
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Modeling and Formal Verification of Smart Environments / Corno, Fulvio; Sanaullah, Muhammad. - In: SECURITY AND
COMMUNICATION NETWORKS. - ISSN 1939-0122. - STAMPA. - 7:10(2014), pp. 1582-1598. [10.1002/sec.794]

Original

Modeling and Formal Verification of Smart Environments

Publisher:

Published
DOI:10.1002/sec.794

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2506415 since:

WILEY-BLACKWELL PUBLISHING

SECURITY AND COMMUNICATION NETWORKS
Security Comm. Networks 2012; 00:1–14

DOI: 10.1002/sec

Special Issue Paper

Modeling and Formal Verification of Smart Environments
Fulvio Corno, Muhammad Sanaullah∗

DAUIN - Dipartimento di Automatica ed Informatica
Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy.

ABSTRACT

Smart Environments (SmE) are a growing combination of various computing frameworks (ubiquitous, pervasive etc),
devices, control algorithms and a complex web of interactions. It is at the core of user facilitation in a number of industrial,
domestic and public areas. Based on their application areas, SmE may be critical in terms of correctness, reliability, safety,
security etc. To achieve error-free and requirement-compliant implementation, these systems are designed resortingto
various modeling approaches including Ontology and Statecharts. This paper attempts to consider correctness, reliability,
safety and security in the design process of SmE and its related components by proposing a design time modeling and
formal verification methodology. The proposed methodologycovers various design features related to modeling and formal
verification SmE (focusing on users, devices, environment,control algorithms and their interaction) against the set of the
requirements through model checking. A realistic case study of a Bank Door Security Booth System (BDSB) is tested.
The results show the successful verification of the properties related to the safety, security and desired reliable behavior of
BDSB.
Copyright c© 2012 John Wiley & Sons, Ltd.

KEYWORDS

User behaviour;Smart Environments; Intelligent Domotic Environment; Modeling; Formal Verification; Model Checking; Temporal

Logic

∗Correspondence
email: muhammad.sanaullah@polito.it, Tel.: (+39) 011-090-7191

Politecnico di Torino, Torino, Italy.

Received . . .

1. INTRODUCTION

Smart Environments (SmE) are gradually being introduced
and employed in almost every nook and corner of our daily
lives, such as homes, hospitals, offices, industries, airports,
railways, transportation mediums and many public places.
They promise to deliver intelligent services by considering
the presence and actions of users [1, 2]. For specific
services, users can interact with the system in any manner
and at any time. The users can belong to different
demographic groups, possess different behaviors and can
interact with the system as they please [3]. It is opportune
for SmE to react to users’ behavior for delivering the
services intelligently. In addition to users, behavior of
the services is also dependent upon their application
domain. For example, energy management is fundamental
in industries; easy environment management is important
in smart homes; assisted living is needed by the elderly
in hospitals. Moreover, the safety and security services are
essential requirements for many SmE, and depend upon

the context (interchangeably mentioned as ‘environment’)
and domains of the application [4, 5, 6]. For example,
the safety service in the case of fire is to switch on the
security alarms, unlock and open the emergency exit doors,
turn on the emergency and path-pointing lights directing
people towards the emergency exit, make recorded calls
to nearby fire and rescue offices and other key officials of
respective environment; whereas the security requirement
for accessing the bank is achieved by crossing two
automatically locked doors, in which, one door will not be
opened until the other door is closed.

These services can be achieved by controlling the
functionalities of the associated devices, which is
performed through gateways at which all the devices
are attached, by using some wired or wireless medium,
and the computational elements (also known as Control
Algorithms –which are responsible for the achievement
of specific constraints of safety, security, availability and
reliable behavior) that are installed on such gateways
[7, 8, 9].

Copyright c© 2012 John Wiley & Sons, Ltd. 1
Prepared using secauth.cls [Version: 2010/06/28 v2.00]

Modeling and Formal Verification of Smart Environments Fulvio Corno and Muhammad Sanaullah

Due of the intricate communication between the
SmE components (users, devices, computational elements,
environment) along with the implementation of various
constraints, the behavior of SmE becomes complex [4, 5].
As each of these components are self independent, with
their own working capacities and internal behaviors [10],
their independent and interactive nature introduce complex
details in the system, and as a result, the likelihood
of design errors (or failures) may increase [11]. For
sensitive systems like fire control units, theft or traffic
control systems, nursing care houses and others, where
the failure can break security measures and may cause
criticality, design time verification is recommended by
various authors [11, 12, 13].

A number of approaches can be adopted for the design
time verification with their own strengths and weaknesses
[14, 15]. Ideally, a technique is required which may ensure
the exhaustive verification of various requirements. Since
complexity and ambiguity are usually the common features
of such systems, formal verification processes help to
root them out, and, in result, a reliable secure system
can be designed, which has all the desired features and
consistency among its integrated components with the
environment [14]. As, formal methods promise holistic
design time verification based on the following strengths:
1) they are strongly based on mathematical evidence and
increase the understandability of the modeled system;
2) they are used for reliably modeling a system at design
time; 3) they can model the concerning requirements in the
form of properties by using logic based on mathematics;
4) they can formally verify the modeled system against
the requirements (reliable behaviour, along with other
requirements of the system); 5) they can trace back the
errors and can help in fixing them at early design stages.

In this paper, an extended formal methodology
from our previous work [16], for the modeling and
verification of SmE, is proposed. The current proposal
encapsulates the existing technique with a detailed and
structured methodology, which is this paper’s novelty.
The proposal incorporates the users’ and environment
modeling in the current extension, with a detailed and
multi-dimensional verification, which are added features
to previous technique (capable of performing device and
their control verification). Built upon the core features,
the current methodology constructs the overall SmE where
the users and environment are also considered, modeled
and verified. The modeling of each component of SmE is
performed from requirement gathering to the entire system
verification, along with the security and safety constraints
at design time.

The methodology uses DogOnt (a semantic web
solution for the formal modeling of SmE through
Ontologies) [17], SCXML (a textual Statechart [18]
formalism for the behavioral modeling of SmE related
components) [19], UCTL (Temporal Logic formalism for
specifying the requirements in the form of properties) [20]
and UMC (a model checker designed for the verification

of interacting State-machines) [21] as tools. The Bank
Door Security Booth System (BDSB) case study [16]
is accordingly extended with users and environment
configuration and has been successfully verified. The
results demonstrate the feasibility of the methodology by
which the security-critical SmE systems can be verified at
design time.

In the remaining paper, the related work is presented
in Section 2; the state of the art and the tools used
for implementing the methodology are summarized in
Section3.1; an architectural overview by considering the
operational flow in SmE is presented in section3.2; the
proposed methodology is presented in Section4; the
technique designed for implementing the methodology is
described in Section5; the description of the Bank Door
Security Booth System (BDSB) is given in Section6; the
requirements formalism in the form of properties with their
verification results are given in Section7; discussion about
the results is given in section8 and finally, the concluding
remarks and future works are given in Section9.

