
03 December 2021

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Dependability Assessment of NAND Flash-memory for Mission-critical Applications / Fabiano, Michele. - STAMPA. - (In
corso di stampa).

Original

Dependability Assessment of NAND Flash-memory for Mission-critical Applications

Publisher:

Published
DOI:10.6092/polito/porto/2506363

Terms of use:
Altro tipo di accesso

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2506363 since:

Politecnico di Torino

Dependability Assessment of NAND
Flash-memory for Mission-critical Applications

Michele Fabiano

Michele.Fabiano@polito.it

Michele.Fabiano@gmail.com

Submitted in total ful�llment of the requirements

of the degree of Doctor of Philosophy

February 2013

Faculty of Computer Engineering

Department of Control and Computer Engineering

Politecnico di Torino
� �

Herewith declare that I have produced this paper without the prohibited assistance of third par-

ties and without making use of aids other than those speci�ed; notions taken over directly or

indirectly from other sources have been identi�ed as such. This thesis has not previously been

presented in identical or similar form to any other Italian or foreign examination board. The the-

sis work was conducted from 01/2009 to 01/2013 under the supervision of Prof. Paolo Prinetto at

Politecnico di Torino.

� �� �� �

ABOUT THE AUTHOR

Michele Fabiano received the Bachelor Science (BS) and

Master Science (MS) degree in computer science and in-

formation engineering from the Universita’ degli Studi di

Napoli "Federico II", Napoli (Italy), in 2008.

During this PhD activity, he was Visiting Scientist at

the European Space Research and Technology Centre (ES-

TEC), Nordwijk (Netherlands), where he worked on the fault-

tolerant oriented design of high performance NAND �ash-

based architectures in the On Board Computers and Data

Handling Section.

He is currently working as Embedded HW/SW Engineer

at ASML, Veldhoven (Netherlands).

His major research interests are the development of real-time embedded systems, implemen-

tation of VLSI for digital signal processing, and development of parallel processing software for

automated code generation.

i

� �� �

� �� �

LIST OF PUBLICATIONS

ISI journals (accepted for publication)

Fabiano M., Furano G., NAND Flash Storage Technology for Mission-

critical Space Applications, accepted for publication on IEEE Aerospace

and Electronic Systems Magazine (AESS).

ISI journals (revisions being processed)

Di Carlo S., Fabiano M., Indaco M., Prinetto P., Design and Optimiza-

tion of Adaptable BCH Codecs for NAND Flash Memory, revisions being

processed on Elsevier Microprocessors and Microsystems (MICPRO).

Chapters in edited books

Caramia M., Di Carlo S., Fabiano M., Prinetto P., Design Issues and Chal-

lenges of File Systems for Flash Memories, Flash Memory, Edited by Igor

Stievano, Published by InTech, pp. 28 (pp. 3 � 30) ISBN 978-9-5330-

7272-2.

IEEE Conference papers

Zambelli C., Indaco M., Fabiano M., Di Carlo S., Prinetto P., Olivo P.,

and Bertozzi D., A Cross-Layer Approach to the Reliability-Performance

Trade-Off in MLC NAND Flash Memories, on Proceedings of Design,

Automation and Test in Europe (DATE) 2012, pages 881�886, 12th �

16th March 2012, Dresden (Germany).

iii

� �� �

IEEE Conference papers (continued)

Di Carlo S., Fabiano M., Piazza R., Prinetto P., Exploring Modeling and Testing of NAND Flash

memories, Proceedings of 8th IEEE East-West Design & Test Symposium (EWDTS) 2010, 17th �

20th September 2010, St. Petersburg (Russia).

Di Carlo S., Fabiano M., Piazza R., Prinetto P., EDACs and Test Integration Strategies for

NAND Flash memories, Proceedings of 8th IEEE East-West Design & Test Symposium (EWDTS)

2010, 17th � 20th September 2010, St. Petersburg (Russia).

Caramia M., Fabiano M., Miele A., Piazza R., Prinetto P., Automated synthesis of EDACs for

FLASH Memories with User-Selectable Correction Capability, Proceedings of IEEE High-Level De-

sign Validation and Test (HLDVT) 2010, 11th � 12th June 2010, Anaheim, California (USA) ISSN:

1552-6674, Print ISBN: 978-1-4244-7805-7.

Caramia M., Di Carlo S., Fabiano M., Prinetto P., FLARE: a Design Environment for Space

Applications, Proceedings of IEEE High-Level Design Validation and Test (HLDVT) 2009, 4th � 6th

November 2009, San Francisco (USA) ISSN: 1552-6674, Print ISBN: 978-1-4244-4823-4.

Caramia M., Di Carlo S., Fabiano M., Prinetto P., Exploring Design Dimensions in Flash-

based Mass-memory Devices, Proceedings of 4th International Workshop on Software Support for

Portable Storage (IWSSPS) 2009, 15th October 2009, Grenoble (France), pp. 43 � 48.

Caramia M., Di Carlo S., Fabiano M., Prinetto P., Flash-memories in Space Applications:

Trends and Challenges, Proceedings of 7th IEEE East-West Design & Test Symposium (EWDTS)

2009, 18th � 21st September 2009, Moscow (Russia), pp. 429 � 432.

IEEE Conferences Posters

Di Carlo S., Fabiano M., Indaco M., and Prinetto P., ADAGE: An Automated Synthesis tool for

Adaptive BCH-based ECC IP-Cores, IEEE International Test Conference (ITC) 2012, Anaheim CA,

November 4-9, 2012, pp. 15

Conferences without Proceedings

Fabiano M., Furano G. and Magistrati G., NAND Flash Storage Technology for Mission-critical

Space Applications, in Single Event Effects (SEE) Symposium, April 3-5, 2012, NASA, San Diego

� �� �

CONTENTS

List of Figures ix

List of Tables xii

1 Introduction 1

1.1 Mission-critical applications . 3

1.1.1 An example: the space environment . 3

1.2 Thesis organization . 5

2 Dependability of NAND Flash Memory: An Overview 9

2.1 Flash memory issues and challenges . 10

2.1.1 Technology . 10

2.1.2 Architecture . 12

2.1.2.1 Examples of NAND Flash Architecture 13

2.1.3 Address translation and boot time . 16

2.1.4 Garbage collection . 17

2.1.5 Memory wearing . 17

2.1.6 Bad block management . 18

2.1.7 Error correcting codes . 18

2.1.8 Testing . 19

2.2 Using �ash-memory as Hard Disk (HD) . 19

2.3 Flash-memory Reliability Screening . 21

2.3.1 Data Retention (detrapping) . 21

2.3.2 Endurance (trapping) . 22

3 Modeling and Testing NAND Flash memory 25

3.1 NAND Flash Disturbances . 26

3.1.1 Program Disturbances . 27

3.1.2 Read Disturbances . 30

3.1.3 Over-Erase Disturbance (OED) . 32

3.1.4 Over-Program Disturbance (OPD) . 32

3.2 NAND Flash Circuit Level Modeling . 32

3.2.1 Intra-cell Faults . 33

v

� �� �

3.2.2 Inter-cells Faults . 33

3.3 A Comprehensive Fault Model for NAND �ash . 34

3.3.1 The BF&D Extended Test Algorithm . 36

3.3.2 Algorithm Complexity . 37

3.4 To test or not to test: an important remark . 37

4 Adaptable Error Correcting Codes Design for NAND Flash memory 39

4.1 Background and related works . 41

4.2 Optimized Architectures of Programmable Parallel LFSRs 45

4.3 BCH Code Design Optimization . 48

4.3.1 The choice of the set of polynomials . 48

4.3.2 Shared Optimized Programmable Parallel LFSRs 52

4.4 Adaptable BCH Encoder . 54

4.5 Adaptable BCH Decoder . 55

4.5.1 Adaptable Syndrome Machine . 56

4.5.2 Adaptable Berlekamp Massey Machine . 59

4.5.3 Adaptable Chien Machine . 60

4.6 Experimental Results . 62

4.6.1 Automatic generation framework . 62

4.6.2 Experimental setup . 64

4.6.3 Performance evaluations . 66

4.6.4 Synthesis Results . 68

4.7 A Cross-Layer Approach for New Reliability-Performance Trade-Offs in Multi Level

Cell (MLC) NAND Flash Memories . 71

4.8 Conclusions . 71

5 Software Management of NAND Flash memory: Issues and Challenges 75

5.1 File systems for �ash memories . 76

5.1.1 Flash �le systems in the technical and scienti�c literature 78

5.1.1.1 eNVy . 78

5.1.1.2 Core �ash �le system (CFFS) . 81

5.1.1.3 FlexFS . 84

5.1.2 Open source �ash �le systems . 89

5.1.2.1 Yet Another Flash File System (YAFFS) 89

5.1.3 Proprietary FFS . 96

5.1.3.1 exFAT (Microsoft) . 96

5.1.3.2 XCFiles (Datalight) . 96

5.1.3.3 TrueFFS (M-Systems) . 96

vi

� �� �

5.1.3.4 ExtremeFFS (SanDisk) . 97

5.1.3.5 OneFS (Isilon) . 97

5.1.3.6 emFile (Segger Microcontroller Systems) 97

5.2 Comparisons of the presented FFS . 97

5.3 FLARE: a Design Environment for Flash-based Critical Applications 101

5.3.1 FLARE Architecture . 101

5.3.1.1 System Con�guration Management 102

5.3.1.2 Flash Memory Simulator . 103

5.3.1.3 Dependability Evaluation . 103

5.3.1.4 Utilities . 104

5.3.2 FLARE Technology Roadmap . 104

5.3.3 OSs . 104

5.3.4 Flash-memory Emulator . 105

5.3.4.1 User Level Emulation . 105

5.3.4.2 Kernel Level Emulation . 106

5.3.5 Workload . 106

5.3.6 Interface . 107

5.3.7 Core Functions: YAFFS and Partitioning . 107

5.3.8 Fault Injector . 109

5.3.9 Monitor and Control . 109

5.3.10 Snapshots . 109

5.4 Wear Leveling Strategies: An Example . 110

5.4.1 Circular Buffer Wear Leveling: Modeling and Lifetime Estimation 112

5.4.2 Examples . 113

6 A Case Study: the Space Environment 117

6.1 Background . 119

6.2 NAND Flash Memory Space-oriented Design . 120

6.2.1 Storage Capacity . 121

6.2.2 Power Consumption . 121

6.2.3 Mass and Volume . 121

6.2.4 Performance . 121

6.2.5 Lifetime and Reliability . 122

6.2.6 Radiation and Error Rates . 122

6.2.7 Wrap-up . 123

6.3 Sentinel 2 . 124

6.3.1 Onboard Data Storage . 124

6.3.2 Storage capacity . 125

vii

� �� �

6.3.3 Mass and volume . 126

6.3.4 Power consumption . 126

6.3.5 Performances . 126

6.3.6 Lifetime and reliability . 126

6.3.7 Bit Error Rate (BER) . 127

A Reliability Overview 131

A.1 Mean Time Between Failures (MTBF) and Mean Time To Failure (MTTF) 131

A.2 Failure Rate . 132

A.3 Failure In Time (FIT) . 132

A.4 Reliability Functions . 133

A.5 An Example . 133

B Flash-memory Dependability: Screening and Quali�cation 135

B.1 Screening and quali�cation parameters . 135

B.1.1 Reliability Methodologies . 136

B.1.2 Arrhenius plot (accelerated-temperature data retention) 137

B.1.3 An example: �ash-memory . 138

B.2 Failure rate assessment . 140

C Principles of Error Correcting Codes 145

C.1 ECC Principles . 145

C.1.1 Error Detection . 147

C.1.2 Error Correction . 148

C.1.3 Hamming bound . 148

C.2 Bose-Chaudhuri-Hocquenhem Codes Design Flow 149

C.2.1 Design Requirements . 149

C.2.2 Parameters Evaluation . 150

C.2.3 Code Characterization . 151

C.2.4 Shortened Codes . 152

C.3 Error Detecting and Correcting Codes: The actual trend 152

C.3.1 Examples . 153

C.4 Error correcting techniques for future NAND �ash memory 155

D List of symbols and acronyms 157

Bibliography 163

viii

� �� �

LIST OF FIGURES

1.1 Sentinel 2 (with courtesy of European Space Agency) . 3

1.2 Simulated Sentinel-2 image (with courtesy of European Space Agency) 4

2.1 A possible taxonomy of the management strategies for �ash memories 10

2.2 Comparison of SLC and MLC �ash memories . 11

2.3 SLC NAND Block Architecture . 13

2.4 A 256MB Single Plane 2KB-Page SLC NAND Flash Device 14

2.5 A 512MB Dual Plane 2KB-Page SLC NAND Flash Device 14

2.6 A 1GB Dual Plane 2KB-Page MLC NAND Flash Device . 15

2.7 A 2GB Dual Plane 4KB-Page MLC NAND Flash Device . 15

2.8 High-level Flash-based Hard Disk . 16

2.9 (a) High-level and (b) low-level view of �ash architecture 20

2.10 Charge Loss Mechanism in NAND Flash . 21

2.11 Endurance in NAND Flash . 23

3.1 NAND Flash memory Organization . 27

3.2 NAND Flash memories Program Disturbances . 28

3.3 Program Disturbances in NAND Flash . 29

3.4 Read Disturbance in NAND Flash . 30

3.5 NAND Flash memory Intra-cell Faults . 33

3.6 NAND Flash memory Inter-cells Faults . 34

3.7 BF&D Extended Test Algorithm . 36

4.1 Architecture of a r -bit PPLFSR with s-bit parallelism. 44

4.2 Example of the resulting PPLFSR (a) and OPPLFSR (b) with 8-bit parallelism for x15,

x14 and x13 of p1 (x) and p2 (x) . 47

4.3 High-level architecture of the OPPLFSR . 48

4.4 MCI examples of two hypothetical partitions Si ,1 and Si ,2 50

4.5 The MCI Trend of Table 4.2 . 52

4.6 The shOPPLFSR architecture is composed by multiple OPPLFSRs 53

4.7 High-level architecture of the adaptable encoder highlighting the three main building

blocks and their main connections. 54

ix

� �� �

4.8 High-level architecture of the adaptable decoder, highlighting the four main building

blocks: the adaptable syndrome machine, the adaptable iBM machine, the adaptable

Chien machine, and the controller in charge of managing the overall decoding process 56

