POLITECNICO DI TORINO
Repository ISTITUZIONALE

Design and Optimization of Adaptable BCH Codecs for NAND Flash Memories

Original

Design and Optimization of Adaptable BCH Codecs for NAND Flash Memories / Fabiano, Michele; Indaco, Marco; DI
CARLO, Stefano; Prinetto, Paolo Ernesto. - In: MICROPROCESSORS AND MICROSYSTEMS. - ISSN 0141-9331. -
STAMPA. - 37:4-5(2013), pp. 407-419. [10.1016/j.micpro.2013.03.002]

Availability:
This version is available at: 11583/2506420 since:

Publisher:
Butterworth Heinemann Publishers:Linacre Editore attuale..ELSEVIER SCI LTD, THE BOULEVARD,

Published
DOI:10.1016/j.micpro.2013.03.002

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

31 May 2024

Politecnico di Torino

Design and Optimization of
Adaptable BCH Cg f@@@
NAND Flash Megian %%

N

Authors: S. Di Carlo, M. Fabiano; S@and P Prinetto%@
and M|037 Issues. 4-5, 2013, pp. 407-419.

s

Published in the Mi

cript. The final

N.B. This is a copy of t TED version of then
PUBLISHED manuscript.is-available on Sience g
URL: http:llwm@ rect.com/science/article/pii/S0141933113000471

© 2013 Elsevier. Personal use of this material is permitted. Permission from Elsevier must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.

http://www.sciencedirect.com/science/article/pii/S0141933113000471
http://www.sciencedirect.com/science/article/pii/S0141933113000471
http://dx.doi.org/10.1016/j.micpro.2013.03.002
http://dx.doi.org/10.1016/j.micpro.2013.03.002

Design and Optimization of Adaptable BCH Codecs
for NAND Flash Memories

S. Di Carlo, M. Fabiano, M. Indaco, and P. Prinetto

Department of Control and Computer Engineering
Politecnico di Torino, Corso Duca degli Abruzzi 24, 1-10129 Torino, Italy

E-mail: {stefano.dicarlo, michele.fabiano, marco.indac olo. pmnetto} @polito. u‘@

Abstract

NAND flash memories repre Qf storage tecg v Aot solid-state stor-

age systems. How ffer from seri liability and endurance

issues that igt ted | % proper error correction codes.
This paper the desi implérentation of &n optimized Bose-

Chaudh dec core a pt its correction

capability in a rangs X defineéd values. ability makes it pos-
, in-field re’ d ode complexity. This
nt considering t e reliability of a NAND flash

ility is not fixed during the life of the device. Experimental

the device is in the early stages of its lifecycle, while introducing a limited

overhead in terms of area.

Key words:

Flash memories, Error correcting codes, memory testing, BCH codes

Preprint submitted to Microprocessors and Microsystems August 30, 2013

1. Introduction 1

NAND flash memories are a widespread technology for the development >

of compact, low-power, low-cost and high data throughput mass storage sys-

w

tems for consumer/industrial electronics and mission critical applications.
Manufacturers are pushing flash technologies into @r geometries to

ther reduce the cost per unit of storage. I'hig ﬂ movm fr @
tional single-level cell (SLC) technologlg%t

mation, to multi-level cell (MLC te(@nol

cell. 9

Store a sin 7

s Stormg b1t per s

The strong transistor zation and_the is on of an increasing 1o

number of levels pe@roduee Serio

and endural ? on codes (ECCs) must therefore 1
be sys ' apphed ost-efficient ue to detect and 13
correct mulfiple erroys ash memories s rd ECCs by providing 14

spare storage ce edieated to system marn

while demanding t ual implementation,to the application designer [? 16

sues retated to yield, reliability, u

and parity bit storage, s

1008 correction capability of an ECC is a trade-off between 17

code complexity. It is therefore a strategic decision in the 1

a flash-based storage system. A wrong choice may either overesti- 1o

mate or underestimate the required redundancy, with the risk of missing the 2
target failure rate. In fact, the reliability of a NAND flash memory continu- =
ously decreases over time, since program and erase operations are somehow 2
destructive. At the early stage of their life-time, devices have a reduced 2
error-rate compared to intensively used devices [? |. Therefore, designing an 2

ECC system whose correction capability can be modified in-field is an attrac- 2

tive solution to adapt the correction schema to the reliability requirements 2
the flash encounters during its life-time, thus maximizing performance and 2
reliability. 28

This paper proposes the hardware implementation of an optimized adapt-

2
able Bose - Chaudhuri - Hocquenghem (BCH) codegg core for NAND ﬂasE 30

9

memories and a related framework for its autoniatic ration.

| . NG
Even though there is a considerable % re/about efficient en- x»
coder/decoder software implementatighs\® 7 2 |, :

1

d mem- 3

odern F%i
ory systems (e.g., Solid State e s)) usually resort taZspecific high s

speed hardware IP core [? .2 \} r to minimiz¢\t ory latency. This s
1%@

is motivated by the ontemporary h nsity MLC flash mem- 36

ories require, a erful err i m capability, and, at the same s

time, they h et more equirements in terms of read /write 3

latency. & 39

Given this premise, \w¢’ will tackle a BCH- @@ implementation for o

encoding an @ks. In part@;@ main contribution of the a

propos @ 1s its adaptability~Jdt“enables in-field selection of the 4
i

desirédd corre capability, coupled with high optimization that minimizes 4

ed resources. Experimental results compare the proposed architec- 44
> with typical BCH codecs proposed in the literature. 25

The paper is organized as follows: Section 77 shortly introduces basic 4
notions and related works. Sections 7?7 and ?7? present a solution to reduce
resources overhead, while Section 77 and 7?7 overview the proposed adapt- s
able architecture. Section ?? provides experimental results and Section 77 4

summarizes the main contributions of the work and concludes the paper. 50

2. Background and related works 51

Several hard- and soft-decision error correction codes have been proposed s
in the literature, including Hamming based block codes [? ? |, Reed-Solomon s

codes [? |, Bose-Chaudhuri-Hocquenghem (BCH) codes [? |, Goppa codes s

[?7], Golay codes [? |, etc. %% @55
Even though selected classes of codes~such (z0ppa codes haye k 56
A s T

demonstrated to provide high correctio ey¥? |, when co ag/the s

specific application domain of flash 6emo , the need to/frad ode effi- s
ciency, hardware complexity n%o mances have @ th the scientific s
and industrial community\tow: set of codes-th e very efficient and 0

61

7

Hamming based block codes. ¢
to implement in e

correction capability e

7 7] erations of both SLC s

T rabtedncreased with su
and MLC NAND mories, desigriers moved to more complex and pow- s
erful ¢odes udiig Reed-Solomon (RS) codes [? | and Bose-Chaudhuri-

2 (BCH) codes [? |. Both codes are similar and belong to the s

ss of cyclic codes which have efficient decoding algorithms due to e
their strict algebraic architecture, and enable very optimized hardware im- 1o
plementations. RS codes perform correction over multi-bit symbols and are =
better suited when errors are expected to occur in bursts, while BCH codes
perform correction over single-bit symbols and better perform when bit er- 73
rors are not correlated, or randomly distributed. In fact, several studies have 7

reported that NAND flash memories manifest non-correlated or randomly s

distributed bit errors over a page [? | making BCH codes more suitable for
their protection.

