. What can be done is

to choose a basis for Γ, and impose the constraint on the corresponding cycles.

Inspired by the previous observations, assume that a generic basis of Γ is given, and let

R ∈Z(E \ET )×E the matrix whose rows are the elements of the basis. Denote by K̂ R the estimate

of K̄ we want to obtain using R. More precisely, we want to find K̂ R satisfying the following

system of equations on ZE in matrix form

RK̂ R =−q2π(Rη). (4.14)

By Propositions 2.1 and 2.2 we obtain that the general solution of this equation is

K̂ R =−XR q2π(Rη)+ Ah (4.15)

where XR is the matrix, introduced in Proposition 2.2 such that R XR = I and h is any column

vector in ZV .

Once K̂ R has been selected, the final solution θ̂R (which depends on the choice of R) is

determined by minimizing the cost

VK̂ (θ) = ‖Bθ−η−2πK̂ R‖2
2.

The solution of the previous minimization is the solution of the following linear equation

B T B θ̂R = B Tη+2πB T K̂ R . (4.16)

As done above, in order to avoid the non uniqueness due to the kernel of A, we fix θ1 = 0. Then

consider the vector ξ ∈RV defined by ξ1 = 1 and ξv = 0 for any v 6= 1. It is well-known Aldous

and Fill that there exists a symmetric matrix Z ∈RV ×V such that


Z B T B = I −1ξT ,

Zξ= 0.
(4.17)

This matrix is called the Green matrix associated to the graph G , see Section 2.1. Using the
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properties of Z and the expression of K̂ R we obtain

θ̂R = Z B Tη+2πZ B T K̂ R = Z B Tη−2πZ B T XR q2π(Rη)+2πZ B T Bh.

Recall that we look for an estimate in [−π,π)V , thus the nodes need to project onto this set

the computed solution. This can be done entry–wise, and corresponds to the choice

h :=−q2π
(
Z B Tη−2πZ B T XR q2π(Rη)

)
.

Using the definition of Green matrix, one can show that h1 = 0, thus obtaining

θ̂R = Z B Tη−2πZ B T XR q2π(Rη)+2πh = (
Z B Tη−2πZ B T XR q2π(Rη)

)
2π ∈ [−π,π)V .

(4.18)

A simple continuity argument then shows that, when the threshold ε̄ tends to 0, the estimate

θ̂R converges to θ̄. In other terms, if the noise is small, we have a guarantee that our solution

is close to the true θ̄. In the following Sections we formally prove this statement.

4.4.3 Performance analysis of the proposed algorithm

As mentioned in Section 4.2, in order to evaluate the performance of the proposed algorithm,

we need to estimate the index W = 1
N ‖(θ̂− θ̄)2π‖2 defined in (4.3). Observe that, since η =

B θ̄+ε−2πK̄ and XR q2π(Rη) =−K̂ R +Bh then (4.18) can be rewritten

θ̂R = Z B Tη−2πZ B T XR q2π(Rη)+2πh

= Z B T B θ̄+Z B T ε−2πZ B T K̄ +2πZ B T K̂ R −2πZ B T Bh +2πh

Since θ̄1 = 0 and h1 = 0 we can argue that

θ̂R = θ̄+Z B T ε+2πZ B T (K̂ R − K̄ ), (4.19)

which shows that the computed estimate differs from the vector of actual orientations by a

term depending only on the measurement noise. The second term is instead related to the
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ability to correctly identify the region in which θ̄ lies.

The previous equation yields

W = 1

N
‖(θ̂− θ̄)2π‖2 = 1

N
‖(Z B T ε+2πZ B T (K̂ R − K̄ ))2π‖2.

This equality implies that, in case RK̂ R = RK̄ , namely if we have that K̂ R = K̄ +Bh for some h,

then

W = 1

N
‖(Z B T ε+2πZ B T Bh)2π‖2 = 1

N
‖(Z B T ε+2πh)2π‖2

= 1

N
‖(Z B T ε)2π‖2 ≤ 1

N
‖Z B T ε‖2.

Notice that the term 1
N ‖Z B T ε‖2 has been already studied in the literature (see Barooah and

Hespanha [2005, 2007], Lovisari et al. [2012]), since it characterizes the performance of the

calibration algorithm over vector spaces. In these papers the electrical analogy is used. The

graph G is considered as an electrical network where there is a resistance of 1 Ohm along all

the edges in G . If we denote by Rv1 the effective resistance among the node v and the anchor

node 1, then it can be shown that

1

N
E‖Z B T ε‖2 = σ2

N

∑
v∈V

Rv1,

where we are assuming that the components of the noise vector ε have zero mean and variance

σ2. This result allows to obtain the estimate of 1
N E‖Z B T ε‖2 as a function of the number of

nodes for some families of graphs. For example, if the graph is a line, then

1

N

∑
v∈V

Rv1 ≈ N .

If the graph is a 2D grid, then
1

N

∑
v∈V

Rv1 ≈ log N ,

while if the graph is a grid in dimension greater or equal to 3, then 1
N

∑
v∈V Rv1 is bounded

from above by a constant independent of N . This qualitative behavior can be of interest for

the designer. We will show this feature in the examples proposed in Section 4.7.
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Remark 4.7. Observe that, since

RK̂ R =−q2π(Rη) =−q2π(Rε−2πRK̄ ) = RK̄ −q2π(Rε),

then RK̂ R = RK̄ occurs if the components of the vector Rε belong to [−π,π), and so if ||Rε||∞ <π
1. If the components of the noise vector ε are supported in [−ε̄, ε̄], since ||Rε||∞ ≤ ε̄||R||∞, then

||R||∞ < π

ε̄

implies that RK̂ R = RK̄ . Notice finally that, if the rows of R are obtained from a set of closed

paths, then ||R||∞ is simply the maximum length of the paths in this set. For this reason it

is convenient to choose R whose rows are obtained from paths of minimum length. This fact

inspires the algorithms proposed in the next Section.

4.5 Distributed algorithms for rotational calibration

In this Section we will propose two possible distributed implementations of the rotational

calibration algorithm proposed in the previous Section. Observe that the proposed algorithm

is based on two steps. The first consists in the estimation of K̄ based on formulas (4.14) and

(4.15). The second step consists in the estimation of θ̄ based on formula (4.16). Distributed

implementations of the second step have already been proposed in the literature (see Barooah

and Hespanha [2007], Bolognani et al. [2010]). We propose here two distributed implemen-

tations of the first step, which are based on two ways to select the set of cycles as a basis of

Γ.

Fundamental cycles Fix a spanning tree T = (V , ET ) of G . Order arbitrarily the edges in

E \ET as e1, . . . ,eM−N+1 and consider cycles h1, . . . ,hM−N+1 in G such that for each i we have

that supp(hi ) ⊆ ET ∪ {ei } and r hi (ei ) = 1. In words, cycle hi is constructed with the edges in

ET ∪ {ei } and oriented in such a way that r hi (ei ) = 1. Such cycles are called (T -)fundamental

cycles.

1We recall that, if x ∈Rn , then ||x||∞ = maxi {|xi |} and if M ∈Rn×m , then ||M ||∞ = maxi {
∑

j |Mi j |}. According
to these definitions we have that ||M x||∞ ≤ ||M ||∞||x||∞.
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Minimal cycles Fix again a spanning tree T = (V , ET ) of G . Another possible construction

is the following iterative one:

• Among all cycles whose edges are all in ET except one, choose one of minimal length.

Call it h1 and call e1 the only edge in h1 which is not in ET .

• Suppose edges e1, . . . ,ei and cycles h1, . . . ,hi have been selected. Among all cycles whose

edges are all in ET ∪ {e1, . . .ei } except one, choose one of minimal length. Call it hi+1,

and call ei+1 the only edge in hi+1 which is not in ET ∪ {e1, . . .ei }. Such cycles are called

(T -)minimal cycles.

Both the fundamental and the minimal cycles provide a basis of Γ as shown in the next

Lemma.

Lemma 4.8. Fix a spanning tree T = (V , ET ) of G . The subsets of Γ:

{rh |h T -fundamental cycle} , {rh |h T -minimal cycle}

are both Z-basis of Γ.

Proof. The fact that the rows in ZE obtained from a set of fundamental cycles form a basis of

Γ follows from the the part (b) of the proof of Proposition 2.1. The fact the rows in ZE obtained

from the minimal cycles form a basis of Γ is consequence of the following arguments. We

order the edges putting first the edges in T and the edges e1, . . . ,eM−N+1. Let RF be the matrix

having rows r hF
1

, . . . ,r hF
M−N+1

, and RM be the matrix having rows r hM
1

, . . . ,r hM
M−N+1

, where hF
i

and hM
i are the fundamental and the minimal cycles, respectively. Then, from the proposed

construction, RF and RM can be partitioned as

RF = [R ′
F I ], RM = [R ′

M T ],

where I is the identity matrix of dimension M−N+1, T ∈Z(E \ET )×E is a square lower triangular

matrix with 1 on the diagonal and R ′
F ,R ′

M ∈ Z(E \ET )×ET . Observe that T −1 ∈ Z(E \ET )×(E \ET )

and, since the rows of RF generate Γwhile the rows of RF belong to Γ, then there exists a matrix

Z ∈ Z(E \ET )×(E \ET ) such that RM = Z RF . As a consequence, Z = T and R ′
M = Z R ′

F = T R ′
F .

Finally, we can argue that RF = T −1RM , which shows that the rows of RM generate the same

submodule generated by the rows of RF which is Γ.
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4.5.1 The Tree-algorithm

In this distributed implementation the agents are supposed to be the nodes and the edges

composing the graph G . Fix a spanning graph T rooted at the anchor node 1. In order to

obtain K̂ , we need first to obtain the value r hiη, for each cycle h belonging to the set of the

fundamental cycles. This value will be stored by the agent associated to the edge ei , which is

the edge in hi not belonging to T . For the computation of r hiη, first the measurements are

propagated along the tree starting from the root. In other words, given a node v and called

f (v) its father, we set θ̂F E ,1 = 0 and

θ̂F E , v = θ̂F E , f (v) +ηv, f (v). (4.20)

As a side effect, we also obtain a first estimate θ̂F E of θ̄. Then each edge ei not belonging to T

can compute r hiη as

r hiη= θ̂F E , s(ei ) − θ̂F E , t (ei ) +ηei .

Now we build K̂ as follows. For each edge e in T , we assign K̂ e = 0. Instead, for each edge ei

not belonging T , we assign

K̂ ei =−q2π(r hiη).

Observe that this assignment of K̂ ensures that, for all the fundamental cycles hi , it holds

r hi K̂ = K̂ ei =−q2π(r hiη)

that is needed to correctly estimate K̄ . Once K̂ is obtained, the nodes can compute in a

distributed way the components
(
argminθ‖Bθ−η−2πK̂ ‖)2π.

4.5.2 Minimal cycles-algorithm

The second algorithm exploits the construction of a set of minimal cycles for the graph. The

procedure in this case is not fully distributed, in the sense that we must assume that each

minimal cycle is associated with an agent which carries on the computations associated with

this cycle.

Fix a spanning tree T = (V , ET ) of G and let h1, . . . ,hM−N+1 be the set of minimal cycles.

Benote by e1, . . . ,eM−N+1 the associated edges forming the set E \ T ordered in the way de-
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Algorithm 1 Tree-Algorithm

(Input variables)
θ̄1, value of the anchor;
ηe ,e = 1, . . . , M ;
T spanning tree;

(Step A: first estimate θ̂F E )
θ̂F E ,1 = 0;
for i = 1, . . . , N do

for j = 2, . . . , N do
if j is a son of i in T then θ̂F E , j = θ̂F E ,i +η j ,i ;

(Step B: estimate K̂ )
for e ∈ E do

K̂ e = q2π(θ̂F E ,s(e) − θ̂F E ,t (e) −ηe );

(Step C: second estimate θ̂)
compute

(
argminθ‖Bθ−η−2πK̂ ‖)2π s.t. θ1 = 0.

scribed above. As in the previous case, assign K̂ e = 0 for any e ∈T . Consider now the remain-

ing edges e1,e2, . . . ,eM−N+1. We know that cycle h1 has edges in T ∪ {e1}. Since K̂ e = 0,∀e 6= e1

for any e in the support of h1, we can assign

K̂ e1 =−q(r h1η).

Then, we proceed iteratively, and at the i -th iteration we already computed K̂ e1 , . . . , K̂ ei−1 . In

order to assign K̂ ei , observe that the following relation must be satisfied

r hi K̂ =−q2π(r hiη).

Therefore, we derive

K̂ ei =−q2π(r hiη)− ∑
j 6=i

r hi (e j )K̂ e j .

In order to achieve this computation, the agent associated with the cycle hi has to know ηe j

and K̂ e j for each edge e j belonging to hi . As a consequence, this agent needs to receive the

values of K̂ e j from the agents associated to adjacent cycles, before being able to compute K̂ ei .

After the estimation of K̂ , the remaining steps are the same as those of the previous algorithm.

This second algorithm allows much better performance than the first one, but it requires
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Algorithm 2 Minimal cycles-algorithm

(Input variables)
1: ηe ,e = 1, . . . , M ;
2: T spanning tree;
3: r 1, . . . ,r M−N+1 minimal cycles set;

(Step A: computation of b =−q2π(Rη))
4: for i = 1, . . . , M −N +1 do bhi =−q2π(r hiη);

(Step B: estimate K̂ )
5: for e ∈ ET do K̂ e = 0;

6: for i = 1, . . . , M −N +1 do K̂ ē = bhi −
∑i−1

j=1 r hi (e j )K̂ e j ;

(Step C: second estimate θ̂)
7: compute

(
argminθ‖Bθ−η−2πK̂ ‖)2π s.t. θ1 = 0.

a greater amount of communication and collaboration among nodes. In fact, as already

mentioned, it is required that an agent is associated with each cycle, and it must know all the

measurements along the edges of its cycle.

Let us illustrate how the Minimal cycles-algorithm works with the following simple example.

Example 4.9. Consider the simple graph in Figure 4.3. For such a graph, the minimal cycles

are h1, . . . , h5, and the edges are 1, . . . , 13. Assume that b1 = 1, b2 = 2, b3 = b4 = b5 = 0, where

b =−q2π(Rη). Edges 1, . . . , 8 form a spanning tree T of the graph. First of all, set K̂ 1 = . . . K̂ 8 = 0.

