
POLITECNICO DI TORINO

SCUOLA DI DOTTORATO

Dottorato in Ingegneria Informatica e dell’Automazione – XXIV ciclo

Tesi di Dottorato

The Role of Semantic Web
Technologies in Smart

Environments

Faisal Razzak

Tutore Coordinatore del corso di dottorato
Prof. Fulvio Corno Prof. Pietro Laface

February 2013

to my Family

Acknowledgements

I will start “In the name of GOD, the Most Gracious and the Most Merciful”. I
thank GOD for giving me objectives in life and more importantly, the strength and
the knowledge to achieve those objectives.

I feel great privilege and pleasure to extend my heartfelt thanks and sense of
gratitude to my family. From beginning my parents taught me the worth of one
simple, yet a powerful concept. The concept of seeking knowledge and achieving
wisdom. It separates us (humans) from other species. It has helped us evolve over
uncountable number of years and it will help us, in the future, to evolve further in
order to explore the vast universe around us, and to bring the ability to seek knowl-
edge in other species. My wife has always been very understanding and supportive
of all my endeavors. No amount of words can describe the sense of gratitude, I feel
towards her.

Last but not the least, I would also like to acknowledge efforts of my supervisor
(Prof. Fulvio Corno) whose profound interest, guidance and encouragement helped
me in every aspect of my PhD. His active supervision and inspirational guidance
proved to be essential for the completion of this thesis. Furthermore, I appreciate
all the members of e-Lite Research group for their useful and constructive feedback
on several topics of interest. A special thanks to all the teachers who taught courses
during my 4 years of PhD degree.

iv

Contents

Acknowledgements iv

1 Introduction 1

1.1 Contribution . 3

1.2 Structure of the Thesis . 5

I Background 7

2 Semantic Web Technologies 9

2.1 Resource Description Framework . 9

2.1.1 Concepts of RDF . 10

2.1.2 Three Views of Statement . 10

2.2 Ontology (OWL) . 11

2.2.1 Why OWL? . 12

2.2.2 OWL in a nutshell . 13

2.3 SPARQL . 18

2.4 Linked Data . 21

3 DogOnt & Dog 25

3.1 DogOnt . 25

3.1.1 Device Modeling in DogOnt 26

3.2 Domotic OSGi Gateway . 27

3.2.1 Api . 28

3.2.2 Device Control . 29

3.2.3 Device Management . 30

3.2.4 StartUp . 31

3.2.5 Library . 31

v

II User Intelligible Goals 33

4 State of the art 35

5 Domotic Effects Framework 39

5.1 Requirements . 41
5.2 Formalism . 43

6 Modeling 47

6.1 Modeling: DogEffects Ontology . 48
6.1.1 Core layer . 49
6.1.2 Middle layer . 50
6.1.3 Instance layer . 52

6.2 Related Works . 55

7 Evaluation 59

7.1 Problem Statement . 59
7.2 Approach . 61
7.3 Solution . 62

7.3.1 Architecture . 62
7.3.2 Extensibility . 64

7.4 Experimental Study . 66
7.4.1 Feasibility Testing . 67
7.4.2 Performance Evaluation . 71
7.4.3 Discussion . 73

7.5 Related Works . 75
7.6 Synopsis . 78

8 Enforcement 81

8.1 Problem Statement . 82
8.2 Approach . 82
8.3 Architecture . 84

8.3.1 Domotic Effect Enforcement 84
8.3.2 Extensibility . 86

8.4 Experimental evaluation . 88
8.4.1 Use cases . 89
8.4.2 Results and Discussion . 89
8.4.3 Extensibility and Scalability 91

8.5 Related Works . 93
8.6 Synopsis . 96

vi

9 Optimization 97

9.1 Formalism . 99
9.1.1 Representing Power with Domotic Effects 99
9.1.2 Domotic Effect Enforcement 99

9.2 Problem Statement . 99
9.3 Proposed Approach . 100

9.3.1 Heuristic . 101
9.4 Experimental evaluation . 103

9.4.1 Use Cases . 103
9.4.2 Results . 106
9.4.3 Discussion . 109

9.5 Related Works . 109
9.6 Synopsis . 110

III Semantic Data Exchange 113

10 Motivation and Scenarios 115

10.1 Scenario 1: Home Energy Management System (HEMS) 117
10.2 Scenario 2: 2020 Intelligent Energy Grids 117

11 Linked Open (Dynamic) Data 121

11.1 Problem Definition . 122
11.2 Proposed Framework . 124

11.2.1 Publisher Component . 125
11.2.2 Subscriber Component . 129

11.3 Use Case: Energy Management Domain 130
11.4 Related Works . 132
11.5 Synopsis . 134

12 RDF Publishing 135

12.1 Design Issues . 136
12.1.1 Energy Consumption Information 136
12.1.2 Publishing in a Machine Understandable format 137
12.1.3 Information Publishing Control 137

12.2 Web Of Domotics (WoD) . 137
12.2.1 Domotics Gateway Controller (DGC) 138
12.2.2 WoD Dynamic DNS . 140
12.2.3 Mobility Access Provider . 140
12.2.4 Mobile Application . 141

12.3 Proposed Solution . 142

vii

12.3.1 Energy Profile Ontology (E.P) 143
12.3.2 Information Access Control 145
12.3.3 Machine Understandable format 145

12.4 Semantic Energy Information Publishing Framework (SEIPF) 147
12.4.1 Publishing Unit . 149

12.5 Implementation and Experiments . 150
12.6 Related Works . 153
12.7 Synopsis . 154

13 Conclusion 157

Bibliography 159

A Use cases 171

B Publications 179

B.1 International Journals . 179
B.2 Proceedings . 179

viii

List of Tables

6.1 Dining@Lunch functional form . 54
7.1 Results of the feasibility testing . 70
7.2 Daily chores scenario performance parameters 79
7.3 Maximal Propagation Scenario Statistics 80
8.1 Illumination functional form (CEB) 83
9.1 Enumeration approach statistics (a) 104
9.2 Enumeration approach statistics (b) 105
9.3 Time comparison between enumeration & heuristic approaches 107
9.4 Power value comparison between enumeration & heuristic approaches 108
11.1 Energy Publisher Information . 131
12.1 List of Parameters . 148
A.1 Secure Home use case . 172
A.2 Bathroom Illumination functional form 173
A.3 Home Illumination use case . 174
A.4 Afternoon Lunch Cooking use case 175
A.5 Air Passage use case . 176
A.6 Morning Wake Up use case . 177

ix

List of Figures

2.1 RDF Triple Structure . 11
2.2 An example of Triple pattern . 18
2.3 An example of Basic Graph Pattern 18
2.4 Examples of Group Graph Pattern 19
2.5 Sample RDF data . 19
2.6 SPARQL Query . 19
2.7 Result of the SPARQL query . 20
2.8 Sample RDF data . 20
2.9 SPARQL Query with FILTER construct 20
2.10 Result of the SPARQL query . 21
2.11 An example of FILTER Construct . 21
2.12 An example of OPTIONAL graph pattern 22
2.13 An example of UNION graph pattern 23
2.14 An example of UNION graph pattern 24
3.1 DogOnt top-level concepts. 27
3.2 Dimmer Lamp in DogOnt . 28
3.3 Dog core bundles . 29
4.1 User Goal Modeling . 35
5.1 The DomoticEffects framework - Logic Architecture. 40
5.2 SE and CE effects in the energy domain 41
5.3 SE and CE effects in the control domain 42
6.1 The DogEffects middle layer - Boolean Control Domain 51
6.2 The DogEffects middle layer - Energy Saving Domain 53
6.3 “Illumination” use case (DogEffects Ontology) 54
6.4 “ Dining@Lunch” use case (DogEffects Ontology) 55
7.1 Evaluation . 60
7.2 ENN for the Dining@Lunch use case 61
7.3 Information template . 62
7.4 DogEffects bundle . 63
7.5 Procedure to define a new effect operator. 65
7.6 Template of abstract EffectNode Class 65

x

7.7 Action Sequence of Feasibility Testing. 67
7.8 A Sample Structure of a house. 69
7.9 Relationship b/w Average Evaluation Time & Total No. of DEs . . . 72
7.10 Relationship b/w Average Evaluation Time & Maximum level of ENN 72
7.11 Semantics of Effect Evaluation process in Experiment 1. 73
7.12 Semantics of Effect Evaluation process in Experiment 2. 74
7.13 Relationship between Average Evaluation Time & Total No. of DEs . 74
7.14 Average evaluation time, ENN levels & No. of DEs comparison 76
8.1 Enforcement . 81
8.2 Domotic Effect Enforcement Architecture 85
8.3 Procedure to define a new effect operator. 86
8.4 CPU time measurements (in ms, CT+ST) 90
8.5 Number of solutions TC and involved devices Dev 92
9.1 Architecture of proposed approach 100
11.1 Architecture of the Framework . 124
11.2 Publisher Ontology: Core layer . 127
11.3 Publisher Ontology: Energy Management domain 128
11.4 University Metering System Use Case software infrastructure 130
11.5 A snapshot of the Desktop Monitoring Application 133
12.1 The WoD reference architecture. 138
12.2 Mobile Access Provider . 141
12.3 Energy Profile Ontology . 143
12.4 An excerpt of the power consumption information about a device . . 145
12.5 SimpleDomoticData excerpt for a device’s energy consumption 147
12.6 Publishing Framework Architecture 148
12.7 BTicino and KNX Domotic demo cases 151
12.8 Current Power Consumption of Emulated Devices 151
12.9 Power consumption snapshot obtained on COSM 152

xi

Chapter 1

Introduction

In the last decade, both the industry and academia have focused on brining two
important and necessary changes in the global IT scene. The first change was the
ubiquity of computing technology for general masses, which mainly helped trigger
the second change; the advent of intelligent/personalized services for individuals
within general masses. The former effort is being driven by models of Ubiquitous
computing, Pervasive computing, Internet of Things etc. While, the latter effort is
driven by methods of artificial intelligence, i.e., enriching the available data, and
using algorithms or heuristics to bring intelligence.

On one hand, the drive to make intelligent distributed applications on a global
scale has provided impetus to the adoption of explicit semantic modeling of concepts
represented in web documents, and in general information systems. The semantic
modeling of concepts ensures that the data is machine readable, processable and
widely accessible. Semantic Web envisions the availability of semantically enriched
data on a large scale and it was put forward by Tim-Berners Lee [1]. In the begin-
ning, different architectures ranging from a layered approach [2] to a tower based
approach [3] were proposed for the development of semantic web specifications and
applications. However, in recent years (post 2006) the vision of semantic web has
shifted from a traditional “logic+reasoning” approach, mainly proposed by research
groups coming from classical artificial intelligence community, to a more pragmatic
and engineered approach of having shared data semantics, and a web of data derived
from it. The proponents of engineered approach argue that intelligent agents can
flourish once languages, formalism and standards for data semantics and integration
are defined [4].

Focusing on the need of data semantics, standard organizations like the Internet
Engineering Task Force (IETF) and the World Wide Web Consortium (W3C) have
put major effort at specifying, developing, and deploying languages for defining and
sharing meaning of data. Hence, providing a technological foundation for semantic

1

1 – Introduction

interoperability. This technological foundation mainly consists of Resource Descrip-
tion Framework (RDF) [5], Resource Description Framework - Schema (RDFS) [6],
Ontology Web Language (OWL) [7], and SPARQL query language [8].

While the aforementioned technologies provide formalism for data semantics, the
integration of data on a global-scale is achieved by using Linked Data (LD) [9]. LD
approach [10] is based on Linking (i.e., using the RDF for creating references to infor-
mation stored in different databases) Open Data (i.e., information freely retrievable
in RDF format through the SPARQL query language over the http protocol). The
simplicity of the LD approach stimulated the quick and enormous growth of the
number of data set providers joining the initiative1. Formally, Linked Data is used
to describe recommended best practices for exposing, sharing, and connecting pieces
of data, information and knowledge over the web using URIs and RDF.

On the other hand, the emergence of economically viable and efficient sensor
technology, that can be integrated with appliances, has enabled system designers to
build smart environments [11]. The term “smart” refers to increased connectivity
among diverse elements of the environment and to give users intelligent services.
In literature, the vision of Smart Environments has been around since 1991 and
was first proposed by Mark Wiser in his paper [12]. He anticipated environments
interwoven with sensors, actuators, displays and computational elements, embedded
seamlessly in our every day lives and connected through a network.

Today our daily spaces are filled with sensors, device and computational gadgets
that measure or generate unstructured data over time, consequently presenting a
two-front opportunity for system designers and integrators. The first is by acting
on these islands of unstructured data and transforming them into structured data
with semantics. The outcome will be to enable automated and intelligent agents
to extract and act on the structured data. The second opportunity is to develop
automated and intelligent agents that can process the structured data and provide
some intelligent services to the users. Semantic web technologies have the poten-
tial to provide support for the representation of structured data, explicit context
representation, expressive context querying, and flexible context reasoning [13].

This thesis outlines the role of semantic web technologies in smart environments
like smart homes and smart energy systems. The potential of semantic web tech-
nologies in addressing some of the problems in smart environments is studied by
proposing some solutions.

1http://richard.cyganiak.de/2007/10/lod

2

1.1 – Contribution

1.1 Contribution

This thesis makes two major contributions in the context of smart environments.
The first comes in the form of a Domotic Effects framework, which provides the
ability to control and monitor a smart environment in terms of user intelligible
goals. The second contribution of the thesis is to describe mechanisms for exchanging
semantically enriched data in a smart environment.

Bader et al. [14] described smart environments as heterogeneous dynamic en-
sembles: group of co-located devices of different device types, which evolve over
time. The presence of diverse devices and the associated complexity has given rise
to a major problem in the past years, i.e., the problem of providing users with the
ability to control and manage their respective environments. The first major con-
tribution of this thesis is to provide users with the ability to control and monitor
their respective environments in terms of user intelligible goals. As acknowledged
in [15], this research trend has received little attention. A “Domotic Effects” (DE)
framework is being proposed. It models user intentions or goals in an environment,
and it provides a unified model for both control and monitoring. The framework
has several novelties.

First, at the modeling level, it addresses both the concerns of end-users and
system designers using a unified model. End-users have the ability to define their
spaces according to their intentions. On the other hand, system designers have
the flexibility to define governing rules for diverse smart environments, at a generic
level. The modeling is provided using a new “DogEffects” ontology. It is scalable
and extensible depending on the smart environment.

Second, at the monitoring level, users have the ability to monitor their respective
environments in terms of their intentions or goals, in near real-time. The novelty
comes from the ability to monitor each and every device in the environment and
then presenting a bigger picture to the user, i.e., pre-defined user goal. It is among
the few approaches present in the literature that provides a complete picture, i.e.,
conception, architecture, implementation and experimentation using use cases.

Third, at the control level, users have the ability to control their respective
environments by automatically enforcing their intentions or goals in near real-time.
It is among the few approaches present in the literature that provides a complete
picture, i.e., conception, architecture, implementation and experimentation using
use cases. The enforcement mechanism itself is also novel.

Extending the work at the control level, the DE framework also provides the
provision of optimizing enforcement with some criteria, in near real-time. In this
thesis, energy optimization is considered as the criteria. A novel heuristic is proposed
and tested for energy optimization.

The second major contribution of this thesis comes within the context of Energy
Management System (EMS). Two novel mechanisms are proposed for the exchange

3

1 – Introduction

of semantically enriched data. In recent years, the energy management has become a
key requirement for smart environments. Managing energy needs is a rising concern
these days for many countries around the world. The resources needed to generate
energy, their scarcity and the rising impact of those resources on the global environ-
ment have made energy management a top agenda on the tables of high government
officials around the world. An approach to this energy management issue is “De-
mand Side Management”, proposed by the Smart Grid community [16] which allows
customers to make informed decisions regarding their energy consumption, by ad-
justing both the timing and quantity of their electricity consumption [16, 17]. This
flexibility is enabled by pricing policies for electricity consumption over time [18,19]
and/or by dynamic demand scheduling algorithms to optimize energy services in
buildings [20]. Such scenarios underscore the need in which the appliances can share
the information about the energy usage with their energy provider. EMS provides
a complementary approach to energy management in an environment by providing
graphical illustrations [21–23] of consumed energy to ease consumer understanding,
hence making an energy conscious society.

First, a novel ontology driven framework based on the publisher-subscriber pat-
tern [24], called LO(D)D2 is presented. LO(D)D is a light-weight publishing frame-
work that can be integrated with smart environments to expose semantically an-
notated sensor’s or device’s data being continuously updated. This work is done
in the context of SMILE-O project3. LO(D)D is inspired from the lessons learned
during the development of an earlier publishing framework called Semantic Energy
Information Publishing Framework (SEIPF). SEIPF has a client-server based ar-
chitecture that is able to expose power consumed by different appliances installed
in an environment, in a machine understandable format (using SPARQL endpoint),
to support the development of 3rd party applications. It presents a novel ontology
based modeling mechanism for encoding power consumption of appliances in dif-
ferent states and then uses Linked Data principles to expose the data. This thesis
includes complete details from conception to experimentation of both frameworks.

Both the aforementioned mechanisms underline the need to have energy con-
sumption details in a semantically enriched format and accessible on a global-scale,
in a structured format. Thus, enabling the energy provider or third party services to
utilize this information in order to provide better graphical illustrations, to design
better pricing policies and to perform dynamic demand scheduling.

2Linked Open (Dynamic) Data
3http://www.smile-o.org (a Regione-Piemonte project)

4

1.2 – Structure of the Thesis

1.2 Structure of the Thesis

The remainder of this thesis is organized into three parts, consisting of twelve chap-
ters.

For the easy comprehension of thesis, Part I describes the underlying concepts
and technologies and comprises two chapters. Chapter 2 introduces different Se-
mantic Web standards and technologies which are used in the design of User Intel-
ligible Goals and Semantic Data Exchange. Chapter 3 briefly define technologies
used to represent and emulate a smart environment.

Part II consists of six chapters describing user intelligible goals in smart environ-
ments. Chapter 4 presents the state-of-the-art and makes the case for designing
user intelligible goals. Chapter 5 introduces the DE framework for modeling user
intelligible goals. Formally, the modeling is explicated in Chapter 6. Chapter 7
and Chapter 8 move in parallel and contain details of conception, architecture and
implementation of Evaluation and Enforcement, respectively. Chapter 9 extends
the work in the preceding chapter and discusses the privilege of advanced intelligent
support in DE framework, in the context of energy management domain.

Part III consists of three chapters addressing the issue of semantic data ex-
change in smart environments. Chapter 10 describes the need of semantic data
exchange in smart environments. The case of energy management domain is specif-
ically considered. In order to support the development of 3rd party applications
two frameworks are presented. Chapter 11 presents an ontology driven frame-
work, called LO(D)D. LO(D)D gives smart sensing and measuring environments
the ability to expose semantically annotated sensor’s or device’s data being contin-
uously updated; such updates might be issued at specific time intervals or be bound
to some environment-specific event. Chapter 12 presents a Semantic Energy In-
formation Publishing Framework (SEIPF). SEIPF uses RDF publishing to enable
residential gateways to expose power consumed by different appliances installed in
a house to support the development of external applications.

In the end, Chapter 13 concludes the thesis and provides possible future direc-
tions.

5

Part I

Background

Chapter 2

Semantic Web Technologies

This dissertation discusses the role of semantic web technologies’ in smart environ-
ments. In order to develop a better and shared understanding on the topic, this
chapter briefly highlights key Semantic Web technologies and concepts.

Semantic Web is often described as a web of data; it creates a universal medium
for the exchange of data [25]. It envisions an automated negotiation and retrieval
of machine understandable information among web applications, services and intel-
ligence agents. This chapter discusses several key technologies that are developed
by World Wide Web Consortium (W3C) to achieve the vision of Semantic Web.

2.1 Resource Description Framework

RDF [26] is a data model that is used to describe resources over the web. Its basic
building block is an object-attribute-value triple, called a statement. XML syntax [27]
is popularly used to represent and transmit RDF data model. However, other textual
representations like Turtle1 and Notation32 are also being used increasingly by the
Semantic Web community. In RDF, no assumptions about a particular domain of
use is made and therefore, RDF is domain independent in nature. It is up to the
users to define their own terminology in a schema language called RDF Schema
(RDFS). RDFS defines the terms that can be used in a RDF data-model. RDFS
can specify which objects exist and which properties can be applied to them, and
what values they can take.

1http://www.w3.org/TR/turtle
2http://www.w3.org/TeamSubmission/n3

9

2 – Semantic Web Technologies

2.1.1 Concepts of RDF

Resources

A resource can be described as an object or a thing that need to be described.
Resources may be authors, books, events, peoples, rooms, search queries, devices,
and so on. Every resource has a URL, a Universal Resource Identifier. A URI
can be a URL (Unified Resource Locater or Web address) or some other kind of
unique identifier. URI schemes are defined not only for web locations but also
for diverse objects like telephone numbers, ISBN numbers and geographic locations.
The discussion on URI schemes is beyond the scope of thesis. In short, it is assumed
that a URI is a unique identifier of a resource.

Properties

Properties are special kind of resources; they describe relationship between resources,
for instance “written by”,“generated by”, “author”, “title”, and so on. In RDF,
properties are also described by URIs (and in practice URLs). The choice of using
URLs (for both resources and properties) gives users the opportunity to adopt a
global, worldwide and unique naming scheme.

Statements

Statements represent the properties of resources. A statement is an object-attribute-
value triple, consisting of a resource, a property and a value. A Value can either be
a resource or a literal. Literals are atomic values (string), that can have a specific
XSD type3.

2.1.2 Three Views of Statement

Consider a statement:

Faisal is the owner of the web page “http://polito.academia.edu/FaisalRazzak”

The simplest way to represent the preceding statement is to use the definition of
a triple and encode the statement as (“http://polito.academia.edu/FaisalRazzak”,
“http://www.mydomain.com/site-owner”,“Faisal”). This triple (x, P, y) can be rep-
resented as a logical formula P(x,y), where the binary predicate P relates the object
x to the value y. In fact, RDF only supports binary predicates.

3http://www.w3.org/TR/xmlschema-2

10

2.2 – Ontology (OWL)

Faisalhttp://polito.academia.edu/FaisalRazzak

site-owner

Figure 2.1. RDF Triple Structure

The second view of the statement is the graph model (Figure 2.1). It is a directed
graph with labeled nodes and arcs; the arcs are directed from the resource (the
subject of the statement) to the value (the object of the statement). This kind of
graph is known in the Artificial Intelligence community as a semantic net.

Graphs are a powerful tool for human understanding, but the Semantic Web
vision requires machine accessible and machine processable representations. There-
fore, thee is a third representation possibility based on XML. According to this pos-
sibility, an RDF document is represented by an XML element with the rdf rdf:RDF.
The content of this element is a number of descriptions, which use rdf:Description
tags. Every description makes a statement about a resource.

<?xml version=”1.0” encoding=”UTF-8”?>

<rdf:RDF

xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:mydomain=”http://www.mydomain.net/my-rdf-ns”>

<rdf:Description about=”http://polito.academia.edu/FaisalRazzak”>

<mydomain:site-owner>

Faisal

</mydomain:site-owner>

</rdf:Description>

</rdf:RDF>

2.2 Ontology (OWL)

To capture domain knowledge in a generic way, and provide a commonly agreed
understanding of a domain, which may be reused and shared across applications and
groups, the concept of Ontology is used. An ontology is a formal specification of a
shared conceptualization [28]. W3C provides the Ontology web Language (OWL)
to describe ontologies about a particular domain [29]. OWL has three increasingly-
expressive sub languages: OWL Lite, OWL DL, and OWL Full.

11

2 – Semantic Web Technologies

2.2.1 Why OWL?

The expressiveness of RDF and RDFS is very limited (and this is a deliberate
choice): RDF is roughly limited to model binary relationships and RDF-S is limited
to sub-class hierarchies and property hierarchies, with restrictions on the domain
and range of the lasts.

However a number of research groups have identified different characteristic use-
cases for the Semantic Web that would require much more expressiveness than RDF
and RDF-S offer. Initiatives from both Europe and United States came up with
proposals for richer languages, respectively named OIL and DAML-ONT, whose
merging DAML+OIL was taken by the W3C as the starting point for the Web
Ontology Language OWL.

Ontology languages must allow users to write explicit, formal conceptualizations
of domain knowledge, the main requirements are therefore:

• a well defined syntax,

• a formal semantics,

• an efficient reasoning support,

• a sufficient expressive power,

• a convenience of expression.

The importance of a well-defined syntax is clear, and known from the area of pro-
gramming languages: it is a necessary condition for “machine understandability”
and thus for machine processing of information. Both RDF/RDF-S and OWL have
this kind of syntax. A formal semantics allows to describe the meaning of knowledge
precisely. Precisely means that semantics does not refer to subjective intuitions and
is not open to different interpretations by different people (or different machines).
The importance of a formal semantics is well known, for example, in the domain of
mathematical logic. Formal semantics is needed for allowing people to reason about
knowledge. This, for ontologies, means that we may reason about:

• Class membership. If x is an instance of a class C, and C is a subclass of D,
we can infer that x is also an instance of D.

• Equivalence of classes. If a class A is equivalent to a class B, and B is equiv-
alent to C, then A is equivalent to C, too.

• Consistency. Let x be an instance of A, and suppose that A is a subclass of
B ∩ C and of D. Now suppose that B and D are disjoint. There is a clear
inconsistence in our model because A should be empty but has the instance
x. Inconsistencies like this indicate errors in the ontology definition.

12

2.2 – Ontology (OWL)

• Classification. If we have declared that certain property-value pairs are suffi-
cient conditions for membership in a class A, then if an individual (instance)
x satisfies such conditions, we can conclude that x must be an instance of A.

Semantics is a prerequisite for reasoning support. Derivation such as the preced-
ing ones can be made by machines instead of being made by hand. Reasoning is
important because allows to:

• check the consistency of the ontology and of the knowledge model,

• check for unintended relationships between classes,

• automatically classify instances.

Automatic reasoning allows to check much more cases than could be checked man-
ually. Such checks become critical when developing large ontologies, where multiple
authors are involved, as well as when integrating and sharing ontologies from various
sources.

Formal semantics is obtained by defining an explicit mapping between an ontol-
ogy language and a known logic formalism, and by using automated reasoners that
already exist for that formalism. OWL, for instance, is (partially) mapped on de-
scription logic, and makes use of existing reasoners such as Fact, Pellet and RACER.
Description logics are a subset of predicate logic for which efficient reasoning support
is possible.

2.2.2 OWL in a nutshell

OWL documents are usually called OWL ontologies. Since they are built on RDF
and RDFS, they are essentially RDF documents. The following sections explain key
elements of an OWL document.

Header

The root element of an ontology is an rdf:RDF element, which specifies a number
of namespaces:

<rdf:RDF

xmlns:owl = ”http://www.w3.org/2002/07/owl#”

xmlns:rdf = ”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:rdfs = ”http://www.w3.org/2000/01/rdf-schema#”

xmlns:xsd = ”http://www.w3.org/2001/XMLSchema#”>

13

2 – Semantic Web Technologies

An OWL ontology can start with a set of assertions for house keeping purpose. These
assertions are grouped under an owl:Ontology element, which contains comments,
version control, and inclusion of other ontologies.

<owl:Ontology rdf:about=”http://elite.polito.it/ontologies/simpleHomeEffects.owl”>

<rdfs:comment>A sample Ontology </rdfs:comment>

<owl:priorVersion

rdf:resource=”http://elite.polito.it/ontologies/effectsOld.owl”/>

<owl:imports

rdf:resource=”http://elite.polito.it/ontologies/effects.owl”/>

<rdfs:label>Domotic Effects</rdfs:label>

</owl:Ontology>

The most important of the above assertions is the owl:imports, which lists other
ontologies whose content is assumed to be part of the current ontology. It is impor-
tant to be aware that the owl:imports is a transitive property: if the ontology A
imports the ontology B, and the ontology B imports the ontology C, then A is also
importing C.

Classes

Classes are defined using the owl:Class element and can be organized in hierarchies
by means of the rdfs:subClassOf construct.

<owl:Class rdf:ID=”associateProfessor”>

<rdfs:subClassOf rdf:resource=”#academicStaffMember”/>

</owl:Class>

It is also possible to indicate that two classes are completely disjoint such as the
associateProfessor,assistantprofessor and the Professor, using the owl:disjointWith

construct.

<owl:Class rdf:about=”#associateProfessor”>

<owl:disjointWith rdf:resource=”#assistantProfessor”/>

<owl:disjointWith rdf:resource=”#Professor”/>

</owl:Class>

Equivalence of classes may be defined using the owl:equivalentClass element.

<owl:Class rdf:ID=”#faculty”>

<owl:equivalentClass rdf:resource=”#academicStaffMember”/>

</owl:Class>

14

2.2 – Ontology (OWL)

Eventually there are two predefined classes, owl:Thing and owl:Nothing, which,
respectively, indicate the most general class containing everything in a OWL doc-
ument, and the empty class. As a consequence, every owl:Class is a subclass of
owl:Thing and a superclass of owl:Nothing.

Properties

In OWL are defined two kinds of properties:

• Object properties, which relate objects to other objects. Example are isTaughtBy

and supervises relationships.

• Datatype properties, which relate objects with datatype values. Examples are
age, name, and so on. OWL has not any predefined data types, nor does it
provide special definition facilities. Instead, it allows the use of XML-Schema
data types.

Here there are two examples, the first for a Datatype property while the second is
for Object properties:

<owl:DatatypeProperty rdf:ID=”age”>

<rdfs:range rdf:resource=”&xsd;#nonNegativeInteger”/>

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID=”isTaughtBy”>

<rdfs:domain rdf:resource=”#course”/>

<rdfs:range rdf:resource=”#academicStaffMember”/>

</owl:ObjectProperty>

Restrictions on properties

In RDFS it is possible to declare a class C as a subclass of a class C ′, then every
instance of C will be also an instance of C ′. OWL allows to specify classes C ′

that satisfy some precise conditions, i.e., all instances of C satisfy the conditions.
This is done by defining C as a subclass of the class C ′′ which collects all the
objects that satisfy the conditions. In general, C ′′ remains anonymous. In OWL
there are three specific elements for defining classes basing on restrictions, they
are owl:allValuesFrom, owl:someValuesFrom and owl:hasValue, and they are
always nested into a owl:Restriction element. The owl:allValuesFrom specify a
universal quantification (∀). For example, the following element requires first-year
courses to be taught by Professors only.

15

2 – Semantic Web Technologies

<owl:Class rdf:about=”#firstYearCourse”>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource=”#isTaughtBy”/>

<owl:allValuesFrom

rdf:resource=”#Professor”/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

The owl:someValuesFrom defines an existential quantification (∃). For example,
there exist an undergraduate course taught by an instance of the class of academic
staff members (existential quantification).

<owl:Class rdf:about=”#academicStaffMember”>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource=”#teaches”/>

<owl:someValuesFrom

rdf:resource=”#undergraduateCourse”/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

The owl:hasValue defines a specific value that the property must have. In
general an owl:Restriction element contains an owl:onProperty element and
one ore more restriction declarations. Restrictions for defining the cardinality of a
given class are also supported through the elements:

• owl:minCardinality,

• owl:maxCardinality,

• owl:Cardinality.

The latter is a shortcut for a cardinality definition in which owl:minCardinality

and owl:maxCardinality assume the same value.

Special properties

Some properties of the property element can be defined directly:

• owl:TransitiveProperty defines a transitive property, such as “has better
grade than”, “is older than”, etc.

16

2.2 – Ontology (OWL)

• owl:SymmetricProperty defines a symmetric property, such as “has same
grade as” or “is sibling of”.

• owl:FunctionalProperty defines a property that has at most one value for
each object, such as “age”, “height”, “directSupervisor”, etc.

• owl:InverseFunctionalProperty defines a property for which two different
objects cannot have the same value, for example “is identity ID for”.

Instances

Instances of classes, in OWL, are declared as in RDF:

<rdf:Description rdf:ID=”160850”>

<rdf:type rdf:resource=”#academicStaffMember”/>

</rdf:Description>

OWL, unlike typical database systems, does not adopt a unique-names assump-
tion therefore two instances that have different names are not required to be actually
two different individuals. Then, to ensure that different individuals are recognized
by automated reasoners as such, inequality must be explicitly asserted.

<lecturer rdf:ID=”160850”>

<owl:differentFrom rdf:resource=”#187833”/>

</lecturer>

Because such inequality statements frequently occur, and the required number of
statements would explode for stating the inequality of a large number of individual,
OWL provides a shorthand notation to assert the pairwise inequality for all the
individuals in a list: owl:AllDifferent.

<owl:AllDifferent>

<owl:distinctMembers rdf:parseType=”Collection”>

<lecturer rdf:about=”#160850”/>

<lecturer rdf:about=”#187833”/>

<lecturer rdf:about=”#160596”/>

</owl:distinctMembers>

</owl:AllDifferent>

Note that owl:distinctMembers can only be used in combination with the
owl:AllDifferent element.

17

2 – Semantic Web Technologies

2.3 SPARQL

The SPARQL Protocol and RDF Query Language (SPARQL) is a query language
and protocol for RDF [8]. The protocol allows a SPARQL endpoint which acts as
a gateway for RDF knowledge base. On the other hand, the query language is used
to retrieve and manipulate data stored in RDF format. SPARQL permits four kind
of queries, i.e., SELECT, ASK, CONSTRUCT and DESCRIBE queries. SELECT
queries is used to extract raw values from the RDF information and the results are
returned in a table format. CONSTRUCT query is used to extract information
from the SPARQL endpoint and transform the results into valid RDF. ASK query
is used to provide a simple True/False result for a query on a SPARQL endpoint.
DESCRIBE query is Used to extract an RDF graph from the SPARQL endpoint,
the contents of which is left to the endpoint to decide based on what the maintainer
deems as useful information.