An exhaustive analysis of the mathematics governing BCH code is out
of the scope of this paper. Only those concepts required to understand the

proposed hardware implementation will be shortly iscussed. It is worth to

mention here that, since several pubhcatlons pr y efﬁ(nent hard
implementations of Galois fields polyno lations, s @ 1la-
tion will be used in both encodmg a g 0 eratlons

Given a finite Galois field GF m > 3) a t-e ectmg BCH

code, denoted as BCH [n, @ es a k-bit S_lbk 9...bo (b €
GF(Q))toanbltc /1bg—o .. .o pr_1Dy (bi,pi € GF(2)) by

. The number r of parity bits

codeword is cdrpputed by finding

uality £ + — 1, where r =
e is called shortened
eword includes less binary

eld would allow. The missing
ols are imagined to be at the beginning of the codeword
sidered to be 0. Let a be a primitive element of GF(2™) and
i1 (x) a primitive polynomial with « as a root. Starting from ¢4 (x) a set of
minimal polynomials v; (z) having o’ as root can be always constructed [?
]. For the same GF(2™), different valid ¢, () may exist [?]. The generator
polynomial g (x) of a t-error-correcting BCH code is computed as the Least

Common Multiple (LCM) among 2¢ minimal polynomials ¢;(x) (1 <1 < 2t).

76

7

78

79

1

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

Given that 1;(x) = 19 (x) (Vi € [1,t]) [?], only ¢ minimal polynomials must 10

be considered and g (x) can therefore be computed as: 101

g(x) = LOM [(), 93 () o, 211 ()] (1)

When working with BCH codes, the message and the codeword can be 10
represented as two polynomials: (1) b(z) of degree K%L;f x) of deg
n—1. Given this representation, both the enced and-the decodin @

can be defined by algebraic operations @ pelyhomials in 8&
% 106

encoding process can be expressed
(m (2)

ainder of the division between the 107

where Rem(m (z @e
message left \shi ‘ generator polynomial g(x). This 1
remain i append to ‘%ﬂéﬂ message. 109

The B decodiz pcess, searches for the s erroneous bits 10
in the codewords QP ratlon requir naity computational steps: 1
1) syndromg(comp n, 2) error loc@lynomlal computation, and 3) 12

error fositio utation. 13

fi computation of 2t syndromes of the codeword c(x), each associ- us

selected correction capability t, the decoding process requires 11

ated with one of the 2¢ minimal polynomials v; (z) generating the code. wus
Syndromes are calculated by first computing the remainders R;(x) of the s

division between ¢ (z) and each minimal polynomial ¢; (x). If all remainders s

=

are null, ¢(x) does not contain any error and the decoding stops. Otherwise, 1o
the 2t syndromes are computed by evaluating each remainder R;(z) in o: 1o

S; = R; (o). Practically, according to (?7), given that 1;(x) = tg;(x), only 1

N

1

t remainders must be computed and evaluated in 2t elements of GF'(2™). 122
The most used algebraic method to compute the coefficients of the error 12
locator polynomial from the syndromes is the Berlekamp-Massey algorithm 124

[7]. Since the complexity of this algorithm grows linearly with the correction 12
capability of the code, it enables efficient hardware~mplementations. The 12
equations that link syndromes and error locator, %zﬂ can be expressed \ g7
12

as: OX s
LY &

9 v Sty
Ao

3)

129

Th r

tions de n (77)

iteratively solves the system of equa- 130
g consecutive approxi 131

u
Finally, the nm\Machine searches fo@ of the error locator 1
polynomial) puted by the Be{Eeka assey algorithm [?]. It 1
basically evaluates/phé polynomial A (x) iedch element o' of GF (2™). If @' 13

s the gquation 1+ Ao + Ao + ...+ A (of) =0, o is a root of the 13

relation: 138

t—1

A (aj+1) =\ + Z [)\k (aj)k} o (4)

k=1

Several publications proposed optimized hardware implementations of 13

BCH codecs with fixed correction capability [? 7 7 7 ? 7]|. However, wo

to the best of our knowledge, only Chen et al. proposed a solution allowing
limited adaptation by extending a standard BCH codec implementation [?
]. One of the main contributions of Chen et al. is a Programmable Parallel

Linear Feedback Shift Register (PPLFSR), whose generic architecture is re-

4
ported in Fig. ??. It enables to dynamically changethe generator polynomial 14
of the LFSR. This is a key feature in the im tion of an ada @e
14

ckrsten | [T/

BCH encoder. </?\ OX
N

Pr-1 2 0

Figure 1: Architecture of a r-bit PPLFSR with s-bit parallelism.

([he gray box of Fig. 7?7 highlights the basic adaptable block of this
circuit. It exploits a multiplexer, controlled by one of the coefficients of the
desired divisor polynomial, to dynamically insert an XOR gate at the output
of one of the related D-type flip-flops composing the register. The s vertical
stages of the circuit implement the parallelism of the PPLFSR computing

the state at clock cycle 7 + s, based on the state at cycle i. However, this

141

142

143

144

7

148

149

150

151

152

153

solution has high overhead. In fact such PPLFSR is able to divide by all s
possible r-bit polynomials, while just well selected divisor polynomials are 1ss
required. 156

Although Chen at al. deeply analyze the encoding process and the is- 157
sues related to the storage of parity bits, the decqding process is scarcely 1ss
analyzed, without providing details on how a ability is achieved. @9

different correction modes, namely ¢ = 160

/) are cons
ck“size of 5% Ty 2KB 161

page of the flash is split in four ck 1e selection of % es is based 16
on considerations about t @ of parity bi e However, there 16
is no provision to u e ithI&deS can be easily imple- 164
mented. As.an @hen select rtection modes in which the size 165

t a multipl padllelism of the\decoder, alignment 166

for a BCH code defined on GF(213

. which aré nlete

3. Optimiz @Eures of Pro le arallel LFSRs 168

e will introduce an optim 1zed block to perform an adapt- 160

OIN) 167

ainder computation. In fact, one of the most recurring operations 1w

encoding/decoding is the remainder computation between a poly-
ial representing a message to encode/decode and a generator/minimal 17
polynomial of the code, that depends on the selected correction capability. 173
The PPLFSR of Fig. ?? can perform this operation [?]. 17

A r-bit PPLFSR can potentially divide by any r-bit polynomial by prop- 1
erly controlling its configuration signals (go...g,—1). However, in BCH en- s

coding/decoding, even considering an adaptable codec, just well selected divi- 177

sor polynomials are required (e.g., the generators polynomials gg (), g14 (), s
g19 (), gas (x) of the four implemented correction modes of [?]). This com- 1o
putational block is therefore highly inefficient. Moreover, the set of divisor s
polynomials required in a BCH codec usually share common terms among 1s:
each other. Such terms can be exploited to gener n optlrmzed PPLFSR 1
(OPPLFSR) architecture 3
Let us consider, as an example, the ’15 bit b € 18
LFSR able to divide by two polynomj Q x —{—x13~|—$ 3—1—x+1 185
and po(z) = a2 +204 25 ~|—:c+1 using a% arallelism. 1s
A traditional PPFLSP@ tation Would 1 x 8 = 120 gray 1e7
boxes (i.e., 120 XO According to t plementatlon this PP- e
ivi @ = 68 possible 15-bit polynomials, even if 1s

e required. 190

ited to optimize 1a

the PPLFSR archj

representation of the 10

two polyno . 103
t Table 2?7, three categories 01ynom1al terms can be identi- 104