Now, cycles h1 and h2 are made of edges of the tree apart from the edges 9 and 10 respectively.

Thus h1 sets K̂ 9 = 1, while h2 sets K̂ 10 = −2, since the direction of 10 is incoherent with the

orientation of h2. Once this is done, we know the value of K̂ along all the edges of h3 and h4,

apart from 12 and 11 respectively. In order to guarantee that the sum over the cycles h3 and h4 is

equal to b3 and b4 respectively, we can derive K̂ 12 = 2 and K̂ 11 = 1. Finally, all the edges e 6= 13

of h5 have have their corresponding K̂e already assigned, so it suffices to set K̂ 13 =−3. Now the

sum of K̂ over the five minimal cycles corresponds to b entry–wise.

61



Chapter 4. Synchronous distributed calibration algorithms
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Figure 4.3: A simple graph to show how the second algorithm works.

4.6 Resilience against measurement noise for different graph topolo-

gies

In this Section we compare the two algorithms we have proposed for several different graph

topologies. We concentrate on grid-like topologies, since they can be used to model real

networks of cameras. In order to draw the comparison, consider the graphs shown in figure 4.4.

In both cases we have a line–like graph with many nodes deployed along one dimension, and

the chosen spanning trees are shown in thick lines. They are rooted on the anchor on the most

left-top node. The set of the minimal cycles basis is simply the set of squares which form the

graph.

Figure 4.4: Two examples of spanning trees for a line–like graph. The proposed algorithms
work in a similar manner for the one on the right, while the Minimal cycles-algorithm is far
more effective for the one on the left.

For the graph on the left, if we take the tree and we add the last edge on the right we obtain a

cycle with maximum length N . On the contrary, the minimal cycles are of length L0 = 4. As an

immediate consequence, the Minimal cycles-algorithm has much better performance since

the upper bound ε̄< π
4 is independent on the number of nodes. On the other hand, in order

the Tree-algorithm, to produce a good estimate K̂ , the magnitude of the noise should decrease

with the dimension of the graph.

If we consider instead the spanning tree on the right, we can see that the fundamental cycles
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have length 4 as well, since the spanning tree is chosen in a much better way. In this case, the

two algorithms have the same performance.

If we consider the ring graph in Figure 4.5, we can easily see that there is only one minimal

cycle. Here the two proposed algorithms coincide. In such a case, the Tree-algorithm is better,

since it is easier to implement and completely distributed, it requires less information on the

topology of the network, as well as less communications.

Figure 4.5: On the left a ring graph, for which the two algorithms have the same performance.
On the right, a grid graph.

Indeed, consider the 2D grid on the right in Figure 4.5. The comb-shaped spanning tree is the

one in thick line. Here we see that the maximum length of the fundamental cycles grows as
p

N .

Since it can be proved that the maximum length of fundamental cycles in any spanning tree

on a 2D grid grows at least as
p

N , the chosen spanning tree already achieves the maximum

resilience to measurement noise. On the contrary, the minimum cycles always have length

equal to 4. Thus, in this case the Minimal cycles-algorithm has always better performance

than the Tree-algorithm. Notice that the choice of the spanning tree is fundamental to draw a

comparison between the algorithms.

4.7 Numerical results

In this Section we provide numerical comparison between the two approaches we propose in

this Chapter, and the frame localization algorithm proposed in Piovan et al. [2011b].

In the first experiment we simulate the Tree-algorithm and the Minimal cycles-algorithm

on square grids of size N = n2, for n ranging from 3 up to 20. An example of square grid is

depicted in Figure 4.6 (left panel), where n = 4. In the same Figure, we also depict the type of

spanning tree we use to build the T -fundamental cycles. The construction is analogous for

different values of n.
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anchor anchor

Figure 4.6: On the left a square grid graph for n = 4. On the right the correspondent spanning
tree used in simulations.

In all simulations we set θ̄1 = 0, while, for v ∈ {2, . . . , N }, θ̄v is randomly sampled from a

uniform distribution on [−π,π). The values of the noises εe , e ∈ E , are randomly sampled from

a uniform distribution on [−ε̄, ε̄], where ε̄= π
8 . For each n, the values we plot are averaged over

200 trials. Different θ̄ and a different set of noises are generated for each trial.

On the left panel of Figure 4.7, we plot the estimate error

W (θ̂) = 1

N
‖(θ̄− θ̂)2π‖2

for both the Tree-algorithm and the Minimal cycles-algorithm. On the right panel, we plot the

error on K̄ defined as

eK = 1

M
‖K̄ − K̂ ‖2.

The choice for ε̄ was dictated by the inequality

π

L0
= π

4
> π

8
= ε̄,

which implies that the Minimal cycles-algorithm always correctly estimates K̄ . On the contrary,

observe that, in the case of the Tree-algorithm, eK is zero only for low values of n. To conclude,

notice that the behavior of W (θ̂) in the case of minimal cycles is approximately logarithmic

in the number of nodes N , as predicted in Section 4.4.3. As expected, the Minimal cycles-

algorithm outperforms the Tree-algorithm.

The second experiment concerns the comparison with the procedure proposed in Piovan

et al. [2011b], which we call FL for Frame Localization. The goal of this algorithm, as ours, is to

obtain an estimate of θ̄ from the measurements η. The basic idea of the FL algorithm is that
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Figure 4.7: Average error on the orientations (modulo 2π) and error on K̄ in case of 2−D grid
with N = 9, . . . ,400. The circle–marked plot corresponds to the Minimal cycles-algorithm, the
crossed-marked one to the Tree-algorithm.

measurements along cycles of the graph should sum up to multiples of 2π, as it happens in a

noise–free scenario. Thus, in the FL algorithm first of all a Z–basis of Γ is selected. Then, it

aims to solve the following minimization problem

ψ̂= argmin
ψ∈RE s.t. (Rψ)2π=0

||(ψ−η)2π||2, (4.21)

where the rows of R ∈Z(E \ET )×E are the Z–basis of Γ. In order to minimize the expression in

(4.21), the authors propose the following iterative procedure


ψ(0) =η

ψ(t +1) =ψ(t )−κRT (Rψ(t ))2π

where κ is a strictly positive real number. If κ is small enough, then the algorithm converges

to a vector ψ∞ such that (Rψ∞)2π = 0 (Theorem 12, Piovan et al. [2011b]). Once ψ∞ is

determined, the estimate θ̂ can be found spreading the information from the anchor, similarly

to what is done in (4.20).

Remark 4.10. It is worth remarking that, for both the Tree-algorithm and the Minimal cycles-

algorithm, it is possible to provide a closed form expression for the estimate of θ̄, see (4.19).

Further research might lead to a better understanding of the influence of the measurement

noise on the algorithm performance. Instead, as far as the FL algorithm is concerned, no closed
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formula is known forψ∞, which seems to depend on the choice of the parameter κ. Moreover,

there is no guarantee thatψ∞ is the solution to the minimization problem in (4.21).

In the comparisons, we use the same set of measurements for all the estimation algorithms,

and the FL algorithm is run taking the families of T -fundamental cycles and the minimal

cycles. The results of the first simulation are shown in Figure 4.8, left panel. In this case, the

threshold for the error is again set at ε̄= π
8 . The plots are the averaged value of W (θ̂) over 200

simulations. The Figure depicts the plots for the Tree-algorithm, the Minimal cycles-algorithm,

and the FL algorithm run using the T -fundamental cycles. The plot for FL algorithm run using

the minimal cycles is not shown, since it overlaps the plot of the Minimal cycles-algorithm.

It can be seen from the Figure that, for low values of n, K̄ is correctly estimated by the Tree-

algorithm and all the algorithms seem to provide similar performance. For higher values of n,

the FL algorithm seems to perform better on the T -fundamental cycles. This suggests that

also for the FL algorithm the length of the cycles influences the performance.

On right panel in Figure 4.8, we propose a second comparison in case the measurements are

corrupted by a large noise, setting ε̄= π
3 . Notice thus that, in this case, there is no guarantee

that K̄ is correctly estimated, even if we exploit the minimal cycles. The plotted values are

obtained averaging over 100 simulations on grids of dimension n = 3,4, . . . ,10. In this case,

we show the plots of the results using the FL algorithm on both T -fundamental cycles and

minimal cycles. As in the previous simulations, the Tree-algorithm is always outperformed by

the FL algorithm, but it is also true that the Minimal cycles-algorithm gives the best perfor-

mance. From our numerical experiments, the FL algorithm has somehow an intermediate

performance, and they show anyway that the shorter the cycles are, the better the estimates

are.

4.8 Conclusions

This Chapter proposes two versions of an algorithm which allows a network of cameras to

autonomously calibrate, more precisely to determine an estimate of their orientations w.r.t. a

common reference frame. This algorithm is suitable to be distributed rather easily over the

cameras which can act as agents in a multi-agent system. The proposed algorithm is based on

a two steps procedure. In the first step, the algorithm estimates a vector of integers K̄ coding
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Figure 4.8: Comparison with the Frame Localization algorithm. On left panel, average error on
the orientations (modulo 2π) in case of 2−D grid with N = 9, . . . ,400 and small measurement
noise. On the right panel, in the case of N = 9, . . . ,100 with large measurement noise. The
plot compares the Minimal cycles-algorithm (cross–marks), the Tree-algorithm (circle-marks),
the FL algorithm using T -fundamental cycles (square-marks), and the FL algorithm using
minimal cycles (diamond-marks). On the left panel, the results of FL algorithm on minimal
cycles are not shown since they overlap those of Minimal cycles-algorithm.

the region of convexity which the global minimum is believed to belong to. In the second step,

the algorithm performs the computation of the minimizer belonging to the selected region of

convexity. Compared with other existing algorithms, this procedure permits to understand

the properties of the proposed solution and to understand when this solution is correct.

More investigations are needed for obtaining in this field of research, in the following direc-

tions.

• We believe that the proposed algorithm could be improved by obtaining a better estimate

of the vector of integers K̄ based on the maximum a posteriori MAP estimation or on

the maximum likelihood ML estimation.

• A more refined performance analysis has to be done, in terms of the error to gain the

estimate K̄ , and in terms of the index W (θ) proposed in (4.3).

• Finally, the more general case of cameras deployed in R3, and thus rotational calibration

in SO(3), needs to be addressed.
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5 Asynchronous distributed calibration

algorithm

This chapter focuses on the problem of calibrating planar networks of cameras in a distributed

and asynchronous fashion. In many practical applications, it is not possible to have syn-

chronous communications, and unpredictability is an intrinsic and unavoidable characteristic

of the environment and the network itself. The camera network is modeled by a graph, and

along each edge a noisy relative angular measurement is available. The goal is to achieve the

absolute orientation of each camera with respect to a fixed external reference frame, in order

to be able to perform monitoring and patrolling tasks. The idea is to exploit the cycles in the

graph, along which all relative measurements sum to zero, in order to eliminate the noise.

We design a distributed algorithm for the cameras to autonomously calibrate and we adopt

an asynchronous gossip-like communication protocol. The proposed algorithm is proved to

converge, almost surely and in the mean square sense, to the set of angles with zero cycle error.

Finally, numerical experiments are presented to compare the performance of the algorithm

on different graph topologies.

5.1 Introduction

The main characteristic of the calibration algorithm we propose is its randomness and asyn-

chronous mode of operation. Distributed estimation algorithms with asynchronous random-

ized mode of operation have been considered by the control community in the last years, see

e.g. Tsitsiklis [1984], Fagnani and Zampieri [2008]. In many practical applications collisions

among messages in a sensor network may happen and delete data, and for example in the case

of processor nets it is not possible to transmit data to more than one node at the same time
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instant. The same may happen when the agents in the networks are inherently unpredictable,

like human beings opinions or animals in geometric formation, also known as flocking phe-

nomena. Intrinsic limitations in such large multiagent networks must be taken into account

even if the networks we consider are quite dense. The use of randomized algorithms turns to

be appealing, since they allow to achieve better performance than deterministic ones with

comparable complexity. In networked system control, randomness may be due to the choice of

a randomized network communication protocol. Random linear schemes have been studied

for instance in Boyd et al. [2005], Kempe et al. [2003], Fagnani and Zampieri [2008], Boyd et al.

[2006], known as gossip algorithms, in which the evolution matrix of the algorithm changes

randomly at every time step. Convergence has to be considered in a probabilistic sense and

performance is studied in mean square sense.

As in Chapter 4, we deal with a camera network, in which each agent is equipped with a

video device and the applications can include motion capture, monitoring, tracking and

surveillance issues. The importance of the calibration problem in a coordinate autonomous

camera network is clear, from the previous Chapter. As before, the cameras are supposed to lie

in the same plane, and the input data that cameras have are the noisy relative orientations of

neighboring cameras.

Note that, the distributed calibration algorithm proposed in Chapter 4 is deterministic and

synchronous by construction. As a first attempt, one could try to slightly modify the latter

to obtain a randomized and asynchronous mode of operation in the evolution of each node.

Nevertheless, disregarding the choice of cycles in the graph on which we base the first estima-

tion step of the integer vector K , the procedure is strongly iterative, and follows a constraining

logic to exploit our information on the network topology. In other words, at each time step,

each agent i needs to receive data from the other nodes belonging to the neighboring cycles

to which i belongs. Agent i cannot update its estimate of K , without the whole data packet

previously described. Thus an asynchronous random procedure may slow the convergence

time, and make the algorithm not applicable in real life situations. Once the vector of integers

K (see Section 4.2) is obtained, the second estimation step can be easily randomized, since it

is a gradient flow of a convex function, Bertsekas and Tsitsiklis [1997].

Therefore, a different approach is required, and our focus is to accomplish the calibration task

with a completely distributed and asynchronous random algorithm. We assume the commu-

nication protocol to be random gossip-like (see Boyd [2006], Fagnani and Zampieri [2008]),
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in which at each iteration only one link is updated gathering only the states of neighboring

cameras. Convergence is considered in a probabilistic sense and performance is studied in

terms of mean square convergence.

The algorithm is proved to converge in the mean square sense for general planar graphs, and

the cycle-error vector has null variance. If we focus on ring graphs, the proposed algorithm

converges almost surely, and in addition the expected value of the limit random variable

equals the optimal solution, written in closed form. We also characterize the convergence

speed proving that the estimate approaches the limit value exponentially fast. Numerical

experiments are run to show further properties of the algorithm on planar graphs, and to

investigate its performance on non-planar graphs.