SPARQL is based on matching graph patterns against RDF graphs. In order to
define graph pattern, we must first define triple patterns. A triple pattern is like
an RDF triple, but with the option of a variable in place of RDF terms, i.e., IRIs,
literals or blank nodes, in the subject, predicate or object positions. For example,
“?title” represents a variable in the triple pattern shown in Figure 2.2.

<http :// example . org /book/book1>
<http :// pur l . org /dc/ elements /1 .1/ t i t l e > ? t i t l e .

Figure 2.2. An example of Triple pattern

There are four elementary graph patterns over which group graph patterns can
be defined. They are i) BASIC graph pattern ii) FILTER graph pattern iii) OP-
TIONAL graph pattern iv) ALTERNATIVE graph pattern .

A BASIC graph pattern (BGP) is a set of triple patterns written as a sequence
of triple patterns (separated by a period if necessary). A BGP is understood as the
conjunction of its triple patterns. See Figure 2.3 for a BGP example.

?x f o a f : name ?name . ?x f o a f : mbox ?mbox

Figure 2.3. An example of Basic Graph Pattern

A group graph pattern is a set of graph patterns delimited with braces {}.
Figure 2.4 shows examples of group graph patterns. All of them are equivalent
since they are only made of BGPs and therefore, these patterns are interpreted
conjunctively.

18

2.3 – SPARQL

{ ?x f o a f : name ?name . ?x f o a f : mbox ?mbox }

or

{ ?x f o a f : name ?name . ?x f o a f : mbox ?mbox . }

or

{ { ?x f o a f : name ?name . }
{ ?x f o a f : mbox ?mbox . } }

Figure 2.4. Examples of Group Graph Pattern

A SPARQL query matches variables against its values in the data. Consider the
RDF data shown in Figure 2.5. The SPARQL SELECT query (Figure 2.6) matches
the values of the variables request in the query construct (?name and ?mbox) from
the RDF data. The result of the query is shown in Figure 2.7.

@pref ix f o a f : <http :// xmlns . com/ f o a f /0.1/> .
_: a f o a f : name " Johnny Lee Outlaw " .
_: a f o a f : mbox <mai lto : jlow@example . com> .
_: b f o a f : name " Peter Goodguy " .
_: b f o a f : mbox <mai lto : peter@example . org> .
_: c f o a f : mbox <mai lto : carol@example . org> .

Figure 2.5. Sample RDF data

PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>
SELECT ?name ?mbox
WHERE { ?x f o a f : name ?name . ?x f o a f : mbox ?mbox }

Figure 2.6. SPARQL Query

The FILTER construct restricts variable bindings to those for which the filter
expression evaluated to TRUE. Figure 2.9 shows a SPARQL SELECT query with
a filter construct, over the data (Figure 2.8). The result is shown in Figure 2.10.
Another example is shown in Figure 2.11.

The OPTIONAL graph pattern matching allows information to be added to the
answer where the information is available, but do not reject the answer because

19

2 – Semantic Web Technologies

?name ?mbox
−−−
Peter Goodguy <mai lto : peter@example . org>
Johnny Lee Outlaw <mai lto : jlow@example . com>

Figure 2.7. Result of the SPARQL query

@pref ix dc : <http :// pur l . org /dc/ elements /1.1/> .
@pref ix : <http :// example . org /book/> .
@pref ix ns : <http :// example . org /ns#> .
: book1 dc : t i t l e "SPARQL Tuto r i a l " .
: book1 ns : p r i c e 42 .
: book2 dc : t i t l e "The Semantic Web" .
: book2 ns : p r i c e 23 .

Figure 2.8. Sample RDF data

some part of the query pattern does not match. if the optional part does not
match, it creates no bindings but does not eliminate the solution. Figure 2.12 shows
an example of SPARQL SELECT query with OPTIONAL graph pattern and its
associated data and results.

SPARQL provides a means of forming the disjunction of graph patterns so that
one of several ALTERNATIVE graph patterns may match. If more than one of the
alternatives match, all the possible pattern solutions are found. Pattern alternatives
are syntactically specified with the keyword UNION. Figure 2.13 and Figure 2.14
show examples of SPARQL SELECT query with UNION graph pattern and its
associated data and results.

For more detailed insight on SPARQL, readers are referred to [8, 30–32].

PREFIX dc : <http :// pur l . org /dc/ elements /1.1/>
PREFIX ns : <http :// example . org /ns#>
SELECT ? t i t l e ? p r i c e
WHERE { ?x ns : p r i c e ? p r i c e .
FILTER (? p r i c e < 3 0 . 5)
?x dc : t i t l e ? t i t l e . }

Figure 2.9. SPARQL Query with FILTER construct

20

2.4 – Linked Data

? t i t l e ? p r i c e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
The Semantic Web 23

Figure 2.10. Result of the SPARQL query

Query :

PREFIX dc : <http :// pur l . org /dc/ elements /1.1/>
SELECT ? t i t l e
WHERE { ?x dc : t i t l e ? t i t l e
FILTER regex (? t i t l e , "^SPARQL")
}

Result :

? t i t l e
−−−−−−−−−−−−−−−−−−−−
SPARQL Tuto r i a l

Figure 2.11. An example of FILTER Construct

2.4 Linked Data

According to Tim Berners-Lee’s web architecture note [9], the Semantic web is
not just about exposing machine understandable information over the Internet but
making links between different exposed information sets, so that a machine, an
application, a service or a person can find related information. The availability of
data from different sources in a universal format and linked together is known as
‘Linked Data’. Linked Data4 (LD) assumes that information is available in RDF
format.

The term Linked Data refers to a set of best practices for publishing and inter-
linking structured data on the Web. Tim Berners-Lee presented following Linked
Data principles:

1. Use URIs as names for things.

2. Use HTTP URIs, so that people can look up those names.

4http://linkeddata.org

21

2 – Semantic Web Technologies

Data :

@pref ix f o a f : <http :// xmlns . com/ f o a f /0.1/> .
@pref ix rd f : <http ://www. w3 . org /1999/02/22− rdf−syntaxns#>
.
_: a rd f : type f o a f : Person .
_: a f o a f : name " Al i c e " .
_: a f o a f : mbox <mai lto : al ice@example . com> .
_: a f o a f : mbox <mai lto : al ice@work . example> .
_: b rd f : type f o a f : Person .
_: b f o a f : name "Bob" .

Query :

PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>
SELECT ?name ?mbox
WHERE { ?x f o a f : name ?name .
OPTIONAL { ?x f o a f : mbox ?mbox }
}

Result :

?name ?mbox
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Al i ce <mai lto : al ice@example . com>
Al i c e <mai lto : al ice@work . example>
Bob

Figure 2.12. An example of OPTIONAL graph pattern

3. When someone looks up a URI, provide useful information, using the standards
(RDF, SPARQL).

4. Include links to other URIs, so that they can discover more things.

Linked Data builds directly on Web architecture [33] and applies this architecture
to the task of sharing data on global scale. it intends to transform the current Web
in to a Web of Data. For more details, readers are referred to [10, 34].

22

2.4 – Linked Data

Data :
@pref ix dc10 : <http :// pur l . org /dc/ elements /1.0/> .
@pref ix dc11 : <http :// pur l . org /dc/ elements /1.1/> .
_: a dc10 : t i t l e "SPARQL Query Language Tuto r i a l " .
_: a dc10 : c r e a t o r " A l i c e " .
_: b dc11 : t i t l e "SPARQL Protoco l Tuto r i a l " .
_: b dc11 : c r e a t o r "Bob" .
_: c dc10 : t i t l e "SPARQL" .
_: c dc11 : t i t l e "SPARQL (updated) " .

Query :

PREFIX dc10 : <http :// pur l . org /dc/ elements /1.0/>
PREFIX dc11 : <http :// pur l . org /dc/ elements /1.1/>
SELECT ? t i t l e
WHERE { { ?book dc10 : t i t l e ? t i t l e }
UNION
{ ?book dc11 : t i t l e ? t i t l e }
}

Result :

? t i t l e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SPARQL Protoco l Tuto r i a l
SPARQL
SPARQL (updated)
SPARQL Query Language Tuto r i a l

Figure 2.13. An example of UNION graph pattern

23

2 – Semantic Web Technologies

Data :

@pref ix dc10 : <http :// pur l . org /dc/ elements /1.0/> .
@pref ix dc11 : <http :// pur l . org /dc/ elements /1.1/> .
_: a dc10 : t i t l e "SPARQL Query Language Tuto r i a l " .
_: a dc10 : c r e a t o r " A l i c e " .
_: b dc11 : t i t l e "SPARQL Protoco l Tuto r i a l " .
_: b dc11 : c r e a t o r "Bob" .
_: c dc10 : t i t l e "SPARQL" .
_: c dc11 : t i t l e "SPARQL (updated) " .

Query :

PREFIX dc10 : <http :// pur l . org /dc/ elements /1.0/>
PREFIX dc11 : <http :// pur l . org /dc/ elements /1.1/>
SELECT ? author ? t i t l e
WHERE { { ?book dc10 : t i t l e ? t i t l e .
?book dc10 : c r e a t o r ? author . }
UNION
{ ?book dc11 : t i t l e ? t i t l e .

?book dc11 : c r e a t o r ? author . }
}

Result :
? author ? t i t l e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Al i ce SPARQL Query Language Tuto r i a l
Bob SPARQL Query Language Tuto r i a l

Figure 2.14. An example of UNION graph pattern

24

Chapter 3

DogOnt & Dog

The work presented in this thesis is not an isolated research effort, but it is a work
well integrated into a more general theme of research that is taking place in the e-Lite
research group of the Turin’s Polytechnic. The work, both user intelligible goals and
semantic data exchange, builds upon two important contribution made by former
members of the e-Lite research group. The first is the DogOnt [35] ontology which
models the structure of an environment (In particular, a home). The second is an
ontology driven home automation system, called Domotic OSGi Gateway (Dog) [36].
Therefore, before discoursing on the role of semantic web technologies in smart
environments, this chapter briefly defines the technologies used to emulate a smart
environment.

3.1 DogOnt

DogOnt ontology provides the semantic core to model the domotic system of an envi-
ronment (house). It focuses on representing devices, appliances, states and function-
alities. Modularity is exploited for integrating the core set of modeling primitives
with additional features for energy profiling, user modeling, privacy management,
etc. DogOnt is organized along eight main hierarchies of concepts (see Figure 3.1)
respectively rooted at:

1. “Building Environment”: models structural elements of the environment. For
instance building, flat, garage, garden, rooms (bathroom, bedroom, dining-
room, kitchen, living-room, etc);

2. “Building Things”: models physical objects (devices) present in the environ-
ment. The physical objects may be electrically controllable or uncontrollable.
The electrically controlled devices (like coffee maker, boiler, cooker, fan, lamp,
actuator, sensors and various others) are categorized under the Controllable

25

3 – DogOnt & Dog

category. Physical objects (like table, sofa, wall, ceiling and others), which
can not be electrically controlled are categorized under the Uncontrollable
category.

3. “Functionality”: models different functionalities provided by the controllable
devices. DogOnt further classifies them as Control Functionality, Notification
Functionality or Query Functionality. Control functionalities are the actions
that devices can perform (like a Lamp has “on” and “off” functionalities).
Most controllable devices have the ability to send a notification back, as an
acknowledgment of the completion of the assigned task. These notification ca-
pabilities are modeled under the Notification functionalities classification. For
performing the task intelligently, usually, it is required to have a mechanism
through which the status of devices can be queried at any time, which are
modeled under the Query functionalities classification;

4. “Commands”: Controllable devices perform their Control functionalities by
receiving some particular commands, whose modeling and classification is per-
formed under this category;

5. “Notification”: Controllable devices send different types of notifications, such
as notifying when their state changes, which are modeled and classified under
this category;

6. “State” and “State Values”: At any instant, a controllable device possesses
an internal state, which is modeled as a set of orthogonal state spaces (called
“States”), with different “State Values” each. A complete description of the
state of a device is therefore a valid State Value for each of the States defined
for that device. State Values can be discrete (e.g., in Lamp “onState” and
“offState”) or continuous within a specific range of values (e.g, a DimmerLamp
device has a “Light-Intensity-State” whose value ranges from 0% to 100%).

7. “Domotic Network Component”: Controllable devices adopt widely different
network protocols. This modeling dimension describes the protocol character-
istic and network addressing scheme.

3.1.1 Device Modeling in DogOnt

According to the DogOnt classification dimensions, each device is modeled by cre-
ating instances for all relevant DogOnt classes, and according to the ontology con-
straints. The device modeling process is briefly explained by illustrating the model
of a “Dimmer Lamp” device (Figure 3.2), which is a subclass of “Lamp” and “Con-
trollable”, and has all inherited features of these super classes.

26

3.2 – Domotic OSGi Gateway

Figure 3.1. DogOnt top-level concepts.

A dimmer lamp has all the functionalities which a “Lamp” can hold, such as,
it can be (switched) “on” and “off”, and can be placed at a certain location in the
IE. Furthermore, “Dimmer Lamp” has an extra “Light-Regulation-Functionality”
by which the “Light-Intensity” of the lamp can be managed. The value of “Light-
Intensity” ranges from 0 to 100. With the “Light-Regulation-Functionality” it may
be increased or decreased with a step 10 through “stepUp” or “stepDown” commands
respectively, or it may also be directly set to a specific value with “set(value)” com-
mand. As “Dimmer Lamp” is a type of Controllable device, two more functionalities
are inherited from the class of “Controllable”, these are “Query-Functionality” and
“State-Change-Notification-Functionality”.

3.2 Domotic OSGi Gateway

Domotic OSGi Gateway (Dog) is an ontology-powered home automation gateway.
It is empowered by the DogOnt ontology and therefore, it is able to expose different

27

3 – DogOnt & Dog

Figure 3.2. Dimmer Lamp in DogOnt

domotic networks as a single and technology neutral home automation system. Dog
is versatile as it is built on top of the OSGi framework1 and the adoption of semantic
modeling techniques allows Dog to support intelligent operations inside the home
environment. It has a modular architecture (Figure 3.3) and it is divided in five
main categories: API, Device Management, Device Control, StartUp and Library.

3.2.1 Api

This category includes bundles offering technology independent programming inter-
faces for both external applications and OSGi-based plugins.

1http://www.osgi.org

28

3.2 – Domotic OSGi Gateway

Figure 3.3. Dog core bundles

DogRESTEndPoint: provides a REST endpoint for services offered by Dog. It is
based on JSON and XML bases messaging system, thus enabling DOG access
for non-OSGi or non-Java applications.

DogXmlEndPoint: provides an XML-RPC endpoint for services offered by the Do-
gApi bundle, thus enabling DOG access for non-OSGi or non-Java applica-
tions. it helps retrieve the house configuration, send commands to devices
managed by DOG and receive house events.

3.2.2 Device Control

This category includes bundles dedicated to device control and monitoring. They
encompass:

DogStateMonitor : provides information about the current states of the devices con-
nected to the Dog platform. It keeps the snapshot of the states of all the
devices. The device state notification is compliant with the OSGi Monitor
Admin Service Specification [37].

DogExecutor : allows the other Dog bundles to execute commands on devices. Ex-
ecuting commands means calling methods of the DogDeviceModel classes.
Thanks to DogSemanticHouseModel, DogExecutor can verify both the syntax
and semantics of received commands. In the first case command compliance
with the corresponding ontology definition is analyzed (e.g., a simple lamp can
only accept an on command with no parameters), whereas in the latter the
received commands are checked against the set of allowed commands deduced
from the DogOnt device functionalities (e.g., a door cannot be switched on).

29

3 – DogOnt & Dog

DogScheduler : offers a centralized service for scheduling both command execution
and device monitoring jobs. DogScheduler exploits the DogExecutor and
DogStateMonitor services.

3.2.3 Device Management

The Device Management category groups all the bundles needed to comply with the
Device Access Specification Version 1.1 defined in the OSGi Service Compendium
[37]. This specification defines the logic and the entities (i.e., bundles) that must be
designed and implemented by Dog to support automatic detection and attachment
of existing devices and to assist the dynamic plugging of new devices. It comprises:

DogDeviceManager : detects registration of Device services and associates these de-
vices with an appropriate Driver service.

DogNotificationManager : dispatches notification and state change notifications. It
is based on the publisher subscriber model and it filters inner state change
notifications from outer ones (visible to applications).

DogDeviceFactory: creates device instances according to the runtime home configu-
ration (defined using DogOnt). It is usually provided by DogSemanticHouse-
Model.

DogOntLibrary: is programmatically generated from DogOnt. It consists of all de-
vice interfaces, functionalities classes, state classes etc.

DogDeviceModel : is the Dog object representing DogOnt-defined device classes. It is
a software proxy of a physical device that can be attached by a Driver service.

DogSemanticHouseModel: can be seen as the Dog nervous system. It exploits stan-
dard DogOnt classes and DogOnt instances referred to a specific IDE envi-
ronment to provide knowledge-rich access to the environment properties and
capabilities. Inference and reasoning tasks are carried at this level, both at the
gateway start-up, for computing consistency checking and transitive closure,
and at runtime. In particular, runtime reasoning is adopted for generating
inter-operation rules and pre-defined scenarios, and for dealing with unknown
devices through classification reasoning thus detecting compatible device types
on the basis of formalized capabilities (dogont:Functionality). A SPARQL
endpoint allows Dog to be extended by additional knowledge-based policies
offering un-filtered query access to the whole DogOnt IDE model. This al-
lows, for example, to support advanced policies based on additional context
information, e.g., energy saving policies.

30

3.2 – Domotic OSGi Gateway

Dog exploits semantics mainly through the DogSemanticHouseModel bundle,
which manages all DogOnt related tasks, for supporting the device/driver attach-
ment paradigm. In case of micro-Dog installations where the computational power
of the hardware running the gateway is too low for supporting on-line ontology
management and inference, the DogSemanticHouseModel bundle is replaced by a
SimpleHouseModel bundle that encodes static ontology information (queried from
the ontology at configuration time); in this case all inference tasks are carried off-line,
thus trading-off computational power with support for on-line inference.

3.2.4 StartUp

This category comprises of:

DogConfigurator : manages bundle-specific configurations. For instance, specific
property files, XML files and/or Additional files (ontology, images, etc.). It
provides startup configuration to all bundles of Dog.

DogLogger : provides logging facilities to all Core bundles.

3.2.5 Library

The category consists of bundles that act as simple repositories of classes and in-
terfaces needed by the other Dog bundles. Dog2Library defines all the message
types for inter-bundle communication. It also provides utility classes to other bun-
dles. DogJaxBLibrary provides XML serialization / de-serialization for all message
types. DogSemanticLibrary encapsulates and makes available all semantics-related
libraries like Jena, Pellet, SPARQL query facilitator etc. MeasureLibrary exports
the JScience library2 to all Dog bundles.

2http://jscience.org

31

Part II

User Intelligible Goals

Chapter 4

State of the art

In this part of the dissertation, a unified approach based on user goal modeling is
presented (Figure 4.1). The approach addressing the concerns of both AmI designers
and end-users. User goal modeling is a higher level design for user interaction and
control, which has received little attention till now, as acknowledged in [15].

Figure 4.1. User Goal Modeling

In 2006, DavidOff et al. [38] narrated that personal spaces, such as home play
an important role in group and individual self-definition: rather than just using
personal spaces for a specific function, users pour their personalities and lives in the
way they use and transform their personal environments. The outcome was the focus

35

4 – State of the art

on developing user programmable spaces. Such spaces either focused on allowing
users to control and manage their environments or learning users’ preferences, as
the environments become populated with computational elements.

Garcia-Herranz et al. [39, 40] proposes an application-independent indirect con-
trol programming system to program complex behaviors with the simplicity required
to allow novice users to program their smart environments. The motive is to allow
users to create powerful and personal behavior without expert assistance.

In [41] an Artefact framework is proposed which allows end users to deploy ubi-
comp systems easily in a Do-it-yourself fashion. Secondly, it allows developers to
write applications and to build augmented artefacts in a generic manner. The Arte-
fact framework provides a layered architecture where basic artefact functionalities
are combined in a core component. Additional augmented features can be added
as plugins into the core. Each augmented feature is called a profile. Each profile
defines a specific functionality and implements the underlying logic of the functions,
e.g., room temperature, lamp brightness.

Katasonov [42] motivates to build Digital fluency in smart environments by en-
abling the non programmers to design, create and modify their smart environments.
The paper proposes a higher level of abstraction in application design, on-the-fly de-
velopment, flexibility with respect to adding new devices and software components.

Rashidi et al. [43] proposes a software architecture which incorporates learning
techniques to discover patterns in user’s daily activities. While the patterns of user’s
activities are observed and stored, the user can also define their own activity patterns
as well. The activity pattern are observed as changes in states of devices occur in
the house. Similarly, Salomons et al. [44] introduces a generic model for intelligent
homes that describes the current state, the target state and the transition. The
model is based on storing preferences on individual devices.

Cheng et al. [45] proposes a smart home reasoning system called ASBR system.
The system learns user’s preferences by adaptive history scenarios and put forwards
a way to rebuild reasoned knowledge in other smart homes. They propose that
contextual information can be extracted and reasoned as a set of scenarios. In
addition, the system can derive personalize habits and store them in OWL files.
Similarly, Dey et al. [46] proposes a software infrastructure solution to detect the
current states of the environment (called Context) and take action based on it. The
infrastructure is focused on developing context aware applications.

All the aforementioned approaches focused on user programmable spaces, but
suffered from a “device-centric” vision. The “device-centric” vision limited the abil-
ity of the users to program their environments in terms of specific devices and their
functionalities. In 2003, the Ambient Intelligence (AmI) community had identi-
fied key research directions for building intelligence in different environments, i.e.,
homes, offices, schools and control centers [47]. These directions include the need

36

to develop and innovate new concepts and abstract models to address heterogene-
ity, intelligence, innovative interaction management techniques and human centric
expressions of personal style. Though the role of users in personal environments
is important, the role of AmI designers in order to build intelligence can not be
ignored. In 2008, Doorn et al. [48] carried a series of workshops and interviews,
and concluded that designers work top-down and like to start from abstract vague
descriptions; therefore, approaches having device-centric vision limit the ability of
AmI designers to design, implement and test general algorithms and solutions that
might apply to a range of different environments, especially in large and complex
buildings.

In [49,50] a goal based interaction has been proposed, and extended in [51], that
takes a user’s goal and finds a path achieving the goal.

Hemrik Dibowski et al. [52] proposes an automatic design approach for large
building automation systems (BAS). The top-down approach initiates by defining
the structure of the building, then the system integrators define requirements using
ontologies.

A neuro-cognitive model for Environment Recognition, Decision-making, and
Action execution inside automated buildings is proposed in [53–55]. They introduce
separate models for perception known as Artificial Recognition System-PerCeption
(ARS-PC) and decision making, identified as Artificial Recognition System-PsychoAnalysis
(ARS-PA).

D-HTN [56] is a planning system for AmI applications, based on the hierarchical
task network (HTN) approach, that is able to find courses of actions to address
given goals.

Though [49, 50, 52–56] provide abstract design approaches for smart environ-
ments, the ability to allow users to program their environments is lacking.

In the literature the concerns of AmI designers and end-users are mostly ad-
dressed separately. Therefore, their exists a need for developing a unified approach
that can address the issues of both AmI designers and end-users. On one hand, the
approach should allow a user to program his/her own personal environment and on
the other hand, the approach should allow AmI designers to work on an abstract
level without focusing on a specific environment.

37

Chapter 5

Domotic Effects Framework

The last decade saw the emergence of economically viable and efficient sensor tech-
nology which can be integrated with appliances, enabling them to sense different
parameters of their respective environments, i.e., temperature, luminosity, pressure
etc. It helped realizing the vision of of smart environments [12] by developing het-
erogeneous dynamic ensembles: groups of co-located devices of different types which
evolve over time [14]. Such environments promise to offer additional intelligent ca-
pabilities that go beyond the integrated and remote control of appliances present in
the environment. But the presence of diverse devices and the associated complexity
has given rise to a major problem in the past years, i.e., the problem of providing
users with the ability to control and manage their respective environments.

State of the art revolves around the issues related to communication protocols
and technologies [41, 43, 46]. Many approaches are furthermore based on abstract
modeling of smart devices, resorting to some knowledge representation tool (e.g., on-
tologies [35,49,50]), but the research trend is moving from a traditional device-centric
vision (bottom-up) to a vision of providing higher level design for user interaction
and control [45,47,56,57], i.e., user goal modeling. However, this research trend has
received little attention as acknowledged in [15].

“Domotic Effects” (DE) framework provides a 3-tiered ontology driven model-
ing technique that models user intentions or goals (Figure 5.1). It addresses the
concerns from perspectives of the AmI designer and the residents. It provides AmI
designers with an abstraction layer that enables the definition of generic goals inside
the environment, in a declarative way, and that can be used to design and develop
intelligent applications. It provides a general framework for expressing functional
properties, in a domain-dependent way: for each application domain, the AmI de-
signer may choose the most suitable representation, and define suitable functional
operators. Using these operators, various user goals are then defined in a specific
environment. The high-level nature of the Domotic Effects, on the other hand, also
allows the residents to program their personal, office or work spaces as they see fit:

39

5 – Domotic Effects Framework

they can define different achievement criteria for a particular generic goal, by using
the domain-specific operators defined in the previous phase.

Core Concepts

Core layer

AmI layer

Instance layer

Boolean Real . . .

HVAC Lighting

House 1 House 2

SecureHome

TVScenario

Ventilation

A
m

I
D

e
s
ig

n
e

rU
s
e

r

F
ra

m
e

w
o

rk

Figure 5.1. The DomoticEffects framework - Logic Architecture.

Every device in the environment is capable of providing certain visible (perceiv-
able) effects for a user. These effects are fulfilled by possible states of the device.
For example, an effect of illumination can be provided by a lamp in “ON” state.
However, modern devices are complicated in nature and a single device can have a
composite state, which may be modeled as concurrent sub-states. These sub-states
are orthogonal regions combining multiple descriptions of a device. For example, a
TV set may have an on-off state (with possible values On or Off), a volume state
(with possible values 0 through 100), a channel state (with possible values depending
on the set of programmed channels). A device state is therefore composite in nature
and therefore it is modeled as the parallel composition of different sub-states.

There might be cases in which an effect can only be fulfilled by a combination of
devices having particular states. For example, the effect of securing a building may
require all the exit doors and windows to be closed. In the context of DE framework,
an effect that depends upon a single device (having a state or sub-states) is called
a simple effect (SE) and an effect dependent on a combination of devices (having
particular states and sub-states) is called a complex effect (CE). A CE is described

40

5.1 – Requirements

by combining SEs and other CEs.
For discussion in this thesis, the applicability of the DE framework to Boolean ap-

plication domains is considered, i.e., domains in which user goals (effects) can either
be true (active) or false (inactive) depending on the value(s) of the involved states
and sub-states, that may be Boolean, discretely enumerate or real-valued. This cov-
ers most control applications and many monitoring use cases in smart homes, offices
and industrial plants.

The chapter is divided into two sections. Section 5.1 defines requirements for
modeling human-intelligible effects (goals) and Section 5.2 introduces Domotic Ef-
fects and their formalization.

5.1 Requirements

Domotic Effects (DE) provide abstraction for modeling current (state) and future
(goals) configurations of a smart environment. These configurations shall be ex-
pressed in a human-intelligible way and must support machine-based evaluation,
solution and activation, with almost no human intervention. Formally, effects can
either be simple or complex. Simple effects (SEs) are the terminal nodes of this
functional representation and they correspond to functions applied to the state (or
value) of a single device (sensor). Complex effects (CEs), on the other hand, de-
rive from the application of domain-specific operators to SEs and other CEs. This
permits the definition of modular and stratified effects built on top of simpler ones
(Figure 5.2 and Figure 5.3).

Figure 5.2. SE and CE effects in the energy domain

Simple and complex effects must fulfill well defined requirements to effectively

41

5 – Domotic Effects Framework

Figure 5.3. SE and CE effects in the control domain

address the representation issues discussed in Chapter 6. Such requirements encom-
pass:

• Formal definition. Effects must have a formal, machine understandable
specification thus enabling automatic elaboration and mapping into set of
device states/activations; the same applies to operators, which are required
to be machine processable.

• Domain dependency. Effects must be composable in different ways depend-
ing on the knowledge and/or application domain in which they are defined.
As an example, real-valued effects (e.g., energy or power effects) will undergo
operations such as aggregation of values (sum, average, last in a time win-
dow), derivation/integration (to convert energy to power and back), etc, as
in Figure 5.2. Instead, boolean-valued effects (e.g., active/not-active) might
be aggregated by straightforward boolean operators (and, or, not, etc.), as in
Figure 5.3.

• Modularity. Whilst a restricted core set of modeling primitives is required
to set up a sound representation framework, modeling shall be adaptable to
different needs, i.e., knowledge domains, and to different actors such as AmI
designers and home inhabitants.

• Evaluation support. Evaluating effects means computing their amount
starting from the values of each device state and sensor value, according to
the definition of the effects (SEs) and the semantics of the operators (that
might change depending on the domain). The effect values must be updated
whenever a device/sensor changes its state/value, therefore evaluation shall be

42

5.2 – Formalism

quick, i.e., comparable with the latency of home automation systems (roughly
under one second), and well integrated with the smart environment manage-
ment system (e.g., an home gateway). Different evaluation algorithms and
computational models may be applied depending on the involved physical val-
ues and on the modeled operators.

• Enforcement support. Human-defined effects should be translated auto-
matically into sequences of device activations (commands). This requires
the inverse computability of the effect definition, which typically results in
many, alternative solutions. Exploration of the solutions space may also enable
optimization of second-level metrics, such as reducing the number of device
switches or the energy consumption.

• Advanced intelligence support. A new breed of intelligent applications
will generate and/or exploit domotic effects. For example, advanced in-home
interfaces might exploit effects to offer “intelligent widgets” bound to effects
instead of devices. Semantic reasoning might exploit effects to infer common
automation recipes applicable to different smart environments. Hybrid and
probabilistic reasoning might empower (semi-)automatic selection of alterna-
tive home configurations, e.g., raising shutters instead of switching on lamps,
or vice-versa, depending on the values of defined effects. Context information
might be defined on top of effects instead of devices, supporting higher level
policies and behaviors.

• Human-intelligibility. While effects shall be uniquely identifiable (e.g., by
using URIs), final users shall be able to give meaningful personalized names,
to easily identify and understand the represented configurations. Moreover
their formal definition shall be informative, i.e., the mechanisms with which
SEs are composed into CEs must be easy to understand, even for unskilled
users.

• End user accessibility. Effects shall be easy to define and to understand
by end users, e.g., home inhabitants, through intuitive GUIs [58]. This allows
bridging the gap between device-centric and interaction-centric modeling pro-
viding means for users to explicitly inform AmI about the sequences of effects
(or goals) that activities require.

5.2 Formalism

Given an intelligent environment, we define as D the set of installed controllable
devices d ∈ D. Each device is characterized by a device category that, among the

43

5 – Domotic Effects Framework

other things, defines the allowed sub-states for a device. Depending on the device
category, for each device d we define the set of allowed sub-states S(d); this set
may be discrete (e.g., {On, Off} for a lamp) or continuous (e.g., [0, 100] for a
volume knob). During system evolution, the actual state of each device is a time-
dependent function s(d, t) ∈ S(d). The whole environment therefore possesses a
global state space G, represented by the Cartesian product of all device state spaces:
G =

∏

d∈D S(d), thus defining a global environment state g ∈ G.
Formally, a Domotic Effect DE is defined as a function of the global state space:

DE : G → V, where V is an application-dependent value space. For example, for
control applications, V = {0, 1} since each Domotic Effect represents the activation
of a given state configuration; conversely, when dealing with energy savings, V = <+

since Domotic Effects may be used to represent consumed power.
AmI designers and end users may define custom Domotic Effects by working

with a domain-specific set of operators. Such operators work on the value space
V relevant to the specific application domain1. The specification of a DE function
requires three levels of formalization:

1. defining Simple Effects (SE), to extract a V-valued quantity from a single
device state. Formally, SE is a function that considers the state on only one
device, SE : S(d) → V; such function is also time-dependent since it depends
on s(d, t).

2. defining effect operators working within V-space algebraic semantics, suitable
for composing new functions in the application domain. Formally, an operator
op is a function op : VN → V, where N represents the number of operands of
the specific op.

3. defining Complex Effects (CE), by applying effect operators to the values
computed by other SE or CE. Formally, a CE is represented by a couple
(op, (DE1 . . . DEN)) composed of an operator name op and a list of Domotic
Effects DE i whose values are used as operands.

For each application domain, there would be a set of pre-defined SE and a set
of operators that the users may combine to compute the values of interest. For
example, if we consider control applications (V = {0, 1}), then the SE functions
that may be adopted are:

• for discrete-valued states, a SE detects whether a device currently is in any
given state. E.g., SEOn(d, t) = (s(d, t) == On).

1for cross-domain applications, V would be the union of all relevant value spaces

44

5.2 – Formalism

• for real-valued sensors, a SE usually compares the current sensor data with a
threshold. E.g., SEHot(d, t) = (s(d, t) > 30oC).

Conversely, if we consider energy savings applications (V = <+), the SE usually
just extracts the current energy or power measurements from the real-valued sensor:
SEPower(d, t) = s(d, t).

The instance layer in the “DogEffects” ontology defines a set I of all defined
domotic effects (instances), i.e., I = {DE1, DE2 . . . DEN}.

45

Chapter 6

Modeling

Modeling formalisms and techniques play a crucial role in smart environments re-
search. Human activities are modeled to better interpret human-home interaction
detected by pervasive sensors. Human behaviors are analyzed and related to activ-
ities and to temporal evolutions with the aim of learning recurrent patterns, and
possibly inferring user wills or goals. The context in which interactions occur, i.e.,
the environment state, the time, the weather, the season or the users’ mood, are
modeled to account for all possible factors influencing human behaviors. Together
with home inhabitants, environment structure and components are modeled to sup-
port better design/operation of environments, e.g. detecting problems or design
choices that might hamper usability or accessibility to impaired people. Moreover,
device modeling is exploited to overcome integration issues and to offer a shared
knowledge on how the environment works and on how it can be controlled.