195

Cemmmon terms (represented in bold), i.e., terms defined in all considered 106

polynomials (z'3, z'°, 2% z® z, and 1 in Table ??). For these terms, 1o

an XOR will be always required in the PPLFSR, thus saving the area 19

dedicated to the MUX and the related control logic. 199

2. Missing terms (represented in underlined italic zeros), i.e., terms not 20
4 11 .9 .8

defined in any of the considered polynomials, (z'4, 2!, 29 2% 27 and om

6 in Table ??7). For these terms both the XOR and the related MUX 20

10

x%@ i e = S |
A RIS NERE

Bz
1 RS

_1\5@1

</\/
1%@\111

Q\\Q//Qﬁ 0

can be avoided. 203

3. Specific terms, i.e., terms that are specific of a subset of the considered 20

polynomials (z'®, 212, 2%, 22 in Table ??). These terms are the only s

ones actually required. 206

We can therefore implement an optimized p ammable LFSR 207
PLFSR) with three main building blocks: 208

1. each common present term (i.e %ns f ; 717 of%%) needs 20
an XOR, only;
2. each common absen (i

neither XOR n

3. each s 1

Fig the reswfi r the portio
clk, rst, en

?}F@ p-rrH 7 o
\
sl e
y! é% i | o
&/@ PPLFSR (b) OPPLFSR

igure 2: Example of the resulting PPLFSR (a) and OPPLFSR (b) with 8-bit parallelism

210

/ columns of f Table ??7) needs ou
212

213

and T . 214

15

for 215, 2 and 2! of p; (z) and ps ()

This optimization also applies on polynomials with very different lengths. 25
As an example, an OPPLFSR with single bit parallelism and able to divide s
by pi(z) = 2 + 2 4+ 1 and po(z) = = + 1, would only require a single 27
adaptable block, compared to the 226 blocks required by a normal PPLFSR. 2

12

Furthermore, the advantage of the OPPLFSR increases with the parallelism 210
of the block. In fact, with the same 2 polynomials, a 8-bit OPPLFSR would 20
require 8 adaptable blocks compared to 226 x 8 = 1,808 adaptable blocks of 2z
a traditional PPLFSR. 22

For sake of generality, Fig. 7?7 shows the high-level architecture of a 223

generic OPPLFSR. Such a block is able to divideh et py (4
RS

‘ ‘gluired gra;@x 225

& O LFSR

igh-level archltectur
LFSRamaferface includes: @t input port (b) used to feed 22
[Jog;

the data, a |]

The

M) |-bit input port (sel) used to select the polynomial of 2
7 and a s-bit port (o) providing the result of the division. Two 2
blotks compose the OPPLESR: OPPLFSR,.; and ROM. The OPPLFSR,,.; 29

1St

represents the complete network, partially shown in the example of Fig. 77. 20
Given the output of the ROM, the g-bit signal g controls the MUXs of the 2u
q gray boxes (Fig. ?7?) according to the selected polynomial. The ROM is 23
optimized accordingly with the design of the OPPLFSR, which leads to a 23
reduced ROM and to a lower area overhead w.r.t. a full PPLFSR. 234

13

4. BCH Code Design Optimization 235

In this section, we address first the issue of choosing the most suitable 23
set of polynomials for an optimized adaptable BCH code. Then, we propose 23

a novel block, shared between the adaptable BCH encoder and the decoder, 23

which reduces the area overhead of the resultlng codéc core. @

4.1. The choice of the set of polynomm
The optimization offered by the @ ntroduce 7‘7 , may om
become ineffective if not prope d. It depend Q umber and 2

on the terms of the share@ ynomials im d in the block. As 23
an example, an exce@ r of sha polyn als may make it difficult 2

increase of the area overhead. s
o share is_critical and must be 2s
247

minimal polynomials 24

de see Section ?7). Since 2o

can be used to define the s

set (); can be constructed. Choosing the most suitable set €2; is 2
obtain an effective design of the OPPLFSR. On the one hand, it 25
can) be shown that the complexity of €; increases with m [? ? 7 |. On the 2
other hand, the current trend is to adopt BCH codes with high values of m s
(e.g., GF(2")) because current flash devices features a worse bit error rate [? 2ss
|. Therefore, a simple visual inspection of each set €); is not feasible to find 25
the most suitable set of polynomials. An algorithmic approach is therefore s

mandatory. 258

14

Each set €2; can be classified resorting to a Mazximum Correlation Index 250
(MCI). We define as MC1 (py,p2, ..., py) the maximum number of common 20

terms shared by a generic set of polynomials pq,ps,...,py. As an example, 6

the polynomials of Table ?? have MCT (py, ps) = 12. 262
In the sequel, we introduce an algorithm to asse each set §2; accordi 263

to its MCIL. Given i = {1, ..., Y}, for each set Q 4
1. consider Q; = {p1,...,pn} and vy = , 265
2. determine the polynomial pj st the partiti , % has 266
the maximum MCT (v, p % Vo; 267

3. determine the polyn ch that the p t o5, 1 = ((vo,pn) ,pK) 268
has the maxim 0, Ph, D) where k N} and py # pp # 260

270
s all pelyn s hex’e been congidered in the partition on

272

ynomial to the n ., Vo = D2, considering o7
i 274
et ;

consider the next s ARk 215

lgotithm ends when all sets 2; have been analyzed. For each €, s

put is a set of partitions: 217

Sij =1{5i1,52, ., Sin} (5)
Fig. 7?7 graphically shows the MCI of two partitions generated from two 27
different starting points, for an hypothetical set €2;. 279
Fig. 77 shows that MCI always has a decreasing trend with the size of 20

the partition S. This is straightforward since adding a polynomial may only s

15

MCI
o

~.
So
~
S
~
So
~
~
Saa
E~~_
-

(P, P,) ((P4:Py): Py) (RS0 PPy /((((P1:P,). P3). P,).
#pOI%@W ?j&

>

~-
—_—

~—
-

C
1%

(pg P,) \) R (P, p,). D). N\ (BIp,). Pg). py)
#polynommls@

Fidure 4: M amples of two hypothetidal partitions .S; 1 and S; o
(0]

r kgep constant the current value of MCI. The curves, reported 2

pe critical in the choice of the most suitable set of polynomials for s

an pptimized BCH code. For each partition S;; with j = {1..N}, we can 2

compute the average MCI (M C1,,,) as: 265
LNl
MClauy(Siz) = N;Mcn (6)
Eq. 7?7 applies to each set Q; where i = {1...Y'}. 286

The best partition of the set {2; is then computed selecting the one with 2s7

16

maximum MClgy,: 288

Spest; = argmax [MCl,q (S; ;)] (7)
J

Finally, Eq. 7?7 compares the best partition of each set €2; to find the best 280

set of polynomials: @
SbestBCH =arg %egg @
Eq. 7?7 defines the family o g 1s SbestBCH,@ maximum 2o

average number of common§ 20
2: An example o&
wﬁ@)