In literature, the so-called localization problem (restricted to the position vector) has been

deeply investigated in Barooah and Hespanha [2005], Barooah et al. [2006], Barooah and

Hespanha [2007], as already pointed out in the Introduction of this thesis, the optimality of

the solution is shown and the scalability with respect to the number of nodes is characterized.

In Sarlette et al. [2006], Sarlette and Sepulchre [2009a], Sarlette [2009a] a consensus algorithm

over SO(2) is presented, based on the gradient flow of a cost function defined by means of

the geodesic distance, while in Tron and Vidal [2009a] a similar cost function is considered,

involving the chordal distance, and they face the more general problem of calibration in

SE(3). In both cases the cost function shows different local minima. An approach based on a

non-convex optimization problem is considered in Borra et al. [2012a, a], explained in Chapter

4 of this thesis. A similar approach has also been exploited in Piovan et al. [2011a] where

estimation is carried on by projecting the relative measurements into the sub-manifold of

vectors whose sum along the cycle of the graph is a multiple of 2π.

The remainder of this Chapter is organized as follows. We first refer to Section 2.1 in order

to recall basic definitions concerning algebraic graph theory. The outline is the following. A

description of the setup, already provided in Section 4.2, and the minimization problem we

want to deal with is developed in Section 5.2, and we also recall the deterministic algorithm

in Piovan et al. [2011a], adding some performance analysis. In Section 5.3, the proposed

algorithm is presented and Section 5.4 contains the convergence properties for general planar

graphs (Section 5.4.1) and ring graphs (Section 5.4.2). Numerical experiments validating our

analysis are provided and investigating the case of non-planar graphs in Section 5.5. Finally
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the conclusions of the Chapter are drawn in Section 5.6.

5.2 Problem setup

We refer to Section 4.2 for the formal statement of the problem of calibrating a planar camera

network. Each camera can measure its noisy relative orientation with respect to its neighbors,

and formally we denote the relative noisy orientation along every edge e ∈ E as

ηe = (θ̄s(e) − θ̄t (e) +εe )2π,

where εe ∈ R is a bounded noise. More precisely, there exists ε̄ ∈ R>0, such that |εe | ≤ ε̄, for

each e ∈ E and for each realization. Define ψ̄e := (Bη)e = θ̄s(e) − θ̄t (e), where B is the incidence

matrix. Let η ∈ [−π,π)E , θ̄ ∈ [−π,π)V ,ψ̄ ∈ [−π,π)E , and ε ∈ [−ε̄, ε̄]E denote the vectors of all

ηe , θ̄i ,ψ̄e and εe respectively. The goal of the Chapter is to find a distributed algorithm that,

given the relative measurements η, estimates the absolute poses of the cameras, up to integer

multiples of 2π. If we apply to the vector θ̄ a global translation of integer multiples of 2π, the

corresponding relative orientations do not vary. Therefore, without affecting generality, we fix

an anchor node, called root (say node 1), that knows exactly its orientation with respect to the

external reference frame.

In the noiseless case, an efficient way to reconstruct (exactly) θ̄ from η can be achieved

considering any spanning tree T of the graph. For every node i ∈ V , θ̄i can be obtained

starting from the root value θ̄1 and adding the relative orientations along edges in the shortest

path connecting the root to node i .

In principle this can also be done in the noisy case; nevertheless, in this way we do not take

advantage of all the redundant measurements corresponding to edges in E \ET . Notice that in

the noisy case, different spanning trees will lead to different estimations. The mathematical

reason being that in general the sum of the relative orientation along closed paths will not be

equal to 0.

In Piovan et al. [2011a], the following estimation approach is proposed: first η is projected

onto the manifold of vectors having the property that sums along closed paths are 0 and then

the estimation is obtained through a spanning tree as explained above. We now explain in

detail the idea as our proposed algorithm is going to be a randomized asynchronous version
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of this one.

Step 1 corresponds to solve the following non-convex and non-linear problem.

Problem 5.1. (Planar orientation localization problem) The noisy relative orientations are

given, i.e. η = (ψ̄+ε)2π, where ψ̄ = B θ̄ are the correct relative orientations and ε the noise

vector. Find an estimate of the relative orientation ψ̂ ∈ [−π,π)E such that

 ‖(ψ̂−η)2π‖2 = minψ
∥∥(ψ−η)2π

∥∥
2 ,

rcψ̂= 0 mod 2π, for every cycle c.
(5.1)

In Piovan et al. [2011a], the authors solves Problem 5.1 in distributed fashion, with a syn-

chronous algorithm, here recalled. In the next we use the following definitions. First, define

the cycle-error vector at time t ∈N as ε̂(t ) := Rψ̂(t ) ∈RM−N+1, therefore ε̂(0) := Rη is the initial

error on cycles. Second, the projected cycle-error vector at time t ∈ N is ε(t) := (Rψ̂(t))2π ∈
[−π,π)M−N+1. For each iteration t ∈N, the following update is performed

 ψ̂(0) =η,

ψ̂(t +1) = ψ̂(t )−kRT (Rψ̂(t ))2π.
(5.2)

Step 2 consists in finding the estimate θ̂ of the absolute poses θ̄ starting from the anchor

value θ̄1 and adding the corresponding estimated relative orientations ψ̂ along the the min-

imum path in the spanning tree T connecting each node to the anchor. This final step is

straightforward and can be performed in a distributed way, therefore our focus is on Step 1.

Concerning Step 1, the authors in Piovan et al. [2011a] provide convergence results, stating

that ψ̂ solves Problem 5.1. We now provide a corollary of that result (see [Piovan et al., 2011a,

Theorem 12]) concerning the convergence rate and the error of the estimate provided by their

algorithm, depending on the topology of the underlying graph.

Theorem 5.2. (Error characterization for the synchronous algorithm) Given G = (V ,E ), and

the noisy relative measurements η ∈ [−π,π)E , let ψ̂ ∈ [−π,π)E be the estimate provided by

Algorithm in Piovan et al. [2011a] in Eq. (5.2) with stepsize 0 < k < 2/(1+λmax (C )), then

‖ψ̂−η‖2 ≤
√
λmax (C )

2−k
‖(Rη)2π‖2 (5.3)

where λmax (C ) denotes the largest eigenvalue of the essential cycle matrix C . Moreover
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(i) Ring graph: λmax (C ) = N ;

(ii) Grid graph: λmax (C ) ≤ 8;

(iii) Complete graph: λmax (C ) ≤ 6;

(iv) If G is such that each edge belongs to s minimal cycles, and the minimal cycle length is l :

λmax (C ) ≤ l · s. Notice that if G is planar s = 2.

Proof. In order to prove Eq. (5.3), note that for every edge e

‖ψ̂e (t )−ηe‖2 = ‖
t−1∑
s=0

ψ̂e (s +1)− ψ̂e (s)‖2 ≤
t−1∑
s=0

k‖RT ψ̂(s)‖2.

Hence, passing to the limit as time goes to infinity, and defining ψ̂ := ψ̂(∞) = lim
t→∞ψ̂(t), it

holds

‖ψ̂−η‖2 ≤
∞∑

s=0
k‖RT ε(s)‖2 ≤ k

1−ρ ‖RT ‖2‖ε(0)‖2 = ‖RT ‖2‖ε(0)‖2

2−k
≤ λmax (C )1/2

2−k
‖(Rη)2π‖2.

We used the fact that ‖ε(t )‖2
2 ≤ ρt ‖ε(0)‖2

2 ,ρ = (1−k)2 (see [Piovan et al., 2011a, Theorem 12])

and
∥∥RT

∥∥
2 = ‖C‖1/2

2 =
√
λmax (C ). Then, to achieves the subsequent estimates of the largest

eigenvalue of C , it suffices to apply Gershgorin Theorem and to observe that Cci ,c j = r ci r T
c j

.

5.3 Description of the proposed algorithm

The algorithm we proposed is a randomized asynchronous version of the one proposed in

Piovan et al. [2011a] and it is formally described in Algorithm 3.

In the last step the updated value information is locally spread along the graph as follows: if

e(t) is the selected edge at time t , for every cycle c such that rc (e(t)) 6= 0, send the updated

state ψ̂e (t ) to all f ∈ E with rc ( f ) 6= 0.

The update can be rewritten as

ψ̂e (t +1)− ψ̂e (t ) =
 −k

∑
c∈F rc (e)εc (t ), ife(t ) = e,

0, otherwise,
(5.4)

If we define Ie = (ikl ) ∈ {0,1}M×M as the null matrix except for ie,e = 1 Eq. (5.4) in vector form
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Algorithm 3 Asynchronous-Gossip-Algorithm

(Input variables)
η1, . . . ,ηM noisy relative orientations;
r c1 , . . . ,r cM−N+1 minimal cycles vectors;
τ time horizon;
k stepsize;

(Step A: initialization)
ψ̂(0) =η;

(Step B: estimate (B θ̄)2π)
for t = 1, . . . ,τ do

Choose randomly e ∈ E ;
ψ̂+

e = ψ̂e −k
∑M−N+1

i=1 rci (e)(r ci ·ψ̂)2π;
Send ψ+

e to all f ∈ E such that f ∈ ci and rci (e) 6= 0.

takes the form

ψ̂(t +1) = ψ̂(t )−kIe(t )R
T ε(t ). (5.5)

In the following we take the initial error ε as fixed (not random). Randomness is thus com-

pletely coded in the sequence of chosen edges e(t) which we assume to be independent

and uniformly distributed in the set of all edges. Note that ε(t) and ˆψ(t ) are random vari-

ables. E will denote expectation with respect to the choice of the sequence e(t). Also, for

a generic random vector, we will use the notation ‖ f ‖L2 to denote the mean square norm:

‖ f ‖L2 := (E‖ f ‖2)1/2, where ‖ ·‖ is the usual Euclidean norm of a vector.

5.4 Perfomance analysis

In this section we analyze the behavior of the proposed gossip algorithm for the special class

of planar graphs.
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5.4.1 General graphs

From Eq. (5.5), we can determine the dynamics of the cycle-error vector ε(t ):

ε(t +1) = (Ue(t )ε(t ))2π (5.6)

where, we recall, e(t ) is the randomly selected edge at time t , and Ue is a square (M −N +1)-

dimensional matrix defined as

Ue := I −kRIe RT . (5.7)

Note that Ue is symmetric, positive semidefinite, for every e ∈ E . Moreover,

(Ue )cc ′ =



1, ifc = c ′,e 6∈ supp(c)

1−k, ifc = c ′,e ∈ supp(c)

k, ifc 6= c ′ ,e ∈ supp(c)∩ supp(c ′)

0, otherwise.

It turns out that Ue is stochastic for any non-border edge e, while is sub-stochastic if e

is a border edge. Since Ue is a stochastic or sub stochastic matrix, it follows that if x ∈
[−π,π)N−M+1, then also Ue x ∈ [−π,π)N−M+1. This has an importance consequence: since

ε(0) ∈ [−π,π)M−N+1, it follows that the dynamics of the ε(t) actually satisfies the simpler

dynamics

ε(t +1) =Ue(t )ε(t ). (5.8)

We can now state the following convergence result.

Theorem 5.3. (Convergence and estimate characterization for general graphs) Given a con-

nected planar graph G = (V ,E ), the noisy relative measurements η ∈ [−π,π)E and the stepsize

0 < k < 1, then there exists a r.v. ψ̂(∞) taking values in RE , a number ρ ∈ [0,1) such that

(i) ψ̂(t ) converges to ψ̂(∞) almost surely and exponentially fast in mean square sense, that

is

‖ψ̂(t )−ψ̂(∞)‖L2 ≤ k‖RRT ‖1/2

M(1−ρ)
ρt‖ε(0)‖L2 ; (5.9)
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(ii)

‖ψ̂(∞)−η‖L2 ≤ k‖RRT ‖1/2

M(1−ρ)
‖ε(0)‖L2 ; (5.10)

(iii) the limit cycle-error vector is null, that is

ε(∞) := (Rψ̂(∞))2π = 0 a.s..

Proof. (i) It follows from (5.8) that, for every t ≥ 0, ε(t) =Ue(t ) . . .Ue(1)ε(0). Fix now a border

edge e∗ and notice that we can always build a sequence of edges e j1 , . . . ,e js such that e j1 = e∗,

e jl and e jl+1 always belong to the same minimal cycle, and for every minimal cycle c ∈ F

there exists e jl with rc (e jl ) 6= 0. This simply follows from the fact that the dual graph of G is

connected and by considering a path in this graph starting from the minimal cycle which e∗

belongs to and touching all other minimal cycles. Consider now Q =Ue js
· · ·Ue j1

. It is sub-

stochastic since Ue j1
is so and the others are stochastic or sub-stochastic. Moreover, a simple

induction argument shows that no row of Q sums to 1. Put α := ‖Q‖∞ = maxc (Q1)c ∈ (0,1).

Considering that the probability that the sequence of edges e j1 , . . . ,e js is chosen from left to

right has a positive probability p (equal to p = M−s), it follows, by Chernoff bound, that for

any r = 1, . . . t∗, it holds

P(‖ε(ns + r )‖∞ ≤αnp/2‖ε(r )‖∞ ≥ 1−e−nβ

where β> 0. An application of Borel-Cantelli Lemma now yields that ε(t ) is summable almost

surely. From (5.5) it immediately follows that ψ̂(t ) is a Cauchy sequence almost surely, so that

it converges, almost surely, to a measurable r.v. ψ̂(∞).

We now investigate convergence in mean square sense. Notice that

E[‖ε(t +1)‖2] = E[εT (t )U 2
e(t )ε(t )] = E[E[εT (t )U 2

e(t )ε(t ) | e(0), . . . ,e(t −1)]] = E[εT (t )E(U 2
e(t ))ε(t )],

and E(U 2
e(t )) is a symmetric matrix. If we denote by ρ2 its spectral radius (largest in modulo

eigenvalue), we can estimate E[‖ε(t +1)‖2] ≤ ρ2E‖ε(t )‖2. This yields, for all t ≥ 0,

‖ε(t +1)‖L2 ≤ ρt‖ε(0)‖L2 . (5.11)
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Let us now verify that ρ ∈ [0,1). Indeed, since U 2
e inherits the property of Ue , namely it

is stochastic (resp. sub stochastic) if Ue is so, and since Ue is sub-stochastic with positive

probability, it turns out that the average E(U 2
e(t )) is sub-stochastic. Moreover, it is easy to see

that is also irreducible since the corresponding graph coincide with the dual of G , defined in

Section 2.1. This implies the thesis on ρ.