All these modeling aspects can be roughly divided in two main categories: mod-
eling of environment interactions, e.g., activity, behavior and context modeling
[59–61], and modeling of environment set-up, including home fixtures and devices
[35, 62]. Modeling of environment interactions treats people living in the environ-
ment as hidden targets: users are modeled with the aim of learning typical behaviors
and understanding the underlying semantics, i.e., the carried activities. Environ-
ment set-up, instead, completely ignores the human presence and adopts a device-
centric modeling approach addressing integration issues rising from the proliferation
of automation devices and communication protocols, which are often incompatible
with each other. These two last categories increasingly exploit semantics, i.e., on-
tologies and reasoning facilities stemming from the Semantic Web community (see
Section 6.2 for more details).

Despite this intense modeling activity, a relevant aspect is still quite neglected,
although needed to correlate human activities and device-centric descriptions: hu-
man intelligible state and goal modeling. Intelligible states and goals may relate
to environmental variables (illumination, temperature, . . .) or to more abstract

47

6 – Modeling

conditions such as security and energy saving. Domotic Effects represent such a
human-understandable vision, i.e., how the home inhabitants perceive/represent the
current environment configuration (state) and how they plan the next environment
state (goals).

In this paper we introduce explicit and semantic modeling of such Domotic Ef-
fects, by empowering the AmI designer, and the end user, to define and specify
its own vision of the ambient state, at a human-intelligible level of abstraction.
Domotic Effects are defined as named sets of states for environment devices, con-
structed through domain-dependent functional operators (e.g., boolean operators
in the direct control domain). They are formally defined through a three tiered
modeling approach based on the newly designed DogEffects ontology. For each ap-
plication domain, the AmI designer (or the end user, in second instance) defines
the most suitable algebraic representation of domotic effects and the corresponding
functional operators.

The proposed formal model is complemented by a DomoticEffects software frame-
work that links it with the current state of a real smart environment, bidirectionally
(Domotic Effects to device states, and device states to Domotic Effects).

Advantages are clear: AmI designers can work on top of an abstraction layer
enabling the definition of generic, device-independent goals in a declarative way.
Intelligent applications and operations inside the house can therefore be explicitly
related to abstract effects, and their actual implementation may vary depending
on the underlying infrastructure. Interaction designers can rely on such a shared
knowledge, enabling a more natural human-home interaction. For example, user
interfaces might concentrate on high-level abstract interactions, instead of single
activations, and the DE framework would take care of mapping such goals into
desired device states and environment configurations.

The main focus of this chapter is the definition of the formal modeling framework
and the adopted DogEffects ontology.

The reminder of this chapter is organized as follows: The underlying ontology
for the DE framework is discussed in Section 6.1, while Section 6.2 compares the
proposed approach with the current state-of-the-art.

6.1 Modeling: DogEffects Ontology

In order to provide the formal knowledge base for the DE framework, a 3-tiered
ontology-based approach has been adopted (Figure 5.1). The ontology is called
the DogEffects ontology1 and it is formalized by using the OWL Web Ontology

1The ontology can be reached at: http://elite.polito.it/ontologies/effects.owl

48

6.1 – Modeling: DogEffects Ontology

Language [29]. The DogEffects ontology is based on the modularity pattern, which
allows it to be easily attached to other ambient ontologies that model the devices
installed in an environment and their properties (especially the concept of state).
Three modeling layers are defined, with decreasing usage complexity: a core layer,
designed to establish the basic semantics of effects, a middle-layer allowing AmI
designers to define SEs and domain-dependent operators for combining them into
complex effects, and finally an instance layer where specific effects can either be
defined by AmI designers or by final users, through suitable user interfaces.

6.1.1 Core layer

The core layer contains the basic class definitions for expressing Domotic Effects
(Figures 6.1, 6.2, upper side); this layer is not meant to be modified by AmI de-
signers nor by final users. Every Domotic Effect is formally organized into a con-
cept hierarchy inheriting from the dogEffects:Effect class. Effects can either be
simple (dogEffects:SimpleEffect) or complex (dogEffects:ComplexDeviceEf-

fect). For both kinds of effects, domain-dependent subclasses are defined at the
middle layer.

Simple Effects (SEs) are the terminal nodes of the representation and compute
a value depending on a device state or sensor value. SEs act as interface points
between the DogEffects ontology and some device description ontology (e.g., DogOnt
[35]). The dogEffects:effectOf and dogEffects:functionOf open relations (i.e.,
relations without range restrictions) permit to identify the device and the device
state for which a given SE is computed, respectively.

Every Complex Effect (CE) represents a functional expression of SEs and other
CEs declared by using domain-dependent operators defined at the middle-layer of the
DE framework. Effect operators take either simple or complex effects as operands
(through the dogEffects:hasOperand relation) and generate new CEs as result,
identified by means of dogEffects:hasResult relation.

Two main disjoint families of operators are modeled: unary operators (dog-

Effects:UnaryOperator) and non-unary operators (dogEffects:NonUnaryOpera-

tor).Unary operators only involve one dogEffects:Operand (cardinality restric-
tion on the dogEffects:hasOperand relation), which can either map to a SE or
a CE (by the dogEffects:operandEffect relation). Typical examples of unary
operators are the NOT operator (in the boolean control domain) or the Integra-
tion operator (in the energy domain). Non-unary operators are further special-
ized (disjoint union) into commutative (dogEffects:CommutativeOperator) and
not-commutative (dogEffects:NotCommutativeOperator) operators. According to
the mathematical definition of commutative (not-commutative) operators, the re-
sult produced by the former (dogEffects:CommutativeOperator) is independent
on the order in which operands are evaluated while, the latter operator provides

49

6 – Modeling

a results depending on the order of the effect operands. In such a case the dog-

Effects:OrderedOperand subclass of operands shall be used to account for the
operand order, expressed as an ascending integer number by the dogEffects:has-

PositionN property. Typical examples of non-unary effects are the AND, OR and
EX-OR logic operators, in the boolean control domain, or the SUM and the DIF-
FERENCE operators in the continuous energy domain. The latter, in particular, is
also not commutative as the result of a mathematical difference changes depending
on the order of the operands.

6.1.2 Middle layer

The middle layer encodes domain-dependent operators typically defined by AmI
designers. Every application domain will define different operator classes for this
layer by sub-classing the general operator classes defined in the core layer. Two
sample middle layers dealing with control (Boolean application domain) and with
energy saving are defined below.

Boolean Application Domain

In the control domain, simple effects correspond to devices (sensors) being in specific
states (measuring specific range of values). SEs and CEs can only evaluate to true
or false, and Boolean logic is sufficient to compute CEs and to implement rather
advanced activation scenarios. From the modeling point of view, mapping operators
to Boolean logic requires a minimum set of logic operators, e.g., AND (∧), OR
(∨) and NOT (¬) (Figure 6.1); however, AmI designers may choose to define more
complex and user-intelligible Boolean operators such as:

1. ImpliedOperator: This operator represents the “logical implication” relation-
ship. As it requires only a single operand, it is modeled as a unary operator.

2. AlternateOperator: This operator represents a function whose value is active
when exactly one of its operands is active. It is commutative and non-unary.
Mathematically, the Alternate effect operator can be defined as: Alt(x1 . . . xn) =
∑

i

(

xi ·
∏

j /=i xj

)

.

3. ExactlyMOperator: This non-unary operator represents a function whose value
is active when exactly M number of its operands are active. Suppose there
are n operands, i.e., OP = {1,2, . . . n}. Then the ExactlyMOperator effect
operator can be defined as:

ExactlyM (x1 . . . xn) =
∑

O⊆OP,|P |=M





∏

i∈O

xi ·
∏

j /∈O

xj





50

6.1 – Modeling: DogEffects Ontology

Figure 6.1. The DogEffects middle layer - Boolean Control Domain

51

6 – Modeling

Energy saving

In the energy saving domain typical elaborations involve continuous data such as
power or energy measures coming from meters located in the smart environment.
While simple effects are still defined as sensor-value couples, complex effects re-
quire operators such as integration for translating power measures into energy mea-
sures (and derivation for doing the inverse), thresholding for detecting overloads or
anomalies, average for comparing consumption in a period, etc. With respect to the
Boolean control domain, operator modeling is much more complex in this domain,
and many different operators can be defined depending on the AmI designer’s focus
and on the application scope. Figure 6.2 shows a sample middle layer for energy
where integration/derivation, average, sum, difference and threshold are defined.

Although this sample energy operator modeling might be somewhat simplistic
to be used in full-featured energy aware applications, it’s important to notice how
the framework easily supports domain-dependent operators. Moreover, modeling
accuracy and granularity can easily be adapted to the problem under examination,
thus providing AmI designers a powerful tool for defining abstract effects on which
more advanced policies can be built.

6.1.3 Instance layer

The instance layer of the Domotic Effects framework represents specific Domotic
Effects defined in a given smart environment. They are modeled as instances of the
classes defined in the core or middle layer and they relate to each other (functional
composition) by means of domain dependent operators defined at the middle layer.
Effect instances are typically defined by AmI designers or by final users. Following
paragraphs better detail this layer by providing sample effect instances for both the
Boolean control and the energy saving domain.

Boolean control

Since the current focus is geared towards the applicability of the DE framework to
Boolean application domains, this section illustrates two use cases which are used
through out this thesis.

Figure 6.3 illustrates a sample “Illumination” use case corresponding to the
generic goal of lightening up the room. The illumination can be artificial by switch-
ing on the mirror lamps or ceiling lamp in different combinations, or illumination
can be natural by opening the shutter of the window.

Figure 6.4 illustrates a simplified “ Dining@Lunch” use case corresponding to the
overall state of a dining room, in a house, during lunch hours. The “Dining@Lunch”
use case includes isolating the kitchen, illuminating the dining room and switching

52

6.1 – Modeling: DogEffects Ontology

Figure 6.2. The DogEffects middle layer - Energy Saving Domain

53

6 – Modeling

Core Layer

AmI layer

(Boolean Domain)

Instance Layer

Effect

Simple

Effect

dogont:

Controllable

dogont:

StateValue

isA

functionOf (>=1)

effectOf (=1)

Left Mirror Lamp

Illumination

effectOf functionOf

Complex

Effect

Commutative

Operator

Alternate

Operator

Or

Operator And

Operator

Complement

Operator

Effect

Operator

NotCommutative

Operator

NonUnary

Operator

isA

hasOperand

(=1)

hasOperand (only)

operandEffect (=1)

opName

Or Alternate

And

opName opName opNameNot

opName

Unary

Operator

hasResult (=1)

isA

isA

isA

Operand

Ordered

Operand

hasOperand

hasPositionNhasOperand (>=2)

isA

isAisAisA

Right Mirror Lamp

Illumination

effectOf
functionOf

Op5 Op6

operandEffect operandEffect

And1

MirrorLamp

Illumination
hasResult

hasOperandhasOperand

isA

Boolean

Simple Effect

value

Natural Illumination
Ceiling Lamp

Illumination

effectOf

hasOperand

Op3

operandEffect

functionOffunctionOfeffectOf

Illumination

Artificial Illumination

Al1

hasResult

Or1

hasOperand

hasOperand

hasResult

Op1

operandEffect

Op2

operandEffect
Op4

hasOperand

operandEffect

Figure 6.3. “Illumination” use case (DogEffects Ontology)

on the television for entertainment. The functional representation of the use case is
outlined in Table 6.1.

Table 6.1. Dining@Lunch functional form
Dining@Lunch = And(IsolateKitchen, TvEntertainment, LampIllumination)

IsolateKitchen = And(Door_Kitchen_Isolate, Fan_Off, Kitchen_F low)
LampIllumination = And(LeftWallLampIllumination, RightWallLampIllumination)

RightWallLampIllumination = SE(Lamp5, OnState_lamp5)
LeftWallLampIllumination = SE(Lamp4, OnState_lamp4)

Door_Kitchen_Isolate = SE(Door_Kitchen, OffState_Doorkitchen)
Fan_Off = SE(FAN_Kitchen, OffState_Fankitchen)

Kitchen_F low = SE(ShutterActuator_Kitchen, UpState_SAKitchen)
TvEntertainment = SE(Tv1, OnState_Tv1, V olume_40)

54

6.2 – Related Works

Core Layer

AmI layer

(Boolean Domain)

Instance Layer

Effect

Simple

Effect

dogont:

Controllable

dogont:

StateValue

isA

functionOf (>=1)

effectOf (=1)

Left Wall Lamp

Illumination

effectOf functionOf

Complex

Effect

Commutative

Operator

Alternate

Operator

And

Operator
Or

Operator

Complement

Operator

Effect

Operator

NotCommutative

Operator

NonUnary

Operator

isA

hasOperand

(=1)

hasOperand (only)

operandEffect (=1)

opName

And Alternate

Or

opName opName opNameNot

opName

Unary

Operator

hasResult (=1)

isA

isA

isA

Operand

Ordered

Operand

hasOperand

hasPositionNhasOperand (>=2)

isA

isAisAisA

Right Wall Lamp

Illumination

effectOf
functionOf

Op4 Op5

operandEffect operandEffect

Or1

Lamp

Illumination
hasResult

hasOperandhasOperand

isA

Boolean

Simple Effect

value

FAN_OFF

TV_Entertainment

effectOf

hasOperand

Op8

operandEffect

functionOf
functionOf

effectOf

Isolate Kitchen

Dinning@Lunch

And2

hasResult

And1

hasOperand

hasOperand

hasResult

Op1

operandEffect

Op2

operandEffect
Op7

hasOperand

operandEffect

Door_Kitchen_Isolate

Kitchen_Flow

functionOf
effectOf

Op3

hasOperand

Op6

Figure 6.4. “ Dining@Lunch” use case (DogEffects Ontology)

Modeling is clearly not restricted to a single knowledge domain. If, for example,
we model both boolean control and energy saving at the middle layer, the instance
layer can be exploited to define complex effects accounting for the consumption of
each device involved in boolean activations, thus enabling easy definition of auto-
matic energy saving policies.

6.2 Related Works

In the literature, few works tackle the modeling gap between interaction and envi-
ronment modeling, and AmI designers and end-user concerns are mostly addressed
separately.

In their recent work [63], Juan Ye et al. start tackling this gap with a top-down

55

6 – Modeling

approach based on upper-level ontologies. They define a top-level ontology cap-
turing in a uniform manner the inherent semantics that different types of domain
knowledge share, model such semantics across information at different levels of ab-
straction, and reason on it using a sound and proved reasoning schema. Thanks to
this conceptual model, developers can use the provided generic rules and define their
own specific rules to facilitate performing system level tasks such as checking the
consistency of context and derivation rules that describe activities, integrating the
model with statistical information, etc. Although the approach is sound and might
actually improve modeling of smart environments, it mainly focuses on AmI devel-
oper tasks and almost ignores user-intelligible effects of home/building automation.
On the converse, DogEffects addresses at the same time users and AmI designers, by
exploiting Domotic Effects. The approach of Juan Ye et al. and the one presented
in this chapter are not in contrast, instead they can successfully complement each
other: while DogEffects provides user-intelligible effect and goal definition, the Juan
Ye et al. work can be exploited to link effects to context and activity models and to
reason on the consistency of information sensed from the environment and framed
in the joint conceptual model.

The Amigo project [64] adopts an ontology-based representation model similar
to DogEffects. Amigo models devices, and by extension, aggregations of devices
as services handling specific inputs and providing well-defined outputs. A service
composition approach allows combining functionalities offered by the smart envi-
ronment and a set of vocabulary ontologies permit to relate such functionalities
to contextual information. The main shortcoming of the Amigo approach is the
device-centric vision, which neglects users and how they perceive/conceive automa-
tion effects/goals. In this sense, DogEffects overcomes the Amigo approach by ex-
plicitly allowing domain-dependent effects (and related operators). On the other
hand, however, the open and modular design of DogEffects supports the integration
of the two approaches, enriching the set of Amigo vocabularies with a new, more
abstract, modeling of device/automation effects.

In [43, 45] complete independent control solutions to manage domotic envi-
ronments based on the learning pattern of a user’s activity are proposed, while
in [39,42,56] the authors advocate enabling non-programmers to create and manage
their smart environments according to their wishes. Providing a complete indepen-
dent control extracted from a user’s activity as the only mechanism might not be a
good idea as it diminishes the influence residents have on their personal spaces. It
also raises a new set of problems like privacy and security issues. Moreover, instead
of focusing on user’s goal or intention, it focuses on a set of devices and their actions.
It can be said that learning algorithms discover patterns of device activity instead
of user’s intended goals. The latter group of papers, on the other hand provides
end user programming environment but the underlying structure of organizing goals

56

6.2 – Related Works

and their different courses of actions is missing. Finally, [56] and [41] provide or-
ganization mechanisms, but the translation from goals to their individual tasks is
static and does not allow flexibility. Our proposed modeling approach provides AmI
developers with an abstract view that they can change, update or build atop de-
pending on the smart environment, and residents can define their own combinations
of devices, according to their wishes.

57

Chapter 7

Evaluation

This chapter expounds on the ability of the DE framework to monitor the overall
state of the environment, in real time called Effect Evaluation. The monitoring
amounts to correctly mapping the devices and their states in terms of user goals
or intentions (Figure 7.1). The discussion focuses on the applicability, of the DE
framework, to Boolean application domains, i.e., domains in which the outcome of
a user goal or intention can be either active (true) or inactive (false). This covers
most monitoring use cases in smart homes, offices and industrial plants.

Formally, Effect Evaluation means computing the value of all domotic effects
starting from the values of each device state and sensor value, according to the
definition of the domotic effects and the semantics of the functional operators (that
might change depending on the application domain). The computation should be in
real time, i.e., comparable with the latency of home automation systems (roughly
under one second), and well integrated with the smart environment management
system (e.g., an home gateway). The conception, architecture and implementation
of Effect Evaluation are discussed in this chapter.

The chapter is divided into seven sections. The problem addressed in this chap-
ter is formally defined in Section 7.1, while the general approach adopted for effect
evaluation is described in Section 7.2, and later Section 7.3 defines the adopted ar-
chitecture and implementation. Section 7.4 shows results of the experiments and
Section 7.5 provides overview of existing literature. Section 7.6 concludes the chap-
ter.

7.1 Problem Statement

Given the definitions in the previous sections, the problem of “Effects Evaluation”
deals with finding the value V for all the Domotic Effects DE i defined in the instance
layer of the DogEffects ontology, i.e., I. The value of a domotic effect depends upon

59

7 – Evaluation

Figure 7.1. Evaluation

the application domain. This chapter addresses “Effects Evaluation” restricted to
Boolean application domains, i.e., application scenarios where the AMI layer is
defined in terms of Boolean values and Boolean operators. This covers most control
applications and many monitoring use cases in smart homes, offices, and automated
industrial plants. In this domain, the values of the domotic effects can be either
active (true) or inactive (false).

For simple domotic effects, the value is active when the corresponding device is in
the state defined for the domotic effect. A complex domotic effect is a combination
of other domotic effects (both simple and complex) and the type of combination
is governed by an effect operator defined in the instance layer of the DogEffects
ontology. Therefore, the value is dependent upon the values of its children and the
effect operator associated with the complex domotic effect.

The primary objective of the chapter is to design, develop and verify a module
that performs the process of Effect Evaluation in the context of DE framework.
Since the module needs to be verified inside an AMI system, the Effect Evaluation
module should meet the following set of requirements:

1. The module should be able to monitor the change of state of all the devices
installed in the environment.

2. Different third-party applications should be able to register themselves to this
module, to listen to any change in the values of the domotic effects.

3. During the “Effect Evaluation” it should asynchronously send out notifications
to the registered applications.

60

7.2 – Approach

4. The process of Effect Evaluation should be robust, i.e., to respond in near
real-time (NRT).

5. The module should provide integration with Dog [65].

7.2 Approach

In order to meet the objectives of the chapter a module named “Domotic Effects
Evaluation” was developed. All the domotic effects are organized in a hierarchical
structure that corresponds to a simplified representation of the logical structure
defined in the Instance layer of the DogEffects ontology. The structure is identified
as Effect Node Network (ENN). The ENN for the Illumination use case defined in
Section 6.1.3 is shown in Figure 7.2. The module listens to any change in state of
devices and if any change occurs, it performs the evaluation of all the domotic effects.
The classical Zero Delay Event Driven Logic Simulation algorithm [66] is chosen to
perform the evaluation. In the DE framework, the effect operators defined in the
AmI layer represent the evaluation criteria. Therefore, a proper implementation of
each effect operator in the Boolean application domain is provided ,i.e., Complement,
And, Or and Alternate.

When a device changes its state, the values of the simple domotic effects associ-
ated with the device may change. If the values of simple domotic effects are changed,
the evaluation of the complex domotic effects dependent on them are scheduled and
recursively evaluated. During the evaluation, if a change in the value of a domotic
effect (simple or complex) is observed, an asynchronous notification is sent out to
third-party applications. This whole process is called “Effect Evaluation”.

Level: 1

Figure 7.2. ENN for the Dining@Lunch use case

61

7 – Evaluation

7.3 Solution

7.3.1 Architecture

Dog [65] architecture was extended to integrate the DE based approach in smart
environments. Dog has a modular architecture composed of 12 core bundles that is
able to expose different domotic networks as a single, technology neutral, home au-
tomation system. The DogEffects ontology and its management are handled by the
HouseModel bundle. The bundle provides information about all the domotic effects
defined in the environment. A Domotic Effects Evaluation bundle has been defined,
which perform the organization of all the domotic effects defined for the environ-
ment in the ENN and carries out the effect evaluation process. The functionalities
of these two bundles are explained below:

HouseModel Bundle

The HouseModel bundle exploits standard DogOnt classes and DogOnt instances
referred by a specific environment to provide knowledge-rich access to the environ-
ment properties and capabilities. It accesses the DogEffects ontology classes and
their instances and provides all the management operations related to the DogEf-
fects ontology. Inference and reasoning tasks are carried out at this level, both at
the Dog startup, for computing consistency checking and transitive closure, at the
runtime. In particular, runtime reasoning is adopted for generating inter-operation
rules. In the context of this chapter it provides the following services at Dog startup.

Effect Data Extraction This functionality gives the information associated with
all the domotic effects defined in the environment. In case of a complex domotic
effect, the associated information includes the name of the effect, the name and
number of children, the type of the domotic effect (defined using the Effect operator).
In case of a simple domotic effect, the name of the effect and its associated device in
a given state is mentioned. The generic information template is shown in Figure 7.3.

Figure 7.3. Information template

62

7.3 – Solution

Domotic Effects Evaluation

Figure 7.4. DogEffects bundle

This bundle is responsible for performing the effect evaluation process. The
logical architecture of this bundle is shown in Figure 7.4.

The DogState bundle is responsible for providing the Domotic Effects Evalua-
tion bundle information about the current states of the devices connected to the
Dog platform. It sends out device state change notifications containing the name
of the device and its current state. During Dog startup, the Organization compo-
nent requests and receives all the domotic effects defined in the instance layer for
a particular environment. It includes a parser which parses the received response
from the HouseModel and organizes all the domotic effects in a hierarchical data
structure (called Effect Node Network, ENN).

As defined in Section 7.2, to evaluate different types of domotic effects, proper
evaluation algorithms (to achieve the activation criteria) for the effect operators
defined in the AmI layer are defined. The Effect Operator store contains the Java
code for each effect operator to provide evaluation.

The effect evaluation process is managed by the Simulator component and com-
prises receiving notifications of device state change from the DogState bundle, eval-
uating all the domotic effects and sending out notifications if a change in values of
the domotic effects is observed.

• When a device state change notification is received, the simulator matches
the received notification to the simple domotic effects associated with the
device to check their activation criteria. If the evaluation criteria matches,
it activates the simple domotic effect and deactivates other simple domotic
effects associated with the device. Afterwards, the complex domotics effect
are evaluated.

63

7 – Evaluation

• For each complex domotic effect, the values of its children is determined and
then the type of the effect operator. Once the effect operator is determined,
the appropriate Java implementation in the effect operator store takes the
values of its children and determines the value of the current complex domotic
effect.

• The classical Zero Delay Event Driven Logic Simulator Algorithm has been
chosen to perform the effect evaluation process. The transformed algorithm
for our proposed approach, in pseudo-code is reported in Algorithm 1. It uses
the schedule method, whose pseudo-code is reported in Algorithm 2.

• As soon as, a change in value of a domotic effect is observed, a notification is
sent out for that domotic effect.

Algorithm 1 Zero Delay Event Driven Logic Simulator Algorithm
for all queues as currentqueue do

for all currentqueue as node do

oldV alue=(node).isValue();
newV alue = (node).evaluate(); → Evaluation Criteria for the node
if oldV alue NOTEQUAL newV alue then

node.setValue(newV alue);
node.sendNotification();
node.schedule();

end if

end for

end for

Algorithm 2 schedule method Algorithm
parents=this.getParents();
for all parents as node do

p=(node).getLevel();
queue=(queues).get(p);
if queue.contains(node) == false then

queue.add(node);
end if

end for

7.3.2 Extensibility

The system designers have the ability to define different Boolean effect operators
depending on the environment and for monitoring purposes appropriate implementa-
tion for determining the value of the corresponding domotic effect should be included
in the effect operator store. Figure 7.5 shows a class template to implement an effect
operator declared in the AmI layer of the DogEffects ontology.

When a new effect operator is defined in the AmI layer of the “DogEffects”
ontology, the Effect Evaluation module can be extended as follows:

64

7.3 – Solution

public class NewOperatorName extends EffectNode {

public NewOperatorName () {

super ();

/*

The passed operator name should be

equal to the effect operator name

defined in the DogEffects ontology .

*/

super . setOperator (" NewOperatorName ");

}

@Override

public boolean evaluate () {

}

}

Figure 7.5. Procedure to define a new effect operator.

1. A new class is defined that extends the EffectNode class (Figure 7.6).

2. The parent class gives the ability access the value of the children nodes and
based on it, a proper condition for activation (true) or deactivation (false) can
be provided inside the evaluate function.

Figure 7.6. Template of abstract EffectNode Class

Currently, the effect operator store includes the Complement, And, Or and Alter-
nate operators. The Complement effect operator represents an invert relationship,
and its evaluation algorithm is given in Algorithm 3.

Algorithm 3 Complement evaluation algorithm
child=node.getChildren();
return !(childNode.isValue());

Algorithms 4 and 5 show the evaluation algorithms for the “And” and “Or” effect
operators. The Alternate effect (Algorithm 6) operator represents a function which

65

7 – Evaluation

is active when only one of its children is active. Mathematically, the Alternate effect
operator can be defined as:

∑

i



OPi ·
∏

j /=i

OPj





Algorithm 4 And evaluation algorithm
children=node.getChildren();
for all children as childNode do

if childNode.isValue() == false then

return false;
end if

end for

return true;

Algorithm 5 Or evaluation algorithm
children=node.getChildren();
for all children as childNode do

if childNode.isValue() == true then

return true;
end if

end for

return false;

Algorithm 6 Alternate evaluation algorithm
children=node.getChildren();
counter=0;
for all children as childNode do

if childNode.isValue() == true then

counter= counter + 1 ;
if counter > 1 then

return false;
end if

end if

end for

if counter == 1 then

return true;
else

return false;
end if

7.4 Experimental Study

To study the feasibility of the proposed approach, measure performance parameters
of the modified HouseModel bundle and the newly developed Domotic Effect Evalu-
ation bundle two sets of experiments were carried out. In the first set of experiments

66

7.4 – Experimental Study

the integration of the proposed approach inside the Dog was assessed. Conversely,
in the second set of experiments performance parameters were measured. These
parameters include the time taken by the Domotic Effect Evaluation bundle to re-
quest, receive and organize the domotic effects in the ENN during Dog startup, the
average time taken to completely perform the effect evaluation process.

7.4.1 Feasibility Testing

The Domotic Effects Evaluation bundle was built using the eclipse equinox OSGi
framework1, so that it can be integrated inside Dog. A set of standalone applica-
tions, based on the Publisher-Subscriber pattern [24], were developed to test the
correctness of integration and to witness the overall effect evaluation process.

After modifying the HouseModel bundle and integrating the Domotic Effects
Evaluation bundle, in order to realize the Publisher-Subscriber pattern over the
web the LO(D)D architecture was used. LO(D)D is a distributed framework that
provides a systematic way to publish environment data which is being updated
continuously; such updates might be issued at specific time intervals or bound to
some environment specific event (Chapter 11). In our case, these events are changes
in the values of domotic effects, defined in the environment.

Figure 7.7. Action Sequence of Feasibility Testing.

The architecture of the feasibility testing is shown in Figure 7.7. The testing
was conducted over a simulated environment of a house whose structure is shown
in Figure 7.8. The house is composed of a bed room, a living room, a lobby, a
bath room, a store and a kitchen, and is equipped with with several automatic

1http://www.osgi.org

67

7 – Evaluation

devices/appliances like lamps, oven, television, door actuators, window actuators,
shutter actuators, gas heaters etc. For each device, a certain number of simple
domotic effects have been defined in the instance layer that correspond to the number
of controllable states that the device can achieve. Based on these simple domotic
effects and using the set of Boolean operators encoded in the AmI layer, several
complex domotic effects were defined. Some of them are explained in the following
section.

Use cases

This section describes six top level use cases defined, over the simulated house en-
vironment, using simple and complex domotic effects. The number of total domotic
effects defined to map all six use cases were 190, and the number of involved devices
were 57. To check the integration, several iterations were performed. In each itera-
tion, the states of random number of devices were changed and the corresponding
changes in the values of domotic effects were monitored. Table 7.1 summarizes the
feasibility testing. It defines, for each iteration, the number of devices whose states
were changes, the corresponding number of active and inactive domotic effects (after
the change) and the time, in milliseconds, taken for the complete operation.

To perform the experiment, a new test LO(D)D Publisher bundle was built which
registers to the Domotic Effects Evaluation bundle for receiving notifications when
the value of any domotic effect is changed. Another web application named LO(D)D
Subscriber was developed, which subscribed to the LO(D)D Publisher bundle. A
separate bundle StateChange bundle sent commands to change the states of different
devices.

The Domotic Effects Evaluation bundle listened for any change in state of de-
vices installed in the environment (from the DogState bundle). As it received the
state change notification from the DogState bundle the effect evaluation process
is performed and new values of all the domotic effects are computed. During the
evaluation process, when it encounters a change in the value of a domotic effect,
a notification is asynchronously sent to the registered applications, i.e., in our case
LO(D)D Publisher bundle. The LO(D)D Publisher bundle forwards the notifica-
tions to different monitoring applications (LO(D)D Subscriber in our case).

Secure Home The “Secure Home” use case (CEA) secures all the exit points of
the house, i.e., by closing all the exit doors and shutting all the windows of the
house. This use case comprises many DEs providing the ability to secure different
rooms of the house. This can be used in case of emergency, theft, robbery or fire
etc. The functional representation is shown in Appendix A.

68

7.4 – Experimental Study

BathRoom

Living Room

Lobby

Kitchen

StorageRoom

Lamps

Door Actuator

Shutter Actuator

Window Actuator

Television

Gas Heater

Radios

Bed Room

Figure 7.8. A Sample Structure of a house.

BathRoom Illumination The “BathRoom Illumination” (CEB) combines small
use cases that illuminate the bathroom. The illumination can be artificial by switch-
ing on the mirror lamps or ceiling lamp in different combinations, or illumination
can be natural by opening the shutter of the window during morning and afternoon
hours. The functional representation is given in Appendix A.

69

7 – Evaluation

Home Illumination The “Home Illumination” (CEC) requires that all the rooms
of the house are illuminated. Illumination can be both natural or artificial in nature.
The functional representation is shown Appendix A.

Afternoon Lunch The “Afternoon Lunch” (CED) deals with the daily routine
of cooking lunch inside the kitchen. The resident desires the kitchen’s oven to be
heated, the television to be switched on and the kitchen to be closed so that the
aroma of cooking does not spread to other rooms of the house. The functional
representation is given inAppendix A.

Air Passage inside the house The “Air Passage” use case (CEE) manages the
natural air flow inside the house or its different rooms. It combines different DEs
that open windows of opposite sides for the flow of air between different rooms of
the house. The functional representation is shown in Appendix A.

Morning WakeUp The “Morning WakeUp” use case (CEF) maps a typical sce-
nario when a resident wants to perform a sequence of activities after waking up in
morning, like illuminating the bedroom, the kitchen and the bathroom, switching off
the gas heater inside the bedroom, switching on the television in the kitchen and the
radio inside the bathroom. The functional representation is outlined in Appendix A.

Comments

Table 7.1 illustrates the number of active and inactive effects when the states of
devices were changed randomly, over the defined use cases. All the changes were de-
tected and propagated in the ENN. The list of active domotic effects was constantly
updated and published as linked data using the LO(D)D Publisher.

Table 7.1. Results of the feasibility testing

No. of Devices changed No. of Active Effects No. of Inactive Effects
2 3 187
4 7 183
5 6 184
2 3 187
7 14 176
2 4 186
1 2 188
3 3 187

70

7.4 – Experimental Study

7.4.2 Performance Evaluation

To measure the performance parameters of the implemented Domotic Effects Evalu-
ation and the modified HouseModel bundles, two experiments were conducted. The
performance parameters include the total number of domotic effects (simple and
complex), during Dog startup the time taken by the HouseModel bundle to extract
domotic effects information from the ontologies (called Effect Extraction time), dur-
ing Dog startup the time taken by the organization component to create the ENN
(called Organization time), maximum level of the ENN, and the average evaluation
time over a number of iterations. The effect data extraction time includes load-
ing the ontologies (DogOnt and DogEffects), checking consistency and performing
realization. The organization time represents receiving all the domotic effects and
organizing them in the ENN. Both effect data extraction and organization time is
taken by the Dog during the startup and it happens only once. The average evalua-
tion time represents evaluating all the domotic effects and sending out notifications
over a number of iterations and is calculated in milliseconds.