2. RELATED WORK

The extended literature review did not find considerable
amount of work in the area of formal modeling and
verification of the users, devices, context (which is related
to the environment configurations) and control algorithms
of SmE altogether. Different researchers are concentrating
on different areas for the formal modeling and verification
of SmE and its related components. These dimensions
can be classified as: device modeling, devices interaction
and their control modeling, users’ behavior modeling,
users and their interaction modeling with the devices,
and context modeling, jointly known as ’SmE Modeling
Dimensions’. A precise description of these dimensions
is presented below. TableI presents the literature and the
dimensions followed within.

Table I. Modeling Dimensions covered by the Techniques

Papers SmE Modeling Dimensions
[5] Context, Devices Interaction and Control

[10] Device

[11] User, Context, User and Devices Interaction

[13] Devices Interaction and Control

[16] Devices Interaction and Control

[21] User, User and Devices Interaction

[22] Context, Devices Interaction and Control

[23] User, Context, User and Devices Interaction

[24] User, User and Devices Interaction

[25] Devices Interaction and Control

In the device modeling category, the modeling and
verification of the individual devices is performed
according to their specified (reliable, safe, secure) behavior
[10]. Whereas, in devices interaction and their control
modeling category, the modeling and the availability
of interaction services and functionalities are verified

2 Security Comm. Networks 2012; 00:1–14 c© 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Prepared using secauth.cls

Fulvio Corno and Muhammad Sanaullah Modeling and Formal Verification of Smart Environments

along with ensuring the specified constraints of the
systems, which are controlled through some sophisticated
algorithms. The device interaction and their control
modeling are carried out in the following literature [5, 13,
16, 22, 25].

In users’ behavior modeling category, the user model
is confirmed to fulfill all the desired activities and the
associated actions in the specified manner by following
the environment imposed constraints. As each user has a
different behavior (demographic age groups), therefore, in
this category, it is also ascertained that the users model
can incorporate all these behaviors and can achieve the
desired activities by performing the required actions in a
secure way. The formal modeling and verification of users
is performed in the following literature [11, 21, 23, 24].

In users and their interaction modeling with the devices
category, the interaction of the users with the devices is
confirmed by verifying that the system is able to consider
the users actions and whether or not the system can
perform all the desired operations in a secure manner as
a result. The work presented in the following literature
[11, 21, 23, 24] cover this category.

In context modeling category, the concerning element
is environment which changes its configurations when any
change occurs in the system. Here the availability of the
associated services is verified, along with the satisfaction
of security and safety constrains, when the system changes
its configuration at some particular state. The works of
[5, 11, 22, 23] cover this category.

The proposed methodology tries to consider and
incorporate these dimensions for the modeling and
verification of SmE.

3. BACKGROUND

In the following sub-section3.1, the tools required
for the implementation of the technique are concisely
explained, and in sub-section3.2, the architecture of SmE
is explained by focusing on the operation flow between
each component.

3.1. State of the art and Adopted Tools

The interface (black-box) modeling can be performed
with the use of Object Oriented paradigm, Semantic
Web technologies or by other means. Ontology is a
semantic web artifact for providing a mechanism to store
the concepts and their corresponding relationships with
the related characteristics to others concepts. Ontological
solutions are recommended by various authors [26,
27, 28, 29, 30] for the modeling of SmE. Similarly,
behavioral (white-box) modeling can be performed with
the use of Statecharts [18], Petri-nets [31], Communicating
Sequential Processes (CSP) [32] or other ways.

DogOnt [17] is an Ontology that provides formal
modeling and suitable reasoning facilities to smart
environments through semantic web technologies. The

main focus is on the interface (also referred as black-
box) modeling of the devices, where the states (at which a
device can be at any time), functionalities (the capabilities
of the device), commands (triggering the functionalities)
and notifications (acknowledgment after the completion of
the task) of the connected devices are modeled.

The behavior (also referred as white-box) modeling of
systems, in which the activities are performed with the
exchange of messages from one state to another, and in
the systems where there are more than one destination
states from the source-state depending upon the conditions,
can be represented through Statecharts [18, 21, 33, 34].
The proposed methodology adopts Statecharts for the
modeling of complex behavior of SmE and its related
components. The modeling of devices behavior, in the
form of Statecharts, is performed with the help of DogOnt.
Every device modeled in DogOnt have a corresponding
behavioral model as a Statechart. The input/output
(interface) of the Statechart model are consistent with the
information available in DogOnt, while the internal states
and transitions can be described according to the actual
device behavior [10]. This behavior modeling is performed
by adopting the W3C standard SCXML language [19].
The other components of SmE, such as users’ behavior,
environment and control algorithms are also modeled in
the Statecharts format and can be used for the verification
through simulation, emulation and model checking.

For the verification of the systems modeled in the
form of Statecharts, various model checking tools like
[35, 36, 37, 38] are designed. UMC [21] is one of these
model checking tools. It is an “on-the-fly” model checker
exhaustively verifies the requirements, either concerningto
ACTL (Action Based Branching Time Logic) [39] or CTL
(State Based Branching time logic) [40], whereas, various
other model checkers can support only one type of logic
(state or action based). “State Space Explosion” is a major
problem for the verification of complex systems, which
UMC overcomes by not generating the global model of the
system [21] but by exploiting a linear complexity model
checking algorithm for the exhaustive verification of the
system. An on-line version of UMC model checker is also
available∗.

Temporal Logics [40, 39, 41, 42] are widely used
in formal verification for formalizing and specifying the
requirements of complex systems. The truth value of these
specified requirements depend upon time: whether the
specific requirement will be true at any path (Exists) or
on all the paths (All). In addition to Exists and All, there
are other temporal quantifiers like Global, Next, Future,
Until, Implies, etc, which help in verifying the complex
requirements on different branches (of Statecharts) from
some specific state at a certain time.

UCTL [20] is a UML-oriented branching-time temporal
logic, which has the combined power ofACTL andCTL.
Due to the rich set of state propositions and action

∗http://fmt.isti.cnr.it/umc/

Security Comm. Networks 2012; 00:1–14 c© 2012 John Wiley & Sons, Ltd. 3
DOI: 10.1002/sec
Prepared using secauth.cls

http://fmt.isti.cnr.it/umc/

Modeling and Formal Verification of Smart Environments Fulvio Corno and Muhammad Sanaullah

expressions, UCTL is best fitted for the verification
of communicating state machines. With the help of
UCTL, we can verify different properties like liveness
(something good eventually happens), security (nothing
bad can happen) and properties with or without the fairness
restrictions. UCTL uses boxnecessaryand possible
operators from Hennessy-Milner Logic and temporal
operators (like Until, Next, Future, Globally, All, Exists)
from CTL/ACTL. By combining these logics, it can check
the Absence, Existence, Bounded Existence, Universality
and others of anystate and action predicate. UMC is
capable of accepting the properties specified in UCTL [20]
format.