From (5.5) it now immediately follows that ψ̂(t ) is a Cauchy sequence in L2 sense, so that it

must converge to ψ̂(∞) in mean square sense too. Moreover we can estimate

‖ψ̂(∞)−ψ̂(t )‖L2 ≤ k
+∞∑
s=t

‖RT Ie(s)ε(s)‖L2 ≤ k

M

+∞∑
s=t

‖RRT ‖1/2ρs‖ε(0)‖L2 .

This immediately yields (5.9).

(ii) The thesis follows immediately from previous relation by taking t = 0.

(iii) Suppose by contradiction ε(∞) := (Rψ̂(∞))2π 6= 0, then it would exist a cycle c, numbers

n ∈N and k ∈Z such that

P(Rψ̂(∞)c ∈]n−1,2π−n−1]+2kπ) > 0.

Since Rψ̂(t ) → Rψ̂(∞), it follows that

P(∃t0 : Rψ̂(t )c ∈]n−1,2π−n−1]+2kπ, ∀t ≥ t0) > 0

which yields

P(∃t0 : |((Rψ̂(t ))2π)c | > n−1, ∀t ≥ t0) > 0.

This contradicts the fact that ε(t ) = (Rψ̂(t ))2π→ 0 almost surely. The proof is thus complete.

From the proof of Theorem 5.3, a very simple characterization for the rate of convergence

ρ can be obtained. Indeed it coincides with the spectral radius of the sub stochastic matrix

E[U 2
e ]. We now carry on an analysis of this matrix for planar graphs in Theorem 5.4.

Theorem 5.4. (Asymptotic misplacement towards initial estimate) Given a connected planar

graph G = (V ,E ), the noisy relative measurements η ∈ [−π,π)E and the stepsize k ∈ (0,1), the
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Figure 5.1: Consider a planar grid graph G = (V ,E ), with |V | = N = 52 and thus |E | = 2N −
2
p

N = 42. This figure shows the M −N +1 = 18 (they may have multiplicity greater than 1)
eigenvalues (blue lines) of the substochastic matrix E[U 2

e ] defined in Eq. 5.13. The eigenvalues
are functions of the algorithm stepsize k ∈ (0,1). From this plot, we can compare the spectral
radius ρ of the latter matrix, with the upper bound (red line) shown in Theorem 5.4.

spectral radius ρ := ρ(E[U 2
e ]) satisfies the inequality

ρ ≤ 1−2
k(1−k)

M
λmi n(C ) ≤ 1−2

k(1−k)

M
< 1. (5.12)

Before proving Theorem 5.4, let us present the following instrumental Lemma.

Lemma 5.5. (Matrices with equivalent spectral properties) Given an invertible diagonal ma-

trix J ∈ RM×M , and the cycle matrix R ∈ R(M−N+1)×M associated with a planar graph G (cfr.

Section 2.1.1), the following matrices have the same non-zero eigenvalues

M1 := R JRT ,

M2 := RT R J .

Proof. Suppose λ ∈R\ {0} , v ∈RM−N+1 are associated eigenvalue and eigenvector respectively,

i.e. M1v =λv . Then consider w = RT v , it follows that M2w =λw . Note that v ∈ ker(RT ) ⊆RE

if and only if, for each edge e, the number of adjacent cycles oriented coherently and resp.

incoherently with e is the same. This does not hold for border edges, thus ker(RT ) = {0}.

From the injectivity of the linear map RT , that is Im(RT ) =RM−N+1, we can conclude that the

non-zero eigenvalues of M1 are the same of M2.
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Proof of Theorem 5.4. We start computing explicitly U 2
e for a planar graph, in the case (A1) e

border edge, and (A2) e internal edge.

(A1) If e is a border edge, then

(U 2
e )c,c ′ =


(1−k)2, if c = c ′,e ∈ supp(c)

1, if c = c ′,e ∉ supp(c)

0, if c 6= c.

(A2) If e is not a border edge, then

(U 2
e )c,c ′ =



2(1−k)k, if c 6= c ′,e ∈ supp(c)∩ supp(c ′)

(1−k)2 +k2, if c = c ′,e ∈ supp(c)

1, if c = c ′,e ∉ supp(c)

0, otherwise.

Note that Ue in case (A1) is substochastic, while in case (A2) is stochastic. From Eq. (5.7) we

compute

U 2
e = I −2kRIe RT +k2RIe RT RIe R

and thus

E[U 2
e ] = I − 2k

M
C + k2

M
RDE RT = I − k

M
R(2I −kDE )RT (5.13)

where C = RRT is the essential matrix, DE is a diagonal matrix with Dee is the number of cycles

adjacent to edge e. Since G is supposed to be planar, Dee ∈ {0,1,2}. Let us denote by Ic (resp.

Bc ), the number of internal (resp. border) edges of c . In the new notations dc = Ic , |c| = Ic +Bc ,

and DE r T
c = 2Ic +Bc is the weighted sum of the edges in cycle c, thus

(E[U 2
e ]1)c = 1− 2k

M
Bc + k2

M
Bc

(E[U 2
e ])cc = 1− 2k

M
(Ic +Bc )+ k2

M
(2Ic +Bc )

using the fact that internal edges e have weight 2 in DE . As already proved in Theorem 5.3,

since there exists at least a border cycle c such that (E[U 2
e ]1)c = 1−(k+2)Bc < 1, it can be easily
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verified that E[U 2
e ] is substochastic. Hence

ρ = 1−k/Mλmi n(R(2I −kDE )RT ),

and also the matrix R(2I −kDE )RT is substochastic. From Lemma 5.5, the eigenvalues of

(2I−kDE )RT R are also the only non-zero eigenvalues of R(2I−kDE )RT , therefore we estimate

ρ using the first latter matrix. Recall that C = RRT and λmi n(RT R) =λmi n(C ), and λmi n(AB) ≤
λmi n(A)λmi n(B) for any two matrices A,B , then

λmi n((2I −kDE )RT R) ≤λmi n(2I −kDE )λmi n(C ) = 2(1−k)λmi n(C ).

Thus we can derive the thesis, that is Eq. (5.12).

From Theorem 5.2 and Theorem 5.3, (ii) provides bounds on the distance between the initial

noisy orientations η and the final estimates obtained by means of the synchronous and

asynchronous gossip-like algorithm respectively. They both depend on the stepsize k and the

graph topology by means of the essential matrix C (see Section 2.1.1).

Remark 5.6. (Comparison of asymptotic misplacement towards initial estimate) Let us de-

fine

c :=
√
λmax (C )‖ε(0)‖L2 =

√
‖C‖2‖ε(0)‖L2 ,

therefore we have to compare

‖ψ̂1 −η‖ ≤
c

2−k
, ‖ψ̂2 −η‖ ≤

ck

M(1−ρ)
(5.14)

where ρ = ρ(E[U 2
e ]), ψ̂1 is the estimate given by the synchronous deterministic Algorithm defined

in Eq. (5.2), and ψ̂2 is provided by Algorithm in 3. From Theorem 5.4, we can derive that

‖ψ̂1 −η‖ ≤
c

2−k
, ‖ψ̂2 −η‖ ≤

c

(2−2k)λmi n(C )
≤ c

2−2k
.

In conclusion, the deterministic synchronous algorithm and the asynchronous one, have com-

parable performances, in terms of final error of the relative orientation estimate.

Of course, a fundamental fact missing in performance analysis of Theorem 5.3, is an estima-
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1

N

Figure 5.2: This figure shows a ring graph (left), and a grid graph (left) as an example of a
planar graph. Algorithm 3 is analyzed on these different communication networks in Section
5.4.1 and 5.4.2 respectively.

tion of the displacement respect to the optimal solution ‖ψ̂(∞)−ψ∗‖L2 . In this work we will

limit this analysis to the case of a ring graph.

5.4.2 Ring graphs

Consider a ring graph G = (V ,E ) with |V | = N . There is just one minimal cycle corresponding

to r = 1, see Fig. 5.2 (left). Note that Theorem 5.3 applies also in this case, but we can

characterize additional properties of the estimate ψ̂.

Notice that, if e is the sampled edge, the only updated component is

ψe (t +1) =ψe (t )−k
(
1ψ(t )

)
2π ,

that can be casted in vector form as ψ̂(t +1) = ψ̂(t )−kbe(t )ε(t )

ψ̂(0) =η
(5.15)

where be(t ) ∈ {0,1}N is defined as 1 in the component e(t ), and 0 otherwise. First, let us notice

that the dynamics on the (scalar) cycle-error becomes deterministic, i.e. Eq. (5.8) becomes

ε(t +1) = ((1−k)ε(t ))2π = (1−k)ε(t ). (5.16)

This has an immediate consequence: ˆψ(t ), which is still a sequence of random variables,
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always converges to ˆψ(∞) (and not just almost surely). Moreover, equation (5.15) immediately

yields

ψ̂(∞) =η−k

( ∞∑
s=0

(1−k)sε(0)be(s)

)
. (5.17)

It is straightforward to compute an optimal solution of Problem 5.1 (see also Kaczmarz [1993])

for a ring graph, as follows

ψ∗ =η− 1

N
r T (rη)2π. (5.18)

If we run the Algorithm described in Eq. (5.2) with k = 1/N , we obtain ψ∗ in one time step

(see Piovan et al. [2011a]). From Eq. (5.17) and (5.18) we further obtain

‖ψ̂(∞)−ψ∗‖L2 = ‖k
+∞∑
s=0

(1−k)sε(0)[be(s) −N−11]‖L2 ≤ k
+∞∑
s=0

(1−k)s |ε(0)|‖be(s) −N−11‖L2

≤ k
+∞∑
s=0

(1−k)s |ε(0)|(1−N−2)1/2 ≤ |ε(0)|.

The latter difference remains bounded, it does not depend on the number of nodes N , and it

implies

N−1‖ψ̂(∞)−ψ∗‖L2 =O(N−1). (5.19)

This can be rephrased also saying that the difference between the estimate in the two algo-

rithms per edge goes to 0 as N is asymptotically large.

5.5 Numerical examples

In this section we validate our distributed asynchronous Algorithm 3 through a numerical

study.

5.5.1 Experiments on planar graphs

First, we consider a ring graph G = (V ,E ) with |V | = N = 20 as depicted in Fig. 5.3 (left). Recall

that ψ̄ denotes a solution to Problem 5.1, andψ∗ is the optimal estimate given by Algorithm

in Eq. (5.2). We run Algorithm 3 several times, that is, we sample 50 different sequences of
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Figure 5.3: In the left figure we consider a ring graph G = (V ,E ) with N = 20, the time horizon
is τ= 300, and the number of samples is ns = 50. Given Eq. (5.20), the figure shows respectively
the initial values E1(0) (blue dash-star line), E2(0) (black dash-dot line), E3(0) (red dash-square
line), and asymptotic values E1(∞),E2(∞),E3(∞) (solid lines), while we vary the stepsize
k ∈ (0,1). The projection error E2 goes to zero for every k, while E1,E3 decrease only for k
smaller than a certain threshold related to λmax(C ) (cfr. Theorem 5.2 for the synchronous
algorithm threshold). In the right figure we fix the stepsize k = 0.3 and time horizon τ= 250.
The figure shows the asymptotic values E1(∞) (blue dash-star line), E2(∞) (black dash-dot
line), E3(∞) (red dash-dot line), and V (∞) (green dashed line) defined in Eq. (5.20), while we
vary N ∈ [5,100] in Algorithm 3.

edges, and we average over these samples the following quantities

E1(t ) := E[‖(ψ̂(t )−ψ̄)2π‖2]/M ,

E2(t ) := E[‖ε(t )‖2]/(M −N +1),

E3(t ) := E[‖(ψ̂(t )−ψ∗)2π‖2]/M ,

(5.20)

As described in Section 5.2, the noise on each each is sampled from a uniform distribution,

namely εe ∼ Unif([−ε̄, ε̄]), for every e ∈ E , with maximum noise ε̄=π/3.

We consider the normalized final error E1(∞) of the estimate ψ̂with respect to a true solution

ψ̄ of Problem 5.1, and the normalized final distance E3(∞) between our estimate and the

optimal estimateψ∗ given by the deterministic algorithm proposed in Piovan et al. [2011a].

Both these quantities approach zero in the 2-norm as time goes to infinity, for any stepsize k

under a certain threshold depending on N (see Fig. 5.3), while the asymptotic projected cycle-

error ε(∞) goes to zero for any k. Note that, as k increases, the precision of the estimate gets

worse. On the other hand, for tiny stepsizes, the time required to guarantee a certain threshold

precision becomes large. Note that the estimate provided by the synchronous deterministic

algorithm proposed in Piovan et al. [2011a], with stepsize k = 1/N , has the corresponding
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Figure 5.4: Given a grid G = (V ,E ) with N = n2 nodes, we fix n = 5, the time horizon τ= 103

and the number of samples ns = 50. The figure shows the asymptotic values E1(∞) (blue
dash-star line) and E2(∞) (black dash-dot line), defined in Eq. (5.20), while we vary k ∈ (0,1)
in Algorithm 3. If we run the synchronous deterministic algorithm in Piovan et al. [2011a],
we obtain the corresponding asymptotic values E S

1 (∞) (red dash-star line) and E S
2 (∞) (red

dash-dot line).

performance index as follows: E S
1 (∞) = 2.6216 (it is not shown in Fig. 5.3 for the sake of space).

Therefore the randomized algorithm has a better performance according to E1. Moreover,

considering the previous setup, we vary the number of nodes N (see Fig. 5.3 right), in order to

validate Eq. (5.19).

Second, we fix a planar grid graph, and Fig. 5.4 shows the asymptotic values of E1(∞),E2(∞) of

the estimate provided by Algorithm 3 compared to the initial ones E1(0),E2(0), and compared

to the asymptotic values of E S
1 (∞),E S

2 (∞) of the synchronous deterministic version of our

algorithm, proposed in Piovan et al. [2011a]. The asynchronous algorithm performance is

comparable to its deterministic version, in terms of the indices E1,E2.