For the experiments a house environment with 50 devices was simulated, whose
domotic structure was defined using the DogOnt ontology. For more details please
refer to [35]. The experiments ran on a standard personal computer with a quad-
core Intel i5 processor and 4GB of RAM. A TestDogEffect bundle was created to
carry out the experiments and measure the performance parameters.

Experiment 1: Daily Chores Scenario

This experiment simulated a scenario that encapsulates daily chores occurring in a
house using the “Domotic Effects”. 12 test iterations were created with each iter-
ation simulating 50 devices in the house. During each iteration a random number
of simple and complex domotic effects were generated in a range from 100 to 1500.
The type of the effect operator between complex domotic effects, the number of chil-
dren and parent, and the inter-dependency of all the domotic effects (level) among
themselves were generated randomly. To measure the performance parameters, the
TestDogEffect bundle randomly chose devices and changed their respective states.
For each iteration, the process of changing device states was repeated at least 150
times and then the evaluation time was averaged for each iteration.

The performance parameters of this experiment are depicted in Table 7.2 and
the average effect evaluation time taken is shown in Figure 7.9.

Experiment 2: Maximal Propagation Scenario

This experiment was an attempt to simulate a scenario in which a change in state of a
single device will initiate the evaluation of a significant number of nodes in the ENN.
As defined in Section 7.2 the classical Zero Delay Event Driven Logic Simulation

71

7 – Evaluation

Figure 7.9. Relationship b/w Average Evaluation Time & Total No. of DEs

Figure 7.10. Relationship b/w Average Evaluation Time & Maximum level of ENN

performs the effect evaluation process. The semantics of the simulation is such that
if a device changes its state all the domotic effects dependent on that particular
device may need to be evaluated and the value of other domotic effects remain
unchanged (Figure 7.11). In Section 7.4.2, the described test iterations generated
random simple and complex effects on top of 50 devices in the house. However, in
this experiment though the generation of complex domotic effects was random but
all the domotic effects were dependent on a single unique device (identified by UD)
plus any other devices. Therefore, when this unique device will change state all
the complex domotic effects might need to be evaluated (Figure 7.12). 10 iterations

72

7.4 – Experimental Study

were performed with random number of complex domotic effects generated, the type
of the effect operator between complex domotic effects, the number of children and
parent and the inter-dependency of all the domotic effects (level) were generated
randomly.

Figure 7.11. Semantics of Effect Evaluation process in Experiment 1.

For each iteration the state of the unique device was changed. After that the
states of other randomly chosen devices in the house were changed and in the end
again the state of the unique device was changed. This process was repeated at
least 20 times for each iteration. The performance parameters of this experiment are
depicted in Table 7.3 and the average effect evaluation time is shown in Figure 7.13.

7.4.3 Discussion

The developed set of applications presented in Section 7.4.1 proves that the “Domotic
Effects” based approach can be integrated inside smart environment systems and is
relatively flexible and easy to integrate with third party applications and services.
Different monitoring applications (both web and desktop based) can be developed to
monitor the state of the overall environment using the “Domotic Effects” approach.

73

7 – Evaluation

Figure 7.12. Semantics of Effect Evaluation process in Experiment 2.

Figure 7.13. Relationship between Average Evaluation Time & Total No. of DEs

The observations regarding the measured performance parameters presented in
Section 7.4.2 are pointed below.

74

7.5 – Related Works

• In the daily chores scenario (Table 7.2), the total domotic effects depend upon
all the devices in the house. The effect evaluation process takes a maximum
of around 108 milliseconds to complete the effect evaluation process and send
out notifications. It can be seen that the “Domotic Effects Evaluation” bundle
is quite responsive and responds in near real-time. In most of the cases the
time for evaluation and sending out notification is less than 150 ms.

• In the maximal propagation scenario (Table 7.3), all complex domotic effects
are dependent directly or indirectly on a single unique device. The effect
evaluation process takes an average of around 313 milliseconds to complete
the effect evaluation process and send out notifications. Considering a unique
device having 1000 domotic effects in a house means that a house with 50
devices will have 50,000 effects. Even in such rare occurrence, the average
evaluation time is less than a second and takes on average 312.86 ms for 1200
CEs to be evaluated and therefore indicates the responsiveness of the approach.

• Figure 7.10 shows that relationship between the average effect evaluation time
and the maximum level of the ENN is linearly increasing (for daily chores
scenario).

• Figures 7.9 and 7.13 show that in both experiments (daily chores and maximal
propagation scenarios) the average evaluation time increases with the number
of domotic effects that are effected by a change in the state of a device and is
directly proportional.

• Figure 7.14 shows the comparsion between the average evaluation time, height
of the ENN and the total number of domotic effects. It can be observed
that the evaluation time is more dependent upon the height of the ENN as
compared to the total number of domotic effects. However, this observation
needs more investigation in the future.

7.5 Related Works

A neuro-cognitive model for Environment Recognition, Decision-making, and Ac-
tion execution inside automated buildings is proposed in [53–55]. They introduce
separate models for perception known as Artificial Recognition System PerCeption
(ARS-PC) and decision making, identified as Artificial Recognition System Psycho-
Analysis (ARS-PA). The perception models provide a three layered architecture, i.e.,
Micro Symbol Layer, Snapshot Symbol layer and Representation layer. Micro sym-
bol layer are formed from sensor input data, which are combined to create snapshot
symbols in the Snapshot symbol layer and then representation symbols are created

75

7 – Evaluation

Figure 7.14. Average evaluation time, ENN levels & No. of DEs comparison

corresponding to the perception of the system in the Representation layer by com-
bining snapshot symbols. The representation symbols are then fed to the ARS-PA to
perform a decision making process. In comparison, the “Domotic Effects” approach
provides modeling of generic goals and their achievement criteria (DogEffects on-
tology). Besides perceiving and monitoring the environment, it has the ability to
enforce and optimize those goals based on a possible set of paths (Chapter 8). More-
over, the “Domotic Effects” provide separate views for system designers and users
of the environment. System designers are allowed to define several different types
of combinations for different application domains and users can defined their own
achievement criterias. This flexibility is missing from the neurocognitive model.

Hemrik Dibowski et al. [52] proposes an automatic design approach for large
building automation systems (BAS). The top-down approach initiates by defining
the structure of the building, then the system integrators define requirements using
ontologies. The next step is to define abstract designs and required functionalities
which are then transformed to detailed designs of the specific BAS. As indicated,
the complexity of this transformation task can be very high, making the approach
complicated and lacking flexibility to achieve detailed designs. On the other hand,
the “Domotic Effects” approach is flexible in providing system designers separate
working space independent of lower level details and allowing them to focus on
general characteristics of the environment, which can later easily be extended or
changed (AmI layer). The users have the ability to play a key role in programming
their personal spaces.

While techniques addressing both the user and the system designer concerns

76

7.5 – Related Works

are rare in literature, several papers have documented them separately. Rashidi et
al. [43] proposes a software architecture which incorporates learning techniques to
discover patterns in user’s daily activities. While the patterns of user’s activities
are observed and stored, the user can also define their own activity patterns as
well. The activity pattern are observed as changes in states of devices occur in
the house. Hierarchical activity model (HAM) is used to store discovered activity
patterns and their temporal knowledge. The activities are discovered based on a
device centric vision, which does not allow users to view the bigger picture about
the state of the environment, in a concise way. On the other hand, the “Domotic
Effects” can provide the bigger picture about the environment concisely and in a
manner understood by the user.

Cheng et al. [45] proposes a smart home reasoning system called ASBR system.
The system learns user’s preferences by adaptive history scenarios and put forwards
a way to rebuild reasoned knowledge in other smart homes. They propose that
contextual information can be extracted and reasoned as a set of scenarios. In
addition, the system can derive personalize habits and store them in OWL files.
Though it does provide an organization mechanism but here the concept of scenario
is different from our proposed effect. “Domotic Effects” are different from scenarios
as it is not a storage of historical events or repetitive tasks, but a modeling of the
environment as envisioned by the user. Therefore, during the process of monitoring
the environment, the user has enhanced comprehension about his/her environment.

Salomons et al. [44] introduces a generic model for intelligent homes that describe
the current state. the target state and the transition. In the context of monitoring
the current state, a persona model is put forward. A persona is a model of individuals
that share preferences. It stores the preferences in a second layer. The detailed
description, type and frequency of the stored preferences are missing. Moreover, the
approach seems to be based on storing preferences on individual devices which is
contrary to the approach presented in this chapter.

Personal spaces play an important role in group or individual self-definition:
rather than just using them for a specific purpose, users pour their personalities
and lives in the way they transform their environments [38]. “Domotic Effects” is
one such framework that can enable the monitoring of the environment as the user
wishes to perceive it, i.e., in terms of user-defined goals. Several other monitoring
techniques have been proposed in the literature [63, 67], but the “Domotic Effects”
offer several advantages. First, being an ontology based approach offers large scale
adoption, application development, system prototyping and a solid technological in-
frastructure [15]. Second, it offers a unified framework for modeling, controlling and
monitoring the environment. The modeling and controlling aspects were discussed
in Chapter 6 and Chapter 8, respectively. This chapter discusses the monitoring
aspect. Third, the approach is robust (see Section 7.4) and scalable.

77

7 – Evaluation

7.6 Synopsis

This chapter presented a high level approach, based on the concept of Domotic
Effects for modeling and interpreting a complex smart environments. The Domotic
Effects framework, based on the DogEffects ontology, is general and extensible,
and is easy to customize to specific application requirements. In particular, this
chapter focuses on monitoring applications, where high level effects may be described
resorting to Boolean expressions operating on device states.

The chapter presented extensive examples of Simple and Complex Effects over
a sample home environment, and shows experimental results that prove that the
complete state of the environment can be monitored using the Domotic Effects with
a latency under 150 ms.

78

7
.6

–
S
y
n
o
p
sis

Table 7.2. Daily chores scenario performance parameters
Total DEs Complex

Effects
Maximum
Level
(ENN)

Effect Data Ex-
traction Time

Organization
Time

Average Evalua-
tion Time (ms)

209 100 18 22506 182 5
309 200 21 44929 289 7
409 300 37 22107 363 11
459 350 57 30400 482 15
599 490 65 24170 662 24
709 600 122 36596 819 43
809 700 129 28261 887 33
909 800 120 33815 1017 30
1069 960 105 45106 1143 27
1159 1050 232 49721 1280 108
1309 1200 122 70404 1450 52
1609 1500 177 67311 1994 118

7
9

7 – Evaluation

Table 7.3. Maximal Propagation Scenario Statistics
Device Complex Effects Maximum Level (ENN) Average Evaluation Time (ms)

100 38 21
200 124 18
300 117 59
400 178 41
500 270 55
600 100 144
800 265 176
1000 314 148
1200 201 313
1400 272 258

80

Chapter 8

Enforcement

This chapter discusses the control aspect of the DE framework. The control aspect
involves the ability of users to manage and control their environments with the help
of user-defined intentions or goals. This amounts to correctly mapping user goals in
terms of a combination of devices having particular states (Figure 8.1).

For discussion in this chapter, the applicability of the DE framework to Boolean
application domains is considered, i.e., domains in which user goals (effects) can
either be true (active) or false (inactive) depending on the value(s) of the involved
states and sub-states, that may be Boolean, discretely enumerate or real-valued.
This covers most control applications and many monitoring use cases in smart
homes, offices and industrial plants.

Figure 8.1. Enforcement

The chapter is divided into seven sections. The problem of effect enforcement

81

8 – Enforcement

is formally defined in Section 8.1. The general approach adopted for enforcement
is described in Section 8.2, and later Section 8.3 defines its architecture and im-
plementation. Section 8.4 shows results of the experiments carried out on effects
enforcement. Section 8.5 compares our approach to some related works and Sec-
tion 8.6 concludes the chapter and highlights future work.

8.1 Problem Statement

Consider a smart environment with an AmI system managing it. A user can define
several domotic effects (simple and complex) on top of the domotic structure, based
on the effect operators defined for the environment. At any instant, each domotic
effect has a value associated with it. The user has the ability to request R the AMI
system to enforce a set of domotic effects on the environment. “Effect Enforcement”
addresses the problem of finding at least one configuration that satisfies the user’s
request R. The configuration refers to the combination of devices having particular
states and sub-states.

The user request R is defined as a subset of the domotic effects present in the
instance layer: R ⊆ I. In simple terms, the user request R is the subset of DE i

that the user wants to be active (true) at a given instant.
Given R, effect enforcement tries to find a global domotic state g ∈ G where

all the domotic effects DEi ∈ R are true. This is equivalent to computing the
satisfiability of the function

FR(g) :
∏

DEi∈R

DE i

8.2 Approach

In order to enable the user to enforce particular values of domotic effects on the
environment, at least a configuration needs to be found which fulfills the user request
R, as defined in Section 8.1. To solve this problem the chapter proposes to transform
the user’s request into a Boolean satisfiability problem (SAT). In complexity theory,
the satisfiability problem (SAT) is a decision problem, whose instances are Boolean
expressions written using variables and basic Boolean operators, i.e., AND, OR,
NOT.

To transform the user’s request into a SAT problem, each domotic effect defined
in the instance layer is mapped as a Boolean variable. The functionality of each effect
operator defined in the AmI layer is mapped in terms of a Boolean sub-expression
in the SAT problem. The value of the variable corresponding to the Simple Effect
is true (active) if and only if the device is in a particular sub-state(s). Meanwhile,
complex domotic effects can depend upon the values computed by multiple simple

82

8.2 – Approach

or complex domotic effects and therefore the value corresponding to their variables
are dependent on the values of their operands. As a consequence, the Boolean
expressions for a complex domotic effect are constructed over its dependent domotic
effects using the effect operator defined for it. The process is recursive, as the
Boolean expressions for all the operands are constructed and conjuncted.

For example, consider a trivial user request R to enforce the Illumination use case
on the environment. The Illumination use case will be represented as an “Illumina-
tion” CE inside the DogEffects ontology. Table 8.1 illustrates the functional represen-
tation of the use case. A SE is represented as SE(device, sub-state(s)). For instance,
the representation of CeilingLampIllumination SE CeilingLampIllumination =
SE(l2, OnState_lamp2) depicts a lamp l2 having OnState_lamp2 sub-state. A
CE is represented as Operator(DE1, DE2 . . .). For example, the Illumination CE is
represented as OR operator applied over ArtificialIllumination and NaturalIllumi-
nation DEs.

In order to build the Boolean expressions for R, all domotic effects are repre-
sented as Boolean variables. Then, the effect operator (and its type) attached with
the “Illumination” CE is extracted, i.e., Or1 has type OR, which is followed by
the extraction of operands (domotic effects) attached with the operator, i.e, Nat-
ural illumination and Artificial Illumination. After the extraction of operator and
operands, the first Boolean expression becomes Illumination =

OR(NaturalIllumination, ArtificialIllumination). Then, the Boolean expressions
for Natural illumination and Artificial Illumination CEs are constructed iteratively,
until SEs are reached. The Boolean expressions for the “Illumination” CE are shown
in Table 8.1. All the Boolean expressions are then conjuncted and the value of
Boolean variable associated with Illumination CE is set to true.

Table 8.1. Illumination functional form (CEB)
Illumination = Or(ArtificialIllumination, NaturalIllumination)

ArtificialIllumination = Alternate(CeilingLampIllumination, MirrorLampIllumination)
MirrorLampIllumination = And(LeftMirrorLampIllumination, RightMirrorLampIllumination)

RightMirrorLampIllumination = SE(l9, OnState_lamp9)
LeftMirrorLampIllumination = SE(l8, OnState_lamp8)

CeilingLampIllumination = SE(l2, OnState_lamp2)
NaturalIllumination = SE(ShutterBath, UpStateV alue_ShutterBath)

To put it concisely, the user can request R several domotic effects DE i, to be
enforced on the environment. The Boolean expressions for all domotic effects DE i

present in the user request R are constructed and conjuncted. The process is re-
cursive, as the Boolean expressions for all the operands are constructed too. After
getting all the Boolean expressions, the ones corresponding to the user request are
enforced as SAT constraints, i.e., the values of variables corresponding to DE i are
set to true.

Once the Boolean expressions are constructed, conjuncted and the values of the

83

8 – Enforcement

variables corresponding to DEs in R are set, they are fed to a SAT solver to deter-
mine values of other variables (corresponding to other DEs) under which the values
of the DEs in R will hold. Since SEs represent terminal nodes of the expressions,
the values of the variables corresponding to SEs will give us a combination of devices
and their particular states and sub-states fulfilling the user’s request R. In short,
bringing the combination devices into particular states and sub-states would fulfill
R. In case, the user request R is not satisfiable, the enforcement procedure is can-
celed and the user is informed. Additionally, it is likely that several configurations
satisfy R which gives system designers an option to find an optimal configuration
based on some constraints. For example, a configuration that minimizes energy
consumption (Chapter 9).

8.3 Architecture

This section describes a generic, modular and extensible architecture for the im-
plementation of the effect enforcement approach (defined in Section 8.2) inside the
smart environments and highlights the procedure to extend the architecture to de-
fine new effect operators. The architecture consists of a Domotic Effect Enforcement
module and the DogEffects ontology containing all the domotic effects defined for
the environment.

8.3.1 Domotic Effect Enforcement

Given a user’s request R, the Domotic Effect Enforcement module finds a config-
uration to fulfill R. It is responsible for extracting all domotic effects from the
DogEffects ontology, receiving user’s request for enforcing particular values of for
a set of domotic effects, transforming the user request into a SAT problem, and
finding at least one configuration that fulfills the user’s request (or otherwise finding
conflicts).

Figure 8.2 presents the logical architecture. The module comprises querying,
solver, library components and an effect operator store.

The querying component queries the DogEffects ontology for all the domotic
effects and then it organizes all the domotic effects in a hierarchical internal data
structure which is similar to the organization of domotic effects in the DogEffects
ontology. Whenever any addition or editing in the DogEffects ontology occurs, the
querying component reconstructs the data structure.

As defined in Section 8.2, to transform the user’s request into a SAT problem,
the effect operators defined in the AmI layer should be defined in terms of Boolean
sub-expressions. The Effect Operator store contains the Java code for each defined

84

8.3 – Architecture

Figure 8.2. Domotic Effect Enforcement Architecture

effect operator providing methods to create the corresponding sub-expressions in
terms of basic Boolean operators.

The user’s request is handled by the Solver component. The Solver component
transforms the user request into a SAT problem, finds a configuration that satisfies
the user’s request and then it enforces the configuration on the environment. For
each R the steps are detailed below:

• Transformation and Feeding: It comprises transforming the user’s request for
particular values of domotic effects in to a correct set of Boolean equations
and applying constraints over them. Then, these Boolean equations and con-
straints are fed to the SAT solver. Currently, the Sat4j solver [68] is used.

• Solving: Based on the set of Boolean equations, the Sat4j solver determines
(if possible) the values of all the variables inside the Boolean equations. There
may be cases in which the values of domotic effects requested by the user, i.e.,
R, can not be satisfied at all.

• Interpretation: It comprises finding the values of the variables corresponding
to SEs and interpreting them in terms of devices and their states and sub-
states.

The Sat4j library requires that the input is in the Conjunctive Normal Form
and each variable in the SAT problem is represented by an integer positive number
(negative numbers represent complemented variables). Therefore, the querying com-
ponent assigns a unique integer to each domotic effect. The transformation begins
by taking each user requested domotic effect and determining the effect operator
that acts among its children. Once the effect operator type of a domotic effect is

85

8 – Enforcement

public class { NewOperatorName } extends EffectNode {

public NewOperatorName () {

super ();

/*

The passed operator name should be

equal to the effect operator name

defined in the DogEffects ontology .

*/

super . setOperator (" NewOperatorName ");

}

@Override

public void setEquation (GateTranslator gator) {

...

}

}

Figure 8.3. Procedure to define a new effect operator.

determined, the corresponding Java class in the “Effect Operator Store” creates its
sub-expression in terms of basic Boolean operators and appropriate Boolean equa-
tions are constructed for the domotic effect and its children domotic effects. These
Boolean equations are fed to the Sat4j solver to determine a configuration satisfying
them.

8.3.2 Extensibility

The Domotic Effects approach is extensible, and AmI designers have the ability to
define new and different Boolean operators depending on the environment. Appro-
priate implementation of new operators should be included in the Effect Operator
store for constructing Boolean equations. Figure 8.3 shows a class template to im-
plement an effect operator declared in the AmI layer inside the effect operator store.

When a new effect operator is defined in the AmI layer of the “DogEffects”
ontology, the Effect Enforcement module is easily extended as follows:

1. A new class is defined that extends the EffectNode class, which is an abstract
class representing the general properties of Domotic Effects;

2. For the construction of Boolean equations, the mapping of the effect operator
using basic Boolean operators is provided inside the setEquation() method.
The setEquation() method receives a parameter (gator of type GateTransla-
tor) that represents all the Boolean expressions. The “GateTranslator” is a
Sat4j library class which provides functionalities of the SAT’s basic Boolean
operators like Not, And and Or. One can define any kind of effect operator in
the AmI layer as long as it can be defined in terms of basic Boolean operators.

Currently, the effect operator store includes the Complement, And, Or and Alter-
nate operators. The Complement effect operator represents an invert relationship,
and is mapped as a Not Boolean operator in SAT (Algorithm 7).

86

8.3 – Architecture

Algorithm 7 Complement effect operator
nodeNumber = node.getNodeNumber();
child=node.getFirstChild();
literals= new VecInt();
literals.push(child) ;
gator.not(nodeNumber,literals);
return true;

87

8 – Enforcement

Algorithm 8 shows the mapping of the And effect operator in terms of basic
Boolean operators. The Or effect operator algorithm is similar, but it is mapped as
an Or Boolean operator in SAT.

Algorithm 8 And effect operator
nodeNumber = node.getNodeNumber();
children=node.getChildren();
literals= new VecInt();
for all children as child do

literals.push(child) ;
end for

gator.and(nodeNumber,literals);
return true;

The Alternate effect (Algorithm 9) operator represents a function which is true
when only one of its children is active.

Algorithm 9 Alternate effect operator
nodeNumber = node.getNodeNumber();
children=node.getChildren();
literals= new VecInt();
globalNumber → Counter for temporary variables;
globalCounter → list of temporary variables;
literals.clear();
int_List = newList();
int_List.addAll(children) ;
for count:=0 ; count < int_List.size(); count++ do

literals.clear();
for innercount:=0 ; innercount < int_List.size(); innercount++ do

if count =innercount then

literals.push(int_List.get(innercount)) ;
else

literals.push(- int_List.get(innercount)) ;
end if

end for

globalCounter.add(globalNumber++);
gator.and(globalNumber, literals);

end for

literals.clear();
for all globalCounter as each do

literals.push(each) ;
end for

gator.or(nodeNumber,literals);
return true;

8.4 Experimental evaluation

The “Domotic Effect” modeling framework was developed to be integrated with the
Dog2.0 [65] smart home gateway and therefore two modules, i.e., Ontology Loader
and Domotic Effect Enforcement, were built using Eclipse Equinox, which is an

88

8.4 – Experimental evaluation

implementation of the OSGi framework [37]. The OSGi framework brings versatility
and modularity by providing each module as a service called a bundle. Experiments
were conducted to measure different performance parameters of the “Domotic Effect
Enforcement” module. These performance parameters include the time needed to
transform a user’s request R into a SAT problem, and if possible, to find at least a
configuration that satisfies the user’s request.

A complete house environment was simulated. The domotic structure was mod-
eled as an instance of the DogOnt ontology. A new TestDogEffectSolution bundle
was developed to perform the experiments and to measure performance parameters
for each experiment. Six use cases were defined {CEA . . . CEF } (see Section 8.4.1).
In order to define the use cases in the instance layer 190 intermediate domotic
effects (CEs and SEs) were declared. A number of iterations were performed enforc-
ing different user requests R ⊆ I. In the experiments, a total of 63 iterations were
performed, corresponding to each possible R over 6 use cases (omitting the trivial
R = ∅). The experiments were conducted on an Intel Core i5 CPU running at 2.6
GHz with 4GB of RAM.

8.4.1 Use cases

In order to carry out the experiments some use cases defined over a home. Figure 7.8
shows the structure of the house: The house has a bed room, a living room, a lobby,
a bath room, a store and a kitchen, and is equipped with with several automatic
devices/appliances like lamps, oven, television, door actuators, window actuators,
shutter actuators, gas heaters etc. Based on simple domotic effects and using the
set of Boolean operators encoded in the AmI layer, several complex domotic effects
(CEA through CEF) have been defined. The use cases are provided in Chapter 7
(Section 7.4.1).

8.4.2 Results and Discussion

In the experiments, a total of 63 iterations were performed, corresponding to each
possible R over the 6 use cases. In the first experiment, two performance parameters
were measured:

• the time taken by the “Domotic Effect Enforcement” module to construct the
set of Boolean equations and to feed them to the Sat4j solver (construction
time, CT);

• the time to find at least one configuration that satisfies the set of Boolean
equations (solution time, ST).

89

8 – Enforcement

Both time measurements were taken at the milliseconds level, and Figure 8.4 shows
the performance measures for all the 63 iterations. Each cell contains a combination
expressed as CT + ST . The results are represented as a Karnaugh map for easier
reading and identification of the simultaneously enforced domotic effects.

FR(g) :
∏

DEi∈R DE i

CT+ST
0

1+1
1

16+1
2

63+1
3

1+1
4

15+1
5

16+1
6

17+1
7

16+1
8

15+1
9

16+1
10

16+1
11

8+12
12

1+1
13

15+1
14

31+1
15

1+1
16

16+1
17

16+15
18

31+1
19

5+6
20

16+1
21

1+16
22

17+1
23

1+1
24

16+1
25

1+1
26

15+1
27

7+13
28

15+1
29

16+1
30

62+1
31

16+1
32

16+1
33

16+1
34

31+1
35

3+1
36

16+1
37

1+1
38

94+1
39

15+1
40

16+1
41

45+3
42

32+1
43

18+3
44

32+1
45

15+1
46

31+16
47

1+1
48

15+1
49

22+2
50

31+1
51

12+2
52

15+1
53

15+1
54

15+1
55

1+1
56

15+1
57

16+1
58

15+1
59

16+1
60

16+1
61

15+1
62

1+1
63CEA

CEB

CEC

CED

CEE

CEE

CEF CEF

CEA = Secure Home, CEB = BathRoom Illumination, CEC = Home Illumination, CED = Afternoon Lunch, CEE = Air
Passage, CEF = Morning WakeUp

Figure 8.4. CPU time measurements (in ms, CT+ST)

It can be seen that the “Domotic Effect Enforcement” module is quite responsive
and in all cases the time for construction of Boolean equations and determining
configuration is less than 100 ms. The module was developed to be used in real
world applications and therefore completing the user’s requests in few milliseconds
shows that the proposed approach is promising. On the other hand, finding at least a
configuration to satisfy user’s request depends upon the number of variables involved

90

8.4 – Experimental evaluation

in the Boolean expression. Though the measured time is in few milliseconds for this
experiment, the time may vary according to the number of variables involved in the
Boolean expression (more discussion in Section 8.4.3).

The second experiment is highlighted in Figure 8.5. For each iteration, Figure 8.5
shows the total number of configurations that can satisfy a set of Boolean equations
(total configurations, TC) and the number of devices involved in the construction
of Boolean equations (Dev). Each cell contains a combination like TC{Dev}. The
clusters of unsolvable problems (TC = 0) correspond to incompatible user requests,
such as air flow and security.

8.4.3 Extensibility and Scalability

In order to become a potential candidate for a wider adoption, an approach should
at least have two characteristics, i.e., extensibility and scalability. The “Domotic
Effects” framework should also demonstrate such characteristics. In the framework
the question of extensibility can be raised at two levels. First, whether the model-
ing (DogEffects ontology) can be extended to other domains and second, whether
the approach proposed in this chapter, to provide control over Boolean application
domain, can be extended for more operators.

The extensibility of the framework depends upon the correct semantic modeling
of the framework and the applicability of the framework to several domains. The
semantic modeling of the framework allows the framework to be expendable across
several application domains, i.e., Boolean domain, Energy Saving Domain (Chap-
ter 9). In fact, this chapter discusses the specialized case of the “Domotic Effects”
modeling framework in the Boolean application domain. The framework is based on
an Ontology-Based approach and therefore it has an advantage of large-scale adop-
tion, application development, system prototyping, solid technological infrastructure
as acknowledged in [15].

In the Boolean application domain, the extensibility of the proposed approach
is achieved by providing the AmI designers control over defining and implementing
their own Boolean operators (see Section 8.3). This chapter defines the fundamental
Boolean operators and their implementations, but the designers are free to define
any operator that can be translated into a Boolean expression.

Meanwhile, the scalability of the proposed approach depends upon the robustness
of the Sat4j solver. Sat4j is a mature, open-source library providing access to SAT-
related technologies to Java programmers. While the core SAT engine may not be
competitive against commercial SAT solvers, the results of the library on pseudo-
boolean problems are reasonable [68]. From the experiments it can be observed that
the solver can handle hundreds of domotic effects in few milliseconds. In fact, the
number of domotic effects needed for homes and small buildings will be in hundreds
and the Sat4j solver will be robust enough to solve Boolean expressions in near

91

8 – Enforcement

FR(g) :
∏

DEi∈R DE i

TC{Dev}

0

32{17}

1

3{15}

2

0{23}

3

3{8}

4

32{18}

5

0{18}

6

0{24}

7

> 100K{24}

8

0{28}

9

216{25}

10

0{28}

11

> 100K{27}

12

0{29}

13

0{27}

14

0{29}

15

16{4}

16

32{17}

17

48{19}

18

0{23}

19

48{12}

20

32{18}

21

0{22}

22

0{24}

23

> 100K{24}

24

0{28}

25

216{25}

26

0{28}

27

> 100K{27}

28

0{29}

29

0{27}

30

0{29}

31

192{20}

32

0{28}

33

0{21}

34

0{28}

35

48{24}

36

0{29}

37

0{24}

38

0{29}

39

2304{28}

40

0{32}

41

0{29}

42

0{32}

43

576{31}

44

0{33}

45

0{31}

46

0{33}

47

768{23}

48

0{28}

49

0{24}

50

0{28}

51

192{27}

52

0{29}

53

0{27}

54

0{29}

55

2304{28}

56

0{32}

57

0{29}

58

0{32}

59

576{31}

60

0{33}

61

0{31}

62

0{33}

63CEA

CEB

CEC

CED

CEE

CEE

CEF CEF

CEA = Secure Home, CEB = BathRoom Illumination, CEC = Home Illumination, CED = Afternoon Lunch, CEE = Air

Passage, CEF = Morning WakeUp

Figure 8.5. Number of solutions T C and involved devices Dev

92

8.5 – Related Works

real-time. However, for large industries the “Domotic Effects” modeling framework
may require commercial SAT solvers (since domotic effects may be in thousands) or
other approaches such as problem partitioning. This aspect needs to be investigated
further.

8.5 Related Works

Garcia-Herranz et al. [39] proposes an application-independent indirect control pro-
gramming system to program complex behaviors with the simplicity required to
allow novice users to program their smart environments. The objective is to allow
users to create powerful and personal behavior without expert assistance. They
developed a rule-based language for a modular agent system [40]. The rules allow
expressing behaviors of type “When triggers, if conditions, then action”. The rule
language lacks the flexibility of providing different courses of action to achieve a so-
lution. Moreover, it does not provide abstraction to allow AmI designers to develop
techniques independent of devices.

Katasonov [42] motivates to build Digital fluency in smart environments by en-
abling the non programmers to design, create and modify their smart environments.
The chapter proposes a higher level of abstraction in application design, on-the-fly
development, flexibility with respect to adding new devices and software compo-
nents. To build higher level of abstraction, an ontology that contains the hierarchy
of tasks at the higher level is needed. The chapter mentions defining tasks and their
corresponding subtasks, without providing the organization of tasks in ontologies
and the mechanism to achieve tasks. Our proposed solution in this chapter not
only provides details of organizing abstract goals but also provides mechanism to
achieving those goals.

D-HTN [56] is a planning system for AmI applications, based on the hierarchical
task network (HTN) approach, that is able to find courses of actions to address given
goals. It combines concepts of both centralized planning and distributed planning
in agent theory but the language (task network [69]) that is used to store goals and
their courses of actions is static. Our proposed solution also provides a hierarchical
structure to store goals and their courses of actions but allows AmI designers to
define their own language of translation.

In [41] an Artefact framework is proposed which allows end users to deploy ubi-
comp systems easily in a Do-it-yourself fashion. Secondly, it allows developers to
write applications and to build augmented artefacts in a generic manner. The Arte-
fact framework provides a layered architecture where basic artefact functionalities
are combined in a core component. Additional augmented features can be added
as plugins into the core. Each augmented feature is called a profile. Each profile
defines a specific functionality and implements the underlying logic of the functions,

93

8 – Enforcement

e.g., room temperature, lamp brightness. Though the profiles provide abstraction
to hide the heterogeneity of the underlying devices, their functionality corresponds
to the functionalities of devices and lacks the focus of providing a more generic goal
that the user might wish to achieve.

Rashidi et al. [43] proposes a software architecture which incorporates learning
techniques to discover patterns in resident’s daily activities. The activity pattern
are observed by monitoring the changes of states in different devices around the
house. After discovering an activity pattern, it stores the activity pattern and its
related temporal knowledge in a Hierarchical activity model (HAM). HAM captures
the temporal relationships between events in an activity by explicitly representing
sequence orders in a tree structure containing Markov chains at the bottom level.
The activities are stored based on individual devices in the house which does not al-
low observers to see the bigger picture at higher level of user goal. Though currently
our solution does not employ learning patterns to automatically extract repetitive
tasks but it can easily be employed in our proposed organization of Domotic Effects.
Moreover, observing patterns at an abstract level can give a more clear picture of
user’s intentions instead of focusing on individual device or chain of devices.