4.9 Architecture of the adaptable Syndrome Machine . 57

4.10 Example of the schema of a byte aligner for t ˘ 2 and s ˘ 8 58

4.11 Architecture of the proposed parallel adaptable Chien Machine with parallelism equal

to h . 61

4.12 BCH codec automatic generation framework. 63

4.13 Percentage of spare area dedicated to parity bits while changing the correction capa-

bility of the adaptable codec of Arch. 2 and Arch. 3 . 68

4.14 Worst case decoding latency for the three architectures considered. 69

4.15 Worst case dynamic power consumption of the three decoders for the three consid-

ered architectures. Power is expressed in mW. 70

5.1 Flash Translation Layer and Flash File Systems . 77

5.2 Architecture of eNVy . 79

5.3 Steps of the eNVy cleaning process . 80

5.4 An example of direct (i-class1) and indirect (i-class2) indexing for a NAND �ash 82

5.5 Flexible Cell Programming . 84

5.6 The layout of �ash blocks in FlexFS . 85

5.7 An example of Data Migration . 85

5.8 An example of Dynamic Allocation . 87

5.9 An example of Wearing Rate Control . 89

5.10 The YAFFS Architecture . 90

5.11 An Example of YAFFS Operations . 91

5.12 An example of Tnode tree for data �le . 93

5.13 An high-level overview of FLARE Design Environment . 101

5.14 A detailed view of FLARE Architecture . 104

5.15 A view of the partitioning process (Source Navigator) . 108

5.16 A view of the FLARE design environment . 110

5.17 A view of the FLARE design environment (2) . 111

5.18 A possible graphical report . 111

5.19 A 1GB MLC NAND �ash device . 112

5.20 A 4GB Dual Plane MLC NAND �ash device . 114

6.1 Sentinel 2 (with courtesy of European Space Agency) . 123

6.2 Architecture of the Sentinel 2 MMFU [129] . 125

B.1 Arrhenius Diagram of a Floating Gate device . 138

x

� �� �

B.2 A possible survival function S(t) for �ash-memory . 139

C.1 General Encoding/Decoding structure of Error Correcting Code 146

C.2 A "0000" codeword after a single-bit error . 147

C.3 Generic case Codeword . 147

C.4 The wrong "0001" read codeword . 148

C.5 BCH Code Design Flow . 149

C.6 Examples of Raw BER and Uncorrected BER . 150

C.7 ECC Example for point "Large Block..." . 153

C.8 Uncorrected BER for different Error Correcting Codes (ECCs) 153

C.9 512B-ECC16 protecting a 2KB page . 154

C.10 1KB-ECC16 protecting a 2KB page . 154

xi

� �� �

LIST OF TABLES

1.1 NAND Vs NOR �ash-memory . 2

1.2 Operations Voltage for Flash Memories . 6

2.1 NAND SLC Vs MLC . 12

3.1 NAND Flash Memory Disturbances . 35

3.2 NAND Flash Memories Circuit Level Faults . 35

4.1 An example of the representation of p1 (x) and p2 (x) . 46

4.2 An example of ›i . 51

4.3 Characteristics of the analyzed architectures . 66

4.4 Worst case Parity Bits and Encoding/Decoding Latency. shpol y denotes the maximum

number of minimal polynomials shared in the shOPPLFSR of the syndrome machine . 67

4.5 Synthesis Results . 70

4.6 Minimal polynomials expressed with the corresponding hexadecimal string of coef�-

cients . 72

4.7 Generator polynomial expressed with the corresponding hexadecimal string of coef-

�cients . 73

5.1 Comparison among the strategies of the presented FFS 98

5.2 Performance comparison among the presented FFS . 100

6.1 Comparison of DRAM and NAND �ash technology . 120

6.2 Sentinel 2 MMFU Requirements . 123

6.3 MMFU Storage Features . 125

B.1 Charge Loss Mechanisms and Related Activation Energy 137

B.2 Main parameters adopted for �ash-memory screening and quali�cation 140

B.3 Reliability Data 141

C.1 The Hamming distance between pairs of codewords of 4-bit code 146

C.2 BCH code properties . 152

xii

� �� �

Flash memory is a technology that

doesn’t depend on Moore’s Law...this

technology should go at least 10

generations!

Gordon Knight, CEO of Nanochip C
H

A
P

T
E

R

1
INTRODUCTION

Contents of this chapter

1.1 Mission-critical applications

1.2 Thesis organization

Flash memory, thanks to the advances in the manufacturing processes, is contin-

uously reducing its typical feature size. E.g., 20nm NAND �ash devices are cur-

rently available [85]. These advances are producing enormous gains in speed,

single chip array sizes, and consequent reduction in power consumption, both in abso-

lute and relative (watt/bit) terms.

The current market provides two major types of �ash-memory: NOR and NAND �ash-

memory. NOR �ash-memory is for EEPROM replacement and is more suitable for pro-

gram execution. NAND �ash-memory is more suitable for storage systems [22, 66]. They

both exploit the Floating Gate (FG) transistor, but they differ in the way of performing

operations and in the interconnections among cells1. Table 1.1 brie�y sums up the main

characteristic of these types of �ash-memory.

The main NAND �ash merit is the high speed programming/erasing, while the main

demerits are the slow random access and the impossibility of byte-programming. At the

opposite, the main NOR �ash merit is the high speed random access and the possibility

1e.g., NAND �ash adopts FN-Tunneling effect for program/erase operations and are much denser than NOR �ash

1

� �� �

1. INTRODUCTION

Standby/
Active
Power

Cost
per
bit

R/W/E Speed Capacity
Erase
Cycles

Code
Execu-

tion
Interface

NAND Med/Low Low Med/High/Med High 105 Hard I/O-like

NOR Low/Med High High/Low/Low Low 104 Easy SRAM-like

Table 1.1: NAND Vs NOR �ash-memory

of byte-programming. However, NOR �ash suffers of slow programming/erasing.

This document addresses only NAND �ash-memories. They are increasingly used for

data storage both in consumer electronics (e.g., USB �ash drives, Solid State Drive (SSD),

digital cameras, MP3 players) and mission critical applications, thanks to their:

� compactness: NAND �ash are much more compact than magnetic HDs;

� performance: they are faster than a common magnetic HD (e.g., Read/Write/Erase

about „s/„s/ms), providing a higher data throughput;

� power consumption: there is no physical movement on the disk (i.e., there are no

mechanical parts)2;

� shock-resistance: the resistance to shocks is much higher than magnetic HDs;

NAND �ash is the most suitable solution for embedded applications. Although actual

magnetic HD are moving toward higher sizes, in order to leverage the yield costs (e.g.,

1TB for about 120$), embedded applications usually do not need such a huge memory.

E.g., an embedded application like a mobile phone can ask around 16/32GB HD. Apply-

ing a magnetic HDs to such a system has two main dif�culties: (i) there is no physical

space where a magnetic HD can �t; (ii) nowadays it can be really tough or even not pos-

sible to �nd a magnetic HD with that size.

These motivations and many others are pushing for an extensive use of NAND �ash

memory as mass-memory devices. However, NAND �ash research and literature in the

mission-critical environment is not as established as in the commercial applications.

Mission-critical applications and hi-rel electronics are struggling in keeping the pace

with those advances, for multiple reasons.

2the lack of mechanical parts, in turn, implies also an higher reliability

2

� �� �

1.1. Mission-critical applications

1.1 Mission-critical applications

It is a matter of fact that NAND �ash memory devices are well established in consumer

market. However, it is not true that the same architectures adopted in the consumer

market are suitable for mission critical applications like space [16, 18]. In fact, USB

�ash drives, digital cameras, MP3 players are usually adopted to store "less signi�cant"

data which are not changing frequently (e.g., MP3s, pictures, etc.). Therefore, in spite

of NAND �ash’s drawbacks, a modest complexity is usually needed in the logic of com-

mercial �ash drives [16]. On the other hand, mission critical applications have different

reliability requirements from commercial scenarios. Moreover, they are usually playing

in a hostile environment (e.g., the space) which contributes to worsen all the issues [17].

1.1.1 An example: the space environment

Thanks to the experience at the European Space Research and Technology Centre (ES-

TEC) in Noordwijk, we can provide an example w.r.t. the critical space environment.

Fig. 1.1 shows Sentinel-2. It is the �rst space mission with a �ash-based mass-memory

device.

Figure 1.1: Sentinel 2 (with courtesy of European Space Agency)

Sentinel-1 is already �ying, while Sentinel-2 will �y soon. Once they both are opera-

3

� �� �

1. INTRODUCTION

tional, this pair of satellites will provide global coverage every �ve days, delivering high-

resolution optical imagery for Global Monitoring for Environment and Security (GMES)

land and emergency services. Fig 1.2 shows an example of a land monitoring image.

Figure 1.2: Simulated Sentinel-2 image (with courtesy of European Space Agency)

The speci�c requirements for an avionic application (e.g., Sentinel-2) must deter-

mine the �nal choice of memory used and European Space Agency’s duty is to provide

new workarounds to known reliability problems to go from (low performance) failure

immune systems to (high performance) failure tolerant systems.

Several studies and researches revealed Samsung NAND �ash memory to be more

suitable than other �ash memory to the use in the space environment [62, 100, 101, 102,

119]. However, the choice of a particular technology presents several issues.

The tremendous advances in the manufacturing processes strongly affect the appli-

cability of the studies cited above to the modern mission-critical applications. We need

clever solutions to minimize the cost related to upscreening and ruggedisation opera-

tions of newer technologies, by exploiting the previous ones.

Space usually incorrectly refers to �ash-memory as Non Volatile RAM (NVRAM). Since

NAND �ashes are not NVRAM, they have different failure modes from Random Access

Memory (RAM). Furthermore, space applications have always dealt with RAMs and not

often with NAND �ash. Therefore, the true risk is that the common fault tolerant tech-

niques (e.g., ECC) of RAMs will be applied to devices (i.e., NAND �ash) which have com-

pletely different failure modes. As a consequence, proper fault tolerant strategies are

4

� �� �

1.2. Thesis organization

needed.

Each space mission usually provides an ad-hoc solution. Therefore, we need to ex-

plore technology-independent techniques to minimize changes with technology and to

avoid the rebuilding of the solutions from scratch.

Each mission is usually provided with proprietary solution from external contractors.

It is needed a powerful framework to properly validate, verify and, generally speaking,

evaluate the proposed solutions. This environment is still missing for NAND �ash mem-

ory for space applications, because of the marginal and non-critical use of NAND �ash

in this �eld. However, this framework is already under development within this PhD ac-

tivity [17].

1.2 Thesis organization

This thesis presents the results of 3 years of research in the dependability assessment

of NAND �ash memory for mission critical applications. We aim at providing practi-

cal valuable guidelines, comparisons and tradeoffs among the huge number of dimen-

sions of fault tolerant methodologies for NAND �ash applied to critical environments.

We hope that such guidelines will be useful for our ongoing research and for all the in-

terested readers. The thesis is organized as follows.

Chapter 2

Dependability of NAND Flash Memory: An Overview

Chapter 2 introduces the main issues related to the dependability assessment of NAND

�ash devices. From a technological standpoint, all NAND �ash are not created equal and

may differ in cell types, architecture, performance, timing parameters, command set,

etc. However, they respect the following general organization. A NAND �ash-memory is

usually partitioned into blocks. Each block has a �xed number of pages and each page

has a �xed size. A block is the smallest unit for erase operations, while read and write

operations are done in terms of pages. Therefore, a page can be erased only if its whole

corresponding block is erased. In other words, the space already written cannot be over-

written unless it is erased from the �ash-memory device. This is one of the main chal-

lenging aspects of �ash-memories. Moreover, �ash-memory wears out after a certain

number of erasure cycles. If the erasure cycles of a block exceed this number, it becomes

a "bad block" and is not reliable for storing data anymore.

5

� �� �

1. INTRODUCTION

Chapter 3

Modeling and Testing NAND Flash memory

NAND �ash operations rely on FN-Tunneling, which is based on probabilistic concepts.

It is not possible to determine exactly how many electrons will enter the Floating Gate

(FG), but there is a certain probability3 that a well-de�ned number of them will do it.

FN-Tunneling requires high voltages to work properly (see Table 1.2).

VCG VD VS VB

Programming 20V Ground Ground Ground

Reading 5V+VB »1V 0V 0V

Erasing -10V+VB 4-6V Float 0V

Table 1.2: Operations Voltage for Flash Memories

Such voltages highly stress each cell of the NAND memory. In particular, they affect

the quality of the oxide of each cell, which in turn causes disturbances during read, write

and erase operations.

Chapter 3 presents a complete overview of disturbances, modeling and testing of

NAND �ash, in conjunction with a novel comprehensive fault model and the related test-

ing algorithm.

Chapter 4

Error Correcting Codes for NAND �ash memory

Fault tolerance mechanisms are systematically applied to increase reliability and en-

durance of these devices. In particular, since most available parts are COTS, redun-

dancy must be built into the system to ensure its data integrity during operating lifetime.

Redundancy, for example, can be built around multi-chip-modules (MCM), which con-

tains duplicates of one die installed in a single package. Furthermore, proper ECCs are

needed. Since independent and manufacturer studies showed NAND �ash to have ran-

dom failures, Bose-Chaudhuri-Hocquenhem (BCH), Perfect Difference Cyclic Set, Low

Density Parity Check (LDPC) and similar codes may be a suitable choice. However, each

ECC is made of several design dimensions. Choosing the most suitable ECC for a speci�c

mission is always a tradeoff among such dimensions.