3.2. Architecture of Smart Environments

An architecture of SmE is designed, which is focusing on
the operation flow in SmE system, as shown in Figure1. In
this architecture, the operational flow of SmE is classified
in four layers: goals, actions, decisions and operations.
Goals are the desires of the users which they want to
achieve with the help of SmE. For achieving a certain
goal, users have to perform some specific actions. The
actions can be sensed through sensors, or they can be input
by directly performing the action on the devices, or can
be commanded by using the designed APIs of the SmE
(through various computing devices).

When user perform any action a notification message
(or a set of message) is sent to the control algorithms,
where the concerning requirements related to the safety,
security and reliable behavior of SmE are incorporated.
Control algorithms act as sophisticated bridge between
the input actions and the output operations. Against
each incoming message, the current configuration of
the system and devices is considered, and according to
the incorporated constraints, a decision for the specific
operations (services) is made. Further, on the basis of
these decisions, control algorithms send the commands
to the devices for performing the decided operation.
The devices, according to their current configuration and
internal constraints, perform the specific operations and
acknowledge back about the status of the operation to
the control algorithms (these acknowledgments are also
considered as notifications).

As devices are from different manufacturers and follow
different communication protocols and naming conven-
tions, it is recommended to filter the unnecessary messages
and if needed, convert the concerning messages following
a recognized convention before sending them to control
algorithms. By following this process, the modeling com-
plexities and ambiguities of control algorithms can be
slightly reduced.

4. PROPOSED METHODOLOGY

A comprehensive methodology is proposed for the
design and verification of SmE with specific focus on

Figure 1. An architecture of Smart Environments

Figure 2. Step 1: SmE Specification Identification

system security. The methodology entails all the major
components of SmE; users, devices, environment and
control algorithms. It is advisable that for designing the
SmE, the detailed specifications of these components
are listed at requirement gathering phase. The organized
specifications provide a better understandability of the
system (and its related components) through which the
ambiguities during modeling can be sufficiently reduced.
Further, these organized specifications help in designing
the properties related to the verification of reliable
behavior (consisting of safety, security and other major
aspects) of the system. For the behavioral modeling of
each component, the methodology adopts Statecharts. The
methodology provides an nine step process, explained
below:

Step 1:SmE Specification Identification
Requirements gathering and listing in a suitable way is
normally the first step from where any complex project
begins [43]. The same process is adopted for the design of
SmE where the system level specifications are identified.
These are related to the physical components of the system,
their functional behavior (along with their interaction
details) and the overall constraints (e.g. Security, Safety)
for the designed SmE. A graphical view of the activities
carried out in this step is explained in Figure2.

The devices which are used in SmE are of two types:
Controllable and Uncontrollable. Controllable devices can

4 Security Comm. Networks 2012; 00:1–14 c© 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Prepared using secauth.cls

Fulvio Corno and Muhammad Sanaullah Modeling and Formal Verification of Smart Environments

be divided into two main categories based on their usage:
input and output devices. Input devices are used for taking
the input from the environment, by observing the actions
of the users (e.g. sensors) or with the direct interaction
of the users to the devices (e.g. touch sensors); whereas
the output devices (e.g. actuators) are used for performing
the required operations, they can be self-operating or they
can be attached with some other uncontrollable devices
(e.g. doors, windows and gates) for controlling their
functionalities. As these uncontrollable devices are used
as an interface in the environment but they cannot be
directly controlled through messages, for controlling them
controllable devises are required to associate with them.

For the design of any SmE, it is required to identify the
list of these devices with their positioning details. Also,
the list of services, which are to be accomplished by using
these devices, is created. Each service is associated to some
devices in some relationship and against each service, SmE
perform some certain functionality. At this step, it is also
required to identify these relationships and the desired
functionalities. Then, the overall constraints on the system
are required to be identified so that they can be considered
while modeling the SmE, such as the security constraints
is to close all the entry points (e.g. main door, windows,
rear door) when a smart home goes in “sleep mode” and
the safety constraint is to open all the entry and exit points
in case of fire.

After this step, a clear picture of the SmE will be
obtained. Caution is advised at this stage because reliable,
secure and safe implementation of the system will closely
follow these specifications.

Step 2: Users Modeling
Users play a key role in the operations of SmE. According
to their presence (observed from different sensing devices)
and actions (performed on devices), SmE perform specific
operations. For the identification and modeling of such
requirements, a two steps process is adopted: goal
modeling and behavior modeling. In goal modeling, the
Goals, Actions and Roles of the users which they can
achieve from SmE are described. Goals are the set of
objectives which can be performed/demanded by the users.
For achieving these goals, users have to perform specific
actions. Roles establish a relationship between the user
actions and the environment, which allows the users for
performing specific task according to the environment
configurations. The flow of the task carried out in this step
is shown in Figure3.

The users have complex web of behaviors which
they can adopt during the interaction with the system.
In behavior modeling, the analysis of their all possible
moves are identified and modeled by incorporating their
organized goal information. Among different perspectives,
some of the behavioral aspects, which we considered for
users modeling in this paper, are following:

1. How the users can interact with the system?

2. Which user actions are considerable for the system?

Figure 3. Step 2: Users Modeling

3. Where a user can be positioned after performing an
action?

4. What are the set of possible user behaviors which
they can adopt?

Some other aspects of the users, though not considered
for this paper, are the following: 1) Users identification
2) Actions history of the users 3) Division of users on the
basis of their roles

Stage 3: Devices Modeling
Controlling and commanding the functionalities of
electrical (low cost or smart) devices are main goals of
SmE. These devices are of heterogeneous nature with some
common and distinguish features (such as functionalities,
commands, notification, states and others). The desired
functionality from the relevant devices is accessed by
inputting some specific commands or by interacting with
them depending upon the type of the devices (as mentioned
in Section 3.2). For the sensor, the input is received
by sensing the environment and its output is usually a
notification message; whereas for other devices, the input
can be a command and the output can be a physical
operation. The input and output depend on the category
of the devices; further the devices can be smart by
having some internal constraints. These elements (input,
constraints, output) are required to be gathered, organized
and described at requirement gathering phase.