Cheng et al. [45] proposes a smart homes reasoning system called ASBR system.
The system learns user’s preferences by adaptive history scenarios and put forwards
a way to rebuild reasoned knowledge in other smart homes. They proposed that
contextual information can be extracted and reasoned as a set of scenarios. In
addition, the system can derive personalized habits and store them in OWL files.
They do not provide an organization mechanism and the concept of scenario is
different from our proposed effect. Effects are different from scenarios as it is not
a storage of historical events or repetitive tasks. Though repetitive tasks can be
mapped onto effects, our approach provides complete control to the residents to
define their own abstract level control which are ultimately resolvable to a set of
devices in certain states. The effect based approach is designed to be extensible to
smart environments in general.

Dey et al. [46] proposes a software infrastructure solution to detect the current
states of the environment (called Context) and take action based on it. The infras-
tructure is focused on developing context aware applications. Though the concept of
Domotic Effect can be used to monitor the current state of the environment (Effect
Evaluation), the focus of this chapter in particular is to enforce generic goals on the
environment. Our modeling allows to handle both tasks in a more simple manner.
Moreover, currently the enforcement implementation focuses on Boolean application
domain states, but the DogEffects ontology can be used to monitor devices with con-
tinuous states, which was described as the limitation of the infrastructure in [46].
The Effect Enforcement implementation is designed with the extensibility in mind,
which is missing in [46]. Generally, context represents the knowledge of external
conditions and their complexities in the environment. This knowledge is used in

94

8.5 – Related Works

some way to make particular action(s) choice. The question of how the action(s)
are actually performed is not part of the context but rather is a characteristic of the
system that handles the environment. Our current chapter focuses on this internal
characteristic of the system rather than collecting conditions that triggered those
actions.

Reference [57] proposes a middleware architecture for smart home systems. The
architecture has pervasive, composition and user layers. The composition layer
contains a CSP based planner which computes a plan, that is, a sequence of actions
that need to be applied in order to satisfy a user’s goal. The goals are pre-defined
in a declarative manner. Our approach does employ declarative manner to describe
goals called domotic effects but it is more flexible as it allows the AmI designers to
define operators to manage combinations according to environments and the user’s
can define their own domotic effects based on those operator. Moreover, the planner
in [57] takes time in seconds to construct a problem and determine results, whereas
the effect enforcement module takes time in milliseconds for both construction of
set of Boolean equations and finding a solution.

In [49, 50] a goal based interaction has been proposed, and extended in [51],
that takes a user’s goal and finds a path achieving the goal. The use of proposi-
tional calculus is advocate, however, unlike our chapter, [51] lacks implementation
details, i.e., a proper mapping from user’s goal to propositional calculus and its
interpretation. To support goal based interaction [49–51] advocate that each device
in the environment implements an event processing pipelines consisting of user in-
terface, control application and actuators. Moreover, they make a huge assumption
that each device shares data inside event processing pipelines across all the devices
present in the environment, creating a SODAPOP infrastructure. In real world, an
environment comprises devices from several different and competing vendors which
may not be willing to expose to other vendors internally stored information of their
devices, or may not have enough computing capabilities. Domotic Effects are a
more centralized approach, where all relevant information about devices is available
in the automation gateway and no requirements are imposed onto the devices, thus
providing easy and immediate interoperability with existing devices from different
vendors.

Domotic Effects provides the end user, the ability to personalize a smart envi-
ronment, as well as allows AMI application designers to design, develop and manage
based on a higher level of abstraction. While [43, 45] proposes a complete indepen-
dent control solution based on the learning pattern of a user’s activity, the [39,42,56]
advocates enabling non programmers to create and manage their smart environments
according to their wishes. Providing a complete independent control extracted from
a user’s activity might not be a very good idea as it does not allow people to pro-
gram their personal spaces. It also raises a new set of problems like privacy and
security issues. Instead of focusing on user’s goal or intention, it focuses on a set of

95

8 – Enforcement

devices and their activity. It can said be that learning algorithm discover pattern of
device activity instead of user’s intention and activity. The latter, on the other hand
provide end user programming environment but underlying structure of organizing
goals and their different courses of actions is missing. Though [41, 49, 56] provide
goal based interaction mechanism, they lacks the flexibility, separate views of de-
velopment for system designers and users and applicability to different application
domains.

8.6 Synopsis

This chapter presented a high level approach, based on the concept of Domotic Ef-
fects for modeling and satisfying user requests in complex smart environments. The
Domotic Effects framework, based on the DogEffects ontology, is general and exten-
sible, and is easy to customize to specific application requirements. In particular,
this chapter focuses on control and monitoring applications, where high level effects
may be described resorting to Boolean expressions operating on device states.

The chapter presented extensive examples of Simple and Complex Effects over
a sample home environment, and shows experimental results that prove that high-
level user requests are satisfied in less than 100 ms, thanks to the mapping of the
request into a SAT problem that may be efficiently solved.

Future work will include extending the approach in several directions: allowing
real-time evaluation and monitoring of Domotic Effects (in the Boolean or Real
domain).

96

Chapter 9

Optimization

In the last decade, intelligence emerged as the basic component to design modern
home and building automation systems. The term “intelligence” implies a provision
of automated control over the buildings to solve interoperability issues among devices
from different vendors, to sense the environment, to provide context-aware services to
the residents and to manage safety and security issues. Regardless of how ambitious
and diverse the notions might seem, the research community has demonstrated
the ability to achieve such goals using pilot projects [65, 70–72]. In the past few
years, energy efficiency has become a key requirement for designing modern buildings
and industries. The approaches in this regard not only rely on improving building
structures and adopting more efficient appliances but also aim at increasing user
awareness towards their energy usage.

Energy efficiency has become one of the major concerns in today’s life, impacting
almost all human activities, from industrial and commercial, to leisure and vacation.
According to the statistics from the US Department of Energy and the European
Union Energy Commission, global energy consumption is likely to increase in the
next decade, with residential and commercial buildings raising their aggregate figure
to 20-40% of the total yearly consumption. If only electricity is considered, the
consumption share allocated to buildings is suppose to increase up to 73%, evenly
distributed between residential and commercial buildings [73].

To cope with increasing energy needs the smart grid is a promising infrastruc-
ture [74] which focuses on demand side management. It provides customers an
ability to make informed decisions about their energy consumption by adjusting
timing and quantity of their electrical usage [16, 17]. This flexibility is enabled by
pricing policies for electrical usage over time [18, 19] and/or by dynamic demand
scheduling algorithms to optimize energy services in buildings [20, 75]. The smart
grid infrastructure requires a two-way communication through which appliances can
be monitored and controlled by a control center installed on the premises of the
energy provider which may lead to privacy and security issues [76].

97

9 – Optimization

A complementary approach to energy management is the local optimization of
energy consumption using a locally installed Energy Management System (EMS)
on the building premises. Most EMS focus on making the consumer more aware
of their electrical power usage and/or providing methods to share this information
with energy providers or third party application developers [23,77,78]. The research
focuses on different graphical illustrations of data related to consumed energy to
ease consumer comprehension [21, 22] and on different tools and methodologies to
share this data over the web (Chapter 12). All these approaches need active user
participation in order to implement energy management strategies.

This chapter proposes a more automated approach, where the EMS may auto-
matically act on appliances and control their power consumption, while satisfying
user requirements about the current environment state. The presented approach
is based on two pillars: the availability of an explicit model for the smart home
(such as provided by intelligent home gateways), and the expression of user needs
in a more abstract way. The environment should be controlled by “user intelligi-
ble goals” that represent the state of the environment perceived by the user, on an
abstract level. For example, the user may wish to illuminate a room and this may
be done by acting on lamps, curtains and shutters in different ways. Therefore, the
user achieves the effect of illuminating the room on an abstract level.

The chapter describes a novel approach to optimize the energy usage in a build-
ing while achieving user intelligible goals. The main contributions of the chapter are:
adopting an explicit formal modeling for user goals (based on the Domotic Effects
modeling framework); proposing an architecture that is compatible with existing
ambient intelligence solutions; describing an algorithm based on Boolean satisfiabil-
ity (SAT) for computing the optimal solution and integrating the SAT algorithm
with a suitable heuristic in order to tackle combinatorial explosion.

The chapter is divided into seven sections. Section 9.1 describes the theoretical
framework of the chapter. The problem tackled in the chapter is then formalized in
Section 9.2, while the approach adopted for optimization is described in Section 9.3.
Section 9.4 shows detailed results of a preliminary experiment. A literature overview
is provided in Section 9.5. Finally, Section 9.6 concludes the chapter.

98

9.1 – Formalism

9.1 Formalism

9.1.1 Representing Power with Domotic Effects

Each device, in each operating state, consumes some amount of electrical power1,
thas is represented as a real-valued Simple Effect
P (s), P : S(d) → <+.

The instantaneous power consumed by the whole environment is therefore rep-
resented as a Complex Effect
P : G → <+ aggregating all individual power measurements:

P(g) =
∑

d∈D

P (s(d)) (9.1)

9.1.2 Domotic Effect Enforcement

As discussed in Chapter 8, for Boolean valued domotic effects the user can request
the system to enforce particular domotic effects. Satisfying user requests amounts
to solving the Boolean function FR(g) defined as:

FR(g) =
∏

DE∈R

DE (9.2)

The problem was addressed by transforming the user request R into a Boolean
satisfiability problem (SAT).

9.2 Problem Statement

Given the definitions in the previous sections, the goal of in this chapter is to compute
the minimum value of P(g), while satisfying the user request R. This correspond to
a constrained optimization of P(g) subject to the Boolean constraint FR(g). In this
chapter, the basic SAT-based approach for effect enforcement has been extended to
find a solution with minimum power consumption. Since the set of possible solutions
may be extremely large, a suitable heuristic is proposed to get a satisfactory low-
power solution in acceptable CPU times.

Energy management techniques should in fact respond in near real-time (NRT),
by acting on a time scale comparable with user requests and device state change
frequencies. Normally, the computational delay should be less than a few seconds.

1in this chapter active instantaneous power is considered, although the modeling approach can
be trivially extended to other electrical properties

99

9 – Optimization

Figure 9.1. Architecture of proposed approach

9.3 Proposed Approach

To minimize power P(g) subject to user-requested domotic effects FR(g), a Domotic
Effect Optimizer module is developed (Figure 9.1). The Domotic Effect Optimizer
receives a user request and transforms it into a SAT problem, that is solved to find
valid configuration(s). The number of configurations may be zero or more. If zero,
the user request is not satisfiable. Otherwise, a configuration with minimum power
consumption needs to be determined.

An exhaustive enumeration approach can be adopted, in which each valid con-
figuration is checked for its total power consumption value P(g) and the one with
minimum value is enforced on the environment. However, the enumerated approach
becomes computationally expensive and practically infeasible if the number of con-
figurations is too large.

To guarantee near real-time (NRT) execution, the number of configurations re-
turned by the SAT solver is compared with an experimentally-tuned configurable
threshold Tc that roughly corresponds to the number of configurations that may be
enumerated in one second. If the number of configurations is lower than Tc, then
exhaustive enumeration is fast enough to achieve NRT responsiveness. Otherwise,
a heuristic is applied to guarantee results in NRT, even if the absolute optimum is

100

9.3 – Proposed Approach

no longer guaranteed.
The complete approach is highlighted in Figure 9.1. At startup, the Domotic

Effect Optimizer queries the DogEffects and DogPower ontologies to get all the
domotic effects and their associated (device and power) information. The Domotic
Effect Optimizer transforms the user request for particular values of domotic effects
in to a correct set of Boolean equations and constraints, constructing a SAT problem.
Then it feeds the SAT problem to a SAT solver. For our current implementation,
the Sat4j [68] solver is used. Based on the set of Boolean equations, the Sat4j solver
determines (if possible) the total number of configurations that satisfy the set of
Boolean equations.

9.3.1 Heuristic

A novel power minimizing heuristic is proposed to determine in near real-time a
configuration that consumes minimal electrical power and satisfies the user’s request.
Since the heuristic is called only when the solution space is large (> Tc), this degree
of freedom is exploited by trying to switch off appliances that have the highest
electrical power consumption.

Forcing a device to be switched off reduces the size of the solution space, but it
might render the SAT problem infeasible. Therefore a greedy approach was adopted
which tries to force all the involved devices off, one by one, starting from the highest-
consuming SE. Those SE that render the problem infeasible are kept free in the SAT
problem. The others are forced off. There is no guarantee that the configuration
received after applying the heuristic has the minimum power consumption. There
might be cases in which the combination of small power consuming devices in total
consumes more than the device with high power consumption, but such conditions
are rare and the experiments (Section 9.4) prove the configuration with minimum
power value is usually achieved. Algorithm 10 shows the overall steps taken to find
the optimized configuration, and Algorithm 11 details the greedy procedure used to
simplify the SAT problem.

Algorithm 10 Overall approach
SAT = SAT problem derived from FR(g)
if (solvable(SAT)) then

if (num_solutions(SAT)> Tc) then

SAT = Heuristic Algorithm (SAT)
end if

device states = solve (SAT)
end if

101

9 – Optimization

Algorithm 11 Heuristic Algorithm (SAT)
sorted_SE = sort(all_SE, decreasing_power)
for all (SE in sorted_SE) do

SAT’ = SAT ∩ (SE=false)
if (solvable(SAT’)) then

SAT = SAT’
end if

end for

return SAT

102

9.4 – Experimental evaluation

9.4 Experimental evaluation

To prove the validity of the proposed approach and measure the performance of
the proposed heuristic, a set of experiments were carried out. The “Domotic Ef-
fect” modeling framework was developed and integrated with Dog2.1 [65] as a new
Domotic Effect Optimizer bundle running in the Dog OSGi framework.

A complete house environment was simulated, whose domotic structure was mod-
eled as an instance of DogOnt ontology. A new test bundle was developed to test
the approach and the proposed heuristic. The house environment contains 1500
user-defined Domotic Effects. These DE correspond to generic goals like securing or
illuminating the house.

The experiments have been run on a standard personal computer with a quad-
core Intel i5 processor and 4GB of RAM.

9.4.1 Use Cases

In the experiments, all possible combinations of six use cases were enforced on the
environment one after another. These use cases I were Secure Home, Bath Room
Illumination, Home Illumination, Afternoon Lunch, Isolated Kitchen and Morning
Wakeup scenarios. The “Secure Home” use case secures all the exit points of the
house, i.e., all exit doors and windows. This use case comprises many DEs providing
the ability to secure different rooms of the house. This can be used in case of emer-
gency, theft, robbery or fire etc. The “Bath Room Illumination” combines small
use cases that represent alternative ways to illuminate the bathroom. The “Home
Illumination” requires that all the rooms of the house are illuminated. Illumination
can be either natural or artificial. The “Afternoon Lunch” deals with the daily rou-
tine of cooking lunch inside the kitchen. The “Isolated Kitchen” use case represents
isolating the kitchen from the rest of the house during cooking hours; this scenario
does not consider the energy spent for cooking, since that action is not automated.
The “Morning WakeUp” use case maps a typical scenario when a resident wants
to perform a sequence of activities after waking up in morning, like illuminating
the bedroom, the kitchen and the bathroom, switching off the gas heater inside the
bedroom, switching on the kitchen television and the bathroom radio.

Since |I| = 6, there were 26 = 64 possible user requests, or 63 if the trivial R = ∅
is omitted, where no domotic effect is enforced.

Table 9.1 and Table 9.2 show the total number of configurations and the time
taken by the exhaustive enumeration approach to find the total number of config-
urations, compute their power consumption and determine the configuration with
minimum power consumption. The first 6 columns report which use cases are en-
forced (1) or not (0) by the user. The time is calculated in milliseconds. When the
number of configurations were very large, the enumeration was stopped at 100,000.

103

9 – Optimization

For the application of the heuristic optimization, the problems that require more
that one second to be enumerated were selected. From the analysis of the computa-
tion times in Table 9.1 and Table 9.2, it is evident that these cases can be selected
by choosing a threshold value Tc equal to 150.

Table 9.1. Enumeration approach statistics (a)
Secure
Home

Bath
Room
Illumi-
nation

Home
Illumi-
nation

Afternoon
Lunch

Isolated
Kitchen

Morning
Wake
Up

No. Of
Configura-
tions

Time (ms)

0 0 0 0 0 1 32 220
0 0 0 0 1 0 3 16
0 0 0 0 1 1 32 56
0 0 0 1 0 0 3 18
0 0 0 1 0 1 32 65
0 0 0 1 1 0 3 13
0 0 0 1 1 1 32 73
0 0 1 0 0 0 >100000 unknown
0 0 1 0 0 1 0 10
0 0 1 0 1 0 >100000 unknown
0 0 1 0 1 1 0 14
0 0 1 1 0 0 >100000 unknown
0 0 1 1 0 1 0 15
0 0 1 1 1 0 >100000 unknown
0 0 1 1 1 1 0 13
0 1 0 0 0 0 16 94
0 1 0 0 0 1 32 111
0 1 0 0 1 0 48 65
0 1 0 0 1 1 32 67
0 1 0 1 0 0 48 74
0 1 0 1 0 1 32 86
0 1 0 1 1 0 48 84
0 1 0 1 1 1 32 58
0 1 1 0 0 0 >100000 unknown
0 1 1 0 0 1 0 11
0 1 1 0 1 0 >100000 unknown
0 1 1 0 1 1 0 11
0 1 1 1 0 0 >100000 unknown
0 1 1 1 0 1 0 11
0 1 1 1 1 0 >100000 unknown
0 1 1 1 1 1 0 9

From Table 9.1 and Table 9.2, three types of cases are observed. They are:

104

9.4 – Experimental evaluation

Table 9.2. Enumeration approach statistics (b)

Secure
Home

Bath
Room
Illumi-
nation

Home
Illumi-
nation

Afternoon
Lunch

Isolated
Kitchen

Morning
Wake
Up

No. Of
Configura-
tions

Time (ms)

1 0 0 0 0 0 192 534
1 0 0 0 0 1 0 12
1 0 0 0 1 0 48 97
1 0 0 0 1 1 0 16
1 0 0 1 0 0 48 95
1 0 0 1 0 1 0 19
1 0 0 1 1 0 48 113
1 0 0 1 1 1 0 14
1 0 1 0 0 0 2304 5100
1 0 1 0 0 1 0 18
1 0 1 0 1 0 576 1285
1 0 1 0 1 1 0 16
1 0 1 1 0 0 576 1424
1 0 1 1 0 1 0 15
1 0 1 1 1 0 576 1392
1 0 1 1 1 1 0 12
1 1 0 0 0 0 768 1421
1 1 0 0 0 1 0 13
1 1 0 0 1 0 192 394
1 1 0 0 1 1 0 13
1 1 0 1 0 0 192 416
1 1 0 1 0 1 0 50
1 1 0 1 1 0 192 417
1 1 0 1 1 1 0 13
1 1 1 0 0 0 2304 4650
1 1 1 0 0 1 0 39
1 1 1 0 1 0 576 1215
1 1 1 0 1 1 0 30
1 1 1 1 0 0 576 1195
1 1 1 1 0 1 0 9
1 1 1 1 1 0 576 1387
1 1 1 1 1 1 0 13

1. Zero Configurations: It refers to the case when the Sat4j solver cannot find
a configuration satisfying the user’s request, which means that the current
combination of use cases can not be enforced together.

105

9 – Optimization

2. Below Threshold: It refers to the cases when the total number of con-
figurations satisfying the user’s request are less than Tc. In such cases, the
enumeration approach is sufficient to determine in NRT a configuration with
minimum power consumption and enforce it.

3. Above Threshold: It refers to the case when the total number of configura-
tions satisfying the user’s request exceeds the configuration threshold Tc. For
such cases, the time to determine a configuration with minimum power con-
sumption exceeds the NRT requirements, or is marked as unknown. Unknown
refers to cases in which the number of configurations exceed 100,000. The
enumeration approach is practically infeasible in such cases and the proposed
heuristic must be applied.

9.4.2 Results

To demonstrate the applicability and results of the proposed heuristic theAbove
Threshold cases were focused, only, since the exhaustive enumeration approach is
sufficient for the Zero Configuration and Below Threshold cases, that have been
dropped from the subsequent tables.

Table 9.3 compares the time taken by the exhaustive enumeration approach
against the time taken by the heuristic described in Section 9.3.1 to determine
a configuration with minimal power usage. The Enumeration Solution Time col-
umn represents the time (in milliseconds) taken by the enumeration approach. The
Heuristic Solution Time column represents the time (in milliseconds) taken by the
heuristic. The Result column reports the comparison, i.e., Solved, Good, or Respon-
sive. The case is “Solved” when the heuristic is able to find a configuration with
minimal power consumption in NRT while the enumeration approach is infeasible.
The “Good” cases mean that the heuristic solution is faster than enumeration, while
the “Responsive” label means that the heuristic solution is slower but still well inside
NRT.

Table 9.4 shows the comparison of the computed power consumption values be-
tween the enumeration and the heuristic approaches. The Enumeration Power Value
column shows the minimum electrical power (Watt), when it can be exhaustively
computed. The Enumeration Est. Power Value column shows the estimated mini-
mum electrical power (Watt) found after 100,000 iterations; this value is useful only
as a comparison, since the involved CPU time is unrealistic. The column Heuris-
tic Power Value shows the power value (Watt) of the configuration found by the
heuristic. The Result column shows our observations, i.e., Better, Poor, or Equal.
In the “Better” cases the heuristic was able to find a configuration that consumes
less than the configuration found by the enumeration approach. The “Equal” label
shows cases in which the heuristic was able to find the configuration that consumes

106

9.4 – Experimental evaluation

Table 9.3. Time comparison between enumeration & heuristic approaches

Secure
Home

Bath
Room
Illumi-
nation

Home
Illumi-
nation

Afternoon
Lunch

Isolated
Kitchen

Morning
Wake
Up

No. Of
Solution

Enumeration
Solution

Time (ms)

Heuristic
Solution

Time

Result

0 0 1 0 0 0
>100000 unknown 556

Solved

0 0 1 0 1 0
>100000 unknown 743

Solved

0 0 1 1 0 0
>100000 unknown 689

Solved

0 0 1 1 1 0
>100000 unknown 1123

Solved

0 1 1 0 0 0
>100000 unknown 829

Solved

0 1 1 0 1 0
>100000 unknown 463

Solved

0 1 1 1 0 0
>100000 unknown 760

Solved

0 1 1 1 1 0
>100000 unknown 1172

Solved

1 0 0 0 0 0
192 534 506

Good

1 0 1 0 0 0
2304 5100 708

Good

1 0 1 0 1 0
576 1285 662

Good

1 0 1 1 0 0
576 1424 1299

Good

1 0 1 1 1 0
576 1392 907

Good

1 1 0 0 0 0
768 1421 443

Good

1 1 0 0 1 0
192 394 972

Responsive

1 1 0 1 0 0
192 416 578

Responsive

1 1 0 1 1 0
192 417 1252

Responsive

1 1 1 0 0 0
2304 4650 2358

Good

1 1 1 0 1 0
576 1215 1296

Responsive

1 1 1 1 0 0
576 1195 1018

Good

1 1 1 1 1 0
576 1387 1371

Good

minimum electrical power in a shorter time than the enumeration approach. Only
two cases are marked with “Poor”, where the heuristic was not able to find the
minimum power, but this happened for infeasible cases, only, where no practical
alternative approach is available.

The size of the search space seems also to influence the effectiveness of the

107

9 – Optimization

heuristic procedure: for example, the first row in Table 9.4 puts very few constraints
over device states, and the heuristic is usable to find a good solution, while the second
row adds some constraints (i.e., Isolated Kitchen), and the narrower search space
allows to find a better solution. The same applies to rows 5 and 6.

Table 9.4. Power value comparison between enumeration & heuristic approaches

Secure
Home

Bath
Room
Illumi-
nation

Home
Illumi-
nation

Afternoon
Lunch

Isolated
Kitchen

Morning
Wake
Up

No. Of
Solution

Enumeration
Power
Value

Enumeration
Est. Power

Value

Heuristic
Power
Value

Result

0 0 1 0 0 0
>100000 N/A 4047.02 5411.29

Poor

0 0 1 0 1 0
>100000 N/A 3355.93 2763.87

Better

0 0 1 1 0 0
>100000 N/A 4728.43 4136.37

Better

0 0 1 1 1 0
>100000 N/A 4728.43 4136.37

Better

0 1 1 0 0 0
>100000 N/A 3408.39 5411.29

Poor

0 1 1 0 1 0
>100000 N/A 2961.98 2763.87

Better

0 1 1 1 0 0
>100000 N/A 4334.48 4136.37

Better

0 1 1 1 1 0
>100000 N/A 4334.48 4136.37

Better

1 0 0 0 0 0
192 0 N/A 0

Equal

1 0 1 0 0 0
2304 2583.16 N/A 2583.16

Equal

1 0 1 0 1 0
576 2763.87 N/A 2763.87

Equal

1 0 1 1 0 0
576 4136.37 N/A 4136.37

Equal

1 0 1 1 1 0
576 4136.37 N/A 4136.37

Equal

1 1 0 0 0 0
768 175.88 N/A 175.88

Equal

1 1 0 0 1 0
192 1146.36 N/A 1146.36

Equal

1 1 0 1 0 0
192 2518.86 N/A 2518.86

Equal

1 1 0 1 1 0
192 2518.86 N/A 2518.86

Equal

1 1 1 0 0 0
2304 2583.16 N/A 2583.16

Equal

1 1 1 0 1 0
576 2763.87 N/A 2763.87

Equal

1 1 1 1 0 0
576 4136.37 N/A 4136.37

Equal

1 1 1 1 1 0
576 4136.37 N/A 4136.37

Equal

108

9.5 – Related Works

9.4.3 Discussion

In our experiments, a total of 63 iterations were performed, corresponding to each
possible R defined over an environment with over 1500 declared DEs. Two perfor-
mance comparisons were measured between the proposed heuristic and the enumer-
ation approach.

• the comparison of time taken by the approaches to compute the best solution
to the user’s request (Table 9.3).

• the consumed electrical power by the enforced settings of domotic effects (Ta-
ble 9.4).

From Table 9.3, it can be seen that our proposed heuristic was able to solve all
cases in NRT, even where the total number of configurations made the enumeration
approach infeasible. Most cases took around 1 second to be solved by the heuristic.
By observing the results, it can be stated that the proposed approach is feasible for
integration with intelligent building systems.

Table 9.4 compares the power values of the configuration obtained using the
enumeration and the heuristic approach. In cases where the total number of con-
figurations were less than 100,000 it can be seen that the proposed heuristic always
finds the configuration with the absolute minimum electrical power value. On the
other hand, the cases in which the number of configurations exceeds 100,000, the
heuristic was able to quickly solve all of them, and in most of the cases it was
able to find a configuration that consumed less electrical power, compared to an
(inapplicable) enumeration approach. Hence the experiments prove the feasibility
of the complete approach as well as highlighting the robustness of the proposed
optimization heuristic.

9.5 Related Works

Hubert et al. [79] outlined that in order to realize the potential of the smart grid,
optimization of energy usage is required at different consumer levels, i.e., residential,
commercial, industrial. In the domain of EMS, the literature on optimizing the
electrical power usage while achieving user intelligible goals (in real time) is scarce
but several researchers have addressed the energy optimization issue at different
consumer levels.

Reference [80] advocates the need to build an intelligent decision support system
which takes into account user preferences and behavior, and then tries to assist the
user in reducing the energy consumption according to a dynamic notion of price.
A model is proposed that learns user preferences and characteristics over time, and
provides different alternatives for efficient energy usage. However, the practical

109

9 – Optimization

implementation of such model, i.e., how to integrate it with a home automation
system and its feasibility was not discussed. Moreover, the model focuses on user’s
preferences over devices rather than on higher level intelligible goal. A similar
approach is proposed in [81]. Dynamic pricing and incentive pricing policies are
adopted and advocated by many in the smart grid community to optimize the energy
usage [18, 82] but the user perspective is often missing.

Amir-Hamed et al. [83] propose optimization of residential load control with
price prediction in a Real-Time electricity pricing environment. It minimizes the
householder’s electricity costs by scheduling the operations of each appliance, subject
to special needs of the user. The user perspective is modeled as a waiting parameter
in the scheduling problem, whose cost increases with time. Therefore, each appliance
operation is scheduled based on price of electricity and the value of the waiting
parameter.

Reference [84] proposed a system model that uses game theory to design a energy
consumption scheduling game among consumers to address demand side manage-
ment. It considers a single energy source and multiple consumers. The consumers
automatically coordinate among each other to find optimal energy consumption on
an hourly basis. The scheduling problem is modeled over a set of consumers and
could face scalability issues when the number of consumers increases. This technique
also lacks the description of modeling consumer requirements.

One potential weakness of all above proposals is that they focus entirely on
minimizing energy consumption and ignore other environment aspects, especially
the user’s perspective. The Ambient Intelligence (AmI) community has addressed
such aspects in the domain of smart environments. Often missed is the point that the
EMS inside a building will be part of a larger smart environment system, providing
sensing, actuation and user interaction.

9.6 Synopsis

This chapter tackles the minimization of power consumption from the point of view
of individual buildings or homes. Smart environments may be equipped with an en-
ergy management system that is able to intelligently control the activation of devices
and to minimize power accordingly, taking into account the varying requirements of
the users. The approach exploits the degrees of freedom that are available when the
users express their requirements at a higher level, in a user-intelligible way, rather
than directly controlling the state of each device.

The Domotic Effects modeling framework that has been presented effectively
enables users to easily express their needs at a higher level, by means of a Boolean
formalization of the Domotic Effects enforcement and a SAT problem. The Boolean
problem has been extended to minimize power consumption, in near real-time, while

110

9.6 – Synopsis

satisfying user requirements, and a heuristic algorithm has been proposed to find
satisfactory power results while respecting timing constraints.

The extensive results reported on a case study show the feasibility and the ro-
bustness of the approach, making it suitable for adoption in smart environments.
The proposed approach can be extended to include further constraints like reducing
the number of state changes to conserve the life-time of the appliances, or taking into
account the energy needed to switch between states (e.g., for mechanically actuated
devices).

Currently the work is being done towards a better integration of the approach in
the Dog gateway open source distribution, and on devising intuitive user interfaces
to monitor and control the environments through the Domotic Effects paradigm.

111

Part III

Semantic Data Exchange

Chapter 10

Motivation and Scenarios

Energy Conservation is a rising concern for many countries around the world. The
resources used to generate energy, their scarcity and the rising impact of those re-
sources on the global environment have made energy conservation a top agenda
on the tables of high government officials around the world. In USA, the Depart-
ment of Energy (DOE) launched a Weatherization Assistance Program that enables
low-income families to permanently reduce their energy bills by making their homes
more energy efficient1. The US Environmental Protection Agency defined an Energy
Conservation Action Plan which addresses opportunities for energy conservation in
homes, schools, offices and industrial environments through the use of energy-saving
innovation2. China introduced a medium and long term energy conservation plan to
push the whole society towards energy conservation and energy intensity reduction,
to remove energy bottlenecks, to build an energy saving society, and to promote sus-
tainable social and economic development3. The International Energy Association
published statistics of energy consumption by sector [85], according to which China
uses 38.2% and 40.0% of its total energy on the residential and industrial sectors,
respectively. Europe uses 26.6% and 32.2% of its total energy on the residential
and industrial sectors. Currently, a trend can be seen that developing countries
with growing population use a major portion of their energy in the residential and
industrial sectors.

Ambient, Ubiquitous and Intelligent computing have provided stimulus to the
research of a number of residential gateways [86–89] which provide control of ap-
pliances in a house and access to the general appliance properties. Access to this

1http://www1.eere.energy.gov/wip/wap.html
2http://www.epa.gov
3http://www.chinaenvironmentallaw.com/wp-content/uploads/2008/04/china-medium-and-

long-term-energy-conservation-plan.doc

115

10 – Motivation and Scenarios

information can be provided locally through a software application or remotely over
the web. Due to the variety of approaches proposed or adopted in Smart Home
research, we rely on a somewhat restricted definition, that focuses on the current
applicability of Smart Home technologies. This chapter targets Intelligent Domotic
Environments (IDE), defined as “environments where commercial domotic systems4

are extended with a low cost device (embedded PC) allowing integration and inter-
operation with other appliances, and supporting more sophisticated automation
scenarios” [35,36], as they currently achieve advanced intelligence at a relatively low
cost, enabling the creation of new building automation scenarios, with much more
complex behavior and functionality.

If residential gateways provide energy consumption information then energy
providers or 3rd party players could provide applications to increase energy aware-
ness among consumers. Most of these residential gateways [71,86–89] do not provide
the energy consumption information about different appliances in the house. To sup-
port different types of applications and services the energy consumption information
should be exposed in an open and machine understandable format, so that differ-
ent applications can use the data according to their own diverse goals. Chapter 11
and Chapter 12 discusses two techniques that enable residential gateways to expose
power consumed by different appliances installed in a house, in a machine under-
standable format, to support the development of external applications. In the home
environment we are interested in active power only, since reactive power is much
smaller and is not billed by most energy providers to residential users; therefore
throughout all of this chapter, we always refer to active power, only5. Such external
applications, starting from data published by the gateway, can provide visualiza-
tion of energy information (either locally or on the web), can provide statistics and
analysis of the energy data, and in the near future may aim at achieving intelli-
gent negotiation and consumption coordination. Exposing energy consumption in
a neutral and machine understandable format will allow multiple services to use
the energy and power consumption information according to their own application
goals.

This chapter discusses two common scenarios where publishing energy consump-
tion information can be helpful.