5.5.2 Experiments on Cayley graphs

Consider a 2-dimensional Cayley graph G = (V ,E ) with |V | = N , |E | = 2N , a basis for the

cycle space is built as follows. First pick N −1 minimal cycles of length 4 that set up the grid,

and denote them by c1, . . . ,cN−1. Second add the two longitudinal minimal cycles cN ,cN+1 of

length N (see Fig. 5.5). In this case, dci > |ci | for i = N , N +1, precisely dci = N is the number

of adjacent minimal cycles, while |ci | = N is the length of the cycle. Therefore E[Ue ] is not

stochastic anymore, since (E[Ue ]1)ci > 1, i = N , N +1. Nevertheless a simulation study shows

that Algorithm 3 converges also in this case, and lowers the performance indices E1,E2, see
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Figure 5.5: This figure shows a 2-dimensional Cayley graph (left). Fix N = 9 (right) and consider
a minimal cycle basis made of the N −1 = 8 cycles of length 4 drawn with counter clockwise
orientation, and the two longitudinal cycles c9 = {1,2,13} (blue) and c10 = {7,8,16} (red), where
the numbers denote the edge labels.

Figure 5.6: Given a Cayley grid G = (V ,E ) with N = n2 nodes, we fix n = 3, the time horizon
τ= 105 and the number of samples ns = 10. The left figure shows the asymptotic values E1(∞)
(blue dash-star line) and E2(∞) (black dash-dot line), defined in Eq. (5.20), while we vary
k ∈ (0,1) in Algorithm 3. The plot shows that if k is greater than a certain threshold, the time
required to lower the considered indices becomes greater than 105. If we run the synchronous
deterministic algorithm in Piovan et al. [2011a], we obtain the corresponding asymptotic
values E S

1 (∞) (red dash-star line) and E S
2 (∞) (red dash-dot line). The right figure refers to the

same graph, with k = 0.2, and time horizon τ = 103. It shows the evolution in time of E1(t)
(blue line) and E2(t) (black line), running Algorithm 3, and E S

1 (t) (blue dashed line), E S
2 (t)

(black dashed line) running the synchronous deterministic algorithm in Eq. 5.2.

Fig. 5.6. Note that Fig. 5.7 shows a case in which the synchronous version does not converge

on a Cayley grid (k = 0.35), while the gossip Algorithm defined in 3 does.
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Figure 5.7: Consider the same setup of Fig. 5.6, with stepsize k = 0.35. The left figure shows that
the synchronous deterministic algorithm in Eq. 5.2 does not converge (a sufficient condition
that guarantees convergence is k < 2/(1+λmax (C )), cfr. Piovan et al. [2011a]), while our
Algorithm 3 converges and lowers E1(0),E2(0). In the right figure we consider a planar grid
with N = n2 = 9, and k = 0.35. In both cases λmax (C ) = 6, therefore the latter threshold for
the deterministic algorithm is k < 1/8, whereas it is sufficient to have k < 1 for the gossip
algorithm (see Theorem 5.3).

5.6 Conclusions and further work

In this Chapter we consider the calibration problem for a network of cameras, and the main

achievement is to provide a distributed and asynchronous algorithm. We cast the latter

calibration issue as a constrained minimization problem. The network, modeled by a graph

is such that each edge represents an agent. Our goal is to design a simple gossip algorithm

with the advantage of being completely distributed and asynchronous. At each time iteration,

only one agent is activated randomly, sampled from a uniform distribution, and it updates the

corresponding relative orientation. First, we consider and state characterizing properties of

the deterministic synchronous version of our algorithm (see Piovan et al. [2011a]). Second,

we provide analytical results on the performance properties of the proposed algorithm, for

general topologies. We then focus on ring graphs and deeply investigate the optimality of our

estimate. Finally, numerical simulations are run to show the effectiveness of the procedure on

different graphs.

87





6 Graph partitioning for camera net-

works surveillance

In this work we design surveillance trajectories for a network of autonomous cameras to detect

intruders in an environment. Intruders, which appear at arbitrary times and locations, are

classified as static or dynamic. While static intruders remain stationary, dynamic intruders are

aware of the cameras configuration and move to avoid detection, if possible. As performance

criteria we consider the worst-case detection time of static and dynamic intruders. We model

the environment and the camera network by means of a robotic roadmap. We show that

optimal cameras trajectories against static intruders are obtained by solving a continuous

graph partitioning problem. We design centralized and distributed algorithms to solve this

continuous graph partitioning problem. Our centralized solution relies on tools from convex

optimization. For the distributed case, we consider three distinct cameras communication

models and propose a corresponding algorithm for each of the models. Regarding dynamic

intruders, we identify necessary and sufficient conditions on the cameras locations to de-

tect dynamic intruders in finite time. Additionally, we construct constant-factor optimal

trajectories for the case of ring and tree roadmaps.

6.1 Introduction

In this work we focus on the problem of detecting intruders by means of a network of au-

tonomous cameras. In particular, we consider Pan-Tilt-Zoom (PTZ) cameras installed at

important locations. We assume the cameras to move their field of view (f.o.v.) to coopera-

tively surveil the whole environment. We develop algorithms for the cameras to self-organize

and to detect intruders in the environment, that appear at arbitrary locations and times. We
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consider static intruders, which remain stationary, and dynamic intruders, which move to

avoid detection, if possible. As performance criteria we consider the worst-case detection time,

that is the longest time needed for the cameras to detect intruders.

Related work. Works related to our camera surveillance problem can be found in the mobile

robotics and computer science literatures. In mobile robotics, the patrolling problem consists

of scheduling the motion of a team of autonomous agents in order to detect intruders or

important events, e.g., see Alberton et al. [2012], Baseggio et al. [2010], Machado et al. [2003],

Pasqualetti et al. [2011b]. It should be observed that the patrolling problem and the problem

considered in this Chapter significantly differ. Indeed, cameras are fixed at predetermined

locations, and their f.o.v.s must lie within the cameras visibility constraints. On the other hand,

robots are usually allowed to travel the whole environment, and are usually not subject to

visibility constraints. Consequently, algorithms developed for teams of robots are, in general,

not applicable in our setup. Similarly, algorithms for graph-clearing and graph-search do not

extend to our scenario A. Kehagias and Singh [2009], Kolling and Carpin [2010], Parsons [1978].

In the context of camera networks, the perimeter patrolling problem has recently been studied

in Baseggio et al. [2010], Carli et al. [2011], Spindler et al. [2012]. In these works, distributed

algorithms are proposed for the cameras to partition a one-dimensional environment, and

to synchronize along a trajectory with minimum worst-case detection time of intruders. We

improve the results along these directions by, for instance, developing cameras trajectories

and partitioning methods for general environment topologies.

In this work we present algorithms for graph partitioning. It is worth noting that our graph

partitioning problem differs from classical setups, e.g., see Andreev and Racke [2006], Arkin

et al. [2006], Even et al. [2004], G. Even and Schieber [1997]. Indeed, in these works the graph

partitioning problem is usually combinatorial, and it consists of partitioning the vertices or the

edges as to optimize a certain performance function. Instead, we formulate continuous graph

partitioning problems, in which the graph is a physical entity, and the partition is obtained

by splitting the edges. As it will be clear in the sequel, our results on graph partitioning are

general and applicable to different problems. For instance, if each edge of the graph represents

a task to be accomplished by the processors at its endpoints, then our algorithms can be used

for dynamic load balancing for multiprocessor networks Cybenko [1989], Lüling et al. [1991].

A preliminary version of this work appeared in Borra et al. [2012b]. Extensions with this
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work include (i) the design of trajectories against static intruders for cyclic roadmaps, (ii) the

design of trajectories against dynamic intruders, and (iii) a characterization of necessary and

sufficient conditions for finite detection time of dynamic intruders.

The main contributions of this work are as follows. First, we propose the continuous graph

partitioning problem, in which a partition of a weighted graph is obtained by splitting the

graph edges, and the cost of a partition equals the longest length of its parts (Section 6.2).

We show that the continuous graph partitioning problem is convex and non-differentiable,

and we characterize its solutions. Then, we derive an equivalent convex and differentiable

partitioning problem, which is amenable to distributed implementation.

Second, we define the camera surveillance problem for the detection of static and dynamic

intruders (Section 6.3). We model the environment and the camera network by means of

a robotic roadmap, and we formalize the worst-case detection time of static and dynamic

intruders.

Third, we exhaustively discuss the case of static intruders (Section 6.4). We show that, for tree

and ring roadmaps, cameras trajectories with minimum worst-case detection time can be

designed by solving a continuous graph partitioning problem. For general cyclic roadmaps,

our trajectories based on continuous partitions are proved to be optimal up to a factor 2.

However, we conjecture that optimality is achieved also in this case.

Fourth, for the case of dynamic intruders, we derive a necessary and sufficient condition on

the cameras locations for the existence of a trajectory with finite detection time (Section 6.5).

We focus on ring and tree roadmaps. In particular, for the case of ring roadmaps we design a

trajectory with detection time within a factor 3/2 of optimal. Instead, for tree roadmaps, the

performance of our trajectory is within a factor 2 of optimal.

Fifth and finally, we consider three different communication models, and we propose dis-

tributed algorithms for the cameras for continuous graph partitioning in all these scenarios

(Section 6.6). In particular: our first algorithm assumes a synchronous mode of operation of

the cameras; our second algorithm assumes an asymmetric broadcast communication model

and extends the class of block-coordinate descent algorithms to the constrained case; and

our third algorithm only requires gossip communication. We prove convergence of all these

algorithms, and we analyze their performance in a simulation study.
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6.2 Continuous Partitions of Weighted Graphs

In this section we introduce the problem of continuous graph partitioning. A solution to this

problem will be used to design optimal cameras trajectories.

Let G = (V ,E ) be an undirected weighted graph, where V and E denote the vertex and edge

sets, respectively. Let `i j ∈R>0 be the weight associated with the edge {vi , v j } ∈ E . For a subset

of vertices Vc ⊆ V , define the i -th set of neighbors as Ni =N in
i ∪N out

i , where

N in
i = {v j ∈ Vc : {vi , v j } ∈ E },

N out
i = {v j ∈ V \Vc : {vi , v j } ∈ E }.

(6.1)

A continuous partition of the weighted graph G is a set P = {P1, . . . ,Pn}, where (see Fig. 6.1)

P i =
⋃

v j∈Ni

[vi , vi j ], (6.2)

and vi j ∈ [vi , v j ] is defined by some αi j ∈ [0,1] as1

vi j =


vi +αi j (v j − vi ), if j ∈Ni

in, i < j ,

vi + (1−α j i )(v j − vi ), if j ∈Ni
in, i > j ,

v j , if j ∈Ni
out.

(6.3)

The dimension of a continuous partition equals L (P ) = max{L1, . . . ,Ln}, where Li is the sum

of the lengths of the segments in P i , i = 1, . . . ,n. In other words

Li =
∑

v j∈N in
i ,i< j

αi j`i j +
∑

v j∈N in
i ,i> j

(1−α j i )`i j +
∑

v j∈N out
i

`i j . (6.4)

Let L and α be the vectors of Li and αi j , respectively. Notice that a continuous partition is

entirely specified by a parameters vectorα.

Let G (Vc) = (Vc,Ec) be the subgraph of G induced by the vertices Vc, where Ec = (Vc ×Vc)∩E .

1Given any two points xi , x j ∈Rm for some m ∈N, we let [xi , x j ] = {t xi + (1− t )x j : t ∈ [0,1]}.
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Define the weighted incidence matrix A ∈R|Vc|×|Ec| as

Ai ,e =


`i j , if e = {vi , v j } ∈ Ec, i < j ,

−`i j , if e = {vi , v j } ∈ Ec, i < j ,

0, otherwise,

(6.5)

and the weighted incidence vector b ∈R|Vc| as

bi =
∑

v j∈N in
i ,i> j

`i j +
∑

v j∈N out
i

`i j . (6.6)

Notice that L = Aα+b, and that for everyα ∈R|Ec| it holds

‖Aα+b‖1 =
∑

{vi ,v j }∈E

`i j .

Let 0 and 1 be the vectors of all zeros and ones, respectively. We address the following

minimization problem.

Problem 6.1. (Continuous min-max partition) Given a weighted graph G = (V ,E ) and a

subset of vertices Vc ⊆ V , let A and b be as in (6.5) and (6.6), respectively. Determine a continuous

partitionα∗∞ satisfying

‖Aα∗
∞+b‖∞ = min

α≤α≤α
‖Aα+b‖∞, (6.7)

for some constraints vectorsα,αwith 0 ≤α≤α≤ 1.

Notice that (6.7) is a convex minimization problem, for which efficient centralized solvers

exist Boyd and Vandenberghe [2004]. On the other hand, since (6.7) is not differentiable,

distributed solvers may be difficult to implement. We next derive an equivalent differentiable

minimization problem, which is instead amenable to distributed implementation.

Problem 6.2. (Continuous min partition) Given a weighted graph G = (V ,E ) and a subset

of vertices Vc ⊆ V , let A and b be as in (6.5) and (6.6), respectively. Determine a continuous

partitionα∗
2 satisfying

‖Aα∗
2 +b‖2 = min

α≤α≤α
‖Aα+b‖2. (6.8)
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for some constraints vectorsα,αwith 0 ≤α≤α≤ 1.

Remark 6.3. (Uniqueness of partitions) Since the minimization problem (6.8) is strictly con-

vex, the continuous min partitioning problem admits a unique minimum value, and the set of

minimizers is a singleton if and only if the matrix A has a trivial null space. It can be shown

that A has a trivial null space if and only if the induced graph G (Vc) is a tree. In particular, if

the graph G (Vc) is connected, then the dimension of the null space of A equals |Ec|− |Vc|+1.

Remark 6.4. (Unconstrained partitions) Consider the (unconstrained) partitioning problems

(6.7) and (6.8) with α,α ∈ R|Ec|. It can be verified that α∗ is a minimizer of Problem (6.7) if

and only if it is a minimizer of Problem (6.8). Moreover, every minimizer can be written as

α∗ = A† (v −b)+ w , where v =
(∑

{vi ,v j }∈E `i j /n
)

1, A† is the pseudoinverse of A, w satisfies

Aw = 0 and 0 ≤α∗ ≤ 1.