\b01 O
@) @x)

VA

De 0 1 0 0 1 1

Let us provide an example to support the understanding of the algorithm. 203
Suppose to consider a single set §2; composed of the polynomials of Table ?7. 2

The steps of the algorithm are: 205

1. Let us start with vy = p; 206

17

2. We first evaluates MCI (p1,p2) = 3, MCI (p1,p3) = 4, MCI (p1,ps) =

N
©o
N

3. Since MCI (p1,p3) = 4 is the maximum, the resulting partition is e

Sip = {p1,p3} 299

3. The next step considers M C1((p1,ps), p2) = 3 and MCI((p1,ps3), p 300
3. It is straightforward that the choice of elt o or py does not affect, sm

the final value of the MC1,,,. 2
Given (); with starting point py, it %1 n that t 303

is Si1 = {((p1,p3) ,pa) ,p2} with a (4+3+3)/4 % q. 77. 304
The complete algorithm i ‘ is computatio 0881b1e starting sos

points. Fig. 77?7 graphicallix shows the output o Hdssociated with each 306

partition S; ; calcula the follo@ting point j = {1,2,3,4}. 307
ay A\
N~ \/

..E..MCI(SH)
'*'MCI(Si,z)
+MCI(Si,3)
.@..MCI(SM)
.A..MCI(SLS)
'V'MCI(SLG)

2 3 4
Partition Size

Figure 5: The MCI Trend of Table 77

According to Eq. 77, S;2 (the bold line) is the Spes, of the example of s

18

Table 77, with a MCl,,, (S;;) = 4. 300

4.2. Shared Optimized Programmable Parallel LFSRs 310

-

Let us assume to design an adaptable BCH code with correction capability s

from 1 up to tp;. Such a code needs to compute remainders of the division s

of: &9 @3
<
e the message m (x) by (potentially @ edtor polynorx% 1 g, s

up to g,,, for the encoding (?

315
e the codeword ¢ ($%ﬂy) all mini 1ials from ¢y (z) 316

up to a1 (te the set of mes required during the sz

decodmg pha e

In al impl ;@;e comp

318

319

two separabe set of this” paper, we © 320

set of LFSRs ab erform all these cf 321
overall cost fixterm ources overhead. fore, we can adopt the same 32
share both in the encoding and decoding processes. This is 323
in a flash memory these operations are, in general, not required 324

al me time. 325
he OPPLFSR, introduced in Section 77, is the main building block of s

the set of shared LFSRs. Therefore, we will refer hereafter to such set of s
LFSRs as shared OPPLFSR (shOPPLFSR). Fig. 7? shows the high-level 32
architecture of the shOPPLFSR. Its interface includes: a s-bit input port s
(IN) used to input the data to be divided, a [log, (N)]-bit input port (en) sz

used to enable each OPPLFSR, an input port (sel) used to select the proper sx

19

polynomial by which each OPPLFSR has to divide, and a N X s-bit port (p)

providing the result of the division.

S
INSE b OPPLFSR, {g_v_}

OPPLFSRN_/%&Q}M - P @
ﬁogg(gl):; o OPPLESR,{g b)\ @ X
— eIk P2 bv shOFPLFSR <2

_j 2R
Figure 6: The shOPPéi _aychitecture is com@y wiltiple OPPLFSRs

Given O @ correction capability t,;, each
OPPL¥FSR, ms th a setof generator polynomials ¢ (x) and
minimal i PLFSR a@s as an optimized

programmable LESR : @
. dividﬂ{ gy all geirerator polynomia 0 g1 () to gy, (7);

e \divide by specific subsets of minimal polynomials from Eq. 7?7, as well.

and a

omials

proper choice of the shared polynomials g (z) and ¢ (x) can dramat-

ically reduce the performance of the overall BCH codec. Also the partitioning
strategy adopted is critical to maximize the optimization in terms of area,
minimizing the impact on the latency of encoding/decoding operations.
The algorithm presented in Section 7?7 provides a valuable support for the
exploration of this huge design space. In fact, the proposed method can be

exploited to properly partition polynomials into the different OPPFLSRs of

20

332

333

=) sel OPPLFSR,{g_v_} (> Nxs
|:I:> Irst e P :b @

334

335

336

337

338

339

340

341

342

343

344

345

346

Fig. 7?7 in order to maximize the optimization of the resulting shOPPFLSR.

347

Such optimization should not be obtained following blindly the outcomes of s

the algorithm, but always tailoring them to the specific design. Regarding
this topic, Section 7?7 provides more details about our experimental setup

and the related experimental results.

5. Adaptable BCH Encoder < @ o)
In this section, we propose an a ta@H encoder 4 ‘%2}(oits the
shOPPLFSR of Section 77. A i the BCH th &he shOPPLFSR

of Fig. 77 is a very efficieqit_c o perform %" ation expressed in
Eq. ??7. However, ir@g ing p message m(z) must be multi-
plied by z" f ating th X of the division by g(z) (see Eq.
?77). This<c shitained (¢Sl s of the architec-
ture of sh FLSR en essage directly

in the most signi

significant bhit=" F1
encod

The.encoder’s interface includes: a s-bit input port (IN) used to input the

nressage to encode starting from the most significant bits, a [log, (f7)]-
bit \input port (t) selecting the requested correction capability in a range
between 1 and t);, a start input signal used to start the encoding process
and a s-bit output port (OUT) providing the r parity bits. Three blocks
compose the encoder: a shOPPLFSR, a flush logic and a controller.

The shOPPLFSR performs the actual parity bits computation. Accord-

ing to the BCH theory, adaptation is achieved by supporting the computation

21

349

350

351

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

NS b shOPPLFSR clk

P rst en sel
ﬁs ﬂs "ﬁogz(Nﬂ‘Ll ’ﬁ°|92"v”]
s T 0 Irst len Isel ck

logic

S
ouT

fc

¢ N
Figure 7: High-level architecture of @le encoder high t% three main
building blocks and their mair@ . @
of remainders with @m} ator polyno 'ls,ﬁor each value t may as-
' ieves thj @
N i) selecting the\proper polynomial

thie 1 g ccording“to the desi rection capability t.

Then, it managesthe all encoding proc n two internal param-
eters: 1) theZmambef ofs-bit words cov@ e message (fixed at design
time) 2)\the Anmber of produced s-bif parity words, that depends on
the selected gprrection capability. The flush logic splits the r parity bits into

Yords, providing them in output, one per clock cycle.

o steps: (i) enabling the proper

To further optimize the encoding and the decoding process, since in a flash
memory these operations are not required at the same time, the encoder’s
shOPPLFSR can be merged with the shOPPLFSRs that will be employed
in the syndrome computation (see Section ?7?), thus allowing additional area

saving.