4the word “domotics” is a contraction of the latin word domus, for house, with informatics,
and represents the residential extension of “building automation”

5Incidentally, low-cost power meters compatible with affordable domotic systems are usually
not capable of measuring reactive power

116

10.1 – Scenario 1: Home Energy Management System (HEMS)

10.1 Scenario 1: Home Energy Management Sys-

tem (HEMS)

Consider an energy provider, which provides its residential consumers a home en-
ergy management system. The system is connected through a home network to a
smart utility meter and electrical appliances in the home. To reach goals of en-
ergy awareness and efficiency, the system provides different applications to track
the power consumption of different appliances inside the house. It provides tools to
monitor current energy needs, delivering an analysis on the power consumed over
time and suggestions on better energy management plans. The system is a plug
and play management system in which third-party applications can be installed to
provide consulting services. These services can give suggestions, such as the vendors
that provide more energy efficient devices, or plans to save money by saving energy.
Shifting the use of major appliances such as dishwashers and clothes dryers to hours
with a lower overall electricity usage can help utilities meet the energy demands
and help consumers save the energy under demand-based pricing plans. Providing
real-time information linked to such dynamic pricing may be a winning combination
for consumers who want to cut energy costs.

In order to build HEMS following issues should be addressed.

1. The gathering and representation of information related to the power con-
sumed by appliances in the environment.

2. Publishing the power consumption information in an open and standard for-
mat.

10.2 Scenario 2: 2020 Intelligent Energy Grids

Consider the energy delivery and consumption landscape in 2020 (or even before).
In 2020 the world energy demand has grown by 76% with respect to 2007, requiring
4 800 GW of capacity additions, almost five times the 2009 capacity of the US [90].
In this scenario, energy production and delivery dramaticaly relies on smart grid
solutions to effectively distribute the available energy (mostly electrical) and to
coordinate with consumption demands to avoid peaks and abnormalities that today
require oversizing of distribution and production systems.

One of the main contributions to the future ability to cope with such a high
energy demand is the improved and automated cooperation between consumption
centers, be they residential houses (around 30% of the current consumption) or
industrial and commercial facilities. The Internet growth and the take off of Infor-
mation and Communication technology and Artificial Intelligence based techniques

117

10 – Motivation and Scenarios

has driven the energy distribution scenario to the current state where consumers
and producers continuously and autonomously negotiate the best trade-off between
energy needs and availability. Take 2020 homes as an example, they are automat-
ically communicating and coordinating their energy needs. In every city district,
single homes interact and communicate with neighbors to shape the global district
consumption, to activate home level energy transformation and to coordinate local
energy production, thus reducing the cumulative amount of energy required from
the main electric distribution network and almost eliminating consumption peaks.
This amazing capability of coordinating different homes together can be observed
every day: at each day hour some houses are producing energy thanks to solar cells
installed on their roofs or to thermal co-generation of their heating systems. The
homes that are not generating, or that require additional energy, negotiate with
neighbors energy transfers, minimizing the need of ‘external supplies’ through the
main power delivery line.

Even countries are coordinating and collaborating in the same way, while one
hemisphere of the world is sleeping, energy production is mainly routed on the
illuminated side of the earth, supporting the higher day-light consumption request.
Everything happens seamlessly, and if observed from a distant energy point of view
the whole globe is traversed by a steady wave of energy, that regularly feeds human
activities, 24/7.

This futuristic, but still realizable, scenario involves many subtle issues, that need
to be unveiled in order to guide research on the technology infrastructure needed to
support it. At the basis of the depicted scenario, the Internet acts as a connective
tissue, flowing energy related information between different involved entities such as
homes, industries, offices, power delivery and power production plants. On top of
this connection network, data exchange needs common, machine understandable for-
mats to enable all the above intelligent negotiations and consumption coordinations.
We do not go further in the analysis of the issues raised by the 2020 scenario, in-
stead we focus on this information exchange infrastructure on which every advanced
consumption policy is rooted.

In particular, we must acknowledge that large-scale coordination may not rely
solely on the efforts of the utility providers, that often lack the details about how
energy is consumed by their customers, and that can’t take into account increasing
self-production of power by end users. In this context, users must be willing to
share part of their consumption (and production) information, in real time, for
the benefit of advanced monitoring and forecasting applications: this implies that
end-users should directly publish their information and rust the utility providers
and other service providers to use it an provide added-value services. However, the
intelligence of coordination application is expected to expand over the next years,
and to be able to encompass more and more sources of information. For this reason
the published data should be application-agnostic, and available in an open and

118

10.2 – Scenario 2: 2020 Intelligent Energy Grids

interoperable way. As Tim Berners-Lee literally shouted at the audience [9], we
need “Raw Data Now” to enable future intelligent applications.

119

Chapter 11

Linked Open (Dynamic) Data

The last decade saw the emergence of economically viable and efficient sensor tech-
nology which can be integrated with appliances across environments, enabling them
to sense and measure features around them, i.e., proximity, temperature, luminos-
ity, pressure, electricity, gas, water, etc. This enabled system designers to construct
smart sensing and measuring environments [12] and gave rise to computing models
in which networks of devices or sensors may interact with each other and with their
environments on regular or sporadic moments to reach some predefined goals. These
goals may be managing the comfort of residents, providing feedback to the residents
over their daily routines, suggesting possible alternatives to the resident’s routine,
managing efficiently different operations across the environment, etc.

The potential of building diverse applications over the real-time data generated
by devices or sensors inside smart environments is huge. For example, in smart
homes, device activation can provide the ability to monitor the current state of the
system in real time and at the same time allow estimating the energy usage of the
environment. In smart metering systems, the real time measurement of electricity
in an environment can provide the consumers with a graphical feedback enabling
them to follow better and efficient consumption patterns or with computing models
that provide suggestions for efficient consumption. Alternatively, it may provide the
energy utility the information to make better energy consumption forecasts by taking
into account the consumers’ needs. The fundamental property of such systems is
the potential of supporting various applications over the same set or subset of data
generated by the environment.

This potential can be achieved, if the data gathered and generated by networks
of devices or sensors follows an open and standard encoding structure for representa-
tion, i.e., the data should be machine understandable and processable. Usually the
structure of the environment which models the controllable and uncontrollable ele-
ments of the environment (e.g., house plants, walls, floors, rooms etc) does not evolve
over time. In contrast, the data gathered and generated by the installed devices or

121

11 – Linked Open (Dynamic) Data

sensors does evolve over time depicting a new overall picture of the environment at
each update or change.

Many researchers have used semantic web tools (ontologies) to describe smart
environments [35,91]. An ontology acts as a knowledge base which models the orga-
nization and semantics of elements in an environment. While existing semantic tools
and reasoning engines deal with time invariant ontological knowledge, supporting
rapidly changing information become critical in last couple of years.

This chapter proposes a framework providing smart sensing and measuring en-
vironments the ability to expose semantically annotated sensor’s or device’s data
being continuously updated; such updates might be issued at specific time intervals
or be bound to some environment-specific event. The framework is based upon the
publisher-subscriber pattern [24] and is designed to be integrated with an environ-
ment, wishing to expose machine understandable data over a unique interface for
supporting the development of applications with diverse goals.

The chapter is divided into six sections. Section 11.1 defines the addressed prob-
lem and outlines general characteristics of the environment where the framework
can be employed. Section 11.2 explains the proposed framework and outlines an
architecture for its implementation. To demonstrate the ability of the proposed
framework, Section 11.3 defines a realistic example, using real-world data. Sec-
tion 11.4 compares our technique with some existing techniques proposed in the
literature and section 11.5 concludes the chapter and provides future directions.

11.1 Problem Definition

To better understand the problem and its applicability to smart environments, let
us consider a future industrial plant, equipped with a state-of-the-art Energy Man-
agement System (EMS). The plant has several energy meters measuring the con-
sumption of electricity, gas and water. The plant has its own electricity generation
facility fulfilling its own electricity requirements. The plant consumes the needed
electricity and may sell the remaining electricity to the National Energy Grid. The
scenario contains some unique characteristics; there are many variables changing
over time (representing dynamic data), i.e., electrical generation capacity, local elec-
trical usage, current purchasing price for electrical power, gas consumption, water
consumption, etc. The structure of the plant remains constant for a long period
(representing static data), i.e., the power generation facility, devices, sensors, lo-
cation, building structure, etc. If the plant is able to expose its requirements and
consumptions in a systematic way, a huge number of potential applications can be
build on top. For example, feedback applications can be provided with real time

122

11.1 – Problem Definition

data, which in turn could provide real time analysis for efficient energy usage and
future pricing predictions to the user, energy brokers could collect data about the
extra electricity available at the plant and the current purchasing price and in turn
provide recommendations in real time.

In the above described scenario, some systems (industrial plant, energy broker)
are publishing pieces of information being continuously updated and the informa-
tion is subscribed by some other systems (energy broker, energy provider) to support
different applications performing variety of objectives. To differentiate between sys-
tems, we describe the former systems as “Publishers” and the latter as “Subscribers”.
Formally, a “Publisher” is a software application that wishes to expose data (being
continuously updated) in an open and standard format having formal semantics.
A “Subscriber” represents an application that consumes the data exposed by pub-
lishers to achieve some objectives or provide third-party services to users. It can
re-publish the data after processing, acting as a publisher, too.

The proposed framework targets scenarios like the one described above, that
will enable publishers to publish both the static data and dynamic data of a smart
environment to interested subscribers. The framework should be generic in nature
and should provide following features:

1. The framework should provide publishers the ability to expose the data being
continuously updated; such updates might be issued at specific time intervals
(typical update cycles range from a few seconds for device states, to few min-
utes for energy related information) or might be bound to some environment-
specific event.

2. The framework should provide publishers the ability to expose the dynamic
aspects of the environment (sensor or device data) separately from the static
aspect (the structure of the environment).

3. In order to allow other systems, i.e., automated agents or machines, to under-
stand and process the system on the fly, data should be encoded in an open
and standard format with attached semantics.

4. The framework should provide publishers the ability to expose several different
streams of data (channels).

5. The framework should provide subscribers the ability to discover different
channels exposed by publishers and the structure of the data carried by them.

6. The framework provides subscribers the ability to consume data originating
from different publishers.

123

11 – Linked Open (Dynamic) Data

7. The increase in the number of subscribers should not affect the performance
of the publisher.

8. Besides providing the publisher the ability to expose data (corresponding to
updates) in an open and standard format, the framework should allow the
publisher to define structure of the data carried by channels. For example, the
data could be sensor measurement, time of measurement etc.

11.2 Proposed Framework

Figure 11.1. Architecture of the Framework

Figure 11.1 depicts the general architecture of the proposed framework. It con-
sists of a publisher, a subscriber components and a transport mechanism. The
framework is used by a smart environment willing to publish some data and a con-
sumer application interested in the data of the environment.

The publisher component allows a smart environment (having network of devices
or sensors) to publish the data. The environment can use the publisher component
to expose the description of the environment which contains the structure of the
environment, its different elements (sensor or devices) and their properties, and
a description of channels created to carry updated sensor values or device states,

124

11.2 – Proposed Framework

in form of a “Publisher Information Document (PID)”. The publisher component
allows to create channels, which stream updates to interested subscribers in near
real time. A channel carries an update in form of a RDF [92] fragment with a set of
properties. At each update, the values of the properties in the RDF fragment are
updated and the RDF fragment is published on the channel. The set of properties,
i.e., measurement value, measurement time, of the RDF fragment and the method
to subscribe to the channel is also included in the PID. The PID is described using
a “Publisher” ontology defined latter in Section 11.2.1.

The subscriber component allows a consumer application to consume published
data originating from the publisher. It accesses the PID document to know the
structure of the environment and the list of exposed channels. It then allows con-
sumer applications to subscribe to different channels and when updated data arrives
at the channel, the subscriber component provides it to the consumer application.

In order to avoid additional resource consumption on the publisher end, as the
number of subscribers increases the proposed architecture favors the use of a third-
party transport mechanism that keeps the list of subscribers and the logic of stream-
ing data outside the publisher component. In this regard, we propose the use of cloud
based publisher-subscriber services like PubNub1 and/or Pusher2.

The underlying theme of the proposed framework is that the producer applica-
tions use a publisher component to publish the data using PID and Channels. The
consumer application subscribes to the channel(s) and processes the published data,
and it could range from being a simple feedback application to an advanced complex
event processing system. The tasks of keeping track of subscribers and streaming
data to them is handled by the transport mechanism, setting the publisher free of
such tasks. Besides being easy to integrate, the publisher is light-weight as the
logic of keeping track of subscribers and streaming updates is outside the publisher
component.

The details of each component and their working are given below.

11.2.1 Publisher Component

This component allows a producer application to publish structured data. The basic
tool to publish data is by defining a PID document, which describes the structure
of the environment and the created channels. The structure of the environment
can be defined by means of a domain-dependent ontology description, that uses one
of the many available ontologies (e.g., for smart homes, it will be structure of the
house; for energy management system, it will be installed metering system). The

1http://www.pubnub.com
2http://pusher.com

125

11 – Linked Open (Dynamic) Data

created channels will carry updates. Each update is a RDF fragment having a set
of properties, which are dependent on the update being carried by the channel and
represent any data which changes over time.

Modeling: Publisher Ontology

LO(D)D is an ontology driven framework and it is driven by a PID document. In
order to provide the formal structure of the PID document, a 3-tiered ontology
has been developed. The ontology is called Publisher ontology and it is formal-
ized by using the OWL Web Ontology Language [29]. The encoded ontology will
provide both publisher and subscriber components a common structure and agreed
upon formal semantics. Three modeling layers are defined, with decreasing usage
complexity: a core layer, designed to outline the basic elements of the LO(D)D ar-
chitecture, a semantics layer allowing a producer application to specifically define
artifacts regarding the environment. For instance, description of the environment,
type of dynamic channels, type of data events carried and the type of transport
mechanism. Inheriting from the previous two layers, the operation layer allows the
actual description of the environment, the number of channels, the data events being
carried by the channel etc.

[Core layer:] contains the basic class definitions for expressing a producer ap-
plication (Figure 11.2); this layer is concrete and not meant to be modified by the
designers of producer applications. It provides a common structural foundation
for diverse producer applications that can be utilized by a consumer application to
retrieve generic information regarding the producer applications.

Every producer application is formally organized into a concept hierarchy inherit-
ing from the Publisher class. As mentioned before, each publisher has a structural
aspect (which remains static over a long period of time) and a dynamic aspect. The
former static aspect is represented by the StaticContent class (using hasContent
property of Publisher class). The StaticContent class can be used to define/attach
a domain-dependent ontology (using pointsToResource property). For instance, in
the smart home environment the domain-dependent ontology may be DogOnt [35],
whereas, in a personal environment the domain-dependent ontology may be FOAF3.
In order to handle the dynamic aspect of the producer application, LO(D)D uses the
concept of channel and therefore, each Publisher class can have a number of dy-
namic channels, each represented as a Channel class (using hasChannel property).
A channel streams data events of specific type, which are represented as DataEvent
class (pointed as streams property. The transport mechanism used by a channel to
carry data events in real time is inherited from the TransportProtocol class.

3http://www.foaf-project.org

126

11.2 – Proposed Framework

C
o
n
c
re

te
 L

a
y
e
r

Figure 11.2. Publisher Ontology: Core layer

127

11 – Linked Open (Dynamic) Data

Figure 11.3. Publisher Ontology: Energy Management domain

128

11.2 – Proposed Framework

[Semantics layer:] Every application domain will define different classes in-
heriting from the core layer by sub-classing the general classes defined in the core
layer. A sample semantics layer for an energy management domain is shown in Fig-
ure 11.3. In the energy management domain typical elaborations involve continuous
data such as power or gas measures coming from meters located in the smart envi-
ronment. Power and Gas events are defined that will be streamed over two channels,
i.e., Electricity and Gas channels. One can define additional properties dependent
upon the domain. For example, the Power event contains the meter number from
where the power event is being generated. The Gas channel contains the unit of
measurement for the data events being transported.

The LO(D)D architecture is generic in nature, although Figure 11.3 models a
simple environment for a energy aware producer application, it’s important to notice
how the framework easily supports domain-dependent definition of semantics layer.
Moreover, modeling accuracy and granularity can easily be adapted to the problem
under examination, thus providing designers a powerful tool for defining abstract
effects on which more advanced policies can be built.

[Operation layer:] The operation layer of the Publisher ontology represents
a specific Publisher defined in a given smart environment. They are modeled as
instances of the classes defined in the core or semantics layer. Figure 11.3 shows a
publisher named “Energy Publisher” that has two channels. The ElectricityChannel1
and GasChannel1 uses PubNub transport mechanism and its specificities (secret,
public and private keys) are defined using the instance PubNub1. Now whenever,
an update occurs it is passed on a specific channel as an instance of the Power or
the Gas event.

Modeling is clearly not restricted to a single knowledge domain. If, for example,
we model try to model domotic effects, then the semantics layer can be created to
send updates regarding the activation or deactivation of domotic effects.

11.2.2 Subscriber Component

The subscriber component allows a consumer application to access and consume
the data published by the publisher. It has the ability to query the PID document,
extract the defined structure of the environment along with the number of exposed
channels. Afterwards, it can subscribe to relevant channels using the subscription
key provided for the relevant channel in PID. Whenever the publisher component
publishes the data over the channel, the subscriber receives it.

129

11 – Linked Open (Dynamic) Data

Figure 11.4. University Metering System Use Case software infrastructure

11.3 Use Case: Energy Management Domain

To evaluate the feasibility of the proposed framework, the framework has been im-
plemented as a Java library that includes a publisher and a subscriber component.
The publisher component allows to publish the PID document and to create one or
more channels. The PID is structured corresponding to the publisher ontology and
it is published as a web page using the embedded Jetty web server4. Channels are
created by defining the elements of data (as Channel properties). The elements may
be measuring unit, measuring value, time stamp etc, depending on the environment
publishing the data. For our current implementation, the publisher component uses
PubNub as the transport mechanism, therefore, a subscription key is defined for
each channel, which will allow the subscriber component to subscribe to a particu-
lar channel. All RDF and ontology related operations are handled using the Jena
library5.

4http://jetty.codehaus.org/jetty
5http://incubator.apache.org/jena

130

11.3 – Use Case: Energy Management Domain

To evaluate the feasibility of the proposed framework and its implementation, the
main metering infrastructure installed at our university is considered. It is composed
of 126 electrical meters. The electrical meters measure the consumption of electrical
power (active/reactive) at different locations within the university. Each meter
takes the measurements every 15 minutes and stores them in a central database
for further analysis. The database contains measurements for over three years and
is continuously being updated every 15 minutes. In order to provide real time
monitoring of all the meters installed and to analyze measurements from different
buildings within the university, we developed a software infrastructure (Figure 11.4)
on top of the installed university metering system, using our proposed framework.
The components of the infrastructure are explained below:

PID Snippet Channel Snippet

<rdf:RDF

xmlns:RDF="http://www.w3.org/1999/02/22-RDF-syntax-ns#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:publisher="http://elite.polito.it/ontologies/Publisher#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdfs="http://www.w3.org/2000/01/RDF-schema#" >

<!-- Channel properties --!>

<RDF:Description RDF:about="&Publisher;Unit">

<rdfs:range RDF:resource="http://purl.oclc.org/NET/muo/ucum/unit/"/>

<rdfs:domain RDF:resource="&Publisher;Channel"/>

<RDF:type RDF:resource="&owl;DatatypeProperty"/>

</RDF:Description>

<RDF:Description RDF:about="&Publisher;MeterNumber">

<rdfs:range RDF:resource="&xsd;integer"/>

<rdfs:domain RDF:resource="&Publisher;Channel"/>

<RDF:type RDF:resource="&owl;DatatypeProperty"/>

</RDF:Description>

<RDF:Description RDF:about=

"&Publisher;hasCurrentValue">

<rdfs:subPropertyOf RDF:resource="&owl;topDataProperty"/>

<rdfs:range RDF:resource="&owl;real"/>

<rdfs:domain RDF:resource="&Publisher;Channel"/>

<RDF:type RDF:resource="&owl;DatatypeProperty"/>

</RDF:Description>

<!-- Channel Name and Static properties --!>

<RDF:Description RDF:about=

"&Publisher;poliEnergy_communication">

<publisher:Location RDF:datatype="&xsd;string">

Torino, Italia</publisher:Location>

<publisher:subscribekey>sub-xxxxxx-4290-yyyy-a138-4d46dEEEEE

</publisher:subscribekey>

<publisher:channelName>poliEnergy_communication

</publisher:channelName>

<RDF:type RDF:resource="&Publisher;Channel"/>

</RDF:Description>

<rdf:RDF
xmlns:RDF="http://www.w3.org/1999/02/22-RDF-syntax-
ns#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:publisher="http://elite.polito.it/ontologies/Publisher#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.org/2000/01/RDF-schema#" >

<rdf:Description RDF:about="
&publisher;poliEnergy_communication">

<publisher:MeterNumber RDF:datatype="&xsd;int">

231
</publisher:MeterNumber>

<publisher:Unit RDF:datatype="&xsd;string">

http://purl.oclc.org/NET/muo/ucum/unit/power-
level/bel-kilowatt
</publisher:Unit>

<publisher:hasTimeStamp RDF:datatype="&xsd;dateTime">

2012-02-02T13:06:41.056Z
</publisher:hasTimeStamp>

<publisher:hasCurrentValue RDF:datatype="&xsd;double">

0.3
</publisher:hasCurrentValue>

</RDF:Description>

</rdf:RDF>

Table 11.1. Energy Publisher Information

1. Energy Publisher: Its objective is to provide real time measurement up-
dates from all the electrical meters installed in the university. It initially
publishes a PID document named poliEnergy accessible over HTTP. The me-
tering structure is defined using the DogOnt ontology [35]. It exposes a single

131

11 – Linked Open (Dynamic) Data

data channel, i.e., poliEnergyConsumption, which carries the updated mea-
surements from all the meters every 15 minutes. A message is sent on the
channel for each meter measurement. The defined properties for the poliEner-
gyConsumption channel are meter number, current value, unit and time stamp
and the subscription key to subscribe to the channel.

Table 11.1 in column “PID Snippet” shows a snippet of the PID describing the
publishing environment, the channel and its elements (properties) describing
the information carried by the channel. The column “Channel snippet” shows
a single message being sent for one electricity meter.

2. Aggregator Subscriber-Publisher: Its objective is to combine the mea-
surements of all the meters coming from the Energy Publisher and to provide
aggregated measurements for three different buildings within the university.
It subscribes to the “poliEnergyConsumption” channel. Every 15 minutes, it
is informed about the updated measurements of all the electrical meters, i.e.,
126 electrical meters. It aggregates the measurements from electrical meters
corresponding to three main buildings and publishes the aggregated electri-
cal measurements using three separate channels, i.e., poliEnergyBuilding1,
poliEnergyBuilding2 and poliEnergyBuilding3. The information carried by
these channels includes current aggregated measurement and the time stamp.

3. Desktop Monitoring (Subscriber): It provides the ability to monitor
the aggregated measurements of three buildings coming from the Aggrega-
tor Subscriber-Publisher in real time. It retrieves the PID of the Aggregator
Subscriber-Publisher and then subscribes to all three channels. A separate real
time graph is shown for each building. Figure 11.5 shows a snapshot of the
application.

11.4 Related Works

A. Passant et al. [93] proposed sparqlPuSH, a proactive notification system of data
updates in RDF stores using PubSubHubbub. The publisher consists of a RDF
triple store and subscribers can register different queries on the publisher. Whenever
there is an update in the triple store, all the registered queries are evaluated and
subscribers are informed about the new or updated results. The list of subscribers
is maintained at the publisher end. Our technique is clearly distinct as it advocates
a light-weight publisher providing the ability to expose the data being continuously
updated, no specific processing is performed at publisher end and most importantly,
the list of subscribers is not kept and managed by the publisher but by a third-
party cloud based service. In sparqlPuSH [93], as the number of registered queries

132

11.4 – Related Works

becomes large, for each triple store update, the time to evaluate all queries and send
notification using feeds will become large. In our approach the usage and processing
of the data is left at the subscriber end. Although it increases network traffic.

Figure 11.5. A snapshot of the Desktop Monitoring Application

A platform (Sense2Web) to publish Linked Sensor Data for the sensor network
community is presented in [94]. It enables users to publish their sensor description
data as RDF triples, associate any other existing RDF sensor description data, link
to the existing resources on publicly available linked data repositories and make it
available to consumers using SPARQL endpoint [8]. The main focus of Sense2Web
is on defining an approach for enriching the sensor description data. Our technique
is not an alternate to [94] but is a complement as it focuses more on publishing the
updated data, i.e., sensor data. Instead of using the SPARQL endpoint to expose
sensor data, which would need to be continuously queried by the consumer to get
updates. Our approach will keep subscribers up-to-date.

SEIPF (Chapter 12) is a semantic energy information publishing framework,
which provides the ability to query energy consumption information from residential
gateways in a machine understandable format, to achieve consumption coordination
and intelligent negotiation. It is based on the client-server model and if queried by
the client, gives the consumption of the house based on an Energy Profile ontol-
ogy. The framework proposed in this chapter incorporates the lesson learned from
the development of SEIPF. It allows us to move from a client-server model to a
publisher-subscriber pattern and allows separation of static information about the
environment (using PID document) and dynamic updates (using channels). More-
over, the framework proposed allows easy integration with a smart environment,
having characteristics defined in Section 11.1.

RDF Streaming Engines (EP-SPARQL, SPARQLStream, C-SPARQL, Unified
processing of Linked Streams and Linked Data) [95–98] focus mainly on handling
the RDF streaming data from a source. To handle the streaming data, they provide
different querying protocols (based on SPARQL) to handle data changes over time.
All these techniques mostly focus on the subscriber end. Our proposed technique
focuses more on the publisher end, providing a light-weight integration with any

133

11 – Linked Open (Dynamic) Data

source to describe the source and stream its RDF data.
Pachube6 acts as a central repository where sensors distributed across several

locations can upload their data. Data can be uploaded using continuous or non-
continuous feeds. A client can download the uploaded data (given access) and
use it to achieve its goals. Pachube provides APIs to upload and download data.
Our chapter also proposes the use of standard APIs to publish and subscribe data,
however there is no central repository which stores the data. The transport layer
just acts as a transport mechanism. Our model publishes the data in RDF format,
so it is easier to build automated subscribers on large scale as the semantics of data
are much clearer. The overhead on the client end to continuously query to check
latest update and download them in Pachube is overcome by the publisher-subscriber
pattern.

11.5 Synopsis

This chapter proposed a framework that provides a systematic way to publish sensor
rich data from environments. The framework follows general characteristics defined
in Section 11.1. It provides separation of views for the data contained in an en-
vironment using the concepts of PID document and Channel. The PID document
allows publishers to describe their environments and also provides a systematic way
to describe and subscribe to the dynamic channels exposed by the environment for
the interested subscribers. The Channel carries the data being updated in real time
to subscribers. The proposed framework is based on the concept of light-weight pub-
lishers, not concerned with keeping track of subscribers. The track of subscribers
is kept by a third party cloud based system. The chapter also describes the im-
plementation of the framework and a preliminary use case is also detailed in the
chapter to prove the feasibility of the framework. In future, we plan to evaluate
the proposed framework on a large network of nodes subscribed to multiple data
channels, processing the data in real time and re-publishing the data.

6https://pachube.com/

134

Chapter 12

RDF Publishing

This chapter proposes a Semantic Energy Information Publishing Framework (SEIPF)
which publishes, for different appliances in the house, their power consumption infor-
mation and other appliance properties, in a machine understandable format. Data
is published according to the Semantic Web standards and best practices, to ensure
application neutrality and intelligent machine processing. While appliance proper-
ties are exposed according to the existing semantic modeling supported by home
gateways, power consumption is modeled by introducing a new modular Energy
Profile (E.P) ontology.

The proposed framework is consistent with publication of information at different
granularity levels (e.g., by aggregating over device groups) and respecting different
authorization levels. Depending on the type of application, different complexity lev-
els require different complexity in data representation, so that the SEIPF framework
is able to expose the data both as simple RDF triples (according to Linked Data
requirements) and as full ontology instances, for the benefits of applications needing
intelligent processing.

A different complexity dimension is time, since energy consumption is a real-time
process showing variable speed, and measuring and publishing power information
must take into account the time instants and the time intervals corresponding to the
published figures. The SEIPF framework proposed in this chapter, being based on
semantic web and linked data standards, is easily extensible by referring to standard
ontologies, and can describe arbitrary complexity levels in information structure.

Today the ability to collect and share instantaneous power consumed by different
devices in a house can enable the creation of many applications that can lead to-
wards a more energy efficient society. These applications will be making consumers
aware of their active power consumption through power meters, sharing their data
over the web to create mash up applications, and/or consulting services to pro-
vide feedback on different appliances power requirements. In the future, intelligent
negotiation and consumption coordination will allow third-party service providers

135

12 – RDF Publishing

to build intelligent and automated services that use the energy consumption infor-
mation to build dynamic services, such as automatic load transfer over intelligent
energy grids. A basic requirement to fulfill the scope of aforementioned applications
is a standard, open and semantic representation of a device’s power consumption
information, so that applications may use this information according to their own
goals.

The remainder of this chapter is divided into eight sections. In Section 12.1,
the main issues to achieve target scenarios are outlined. Section 12.2 explains the
basic principle on which the envisioned solution is founded. In Section 12.3 a pos-
sible solution is presented, which is further detailed in Section 12.4. Section 12.5
provides implementation details of the proposed framework along with the experi-
mental results by showing samples applications built to prove the feasibility of the
solution. Section 12.6 presents related works and Section 12.7 concludes the chapter
and discusses possible extensions.

12.1 Design Issues

The core requirement of the defined scenarios is the ability to gather the current
power consumption information of an appliance or a group of appliances in the house
and exposing that information over the Internet. To accomplish scenarios mentioned
in Chapter 10 three main issues need to be addressed: gathering the power consump-
tion information, publishing this information, and making the information usable
by machines. Gathering power consumption information means measuring the ac-
tive power consumption of home devices at a given time instant. Such a measure
is greatly facilitated if a smart or home automation plant is available in the home.
Publishing information means deciding, and most importantly, enabling the house-
holders to decide which information to expose and at what granularity. Finally,
distributing machine understandable information implies the adoption of an open
and effective data format that enables machines to interpret them; the Semantic
Web and Linked Data research communities have already paved the way in this
direction. By going a little further on these three main issues, we can identify the
following related needs.

12.1.1 Energy Consumption Information

The power consumption information of an appliance or group of appliances is ex-
changed between smart homes, energy providers, and/or any third-party applica-
tions. Homes will be equipped with appliances ranging from a lamp to a fully
automated heating control system. An appliance during its operation can have dif-
ferent operating states like on, off, stand-by, up, down, etc. In different states the

136

12.2 – Web Of Domotics (WoD)

appliance can have different power consumption levels: we need a mechanism to
encode this state-dependent power consumption information. The residential gate-
way should provide the power consumption of appliances according to their current
operating states. The availability of a house automation system, coupled with the
knowledge of device characteristics, allows us to estimate and couple the power con-
sumption information at a much finer level, with less expensive means compared to
installing power meters.

12.1.2 Publishing in a Machine Understandable format

Power consumption information should be distributed in an open, machine under-
standable, semantic enabled and effective data format, so that the residential gate-
way can act as a single power consumption information point. This information
point can provide inputs for multiple and diverse third-party applications, services
and potentially automated agents as well.

12.1.3 Information Publishing Control

Residential gateways are designed to provide automated control to the house and
thus they have information about every appliance in the house. The information
may comprise the appliance properties, its power consumption and procedures to
automatically control the appliance. This information, if utilized by third party
applications, services or automated agents, has the potential to provide the consumer
better services. However, this information sharing should be governed by a sound
access control mechanism so that the basic consumer rights and privacy issues are
addressed. Privacy is a subjective issue, and different consumers or even people
living in a single home might perceive it differently from others. Several case studies
in relation to the issue of privacy have been carried out [99,100] and the research is
still on going.

12.2 Web Of Domotics (WoD)

WoD [101] is an Internet based architecture derived by combining features of three
main concepts, namely: Internet of Things, Ubiquitous Computing and Domotics.
It enables mobile users to access device information and operate them in a ubiq-
uitous manner, independent of network-specific location dependence. It addresses
issues like proximity-based device identification (e.g., visual tags), network indepen-
dent detection of service access points (through DNS-based device de-referencing),
user identification through OpenID, open data exchange, service/device description
through Linked Data formats and device operation through REST-based interaction.

137

12 – RDF Publishing

WoD offers ubiquitous and mobile access to actionable tagged objects. The
underlying interaction paradigms are compatible with web-based remote control
of smart environments, but WoD enhances such solutions by specifically tackling
co-location of users and environments and by supporting on-the-move users. The
resulting architecture is shown in Figure 12.1 and includes Dog enriched with a new
WoD layer, the mobility access provider application running on top of Dog, the
remote WoD Dynamic DNS service and the user’s mobile terminal hosting a WoD
application.

Network Layer

Model Layer

API Layer

WoD Layer

Mobility Access Provider

idomotics.net

Mobile Application

DGC
Central Authority

 Management

Figure 12.1. The WoD reference architecture.

12.2.1 Domotics Gateway Controller (DGC)

The DGC has been implemented by extending the architecture of the Dog gateway.
A new layer called WoD layer has been added to the architecture to:

• relay user authentication to the main OpenID services (Authentication);

• implement user authorization policies (Authorization);

• provide Dog-extracted environment information through LD (HttpAccess);

• expose the Dog APIs to authorized users exploiting the HttpAccess bundle.
These services are available on a particular domain address over the web.

New bundles are implemented as OSGi bundles running inside Dog, which is in turn
based on the Eclipse Equinox OSGi framework, and include:

138

12.2 – Web Of Domotics (WoD)

HTTP Access (HA)

The HA bundle provides the Http/Https interface to interact with different functions
provided by the DGC. The request from the mobile application is received by the HA
bundle and the HA bundle act as a central entry point to DGC over the web. The
request contains parameters to query information about the device or to perform
operations associated with the device. The communication is based on the REST
over HTTP paradigm. The HA by default provides information in RDFa/XHTML
format, but depending upon the needs of the application accessing the domotics
environment through HA, it can also provide information in plain RDF format as
well. Internally, the HA bundle communicates with the API bundle of Dog to get
information about the device or to request operation on the device, in the Dog
specific XML format. The HA plays a pivot role in coordinating operations once
a request is received. Besides being an interface to communicate with the DGC, it
forwards authentication credentials to the Authentication and Authorization (AA)
bundle. Based on the response from the AA, it provides back the information about
the device or directs Dog to perform the operation as requested by the user.