We next show a relation between min-max partitions and min partitions.

Theorem 6.5. (Min-max and min partitions) Let α∗
2 be a min partition solution to Problem

6.2. Then,α∗
2 is also a solution to Problem 6.1, that is,

‖Aα∗
2 +b‖∞ = min

α≤α≤α
‖Aα+b‖∞.

In order to prove Theorem 6.5, we introduce the following definitions and results. Given

a partition P = {P1, . . . ,Pn} defined by α, the maximal graph associated with α is G max =
(V max

c ,E max
c ), where V max

c = {vi ∈ Vc : Li = max{L1, . . . ,Ln}}, and E max
c = (V max

c ×V max
c )∩E .

Lemma 6.6. (Maximal graph) Letα∗ be a min partition of the graph G = (V ,E ), and let G max =
(V max

c ,E max
c ) be the maximal graph associated withα∗. Then, for each vi ∈ V max

c , v j ∈ Vc \V max
c

with {vi , v j } ∈ Ec, it holds α∗
i j =αi j if i < j , and α∗

i j =αi j if i > j .

Proof. Letα∗ be a min partition, and let L∗ = Aα∗+b. By definition, Vc
max is the set of vertices

vi such that L∗
i = ‖L∗‖∞. Let vi ∈ Vc

max, and partition its neighbor set as N in
i = N 1

i ∪N 2
i ,

where N 2
i = N in

i ∩Vc
max and N 1

i = N in
i \ N 2

i . Suppose by contradiction that α∗
i j > αi j for

some v j ∈ N 1
i with i < j . Define α̂ from α∗ by modifying only the entry α̂i j = α∗

i j − ε, with

ε ∈R>0. Let L̂ = Aα̂+b, and let ε be such that α̂i j ≥αi j and L̂i > L̂ j . An equivalent condition for

L̂i > L̂ j is c1−c2 > `i j (α∗
j i −α∗

i j +2ε), where c1 = L∗
i −α∗

i j`i j , c2 = L∗
j −α∗

j i`i j , andαi j = 1−α j i
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for i > j . It follows that

‖L∗‖2
2 −‖L̂‖2

2 = (L∗
i )2 − L̂2

i + (L∗
j )2 − L̂2

j

= (c1 +α∗
i j`i j )2 − (c1 + α̂i j`i j )2 + (c2 +α∗

j i`i j )2 − (c2 + α̂ j i`i j )2

= 2ε`i j (c1 − c2 +`i j (α∗
i j −α∗

j i −ε)) > 2ε2`2
i j > 0,

which contradicts our assumption of α∗ being a min partition. We conclude that αi j =αi j .

The case of α∗
i j =αi j is treated analogously, and the theorem follows.

We are now ready to prove Theorem 6.5.

Proof. Let α∗ be a min partition. Recall from Lemma 6.6 that there exists a set of cameras

Vc
max such that (i) L∗

i = ‖L∗‖∞ for all vi ∈ Vc
max, and (ii)α∗

i j =αi j (resp. α∗
i j =αi j ) if i < j (resp.

i > j ) for all {vi , v j } ∈ Ec with vi ∈ Vc
max and v j ∈ Vc \ Vc

max. Notice also that, because of the

cameras constraints and property (ii), it holds

min
α≤α≤α

∑
vi∈Vc

max

(Aα+b)i ≥ |Vc
max|‖L∗‖∞.

Let α̂ be such that ‖L̂‖∞ < ‖L∗‖∞. Then L̂i < L∗
i for all vi ∈ Vc

max. It follows that

∑
vi∈Vc

max

(Aα̂+b)i < |Vc
max|‖L∗‖∞,

which contradicts our hypothesis. �

Distributed algorithms to compute continuous graphs partitions are presented in Section 6.6.

In the next section we discuss the relationship between continuous graph partitions and the

design of trajectories for camera network surveillance.

6.3 Setup for Camera Surveillance

In this section we describe our setup and we introduce some concepts which will be extensively

used to state our results.
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6.3.1 Problem Setup

We consider the problem of surveilling an environment of interest by means of a camera

network. We represent the environment with an undirected weighted roadmap G = (V ,E ),

where V and E denote the vertex and the edge sets, respectively LaValle [2006]. In particular,

each vertex vi ∈ V corresponds to a location in the environment, and {vi , v j } ∈ E if and only

if the segment [vi , v j ] joining vertices vi and v j belongs to the environment (vertices vi

and v j are within line of sight). Finally, the weight of the edge {vi , v j } ∈ E equals the length

`i j = ‖vi − v j‖2, and `max = max{`i j : {vi , v j } ∈ E }.

Cameras are placed at the locations Vc ⊆ V . Define the set of neighboring cameras Ni as in

(6.1). The concept of neighboring cameras will be exploited in Section 6.6 to design distributed

algorithms for the cameras.

Let xi (t) denote the position at time t of the f.o.v. of the i -th camera. We assume that each

camera has a limited visibility range along each adjacent edge. In particular,

(A1) at all times t , the i -th f.o.v. is a point along the segment [vi , v j ] for some v j ∈Ni ;

(A2) the speed of the i -th f.o.v. belongs to the set {0,1}, that is, the f.o.v. of camera ci either is

stationary at some point or it moves at maximum (unitary) speed;

(A3) for each v j ∈Ni , a point vi j ∈ [vi , v j ] is given such that xi (t ) ∈ [vi , vi j ] at all times t ;

(A4) the cameras locations set Vc satisfies

⋃
vi∈Vc

{
{vi , v j } ∈ E : v j ∈ V

}= E ,

so that the roadmap G is jointly visible by the cameras.

Our setup is illustrated in Fig. 6.1.

6.3.2 Cameras trajectory

A cameras trajectory is a set of n continuous functions X = {x1, . . . , xn}, where xi : R≥0 → E

describes the position of the i -th f.o.v. along the roadmap G . We focus on periodic cameras

trajectories, for which there exists a finite time T ∈R≥0 satisfying X (t +T ) = X (t ) for all t ∈R≥0.
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Figure 6.1: This figure shows an environment to be surveilled by a camera network. The
environment is represented by a roadmap G = (V ,E ) with V = {v1, . . . , v14}. Edges E are
denoted with solid black lines. Cameras are installed at the locations Vc = {v1, . . . , v7}. White
rectangles along the edges represent cameras visibility constraints, and the parameters α
define a continuous partition of G . Finally, the DF-Trajectory associated with the partition
given byα is identified by the closed paths around the cameras.

Define the image of the i -th camera as the set of points visited by the i -th f.o.v. in any period

of length T , i.e.,

Im(xi ) =∪t∈[0,T ] xi (t ),

and the cameras image set as I X = {Im(x1), . . . , Im(xn)}.

Trajectory 4 DF-Trajectory for i -th camera
Input: Parameters αi j and set of neighbors Ni ;

Set si (t ) = (t vi j + (αi j`i j − t )vi )/αi j`i j , for t ∈ [0,αi j`i j ];
Set t0 = 0;
for v j ∈Ni do

Set vi j as in Eq. (6.3);
xi (t ) = si (t − t0), for t ∈ [t0, t0 +αi j`i j ];
xi (t ) = si (2αi j`i j − (t − t0)), for t ∈ [t0 +αi j`i j , t0 +2αi j`i j ];
t0 = t0 +2αi j`i j ;

We now define a particular cameras trajectory associated with a continuous roadmap partition.

The optimality properties of this trajectory will be shown in the subsequent sections. Letαdf

define the continuous partition P df as in (6.2). The DF-Trajectory X df with image set P df is

obtained by letting each camera sweep its subroadmap in a depth-first order Diestel [2000],

and it is formally described in Trajectory 4. See Fig. 6.1 for a graphical illustration.

97



Chapter 6. Graph partitioning for camera networks surveillance

6.3.3 Performance criteria

In this work we design cameras trajectories to detect intruders along the roadmap. We consider

both static, and dynamic intruders. The trajectory of an intruder is a continuous function

p :R≥0 → E . Let Πd be the set of all possible intruder trajectories, and let Πs the set of static

intruder trajectories (p(t ) = p0 for all t ≥ t0 and for some p0 ∈ E ).

An intruder is detected as soon as its position coincides with the f.o.v. of a camera. We define

the worst-case detection time of a cameras trajectory as the longest time for the detection of an

intruder. In particular, for an intruder appearing at time t0 and moving with trajectory p, and

a cameras trajectory X , let

t∗(t0, p, X ) = min
{
{t − t0 : t > t0, p(t ) ∈ X (t )}∪ {∞}

}
.

We define the static worst-case detection time as

WDTs(X ) := sup
p∈Πs, t0∈[0,T ]

t∗(t0, p, X ), (6.9)

and the dynamic worst-case detection time as

WDTd(X ) := sup
p∈Πd, t0∈[0,T ]

t∗(t0, p, X ). (6.10)

For the ease of notation we define

WDT∗
s = inf

X∈Ω
WDTs(X ), WDT∗

d = inf
X∈Ω

WDTd(X ).

We conclude this section by observing that WDTs(X ) ≤ WDTd(X ) for any cameras trajectory

X , and that for any periodic cameras trajectory X , WDTs(X ) < ∞ if and only if the entire

roadmap is persistently surveilled by the cameras, i.e., E ⊆ Im(X ). Necessary and sufficient

conditions for a trajectory to have finite dynamic detection time are discussed in Section 6.5.

6.4 Camera Trajectory for Static Intruders

This section contains our results for the detection of static intruders.
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6.4.1 Main results for static intruders

Consider a roadmap G = (V ,E ) with cameras locations Vc. Let P ∗ = {P ∗
1 , . . . ,P ∗

n } be a contin-

uous partition of G of cardinality |Vc| = n with smallest dimension, that is

max
i∈{1,...,n}

L∗
i = min

P
max

i∈{1,...,n}
Li , (6.11)

where P = {P1, . . . ,Pn} is a continuous partition of G . Let X * be the DF-Trajectory associated

with the partition P ∗. Recall that the roadmap G with cameras locations Vc is a tree if the

induced graph G (Vc) contains no cycles, and it is a ring if G (Vc) consists of a single cycle Diestel

[2000].

Theorem 6.7. (Static worst-case detection for DF-Trajectory) Consider a roadmap G = (V ,E )

with cameras locations Vc and |Vc| = n. Let X * be the DF-Trajectory associated with a continuous

partition P ∗ of G with smallest dimension. Then,

(i) WDTs(X *) = 2L (P ∗) , and

(ii) WDTs(X *) ≤ 2WDT∗
s .

Moreover, if G is a tree or a ring, then WDTs(X *) = WDT∗
s .

In Theorem 6.7 we show that cameras trajectories designed from a continuous roadmap

partition achieve detection performance within a constant factor of optimal. Since optimality

is guaranteed for tree and ring roadmaps, we state the following conjecture.

Conjecture 2. (Optimality for cyclic roadmaps) Motivated by our results in Theorem 6.7, we

conjecture that WDTs(X *) = WDT∗
s also for cyclic roadmaps.

6.4.2 Proof of Theorem 6.7

In this section we derive a proof of Theorem 6.7. We start by introducing the necessary notation

and some preliminary results. We define a relative order among the cameras as follows. Let

{c1, . . . ,cn} be the set of cameras. For the neighboring cameras ci and c j let the time t be

such that the i -th f.o.v. and the j -th f.o.v. lie on the edge
{

vi , v j
}
. Then we say that ci ≤ c j if

‖xi (t )−vi‖2 ≤ ‖x j (t )−vi‖2. If xi (t ) and x j (t ) lie on different edges at time t , our convention is
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xi (t ) ≤ x j (t ) for i < j . A camera trajectory is order-invariant if the relative order of the cameras

is preserved over time.

Theorem 6.8. (Order-invariant cameras trajectory) Given a roadmap G = (V ,E ) with cam-

eras locations Vc and a cameras trajectory X , there exists an order-invariant cameras trajectory

X̄ with WDTs(X ) = WDTs(X̄ ).

Proof. Let ci and c j be adjacent cameras, and assume the existence of t ≥ 0 such that xi (t ) =
x j (t). Define t 0

i j = min{t ≥ 0 : xi (t) = x j (t)} and, recursively, t n
i j = min{t > t n−1

i j : xi (t) =
x j (t)},n ∈ N. An order-invariant trajectory can be derived from X permuting the cameras

labels as follows (k = 0,1, . . .):

x̄i (t ) = x j (t ) and x̄ j (t ) = xi (t ) if t 2k
i j ≤ t ≤ t 2k+1

i j ,

x̄i (t ) = xi (t ) and x̄ j (t ) = x j (t ) otherwise.

Each point along the roadmap is visited at the same times in X and X̄ , thus WDTs(X̄ ) =
WDTs(X ).

In general, the images of neighboring cameras may overlap. A camera trajectory is called

non-overlapping if for every pair ci and c j , it holds Int(Im(xi ))∩ Int(Im(x j )) = ;, where Int

denotes the interior of a set.

Theorem 6.9. (Non-overlapping cameras trajectory for tree and ring roadmaps) Given a

tree (resp. ring) roadmap G = (V ,E ) with cameras locations Vc and a cameras trajectory X , there

exists an order-invariant and non-overlapping cameras trajectory X̄ with WDTs(X̄ ) ≤ WDTs(X ).

Proof. Without affecting generality, we assume that the trajectory X is order-invariant (cf.

Theorem 6.8). We start by considering tree roadmaps, and we define the trajectory X̄ from X

as follows.

Let a0
1 =

∣∣N1
in

∣∣+1, a0
i =

∣∣Ni
in

∣∣ for i = 2, . . . ,n and let P 0
i =; for every i = 1, . . . ,n. Iteratively
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Figure 6.2: This figure shows a tree roadmap, and it illustrates the partitioning procedure in
the proof of Theorem 6.9.

perform the following operations:

Sk = {vi ∈ Vc : ak−1
i = 1},

P k
i = Cl(Im(xi ) \

(
∪v j∈Ni

inP k−1
j

)
), for each vi ∈ Sk ,

ak
j = ak−1

j −1, for each v j ∈Ni
in ∪ {vi } ,

where Cl(·) denotes the closure of a set, and k = 1,2, . . . . After a finite number kf of iterations,

the set P kf = {P kf
1 , . . . ,P kf

n } is a continuous partition of G . Finally, define the trajectory X̄ as the

DF-Trajectory on the partition P kf . In the interest of space, we do not prove the convergence

of the above procedure, and we provide instead an illustration of the final partition in Fig. 6.2.