22

Cor{t& =t
B%@? ﬁc;iz(tm) @

371

372

373

374

375

376

377

378

379

380

381

382

383

384

6. Adaptable BCH Decoder 385

Fig. ?7? presents the high-level architecture of the proposed adaptable 38
decoder. The decoder’s interface includes: a s—bit input port (IN) used to e

input the n—bit codeword to decode (starting from the most significant bits), s

a [log, (tar)| —bit input port (t) to select the desir%(jzrrection capabilit, 380

start input signal to start the decoding a@d \ put ports i 390

information about detected errors. In p r 301
e deterr is a [log, (tyr) oviding the ntimber ef/errors that sz
have been detected in rd. In case ' failure it is set 303

to O; 394

k proviaési ‘ 395

396

he

i cate detected erron s 70 the addressed word. 0
The paralleli the error m@l ds on the parallelism of the 30
chifie, as explained later in this section; 400

397

s asserted whenever a valid error mask is available at the output 4o

of the decoder; 402

e fail is asserted whenever an error occurred during the decoding pro- 43
cess (e.g., the number of errors is greater than the selected correction s

capability); 405

e end is asserted when the decoding process is completed. 406

23

t IN
J.[logotty) | S@ o < @
—t Adaptable A%\\\ st

SlSyn;zlrome Mac;@ sen @CD

[

S %Q ach de
@;\JA\\ 7 Al

—
— ptable Ck T
? machine er \> cer deterrf‘>
ﬂrrmask @ "¢

A A
-5
=]

Yy

N h - /’>
{L/ floga(n/hj| X7

able Chien machine, and the controller in charge of managing the overall decoding process

24

The full decoder therefore includes four main blocks: (1) the Adapt- o
able Syndrome Machine, computing the syndromes of the codeword, (2) s
theAdaptable inversion-less Berlekamp Massey (iBM) Machine, that elabo- a0

rates the syndromes to produce the error locator polynomial, (3) the Adapt- o

able Chien Search Machine in charge of searching f he error positions, and

(4) the Controller coordinating the overall dec 2

6.1. Adaptable Syndrome Machme 413

Fig. 7?7 shows the high-level of the pro@ table syn- s

drome machine with correct@%»ﬂlty a15
ck, rst § Vot %n

N B

s

4

s

)\V

%r I /AFE‘& ~Z— — Rw‘\ ' 'HJHWZS(':’H
\%}::(SXF){ <;gb(x) D - |S|§®5§-1([logo(V) |
m" "

=< -\%::::::::/?;ggzkz::::::::: £0

ﬁ? \//?\ v ¥ LS A _-___;::::
RM W)? Rs(a3)f| Rs(a®)}-- Rmazm-a) RZtM_l(QZtM-l) l

T of 1]]]
S, S3 S Saty3 oty err

Figure 9: Architecture of the adaptable Syndrome Machine

According to Section 77, remainders can be calculated by a set of Parallel

LFSRs (PLFSRs) whose architecture is similar to the one of the PPLFSR a7

hars

6

of Fig. 77, with the only difference that the characteristic polynomial is s

fixed (XOR gates are inserted only where needed, without multiplexers).

s

9

25

Each PLFSR computes the remainder of the division of the codeword by a 4
different minimal polynomial ¢; (z). Given two correction capabilities t; and 4z
to with t; <ty < tyy, the set of 2¢; minimal polynomials generating the code a2
for t; is a subset of those generating the code for t5. To obtain adaptability s
of the correction capability in a range between nd tp;, the syndrome 424
machine can therefore be designed to compute imum numbe@s
of remainders required to obtain 2t,; s

- Based o
correction capability ¢, only the first %R out’of the t,, f%e in the ax
circuit are actually enabled thr @nable div. net ig. ?77. 428
A full parallel syndrg %tor 11101%04

426

SRs, requires a 4

considerable amount es that ized in the early stages 430

of the flash 'fe reduced ¢
mize t ynd ;

architecture proposex Big. 771 FSRs for remainder s

O PLFSR. Conventional 435

Lre U1l

n\capability is required. To opti- s
to trade-off hetween complexity s

LEFSR intr Section ?7?7. The 433

tatlon of low order syndromes a3
required whe e requested correction capability is below a given threshold. 43

is designed to divide for selected groups of minimal polynomials 43
nat| covered by the fixed PPLFSRs. It represents a shared resource utilized 430
when the requested correction capability increases. It enables area reduction a0
at the cost of a certain time overhead. The architectural design, chosen for
the fixed PLFSRs and the OPPLFSR, enables to trade-off hardware com- s

plexity and decoding time, as it will be discussed in Section ?7?. 443

It is worth to mention here that the parallel architecture of the PLFSR, 4

26

ing iny in, ing in, ing ing in,

LA
VA1)

. T \drome machine receives

coupled with the adaptability%@le, introduese &e’c -~ additional
word alignment problems\th t be addres rrectly adapt the
rom the most significant word.
notdllow to align the codeword to the

dHits\of therast word ar 0. To correctly

ydro he parity bit r word must enter the
bit <of LFSR. Tk@ all block of Fig. 7?7 assures

by pyoperly right-shifting the codeword while it is input into

compute each s

least signifi
i

the last byte of the codeword (mgg47 maoss.-.M1 My Pag Pas---P1 Po 0 0). In this case
the PLFSRs require a 2-bit alignment, implemented by the network of Fig.
?7?7. It simply delays the last 2 input bits resorting to two flip-flops, whose
initial state has to be zero, and properly rotates the remaining input bits.

Changing the correction capability of the decoder changes the number of

27

—~ L d é t >
Figure 10: Example of the schema of@e ighex for t = 2 %

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

parity bits of the codeword, and therefore the required alignment. Given the
parallelism s of the decoder, a maximum of s alignments must be provided
and implemented in the Aligner block of Fig. ?7.

With the proper alignment, the PLFSRs can perform the correct division

and the evaluators can provide the required syndr . The evaluators are
simple combinational networks involving XO s according_to\the
Galois Fields theory (the reader may refer % spec1ﬁc iniple on

details).

6.2. Adaptable Berlekamp éé achine @

In our adaptable mplemented version-less Berlekamp-
Massey (iBM posed i ich is able to compute the error

mtlt t1

??7. At iteration

i (rows 2 t0712), the & 1hm ds an error loca lynomial \(z) whose

coefficients solye] i . 8. It then tests if the
ial so also i + 1 equa (row 5). If not, it computes a

so that A(z) 4 ¢ solves the first i + 1 equations (row 9).

process is repeated until all equations are solved. If, at the

e iterations, the computed polynomial has a degree lower than ¢,
it correctly represents the error locator polynomial and its degree represents
the number of detected errors; otherwise, the code is unable to correct the
given codeword.

The architecture of the iBM machine is intrinsically adaptive as long as
one guarantees that the internal buffers and the hardware structures are sized

to deal with the worst case design (i.e., t = t57). The coefficients of A (z) are

28

462

463

464

465

7

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

Algorithm 1 Inversion-less Berlekamp-Massey alg.
L A(z)=1k(z)=1,0=1
2: fori=0tot—1do
3 d=3 (A Saiy)
AMz) =0M(z)+d-z-k(z)
if d =0 OR Deg(A(z)) > i then
k(z) = 22 - k(z)

else O o

10:
11:
12:
13: i
14:
15:
16:
17:

m—Dbit regigters wh mber depend@e correction capability. In the

worst/Gase, coefficients must be stored for each polynomial.

T daptable iBM machine therefore includes two m—bit register files

wrregisters to store these coefficients. Whenever the requested correc-

tion capability is lower than ¢, some of the registers will remain unused. The

number of multiplications performed during the computations also depends

on t. Row 3 requires ¢t multiplications, while row 4 requires ¢t multiplications
to compute 0\; (z) and ¢ multiplications to compute d - x - k(z).