For the design and verification of complete interaction
among SmE components, it is also required to model the
attached devices at design time. The modeling of these
devices can be performed by adopting interface (black
box) and behavioral (white box) modeling schemes.
Before modeling a device it is first required to collect their
detailed relevant information, which includes the interface
information – the commands (triggers) it may receive, the
associated functionality (operation) it may perform, the
constraints (rules) it has to follow, the states at which it
will be at any time, the notifications which it sends after
the completion of task – and behavioral information – the
acceptance of specific commands on a particular state,
the implementation of constraints, the operations which
may be performed on that state after the satisfaction of
constraints – of the particular devices. A graphical flow of

Security Comm. Networks 2012; 00:1–14 c© 2012 John Wiley & Sons, Ltd. 5
DOI: 10.1002/sec
Prepared using secauth.cls

Modeling and Formal Verification of Smart Environments Fulvio Corno and Muhammad Sanaullah

Figure 4. Step 3: Devices Modeling

Figure 5. Step 4: Environment Modeling

the task carried out at this step is presented in Figure4.

Step 4: Environment Modeling
In reality, users can observe the environment by seeing the
current states of the concerning devices and accordingly
interact with them for achieving the desired goals. But at
design time, these features can be modeled by adding some
extra computations through environment models. The
environment models can update their configuration when
any action or operation is performed by the concerning
devices. Similarly, the environment model can be capable
of registering the actions, locations and interactions of the
users. At requirement gathering phase, the identification
and listing of these computations, which are considered to
be in the real environment, are required to be described.
These descriptions help for the reliable modeling of the
environment. The concerning features which are required
to be considered for the environment modeling are
graphically represented in Figure5.

Considering the users’ modeling at design time,
it is suggested that the modeling of the environment
component must also be done, as users may observe

Figure 6. Step 5: Control Algorithms Modeling

the environment configurations and accordingly interact
with the system. For this, a mechanism can be designed
which stores the state information of interesting devices
so that the users’ model can observe the environment
configurations at design time. As the devices model states
change, the environment model updates the current state
(of the particular device) with the new values. Similarly,
the users’ interaction with the sensors can be formalized
with the use of environment modeling; the environment
model can also register the activities of the user (so that
the exact location of the users can be identified).

Step 5: Control Algorithms Modeling
Control algorithms aid the computation in the SmE. For
achieving a goal, the user performs an action which is
forwarded to these controlling algorithms in the form
of messages. According to these incoming messages,
the current configuration of the whole system and
the implemented rules, control algorithms make certain
sophisticated decisions and send triggering messages to the
associated devices for performing the required operations.

The desired behavior of SmE (listed in Step 1: SmE
Specification Identification Stage), related to providing the
required services, reliable behavior, security, safety and
other constraints, is achieved through control algorithms.
The control algorithms accomplish the required behavior
by controlling the functionalities of the concerning
devices. For an effective communication, control
algorithms have to use the devices interface information
(which are modeled in step 3: Devices Modeling). A
graphical task flow of this step is given in Figure6.

Stage 6: Temporal Properties Designing
It is important for any complex and critical system
to ensure the successful modeling of all the desired
behavior (related to the safety, security), functionalities
and other constraints is performed. For the verification of
these features, the modeling of the temporal properties
is required so that they can be confirmed at the formal
verification step. During the formal verification, some

6 Security Comm. Networks 2012; 00:1–14 c© 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Prepared using secauth.cls

Fulvio Corno and Muhammad Sanaullah Modeling and Formal Verification of Smart Environments

Figure 7. Step 6: Temporal Properties Designing

properties may likely be ignored due to system complexity.
For reducing the chances of ignoring important properties,
the requirements described so far are used. These
requirements are further formulated by using the syntax
and semantics of temporal logics.

The temporal logics are mostly used for the verification
of the reachability of certain states, satisfaction of
sequence, absence or existence of any predicate (at any
state) and the boundary checking or the universality of
any state or action. By using these features of temporal
logic, the properties can be designed by which the reliable
specified behavior, safety, security and other constrains of
the SmE can be verified. Tasks carried out in this step are
graphically represented in Figure7.

Stage 7: Integrated SmE model
As control algorithms govern all the interaction among
devices (and affect the environment), they receive a lot of
messages (commands or notifications) from the connected
devices. The devices models can send and receive nearly
all possible messages related to their functionalities. But
among these messages, some messages are of interest
for the current system and should be modeled in control
algorithms. The rest of the messages are useless for
the current system, but it’s a good practice that all the
incoming messages must be received. If the modeling
of all possible messages is performed in the control
algorithms, then the size, complexity and ambiguities of
control algorithms grow higher.

For curbing these issues, it is suggested to introduce
a firewall around control algorithms which, at the initial
level, checks the suitability of a received message and
sends forward only those messages which concern the
current system. Similarly, the received messages can have
different parameters; therefore they can also be modified at
this stage if required. This helps in optimizing the control
algorithms: the processing load is reduced and the “lost-
event” errors don’t occur (during model checking) due to
failure of acceptance at receiver’s side.

Figure 8. Step 7: Integrated SmE model

Figure 9. Step 8: Formal verification of SmE Model

Up to this stage, all the prerequisites for the modeling of
SmE process are completed. Now it is required to convert
them into the acceptable language of the model checker
and then combine them so that a complete SmE model
can be prepared. For the translation, the behavior models
of the users, connected devices, environment, control
algorithms, firewall (with messages filter and converter)
are required, along with the proper abstraction and list of
their instances (connected in the SmE). After converting
them the whole integrated SmE model is designed in the
acceptable format of model checker. The task carried out
in this step are graphically presented in Figure8.

Stage 8: Formal verification of SmE Model
The whole integrated SmE model, in the acceptable format
of model checker, designed at Step 7 is sent to the model
checker, and the temporal properties (designed in Step 6)
are verified on the model. On finding any unsatisfactory
property, the SmE model is updated with the required
modifications, and the verification process is repeated
until all the properties are satisfied. The task carried out in
this step are graphically presented in Figure9.

Stage 9: Development Phase
When all the properties are verified, it is implied that

Security Comm. Networks 2012; 00:1–14 c© 2012 John Wiley & Sons, Ltd. 7
DOI: 10.1002/sec
Prepared using secauth.cls

Modeling and Formal Verification of Smart Environments Fulvio Corno and Muhammad Sanaullah

the SmE model is according to the specification and
will behave reliably, surely and safely under the verified
properties in all scenarios. It is time to safely start the
development and implementation phases.