3refer to Schroedinger and Heisenberg equations

6

� �� �

1.2. Thesis organization

Chapter 4 presents an adaptable Bose-Chaudhuri-Hocquenhem (BCH) based design

for NAND �ash memory. It can dynamically adapt the correcting capability to the spe-

ci�c condition of the memory. The number of parity bits and the decoding complexity

are therefore adapted depending on how many errors have to be corrected. An automatic

design environment supports the generation of such a architecture. These are two of the

most important topics of our ongoing research.

Chapter 5

Software Management of NAND Flash memory: Issues and Challenges

When using a NAND �ash as HD, the �le management is a challenging issue to address.

In fact, �ash memories manage data in a completely different manner if compared to

magnetic HDs. Operating Systems (OSs) address this issue with two main approaches:

(i) block-device emulation, and (ii) Flash File System (FFS). These methodologies are

alternatively adopted for compatibility and performance reasons respectively.

Chapter 5 introduces the main software strategies for tackling NAND �ash issues. We

propose an overall comparison among several FFSs and we present the novel FLash AR-

chitecture Evaluator (FLARE) design environment, one of the most important topic of

our ongoing research.

Chapter 6

A Case Study: the Space Environment

The most critical remark is that, although NAND �ash memories provide so many advan-

tages and are a pivotal component in consumer electronics, their use in mission-critical

applications (e.g., space) is still under research.

Most of the commercial NAND �ash would be de�cient in respect of their ability to

operate successfully and survive in the space avionics physical environment. For exam-

ple, commercial systems and components do not often have adequate operating tem-

perature ranges, packaging or radiation harness performance. The availability of fully

quali�ed space memories is not an option for cost, availability, long lead or performance

reasons. Commercial Off The Shelves (COTS) NAND �ashes need to be adopted. Since

most of them are not able to successfully operate and survive in the critical environment,

they request additional cost (i.e., upscreening, protection, redundancy, etc.).

7

� �� �

1. INTRODUCTION

However, the most recent studies point out that: (a) TID tend to become less signi�-

cant because of the very thin high-k oxides; (b) latch-up mechanisms are becoming less

severe in terms of survivability of the device but more widespread due to the physical

(3D) stacking of the bare chips; thus, in spite of a lower bias voltage, latch-up is still an is-

sue for some devices; (c) in modern NAND �ash, SEE are becoming more and more sim-

ilar to SEFI, thus most SEE can be assimilated to new classes of SEFI errors. We therefore

need strategies to tackle them at digital level to increase memory failure tolerance.

All issues are worsened by the aggressive scaling down of NAND �ash. They are ef-

fectively accelerating Moore’s Law, with a scaling factor 2 each 2 years. E.g., 20nm NAND

�ash devices are currently available [85].

Appendixes A, B and C

Appendix A provides a generic overview of the main reliability concepts. Appendix B

presents the most important issues related to the screening and quali�cation process of

NAND �ash memory. Appendix C overviews the ECCs design dimensions and issues.

Conclusions

In conclusion, the proposed dependability assessment of NAND �ash-based architec-

tures requires both exploring a huge number of design dimensions and evaluating a huge

amount of trade-offs among all such dimensions. Moreover, the reliability requirements

of critical applications (e.g., space) are much higher than other common applications

(e.g., consumer). Therefore, proper methodologies and techniques are needed to ac-

complish these strict requirements. We hope that this PhD activity will represent a criti-

cal contribution to a thorough understanding of the architectural design of NAND �ash

device within critical environments (e.g., space avionics).

We will try to introduce the concepts required to understand each topic within each

chapter. However, topics are usually related among each other. Therefore, some con-

cepts will be re-introduced, when required, in the next chapters.

8

� �� �

At least my pencil never crashes!

Unknown

C
H

A
P

T
E

R

2
DEPENDABILITY OF NAND FLASH MEMORY: AN

OVERVIEW

Contents of this chapter

2.1 Flash-memory issues and challenges

2.2 Using �ash-memory as Hard Disk (HD)

2.3Flash-memory Reliability Screening

The increasing demand for high-speed storage capability both in consumer elec-

tronics (e.g., USB �ash drives, digital cameras, MP3 players, solid state hard-

disks, etc.) and mission critical applications, makes NAND �ash memories a

rugged, compact alternative to traditional mass-storage devices such as magnetic hard-

disks.

The NAND �ash technology guarantees a non-volatile high-density storage support

that is fast, shock-resistant and very power-economic. At higher capacities, however,

�ash storage can be much more costly than magnetic disks, and some �ash products are

still in short supply. Furthermore, the continuous downscaling allowed by new technolo-

gies introduces serious issues related to yield, reliability, and endurance of these devices

[34, 59, 60, 64, 65, 91, 96]. Several design dimensions, including �ash memory technol-

ogy, architecture, �le management, dependability enhancement, power consumption,

weight and physical size, must be considered to allow a widespread use of �ash-based

9

� �� �

2. DEPENDABILITY OF NAND FLASH MEMORY: AN OVERVIEW

devices in the realization of high-capacity mass-storage systems [17].

This chapter introduces the main concepts related to the dependability assessment

of NAND �ash devices. In particular, Section 2.1 presents the most important design di-

mensions to address when dealing with �ash-memory, Section 2.2 explains how to use

NAND �ash-memory as hard-disks, while Section 2.3 addresses the most recurring con-

cepts and �gures of NAND �ash data-sheets.

2.1 Flash memory issues and challenges

Although �ash memories are a very attractive solution for the development of high-end

mass storage devices, the technology employed in their production process introduces

several reliability challenges [59, 65, 96]. The so called Flash Translation Layer (FTL) and

the native Flash File System (FFS)1 have to address these problems with proper strate-

gies and methodologies in order to ef�ciently manage the �ash memory device. Fig. 2.1

shows a possible partial taxonomy of such strategies that will be discussed in the sequel

of this section [47].

Figure 2.1: A possible taxonomy of the management strategies for �ash memories

2.1.1 Technology

The target memory technology is the �rst parameter to consider when designing a �ash-

based mass-memory device [18]. The continuous technology downscaling strongly af-

1refer to Section 2.2 for more details about FTL and FFS

10

� �� �

2.1. Flash memory issues and challenges

fects the reliability of the �ash memory cells, while the reduction of the distance among

cells may lead to several types of cell interferences [64, 91].

From the technology standpoint, two main families of �ash memories do exist: (i)

NOR �ash memories and (ii) NAND �ash memories. A deep analysis of the technological

aspects of NOR and NAND �ash memories is out of the scope of this document2. Both

technologies use �oating-gate transistors to realize non-volatile storing cells. However,

the NAND technology allows denser layout and greater storage capacity per unit of area.

It is therefore the preferred choice when designing mass-storage systems, and it will be

the only technology considered in this document.

NAND �ash memories can be further classi�ed based on the number of bit per cell

the memory is able to store. Single Level Cell (SLC) memories store a single bit per cell,

while Multi Level Cell (MLC) memories allow to store multiple bits per memory cell. Fig.

2.2 shows a comparison between SLC and MLC NAND �ash memories [72] considering

three main characteristics: capacity, performance and endurance.

Figure 2.2: Comparison of SLC and MLC �ash memories

The MLC technology offers higher capacity compared to the SLC technology at the

same cost in terms of area. However, MLC memories are slightly slower than SLC mem-

ories. MLC memories are more complex, cells are closer, there are multiple voltage ref-

erences and highly-dependable analog circuitry is requested [13]. The result is an in-

creased Bit Error Rate (BER) that reduces the overall endurance and reliability [90], thus

requiring proper error correction mechanisms at the chip and/or FTL/FFS level.

Consumer electronic products, that continuously demand for increased storage ca-

pacity, are nowadays mainly based on MLC NAND �ash memories, while mission-critical

applications that require high reliability mainly adopt SLC memories [141].
2the reader may refer to [60] for additional information

11

� �� �

2. DEPENDABILITY OF NAND FLASH MEMORY: AN OVERVIEW

The interested reader may refer to [24, 34] for more detailed comparisons between

SLC and MLC technology. Table 2.1 provide some additional �gures about these two

technologies.

Features Architecture Reliability Array Operations

Bits
/cell

Volt-
age

Bus
width

Pla-
nes

Page
size

Pages
/block

NOP
ECC-
512B

Endu-
rance

tREAD
(max)

tPROG
(avg)

tERASE
(avg)

SLC 1
3.3V,
1.8V

x8,
x16

1 or
2

2,112B 64+ 1 1 <105 25us
200 -
300us

1.5 �
2ms

MLC 2+ 3.3V x8 2+ 4,314B+ 128+ 4+ 4+ <104 50us
600 -
900us

2ms

Table 2.1: NAND SLC Vs MLC

Although some entries of the table may not be familiar to the reader, they will be

addressed shortly in the sequel of this chapter.

2.1.2 Architecture

The hardware architecture of a NAND �ash memory is usually a hierarchical structure

organized into cells, pages, blocks and planes.

Memory cells A memory cell is characterized by the so called Floating Gate (FG) inside

which electrons can be kept. According to the particular technology chosen, the memory

cell can store either 1 bit (i.e., SLC) or 2 bits (i.e., MLC). They will have either 21 (i.e., "0",

"1") or 22 (i.e., "00", "01", "10", "11") voltage reference levels respectively.

Pages A page groups a �xed number of memory cells. It is the smallest storage unit

when performing read and programming operations3. Each page includes a data area

where actual data are stored and a spare area. The spare area is typically used for system

level management, although there is no physical difference from the rest of the page.

Pages already written with data must be erased prior to write new values. A typical page

size can be 2KB plus 64B spare, but the actual trend is to increase the page size up to

4KB+128B and to exploit the MLC technology.

3MLC-based devices may allow the so called Partial Page Programming (PPP), which is the ability of programming
only a part of the page; a limited Number Of PPP (NOP) per page is allowed; PPP provides more �exibility, but increases
the possibility of the so called program disturbances (refer to Chapter 3 for more details about disturbances);

12

� �� �

2.1. Flash memory issues and challenges

Blocks A block is a set of pages. It is the smallest unit when performing erase operations.

Therefore, a page can be erased only if its corresponding block is totally erased. A block

typically contains 64 pages, with a trend to increase this number to 128 pages per block,

or even more. Since �ash memories wear out after a certain number of erasure cycles

(endurance), if the erasure cycles of a block exceed this number, the block cannot be

considered anymore reliable for storing data. A typical value for the endurance of an SLC

�ash memory is about 106 erasure cycles.

Fig. 2.3 shows the organization of a 128KB+4KB SLC NAND �ash-memory block [34].

In this example, we have 2KB+64B per page and 64 pages per block.

Figure 2.3: SLC NAND Block Architecture

Planes Finally, blocks are grouped into planes. A �ash memory with N planes can read-

/write and erase N pages/blocks at the same time [34].

2.1.2.1 Examples of NAND Flash Architecture

For sake of completeness, we provide a few examples of NAND �ash devices. Examples

includes both SLC and MLC technology [34].

256MB Single Plane SLC NAND Device Fig. 2.4 provides the �rst basic example of a single

plane 256MB NAND �ash device.

13

� �� �

2. DEPENDABILITY OF NAND FLASH MEMORY: AN OVERVIEW

Figure 2.4: A 256MB Single Plane 2KB-Page SLC NAND Flash Device

Each page is 2KB+64B long. SLC technology is used. A data register able to store a full

page is provided, and an 8-bit data bus (i.e., I/O 0-7) is used to access stored information.

512MB Dual Plane SLC NAND Device Fig. 2.5 shows an example of a 512MB dual plane

SLC NAND �ash memory architecture.

Figure 2.5: A 512MB Dual Plane 2KB-Page SLC NAND Flash Device

The double capacity w.r.t. Fig. 2.4 is accomplished by adding an additional plane4.

Each plane can store 256MB with pages of 2KB+64B. A data register able to store a full

page is provided for each plane, and an 8-bit data bus (i.e., I/O 0-7) is used to access

stored information. Doubling the planes basically doubles the operations throughput by

allowing:

� Read/Write two pages of different planes at the same time;

� Erase two blocks of different planes at the same time;

1GB Dual Plane MLC NAND Device Fig. 2.6 shows an example of a 1GB dual plane NAND

�ash device.

4Plane 1 and plane 2 are addressing the even- and odd-numbered blocks respectively

14

� �� �

2.1. Flash memory issues and challenges

Figure 2.6: A 1GB Dual Plane 2KB-Page MLC NAND Flash Device

The doubled capacity w.r.t. Fig. 2.5 is accomplished by adopting a MLC technology

with 2-bit per cell. In order to indicate this change in a simple way, Fig. 2.6 presents a

doubled number of pages (i.e., 128). The smart reader would note that the capacity is

doubled, while the area is the same of Fig. 2.5.

2GB Dual Plane 4KB-Page MLC NAND Device Fig. 2.7 shows a an example of a 2GB dual

plane NAND �ash device.

Figure 2.7: A 2GB Dual Plane 4KB-Page MLC NAND Flash Device

The double capacity w.r.t. Fig. 2.6 is accomplished by adopting a page 4KB+218B

long. Each plane can store 1GB with pages of 4KB+218B. Data registers are growing ac-

cordingly, while an 8-bit data bus (i.e., I/O 0-7) is still used to access stored information.

Note Several variations of this basic architecture can be produced, with main differ-

ences in performance, timing and available set of commands [34]. To allow interoper-

ability among different producers, the Open NAND Flash interface (ONFi) Workgroup

is trying to provide an open speci�cation (ONFi speci�cation) to be used as a reference

for future designs [104]. To March 11, 2013, Samsung and Toshiba are not member of

15

� �� �

2. DEPENDABILITY OF NAND FLASH MEMORY: AN OVERVIEW

the ONFi Workgroup. E.g., Samsung is moving toward legacy solutions like the One-

NAND�technology [114]. OneNAND will not be addressed in the sequel of this docu-

ment.