We implemented a serial iBM Machine including 3 multipliers for GF(2™)

to perform multiplications of rows 3 and 4. It can perform each iteration of

29

487

489

490

491

492

493

494

495

496

the iBM algorithm in 2¢ clock cycles (¢ cycles for row 3 and t cycles for
row 4) achieving a time complexity of 2t clock cycles. This implementation
is a good compromise between performance and hardware complexity. An

input ¢t dynamically sets the number of iterations of the algorithm, thus

implementing the adaptation. &9
; i 502

6.3. Adaptable Chien Machine 6

0 @
The overall architecture of the p &%&3 aptable Chi % e is
shown in the Fig. ??. The ma iQﬁr ads into) 0-bit _1dgisters the
r locator pol x)
K:T\S. ;lﬁe

coefficients from Ay to \;,, ofthe-e computed by

mstarted (1d =1). At

the iBM machine (1d =0)\The actual searc
each clock cycle, t e@erforms parallel evaluations of A\(x) in GF(2™)
and outguté E;\Q @’ord, dengtéd as\exrmask. Each bit of errmask corre-

sponds of’the h ¢ e locations tha been evaluated.

at
tied exrors. This mask ca

Asserted bits denote 1‘ n b&’XORed (outside

the Chien Machi ith the related bits-of vord in order to correct
the detected (errone its.

The¢ arch

e of Fig. 77?7 provides an adaptable Chien machine with

sumption than other designs [? |, having, at the same time,

\>

parginal impact on performance. Four interesting features contribute to
such optimization: (i) constant multipliers substructure sharing, (ii) adapt-
ability to the correction capability, (iii) improved fast skipping to reduce the
decoding time, and (iv) reduced full GF multipliers area. In the sequel, we
briefly address each feature.

The first feature is represented by the optimized GF Constant Multipliers
(optGFCM) networks of Fig. ??. The h parallel evaluations are based on

30

497

498

499

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

OptGFCM, ... optGFCMtM
o b— ... atv —»@»{ So=»err;

ah |’ ortmh :\?—:Do-»errﬁh

errmask

|d

M e | t <
T e 1 2 \
redGFFM f 1.

roposed allel adapt

Figure 11: Architecture of the
equal to h
t Galois mudtipliers. They multi-

i : ft
ply the content of the &rs v a,a?, ... al spectively. However,
we can note tha Cmn of constant @ ipliers shares the same
multiplican @we can iterati@ p their best-matching com-

[ANInto/the ty optGFCM networks of Fig. ?7. Such optGFCMs

able S:i@ﬁhme with parallelism

» parallel evaluation of equation

ovidewp t#)60% reduction of the hardware complexity of the machine with

't on performance.
he second feature is the adaptability of the Chien machine. The rows of
the matrix define the parallelism of the block (i.e., the number of evaluations
per clock cycles), while the columns define the maximum correction capability
of the block. Whenever the selected correction capability ¢ is lower than ¢,
the coefficients of the error locator polynomial of degree greater than ¢ are

equal to zero and do not contribute to equation (?7?), thus allowing us to

31

522

523

524

525

526

527

528

529

530

531

532

533

534

535

adapt the computation to the different correction capabilities.

The third feature stems from a simple observation. Depending on the
selected correction capability ¢, not all the elements of GF(2™) represent
realistic error locations. In fact, considering a codeword composed of k bits

of the original message and r = m - t parity bits,%; + m -t out of 2™
|

elements of the Galois field represent realistic e ions. Given that an

. : : < ,
error location L is the inverse of the relat nt (L =20 |
or pol

he
elements of GF(2™) in which the error-lo omial m%%aluated
are in the following range: 6% &
% (9)
All ele

een o’ " can be skipped to reduce the
computa ime. Diﬁer@‘n ed correcti %ﬁity fast skipping
Chien machines thi @zﬂ isvhot constant depends on the se-
lected t. The @ f Fig. 7?71 n daptable fast skipping
by initighzing the jntefnal registers to&efﬁciems of the error corrector

m_f.__ o —
o= a2 ~h=mi=l For each value

ial multiplied by a proper value
it constant values corresponding to 3, (64,)% ..., (85,)™
St be stored in an internal ROM (not shown in Fig. ??) and multiplied
by the coefficients \; using a full GF multiplier.

This is connected with the last feature, the reduced GF Full Multipliers
(redGFFM) network of Fig. ??. Each full GF multiplier has a high cost in

terms of area. Since they are used only during initialization of the Chien, the

redGFFM adopts only z < t); full GF multipliers. It also includes a (\) input

32

536

537

538

539

540

1

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

port to input z coefficients, per clock cycles, of the error locator polynomial. sss
This network enables to reduce area consumption, at a reasonable cost in sso
terms of latency. 560

For the sake of brevity, a detailed description of the controller required se

to fully coordinate the decoder’s modules 1nteract is out of the scope if 562

this paper. ::;
7. Experimental Results @ 564
This section provides exper} enggﬁa from t mentation of the ses
s

adaptable BCH codec pr@ selected cas

7.1. Automatzc ge e 10 fmmewo 567

To cope rnplex1t oA design of these blocks, a semi- s
automa ion too E (ADaptive Automatic GEn- se
te a

erator) [? [Mable to y synthesizable able’BCH codec core s

566

following the arshitecture ha ipnacd and exploited in this sn
experimentation ex ing a prehmma ework previously introduced s
in [? The architecture of the framework is in Fig. 77. 573

analyzer block represents the first computational step required s
tq sclect” the desired code correction capability based on the Bit Error Rate s
(BER) of a page of the selected flash [?]. The BER is the fraction of er- s
roneous bits of the flash. It is the key factor used to select the correction s
capability. Two values of BER must be considered. The former is the raw s
bit error rate (RBER), i.e., the BER before applying the error correction. s
It is technology/environment dependent and increases with the aging of the ss

page [? ?]. The latter is the uncorrectable bit error rate (UBER), i.e., sa

33

Code Analyzer

UBER

f

Code parameters:

Architectural
parameters:

ks, h z

o

BCH encoder/
decoder

OUTPUT

Figure 12: BCH codec automatic generation framework.