We now show that WDTs(X̄ ) ≤ WDTs(X ). Consider camera ci , let |Ni
in| = ni , and let ∂(P kf

i ) ={
vi 1, . . . , vi ni

}
be the boundary points of P

kf
i . By construction, there is only one boundary

point, say vi 2, such that some points in the interior of [vi , vi 2] may be visited by a camera

adjacent to ci with reference to trajectory X (cf. Fig. 6.2). Notice that every boundary point is

visited by ci . Without affecting generality, and possibly after relabeling the boundary points, let

t1 be such that xi (t1) = vi 1, and t2 such that xi (t2) = vi 2 and no other boundary point is visited

in Int([t1, t2]). Notice that t2−t1 ≥ ‖vi −vi 1‖2+‖vi −vi 2‖2, and that every boundary point must

be visited in the interval [t2, t1 +WDTs(X )]. It follows WDTs(X ) ≥ 2
∑ni

j=1 ‖vi − vi j‖2, and this

must hold for each camera ci . Finally notice that WDTs(X̄ ) = maxi∈{1,...,n} 2
∑ni

j=1 ‖vi −vi j‖2, so

that the statement follows. The case of a ring roadmap can be treated analogously.

We now prove Theorem 6.7.

Proof. Statement (i) follows from the definition of DF-Trajectory, because each camera sweeps
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its assigned subroadmap at maximum speed along a depth-first tour.

Regarding statement (ii), consider a min partition α, and let G max = (Vc
max,Ec

max) be its

associated maximal graph (see Lemma 6.6). Define Length(G max) =∑
{vi ,v j }∈Ec

‖vi − v j‖2, and

notice that

WDT∗
s|G max ≥ Length(G max)∣∣Vc

max
∣∣ ,

where WDT∗
s|G max denotes the smallest static worst-case detection time for G max. Indeed, since

Li = L j for each vi , v j ∈ V max, each camera needs to sweep (at unitary speed) an image of

length Length(G max)
|Vc

max| for G max to be covered. Moreover, due to Lemma 6.6, cameras outside G max

cannot visit any point in the interior of G max. It follows that

WDT∗
s ≥ WDT∗

s|G max .

Finally, since WDTs(X *) = 2 Length(G max)
|Vc

max| , we conclude that WDTs(X *) ≤ 2WDT∗
s .

Consider a tree (resp. ring) roadmap. Due to Theorem 6.9, there exists an order-invariant

and non-overlapping trajectory X with WDTs(X ) = WDT∗
s . To conclude the proof, we have

WDTs(X *) ≤ WDTs(X ) since I X is a continuous partition.

6.5 Cameras Trajectories for Dynamic Intruders

In this section we design cameras trajectories for the detection of dynamic intruders. We

start by characterizing a necessary and sufficient condition on the cameras locations for the

existence of trajectories with finite dynamic detection time.

Theorem 6.10. (Existence of trajectories with finite dynamic detection time) Given a roadmap

G = (V ,E ) with cameras locations Vc, the following statements are equivalent:

(i) There exists a cameras trajectory X satisfying WDTd(X ) <∞;

(ii) For every vi ∈ Vc with |Ni | ≥ 3, there exists v j ∈ N in
i with αi j = 0 if i < j and αi j = 1 if

i > j .
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The following result is useful to prove Theorem 6.10.

Lemma 6.11. (Finite dynamic detection time for single camera) Given a roadmap G = (V ,E )

with cameras locations Vc = {v1}, there exists a cameras trajectory X with WDTd(X ) <∞ if and

only if |N1| ≤ 2.

Proof. To show sufficiency, let |N1| ≤ 2, and note that G (Vc) is a chain. Let x1 be such that

camera c1 continuously sweeps the chain, and note that WDTd(X ) <∞.

To show necessity of the statement, notice that if |N1| > 2, an intruder may choose its trajectory

p so that p(t ) 6= v1 and p(t+ε) ∈ [v1, v j ] whenever x1(t ) = v1 and x1(t+ε) ∈ [v1, vk ], for ε ∈R>0,

v j , vk ∈N out
1 , and j 6= k.

We are now ready to prove Theorem 6.10.

Proof. In order to show that (ii) is a necessary condition for (i), suppose that (ii) does not hold.

Then camera ci needs to surveil a subroadmap in which |Ni | ≥ 3. The statement follows from

Lemma 6.11.

We now show that (ii) is also a sufficient condition for (i) by proposing a procedure to clear

every subroadmap from intruders appearing at time 0. By periodically repeating this proce-

dure, intruders appearing at different times are also detected. Notice that intruders appearing

along the edge [vi , v j ] can be detected by moving the cameras ci and c j towards each other in

a way that xi (t ) = x j (t ) for some time t . Starting from v1, if |N1| ≤ 2, then sweep the adjacent

edges by synchronizing the motion of v1 and its neighboring cameras in any order. If |N1| > 2,

suppose {v1, v2} ∈ Vc, then let α12 = 0 from condition (ii). Let camera c2 sweep the entire

edge {v1, v2} and stop at v1, and let the other neighboring cameras c j ∈ N1
in stop at their

vertices v j . Then camera c1 sequentially sweeps its assigned adjacent segments [v1, v1 j ], with{
v1, v j

} ∈ Ec, j 6= 2 by synchronizing its motion and those of the neighboring cameras, while

keeping the f.o.v. of c2 at vertex v1. Notice that any intruder appearing in an edge adjacent to

v1 at time 0 is detected by this procedure. Then let c1 and its neighboring cameras return to

their vertices. Finally iterate the procedure for subsequent cameras in increasing order, and

repeat over time.

In the remainder of this section we design cameras trajectories for the special cases of ring
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Figure 6.3: Consider the ring roadmap G = (V ,E ) with cameras locations Vc and n = 5.
Its associated optimal partition P depicted in Fig. 6.3(a). The corresponding 3L̄- periodic
Ring-Sync-Trajectory described in Trajectory 5 is shown in Fig. 6.3(b).

and tree roadmaps. We refer the reader to Spindler et al. [2012] for a solution to the case of

chain roadmaps (cf. Equal-Waiting trajectory).

6.5.1 Ring roadmap

Consider a ring roadmap G = (V ,E ) with cameras locations Vc, and visibility constraintsα,α.

Let P ∗ = {
P ∗

1 , . . . ,P ∗
n

}
be a min-max partition of G , and let L̄ = L (P ∗) = max{L1, . . . ,Ln},

where Li is defined in (6.4). Notice that |N in
i | = 2 for all vi ∈ Vc, and that each subroadmap

P ∗
i can be written as a segment, parametrized by si : [0,Li ] → [vi−1,i , vi ,i+1], such that si (t ) =

(t vi ,i+1 + (Li − t )vi−1,i )/Li .

Trajectory 5 Ring-Sync-Trajectory for camera ci

Camera ci surveils P ∗
i = [vi−1,i , vi ]∪ [vi , vi ,i+1];

Set In = [L̄,2L̄],Tn = L̄, if n is odd;
In =;,Tn = 0, if n even;

if i is even then
xi (t ) = vi−1,i , for t ∈ [0, L̄−Li ];
xi (t ) = si (t − (L̄−Li )), for t ∈ [L̄−Li , L̄];
xi (t ) = vi ,i+1, for t ∈ In ∪ [L̄+Tn ,2L̄−Li +Tn ];
xi (t ) = si (2L̄+Tn − t ), for t ∈ [2L̄−Li +Tn ,2L̄+Tn ];

else if i is odd then
xi (t ) = vi ,i+1, for t ∈ [0, L̄−Li ];
xi (t ) = si (L̄− t ), for t ∈ [L̄−Li , L̄];
xi (t ) = vi−1,i , for t ∈ In ∪ [L̄+Tn ,2L̄−Li +Tn ];
xi (t ) = si (t − (2L̄−Li +Tn )), for t ∈ [2L̄−Li +Tn ,2L̄+Tn ];
if i = n then

xi (t ) = vi ,i+1, for t ∈ [0,2L̄−Li ];
xi (t ) = si (2L̄− t ), for t ∈ [2L̄−Li ,2L̄];
xi (t ) = vi−1,i , for t ∈ [2L̄,3L̄−Li ];
xi (t ) = si (t − (3L̄−Li )), for t ∈ [3L̄−Li ,3L̄];
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6.5. Cameras Trajectories for Dynamic Intruders

We propose the Ring-Sync-Trajectory in Algorithm 5; see Fig. 6.3 for a graphical illustration.

We next provide an informal description of the Ring-Sync-Trajectory within its period for the

case of an even number of cameras:

(i) the f.o.v. of camera ci is set at its right (left) boundary point if i is odd (even), so that all

the cameras are pairwise synchronized;

(ii) each camera sweeps its subroadmap at maximum speed, and

(iii) each camera stops for L̄−Li at each boundary point.

If the number of cameras is odd, the algorithm is more involved and it is formally described

in Trajectory 5. Notice that, (i) the i -th camera surveils only P ∗
i , (ii) the trajectory of each

camera is 3L̄-periodic if n odd, and 2L̄-periodic if n even, and (iii) the f.o.v.s of each pair of

neighboring cameras coincide at some times within the period.

Theorem 6.12. (Dynamic worst-case detection for Ring-Sync-Trajectory) Given a ring roadmap

G = (V ,E ) with cameras locations Vc, let X s be the Ring-Sync-Trajectory in Algorithm 5. Then

(i) if n is even,

WDTd(X s) = WDTs(X s) = WDT∗
d;

(ii) if n is odd,

WDTd(X s) = WDTs(X s) ≤ 3

2
WDT∗

d.

Proof. In order to prove statement (i), consider a ring roadmap with n even, and compute the

optimal partition P ∗ with dimension L̄ (see Section 6.6). Once we synchronize the cameras

according to Trajectory 6, the minimum dynamic worst-case detection time is achieved. In

order to prove (ii), notice that the Ring-Sync-Trajectory X s is 3L̄-periodic when n is odd, and

that each camera surveils the corresponding subroadmap P ∗
i . The thesis is proved observing

that WDT∗
d ≥ WDT∗

s = 2L̄.
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Figure 6.4: Fig. 6.4(a) show a tree roadmap where v1 is labeled as root vertex. In Fig. 6.4(b) we
report the Tree-Sync-Trajectory described in Trajectory 6. Note that cameras are synchronized,
that is, for each pair of adjacent cameras

{
vi , v j

} ∈ Ec, there exists t ∈ [0,2`max] such that
xi (t ) = x j (t ).

6.5.2 Tree roadmap

Consider a tree roadmap G = (V ,E ) with cameras locations Vc = V \ {v1}, where node v1 is

labeled as root. Assume that each camera can entirely surveil each adjacent edge, that is,

α = 0 and α = 1. We now design a cameras trajectory for dynamic intruders, and we show

that the performance of our trajectory is within a constant factor of optimality. We start by

recalling some definitions Diestel [2000]. Then, vertex vi ∈ Vc is a parent of vertex v j ∈ Vc (vi

is a child of v j ) if {vi , v j } ∈ Ec and vi lies on the unique shortest path from v j to v1. Let vp
i

denote the parent of vi , and let `p
i denote the length of the segment [vi , vp

i ]. Recall that `max is

the length of the longest edge. Let us parametrize the segment [vi , vp
i ] as si : [0,`p

i ] → [vi , vp
i ],

si (t) = (t vp
i + (`p

i − t)vi )/`p
i . We divide the vertices into two groups according to the parity

of their distance to the root. In particular, we define dist-r(vi ) as the number of edges in the

shortest path from vi to the root v1.

Trajectory 6 Tree-Sync-Trajectory for camera ci

Camera ci surveils only the segment [vi , vi
p];

if dist-r(vi ) is odd then
xi (t ) = vi

p, for t ∈ [0,`max −`p
i ];

xi (t ) = si (`max − t ), for t ∈ [`max −`p
i ,`max];

xi (t ) = vi , for t ∈ [`max,2`max −`p
i ];

xi (t ) = si (t − (2`max −`p
i )), for t ∈ [2`max −`p

i ,2`max];
else if dist-r(vi ) is even then

xi (t ) = vi , for t ∈
[

0,`max −`p
i

]
;

xi (t ) = si (t − (`max −`p
i )), for t ∈ [`max −`p

i ,`max];

xi (t ) = vi
p, for t ∈ [`max,2`max −`p

i ];

xi (t ) = si (2`max − t ), for t ∈ [2`max −`p
i ,2`max];
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6.6. Distributed Partitioning Algorithms

We propose the Tree-Sync-Trajectory in Trajectory 6 (see Fig. 6.4 for an example). An informal

description of the Tree-Sync-Trajectory follows:

(i) the f.o.v. of camera ci is set at the vertex vp
i (resp. vi ) if dist-r(vi ) is odd (resp. even),

(ii) camera ci sweeps the segment [vi , vp
i ], and

(iii) camera ci stops for `max −`p
i at each boundary point.

Notice that, (i) camera ci surveils only the segment [vi , vp
i ], (ii) the trajectory of each camera

is 2`max-periodic, (iii) cameras are synchronized, that is xi (tk ) = xp
i (tk ) for tk = k`max, with

k ∈N even (resp. odd) if dist-r(vi ) is even (resp. odd). Our Tree-Sync-Trajectory in Trajectory

6 extends the concept of Equal-waiting trajectory to the case of tree roadmap Spindler et al.

[2012].

Theorem 6.13. (Dynamic worst-case detection for Sync-Trajectory) Given a tree roadmap

G = (V ,E ) with cameras locations Vc = V \ {v1} and α = 0, α = 1, let X s be the Tree-Sync-

Trajectory in Trajectory 6. Then,

WDTd(X s) = WDTs(X s) ≤ 2WDT∗
d.

Proof. Consider the Tree-Sync-Trajectory X s. Notice that X s is 2`max-periodic, that each

camera surveils a single edge, and that each edge is surveilled by a different camera. Let an

intruder appear at time t0 along [vi , vi
p], with ‖vi−p(t0)‖2 ≤ ‖vi−xi (t0)‖2. Then, such intruder

is confined in [vi , vi
p]∪ (∪v j [vi , v j ]

)
to avoid detection, where v j is a child of vi . Since vi

and all its children synchronize at most every 2`max, we have WDTd(X s) = WDTs(X s) = 2`max.