2.1.3 Address translation and boot time

Each page of a �ash is identi�ed by both a logical and physical address. Logical addresses

are provided to the user to identify a given data with a single address, regardless if the

actual information is moved to different physical locations to optimize the use of the de-

vice. The address translation mechanism that maps logical addresses to the correspond-

ing physical addresses must be ef�cient to generate a minor impact on the performance

of the memory. The address translation information must be stored in the non-volatile

memory to guarantee the integrity of the system. However, since frequent updates are

performed, a translation lookup table is usually stored in a (battery-backed) RAM (Fig.

2.8), while the �ash memory stores the metadata to build this table. The size of the ta-

ble is a trade-off between the high cost of the RAM and the performance of the storage

system.

����������	

Figure 2.8: High-level Flash-based Hard Disk

Memories with a large page size require less RAM, but they inef�ciently handle small

writes. In fact, since an entire page must be written into the �ash with every �ush, larger

pages cause more unmodi�ed data to be written for every (small) change. Small page

sizes ef�ciently handles small writes, but the resulting RAM requirements can be unaf-

fordable. At the FTL and at the FFS level, the translation table can be implemented both

at the level of pages or blocks thus allowing to trade-off between the table size and the

granularity of the table [47].

16

� �� �

2.1. Flash memory issues and challenges

2.1.4 Garbage collection

Data stored in a page of a �ash memory cannot be overwritten unless an erasure of the

full block is performed. To overcome this problem, when the content of a page must be

updated, the new data are usually saved in a new free page. The new page is marked

as valid while the old page is marked as invalid. The address translation table is then

updated to allow the user to access the new data with the same logical address. This

process introduces several challenges both at the FTL and at the FFS level.

At a certain point, free space is going to run out. When the amount of free blocks is

less than a given threshold, invalidated pages must be erased in order to free some space.

The only way to erase a page is to erase the whole block it belongs to. However, a block

selected for erasure may contain both valid and invalid pages. As a consequence, the

valid pages of the block must be copied into other free pages. The old pages can be then

marked as invalid and the selected block can be erased and made available for storage.

This cleaning activity is referred to as garbage collection. Garbage collection decreases

the �ash memory performance and therefore represents a critical aspect of the design of

a native �ash �le system. Moreover, as described in the next subsection, it may impact on

the endurance of the device. The key objective of an ef�cient garbage collection strategy

is to reduce garbage collection costs and evenly erase all blocks.

Flexible cleaning algorithms [137], greedy policies, aging functions [28] or periodical

collection approaches [130] can be adopted to minimize the cleaning cost.

2.1.5 Memory wearing

As previously introduced, �ash memories wear out after a certain number of erasure

cycles (usually between 104 and 105 cycles). If the number of erasures of a block exceeds

this number, the block is marked as a bad block since it cannot be considered anymore

reliable for storing data. The overall life time of a �ash memory therefore depends on

the number of performed erasure cycles. Wear leveling techniques [21, 23, 28, 35, 112]

are used to distribute data evenly across each block of the entire �ash memory, trying to

level and to minimize the number of erasure cycles of each block. The alternative is to

consider higher capacity �ash-memory devices, taking care of the resulting drawbacks

in terms of weight and volume [20].

There are two main wear leveling strategies: dynamic and static wear leveling. The

dynamic wear leveling only works on those data blocks that are going to be written, while

17

� �� �

2. DEPENDABILITY OF NAND FLASH MEMORY: AN OVERVIEW

the static wear leveling works on all data blocks, including those that are not involved

in a write operation. Active data blocks are in general wear-leveled dynamically, while

static blocks (i.e., blocks where data are written and remain unchanged for long periods

of time) are wear-leveled statically. The dynamic and static blocks are usually referred as

hot and cold data, respectively. In MLC memories it is important to move cold data to

optimize the wear leveling. If cold data are not moved then the related pages are seldom

written and the wear is heavily skewed to other pages. Moreover, every read to a page

has the potential to disturb data on other pages in the same block. Thus continuous

read-only access to an area can cause corruption, and cold data should be periodically

rewritten [77].

Wear leveling techniques must be strongly coupled with garbage collection algorithms

at the FTL and at the FFS level. In fact, the two tasks have in general con�icting objectives

and the good trade-off must be found to guarantee both performance and endurance.

The interested reader may refer to [21] for a comparative analysis of the most used wear

leveling algorithms.

2.1.6 Bad block management

As discussed in the previous sections, when a block exceeds the maximum number of

erasure cycles, it is marked as a bad block. Bad blocks can be detected also in new devices

as a result of blocks identi�ed as faulty during the end of production test.

Bad blocks must be detected and excluded from the active memory space. In general,

simple techniques to handle bad blocks are commonly implemented. An example is

provided by the Samsung’s XSR (Flash Driver) and its Bad Block Management scheme

[111]. The �ash memory is initially split into a reserved and a user area. The reserved

blocks in the reserved area represent a Reserve Block Pool that can be used to replace bad

blocks. Samsung’s XSR basically remaps a bad block to one of the reserved blocks so that

the data contained in a bad block is not lost and the bad block is not longer used.

2.1.7 Error correcting codes

Fault tolerance mechanisms and in particular Error Correcting Code (ECC) are system-

atically applied to NAND �ash devices to improve their level of reliability. ECCs are cost-

ef�cient and allow detecting or even correcting a certain number of errors.

18

� �� �

2.2. Using �ash-memory as Hard Disk (HD)

ECCs have to be fast and ef�cient at the same time. Several ECC schema have been

proposed based on linear codes like Hamming codes [84] or Reed-Solomon (RS) codes

[115, 127]. Among the possible solutions, Bose-Chaudhuri-Hocquenhem (BCH) codes

are linear codes widely adopted with �ash memories [33, 45, 67, 81]. They are less com-

plex than other ECCs, providing also a higher code ef�ciency. Moreover, manufacturers’

and independent studies [42, 48, 138] have shown that �ash memories tend to mani-

fest non-correlated bit errors. BCH are particularly ef�cient when errors are randomly

distributed, thus representing a suitable solution for �ash memories.

The choice of the characteristics of the ECC is a trade-off between reliability require-

ments and code complexity, and strongly depends on the target application (e.g. con-

sumer electronics vs mission-critical applications) [18].

ECC can be implemented both at the software-level, or resorting to hardware facil-

ities. Software implemented ECC allow to decouple the error correction mechanisms

from the speci�c hardware device. However, the price to pay for a software-based ECC

solution is a drastic performance reduction. For this reason, available �le systems tend to

delegate the code computation tasks to a dedicate hardware limiting the amount of op-

erations performed in software, at the cost of additional resources (e.g., hardware, power

consumption, etc.) and reduced �exibility.

The interested reader may refer to Appendix C for more details about ECCs and BCH.

Furthermore, Chapter 4 is addressing the design and the practical implementation of an

adaptable BCHs for NAND �ash-memory.

2.1.8 Testing

Flash-memory testing is quite different from testing other kinds of memory. In fact,

�ash-memory experiences disturbances or faults not conforming to any of the tradition-

ally known fault models used in testing RAMs. Firstly, we need speci�c fault models to

properly represent the most frequent physical defects. Then, we are able to devise ef�-

cient test algorithms to test them [18].

Chapter 3 about testing �ash-memory is thoroughly addressing such a peculiar issue.

2.2 Using �ash-memory as Hard Disk (HD)

Among the different issues to consider when designing a �ash-based mass-storage sys-

tem, the �le management represents a challenging problem to address [47]. In fact, �ash

19

� �� �

2. DEPENDABILITY OF NAND FLASH MEMORY: AN OVERVIEW

memories store and access data in a completely different manner if compared to mag-

netic disks. This must be considered at the OS level to grant existing applications an

ef�cient access to the stored information. Two main approaches are pursuit by OSs and

�ash memory designers: (i) block-device emulation, and (ii) development of native �le

systems optimized to operate with �ash-based devices [22, 47]. Both approaches try to

address the issues discussed in Section 2.1.

Block-device emulation refers to the development of a hardware/software layer able

to emulate the behavior of a traditional block device such as a hard-disk, allowing the OS

to communicate with the �ash using the same primitives exploited to communicate with

magnetic-disks. This layer is usually referred as Flash Translation Layer (FTL). Fig. 2.9

(left) shows a very high-level view of a FTL. The FTL "translates" the typical system calls

(e.g., open, read, write) of the OS into the proper sequence of commands for the speci�c

�ash-memory chip. Fig. 2.9 (right) shows an example of the low-level commands a �ash-

memory chip [113].

�������

����

	�
������

��������

�����������

������

Figure 2.9: (a) High-level and (b) low-level view of �ash architecture

The main advantage of this approach is the possibility of reusing available �le systems

(e.g., FAT, NTFS, ext2) to access the information stored in the �ash, allowing maximum

compatibility with minimum intervention on the OS. However, traditional �le systems

do not take into account the speci�c peculiarities of the �ash memories, and the emula-

tion layer alone may be not enough to guarantee maximum performance.

The alternative to the block-device emulation is to exploit the hardware features of

the �ash device in the development of a native Flash File System (FFS). An end-to-end

�ash-friendly solution can be more ef�cient than stacking a �le system designed for

the characteristics of magnetic hard-disks on top of a device driver designed to emulate

20

� �� �

2.3. Flash-memory Reliability Screening

disks using �ash memories [52]. For ef�ciency reasons, this approach is becoming the

preferred solution whenever embedded NAND �ash memories are massively exploited

[7, 132, 133].

The literature is rich of strategies involving block-device emulation [22, 23, 61, 66, 75].

[47] offers a comprehensive comparison of available native FFS. Furthermore, Chapter

5 discusses how to properly address the issues of using NAND �ash memories as mass-

memory devices from the software standpoint.

2.3 Flash-memory Reliability Screening

We think it is worthy to brie�y introduce a pair of concepts that will often recur during

our discussions: the data retention and the endurance of a NAND �ash device.

2.3.1 Data Retention (detrapping)

A �ash-memory basically works on a Floating Gate (FG) transistor [59]. The program-

ming operation inject electrons in the FG, while the erase operation does the opposite

operation. However, as we can imagine, the FG is subject to wearing and damages [34].

Therefore, as Fig. 2.10 shows, charge loss can occur.

Figure 2.10: Charge Loss Mechanism in NAND Flash

This phenomenon is usually referred as de-trapping. It basically causes a shift of the

threshold voltage Vth , which in turn effectively disturbs the value measured by the sense

21

� �� �

2. DEPENDABILITY OF NAND FLASH MEMORY: AN OVERVIEW

ampli�ers during read operations.

The data retention refers to the ability to maintain stored data between the time of

writing and subsequent reading of the stored information. For NAND �ash, the data re-

tention time is usually referred as detrapping time tdet (i.e., the time needed by "enough"

electrons to exit the FG).

Companies usually state in the data-sheets of their �ash-memory that, e.g.,

"(...) Reliable CMOS Floating-Gate Technology (...) Data Retention: 10

Years..." [113].

Since, for obvious reasons of time-to-market, it is not feasible to test the �ash-memory

for 10 years, accelerated strategies are performed [13]. The interested reader may refer to

Appendix B for more information about the screening process of NAND �ash-memory.

It is important to point out that the memory cell is not damaged. The block, to which

the cell/page belongs to, can be cycled (i.e., erased and re-programmed). In order to

improve data retention, it is advisable:

� limiting Program/Erase (P/E) Cycles of a block requiring a high retention;

� limiting read operations as much as possible to reduce the Read Disturbance (RD)5;

Therefore, leveling the operations is the most suitable solution for improving the data

retention. This is why wear leveling techniques play a fundamental role for accomplish-

ing a high level data retention for our NAND �ash device.

2.3.2 Endurance (trapping)

Cycling (i.e., continuously performing Program/Erase operations) has the inconvenient

side effect of trapping electrons in the dielectric [34, 59]. This phenomenon, as Fig. 2.11

shows, causes an irreversible shift of the threshold voltage Vth .

From a circuitry logic standpoint, it can be observable as a failed program or erase

operation. The cell is actually physically damaged and cannot be repaired. Therefore, we

have to retire the block to which the cell/page belongs to, by marking it as a bad block.

In their data-sheets, companies usually refer to the endurance as the number of P/E

cycles after which a block of their �ash-memory cannot store data in a reliable mode

anymore. E.g., Samsung states that their (old) K9XXG08UXM has:
5refer to Chapter cha:Testing-NAND-Flash-memory for more details about RD

22

� �� �

2.3. Flash-memory Reliability Screening

Figure 2.11: Endurance in NAND Flash

"(...) Endurance: 5K Program/Erase Cycles (with 4bit/512byte ECC)..." [113]

In order to improve the endurance of each block, it is advisable:

� checking that program/erase operations did not fail (i.e., SR0 ˘ pass/ f ai l �ag set

by P/E operations);

� if the program set SR0 ˘ f ai l , moving valid data of current block A to another block

and, then, marking the old block as bad;

� leveling the wearing of each block of the memory (i.e., Wear Leveling);

� using ECCs both for protecting data and for metadata (i.e., ECCs on the spare area);

Therefore, wear leveling techniques and ECCs to user/spare data are the most suit-

able methodologies for improving NAND �ash endurance.

23

� �� �

2. DEPENDABILITY OF NAND FLASH MEMORY: AN OVERVIEW

SUMMARY

This chapter introduced the main concepts related to the dependability as-

sessment of NAND �ash devices.

NAND �ash-memory experiences phenomena not conforming to any of the

traditionally known technology. Therefore, we addressed the peculiar issues

and challenges of NAND �ash.

Using NAND �ash-memory as an hard-disk implies to develop either a Flash

Translation Layer (FTL) or a Flash File System (FFS). Both methodolo-

gies have to implement speci�c strategies (e.g., wear leveling, ECC) to ad-

dress the issues discussed above. The complexity of the applied strategies is

strictly related with the complexity of the target application. E.g., although

they are based on the same technology, a MP3 player will not require the

same dependability of a Solid State Drive (SSD) for space applications.

Data retention and endurance are pivotal recurring concepts in NAND �ash

(data-sheets). Wear leveling techniques and ECCs play a fundamental role

for accomplishing high levels of data retention and endurance.

24

� �� �

The problem with troubleshooting

is that trouble shoots back.