Authentication and Authorization (AA)

The Authentication and Authorization (AA) bundle forwards the request to the
OpenIDAuthentication Server, which validates or invalidates the user identifier and
communicates that information back to this bundle. Authorization is preliminarily
implemented through a simple type based authorization. The implementation of
AA depends upon the policies adopted by different organizations to provide access
to information. It can be role based, rule based, type based or individual based.
The following two operations are provided by the AA bundle to encapsulate the
authentication and the authorization logic.

• validateOpenID. It acts as a OpenID stub. After receiving the user’s OpenID
credentials, it determines the correct OpenID service and sends the user cre-
dentials to the service. The OpenID service validates or invalidates the user
credentials.

• getAuthorizedOperations. It provides the list of operations that can be
performed by the user, whose credentials are already authenticated through an
external OpenID service. The implementation of this function is not specified
by the WoD architecture but can vary from one organization to the other,
depending upon the adopted authorization policy.

139

12 – RDF Publishing

UAID Mapping (UM)

The UAID helps to locate the Dog responsible for controlling the device. On the
other hand, within Dog a LocalID is used to identify devices. This separation helps
us to use different identification schemes for UAID and LocalID. Every DGC can
identify the device using different internal identification schemes. This UM bundle
implements the logic to convert the UAID identification scheme to the LocalID
identification scheme. The following two functionalities are provided through the
UAID Mapping Bundle:

• getLocalID It takes the UAID of a device and returns its LocalID.

• getUAID It provides the UAID of the device, given its LocalID. It is the
reverse function of getLocalID.

• createMapping It is used to create a new mapping, which associates a UAID
with its appropriate LocalID. The mapping is stored inside the DGC.

12.2.2 WoD Dynamic DNS

The WoD Dynamic DNS is simply a standard Dynamic DNS server which is reg-
istered as the root DNS for the well-known WoD domain, e.g., idomotics.net. The
WoD architecture is ideally deployed with a single, unique, and universal WoD do-
main for all tags like idomotics.net exist but this is not mandatory. There can be
multiple domains based on organizations for example, all the universities in a city
can share a single domain, all the hotels in a locality can share a domain. But it
must be noted that such an action will decrease the ubiquitous nature of WoD.

12.2.3 Mobility Access Provider

To enable the mobile application to locate the correct DGC controlling the device,
during the installation of the architecture or when new tags need to be assigned with
devices, the Mobile Access Provider (MAP) registers the UAID associated with the
device to the domain address of the DGC that controls the device. This will finally
enable the mobile application to determine the correct domain of the DGC using
the extracted UAID without any a priori knowledge about the location of the DGC
itself. Tags will be easily available to users: they can be bought and attached to
any entity (in domotics, those would be devices) or the user can easily generate and
print them by using a tag-writing application. A reference domain is pre-assigned
to all tags, like idomotics.net. The MAP acts on behalf of the owner of the building
where the WoD is being deployed to declare tag ownership. It contacts the central
authority maintaining the reference domain and gets permission to add, modify or

140

12.2 – Web Of Domotics (WoD)

delete the CNAME entries for its owned tags in the reference domain. It records an
entry associating the device-attached UAID with the correct DGC controlling the
device in the master DNS server. The MAP operations for adding a CNAME entry
are shown in Figure 12.2.

Mobility Access Provider (MAP)

Master DNS Server for

idomotics.net

PKDSWE5w6

 23560dhfjd265.idomotics.net CNAME cartoonGateway.com

23450dhfjd586.idomotics.net CNAME cartoonGateway.com

23450AD5w6. idomotics.net CNAME cartoonGateway.com

PKDSWE5w6.idomotics.net CNAME ramadaGateway.com
 ...
 ramadaGateway.com A 130.192.09.21

GermirPalasGateway.com A 130.193.150.25

cartoonGateway.com A 130.192.162.25

Figure 12.2. Mobile Access Provider

The MAP is a separate application that interacts with the master DNS server
controlling idomotics.net domain.

1. The MAP decodes the (QR Code) tag to read the UAID of the device. For
example, PKDSWE5w6.

2. Then it creates a CNAME entry of [UAID].idomotics.net against the domain
name of the DGC, which controls the device.

3. The MAP records the entry in to the master DNS Server.

4. The mapping is stored inside the UAID Mapping bundle of Dog.

In a particular environment the device must be described in the local Dog for-
malism, as a DogOnt device instance, using the OWL language.

12.2.4 Mobile Application

It is assumed that users’ mobiles are already equipped with tag reading software
(e.g., Zebra Crossing for 2D tags on Android-based mobiles, or QuickMark (TM)

141

12 – RDF Publishing

for other mobile phones) and with a web browser application, able to be run as
part of the tag recognition work flow. This minimalist configuration, available on
almost every modern mobile terminal, must be integrated by a WoD application for
accessing and operating devices. In our experiments, we choose QR Codes to encode
the UAID of all devices. QR Code or Quick Response code is a 2D matrix bar code,
created by the Japanese corporation Denso-Wave in 19941. We choose QR codes
because they were developed by keeping in mind a quick decoding process and many
modern mobile phones are by default equipped with software to decode information
in QR codes2. WoD applications can either provide light XHTML interfaces, or can
offer more advanced functionalities by interpreting the RDF device data provided
by the Dog Linked Data endpoint.

12.3 Proposed Solution

To provide residential gateways with the ability to expose the power consumption
information of an appliance or a set of appliances installed in the house and also
do so by addressing the issues raised in Section 12.1, this chapter proposes a Se-
mantic Energy Information Publishing Framework (SEIPF). The SEIPF exposes the
power consumption information of appliances along with different appliance proper-
ties in RDF format over the web. The Energy Consumption Information modeling
issue (Section 12.1.1) is addressed by defining a new Energy Profile (E.P) ontol-
ogy (defined in Section 12.3.1). This ontology is based on the modularity pattern
and models the energy consumption information about any appliance that modeled
through the underlying domotic ontology, i.e., DogOnt. The modularity pattern
provides separation to model different aspects of a system through separate ontolo-
gies and may be plugged on top of various ontologies. The Machine Understandable
Format issue (Section 12.1.2) is addressed by adopting RDF as the standard format
to expose information because it provides meaningful representation of information
which can be semantically post processed. The complete approach is defined in Sec-
tion 12.3.3. The Information Publishing Control issue (Section 12.1.3) is currently
addressed by using the Authentication and Authorization unit available inside the
WoD architecture. However, in the future we intend to incorporate an ontology
based access control policy. It is further explained in Section 12.3.2.

1Other closely related codes are Data matrix, High Capacity Color bar code, Code 39 and
Code 128

2http://www.mobile-barcodes.com/qr-code-software/nokia/, http://mobilecodes.nokia.com/

142

12.3 – Proposed Solution

12.3.1 Energy Profile Ontology (E.P)

To model the energy consumption information, an Energy Profile (E.P) ontology
has been developed. It models the energy consumption information about different
appliances in the house. The E.P ontology is developed according to the modularity
pattern, so that it can be attached to any ontology that can describe the domotic
environment of a building (DogOnt in our case). The basic concepts of the E.P
Ontology are DeviceProfile and Consumption (as shown in Figure 12.3).

Figure 12.3. Energy Profile Ontology

1. DeviceProfile: This class describes energy profiles of all the major device cate-
gories in the house. The energy profile information can be related to different
appliances, such as lamp, coffeemaker, dishwasher, etc. This class has two
properties.

143

12 – RDF Publishing

• hasDevice: This property specifies the instance of the device to which
this DeviceProfile applies. The property maps onto the DogOnt device
instances (i.e., instances of the Controllable class).

• hasConsumption: Every device may have different levels of power con-
sumption, depending on the operating state of the appliance: each De-
viceProfile collects various power Consumption object instances, one for
each allowed device state.

2. Consumption: This class encodes the power consumed by the appliance in a
given state. For each device (e.g., Lamp), different states (e.g., LampOn and
LampOff) are described, each corresponding to a different power consumption
level. Consumption instances have four properties:

• associatedState: This property specifies the state of the appliance whose
power consumption we are describing with this instance. The property
maps onto the DogOnt ontology, where each device is described in terms
of its allowed states.

• nominalValue: This property shows the nominal power consumption of
the appliance in the given state. It gives the estimated power consump-
tion of a device in a state.

• realValue: This property is the measured power consumption of an ap-
pliance in a given state. This property is used if the device has a power
characterization available, otherwise the nominal value is used.

• hasUnit: This property defines the unit of power for the power consumed
by the appliance, expressed as one pre-defined instance of the MetricUnit
class in the Measurement Units Ontology3.

The E.P ontology defines two extension points through which the ontology defin-
ing the domotic system (in our case DogOnt) can be attached. The first is the
hasDevice property of DeviceProfile class, which attaches a energy consumption in-
formation structure to a device or an appliance. For example, in DogOnt it relates
to instances of Controllable concept. The second is the associatedState property
of the Consumption class, which relates a given state of the appliance or device to
its consumption level. For example, in DogOnt it relates to the instances of the
StateValue concept.

A fragment of E.P instances is shown in Figure 12.4, where we define a single De-
vice Profile instance named SimpleLamp_EP. SimpleLamp_EP is attached to two
consumption instances SimpleLamp_On and SimpleLamp_Off, which are instances
of LampOnConsumption and LampOffConsumption classes respectively.

3http://idi.fundacionctic.org/muo/muo-vocab.html

144

12.3 – Proposed Solution

<LampOffConsumption rdf:ID =" SimpleLamp_Off"/>

<LampOnConsumption rdf:ID =" SimpleLamp_On">

<hasUnit rdf:resource=" http: // purl. oclc.org /NET /muo / ucum/unit /power /Watt"/>

<realValue >35</ realValue >

</ LampOnConsumption >

<LampEP rdf:ID =" SimpleLamp_EP">

<hasConsumption rdf:resource="# SimpleLamp_On"/>

<hasConsumption rdf:resource="# SimpleLamp_Off"/>

</ LampEP >

Figure 12.4. An excerpt of the power consumption information about a device

12.3.2 Information Access Control

The residential gateway houses different chunks of data about a home ranging from
appliance properties and operations to sensing the presence of people and their
choices. Some of this information can be utilized to provide a better standard of
living to the people living inside the house, e.g., informing the people about their
current energy consumption can help them to be more energy efficient. Related
approaches to provide semantic access control to a system may be found in the liter-
ature. Chi-Chun et al. [102] proposed a Semantic Access Control Enabler (SACE), a
middleware-based system that has been designed and implemented to enable Seman-
tic Access Control on the Web. Toninelli et al. [103] proposed a semantic context
aware policy model that adopts ontologies and rules to express context and context-
aware access control policies and supports policy adaptation. Ionita et al. [104]
proposed a model that regulates access control on ontologies defined in the Seman-
tic Web.

Since the main issue of this chapter is on power consumption information shar-
ing, a very basic solution is adopted for our SEIPF implementation: currently the
SEIPF uses the Authentication and Authorization mechanism provided by the WoD
architecture to control the access to information.

12.3.3 Machine Understandable format

Exposing the power consumption information in an open, neutral and semantic for-
mat will allow multiple services to use information according to their application
goals and, in future, will allow intelligent negotiation between automated software
agents. To achieve the aforementioned task, RDF is adopted as an open format
that has embedded semantic information which allows information to be machine
understandable. The SEIPF publishes all information pertaining to an appliance,

145

12 – RDF Publishing

including its operating states, related current power consumption and general prop-
erties, as a pure RDF structure.

To provide reasoning support over the RDF response received from the SEIPF,
a basic set of general concepts are defined through a vocabulary. The vocabulary
is encoded in the SimpleDomoticData ontology, which is very similar to the E.P
ontology but it has been created separately for following reasons:

1. The E.P ontology was developed to model only the power consumption of an
appliance or group of appliances. The actual appliance modeling is provided
through the DogOnt ontology. Whereas, in the SimpleDomoticData ontology,
we model the appliance, its properties and its power consumption in current
state. It can be extended to include other appliance properties.

2. Providing the response based on the DogOnt and the E.P ontologies would
have required external applications to understand the more complex structure
of DogOnt with additional information about the domotic system, which in this
case is not always needed. Therefore, to provide easy and simple integration a
simplified SimpleDomoticData vocabulary is preferred to encode the response.

The simplified ontology and its general concepts are explained below, and are
basically the minimum set of classes and properties, extracted from the E.P and the
DogOnt ontologies, that allow semantic publishing of power information:

1. Device: This class indicates the appliance for which power consumption is
inquired.

• hasConsumption: This property points links this instances of the Device
class to the Consumption class (defined below) instances describing its
current power consumption value.

• hasState: This property defines the actual state value of the instance of
State class, as a string.

2. Consumption: This class encodes the power consumption information of the
appliance in the current state.

• hasUnit: This property defines the unit of power for the power consumed
by the appliance, according to the Measurement Units Ontology.

• value: This property shows the power consumption of a device, encoded
as a real number.

An example of such encoding is shown in Figure 12.5.

146

12.4 – Semantic Energy Information Publishing Framework (SEIPF)

<rdf:RDF

xmlns:sdd =" http: // elite . polito .it/ ontologies / SimpleDomoticData .owl #"

... other namespaces ... >

<rdf:Description rdf:about ="&sdd ;# Computer_faisal">

< hasConsumption rdf:resource="&sdd ;# ComputerStandbyConsumption "/>

<hasState >Stand -by</ hasState >

<rdf:type rdf:resource="&sdd ;# Device "/>

</ rdf:Description >

<rdf:Description rdf:about ="#& sdd ; ComputerStandbyConsumption ">

<hasUnit >http: // purl.oclc .org /NET / muo /ucum/ unit/ power / Watt </ hasUnit >

<value >25</value >

<rdf:type rdf:resource="&sdd ;# Consumption "/>

</ rdf:Description >

</ rdf:RDF >

Figure 12.5. SimpleDomoticData excerpt for a device’s energy consumption

12.4 Semantic Energy Information Publishing Frame-

work (SEIPF)

The SEIPF can be installed on any centralized residential gateway that uses the
DogOnt ontology to model the domotic structure of an environment. It comprises
a core Publishing Unit that provides the power consumption details pertaining to
different appliances in the house and other appliance properties and is explained
more in Section 12.4.1.

The SEIPF is integrated with the WoD architecture. The WoD provides an
interface over the web based on the REST over HTTP interaction paradigm to
access the domotic system of an environment. The interface is implemented through
an OSGi bundle named HttpAccess. The HttpAccess bundle was extended to add
new functionalities to query the SEIPF. The integration of the SEIPF and the WoD
archiecture provides functions that enable a requesting entity to acquire information
in Linked Data format about the general domotic structure of the environment and
identification of different devices installed in the environment. The requesting entity
could be a third-party application, a service or an automated agent etc.

The request can be made with certain parameters (using the HTTP GET method)
to retrieve the power consumption information from the SEIPF. The parameters and
their possible values are shown in Table 12.1.

Access control is provided through the Authentication and Authorization Bundle
of WoD. To provide an authentication which is scalable and has a web wide scope,
WoD adopts Open ID [105] as an authentication mechanism for the requesting entity.
Open ID is a decentralized standard to authenticate the requesting entity. Currently,

147

12 – RDF Publishing

Table 12.1. List of Parameters

Parameter Values Example Detail

command info info To request an appli-
ance power consump-
tion

device device id lamp9 The identifier of the
device

room room id livingroom To request informa-
tion about all devices
in the livingroom

devicecategory device type Lamp To ask the power con-
sumption of Lamp-
type devices.

query SPARQL query - To query the DogOnt
and E.P ontologies di-
rectly.

Authorization is provided through a type-based policy but as stated earlier, we are
working on a separate ontology-based publishing policy that will be independent of
WoD.

Network Layer

Model Layer

API Layer

WoD Layer

Semantic Energy Information Publishing Framework

Figure 12.6. Publishing Framework Architecture

148

12.4 – Semantic Energy Information Publishing Framework (SEIPF)

12.4.1 Publishing Unit

The Publishing unit is the core logic unit of the SEIPF (Figure 12.6). It accepts
the request through the HttpAccess bundle. Based on the request, it queries the
XML-RPC bundle of Dog to determine the current state of an appliance or set of
appliances. Then it determines the power consumption of appliances by quering the
E.P ontology and DogOnt ontology (available in the HouseModel Bundle of Dog).
The publishing unit then sends a pure RDF response (based on the SimpleDomotic-
Data ontology) to the requesting entity.

It has three methods, which can be accessed through the HttpAccess bundle by
providing different parameters depicted in Table 12.1:

1. getPowerInfo: This function provides the current power consumption level
of an appliance/device in the house based on the current state of the device.
It takes the device identifier and returns the power consumption information
about the device as an instance of SimpleDomoticData ontology. The device
identifier is mentioned through the device parameter and the command pa-
rameter must be set to value info. An excerpt of the response is shown in
Figure 12.5.

2. getRoomPowerInfo: This function provides the power consumption of all
appliances present in a given room inside the house. The room is specified
through the room parameter.

3. getDeviceTypePowerInfo: This function provides the power consumption
of all appliances belonging to a single device category. By device category we
mean the type of the device. For example, Lamp is the device category for
all lamps inside the house. The name of the device category is passed as a
devicecategory parameter.

SPARQL endpoint

In addition to predefined queries exposed through the WoD interface, the SEIPF
also allows direct querying of the underlying ontologies, for applications that need
to reason about the whole model, and not just to use the power data. We terefore
provide an interface to send arbitrary queries, using the semantic web standard
query language, SPARQL. The SPARQL endpoint provides the ontological level
access to the requesting entity. To ensure safety, the access to this point is granted
to highest levels of authorization, only. SPARQL queries are forwarded to query the
DogOnt and the E.P ontologies directly, for extracting general device properties and
the power consumption of the device. As defined in Table 12.1, the query parameter
can be used to access the SPARQL end-point.

149

12 – RDF Publishing

12.5 Implementation and Experiments

The core publishing unit of the SEIPF is implemented as a separate OSGi bundle
inside the Dog. We adopted the Eclipse Equinox4 OSGi framework to implement
this bundle. As stated earlier, the SEIPF use the HttpAccess bundle (inside the
WoD architecture) to provide access over the web. The HttpAccess bundle uses
the jetty web server5 to expose its services. Access Control is provided through the
Authentication and Authorization bundle (inside the WoD architecture). It uses the
OpenID4Java6 library to forward the authentication credentials to the appropriate
external OpenID server. Requesting entities are authorized according to different
levels, based on the type of entity accessing the framework.

The goal of the SEIPF is to provide residential gateways the ability to expose the
power consumption of different devices in an open, effective and semantic format,
which in turn enables external applications to consume information according to
their own application goals. Applications can be standalone providing the feedback
on the current power consumption of devices or they could be mash-up applications
that consume data from different data sharing sources to provide feedback.

To demonstrate such use cases, we have implemented two experimental applica-
tions. We integrated the SEIPF with the Dog and ran tests in our department Lab,
using two demo cases (shown in Figure 12.7) equipped with a BTicino MyOpen and
a KNX domotic plant, respectively. In the absence of a real inhabited house, we
used the emulation capabilities of the Dog gateway to simulate the behavior of de-
vices configured in the sample houses. In fact, Dog simulates domotic environments
thanks to the DogSim [106] library, that exploits a state machine model describing
the dynamic behavior of each device class. Thanks to DogSim, we are able either
to interact with fully simulated environments, or to environments that include some
simulated devices and some real domotic devices: we call “emulation” this last case,
in which we may interact with a real plant by emulating some new devices before
they are actually installed.

We marked different buttons to emulate the functioning of three devices for our
experiment namely: a computer, a coffee maker and a lamp. The experiments were
run with arbitrary input conditions, and no special assumption has been made over
user behavior; therefore the attained results may be used to validate the measuring
and publishing framework, but are not suitable to infer user-related conclusions.

The first experiment exploits a standalone application that provides the cur-
rent power consumption of the emulated devices. The testing application was built

4http://www.eclipse.org/equinox/
5http://www.mortbay.org/jetty/
6http://code.google.com/p/openid4java/

150

12.5 – Implementation and Experiments

Figure 12.7. BTicino and KNX Domotic demo cases

as a separate Java application that queries the SEIPF to acquire the current power
consumption of emulated devices and uses the Google Chart Tools7 to provide graph-
ical feedback on the current power consumption of appliances. A snapshot of the
response of the application is shown in Figure 12.8.

Figure 12.8. Current Power Consumption of Emulated Devices

The second experiment acts as a data sharing application. It accumulates the
power consumption of individual emulated device over time. The application shares

7http://code.google.com/apis/charttools/

151

12 – RDF Publishing

the data with the COSM8 service. COSM is a convenient, secure and scalable
platform that helps applications and services connect to and build the Internet of
Things. It stores, shares and discovers real time sensors, energy and environment
data from objects, devices and buildings around the world. COSM provides most
of its functionality through a REST based API and can be used to send real time
sensor, energy and environment data from anywhere around the globe. We built a
Java application that periodically queries the SEIPF for polling instantaneous power
consumption of appliances at regular time intervals. The application uses polling to
acquire data over time and then sends the power consumption data to the COSM
server. A snapshot of the power consumption data accumulated over time on COSM
is shown in Figure 12.9.

Figure 12.9. Power consumption snapshot obtained on COSM

The two experimental applications prove the feasibility of the framework as well
as provide a step towards defining an open, standard and semantic powered format
that will allow different applications to use the power consumption data according
to their own application specific goals.

8https://cosm.com/

152

12.6 – Related Works

12.6 Related Works

Several works can be found in the literature that approach the residential energy
consumption problem from many different viewpoints. These different approaches
can be classified on the basis of the tackled aspects, e.g., estimation of consumption,
gathering of available information, processing of measured consumption data, to cite
the most relevant. In the first category, Fumo et al. devised a simplified method-
ology to estimate hourly electrical and fuel energy consumption of a (residential)
building by applying a series of predetermined coefficients to monthly energy con-
sumption data from electrical and fuels utility bills [77]. This approach can exploit
the publishing framework introduced in this chapter to gather precise data on con-
sumed energy and fuel and may exploit the easy-to-access information exposed by
the SEIPF framework to increase the granularity of the estimation it provides.

Pérez-Lombard et al. worked on a review of available information concerning
energy consumption in buildings [78], in particular related to HVAC systems. This
work can be easily integrated in the SEIPF approach, contributing to first identify
relevant information to be gathered and, second, receiving back as a benefit, more
granularity on the same information plus integration with other information sources
available in the home for which explicit billing data or statistical consumption data
is still lacking.

In the information processing area many approaches can be found, which are
more strictly related to the proposed SEIPF framework: Seem, for example, in-
troduced a solution for the detection of abnormal energy consumption values in
buildings [107] that exploits intelligent data analysis. In his chapter, Seem describes
a novel method for detecting abnormal energy consumption in buildings based on
daily readings of energy consumption and peak energy absorption. In this context
SEIPF can act as data source allowing for direct collection of measurements and
providing the basis for finer analysis based on shorter intervals of the order of min-
utes or seconds. At the same time, data exposed by the SEIPF framework can be
consumed by other detection services allowing for the integration of several analysis
toolkits in the same home/building environment.

Google PowerMeter [108] is a free energy monitoring tool that allows you to view
your home’s energy consumption from anywhere online. It assumes that the device
must make an SSL-secured outbound TCP/IP connection to Google so that it can
periodically transmit data to Google via HTTPS. Typically, a device should use the
device owner’s home Internet connection to transmit data. Our approach is different
from that of Google Powermeter. Our basic assumption is that all devices in the
house are controlled by a centralized residential gateway. The publishing framework
exposes device information in a machine understandable RDF format, which can be
semantically post-processed by any third party application, service or automated
agent. The information is exposed through a proper authentication mechanism and

153

12 – RDF Publishing

the resident of the house is provided the complete control over information that is
exposed through the framework. Incidentally, a simple application using the SEIPF
framework could act as a client of the Google PowerMeter system.

Weiss et al. [109] proposed an interactive feedback system that uses a smart
electricity meter to provide consumption feedback for different household devices.
It also provides a set of API to communicate with the smart electricity meters.
The SEIPF approach is different as it can be installed on any residential gateway
that uses DogOnt to define the domotic structure of a house. The SEIPF also has
the ability to expose different information related to devices. Moreover, the SEIPF
exposes information in pure RDF format which allows any application to consume
the power consumption information according to its own application requirements.
By contrast, [109] provides a predefined custom format, and exposes consumption
information, only.

Sheth et al. [110] proposed that the sensor data retrieved from sensor networks
is annotated with semantic meta-data to increase interoperability as well as provide
contextual information essential for situational knowledge. In particular, annotating
sensor data with spatial, temporal, and thematic semantic meta data. The SEIPF
publishing framework exposes information in a pure RDF along with the option to
view ontologies to understand the whole structure of information instead of anno-
tating information. The framework also provides a mechanism to authenticate and
authorize third party applications, services or automated agents, and provides the
consumer information in a restricted manner.

12.7 Synopsis

This chapter presents a Semantic Energy Information Publishing Framework (SEIPF)
that can be installed on a residential gateway (Dog2.0) to publish power consump-
tion information of different appliances in a house environment. A new modular
E.P ontology to model the power consumption of different appliances in the house
is proposed. Modularity allows the E.P ontology to be plugged in the DogOnt on-
tology that models the domotic plant in a house. The SEIPF exposes the power
consumed by different appliances and their properties in a pure RDF format. The
goal of our approach is to make power consumption information machine under-
standable to support distributed applications such as intelligent negotiation. This
will enable today third-party applications, services or agents (given authorization)
to access the power consumption of a house or a building and help build standalone
or data sharing applications to evolve a energy aware and energy efficient society.

We plan to extend the SEIPF by taking into account the time behavior, enabling
it to publish energy figures over time intervals, thus reducing requirements over the
polling intervals of client applications. In the future, the SEIPF could also help us

154

12.7 – Synopsis

to build systems where energy consumption can be co-ordinated between different
consumers. The semantic nature of the exposed data will help building applications
where automated intelligent negotiation and consumption coordination can take
place, evolving in to an intelligent energy grids.

155

Chapter 13

Conclusion

This thesis focused on the role of semantic web technologies in smart environments.
In particular, the potential role in defining mechanisms for user intelligible goals
and semantic data exchange in smart environments was discussed. This chapter
concludes the thesis and provides future directions.

In order to model user intelligible goals in smart environments, a Domotic Effects
framework was presented. Part II presented different aspects of Domotic Effects
framework. The framework is designed as an ontology driven software that consists
of evaluation, enforcement and optimization components. In literature, the DE
framework can be considered among the initial approaches to model user intelligible
goals. And then, using those goals to control and monitor smart environments. This
thesis includes complete detail from conception and development to experimentation.
The DE framework is currently an active research topic and in the future, the
research will move in the direction of addressing following issues:

1. The thesis discusses the DE framework restricted to the Boolean application
domain. Though the modeling of DE framework (Chapter 6) provides flexi-
bility to define AmI layer for real-valued application domains, the evaluation
and enforcement approaches for real-valued application domains need to be
explored in the future.

2. Different requirements of the DE framework, i.e., modeling, evaluation, en-
forcement and optimization, were designed and tested individually. However,
no qualitative comparison of features between DE framework and other ap-
proaches (in literature) is made in the thesis. In the future, such comparison
will be necessary to understand the advantages and pitfalls of Domotic Effects
based approach.

3. In order to understand the adaptability of the DE framework for users, a user
study is needed in the future.

157

13 – Conclusion

4. In order to enable users to easily define domotic effects on their environments,
an intuitive GUI is needed in the future.

5. As defined in Chapter 5 and Chapter 8, at any instant the environment pos-
sesses a global state g ∈ G and the satisfiability of the user’s request R amounts
to function FR(g). FR(g) would give a new a global state g′ ∈ G. The problem
of finding a global evolution E from g to g′ is still open, i.e.,

g
E
−→ g′

, where a global evolution E represents a sequence of commands and notification
to (and from) individual devices.

6. Chapter 9 discussed the optimization of power consumption for a user’s request
R. However, only active power was considered while designing the heuristic.
In the future for more efficient energy optimization, measurements like reactive
power consumption of devices and energy needed for the evolution E should
also be considered. Moreover, heuristics may be designed to address other
features like device wearing out.

As mentioned in Chapter 1, the issue of semantic data exchange was discussed
within the context of Energy Management Systems. Part III discussed two ap-
proaches in order to publish power consumed by different devices in a smart envi-
ronment. Though SEIPF was designed specifically for energy management systems,
the LO(D)D framework is generic in nature. The work on LO(D)D framework is
being done in the SMILE-O project and currently it is an active research topic. In
the future, the research will move in the direction of addressing following issues:

1. Chapter 11 presented a prototype implementation of the LO(D)D architecture.
In order to integrate LO(D)D within SMILE-O project, the implementation
will be improved in the future. Furthermore, rigorous experimentation need
to be performed so that the results can be solidified.

2. Currently, LO(D)D architecture provides the publisher component for station-
ary producer applications. However, in the future, mobile application will also
be considered.

3. In the future, LO(D)D will be used to build and study federation of heteroge-
neous data (coming from sensors and mobile devices). In order to do so, the
scalability of the LO(D)D architecture also needs to be investigated.

4. In the future, quantitative and qualitative comparison will be performed against
rival approaches. It will help understand the advantages and pitfalls of LO(D)D.

158

Bibliography

[1] T.B. Lee, J. Hendler, O. Lassila, et al. The semantic web. Scientific American,
284(5):34–43, 2001.

[2] G. Antoniou and F. Van Harmelen. A semantic web primer. the MIT Press,
2004.

[3] I. Horrocks, B. Parsia, P. Patel-Schneider, and J. Hendler. Semantic web
architecture: Stack or two towers? Principles and Practice of Semantic Web
Reasoning, pages 37–41, 2005.

[4] N. Shadbolt, W. Hall, and T. Berners-Lee. The semantic web revisited. In-
telligent Systems, IEEE, 21(3):96–101, 2006.

[5] G. Klyne, J.J. Carroll, and B. McBride. Resource description framework (rdf):
Concepts and abstract syntax. W3C recommendation, 10, 2004.

[6] World Wide Web Consortium et al. Rdf vocabulary description language 1.0:
Rdf schema. W3C recommendation, pages 02–10, 2004.

[7] D.L. McGuinness, F. Van Harmelen, et al. Owl web ontology language
overview. W3C recommendation, 10:2004–03, 2004.

[8] E. Prud’Hommeaux and A. Seaborne. SPARQL query language for RDF.
Technical Report January, W3C, 2008.

[9] Tim Berners-Lee. Keynote on web architecture, 2006.
[10] C. Bizer, T. Heath, and T. Berners-Lee. Linked data-the story so far. In-

ternational Journal on Semantic Web and Information Systems (IJSWIS),
5(3):1–22, 2009.

[11] C. Diane and D. Sajal. Smart environments: Technology, protocols and appli-
cations. Wiley-Interscience, 2004.

[12] M. Weiser. The computer for the 21st century. Scientific American, 272(3):78–
89, 1995.

[13] X. Wang, J.S. Dong, C.Y. Chin, S.R. Hettiarachchi, and D. Zhang. Seman-
tic space: an infrastructure for smart spaces. Pervasive Computing, IEEE,
3(3):32–39, 2004.

[14] S. Bader and M. Dyrba. Goalaviour-based control of heterogeneous and dis-
tributed smart environments. In Intelligent Environments (IE), 2011 7th In-
ternational Conference on, pages 142 –148, july 2011.

159

Bibliography

[15] L. Chen, J. Hoey, C. D. Nugent, D. J. Cook, and Z. Yu. Sensor-based ac-
tivity recognition. Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, 42(6):790 –808, nov. 2012.

[16] Brandon Davito, Humayun Tai, , and Robert Uhlaner. The smart grid and
the promise of demand-side-management. Technical report, McKinsey & Com-
pany, 2011.

[17] P. Palensky and D. Dietrich. Demand side management: Demand response,
intelligent energy systems, and smart loads. Industrial Informatics, IEEE
Transactions on, 7(3):381–388, 2011.

[18] H. Sui, Y. Sun, and W.J. Lee. A demand side management model based on ad-
vanced metering infrastructure. In Electric Utility Deregulation and Restruc-
turing and Power Technologies (DRPT), 2011 4th International Conference
on, pages 1586–1589. IEEE, 2011.

[19] A. Faruqui, R. Hledik, and J. Tsoukalis. The power of dynamic pricing. The
Electricity Journal, 22(3):42–56, 2009.

[20] M.A.A. Pedrasa, T.D. Spooner, and I.F. MacGill. Coordinated scheduling of
residential distributed energy resources to optimize smart home energy ser-
vices. Smart Grid, IEEE Transactions on, 1(2):134–143, 2010.

[21] Yann Riche, Jonathan Dodge, and Ronald A. Metoyer. Studying always-
on electricity feedback in the home. In Proceedings of the 28th international
conference on Human factors in computing systems, CHI ’10, pages 1995–1998,
New York, NY, USA, 2010. ACM.

[22] Simon Roberts, Helen Humphries, and Verity Hyldon. Consumer preferences
for improving energy consumption feedback. Technical report, Centre for Sus-
tainable Energy, 2004.

[23] Markus Weiss, Friedemann Mattern, Tobias Graml, Thorsten Staake, and
Elgar Fleisch. Handy feedback: connecting smart meters with mobile phones.
In Proceedings of the 8th International Conference on Mobile and Ubiquitous
Multimedia, MUM ’09, pages 15:1–15:4, New York, NY, USA, 2009. ACM.

[24] K. Birman and T. Joseph. Exploiting virtual synchrony in distributed sys-
tems. In Proceedings of the eleventh ACM Symposium on Operating systems
principles, SOSP ’87, pages 123–138. ACM, 1987.