34

the BER after the application of the ECC, which is application dependent. ss
It is computed as the probability of having more than ¢ errors in the code- s

word (calculated as a binomial distribution of randomly occurred bit errors) ss

divided by the length of the codeword [? |: 585

— RBER)" @

Given the RBER of the flash and -. < UBER, Eq 586
exploited to compute the maxnnu@ req ed correctio %h of the s&
code and consequently the valu defines th@ Given these sss

two parameters, the Gal anager ex% ernal polynomials ss
mia

1 n
vpep~ LWE>1 1 Ly <¢>,RB
n
z t+1

database to generat minim izjg nd the related generator sep
ed cod 501
i . % or combine parameters and so
. & CH encode er implementing s

the architecture @m this paper. 504
The wh % combines M lab ware modules with custom s

C pro 1l framework code is"available for download at http: s
@oup polito.it in the Tools section of the website. 507

WW
Ezxperimental setup 508

Experiments have been performed, using as a case study a 2-bit per cell s

MLC NAND Flash Memory featuring a 45nm manufacturing process de- o0
signed for low-power applications, with page size of 2KB plus 64B of spare o
cells. The memory has an 8-bit I/O interface. Considering the design of o

the BCH code, the current trend is to enlarge the block size k over which eos

35

http://www.testgroup.polito.it
http://www.testgroup.polito.it
http://www.testgroup.polito.it

ECC operations are performed. In fact, longer blocks better handle higher oo
concentrations of errors, providing more protection while using fewer parity oo
bits [? |. For this reason, we adopted a block size k = 2KB, equal to the o

page size of the selected memory. 60

Experiments performed on the flash provided t, in a range between eos
10 and 100,000 program/erase (P/E) cycles on gexthe estimated R@g
changes in a range [9 x 107% + 3.5 x 10‘9 2 ith a tar @ of &
10713, which is typical for commerei2l %tio s[? 7

, AL ding to e

equation (??) we need to desigira with corre tig%a ility in the e
range tpy;, = D up to t@ﬁ. ince k = 21§;@1 = 24, from the eas3

7

0

expression k+m-ty; e deducem = 1s obtaining a maximum e

arity infoxin

(ziven the 8-bit I/O interface of e
dgedder have becr designed with an e

ues of h a > Chien Machine 17

d the decoding time. es
aCE t optimizations of Fig. 77, e

machine with paralielism h = 8 and z = 1 full GF e

we opteehfon, a Chieh
621
Xperimentation we analyzed the three architectures summarized 62
in\Table ?77. 623

Arch. 1 is classic BCH architecture with fixed correction capability of e
24 errors per page. It represents the reference to compare our adaptable e
architectures. 626

Arch. 2 is an adaptable architecture with t,,,, = 5 < t < 24 using e
a traditional PPLFSR for the encoder and 24 PLFSRs for the syndrome 62

36

calculation. It is worth mentioning here that, differently from what reported
in the previous sections, the minimum required correction capability of the
codec is higher than 1. This allows us to save space in the encoder PPLFSR

since less polynomials must be stored, and in the Chien Machine’s ROM

since less f3;,; terms must be stored.
Arch. 3 is an optimized version of Arch. 2 >he use of a_ shQP-
<&
PLFSR shared between the encoder an % er, to trgn
0 opt >

complexity and decoding time. In e invize the shOP-

PLFSR, we exploited the algorithizh @ed in Sectio %}i our adapt-
able BCH code, a set of ¢ tlab simulatjglts implement this

preliminary analysis et ; of polyno . Each set €); contains
—tmin— tor polynox lired in the encoder and ¢, = 24

GE i;] @ PPLFSRs, each of which

st {957¢29,¢39}, {967¢31;¢41}7

dix of this paper for the full list of employed polynomials. All
othler structures remain almost unchanged. The comparison between Arch.1
and Arch. 2 enables to highlight the benefits of using an adaptable codec,
while the comparison between Arch. 2 and Arch. 3 shows the advantages of

adding optimized shared blocks.

Lour BCH code has 1,800 primitive polynomials 17 ()

37

629

630

631

632

633

4

635

636

637

638

639

640

644

645

647

648

649

650

651

Table 3: Characteristics of the analyzed architectures

Adaptable OPPLFSRs Chien Machine

Arch. 1 No - h=38,t=24

Arch. 2 Yes - h—8 t € [5,24]

Arch. 3 Yes Wt €| 24©©

7.3. Performance evaluations &xw

Table 7?7 summarizes the mentation € & e three se-
lected architectures in te@ ired parity Worst case encod-
ing/decoding latenc; in terms clﬁcles.

Let us rt evaluatl @ ount of redundancy introduced
by th ¢ ures . ..

has a fixed canrection capability
of 24 err er page,

- 360 parity bits

(about 45B) for e page of the ﬂash otints for about 70% of
the full spa e for each p@ the spare area cannot be
fully r ring ECC information—high-level functions, such as file

system\manggement and wear-leveling need to save considerable amount of

fion in this area), this percentage represents a considerable overhead
fok the selected device. Based on the results of Table 7?7 Fig. ?? shows how,
for the adaptable codecs of both Arch. 2 and Arch. 3, the percentage of spare
area dedicated for storing parity bits changes with the selected correction
capability. The total occupation ranges in this case from 15% to 70% of the

total spare area. This mitigates the overhead for storing parity bits whenever

the error rate enables to select low correction capabilities (e.g., for devices in

38

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

&
©
0

8 8 ¢ Cowe (€ _ .
rerteeoz T8 ot NEREEAN @& el {rg" o'l =4 ¢ oy

8

1°G1+8:8%0°C

161 {ve9'c =1 g ‘yoay

", .
€60 °C eSTT %ﬁm N\ 870 ¢ @%m Ve =1 1 ‘YoIy

i a wy (O

Wiy N! @88% /\fW\
e 2
@29@ Lqeden)
(So[0AD {[DF#) Aouaye[Surpooa(] @ 1q Aj1reg
}

3 ~
1] «/Q:uo @ ’ y UOI3I9.LIO))

R ¥ ARUIPELY QUIOIPUAS 91} JO YSATIAOUS AU} Ul pareys

sreruouA(od [RWIUIUI JO IOQUINT WNUWIXRU 91[) S9j0USP

oug] pue sjrg £)1reJ 9sed 1SIOA\ f 9[qR],

39

the early stages of their life).

80%

70%

— 60%

50%

40%

30%

Used spare area (%

20%

10%

0%

@ ‘ |
are are ic ity bits while ¢flanging the correction

addptable co Ar d Arch. 3

For all implemértations, the encoding | depends on the size of the
incoming m g% erefore constlant re less the adaptability of the
encod e@.). The decoding latency is instead influenced by the
@abﬂity, as reported in Table ?7?7. Fig. 7?7 compares the decoding

~of the three architectures for each considered correction capability.

that timing estimations of Table 7?7 and Fig. ?? depict the worst-case sce-
nario in which the Chien Machine must search all possible positions prior to
find the detected number of errors. Fig. 7?7 highlights that, for the lowest
correction capability, both Arch. 2 and Arch. 3 enable 22% of decoding time
reduction when compared to the fixed decoding time of Arch. 1. The decod-

40

670

671

672

673

674

675

676

677

678

679

680

681

ing time increases with the correction capability. For Arch. 2, it reaches the es
same level of the fixed architecture when the correction capability reaches ess
t = 24. Arch. 3 deviates from this behavior for t > 20. This penalty is intro- s
duced by the use of the shOPPLFSR in the Syndrome Machine. In this case, 6ss
the codec includes 5 blocks to perform remainder utatlon with 10 min- ess
imal polynomials {129, 39, 31, Va1, P33, 1/1437 ¢47} ThlS im 7
doubling the syndrome computation time the requited dorregtion ess

%d Nev- s

capability reaches a level in which a polynomials mu

ertheless, we will show that thl erformance 1s lanced by 690

a reduced area overhead. 601
@ RN
NN S <
5@3& = S
4000 N j@

-~ Arch 1

3000 SZN @
2000 @gf ©/ ——Arch 2

Arch 3

00

Decoding latency (clock cycles)

5 6 7 8 9 10 11 12 13.14 15 16 -12 18 19 20 21 22 23 24
Correction Capability

Figure 14: Worst case decoding latency for the three architectures considered.