Unknown

C
H

A
P

T
E

R

3
MODELING AND TESTING NAND FLASH MEMORY

Contents of this chapter

3.1NAND Flash Disturbances

3.2NAND Flash Circuit Level Modeling

3.3A Comprehensive Fault Model and Test Algorithm for NAND �ash

3.4To test or not to test: an important remark

Flash-memory testing is quite different from testing other kinds of memory. Dur-

ing read/write/erase operations, �ash memories can experience disturbances

or faults that do not conform to any of the traditionally known fault models

used in testing RAMs [18]. The rationale of �ash-memory lies in the Floating Gate (FG)

transistor1. It is basically a completely insulated metal layer in which electrons can be

trapped thanks to the tunneling effect. However, this layer is intrinsically not perfectly

reliable and leads to problems in terms of data retention and endurance2. Therefore, the

reliability issues of NAND �ash memory are due to two main reasons: (i) the technology

of the FG; (ii) the strong scaling down of technology. The high dependence on technol-

ogy implies an high complexity of the testing process. Furthermore, the cost-per-cell

pushes for a continuous scaling down of technology, which has the side effect of reduc-

1a detailed dissertation about FG-based devices is out of the scope of this chapter. The interested reader may refer to
[59, 60, 64, 143] for more detailed information about this topic

2refer to Section 2.3 for more details

25

� �� �

3. MODELING AND TESTING NAND FLASH MEMORY

ing the overall endurance and reliability [18, 90]. A complete technology-independent

test is therefore needed.

Literature is rich of approaches for NOR �ash-memory. A �rst possible approach is

to adopt a functional/logical model of NOR �ashes. [27, 30, 65, 93, 94, 96]. However,

the alternative is to model �ashes with a defect-based approach [70]. However, both

approaches usually propose test algorithm(s) related to their models.

Literature about NAND is not as rich as NOR �ash. Although these approaches can be

extended to NAND �ash memories, other methodologies were addressed. [95] provides

a simpli�ed list of fault models for NAND �ash memories, according to technological

assumptions, and the related test algorithm. [58] presents a possible Bridging Fault (BF)

model for NAND �ash memories.

All these approaches lack considering all the realistic possible permanent faults. Sec-

tion 3.1 is a complete analysis of the possible disturbances of NAND �ash-memory. The

principles of the main operations are discussed too. Section 3.2 addresses the modeling

of NAND �ash from a circuit level standpoint. Section 3.3 proposes a comprehensive

fault model and the related test algorithm which is able to test all the possible fault mod-

els of NAND �ash independently on the speci�c technology. Finally, Section 3.4 presents

some useful remarks about testing NAND �ash devices.

3.1 NAND Flash Disturbances

Disturbances are faulty behaviors resulting from the FG technology [59]. As a conse-

quence, they do belong to �ash memories, but not to the other memories. The most sig-

ni�cant ones are derived from [59] and include: (i) program disturbance faults; (ii) Read

Disturbance (RD) faults; (iii) Over-Erase Disturbance (OED) and Over-Program Distur-

bance (OPD) faults3.

All these disturbances are able to modify the original value stored inside a cell into

another one.

Reference NAND Organization In the sequel, we will refer to the basic organization of Fig.

3.1 to explain the main operations of NAND �ash-memory and the related issues.

3Erase disturbance faults (i.e., disturbance faults on erase operations) are considered within NOR testing as Word-
line Erase Disturbance (WED) and Bit-line Erase Disturbance (BED) [92], but they are usually excluded from NAND testing
[97]; they will not be considered in the sequel of this chapter

26

� �� �

3.1. NAND Flash Disturbances

Figure 3.1: NAND Flash memory Organization

Word-Line (WL) is the horizontal line. Bit-Line (BL) is the vertical line. Control gates

are connected to WL. BL connects drains together and basically represent data bus. Se-

lect Line1 (SL1) and Select Line2 (SL) connects drains and sources to power supply and

to common ground respectively. The voltage combination applied to WL and BL de�ne

an operation (i.e., read, erase or program).

During program and erase operations, high voltages are applied to the WL and the

BL. Therefore, disturbances along them are more critical in �ash memory w.r.t. RAMs

[139].

3.1.1 Program Disturbances

The state of an erased cell is logically "1". Programming a single NAND �ash-memory

cell consists into logically writing a "0". Erasing a cell, means logically writing a "1" again.

Unlike NOR and RAMs are random access memory, NAND �ash memory are referred

as sequential access memory. This means that, in order to access (to read and write) a

cell, we need to "pass" through the others, stressing them.

Fig. 3.2 shows the programming a single cell C11.

When a single NAND �ash memory cell is being programmed (i.e., 1 ! 0 transition),

all the cells in the row (i.e., Word-Line or WL) are subject to a high control gate voltage

and all the cells in the same column (i.e., Bit-Line or BL) are biased to be in the pass-

27

� �� �

3. MODELING AND TESTING NAND FLASH MEMORY

Figure 3.2: NAND Flash memories Program Disturbances

transistor state. This situation can produce unintentional transitions in any of the cells

in the WL and/or in the BL of the one being programmed.

WL1 is subject to high-voltage (e.g., 20V). All the cells of BL1 become pass-transistors.

In this case, program disturbance faults can occur in: (i) a cell sharing the common WL1;

(ii) a cell sharing the common BL1. Fig. 3.2 refers to them also as Selected Page and

Selected String respectively. Program disturbances can occur only within the block to

which the page under program belongs to [34].

According to its initial content, the faulty cell can be programmed or erased. Litera-

ture commonly refers to the transition 1 ! 0 (i.e., unintentional programming) as:

� Word-line Program Disturbance (WPD) [30, 65, 92, 93, 139] or DC-Programming

(DC ¡ P) [96]: the selected cell under program causes an unselected unprogram-

med cell on the same WL to be programmed; in Fig. 3.2, each unprogrammed cell

of the Selected Page can be unintentionally programmed;

� Bit-line Program Disturbance (BPD) [30, 65, 92, 93, 139]: the selected cell under

program causes an unselected unprogrammed cell on the same BL to be program-

med; in Fig. 3.2, each unprogrammed cell of the Selected String can be uninten-

tionally programmed;

Literature commonly refers to the transition 0 ! 1 (i.e., unintentional erasure) as:

28

� �� �

3.1. NAND Flash Disturbances

� WED [30, 65, 92, 93, 139] or DC-Erase (DC ¡ E) [96]: the selected cell under program

causes an unselected programmed cell on the same WL to be erased; in Fig. 3.2,

each unprogrammed cell of the Selected Page can be unintentionally erased;

� BED[30, 65, 92, 93, 139] or Drain Disturbance (DD) [96]: the selected cell under

program causes an unselected unprogrammed cell on the same BL to be erased;

in Fig. 3.2, each unprogrammed cell of the Selected String can be unintentionally

erased;

Fig. 3.3 provides a more generic example of program disturbances for NAND �ash.

Figure 3.3: Program Disturbances in NAND Flash

Fig. 3.3 shows the programming of two cells (i.e., Programmed Cells) which may dis-

turbance the other cells on the same WL or BL of the programmed ones (i.e., Stressed

Cells)

However, as the name suggests, this phenomenon is only a disturbance. As such, it

does not damage cells but simply interferes with their content [34].

Finally, some NAND devices are allowing the so called Partial Page Programming

(PPP). It is the ability of programming only part of a page. This ability enables higher

�exibility, but increases the chance of program disturbances.

Reducing Program Disturbance In order to leverage the program disturbance phenome-

non, it is advisable to:

29

� �� �

3. MODELING AND TESTING NAND FLASH MEMORY

� program in a sequential way the pages belonging to the same block (e.g., from 0 to

63 for SLC, from 0 to 127 of MLC);

� limit PPP as much as possible;

� program in "one-shot" MLC-based pages;

� adopt ECC strategies to recover from disturbances; e.g., 512B-ECC14 per SLC page

or at least 512B-ECC16 per MLC page;

3.1.2 Read Disturbances

Being a sequential access memory, NAND �ash are stressing (many) unselected pages

for reading just one page. Fig. 3.4 shows the read operation of a NAND �ash page.

Figure 3.4: Read Disturbance in NAND Flash

The selected page is biased with a de�ned control gate voltage (e.g., 0V), whereas all

the other unselected pages are turned into pass-transistors with a higher control gate

voltage (e.g., 5V). A suf�cient number of read operations5 performed on the same page

is able to produce unintentional transitions in the page being read. Furthermore, also

the other unselected pages may be disturbed.

4it means 1-bit correctable (i.e., 1 error tolerated) each 512Bytes
5this �gure is strictly linked with technology

30

� �� �

3.1. NAND Flash Disturbances

If after consecutive reads the selected page may change its state, then a Read Distur-

bance (RD) occurred. Read disturbances can occur: (i) only within the block to which

the page being read belongs to; (ii) only in the unselected pages [34].

The RDs for NAND �ash memories are well known in literature [65, 97, 139] as:

� RDA(E): the selected programmed cell is read and its content is erased;

� RDA(P): the selected erased cell is read and is programmed;

� RDU(E): the selected cell is read and another unselected programmed cell is era-

sed;

� RDU(P): the selected cell is read and another unselected erased cell is program-

med;

However, as the name suggests, this phenomenon is only a disturbance. As such, it

does not damage cells but simply interferes with their content [34].

Reducing Read Disturbance To leverage the read disturbance phenomenon, it is advis-

able to [34]:

� (if possible) level read operations on pages;

� adopt a RDs counter for each block;

� set an ECC emergency threshold;

� as a "rule of thumb", limit to 106 (SLC) and 105(MLC) the reads of each block;

� erasing a block "reset" its RD count; when either the ECC threshold or the "rule of

thumb" is exceeded, we move valid data to a free block and we erase the old one;

� adopt ECC strategies to recover from disturbances; e.g., 512B-ECC16 per SLC page

or at least 512B-ECC16 per MLC page;

6it means 1-bit correctable (i.e., 1 error tolerated) each 512Bytes

31

� �� �

3. MODELING AND TESTING NAND FLASH MEMORY

3.1.3 Over-Erase Disturbance (OED)

When a �ash memory block is erased, all the electrons trapped in the FGs of the cells of

a block are simultaneously removed. However, it is important to remark that:

"...not all the cells have equal yield or identical physical conditions..."[34]

Therefore, there may be some cells that are already erased before (i.e., "faster" than)

the others. These cells will have a net positive charge in the FG, resulting in a very low

threshold [59]. This phenomenon is referred as Over-Erase Disturbance (OED). It is dif-

�cult to program cells affected by OED, because they need more program cycles than

usual. The result is that automatic Program&Verify operations are slowed-down.

3.1.4 Over-Program Disturbance (OPD)

At the opposite, when a page is programmed, there may be some cells that are already

programmed before (i.e., "faster" than) the others. These cells will have excessive nega-

tive charge in the FG, resulting in a very high threshold [59]. This phenomenon is referred

as Over-Program Disturbance (OPD). It is dif�cult to erase cells affected by OPD, because

they would need more erase cycles than usual.

Let us point out another important thing. A cell affected by OPD can prevent the

correct reading of other cells. E.g., let consider Fig. 3.4 and assume that there is an over-

programmed cell on a particular BL. We want to read another cell in the same BL of the

over-programmed cell. Note that all the cells on the same BL are connected in series

and the over-programmed cell is behaving as an open circuit (i.e., absence of current

detected). Therefore, the result of each read operation on a cell on the same BL will

produce always a logic zero.

3.2 NAND Flash Circuit Level Modeling

An alternative approach is to model physical defects of �ash memory at the circuit level

(i.e., as resistors and capacitors). There are three main contributions to all the possible

defects of NAND �ash memory: (i) intra-cell faults, (ii) inter-cells faults and (iii) cell to

cell interferences [58, 64, 91].

32

� �� �

3.2. NAND Flash Circuit Level Modeling

3.2.1 Intra-cell Faults

Fig. 3.5 shows the shorts within a Floating Gate transistor cell, i.e., Control Gate (CG),

Floating Gate (FG) , Drain (D), Source (S) and Bulk (B). In particular, the possible shorts

are between CG-FG, FG-D, FG-S, FG-B, CG-D, CG-S and D-S.

Figure 3.5: NAND Flash memory Intra-cell Faults

It can be shown that all the bridging faults of Fig. 3.5 are equivalent to a Stuck-At Fault

behavior. Therefore, they are reported in Table 3.2 as SAF.

3.2.2 Inter-cells Faults

Fig. 3.6 shows the possible faults between different cells of a NAND �ash memory.

Resistive shorts between adjacent cells in the same column/row Fig. 3.6.(a) shows the sho-

rts between adjacent cells in the same column. Also the Select Gate (SG) is considered. In

particular, they are shorts between FG-FG, FG-SG1, FG-SG2, CG-CG, CG-SG1, CG-SG2.

Fig. 3.6.(b) shows the shorts between adjacent cells in the same row. In particular,

they are shorts between FG-FG, D-D, S-S and BL-BL [58].

We will refer at the bridging faults of Fig. 3.6.(a) and Fig. 3.6.(b) as Coupling Fault

between Adjacent Cells (CFAC). In particular, Table 3.2 reports the CFAC for each row

and each column are reported as CFACr ow and CFACcol respectively.

Resistive shorts in the selected transistors Fig. 3.6.(c) shows the shorts in the selected

transistors. They are Bitline, Column, Word-line, Select and Gate line opens. It can be

shown that the faults of Fig. 3.6.(c) are equivalent to a Stuck-At Fault (SAF) behavior.

Therefore, they are reported in Table 3.2 as SAF.

33

� �� �

3. MODELING AND TESTING NAND FLASH MEMORY

Figure 3.6: NAND Flash memory Inter-cells Faults

Open faults Fig. 3.6.(d) shows the open faults. They are shorts between SG1-D, SG1-S,

SG2-D, SG2-CG. It can be shown that the faults of Fig. 3.6.(d) are equivalent to a Stuck-At

Fault (SAF) behavior. Therefore, they are reported in Table 3.2 as SAF.