Notice that the case ‖vi −p(0)‖2 > ‖vi −xi (t0)‖2 yields the same conclusion. On the other hand,

since each edge can be surveilled by at most two cameras, it holds WDT∗
d ≥ WDT∗

s ≥ `max,

which concludes the proof.

6.6 Distributed Partitioning Algorithms

In what follows we design three distributed algorithms for the continuous min-max parti-

tioning problem. Given an optimal partition, cameras organize along a DF-Trajectory as in

Trajectory 4.
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Algorithm 7 Synchronous Gradient Partitioning
for vi ∈ Vc do

Camera ci receives St
j from c j , for all v j ∈N in

i ;

Set αt+1
i j ←αt

i j −ε`i j (Lt
i −Lt

j );

if αt+1
i j <αi j then αt+1

i j =αi j ;

else if αt+1
i j >αi j then αt+1

i j =αi j ;

Camera ci transmits St+1
i to c j , for all v j ∈N in

i .

The algorithms we present rely upon different cameras communication assumptions. We

assume each camera to be equipped with a wireless sensor device. In all our algorithms,

cameras perform the following operations: (i) receive parameters from (some) neighboring

cameras, (ii) update the parameters corresponding to (some) adjacent edges, and (iii) transmit

the new values to (some) neighboring cameras. These operations are detailed in the next

sections. For convenience, let S t
i = {αt

i j : v j ∈N in
i } be the state of camera ci at iteration t ∈N.

Finally, we initialize α0
i j =αi j for all

{
vi , v j

} ∈ Ec with i < j .

6.6.1 Synchronous Gradient Partitioning algorithm

The distributed algorithm presented in this section assumes a synchronous mode of operation

of the cameras, and it is inspired by the classical gradient projection method Bertsekas and

Tsitsiklis [1997]. In particular, every camera performs operations at uniform time instants. The

t-th iteration of this algorithm is detailed in Algorithm 7.

Theorem 6.14. (Synchronous Gradient Partitioning) For a roadmap G with cameras loca-

tions Vc, let A and b be as in (6.5) and (6.6), respectively. Let 0 < ε < (d max`max)−1, where

d max = max
{|N in

i | : vi ∈ Vc
}
. Then, the Synchronous Gradient Partitioning algorithm in Algo-

rithm 7 asymptotically converges toα∗
SGD = limt→∞αt , and

min
α≤α≤α

‖Aα+b‖2
∞ = ‖Aα∗

SGD +b‖2
∞,

whereα andα denote the cameras constraints.

Proof. Note that the update step can be expressed in vector form as

αt+1 ←αt −εAT(Aαt +b),
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Algorithm 8 Asymmetric Broadcast Partitioning
Camera ci is randomly selected;
Camera ci receives St

j from camera c j , for all v j ∈N in
i ;

for v j ∈N in
i do

αt+1
i j ←αt

i j −ε`i j (Lt
i −Lt

j );

if αt+1
i j <αi j then αt+1

i j =αi j ;

else if αt+1
i j >αi j then αt+1

i j =αi j ;

Camera ci transmits St+1
i to camera c j , for all v j ∈N in

i .

and that ATAα+ ATb is the gradient of the quadratic function 1
2‖Aα+b‖2

2. Therefore the

Synchronous Partitioning algorithm coincides with the gradient projection method Bertsekas

and Tsitsiklis [1997]. To conclude the proof note that the gradient of 1
2‖Aα+b‖2

2 is Lipschitz-

continuous with some Lipschitz constant K ∈ R>0. Thus, for a sufficiently small step size ε,

precisely if 0 < ε< 2/K , the convergence ofαt to a min partition is guaranteed by [Bertsekas

and Tsitsiklis, 1997, Proposition 3.4]. In order to compute the stated upper bound for the

stepsize ε, it can be shown that K ≤ 2d max(`max)2. Finally, the claimed statement follows from

Theorem 6.5. See Bertsekas and Tsitsiklis [1997] for further details.

6.6.2 Asymmetric Broadcast Partitioning algorithm

The distributed algorithm presented in this section assumes an asymmetric broadcast com-

munication protocol. In particular, at each iteration only one camera updates its state by

using local information from its neighboring cameras. In order to guarantee the convergence

of the algorithm, we assume the existence of a finite duration τ ∈R>0 such that, for all t ∈R≥0,

every camera in Vc is selected at least once in the time interval [t , t +τ) (partial asynchronism

assumption). The t-th iteration of this algorithm is detailed in Algorithm 8.

Theorem 6.15. (Asymmetric Broadcast Partitioning) For a roadmap G with cameras loca-

tions Vc and cameras edges Ec, let A and b be as in (6.5) and (6.6), respectively. Let τ be the

partial asynchronism constant, and let 0 < ε< (K (1+τ+τ|Ec|))−1, where K ∈R>0 is the Lips-

chitz constant ofα→ AT (Aα+b). Then, the Asymmetric Broadcast Partitioning algorithm in

Algorithm 8 asymptotically converges toα∗
AB = limt→∞αt . Moreover,

min
α≤α≤α

‖Aα+b‖2
∞ = ‖Aα∗

AB +b‖2
∞,

whereα andα denote the cameras constraints.
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Algorithm 9 Symmetric Gossip Partitioning
Neighboring cameras ci and c j are randomly selected;

Camera ci (c j ) receives St
j (St

i ) from c j (ci );

L∗ = (Lt
i +Lt

j )/2;

αt+1
i j = (

L∗−∑
vk∈N in

i ,k 6= j α
t
i k`i k

)
/`i j ;

if αt+1
i j <αi j then αt+1

i j =αi j ;

else if αt+1
i j >αi j then αt+1

i j =αi j ;

Camera ci transmits St+1
i to ck , for all vk ∈N in

i ;

Camera c j transmits St+1
j to ck , for all vk ∈N in

j .

Proof. As in Theorem 6.14, the algorithm update follows the gradient of α→ 1
2‖Aα+b‖2

2.

Because of the partial asynchronism assumption and the fact that αt ∈ [0,1]Ec is such that

α ≤αt ≤α for all t ∈N, the statement follows from [Bertsekas and Tsitsiklis, 1997, Section

7, Proposition 5.3] and Theorem 6.5. Note that the bound for the stepsize ε depends on the

Lipschitz constant K , the time horizon τ and the number of edges connecting cameras |Ec|.
See Bertsekas and Tsitsiklis [1997] for further details.

6.6.3 Symmetric Gossip partitioning algorithm

The distributed algorithm presented in this section assumes a symmetric gossip-type commu-

nication protocol. In particular, at each time iteration only one component of a camera state

is updated, and only two adjacent cameras are involved in the computation. The t-th iteration

of this algorithm is detailed in Algorithm 9.

Theorem 6.16. (Symmetric Gossip Partitioning) For a roadmap G with cameras locations Vc,

let A and b be as in (6.5) and (6.6), respectively. Let the partial asynchronism assumption hold.

Then, the Symmetric Gossip Partitioning algorithm in Algorithm 9 asymptotically converges to

α∗
SG = limt→∞αt . Moreover,

min
α≤α≤α

‖Aα+b‖2
∞ = ‖Aα∗

SG +b‖2
∞,

whereα andα denote the cameras constraints.

Proof. Define U (α) =∑
{vi ,v j }∈Ec

(Li −L j )2 as energy storage function. The convergence of the

algorithm can be retrieved reasoning along the lines of [Alberton et al., 2012, Theorem IV.1],

and by applying Theorem 6.5. -
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Figure 6.5: This figure shows the convergence of the Synchronous Gradient Partitioning (SGD,
blue solid line), the Asymmetric Broadcast Partitioning (AB, black dash-dot line), and the
Symmetric Gossip Partitioning algorithms (SG, green dashed line) towards a solution of the
continuous min-max partitioning problem. For the simulation we use the configuration in Fig.
6.2, with

To conclude this section, we validate our distributed algorithms through a numerical study.

The tree roadmap considered for the simulations is in Fig. 6.2. Notice that |Ec| = 6, n = |Vc| = 7,

and the number of locations is given by |V | = 14. The stepsizes for Algorithm 8 and Algorithm

9 are chosen sharp, up to a constant ε= .01, to their upper bounds stated in Theorem 6.14 and

Theorem 6.15, respectively. The results of our simulation study are in Fig. 6.5. Notice that all

the proposed algorithms converge to the desired value.

6.7 Conclusion

In this work we design surveillance trajectories for a network of autonomous cameras. We

consider both static and dynamic intruders in the environment to be surveilled. As perfor-

mance criteria we consider the worst-case detection time of intruders. For the case of static

intruders, we derive optimal trajectories for ring and tree roadmaps, and constant-factor

suboptimal trajectories for general roadmaps. For the case of dynamics intruders, we derive

constant-factor suboptimal trajectories for chain, ring, and tree roadmaps. As a complemen-

tary result, we introduce the continuous partitioning problem of a weighted graph, and we

propose distributed algorithms for its solution.
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7 Conclusion and future work

In this Chapter we draw the conclusion of this dissertation and describe several future research

directions, which may be followed.

7.1 Summary

This dissertation faces some aspects related to distributed estimation algorithms on graphs.

First, in Chapter 3 we present a general framework in which we aim to estimate the error of

relative localization algorithms in sensor networks, focusing on how the error propagates

through particular geometric networks. In the considered case, the quantities to be estimated

live in some d-dimensional Euclidean space, already investigated in Barooah and Hespanha

[2005, 2007]. We consider the intrinsic performance limitations, in terms of the mean error

on each component of the optimal estimator of the position vector, applying an additive

noise model. The goal is to estimate the relative error on each edge of the graph modeling

our multiagent network, in terms of its asymptotic properties when the number of nodes is

asymptotically large, and its dependence on the relative error of edges which are sufficiently

“far”in the network. Our focus in posed on an exemplary class of networks, called Abelian

Cayley networks, for which it is possible to compute an explicit characterization of the relative

error by means of the eigenvalues of the Laplacian of the graph. Considering a sequence

of Cayley networks with increasing dimension, we analyze the scaling properties of such

unavoidable error in the optimal unbiased estimator with minimum variance, depending

on the Euclidean dimension of the grid, and making use of the analogy with the effective
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resistance of the associated electrical resistive network.

Second, we concentrate our attention on camera networks in the more general context of

networked control systems. In Chapter 4, we propose two versions of a hybrid algorithm which

allows a network of cameras to autonomously calibrate in the plane. The calibration problem

is casted in a non-convex non-linear optimization problem, and the proposed algorithm is a

two-step procedure. The cost function in not convex, but its domain can be partitioned in

convex regions that maintain the convexity of such potential. First, the algorithm estimates a

vector of integers K̄ coding the region of convexity which the global minimum is believed to

belong to. In the second step, the algorithm achieves the minimizer belonging to the selected

region of convexity. Analytical characterization of the estimate is provided, with a numeri-

cal comparison with other existing algorithms. This procedure permits to understand the

properties of the proposed solution and to understand when this solution is correct.

In Chapter 5, we analyze what happens when the interconnection protocol is not determinis-

tic but randomized, asymmetric gossip-like. We propose a novel distributed and completely

random and asynchronous procedure, inspired by the work Piovan et al. [2011a]. The algo-

rithm is proved to converge almost surely and in the mean square sense for general planar

graphs. If we focus on ring graphs, the proposed algorithm converges for any realization, and

the expected value of the limit random variable equals the optimal solution, written in closed

form. Numerical experiments are shown to validate our results, and to investigate the case of

non-planar graphs.

In Chapter 6, we focus on a different application related to camera networks. The goal is to

design surveillance trajectories for a network of autonomous cameras, that minimize the detec-

tion time of static and dynamic intruders in the environment to be surveilled. As performance

criteria we consider the worst-case detection time of intruders. For general roadmaps, the pro-

posed trajectories are constant-factor suboptimal against static intruders. Whereas, they are

optimal for ring and tree roadmaps. In order to detect dynamic intruders, we derive constant-

factor suboptimal trajectories for chain, ring, and tree roadmaps. While deriving such camera

trajectories, we introduce the continuous partitioning problem of a weighted graph, and we

propose distributed algorithms for its solution, that have different communication protocols

(synchronous deterministic, asynchronous deterministic, symmetric gossip-like).
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7.2 Directions for future research

In this Section, some of the future research directions are described.

First, concerning Chapter 3, our intention is to deepen the analytical study for 2-dimensional

Cayley grids, in order to prove Conjecture 1. Moreover a further study, at least numerical, may

be followed out for d-dimensional Cayley grids, with d ≥ 3.

Second, in Chapter 4 and 5 calibration algorithms are provided, for different communication

protocols in cooperative large camera networks. Concerning the hybrid algorithm proposed

in Chapter 4 for the planar calibration of a camera network, it would be interesting to find a

distributed procedure for the nodes to autonomously compute the minimal cycles in a graph,

achieving the corresponding cycle vector using only local information. This would permit to

completely decentralize the second version of the proposed strategy. Moreover, a more refined

performance analysis has to be done, in terms of the error to gain the estimate of the integer

vector K̄ , and in terms of the index W (θ) proposed in Eq. (4.3). Finally, the generalization of

such algorithm to the 3D case would be appealing. On one side, we should properly model the

noise, and the regions of convexity, in order to reshape the cost function, naturally showing

mutiple local minima. On the other side, a different approach may be considered, generalizing

the calibration algorithm proposed in Chapter 5.

Third, in Chapter 5, a performance analysis of our asymmetric gossip algorithm on non-

planar graph would be an interesting result. The explicit computation of a global minimum of

the considered cost function could help to draw conclusions on the quality of our estimate.

Moreover, it is still needed a deeper analytical comparison among the proposed strategy and

the existing ones.

Forth, and finally, the patrolling problem presented in Chapter 6 may be extended as fol-

lows. Concerning static intruders, one direction is to prove the conjecture that our camera

trajectories are optimal also for general roadmaps, avoiding the constant factor suboptimality.

On the other hand, camera trajectories against dynamic intruders are much more complicated

to be designed, since synchronization among neighboring cameras is required in each time

period. Also in this case, the design of optimal synchronized trajectories for general roadmaps
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is still missing.
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