5. DESIGNED TECHNIQUE

The proposed methodology is implemented by enhancing
our existing technique [16]) by additionally focusing on
users and environment (context) modeling. The technique
employs DogOnt, SCXML, UCTL and UMC as tools and
follows the steps of proposed methodology, as graphically
represented in Figure10. The designed technique works by
adopting the following activities:

1. SmE and its related components requirements are
organized according to the operational flow (as
mentioned in Section3.2 and various Steps of the
proposed methodology);

2. the interface modeling of each connected devices
with their corresponding states, functionalities,
commands, notifications and other related informa-
tion is represented in DogOnt Ontology;

3. the behavior Statechart modeling of users, devices,
control algorithms and the environment is repre-
sented in SCXML semantics;

4. the computation requirements in the form of
properties are formalized by adopting the following
steps:

(a) according to the modeled requirements,
the possible computational properties are
identified;

(b) for designing the properties, the system
configurations (such as the information of all
the associated instances of devices with their
location, states, functionalities, commands,
notifications and others) are queried with the
use of DogOnt;

(c) the Statecharts modeling of the correspond-
ing components are used for querying the
sequences of commands, notifications and
states†;

(d) properties are designed based on above
mentioned information, by using the syntax
and semantics of temporal logic acceptable
by model checker (UCTL in our case);

5. the firewall component (for filtering and converting
the messages) is represented in SCXML semantics;

†Note: The behavioral modeling of the devices, in the form of SCXML, are
consistent with the modeling of DogOnt as their reliable design and consistency
is already verified in our previous work [10].

Figure 10. Designed Technique

6. the behavioral models of the SmE components and
firewall are converted in the acceptable format of
model checker;

7. add required abstractions and the device instances
information queried from DogOnt;

8. the designed properties and the complete SmE
model are passed to the model checker (UMC in our
case), which verifies these properties on the model
and reports about their satisfaction:

(a) in the case of finding unsatisfactory proper-
ties, the corresponding behavioral models are
updated with the required modifications;

(b) the verification process is repeated until all
the properties are satisfied

When all the properties are satisfied, then the system can
be declared as reliable, safe and secure, and will behave
well according to the verified requirements in all scenarios.
As a result, the implementation phase can be started.

8 Security Comm. Networks 2012; 00:1–14 c© 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Prepared using secauth.cls

Fulvio Corno and Muhammad Sanaullah Modeling and Formal Verification of Smart Environments

6. SME IN REAL WORLD- A BDSB
SYSTEM

The Bank Door Security Booth System (BDSB) is our real
world example of a SmE system [16], which is extended
with the concept of users’ and environment (context)
modeling. Although BDSB is an initial level small
SmE system, it exhibits a complex behavior due to the
interaction of multiple users with the system and performs
a complex communication between different hardware
(e.g. devices) and software (e.g. control algorithms)
components according to user interaction. A graphical
layout of the BDSB environment is presented in Figure11.

The BDSB is designed in such a way that multiple
users can interact with the system; ideally, the security and
safety measures of the BDSB system should never fail.
The system is composed of two electronically controlled
doors, located outside (known as external door (DExt))
and inside the bank (known as inner door (DInner)). For
electronically controlling a door, actuators are installed.
DExt and DInner are controlled by DAExt and DAInner
door actuators respectively.

There is an isolated space between both doors, where
users have to wait so that the opened door is closed first and
then the other door may be opened. The user request for
door opening is only possible through touch sensors (TS),
which are installed near each side of each door. The Touch
sensor attached outside the DExt is called T1, and the one
attached within the isolated space is called T2. Similarly,
the touch sensor attached to the DInner from within the
isolated side is called T3 and the one attached from inside
of the bank is called T4.

The Door sensors (DSExt and DSInner) are used for
querying the status (whether it is open, close or in moving
states) of the door; DSExt is attached with DExt and
DSInner is attached with DInner. Similarly, two obstacle
detection sensors are used for reopening the door when it
is in closing state and any object (e.g. person) is held in
between the closing path of the door, ODSExt is attached
with DExt and OSDInner is attached with DInner. A
control algorithm, known as Door Lock Control (DLC),
manages all the communication and functionalities of these
devices in a safe and secure way.

The design details, by following the proposed
methodology and the imposed constraints on BDSB, is
given below:

Step 1:SmE Specification Identification
The design specifications, the internal constraints and
desired behavior of the BDSB systems are given bellow:

Design Specification

1. two doors (external and internal) are used for
ensuring the security measures from the harmful
access (direct access should not be possible) to the
bank;

2. there is an isolated space between external and
internal doors;

Figure 11. Bank Door Security Booth System

3. doors can be controlled from the outside and inside
of the isolated space through the associated touch
sensors installed at each side of the door (by sending
the door-open request), so that the people can cross
the door without being stuck;

Internal constraints and desired behavior

1. doors will remain open for a fixed time after
opening and before closing so that the users can
cross;

2. when one door is in the process of opening-
and-closing and the same door-open request from
the associated TS arrives, BDSB checks the state
at which the request is received and accordingly
performs the following action:

(a) if the same door-open request arrives when
the door is in the opening process, BDSB just
holds this request and will not open the door
again;

(b) if the same door-open request arrives when
the door is in the closing process, BDSB will
re-open the door;

3. if one door is in the opening-and-closing process
and the door-open request from the other door
arrives, the BDSB will hold the request and wait
for the closing of other door. As soon the other door
will be closed, BDSB will open the requested door.

Step 2: Users Modeling
The following is the list of users’ activities, behaviors and
observations which are considered for the users’ modeling
in BDSB system:

1. user can access and return from the bank by
crossing the doors;

2. users can press the associated touch sensors (at each
side of the door) for opening the doors;

3. users can press touch sensors more than one time;

Security Comm. Networks 2012; 00:1–14 c© 2012 John Wiley & Sons, Ltd. 9
DOI: 10.1002/sec
Prepared using secauth.cls

Modeling and Formal Verification of Smart Environments Fulvio Corno and Muhammad Sanaullah

top

notMoving

close

open/

timedOn(waitValue);

en.stateChanged(opening,self)

open

close/

timedOn(waitValue);

en.stateChanged(closing,self)

isMoving

opening

timedOn(timeToOff)/

delay(waitValue)

delay(timeToDelay)/

en.stateChanged(open,self)

closing

open/

timedOn(waitValue);

en.stateChanged(opening,self)

timedOn(timeToOff)/

delay(waitValue)

delay(timeToDelay)/

en.stateChanged(close,self)

Figure 12. Statechart modeling of Door Actuator (obtained by
using UMC model checker)

4. users observe the states of the doors and when a
door is found open, they can act in following ways:

(a) they may cross the door;

(b) their mind may change and they stay there
without crossing the door;

(c) they cross the door, but sooner their mind may
change and they cross-back and come to their
previous location.

5. users can change their mind from the isolated space
and exit from there without entering into the bank;
similarly they can re-enter in the bank without
exiting.

Step 3: Devices Modeling
Touch sensors, door actuators, door sensors and obstacle
detection sensors are used as controllable devices in
BDSB. The modeling of each device is performed
according to the activities specified in the methodology
(from requirement gathering to their behavioral modeling);
such as the door actuator component of BDSB system
is described to have open-close functionality by which it
provides force to open or close the door. The door actuator,
at any specific time, can be in moving (opening-closing)
or in non-moving (open-close) state. For activating the
desired functionality, it accepts open or close command
and, accordingly, performs its operation. It can also send
the notification back after the state has changed. The
behavioral modeling of door actuator, in Statechart format,
is represented in Figure12.