Bit-Line coupling faults The parasitic capacitances connecting the BLs can produce er-

rors; Fig. 3.6.(e) shows how two hypothetical parasitic capacitors connecting BL1 with

BL2 and BL2 with BL3 could lead to possible errors when reading cells belonging to the

centering column BL2. Table 3.2 refers to this phenomenon as BL Coupling (BC) among

three adjacent BLs.

Cell to cell interferences The Capacitive Coupling (CC) faults of [64] are functionally

identical to CFACrow. The Direct Coupling or Direct �eld effects (DC) faults of [91] are

functionally identical to CFACcol. Therefore, they are both already included in our com-

prehensive fault model.

3.3 A Comprehensive Fault Model for NAND �ash

Table 3.1 sums up NAND �ash memory disturbances.

Table 3.2 sums up the NAND �ash circuit level faults respectively.

34

� �� �

3.3. A Comprehensive Fault Model for NAND �ash

Disturbance
Initial state of

faulty cell
Fault Excitation

Resulting
Error

WPD Cix=’1’ Program any Cij with j 6˘ x Cix=’0’

WED Cix=’0’ Program any Cij with j 6˘ x Cix=’1’

BPD Cxj=’0’ Program any Cij with i 6˘ x Cxj=’1’

BED Cxj=’1’ Program any Cij with i 6˘ x Cxj=’0’

RDA(P) Cij=’1’ Read Cij N times Cij=’0’

RDA(E) Cij=’0’ Read Cij N times Cij=’1’

RDU(P) Cxj=’1’ Read Cij with i 6˘ x Cxj=’0’

RDU(E) Cxj=’1’ Read Cij with i 6˘ x Cxj=’1’

OED Cij=’1’ Program Cij Cij=’1’

OEP Cxj=’0’ Erase any Cij with i 6˘ x Cij=’0’

Table 3.1: NAND Flash Memory Disturbances

Fault
Initial state of faulty

cell
Fault Excitation Resulting Error

SAF0 Cij=’0’ Erase Cij Cij=’0’

SAF1 Cij=’1’ Program Cij Cij=’1’

CFACrow Cij=’1’, Ci+1,j=’1’ Program Cij
Cij=’1’, Ci+1,j=’1’ or

Cij=’0’, Ci+1,j=’0’

CFACcol Cij=’1’, Ci,j+1=’1’ Program Cij
Cij=’1’, Ci,j+1=’1’ or

Cij=’0’, Ci,j+1=’0’

BC
Cij=’1’, Ci,j+1=’1’

Ci,j+2=’1’
Program Ci,j+1 Ci,j+1=’1’

Table 3.2: NAND Flash Memories Circuit Level Faults

35

� �� �

3. MODELING AND TESTING NAND FLASH MEMORY

Therefore, Table 3.1 and 3.2 de�ne a comprehensive set of fault models for NAND

�ash memory. We do not perform any simpli�cation or reduction based on speci�c tech-

nology information for sake of generalization. Therefore, the de�ned fault model is also

technology independent.

3.3.1 The BF&D Extended Test Algorithm

We present a novel test method for NAND Flash memories. It covers the fault models

of Tables 3.1 and 3.2. Our test algorithm is an extension of the Bridging Fault & Distur-

bances (BF&D) algorithm proposed in [70]. BF&D was originally developed for NOR �ash

memories. Two main aspects of the algorithm have been modi�ed: (i) data representa-

tion has been adapted in order to have a page oriented algorithm; (ii) the number of

read operations has been devised to cover the Read Disturbance discussed in Subsection

3.1.2.

Fig. 3.7 graphically describes the steps of the BF&D Extended algorithm. We suppose

to have a block made of m rows and n columns, with m ˘ n ˘ 4.

Figure 3.7: BF&D Extended Test Algorithm

Step 1 erases the block of the �ash. Step 2 program each page of the block with a

chessboard pattern. Step 3 performs k read operations on each page of the block. Step

4 erases the whole block again. Step 5 program each page of the block with the opposite

chessboard pattern of Step 2. Step 6 performs k read operations on each page of the

block. k is a selectable parameter of the algorithm7. It is strictly linked with technology

7for simplicity, Fig. 3.7 has k ˘ 2

36

� �� �

3.4. To test or not to test: an important remark

as discussed in Subsection 3.1.2.

3.3.2 Algorithm Complexity

Eq. 3.1 shows the test time per block.

TestBl ockT i me ˘ (2 ¢ E ¯ 2 ¢ k ¢ n ¢ R ¯ 2 ¢ n ¢ P) (3.1)

E is the block erase time, n is the number of pages in a block, R is the page read time,

P is the page program time. Eq. 3.2 shows the total time needed to test the NAND �ash.

Tot alTestT i me ˘ (N ¢ TestBl ockT i me) (3.2)

N is the number of blocks composing the memory.

3.4 To test or not to test: an important remark

Testing a commercial NAND �ash memory can be tough in terms of feasibility and com-

plexity. In fact, the Flash Translation Layer can prevent the tester from accessing to the

desired page/block because of the implemented WL/GC transparent strategies. In order

to avoid this problem, we should have access to the bare chip or at least to the memory

controller and it is not always the case. This is why testing is usually done after produc-

tion. Vendors have directly access to the bare chip. Therefore, they can easily test and

understand the quality of their NAND chips [3].

Flash File System may represent an easier way to test NAND �ashes, since there is no

FTL and they have direct access to the NAND chip. However, testers have to deal with

the so called Memory Technology Device (MTD) layer8. Furthermore, FFS potentialities

are limited to embedded NAND �ash and cannot be extended to commercial ones (e.g.,

USB sticks).

In conclusion, testing is usually adopted for improving the NAND �ash-memory yield,

while it is less feasible during the life of the device. Any algorithm aimed at testing the

faults of Tables 3.1 and 3.2 is a valid option for screening NAND �ash quality. The choice

of the algorithm is done accordingly with the (company) requirements in terms of accu-

racy (e.g., how many faults to test) and complexity (e.g., test time). Finally, after produc-

8refer to Chapter 5 for more details

37

� �� �

3. MODELING AND TESTING NAND FLASH MEMORY

tion, ECC and WL techniques will play a fundamental role for guaranteeing and improv-

ing the overall data retention and endurance of the NAND �ash device.

SUMMARY

This chapter introduced the main concepts related to �ash-memory testing.

Testing is commonly adopted to understand the quality of the �ash and to

improve the yield. However, it is less feasible during the life of the NAND de-

vice. At this stage, developers are mainly exploiting ECC and WL techniques.

Flash-memory relies on the Floating Gate (FG) technology. However, FG is

intrinsically not perfectly reliable and, combined with the rapid technology

scaling down, it may lead to problems in terms of data retention and en-

durance. Since testing cannot depend on the particular technology adopted,

we need a "technology independent" analysis.

Firstly, we analyzed disturbances. They are faulty behavior belonging only

to �ash-memory and to to the other memories. They do not damage the

cells but simply interfere with their content. Each operation (i.e., read, pro-

gram/write and erase) implies a related possible disturbances (i.e., Read

Disturbance, Program Disturbance, Over-Program Disturbance and Over-

Erase Disturbance). To complete this approach, we modeled the NAND

�ash in terms of resistor and capacitors. After this step, we were able to

set up a comprehensive fault model which is independent from technology.

Finally, we presented a possible test algorithm able to cover all the proposed

faults.

38

� �� �

To err is human, to really foul things

up requires a computer.

Bill Vaughan

C
H

A
P

T
E

R

4
ADAPTABLE ERROR CORRECTING CODES DESIGN FOR

NAND FLASH MEMORY

Contents of this chapter

4.1 Background and related works

4.2 Optimized Architectures of Programmable Parallel LFSRs [45]

4.3 BCH Code Design Optimization [45]

4.4 Adaptable BCH Encoder [45]

4.5 Adaptable BCH Decoder [45]

4.6 Experimental Results [45]

4.7 A Cross-Layer Approach for New Reliability-Performance Trade-Offs in MLC NAND

Flash Memories [142]

4.8 Conclusions [45]

NAND �ash memories are a widespread technology for the development of

compact, low-power, low-cost and high data throughput mass storage sys-

tems for consumer/industrial electronics and mission critical applications.

Manufacturers are pushing �ash technologies into smaller geometries to further reduce

the cost per unit of storage. This includes moving from traditional SLC technologies, able

to store a single bit of information, to MLC technologies, storing more than one bit per

cell.

39

� �� �

4. ADAPTABLE ERROR CORRECTING CODES DESIGN FOR NAND FLASH MEMORY

The strong transistor miniaturization and the adoption of an increasing number of

levels per cell introduce serious issues related to yield, reliability, and endurance [34,

42, 60, 64, 91]. Error correction codes (ECCs) must therefore be systematically applied.

ECCs are a cost-ef�cient technique to detect and correct multiple errors [2]. Flash mem-

ories support ECCs by providing spare storage cells dedicated to system management

and parity bit storage, while demanding the actual implementation to the application

designer [39, 113]. Choosing the correction capability of an ECC is a trade-off between

reliability and code complexity. It is therefore a strategic decision in the design of a �ash-

based storage system. A wrong choice may either overestimate or underestimate the

required redundancy, with the risk of missing the target failure rate. In fact, the reliabil-

ity of a NAND �ash memory continuously decreases over time, since program and erase

operations are somehow destructive. At the early stage of their life-time, devices have a

reduced error-rate compared to intensively used devices [141]. Therefore, designing an

ECC system whose correction capability can be modi�ed in-�eld is an attractive solu-

tion to adapt the correction schema to the reliability requirements the �ash encounters

during its life-time, thus maximizing performance and reliability.

This chapter proposes the hardware implementation of an optimized adaptable Bose

- Chaudhuri - Hocquenghem (BCH) codec core for NAND �ash memories and a related

framework for its automatic generation.

Even though there is a considerable literature about ef�cient BCH encoder/decoder

software implementations [1, 31, 32], modern �ash-based memory systems (e.g., Solid

State Drives (SSDs)) usually resort to speci�c high speed hardware IP core [33, 81] in

order to minimize the memory latency. This is motivated by the fact that contemporary

high-density MLC �ash memories require a more powerful error correction capability,

and, at the same time, they have to meet more demanding requirements in terms of

read/write latency.

Given this premise, we will tackle a BCH hardware implementation for encoding and

decoding tasks. In particular, the main contribution of the proposed architecture is

its adaptability. It enables in-�eld selection of the desired correction capability, cou-

pled with high optimization that minimizes the required resources. Experimental results

compare the proposed architecture with typical BCH codecs proposed in the literature.

The implementation is supported by the novel ADaptive ECC Automatic GEnera-

tor (ADAGE) design environment . This tool is able to automatically generate, in a para-

40

� �� �

4.1. Background and related works

metric way, the whole code for each possible architecture. ADAGE concepts will shortly

introduced, when required, in the next sections.

The chapter is organized as follows: Section 4.1 shortly introduces basic notions and

related works. Sections 4.2 and 4.3 present a solution to reduce resources overhead while

Section 4.4 and 4.5 overview the proposed adaptable architecture. Section 4.6 provides

experimental results, Section 4.7 overviews a join research with Universita’ degli Studi di

Ferrara and Section 4.8 summarizes the main contributions of the work and concludes

the chapter.

4.1 Background and related works

Several hard- and soft-decision error correction codes have been proposed in the litera-

ture, including Hamming based block codes [57, 84], Reed-Solomon codes [108], Bose-

Chaudhuri-Hocquenghem (BCH) codes [12], Goppa codes [10], Golay codes [54], etc.

Even though selected classes of codes such as Goppa codes have been demonstrated

to provide high correction ef�ciency [10], when considering the speci�c application do-

main of �ash memories, the need to trade-off code ef�ciency, hardware complexity and

performances have moved both the scienti�c and industrial community toward a set of

codes that enable very ef�cient and optimized hardware implementations [33, 71].

Old SLC �ash designs used very simple Hamming based block codes. Hamming co-

des are relatively straightforward and simple to implement in both software and hard-

ware, but they offer very limited correction capability [57, 84]. As the error rate increased

with successive generations of both SLC and MLC NAND �ash memories, designers mo-

ved to more complex and powerful codes including Reed-Solomon (RS) codes [108] and

Bose-Chaudhuri-Hocquenghem (BCH) codes [12]. Both codes are similar and belong

to the larger class of cyclic codes which have ef�cient decoding algorithms due to their

strict algebraic architecture, and enable very optimized hardware implementations. RS

codes perform correction over multi-bit symbols and are better suited when errors are

expected to occur in bursts, while BCH codes perform correction over single-bit sym-

bols and better perform when bit errors are not correlated, or randomly distributed. In

fact, several studies have reported that NAND �ash memories manifest non-correlated

or randomly distributed bit errors over a page [138] making BCH codes more suitable for

their protection.

An exhaustive analysis of the mathematics governing BCH code is out of the scope of

41

� �� �

4. ADAPTABLE ERROR CORRECTING CODES DESIGN FOR NAND FLASH MEMORY

this chapter. Only those concepts required to understand the proposed hardware imple-

mentation will be shortly discussed. It is worth to mention here that, since several pub-

lications proposed very ef�cient hardware implementations of Galois �elds polynomial

manipulations, such manipulation will be used in both encoding and decoding opera-

tions [73, 81, 108].

Given a �nite Galois �eld GF (2m) (with m ‚ 3), a t-error-correcting BCH code, de-

noted as BC H [n,k, t], encodes a k-bit message bk¡1bk¡2 . . .b0 (bi 2 GF (2)) to a n-bit

codeword bk¡1bk¡2 . . .b0 pr ¡1pr ¡2 . . . p0 (bi , pi 2 GF (2)) by adding r parity bits to the

original message. The number r of parity bits required to correct t errors in the n-bit

codeword is computed by �nding the minimum m that solves the inequality k ¯ r •

2m ¡ 1, where r ˘ m ¢ t . Whenever n ˘ k ¯ r ˙ 2m ¡ 1, the BCH code is called short-

ened or polynomial. In a shortened BCH code the codeword includes less binary sym-

bols than the ones the selected Galois �eld would allow. The missing information sym-

bols are imagined to be at the beginning of the codeword and are considered to be 0.