7.4. Synthesis Results 692

Synopsys Design Vision and a CORE 45nm technology cell library have 693

been exploited to synthesize the designs. Table ?? shows the results of the o

41

synthesis of the three architectures. The hardware structures required to eos
obtain the adaptability of the code introduce a certain area overhead. Con- e
sidering Arch. 2, the area of the encoder increases since 19 generator poly- o

nomials must be stored in its ROM, while the area of the decoder increases eos
due both to the aligners in the syndrome machin d to the ROM in the 00
Chien machine to adapt the fast skipping pro %rtheless, the irﬁ@o
duced overhead is about 14% which is stiO c e. Considéring @1 , 701
the introduced overhead is halved w%. 1%\ he area Kcoder is 702
almost comparable with Arch. 277°Howevez, it now includes theSHOPPLFSR 703

%e with the L

and a smaller ROMs which contri ,
the area of the deco r architectures

frequency of.10 ,

aring, at decreasing 704

tained a maximum clock 705

706
the maximu of the ci 707

with an tion of t 708

. [?] designed f 512B, smaller than 70
the 2KB use @ . Given the game muin correction capability 710
3, (2] uses‘d code defined on 13) instead of the code defined m

e

in this paper. However, even if the code is simpler and the 2

fcorrection modes is smaller (only 4 correction modes), the area of 73
the{codec accounts about 158.9K equivalent gates?, which is higher than the 7.
111.4K and the 105.2K equivalent gates of the Arch. 2 and Arch. 3 proposed. s

Fig. ??7 compares the decoder’s dynamic power dissipation of the three s

architectures computed using Synopsys PrimeTime. As for the decoding =7

2Equivalent gates for state-of-the-art architectures have been estimated from the infor-

mation provided in the papers

42

Table 5: Synthesis Results

Comp. Max Clock Equiv. Gates Over-head

Encoder 100 MHz 33.3 K
Arch. 1 Decoder 100 MHz 64.1 K

@) 11 100 MH g&lﬁ f.)
vera z P (re @

Encoder 100 MHz O@.S K @
Arch. 2 Decoder 100 MH & O K X

Overall 10@ 11141« 5 14%

Encoder (i
Arch. 3 Dec@ MHZ
100

1052K

latency thea alys1s hagbéenperforwed for a wo ulation in which

¢ end of the code t the Chien Machine

‘ itions prior t@ l errors. Considering Arch.
thattlie introduction of t aptability enables up to 15% of
dynamic power saving when the lowest correction capability can be selected.
s.due to the fact that the portions of the circuits not required for low
corfection capabilities are disabled. The introduction of the optimizations

proposed in Arch. 3 has no significant impact on the dynamic power that

remains almost equal to the one of Arch. 2.

43

718

719

720

721

722

723

724

725

726

9.10E-02 -

§ b —hk—h=dhA=—hA= —A= == —h =k —h = A= A= —A= —A= =k —h — Ak — A = A
és,sos-oz . o

S po__

Y 810602 - —t—

2 =t

[e] —

2 ook02 |t

L2 -+ Arch 1
€

T 710602 ——Arch 2
>

[a]

6.60E-02 S m Ar@3 N\
NS
6.10E-02 - H P CO R R % =
5 6 7 9 10 11 12 h%s 16 17 18 19 ~20Cs1 z>\‘>23 24
f;o cti apability &
r<eonsumption of t ecoders for the three

considered architecture T pressed in-mW.
8. Conclu @ @
C

8
Figure 15: Worst case dyna p

¢ architec its related auto-

rk which enables j rection capability to
@. ing’an ECC system whose

has the potentiality to adapt

a BC

This proposed

matic generation

xperimental results on a selected NAND flash memory architecture
proved that the proposed solution reduces spare area usage, decoding time,

and power dissipation whenever small correction capability can be selected.

44

27

728

729

730

731

732

733

734

735

736

@@

Table 6: Minimal polynomials expressed e correspondm%a al string of
coefficients A\

di | Ox FABS s 0xB13D<\zQ§\\%//8011

3 /\6;&&\269\ (T (@Q @) 0x BA2B

N0 (/ }9%2 KAW/% P37 | Ox DISF
s\ \N 0x E6ER ¢ ¢X}W8\8/C7 thag %E\E%

o @ N | Ox €357 \&f\ }ﬂ&gg
/51<<)9N@5 Yoy | Ox ;}G/\ §3\$x 9BEB
13 Mﬂ g OX@ _71145 0x 93CB

@a s x EDDO | a1 | Ox FALO | s | 0x F385

45

AVLET6C8C8HULICTTITO8V eV V6 A08AYOLEOUCIAHI0HI0TAVISTAIAOY VAOC09E6HI TV AETACOVL60STCICTHV IVIO X0

i%d;)

wmimmmmﬁ%@%Emmoﬁogomo@%@@mm%mémwmﬁmoommmmgméomﬂ@mmmm%@@mgmomoﬁamao x(| ¥
oﬁ:mm@@m@wmwomod«moo@%moo&@\@ﬁmﬂgamiﬁ:ENNNSEE%@QNE%E%@NOQQoomomwao x(| @b
AAPLAOPETTICOSVAVILYLOARAFA0LE0TAAFRA66LARGSLAGRDIDATYOLRLLLISSLR0LAFATZIOERACTO X0 | 176
mmmo&mﬁo&o@ﬂﬁH%@&@@&ﬁ@m@ommﬁﬁomw@oom%mm@ﬁo@mmoﬁmw%wwzog x(| 026
RE6ATOVATEAD LA ATEF 662 CRITSTHITY LEEHE0EOOAYFIEVACCAansDT08ddVFEET0 X0 | ¥

PADSALPAVTY VPLIA9016010{ ASHY AL ALV PERDA AP AT6RESIOVELVSEEACAOTEITO X0 | 51
ﬁi%@«%@%ﬁﬁm%m%ﬁogo,@gmﬁm%wmowamod@mmm%mmﬁ&o xq | 216
wmmgyd\\gﬁwmmmmm&mopﬁ%mow%@@ 0z80£AADOAITATOLINATIALT0 X0 | °'6
o%@mwﬁﬁmoaﬁW@um@m@@@@wmwHmww@@ém@oﬁm:o x(| <16
m@wﬁ%&%@@\@@%ﬁ%&mommommm:m@@mamm:o xq | 16

QUATEROTETINEEATLOIGITVODEDT LYAOTESTOCTLOGIGHZIO X0 | *1F

@@mmgm@ A6AGVEOTVAVASOADEICEVAOGEARTO X0 | #16

V133 VasOUGERAPOREICATVELULILATIVEVERH L0 X0 | 116

< AAPDLOVSOEARIIELAEIOATIDSECTTIOFEASTO X0 | 5

N> P %mmw\%@@m@Ymﬁ%mm@momwm%ms x(| 66

&\% wgm/@mv%oﬂ%m%mm@@%wﬁs x0 | %

DOLLIFDSERYOFANEAAELEATO X0 | 0

mmmoﬁgm%mm%s x0 | %

€625€999L89DEIT0 X0 | b

SYURIOIJO0D JO SULIYS [eUWID9PeXaY Surpuodsaliod a9} Yam passerdxa Termoudjod Iojeisuar) :) o[qe],

46