[25] Ivan Herman. Semantic web activity statement. Technical report, W3C, 2001.
[26] W3C. RDF primer. Technical report, W3C, 2004.
[27] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, and F. Yergeau. Exten-

sible markup language (xml). World Wide Web Journal, 2(4):27–66, 1997.
[28] T. Gruber. What is an ontology? Knowledge Acquisition, 5(2):199–220, 1993.
[29] W3C. OWL : Ontology Web Language. Technical report, W3C, 2004.
[30] O. Hartig, C. Bizer, and J.C. Freytag. Executing sparql queries over the web of

linked data. In Proceedings of the 8th International Semantic Web Conference,
pages 293–309. Springer-Verlag, 2009.

160

Bibliography

[31] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of sparql.
ACM Transactions on Database Systems (TODS), 34(3):16, 2009.

[32] B. Quilitz and U. Leser. Querying distributed rdf data sources with sparql.
In Proceedings of the 5th European semantic web conference on The semantic
web: research and applications, pages 524–538. Springer-Verlag, 2008.

[33] Ian Jacobs and Norman Walsh. Architecture of the World Wide Web, Volume
One. Technical Report W3C Recommendation 15 December 2004, W3C, 2004.

[34] T. Heath and C. Bizer. Linked data: Evolving the web into a global data space.
Synthesis Lectures on the Semantic Web: Theory and Technology, 1(1):1–136,
2011.

[35] Dario Bonino and Fulvio Corno. Dogont - ontology modeling for intelligent
domotic environments. In Amit Sheth, Steffen Staab, Mike Dean, Massimo
Paolucci, Diana Maynard, Timothy Finin, and Krishnaprasad Thirunarayan,
editors, The Semantic Web - ISWC 2008, volume 5318 of Lecture Notes in
Computer Science, pages 790–803. Springer Berlin Heidelberg, 2008.

[36] Dario Bonino, Emiliano Castellina, and Fulvio Corno. The DOG Gateway:
Enabling Ontology-based Intelligent Domotic Environments. IEEE Transac-
tions on Consumer Electronics, 54:4:1656–1664, November 2008.

[37] O.S.G. Alliance. Osgi service platform, release 3. IOS Press, Inc., 2003.
[38] S. Davidoff, M.K. Lee, C. Yiu, J. Zimmerman, and A.K. Dey. Principles of

smart home control. In Proceedings of the 8th international conference on
Ubiquitous Computing, pages 19–34. Springer-Verlag, 2006.

[39] M. Garcia-Herranz, P. Haya, and X. Alaman. Towards a ubiquitous end-
user programming system for smart spaces. Journal of Universal Computer
Science, 16(12):1633–1649, 2010.

[40] M. Garcia-Herranz, P.A. Haya, A. Esquivel, G. Montoro, and X. Alaman. Eas-
ing the smart home: Semi-automatic adaptation in perceptive environments.
Journal of Universal Computer Science, 14(9):1529–1544, 2008.

[41] F. Kawsar, T. Nakajima, and K. Fujinami. Deploy spontaneously: supporting
end-users in building and enhancing a smart home. In Proceedings of the 10th
international conference on Ubiquitous computing, pages 282–291. ACM, 2008.

[42] A. Katasonov. Enabling non-programmers to develop smart environment ap-
plications. In Computers and Communications (ISCC), 2010 IEEE Sympo-
sium on, pages 1059–1064. IEEE, 2010.

[43] P. Rashidi and D.J. Cook. Keeping the resident in the loop: Adapting the
smart home to the user. Systems, Man and Cybernetics, Part A: Systems and
Humans, IEEE Transactions on, 39(5):949 –959, sept 2009.

[44] E. Salomons, W. Teeuw, H. van Leeuwen, and P. Havinga. Persona-based
adaptation in a smart green home. In Intelligent Environments (IE), 2012
8th International Conference on, pages 355–358. IEEE, 2012.

161

Bibliography

[45] S.T. Cheng, C.H. Wang, and C.C. Chen. An adaptive scenario based reasoning
system cross smart houses. In Communications and Information Technology,
2009. ISCIT 2009. 9th International Symposium on, pages 549–554. IEEE,
2009.

[46] A.K. Dey, G.D. Abowd, and D. Salber. A context-based infrastructure
for smart environments. In Managing Interaction in Smart Environments,
MANSE’09. 1st International Workshop on, pages 114–128. Springer, 1999.

[47] K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten, and JC Burgelman. Am-
bient intelligence: From vision to reality. Technical report, IST Advisory
Group, 2003.

[48] M. van Doorn, A. de Vries, and E. Aarts. End-user software engineering of
smart retail environments: the intelligent shop window. In Ambient Intel-
ligence: European Conference, AmI 2008, Nuremberg, Germany, November
19-22, 2008. Proceedings, volume 5355, page 157. Springer-Verlag New York
Inc, 2008.

[49] T. Heider and T. Kirste. Supporting goal-based interaction with dynamic
intelligent environments. In ECAI, pages 596–602. Fraunhofer Publica (Ger-
many), 2002.

[50] J.L. Encarnaçao and T. Kirste. Ambient intelligence: Towards smart appli-
ance ensembles. In Matthias Hemmje, Claudia NiederÃ©e, and Thomas Risse,
editors, From Integrated Publication and Information Systems to Information
and Knowledge Environments, volume 3379 of Lecture Notes in Computer Sci-
ence, pages 261–270. Springer Berlin Heidelberg, 2005.

[51] Michael Hellenschmidt. Distributed implementation of a self-organizing decen-
tralized multimedia appliance middleware. In Nigel Davies, Thomas Kirste,
and Heidrun Schumann, editors, Mobile Computing and Ambient Intelligence:
The Challenge of Multimedia, number 05181 in Dagstuhl Seminar Proceedings,
Dagstuhl, Germany, 2005. IBFI, Germany.

[52] H. Dibowski, J. Ploennigs, and K. Kabitzsch. Automated design of build-
ing automation systems. Industrial Electronics, IEEE Transactions on,
57(11):3606–3613, 2010.

[53] R. Velik and H. Boley. Neurosymbolic alerting rules. Industrial Electronics,
IEEE Transactions on, 57(11):3661–3668, 2010.

[54] R. Velik and G. Zucker. Autonomous perception and decision making in build-
ing automation. Industrial Electronics, IEEE Transactions on, 57(11):3645–
3652, 2010.

[55] R. Velik, G. Zucker, and D. Dietrich. Towards automation 2.0: a neurocogni-
tive model for environment recognition, decision-making, and action execution.
EURASIP Journal on Embedded Systems, 2011:4, 2011.

[56] F. Amigoni, N. Gatti, C. Pinciroli, and M. Roveri. What planner for ambient
intelligence applications? Systems, Man and Cybernetics, Part A: Systems

162

Bibliography

and Humans, IEEE Transactions on, 35(1):7 – 21, 2005.

[57] E. Kaldeli, E.U. Warriach, J. Bresser, A. Lazovik, and M. Aiello. Interoper-
ation, composition and simulation of services at home. In Service-Oriented
Computing: 8th International Conference, ICSOC 2010, San Francisco, CA,
USA, December 7-10, 2010. Proceedings, volume 6470, page 167. Springer-
Verlag New York Inc, 2010.

[58] Dario Bonino, Fulvio Corno, and Luigi De Russis. A user-friendly interface for
rules composition in intelligent environments. In Paulo Novais, Davy Preuve-
neers, and Juan Corchado, editors, Ambient Intelligence - Software and Ap-
plications, volume 92 of Advances in Intelligent and Soft Computing, pages
213–217. Springer Berlin / Heidelberg, 2011.

[59] Davy Preuveneers, Jan Van den Bergh, Dennis Wagelaar, Andy Georges, Peter
Rigole, Tim Clerckx, Yolande Berbers, Karin Coninx, Viviane Jonckers, and
Koen De Bosschere. Towards an extensible context ontology for Ambient
Intelligence. In Second European Symposium on Ambient Intelligence, volume
3295 of LNCS, pages 148 – 159, Eindhoven, The Netherlands, Nov 8 – 11 2004.
Springer.

[60] H. Chen, F. Perich, T. Finin, and A. Joshi. Soupa: standard ontology for
ubiquitous and pervasive applications. In Mobile and Ubiquitous Systems:
Networking and Services, 2004. MOBIQUITOUS 2004. The First Annual In-
ternational Conference on, pages 258 – 267, aug. 2004.

[61] F. Ramparany, R. Poortinga, M. Stikic, J. Schmalenstroer, and T. Prante. An
open context information management infrastructure the IST-amigo project.
In Intelligent Environments, 2007. IE 07. 3rd IET International Conference
on, pages 398–403. IET, 2008.

[62] Francesco Furfari, Lorenzo Sommaruga, Claudia Soria, and Roberto Fresco.
DomoML: the definition of a standard markup for interoperability of human
home interactions. In EUSAI ’04: Proceedings of the 2nd European Union
symposium on Ambient intelligence, pages 41–44, New York, NY, USA, 2004.
ACM.

[63] Juan Ye, Graeme Stevenson, and Simon Dobson. A top-level ontology for
smart environments. Pervasive and Mobile Computing, 7(3):359 – 378, 2011.
Knowledge-Driven Activity Recognition in Intelligent Environments.

[64] Ioanna Roussaki, Ioannis Papaioannou, Dimitrios Tsesmetzis, Julia Kan-
torovitch, Jarmo Kalaoja, and Remco Poortinga. Ontology based service
modelling for composability in smart home environments. In Max Muhlhauser,
Alois Ferscha, and Erwin Aitenbichler, editors, Constructing Ambient Intelli-
gence, volume 11 of Communications in Computer and Information Science,
pages 411–420. Springer Berlin Heidelberg, 2008.

163

Bibliography

[65] D. Bonino, E. Castellina, and F. Corno. The dog gateway: enabling ontology-
based intelligent domotic environments. Consumer Electronics, IEEE Trans-
actions on, 54(4):1656 –1664, november 2008.

[66] Melvin A. Breuer and Arthur D. Friedman. Diagnosis and Reliable Design of
Digital Systems. Computer Science Press, 1976.

[67] D. Chen, J. Yang, and H.D. Wactlar. Towards automatic analysis of social
interaction patterns in a nursing home environment from video. In Proceedings
of the 6th ACM SIGMM international workshop on Multimedia information
retrieval, pages 283–290. ACM, 2004.

[68] D. Le Berre and A. Parrain. The Sat4j library, release 2.2 system description.
Journal on Satisfiability, Boolean Modeling and Computation, 7:59–64, 2010.

[69] K. Erol, J. Hendler, and D.S. Nau. Complexity results for HTN planning.
Annals of Mathematics and Artificial Intelligence, 18(1):69–93, 1996.

[70] Diane J Cook, Juan C Augusto, and Vikramaditya R Jakkula. Ambient intel-
ligence: Technologies, applications, and opportunities. Pervasive and Mobile
Computing, 5(4):277–298, 2009.

[71] D.J. Cook, M. Youngblood, E.O. Heierman III, K. Gopalratnam, S. Rao,
A. Litvin, and F. Khawaja. MavHome: An agent-based smart home. In
Pervasive Computing and Communications, 2003.(PerCom 2003). Proceedings
of the First IEEE International Conference on, pages 521–524. IEEE, 2003.

[72] C. Ge, Y. Li, X. Zhi, and W. Tong. The intelligent stb-implementation of next
generation of residential gateway in digital home. In Pervasive Computing
and Applications, 2007. ICPCA 2007. 2nd International Conference on, pages
256–261. IEEE, 2007.

[73] Department of Energy, USA. 2008 buildings energy data book. Technical
report, Buildings Technologies Program Energy Efficiency and Renewable En-
ergy, 2009.

[74] S. Lukovic, V. Congradac, and F. Kulic. A system level model of possible
integration of building management system in smartgrid. In Complexity in
Engineering, 2010. COMPENG ’10., pages 58 –60, feb. 2010.

[75] I. Koutsopoulos and L. Tassiulas. Challenges in demand load control for the
smart grid. Network, IEEE, 25(5):16–21, 2011.

[76] P. McDaniel and S. McLaughlin. Security and privacy challenges in the smart
grid. Security & Privacy, IEEE, 7(3):75–77, 2009.

[77] Nelson Fumo, Pedro Mago, and Rogelio Luck. Methodology to estimate build-
ing energy consumption using energyplus benchmark models. Energy and
Buildings, 42(12):2331 – 2337, 2010.

[78] L. Pérez-Lombard, J. Ortiz, and C. Pout. A review on buildings energy con-
sumption information. Energy and Buildings, 40(3):394–398, 2008.

164

Bibliography

[79] T. Hubert and S. Grijalva. Realizing smart grid benefits requires energy opti-
mization algorithms at residential level. In Innovative Smart Grid Technolo-
gies (ISGT), 2011 IEEE PES, pages 1 –8, 2011.

[80] O.A. Sianaki, O. Hussain, T. Dillon, and A.R. Tabesh. Intelligent decision
support system for including consumers preferences in residential energy con-
sumption in smart grid. In Proceedings of the 2010 Second International
Conference on Computational Intelligence, Modeling and Simulation, pages
154–159, 2010.

[81] H. Zhang, X. Xia, and J. Zhang. A residential energy and power conservation
system utilizing an optimization model. In AFRICON, 2009. AFRICON ’09.,
pages 1 –6, sept. 2009.

[82] T.T. Kim and H.V. Poor. Scheduling power consumption with price uncer-
tainty. Smart Grid, IEEE Transactions on, 2(3):519 –527, sept. 2011.

[83] A.-H. Mohsenian-Rad and A. Leon-Garcia. Optimal residential load control
with price prediction in real-time electricity pricing environments. Smart Grid,
IEEE Transactions on, 1(2):120 –133, sept. 2010.

[84] A. Mohsenian-Rad, V.W.S. Wong, J. Jatskevich, R. Schober, and A. Leon-
Garcia. Autonomous demand-side management based on game-theoretic en-
ergy consumption scheduling for the future smart grid. Smart Grid, IEEE
Transactions on, 1(3):320 –331, dec. 2010.

[85] Energy consumption by sector, 2005.
[86] P. Lalanda and J. Bourcier. Towards autonomic residential gateways. In IEEE

International Conference on Pervasive Services (ICPS 2006), pages 329–332.
IEEE, 2006.

[87] C. Escoffier, J. Bourcier, P. Lalanda, and J. Yu. Towards a home applica-
tion server. In IEEE Consumer Communications and Networking Conference,
2008, pages 321–325, 2008.

[88] S.L. Chung and W.Y. Chen. MyHome: A Residential Server for Smart Homes.
In Knowledge-Based Intelligent Information and Engineering Systems, pages
664–670. Springer, 2010.

[89] J. Bourcier, A. Chazalet, M. Desertot, C. Escoffier, and C. Marin. A dynamic-
SOA home control gateway. In IEEE International Conference on Services
Computing, 2006. SCC’06, pages 463–470, 2006.

[90] IEA. World energy outlook 2009 fact sheet: Why is our current energy path-
way unsustainable? Technical report, International Energy Agency, 2009.

[91] T. Gu, X.H. Wang, H.K. Pung, and D.Q. Zhang. An ontology-based context
model in intelligent environments. In Proceedings of Communication Networks
and Distributed Systems Modeling and Simulation Conference, pages 270–275,
2004.

[92] O. Lassila and R.R. Swick. Resource Description Framework (RDF) model
and syntax, 1999.

165

Bibliography

[93] A. Passant and P.N. Mendes. sparqlPuSH: Proactive notification of data up-
dates in RDF stores using PubSubHubbub. In Scripting for the Semantic Web
Workshop (SFSW2010) at ESWC2010, 2010.

[94] P. Barnaghi, M. Presser, and K. Moessner. Publishing Linked Sensor Data. In
Proceedings of the 3rd International Workshop on Semantic Sensor Networks,
2010.

[95] D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic. EP-SPARQL: a unified
language for event processing and stream reasoning. In Proceedings of the 20th
international conference on World wide web, pages 635–644. ACM, 2011.

[96] D.F. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Grossniklaus. C-
SPARQL: SPARQL for continuous querying. In Proceedings of the 18th inter-
national conference on World wide web, pages 1061–1062. ACM, 2009.

[97] S. Groppe, J. Groppe, D. Kukulenz, and V. Linnemann. A SPARQL engine
for streaming RDF data. In Signal-Image Technologies and Internet-Based
System, 2007. Third International IEEE Conference on, pages 167–174. IEEE,
2007.

[98] D. Le-Phuoc, M. Dao-Tran, J.X. Parreira, and M. Hauswirth. A native and
adaptive approach for unified processing of linked streams and linked data. In
Proceedings of the 10th international conference on The semantic web-Volume
Part I, pages 370–388. Springer-Verlag, 2011.

[99] Sven Meyer and Andry Rakotonirainy. A survey of research on context-aware
homes. In ACSW Frontiers ’03: Proceedings of the Australasian information
security workshop conference on ACSW frontiers 2003, pages 159–168, Dar-
linghurst, Australia, Australia, 2003. Australian Computer Society, Inc.

[100] George Demiris, Marilyn J Rantz, Myra A Aud, Karen D Marek, Harry W
Tyrer, Marjorie Skubic, and Ali A Hussam. Older adults’ attitudes towards
and perceptions of ’smart home’ technologies: a pilot study. Informatics for
Health and Social Care, 29(2):87–94, 2004.

[101] F. Razzak, D. Bonino, and F. Corno. Mobile interaction with smart environ-
ments through linked data. In IEEE International Conference on Systems,
Man, and Cybernetics, October 10-13, 2010, pages 2922–2929, 2010.

[102] Chi-Chun Pan, Prasenjit Mitra, and Peng Liu. Semantic access control for
information interoperation. In SACMAT ’06: Proceedings of the eleventh ACM
symposium on Access control models and technologies, pages 237–246, New
York, NY, USA, 2006. ACM.

[103] Alessandra Toninelli, Rebecca Montanari, Lalana Kagal, and Ora Lassila. A
semantic context-aware access control framework for secure collaborations in
pervasive computing environments. In The Semantic Web Conference - ISWC
2006, pages 473–486, 2006.

[104] Cecilia M. Ionita and Sylvia L. Osborn. Specifying an access control model for
ontologies for the semantic web. In Secure Data Management, pages 73–85,

166

Bibliography

2005.
[105] D.Recordon and D.Reed. OpenID 2.0: a platform for user-centric identity

management. In Proceedings of the second ACM workshop on Digital identity
management, pages 11–16, 2006.

[106] Dario Bonino and Fulvio Corno. DogSim: A state chart simulator for Domotic
Environments. In 8th IEEE International Conference on Pervasive Computing
and Communications Workshops (PERCOM Workshops), 2010, pages 208–
213. IEEE, March 2010.

[107] John E. Seem. Using intelligent data analysis to detect abnormal energy
consumption in buildings. Energy and Buildings, 39(1):52 – 58, 2007.

[108] Google. Google power meter, 2009.
[109] M. Weiss, F. Mattern, T. Graml, T. Staake, and E. Fleisch. Handy feedback:

Connecting smart meters with mobile phones. In Proceedings of the 8th Inter-
national Conference on Mobile and Ubiquitous Multimedia, pages 1–4. ACM,
2009.

[110] Amit Sheth, Cory Henson, and Satya S. Sahoo. Semantic sensor web. IEEE
Internet Computing, 12:78–83, 2008.

167

Appendices

169

Appendix A

Use cases

The appendix provides the functional representation of six use cases, i.e., Secure
Home, Bath Room Illumination, Home Illumination, Afternoon Lunch Cooking,
Air Flow and Morning wakeup.

171

A
–

U
se

ca
se

s

Table A.1. Secure Home use case
SecureHome_All = OR(SecureHome_Scenario_1, SecureHome_Scenario_2);

SecureHome_Scenario_1 = AND(LivingRoom_l2_W S_CloseDown, BathRoom_W S_CloseDown, Kitchen_W S_CloseDown,
BedRoom_l1_W S_North_CloseDown, BedRoom_W S_W est_CloseDown, DoorActuator_d4_lobby_ext_Close,

LivingRoom_L1_W S_CloseDown);
LivingRoom_l2_W S_CloseDown = AND(W indowActuator_w6_living_Close, ShutterActuator_sh2_living_Down);
LivingRoom_L1_W S_CloseDown = AND(W indowActuator_w5_living_Close, ShutterActuator_sh1_living_Down);

BathRoom_W S_CloseDown = AND(W indowActuator_w3_bath_Close, ShutterActuator_bath_Down);
BedRoom_l1_W S_North_CloseDown = AND(W indowActuator_w1_living_Close, ShutterActuator_sh1_Down);

BedRoom_W S_W est_CloseDown = AND(W indowActuator_w2_Close, ShutterActuator_sh2_Down);
SecureHome_Scenario_2 = AND(Secure_LivingRoom, Secure_BedRoom, Secure_BathRoom, Secure_Lobby, Secure_Kitchen);

Secure_LivingRoom = AND(DoorActuator_d7_kitchen_Close, DoorActuator_d6_living_Close,
T v_LivingRoom_Off, LivingRoom_L1_W S_CloseDown, LivingRoom_l2_W S_CloseDown);

Secure_BedRoom = AND(DoorActuator_d1_bed_Close, BedRoom_l1_W S_North_CloseDown, BedRoom_W S_W est_CloseDown);
Secure_BathRoom = AND(BathRoom_W s_CloseDown, DoorActuator_d2_bath_Close);
Secure_Lobby = AND(DoorActuator_d6_living_Close, DoorActuator_d5_kitchen_Close,

DoorActuator_d4_lobby_ext_Close, DoorActuator_d3_lobby_stor_Close, DoorActuator_d1_bed_Close,
DoorActuator_d2_bath_Close);

Secure_Kitchen = AND(DoorActuator_d5_kitchen_Close, DoorActuator_d7_kitchen_Close, Kitchen_W S_CloseDown);
Kitchen_W S_CloseDown = AND(W indowActuator_w4_kitchen_Close, ShutterActuator_kitchen_Down);

1
7
2

Table A.2. Bathroom Illumination functional form
Illumination = Or(ArtificialIllumination, NaturalIllumination)

ArtificialIllumination = Alternate(CeilingLampIllumination, MirrorLampIllumination)
MirrorLampIllumination = And(LeftMirrorLampIllumination, RightMirrorLampIllumination)

RightMirrorLampIllumination = SE(l9, OnState_lamp9)
LeftMirrorLampIllumination = SE(l8, OnState_lamp8)

CeilingLampIllumination = SE(l2, OnState_lamp2)
NaturalIllumination = SE(ShutterBath, UpStateV alue_ShutterBath)

1
7
3

A
–

U
se

ca
se

s

Table A.3. Home Illumination use case
Home_Illumination = OR(Natural_Illumination_Home, Artificial_Illumination_Home);

Natural_Illumination_Home = AND(BedRoom_Natural_Illumination, DoorActuator_d7_kitchen_Open,
DoorActuator_d6_living_Open, BathRoom_W S_CloseUp, DoorActuator_d5_kitchen_Open, DoorActuator_d1_bed_Open,

LivingRoom_Natural_Illumination, Kitchen_W S_CloseUp);
BedRoom_Natural_Illumination = AND(BedRoom_W S_W est_Closeup, BedRoom_l1_W S_North_CloseUp);

BedRoom_l1_W S_North_CloseUp = AND(W indowActuator_w1_living_Close, ShutterActuator_sh1_Up);
BedRoom_W S_W est_CloseUp = AND(W indowActuator_w2_Close, ShutterActuator_sh2_Up);

LivingRoom_Natural_Illumination = OR(LivingRoom_l1_W S_CloseUp, LivingRoom_l2_W S_CloseUp);
LivingRoom_l1_W S_CloseUp = AND(W indowActuator_w5_living_Close, ShutterActuator_sh1_living_Up);
LivingRoom_l2_W S_CloseUp = AND(W indowActuator_w6_living_Close, ShutterActuator_sh2_living_Up);

Artificial_Illumination_Home = AND(Lobby_Illumination, Lamp6_Kitchen_On,
artificiallyIlluminatedBath, Lamp1_BedRoom_On, Lamp7_LivingRoom_On);

Lobby_Illumination = OR(Lobby_Illumination_All, Lobby_Illumination_Alternate);
Lobby_Illumination_Alternate = ALTERNATE(Lamp4_Lobby_On, Lamp5_Lobby_On);

Lobby_Illumination_All = AND(Lamp4_Lobby_On, Lamp5_Lobby_On);
artificialIllumination = ALTERNATE(celingLamp_On, MirrorLampsOn);

MirrorLampsOn = AND(Lamp9_On, Lamp8_On);

1
7
4

Table A.4. Afternoon Lunch Cooking use case
Afternoon_Lunch = AND(Oven_Kitchen_On, T v_Kitchen_On, Kitchen_CookingDay_Scenario_Alt);

Kitchen_CookingDay_Scenario_Alt = ALTERNATE(Kitchen_CookingDay_Scenario_1,
Kitchen_CookingDay_Scenario_2);

Kitchen_CookingDay_Scenario_1 = AND(ExhaustF an_On, DoorActuator5_Close, DoorActuator7_Close,
Lamp6_Off, Kitchen_W S_Day_Scenario);

Kitchen_W S_Day_Scenario = ALTERNATE(Kitchen_W S_CloseUp, Kitchen_W S_OpenDown);
Kitchen_W S_CloseUp = AND(W indowActuator_Kitchen_Close, Shutter_Kitchen_Up);

Kitchen_W S_OpenDown = AND(W indowActuator_Kitchen_Open, Shutter_Kitchen_Down);
Kitchen_CookingDay_Scenario_2 = AND(ExhaustF an_On, DoorActuator5_Close, DoorActuator7_Close,

Lamp6_On, Kitchen_W S_CloseDown);
Kitchen_W S_CloseUp = AND(W indowActuator_Kitchen_Close, Shutter_Kitchen_Down);

1
7
5

A
–

U
se

ca
se

s

Table A.5. Air Passage use case
AirP assage_All = AND(AirP assage_LRBR_Scenario_1, AirP assage_LRBR_Scenario_2,

AirP assage_LRKT _Scenario_1, Door_Kitchen_d5_Open);
AirP assage_LRBR_Scenario_1 = AND(LivingRoom_W indows_Open_Any, DoorActuator_d6_living_Open,

DoorActuator_d1_Bed_Open, BedRoom_l1_W S_North_OpenUp);
LivingRoom_W indows_Open_Any = OR(LivingRoom_W indows_Open_Alternate, LivingRoom_W indows_Open);

LivingRoom_W indows_Open_Alternate = ALTERNATE(LivingRoom_W indows_North_Open, LivingRoom_W indows_South_Open);
LivingRoom_W indows_South_Open = NOT(LivingRoom_W indows_North_Open);

LivingRoom_W indows_North_Open = AND(LivingRoom_l1_W S_OpenUp, LivingRoom_l2_W S_CloseDown);
LivingRoom_l1_W S_OpenUp = AND(W indowActuator_w5_living_Open, ShutterActuator_sh1_living_Up);

LivingRoom_l2_W S_CloseDown = AND(W indowActuator_w6_living_Close, ShutterActuator_sh2_living_Down);
LivingRoom_W indows_Open = AND(LivingRoom_l2_W S_OpenUp, LivingRoom_l1_W S_OpenUp);

LivingRoom_l2_W S_OpenUp = AND(W indowActuator_w6_living_Open, ShutterActuator_sh2_living_Up);
LivingRoom_l1_W S_OpenUp = AND(W indowActuator_w5_living_Open, ShutterActuator_sh1_living_Up);
BedRoom_l1_W S_North_OpenUp = AND(W indowActuator_w1_living_Open, ShutterActuator_sh1_Up);
AirP assage_LRBR_Scenario_2 = AND(DoorActuator_d1_bed_Open, LivingRoom_W indows_Open_Any,

DoorActuator_d6_living_open, BedRoom_W S_W est_OpenUp);
BedRoom_W S_W est_OpenUp = AND(W indowActuator_w2_Open, ShutterActuator_sh2_Up);

AirP assage_LRKT _Scenario_1 = AND(LivingRoom_W indows_Open_Any, Kitchen_W S_OpenUp,
DoorActuator_d7_kitchen_Open, ExhaustF an_Kitchen_On);

Kitchen_W S_OpenUp = AND(W indowActuator_w4_kitchen_Open, ShutterActuator_kiitchen_Up);

1
7
6

Table A.6. Morning Wake Up use case
Morning_W akeUp = AND(BathRoomIllumination, Radio_BathRoom_On, T v_Kitchen_On,

BedRoom_Natural_Illumination, Kitchen_Cooking_Day_Scenario_1, GasHeater_BedRoom_On);
BathRoomIllumination = OR(artificialIllumination, ShuterBathUp);

artificialIllumination = ALTERNATE(celingLamp_On, MirrorLampsOn);
MirrorLampsOn = AND(Lamp9_On, Lamp8_On);

Kitchen_CookingDay_Scenario_1 = AND(ExhaustF an_On, DoorActuator5_Close, DoorActuator7_Close,
Lamp6_Off, Kitchen_W S_Day_Scenario);

Kitchen_W S_Day_Scenario = ALTERNATE(Kitchen_W S_CloseUp, Kitchen_W S_OpenDown);
Kitchen_W S_CloseUp = AND(W indowActuator_Kitchen_Close, Shutter_Kitchen_Up);

Kitchen_W S_OpenDown = AND(W indowActuator_Kitchen_Open, Shutter_Kitchen_Down);
BedRoom_Natural_Illumination = AND(BedRoom_W S_W est_CloseUp, BedRoom_L1_W S_North_CloseUp);

BedRoom_W S_W est_CloseUp = AND(W indowActuator_w2_Close, ShutterActuator_sh2_Up);
BedRoom_L1_W S_North_CloseUp = AND(W indowActuator_w1_Close, ShutterActuator_sh1_Up);

1
7
7

Appendix B

Publications

B.1 International Journals

1. Fulvio Corno, Faisal Razzak (2012) Intelligent Energy Optimization for
User Intelligible Goals in Smart Home Environments In: IEEE TRANS-
ACTIONS ON SMART GRID. vol. 3/4, pp. 2128 - 2135.

2. Dario Bonino, Fulvio Corno, Faisal Razzak (2011) Enabling Machine Un-
derstandable Exchange of Energy Consumption Information in In-
telligent Domotic Environments In: ENERGY AND BUILDINGS, vol.
43/6, pp. 1392-1402.

B.2 Proceedings

1. Fulvio Corno, Faisal Razzak (2012) Publishing LO(D)D: Linked Open
(Dynamic) Data for Smart Sensing and Measuring Environments In:
PROCEDIA COMPUTER SCIENCE, vol. 10C, pp. 381-388.

2. Faisal Razzak (2012) Spamming the Internet of Things: A Possibility
and its probable Solution In: PROCEDIA COMPUTER SCIENCE, vol.
10, pp. 658-665.

3. Faisal Razzak (2012) Semantic Web Technologies role in Smart Envi-
ronments In: OTM Workshops, LNCS 7567, pp. 54–58 Springer – (Interna-
tional Workshop)

4. Faisal Razzak, Dario Bonino, Fulvio Corno (2010) Mobile Interaction with
Smart Environments through Linked Data In: IEEE International Con-
ference on Systems, Man, and Cybernetics, Istanbul, Turkey, October 10-13.
pp. 2922-2929

179

B – Publications

5. Emiliano Castellina, Faisal Razzak, Fulvio Corno (2009) Environmental
Control Application compliant with Cogain Guidelines In: COGAIN
2009: Gaze Interaction For Those Who Want It Most, COGAIN 2009, Cope-
naghen, Denmark

180

	Acknowledgements
	Introduction
	Contribution
	Structure of the Thesis

	I Background
	Semantic Web Technologies
	Resource Description Framework
	Concepts of RDF
	Three Views of Statement

	Ontology (OWL)
	Why OWL?
	OWL in a nutshell

	SPARQL
	Linked Data

	DogOnt & Dog
	DogOnt
	Device Modeling in DogOnt

	Domotic OSGi Gateway
	Api
	Device Control
	Device Management
	StartUp
	Library

	II User Intelligible Goals
	State of the art
	Domotic Effects Framework
	Requirements
	Formalism

	Modeling
	Modeling: DogEffects Ontology
	Core layer
	Middle layer
	Instance layer

	Related Works

	Evaluation
	Problem Statement
	Approach
	Solution
	Architecture
	Extensibility

	Experimental Study
	Feasibility Testing
	Performance Evaluation
	Discussion

	Related Works
	Synopsis

	Enforcement
	Problem Statement
	Approach
	Architecture
	Domotic Effect Enforcement
	Extensibility

	Experimental evaluation
	Use cases
	Results and Discussion
	Extensibility and Scalability

	Related Works
	Synopsis

	Optimization
	Formalism
	Representing Power with Domotic Effects
	Domotic Effect Enforcement

	Problem Statement
	Proposed Approach
	Heuristic

	Experimental evaluation
	Use Cases
	Results
	Discussion

	Related Works
	Synopsis

	III Semantic Data Exchange
	Motivation and Scenarios
	Scenario 1: Home Energy Management System (HEMS)
	Scenario 2: 2020 Intelligent Energy Grids

	Linked Open (Dynamic) Data
	Problem Definition
	Proposed Framework
	Publisher Component
	Subscriber Component

	Use Case: Energy Management Domain
	Related Works
	Synopsis

	RDF Publishing
	Design Issues
	Energy Consumption Information
	Publishing in a Machine Understandable format
	Information Publishing Control

	Web Of Domotics (WoD)
	Domotics Gateway Controller (DGC)
	WoD Dynamic DNS
	Mobility Access Provider
	Mobile Application

	Proposed Solution
	Energy Profile Ontology (E.P)
	Information Access Control
	Machine Understandable format

	Semantic Energy Information Publishing Framework (SEIPF)
	Publishing Unit

	Implementation and Experiments
	Related Works
	Synopsis

	Conclusion
	Bibliography
	Use cases
	Publications
	International Journals
	Proceedings