Let fi be a primitive element of GF (2m) and ˆ1 (x) a primitive polynomial with fi as a

root. Starting from ˆ1 (x) a set of minimal polynomials ˆi (x) having fii as root can be

always constructed [98]. For the same GF (2m), different valid ˆ1 (x) may exist [131]. The

generator polynomial g (x) of a t-error-correcting BCH code is computed as the Least

Common Multiple (LCM) among 2t minimal polynomials ˆi (x) (1 • i • 2t). Given that

ˆi (x) ˘ ˆ2i (x) (8i 2 [1, t]) [2], only t minimal polynomials must be considered and g (x)

can therefore be computed as:

g (x) ˘ LC M
£
ˆ1 (x) ,ˆ3 (x) ...,ˆ2t¡1 (x)

⁄
(4.1)

When working with BCH codes, the message and the codeword can be represented

as two polynomials: (1) b(x) of degree k ¡ 1 and (2) c (x) of degree n ¡ 1. Given this rep-

resentation, both the encoding and the decoding process can be de�ned by algebraic

operations among polynomials in GF (2m). The encoding process can be expressed as:

c (x) ˘ m (x) ¢ xr ¯ Rem
¡
m (x) ¢ xr ¢

g (x) (4.2)

where Rem(m (x)¢xr)g (x) denotes the remainder of the division between the message left

shifted of r positions and the generator polynomial g (x). This remainder represents the

r parity bits to append to the original message.

42

� �� �

4.1. Background and related works

The BCH decoding process searches for the position of erroneous bits in the code-

word. This operation requires three main computational steps: 1) syndrome computa-

tion, 2) error locator polynomial computation, and 3) error position computation.

Given the selected correction capability t , the decoding process requires �rst the

computation of 2t syndromes of the codeword c (x), each associated with one of the 2t

minimal polynomials ˆi (x) generating the code. Syndromes are calculated by �rst com-

puting the remainders Ri (x) of the division between c (x) and each minimal polynomial

ˆi (x). If all remainders are null, c(x) does not contain any error and the decoding stops.

Otherwise, the 2t syndromes are computed by evaluating each remainder Ri (x) in fii :

Si ˘ Ri
¡
fii ¢. Practically, according to (4.1), given that ˆi (x) ˘ ˆ2i (x), only t remainders

must be computed and evaluated in 2t elements of GF (2m).

The most used algebraic method to compute the coef�cients of the error locator poly-

nomial from the syndromes is the Berlekamp-Massey algorithm [11]. Since the complex-

ity of this algorithm grows linearly with the correction capability of the code, it enables

ef�cient hardware implementations. The equations that link syndromes and error loca-

tor polynomial can be expressed as:

0

BBBBBB@

St¯1

St¯2
...

S2t

1

CCCCCCA
˘

0

BBBBBB@

S1 S2 ... St

S2 S3 ... St¯1
...

...
...

St St¯1 ... S2t¡1

1

CCCCCCA
¢

0

BBBBBB@

‚t

‚t¡2
...

‚0

1

CCCCCCA
(4.3)

The Berlekamp-Massey algorithm iteratively solves the system of equations de�ned

in (4.3) using consecutive approximations.

Finally, the Chien Machine searches for the roots of the error locator polynomial ‚ (x)

computed by the Berlekamp-Massey algorithm [29]. It basically evaluates the polyno-

mial ‚ (x) in each element fii of GF (2m). If fii satis�es the equation 1¯‚1fii ¯‚2fi2i ¯...¯

‚t
¡
fii ¢t ˘ 0, fii is a root of the error locator polynomial ‚ (x), and its reciprocal 2m ¡ 1 ¡ i

reveals the error position. In practice, this computation is performed exploiting the iter-

ative relation:

‚
‡
fi j ¯1

·
˘ ‚0 ¯

t¡1X

k˘1

•
‚k

‡
fi j

·k
‚

fik (4.4)

Several publications proposed optimized hardware implementations of BCH codecs

with �xed correction capability [33, 56, 71, 82, 107, 127]. However, to the best of our

43

� �� �

4. ADAPTABLE ERROR CORRECTING CODES DESIGN FOR NAND FLASH MEMORY

knowledge, only Chen et al. proposed a solution allowing limited adaptation by extend-

ing a standard BCH codec implementation [25]. One of the main contributions of Chen

et al. is a Programmable Parallel Linear Feedback Shift Register (PPLFSR), whose generic

architecture is reported in Fig. 4.1. It enables to dynamically change the generator poly-

nomial of the LFSR. This is a key feature in the implementation of an adaptable BCH

encoder.

Figure 4.1: Architecture of a r -bit PPLFSR with s-bit parallelism.

The gray box of Fig. 4.1 highlights the basic adaptable block of this circuit. It exploits

a multiplexer, controlled by one of the coef�cients of the desired divisor polynomial,

to dynamically insert an XOR gate at the output of one of the related D-type �ip-�ops

composing the register. The s vertical stages of the circuit implement the parallelism of

the PPLFSR computing the state at clock cycle i ¯s, based on the state at cycle i . However,

this solution has high overhead. In fact such PPLFSR is able to divide by all possible r -bit

polynomials, while just well selected divisor polynomials are required.

Although Chen at al. deeply analyze the encoding process and the issues related to

the storage of parity bits, the decoding process is scarcely analyzed, without provid-

ing details on how adaptability is achieved. Four different correction modes, namely

t ˘ (9,14,19,24) are considered in [25] for a BCH code de�ned on GF (213) with a block

size of 512B (every 2KB page of the �ash is split in four blocks). The selection of the

4 modes is based on considerations about the number of parity bits to store. How-

44

� �� �

4.2. Optimized Architectures of Programmable Parallel LFSRs

ever, there is no provision to understand whether additional modes can be easily im-

plemented. As an example, when selecting correction modes in which the size of the

codeword is not a multiple of the parallelism of the decoder, alignment problems arise,

which are completely neglected in the paper.

4.2 Optimized Architectures of Programmable Parallel LFSRs

In this section, we will introduce an optimized block to perform an adaptable remain-

der computation. In fact, one of the most recurring operations in BCH encoding/de-

coding is the remainder computation between a polynomial representing a message to

encode/decode and a generator/minimal polynomial of the code, that depends on the

selected correction capability. The PPLFSR of Fig. 4.1 can perform this operation [25].

A r -bit PPLFSR can potentially divide by any r -bit polynomial by properly controlling

its con�guration signals (g0 . . . gr ¡1). However, in BCH encoding/decoding, even consid-

ering an adaptable codec, just well selected divisor polynomials are required (e.g., the

generators polynomials g9 (x), g14 (x), g19 (x), g24 (x) of the four implemented correction

modes of [25]). This computational block is therefore highly inef�cient. Moreover, the

set of divisor polynomials required in a BCH codec usually share common terms among

each other. Such terms can be exploited to generate an optimized PPLFSR (OPPLFSR)

architecture.

Let us consider, as an example, the design of a r =15-bit programmable LFSR able to

divide by two polynomials p1(x) ˘ x15 ¯ x13 ¯ x10 ¯ x5 ¯ x3 ¯ x ¯ 1 and p2(x) ˘ x13 ¯ x12 ¯

x10 ¯ x5 ¯ x4 ¯ x3 ¯ x2 ¯ x ¯ 1 using a s=8-bit parallelism.

A traditional PPFLSR implementation would require 15 £ 8 ˘ 120 gray boxes (i.e., 120

XORs-MUXs). According to this implementation, this PPLFSR could divide by any 215 ˘

32,768 possible 15-bit polynomials, even if just 2 polynomials (i.e., the 0.006% of its full

potential) are required.

An analysis of the target divisor polynomials can be exploited to optimize the PPLFSR

architecture. Table 4.1 reports the binary representation of the two polynomials.

Looking at Table 4.1, three categories of polynomial terms can be identi�ed:

1. Common terms (represented in bold), i.e., terms de�ned in all considered polyno-

mials (x13, x10, x5, x3, x, and 1 in Table 4.1). For these terms, an XOR will be always

45

� �� �

4. ADAPTABLE ERROR CORRECTING CODES DESIGN FOR NAND FLASH MEMORY

Table
4.1:An

exam
ple

ofthe
representation

ofp
1 (x) and

p
2 (x)

x
15

x
14

x
13

x
12

x
11

x
10

x
9

x
8

x
7

x
6

x
5

x
4

x
3

x
2

x
1

1

p
1 (x)

1
0

1
0

0
1

0
0

0
0

1
0

1
0

1
1

p
2 (x)

0
0

1
1

0
1

0
0

0
0

1
1

1
1

1
1

46

� �� �

4.2. Optimized Architectures of Programmable Parallel LFSRs

required in the PPLFSR, thus saving the area dedicated to the MUX and the related

control logic.

2. Missing terms (represented in underlined italic zeros), i.e., terms not de�ned in any

of the considered polynomials, (x14, x11, x9, x8, x7 and x6 in Table 4.1). For these

terms both the XOR and the related MUX can be avoided.

3. Speci�c terms, i.e., terms that are speci�c of a subset of the considered polynomials

(x15, x12, x4, x2 in Table 4.1). These terms are the only ones actually required.

We can therefore implement an optimized programmable LFSR (OPPLFSR) with th-

ree main building blocks:

1. each common present term (i.e., columns of all "1" of Table 4.1) needs an XOR,

only;

2. each common absent term (i.e., columns of all "0" of Table 4.1) needs neither XOR

nor MUX;

3. each speci�c term has a gray box, as Fig. 4.1;

Fig. 4.2 shows the resulting design for the portion x15, x14 and x13.

(a) PPLFSR (b) OPPLFSR

Figure 4.2: Example of the resulting PPLFSR (a) and OPPLFSR (b) with 8-bit parallelism for x15,
x14 and x13 of p1 (x) and p2 (x)

This optimization also applies on polynomials with very different lengths. As an ex-

ample, an OPPLFSR with single bit parallelism and able to divide by p1(x) ˘ x225 ¯ x ¯ 1

and p2(x) ˘ x ¯ 1, would only require a single adaptable block, compared to the 226

blocks required by a normal PPLFSR. Furthermore, the advantage of the OPPLFSR in-

creases with the parallelism of the block. In fact, with the same 2 polynomials, a 8-bit

OPPLFSR would require 8 adaptable blocks compared to 226£8 ˘ 1,808 adaptable blocks

of a traditional PPLFSR.

47

� �� �

4. ADAPTABLE ERROR CORRECTING CODES DESIGN FOR NAND FLASH MEMORY

For sake of generality, Fig. 4.3 shows the high-level architecture of a generic OPPLFSR.

Such a block is able to divide by a set p1 (x) , ..., pM (x) of polynomials. We denote with q

the number of required gray boxes.

Figure 4.3: High-level architecture of the OPPLFSR

The OPPLFSR interface includes: a s-bit input port (b) used to feed the data, a
§

log2 (M)
¤

-

bit input port (sel) used to select the polynomial of the division, and a s-bit port (o)

providing the result of the division. Two blocks compose the OPPLFSR: OPPLFSRnet and

ROM. The OPPLFSRnet represents the complete network, partially shown in the example

of Fig. 4.2. Given the output of the ROM, the q-bit signal g controls the MUXs of the q

gray boxes (Fig. 4.2) according to the selected polynomial. The ROM is optimized ac-

cordingly with the design of the OPPLFSR, which leads to a reduced ROM and to a lower

area overhead w.r.t. a full PPLFSR.

4.3 BCH Code Design Optimization

In this section, we address �rst the issue of choosing the most suitable set of polynomials

for an optimized adaptable BCH code. Then, we propose a novel block, shared between

the adaptable BCH encoder and the decoder, which reduces the area overhead of the

resulting codec core.

4.3.1 The choice of the set of polynomials

The optimization offered by the OPPLFSR introduced in Section 4.2, may become in-

effective if not properly exploited. It depends on the number and on the terms of the

shared divisor polynomials implemented in the block. As an example, an excessive num-

48

� �� �

4.3. BCH Code Design Optimization

ber of shared polynomials may make it dif�cult to �nd common terms, leading to an un-

willed increase of the area overhead. Therefore, the choice of the polynomials to share is

critical and must be properly tailored to the overall design.

Let us denote by › the set of t generators gi (x) and t minimal polynomials ˆi which

fully characterize an adaptable BCH code (see Section 4.1). Since for GF (2m) several

primitive polynomials ˆi (x) can be used to de�ne the code, several set ›i can be con-

structed. Choosing the most suitable set ›i is critical to obtain an effective design of the

OPPLFSR. On the one hand, it can be shown that the complexity of ›i increases with

m [79, 98, 131]. On the other hand, the current trend is to adopt BCH codes with high

values of m (e.g., GF (215)) because current �ash devices features a worse bit error rate

[42]. Therefore, a simple visual inspection of each set ›i is not feasible to �nd the most

suitable set of polynomials. An algorithmic approach is therefore mandatory.

Each set ›i can be classi�ed resorting to a Maximum Correlation Index (MCI). We de-

�ne as MC I
¡
p1, p2, ..., pN

¢
the maximum number of common terms shared by a generic

set of polynomials p1, p2, ..., pN . As an example, the polynomials of Table 4.1 have MC I
¡
p1, p2

¢
˘

12.

In the sequel, we introduce an algorithm to assess each set ›i according to its MCI.