Step 4: Environment Modeling
The users can view the states of the door, whether it is
in open, close, opening or closing state; and accordingly
perform some actions (e.g. cross the door, press the
corresponding touch sensor). For designing such a real
environment, an environment model is designed by having
the ability to update it’s configuration as soon as the
doors change their states (taking advantage from State-
Change-Notification message). Through this the users can
have the latest configuration of the environment and can
behave accordingly. Similarly, for knowing the proper
location of users and accordingly providing access to

the relevant devices, environment model registers the
actions of the users. Additionally, the interaction with the
obstacle detecting sensors can also be made through the
environment modeling. All these features are modeled with
the help of parallel Statechart formalisms.

Step 5: Control Algorithms Modeling
Door Lock Control (DLC) is an intelligent component
of a BDSB system. It takes inputs from Touch Sensors
(TS), Door Sensors (DS) and obstacle detection sensors
(ODS), and according to the designed requirements,
instructs the Door Actuators for opening/closing the
doors. All the computation requirements (mentioned in
SmE Specification Identification Stage) are achieved
through DLC. For achieving the desired computational
requirements (what to do when the door-open request
arrives? when the requested door will be opened? when to
send the acknowledgment?), different guards (constraints)
are designed with the use of relational and logical
operators. These guards work on the basis of incoming
messages and the variable values.

Step 6: Temporal Properties
As mentioned, the requirements related to the reliable
behavior of BDSB along with the safety, security and
other constraints are formalized by using the syntax
and semantics of UCTL temporal logic. The detailed
description of these requirements with designed properties
are given in Section7: one of the requirements of BDSB
system (in UCTL format) is that the external door will be
opened when the user releases any touch sensor associated
at each side of the external door. The touch sensor
associated with the external door from the isolated space
can only be accessed when user crosses the external door;
therefore the first part of the property ensures that one user
has crossed the door, now the door-open request of both
sensor can arrive. The next path of the property is related
to that scenario that the extDoorOpened request will not
arrive until the associated touch sensors are pressed.

EF{extDoorCrossed}

A
[

> {¬extDoorOpened}U{T1ReleaseorT2Release} >
]

Stage 7: Integrated SmE model
The firewall is added so that the all the messages can be
received and only the useful messages and notifications can
be passed. Then, along with the firewall component, the
individual behavior model of users, devices, environment
and control algorithm are converted into the acceptable
format of UMC. Further, the abstractions and instances
information is added for completing the holistic integrated
BDSB model.

Step 8: Formal Verification
All the temporal properties, included the one mentioned
above, are verified on the BDSB model and the satisfactory
results are obtained, confirming the successful exhaustive
verification of our tested SmE, with the explicit focus on

10 Security Comm. Networks 2012; 00:1–14 c© 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Prepared using secauth.cls

Fulvio Corno and Muhammad Sanaullah Modeling and Formal Verification of Smart Environments

safety and security requirements. The results are discussed
in the following section.

7. EXPERIMENT AND RESULTS

In this Section, the requirements related to the safety,
security and reliable behavior of BDSB and its related
components are formalized according to the categories
(users’ behavior modeling, users and their interaction
modeling with the devices, device modeling, devices
interaction and their control modeling and context
modeling) defined in Section2, by considering the
message exchange behavior of BDSB and its components.
These properties are then specified in UCTL format. All
the properties are individually verified on BDSB model.
The abstracted evolution graph (generated by UMC) of
BDSB model consists of 2,79,119 states with the depth
at 30 levels. The time taken for verifying each property
was usually less than a minute in the on-line version of
UMC. In Table II , the reference of these properties is
given with their evaluation time, the number of states and
computations fragments generated for evaluating them.
During the verification process at first stage, it was found
that the designed model did not satisfy all the properties.
UMC provides an error trace tree through which the errors
have been located and the model was updated by fixing
the bugs. The verification process has been repeated until
all the properties were proven TRUE against the BDSB
model.

Properties related to Users behavior

The user modeling is performed according to the
specifications; all the users can enter the bank by crossing
the external door, the isolated space and the internal door.
It is also possible that users may change their mind and
stay out without crossing the external door. Therefore, path
’Existence’ quantifier is used in the property instead of
’All’ quantifier for the verification. Similarly, users’ mind
may change and they may go back from the isolated space
without crossing the internal door. For verifying that users
can access the places, the following set of state properties
(by using state abstraction) is formalized.

P1) EF(u1AtOutsideTheBank)

P2) EF(u1AtIssolatedSpace)

P3) EF(u1AtInnerSideOfTheBank)

P4) EF{extDoorCrossed}>

P5) EF{extDoorCrossed}>

Properties related to actions performed by the
Users

For achieving any goal, users have to perform some action.
To know that users can press and release the respective
touch sensors, the following set of properties is formalized.

Although all the users can access the outside touch sensor
of external door, the other sensors (T2 and T3) can only
be accessed when the user has crossed the external door,
whereas T4 can only be accessed when user has also
crossed the inner door. Therefore, ’Existence’ quantifier is
used with the properties of other touch sensors.

P6) AF{T1Release}>

P7) EF{T2Release}>

P8) EF{T3Release}>

P9) EF{T4Release}>

Properties related to Users and Device
Interaction

The external door will be opened when the user releases
any touch sensor associated at each side of the door. Same
will happen with the inner door. The following set of
properties is used to verify such type of users’ interaction
with the devices.

P10) A
[

> {¬extDoorOpened}U{T1Release} >
]

P11) EF{extDoorCrossed}

E
[

> {¬extDoorOpened}U{T2Release} >
]

P12) EF{extDoorCrossed}

A[> {¬extDoorOpened}

U{T1ReleaseorT2Release} >]

P13) EF{innerDoorCrossed}

E
[

> {¬innerDoorOpened}U{T3Release} >
]

P14) EF{innerDoorCrossed}

E
[

> {¬innerDoorOpened}U{T4Release} >
]

P15) EF{innerDoorCrossed}

A[> {¬innerDoorOpened}

U{T3ReleaseorT4Release} >]

Properties related to Safety Constraints

One of the safety constraints is to ensure no user is stuck
inside the isolated space. In any case, the user may exit
the space by either entering inside the bank of exiting out.
The following set of properties is used to verify this type
of safety constraints.

P16) AF{T1Release}AF{DoorResponse(open,DAExt)}>

P17) EF{T2Release}AF{DoorResponse(open,DAExt)}>

P18) EF{T3Release}AF{DoorResponse(open,DAInner)}>

P19) EF{T4Release}AF{DoorResponse(open,DAInner)}>

Security Comm. Networks 2012; 00:1–14 c© 2012 John Wiley & Sons, Ltd. 11
DOI: 10.1002/sec
Prepared using secauth.cls

Modeling and Formal Verification of Smart Environments Fulvio Corno and Muhammad Sanaullah

Table II. The properties with their evaluation details

Property Evaluation Time (in Sec.) States Generated Computations Fragments Generated

P1 < 1 ms 2 2
P2 < 1 ms 63 110
P3 0.33 3778 7461
P4 < 1 ms 62 52
P5 0.48 3791 3826
P6 < 1 ms 2 2
P7 0.03 389 593
P8 0.03 388 384
P9 0.50 3940 4310
P10 < 1 ms 2 2
P11 0.02 286 310
P12 0.51 4310 5511
P13 6.91 77397 81725
P14 0.50 3936 3993
P15 0.74 6252 6782
P16 < 1 ms 37 63
P17 0.26 2770 3039
P18 0.26 2770 2976
P19 6.76 77083 80043
P20 0.08 821 1005
P21 0.83 6935 7966
P22 0.07 819 819
P23 0.14 1388 2169
P24 0.52 4117 4281
P25 0.74 6252 6782

Properties related to individual Devices

When the command for opening the door is passed to any
door actuator, it will open the respective door as a result.
These properties are used to verify the functionalities of the
door actuators that, when they receive the open command,
after opening the door, they will also close it.

P20) AF{OpenExtDoor}

AF{DoorResponse(close,DAExt)}>

P21) EF{OpenInnerDoor}

AF{DoorResponse(close,DAInner)}>

Properties related to Security Constraints

Ideally, both of the doors should not be opened at a same
time, the open door must be closed first and then the other
requested door will be opened.

P22) A[> {¬DoorResponse(open,DAInner)}

U{DoorResponse(close,DAExt)} >]

P23) EF{extDoorCrossed}

A[> {¬DoorResponse(open,DAInner)}

U{DoorResponse(close,DAExt)} >]

P24) EF{innerDoorCrossed}

A[> {¬DoorResponse(open,DAExt)}

U{DoorResponse(close,DAInner)} >]

Properties related to Context Awareness

The users can access the touch sensors only when they are
at a proper location. When users are inside the bank, they
can come out from the bank by pressing the touch sensor
attached at the inner side of the bank.

P25) EF{innerDoorCrossed}

A[> {¬innerDoorCrossed}U{T4Release} >]

8. DISCUSSION

The TableII shows the temporal values of verification of
various tested properties. The average time for verifying all
the 25 properties is 0.79 sec., with the standard deviation
1.83. As a general rule, the superficial properties (for
which the on-the-fly model checker didn’t have to go
deeper inside the system for verification and a smaller
number of states are generated) are verified in relatively
lesser time, such as P1, P2, P4, P6, P10 and P16 (takes
less than 1 millisecond (< 1 ms)). Whereas the complex
properties (for which the on-the-fly model checker had to
go deeper inside the system for verification and a larger
number of states are generated) are verified using more
time, such as P13 and P19.

12 Security Comm. Networks 2012; 00:1–14 c© 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Prepared using secauth.cls

Fulvio Corno and Muhammad Sanaullah Modeling and Formal Verification of Smart Environments

9. CONCLUSION AND FUTURE WORK

The proposed design time verification methodology, aided
by user behavior modeling, device modeling, environmen-
t/context modeling, control algorithm modeling, and their
interaction modeling, has demonstrated successful results
for verifying the correctness, reliability, safety, security
and desired behavior of SmE systems. The methodology
proceeds sequentially from requirement listing to mod-
eling and formal verification. The probability of missing
any properties has been efficiently controlled by require-
ment listing. The methodology is implemented through the
designed technique and implemented on a small but not so
simple real life SmE system. The first run of verification
process did not achieve all the properties as satisfactory
against the model. After appropriate modifications to the
model, it was then proven to conform to design require-
ments. This verified model can be used safely at the
implementation phase. In our future work, we envisage
to achieve the implementation of proposed methodology
at a grand scale, exposing it to the challenges of large
scale execution. Also, the other aspects of user modeling,
not included in this paper, may be incorporated for future
works.

REFERENCES

1. Weiser, M.. The computer for the 21st century.Scientific
American1991;265(3):94–104.

2. Saha, D. and Mukherjee, A.. Pervasive computing:
a paradigm for the 21st century.Computer 2003;
36(3):25–31.

3. Olson, G.M. and Olson, J.S.. Human-computer interac-
tion: Psychological aspects of the human use of com-
puting.Annual Review of Psychology2003;54(1):491–
516.

4. Sadri, F.. Ambient intelligence: A survey.ACM
Comput. Surv.Oct 2011;43(4):36:1–36:66.

5. Augusto, J.C. and McCullagh, P.. Ambient Intelligence:
Concepts and Applications.Computer Science and
Information Systems2007;4 (1):1–27.

6. Al-Muhtadi, J. and Ranganathan, A. and Campbell, R.
and Mickunas, M.D.. Cerberus: a context-aware secu-
rity scheme for smart spaces.Pervasive Computing and
Communications, 2003.(PerCom 2003). Proceedings of
the First IEEE International Conference on, IEEE,
2003; 489–496.

7. Youngblood, M. and Cook, D.J. and Holder, L.B..
Seamlessly engineering a smart environment.Systems,
Man and Cybernetics, 2005 IEEE International
Conference on, IEEE, 2005; 548–553.

8. Bonino, D. and Castellina, E. and Corno, F.. The
DOG gateway: enabling ontology-based intelligent
domotic environments.Consumer Electronics, IEEE
Transactions onnovember 2008;54(4):1656 –1664,
doi:10.1109/TCE.2008.4711217.

9. Bourcier, J. and Chazalet, A. and Desertot, M. and
Escoffier, C. and Marin, C.. A dynamic-soa home
control gateway.Services Computing, 2006. SCC’06.
IEEE International Conference on, IEEE, 2006; 463–
470.

10. Corno, F. and Sanaullah, M.. Formal Verification of
Device State Chart Models.Intelligent Environments
(IE), 2011 7th International Conference on, IEEE,
2011; 66–73.

11. Coronato, A. and De Pietro, G.. Formal design
of ambient intelligence applications.Computer2010;
43(12):60–68.

12. Bolton, M.L. and Bass, E.J.. A method for the formal
verification of human-interactive systems.Proceedings
of the Human Factors and Ergonomics Society Annual
Meeting2009;53(12):764–768.

13. Bernardeschi, C. and Fantechi, A. and Gnesi, S. and
Larosa, S. and Mongardi, G. and Romano, D.. A
formal verification environment for railway signaling
system design.Formal Methods in System Design1998;
12(2):139–161.

14. Clarke, E.M. and Wing, J.M.. Formal methods: State
of the art and future directions.ACM Computing
Surveys (CSUR)1996;28(4):626–643.

15. Gupta, A.. Formal hardware verification methods:
A survey. Formal Methods in System Design1992;
1(2):151–238.

16. Corno, F. and Sanaullah, M.. Design time Method-
ology for the Formal Verification of Intelligent
Domotic Environments.Ambient Intelligence-Software
and Applications2011; :9–16.

17. Bonino, D. and Corno, F.. DogOnt - Ontology
Modeling for Intelligent Domotic Environments.The
Semantic Web-ISWC 20082008; :790–803.

18. Harel, D.. Statecharts: a visual formalism for complex
systems.Science of Computer Programming1987;
8(3):231 – 274.

19. Jim Barnett, G. et al.. State Chart XML
(SCXML): State Machine Notation for Control
Abstraction.Technical Report, W3C May 2010. URL
http://www.w3.org/TR/scxml/.

20. Mazzanti, F..UMC 3.3 User Guide, ISTI Technical
Report 2006-TR-33. ISTI-CNR Pisa-Italy September
2006.

21. Gnesi, S. and Mazzanti, F.. On the fly model checking
of communicating UML State Machines.Second ACIS
International Conference on Software Engineering
Research, Management and Applications, 2004; 331–
338.

22. Bonhomme, S. and Campo, E. and Esteve, D. and
Guennec, J.. Methodology and tools for the design
and verification of a smart management system for
home comfort.Intelligent Systems, 2008. IS ’08. 4th
International IEEE Conference, IEEE, 2008; 24–2 –24–
7.

23. Coronato, A. and Pietro, G.D.E.. Formal Specification
of Wireless and Pervasive Healthcare Applications.

Security Comm. Networks 2012; 00:1–14 c© 2012 John Wiley & Sons, Ltd. 13
DOI: 10.1002/sec
Prepared using secauth.cls

http://www.w3.org/TR/scxml/

Modeling and Formal Verification of Smart Environments Fulvio Corno and Muhammad Sanaullah

ACM Transactions on Embedded Computing Systems
2010;10(1):12.

24. Gnesi, S. and Latella, D. and Massink, M.. Model
checking UML statechart diagrams using JACK.High-
Assurance Systems Engineering, 1999. Proceedings. 4th
IEEE International Symposium on, IEEE, 1999; 46–55.

25. Leelaprute, P. and Nakamura, M. and Tsuchiya, T.
and Matsumoto, K. and Kikuno, T.. Describing and
verifying integrated services of home network systems.
Software Engineering Conference, 2005. APSEC ’05.
12th Asia-Pacific, 2005; 10 pp.

26. Meshkova, E. and Riihijarvi, J. and Mahonen, P. and
Kavadias, C.. Modeling the home environment using
ontology with applications in software configuration
management.Telecommunications, 2008. ICT 2008.
International Conference on, IEEE, 2008; 1–6.

27. Gu, T. and Wang, X.H. and Pung, H.K. and Zhang,
D.Q.. An ontology-based context model in intelli-
gent environments.Proceedings of Communication Net-
works and Distributed Systems Modeling and Simula-
tion Conference, Citeseer, 2004; 270–275.

28. Xu, J. and Lee, Y.H. and Tsai, W.T. and Li, W. and
Son, Y.S. and Park, J.H. and Moon, K.D.. Ontology-
Based Smart Home Solution and Service Composition.
2009 International Conference on Embedded Software
and Systems, IEEE, 2009; 297–304.

29. Fensel, D..Ontologies: a silver bullet for knowl-
edge management and electronic commerce. Springer-
Verlag: New York, NY, USA, 2001.

30. Preuveneers, D. and Van den Bergh, J. and Wagelaar,
D. and Georges, A. and Rigole, P. and Clerckx, T. and
Berbers, Y. and Coninx, K. and Jonckers, V. and De
Bosschere, K.. Towards an extensible context ontology
for ambient intelligence.Ambient Intelligence2004;
:148–159.

31. Nielsen, M. and Plotkin, G. and Winskel, G.. Petri
nets, event structures and domains, part i.Theoretical
Computer Science1981;13(1):85–108.

32. Hoare, C.A.R.. Communicating sequential processes.
Communications of the ACM1978;21(8):666–677.

33. Bogdanov, K. and Holcombe, M.. Statechart testing
method for aircraft control systems.Software testing,
verification and reliability2001;11(1):39–54.

34. Lee, D. and Yannakakis, M.. Principles and methods
of testing finite state machines.PROCEEDINGS-IEEE
1996;84:1090–1123.

35. Holzmann, G.J..The SPIN model checker: Primer
and reference manual. Addison Wesley Publishing
Company, 2004.

36. Cimatti, A. and Clarke, E. and Giunchiglia, F. and
Roveri, M.. NuSMV: a new symbolic model checker.
International Journal on Software Tools for Technology
Transfer (STTT)2000;2(4):410–425.

37. Kwiatkowska, M.Z. and Norman, G. and Parker,
D.. PRISM: Probabilistic symbolic model checker.
Proceedings of the 12th International Conference
on Computer Performance Evaluation, Modelling

Techniques and Tools, Springer-Verlag, 2002; 200–204.
38. Ter Beek, M.H. and Mazzanti, F. and Gnesi, S.. CMC-

UMC: A Framework for the Verification of Abstract
Service-Oriented Properties.Proceedings of the 2009
ACM symposium on Applied Computing, ACM, 2009;
2111–2117.

39. De Nicola, R. and Vaandrager, F.. Action Versus
State based Logics for Transition Systems.Semantics
of Systems of Concurrent Processes, Lecture Notes in
Computer Science1990;469:407–419.

40. Clarke, E.M. and Emerson, E.A. and Sistla, A.P..
Automatic Verification of Finite-State Concurrent
Systems Using Temporal Logic Specifications.ACM
Transactions on Programming Languages and Systems
April 1986; 8:2:244–263.

41. Hennessy, M. and Milner, R.. On observing nonde-
terminism and concurrency.Automata, Languages and
Programming1980; :299–309.

42. Manna, Z. and Pnueli, A..The temporal logic
of reactive and concurrent systems: Specification.
Springer-Verlag New York, Inc.: New York, NY, USA,
1992.

43. Booch, G. and Rumbaugh, J. and Jacobson, I..Unified
Modeling Language User Guide, The. Addison Wesley.
ISBN 0-201-57168-4, 1998.

14 Security Comm. Networks 2012; 00:1–14 c© 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Prepared using secauth.cls

	1 Introduction
	2 Related Work
	3 Background
	3.1 State of the art and Adopted Tools
	3.2 Architecture of Smart Environments

	4 Proposed Methodology
	5 Designed Technique
	6 SmE in Real World- A BDSB System
	7 Experiment and Results
	8 Discussion
	9 Conclusion and Future Work