Given i ˘ {1, ...,Y }, for each set ›i :

1. consider ›i ˘
'

p1, ..., pN
“

and v0 ˘ p1;

2. determine the polynomial ph such that the partition Si ,1 ˘
¡
v0, ph

¢
has the maxi-

mum MC I
¡
v0, ph

¢
, where h ˘ {1, ..., N } and ph 6˘ v0;

3. determine the polynomial pk such that the partition Si ,1 ˘
¡¡

v0, ph
¢

, pk
¢

has the

maximum MC I
¡
v0, ph , pk

¢
, where k ˘ {1, ..., N } and pk 6˘ ph 6˘ v0;

4. repeat step 3 until all polynomials have been considered in the partition Si ,1;

5. change the starting polynomial to the next one, e.g., v0 ˘ p2, considering Si ,2 and

repeat steps 2-4;

6. when v0 ˘ pN , consider the next set ›i¯1;

The algorithm ends when all sets ›i have been analyzed. For each ›i , the output is a

set of partitions:

Si , j ˘
'
Si ,1,Si ,2, ...,Si ,N

“
(4.5)

49

� �� �

4. ADAPTABLE ERROR CORRECTING CODES DESIGN FOR NAND FLASH MEMORY

Fig. 4.4 graphically shows the MCI of two partitions generated from two different

starting points, for an hypothetical set ›i .

#polynomials

M
C

I

((p
1
,p

2
), p

3
)(p

1
, p

2
) (((p

1
,p

2
), p

3
), p

4
) ((((p

1
,p

2
), p

3
), p

4
), p

5
)

#polynomials

M
C

I

(p
3
, p

2
) ((p

3
,p

2
), p

1
) (((p

3
,p

2
), p

1
), p

5
) ((((p

3
,p

2
), p

1
), p

5
), p

4
)

Figure 4.4: MCI examples of two hypothetical partitions Si ,1 and Si ,2

Fig. 4.4 shows that MCI always has a decreasing trend with the size of the partition

S. This is straightforward since adding a polynomial may only decrease or keep constant

the current value of MCI. The curves, reported in 4.4, are critical in the choice of the

most suitable set of polynomials for an optimized BCH code. For each partition Si , j with

j ˘ {1...N }, we can compute the average MCI (MC Iav g) as:

MC Iav g (Si , j) ˘
1
N

N¡1X

l˘1
MC Il (4.6)

Eq. 4.6 applies to each set ›i where i ˘ {1...Y }.

50

� �� �

4.3. BCH Code Design Optimization

The best partition of the set ›i is then computed selecting the one with maximum

MC Iav g :

Sbesti ˘ ar g max
j

£
MC Iav g

¡
Si , j

¢⁄
(4.7)

Finally, Eq. 4.8 compares the best partition of each set ›i to �nd the best set of poly-

nomials:

SbestBC H ˘ ar g max
i

£
Sbesti

⁄
(4.8)

Eq. 4.8 de�nes the family of polynomials SbestBC H , with the maximum average num-

ber of common terms.

Table 4.2: An example of ›i

x6 x5 x4 x3 x2 x1 1

p1 1 0 1 0 0 1 0

p2 1 1 0 1 0 1 1

p3 1 0 1 1 1 1 1

p4 0 1 1 0 0 0 1

p5 1 1 0 1 1 0 1

p6 0 0 1 0 0 1 1

Let us provide an example to support the understanding of the algorithm. Suppose

to consider a single set ›i composed of the polynomials of Table 4.2. The steps of the

algorithm are:

1. Let us start with v0 ˘ p1

2. We �rst evaluates MC I
¡
p1, p2

¢
˘ 3, MC I

¡
p1, p3

¢
˘ 4, MC I

¡
p1, p4

¢
˘ 3. Since MC I

¡
p1, p3

¢
˘

4 is the maximum, the resulting partition is Si ,1 ˘
'

p1, p3
“

3. The next step considers MC I (
¡
p1, p3

¢
, p2) ˘ 3 and MC I (

¡
p1, p3

¢
, p4) ˘ 3. It is

straightforward that the choice of either p2 or p4 does not affect the �nal value

of the MC Iav g .

Given ›i with starting point p1, it can be shown that the �nal partition is Si ,1 ˘
'¡¡

p1, p3
¢

, p4
¢

, p2
“

with a MC Iav g ˘ (4¯3¯3)/4 ˘ 2.5 from Eq. 4.6.

51

� �� �

4. ADAPTABLE ERROR CORRECTING CODES DESIGN FOR NAND FLASH MEMORY

The complete algorithm iterates this computation for all possible starting points. Fig.

4.5 graphically shows the output of the MCI associated with each partition Si , j calculated

for the following starting point j ˘ {1,2,3,4}.

2 3 4 5 6
Partition Size

M
C

I(
�:

i)

MCI(S
i,1

)

MCI(S
i,2

)

MCI(S
i,3

)

MCI(S
i,4

)

MCI(S
i,5

)

MCI(S
i,6

)

Figure 4.5: The MCI Trend of Table 4.2

According to Eq. 4.7, Si ,2 (the bold line) is the Sbesti of the example of Table 4.2, with

a MC Iav g
¡
Si , j

¢
= 4.

4.3.2 Shared Optimized Programmable Parallel LFSRs

Let us assume to design an adaptable BCH code with correction capability from 1 up to

tM . Such a code needs to compute remainders of the division of:

� the message m (x) by (potentially) all generator polynomials from g1 up to g tM , for

the encoding (4.2);

� the codeword c (x) by (potentially) all minimal polynomials from ˆ1 (x) up to ˆ2tM ¡1 (x),

to compute the set of syndromes required during the decoding phase.

In a traditional implementation, these computations are performed by two separate

set of LFSRs. In this chapter, we propose to devise a shared set of LFSRs able to: (i)

perform all these computations, and (ii) reduce the overall cost in terms of resources

52

� �� �

4.3. BCH Code Design Optimization

overhead. Therefore, we can adopt the same shared set of LFSRs both in the encoding

and decoding processes. This is possible since in a �ash memory these operations are,

in general, not required at the same time.

The OPPLFSR, introduced in Section 4.2, is the main building block of the set of

shared LFSRs. Therefore, we will refer hereafter to such set of LFSRs as shared OPPLFSR

(shOPPLFSR). Fig. 4.6 shows the high-level architecture of the shOPPLFSR. Its interface

includes: a s-bit input port (IN) used to input the data to be divided, a
§

log2 (N)
¤

-bit in-

put port (en) used to enable each OPPLFSR, an input port (sel) used to select the proper

polynomial by which each OPPLFSR has to divide, and a N £ s-bit port (p) providing the

result of the division.

Figure 4.6: The shOPPLFSR architecture is composed by multiple OPPLFSRs

Given N OPPLFSRs and a maximum correction capability tM , each OPPLFSRi per-

forms the division by a set of generator polynomials g (x) and minimal polynomials ˆ (x).

Such shOPPLFSR can be seen as an optimized programmable LFSR able to:

� divide by all generator polynomials from g1 (x) to g tM (x);

� divide by speci�c subsets of minimal polynomials from Eq. 4.1, as well.

An improper choice of the shared polynomials g (x) and ˆ (x) can dramatically re-

duce the performance of the overall BCH codec. Also the partitioning strategy adopted

is critical to maximize the optimization in terms of area, minimizing the impact on the

latency of encoding/decoding operations.

The algorithm presented in Section 4.3.1 provides a valuable support for the explo-

ration of this huge design space. In fact, the proposed method can be exploited to prop-

53

� �� �

4. ADAPTABLE ERROR CORRECTING CODES DESIGN FOR NAND FLASH MEMORY

erly partition polynomials into the different OPPFLSRs of Fig. 4.6, in order to maximize

the optimization of the resulting shOPPFLSR. Such optimization should not be obtained

following blindly the outcomes of the algorithm, but always tailoring them to the speci�c

design. Regarding this topic, Section 4.6 provides more details about our experimental

setup and the related experimental results.

4.4 Adaptable BCH Encoder

In this section, we propose an adaptable BCH encoder which exploits the shOPPLFSR of

Section 4.3. According to the BCH theory, the shOPPLFSR of Fig. 4.6 is a very ef�cient cir-

cuit to perform the computation expressed in Eq. 4.2. However, in the encoding phase,

the message m(x) must be multiplied by xr before calculating the reminder of the divi-

sion by g (x) (see Eq. 4.2). This can be obtained without signi�cant modi�cations of the

architecture of shOPPFLSR. It is enough to input the bits of the message directly in the

most signi�cant bit of the LFSR, instead than starting from least signi�cant bit. Fig. 4.7

shows the high-level architecture of the adaptable encoder.

Figure 4.7: High-level architecture of the adaptable encoder highlighting the three main building
blocks and their main connections.

The encoder’s interface includes: a s-bit input port (IN) used to input the k-bit mes-

sage to encode starting from the most signi�cant bits, a
§

log2 (tM)
¤

-bit input port (t)

selecting the requested correction capability in a range between 1 and tM , a start input

signal used to start the encoding process and a s-bit output port (OUT) providing the r

parity bits. Three blocks compose the encoder: a shOPPLFSR, a �ush logic and a con-

troller.

54

� �� �

4.5. Adaptable BCH Decoder

The shOPPLFSR performs the actual parity bits computation. According to the BCH

theory, adaptation is achieved by supporting the computation of remainders with tM

generator polynomials, one for each value t may assume. The controller achieves this

task in two steps: (i) enabling the proper OPPLFSR through the len signal, and (ii) se-

lecting the proper polynomial through the lsel signal, according to the desired correc-

tion capability t. Then, it manages the overall encoding process based on two internal

parameters: 1) the number of s-bit words composing the message (�xed at design time)

and 2) the number of produced s-bit parity words, that depends on the selected correc-

tion capability. The �ush logic splits the r parity bits into s-bit words, providing them in

output, one per clock cycle.

To further optimize the encoding and the decoding process, since in a �ash memory

these operations are not required at the same time, the encoder’s shOPPLFSR can be

merged with the shOPPLFSRs that will be employed in the syndrome computation (see

Section 4.5.1), thus allowing additional area saving.

4.5 Adaptable BCH Decoder

Fig. 4.8 presents the high-level architecture of the proposed adaptable decoder. The

decoder’s interface includes: a s¡bit input port (IN) used to input the n¡bit codeword to

decode (starting from the most signi�cant bits), a
§

log2 (tM)
¤

¡bit input port (t) to select

the desired correction capability, a start input signal to start the decoding and a set of

output ports providing information about detected errors. In particular:

� deterr is a
§

log2 (tM)
¤

¡bit port providing the number of errors that have been

detected in a codeword. In case of decoding failure it is set to 0;

� erradd and errmask provide information about the detected error positions. As-

suming the codeword split into h¡bit words, erradd is used as a word address in

the codeword and errmask is a h¡bit mask whose asserted bits indicate detected

erroneous bits in the addressed word. The parallelism h of the error mask depends

on the parallelism of the Chien machine, as explained later in this section;

� vmask is asserted whenever a valid error mask is available at the output of the de-

coder;

55

� �� �

4. ADAPTABLE ERROR CORRECTING CODES DESIGN FOR NAND FLASH MEMORY

� fail is asserted whenever an error occurred during the decoding process (e.g., the

number of errors is greater than the selected correction capability);

� end is asserted when the decoding process is completed.

Figure 4.8: High-level architecture of the adaptable decoder, highlighting the four main build-
ing blocks: the adaptable syndrome machine, the adaptable iBM machine, the adaptable Chien
machine, and the controller in charge of managing the overall decoding process

The full decoder therefore includes four main blocks: (1) the Adaptable Syndrome

Machine, computing the syndromes of the codeword, (2) the Adaptable inversion-less

Berlekamp Massey (iBM) Machine, that elaborates the syndromes to produce the error

locator polynomial, (3) the Adaptable Chien Search Machine in charge of searching for

the error positions, and (4) the Controller coordinating the overall decoding process.

4.5.1 Adaptable Syndrome Machine

Fig. 4.9 shows the high-level architecture of the proposed adaptable syndrome machine

with correction capability 1 6 t 6 tM .

56

� �� �

4.5. Adaptable BCH Decoder

Figure 4.9: Architecture of the adaptable Syndrome Machine

According to Section 4.2, remainders can be calculated by a set of Parallel LFSRs (PLF-

SRs) whose architecture is similar to the one of the PPLFSR of Fig. 4.1, with the only

difference that the characteristic polynomial is �xed (XOR gates are inserted only where

needed, without multiplexers). Each PLFSR computes the remainder of the division of

the codeword by a different minimal polynomial ˆi (x). Given two correction capabili-

ties t1 and t2 with t1 ˙ t2 • tM , the set of 2t1 minimal polynomials generating the code

for t1 is a subset of those generating the code for t2. To obtain adaptability of the cor-

rection capability in a range between 1 and tM , the syndrome machine can therefore be

designed to compute the maximum number tM of remainders required to obtain 2tM

syndromes. Based on the selected correction capability t , only the �rst t PLFSRs out of

the tM available in the circuit are actually enabled through the Enable div. network of

Fig. 4.9.

A full parallel syndrome calculator, including tM PLFSRs, requires a considerable

amount of resources that are underutilized in the early stages of the �ash lifetime when

reduced correction capability is required. To optimize the adaptable syndrome machine

and to trade-off between complexity and performance, we exploit the shOPPLFSR in-

troduced in Section 4.2. The architecture proposed in Fig. 4.9 includes two sets of LF-

SRs for remainder computation: (i) conventional PLFSRs, and (ii) shOPPLFSR. Conven-

tional PLFSRs are exploited for parallel fast computation of low order syndromes re-

quired when the requested correction capability is below a given threshold. shOPPLFSR

57

� �� �

4. ADAPTABLE ERROR CORRECTING CODES DESIGN FOR NAND FLASH MEMORY

is designed to divide for selected groups of minimal polynomials not covered by the �xed

PPLFSRs. It represents a shared resource utilized when the requested correction capa-

bility increases. It enables area reduction at the cost of a certain time overhead. The

architectural design, chosen for the �xed PLFSRs and the OPPLFSR, enables to trade-off

hardware complexity and decoding time, as it will be discussed in Section 4.6.

Figure 4.10: Example of the schema of a byte aligner for t ˘ 2 and s ˘ 8

It is worth to mention here that the parallel architecture of the PLFSR, coupled with

the adaptability of the code, introduces a set of additional word alignment problems that

must be addressed to correctly adapt the syndrome calculation to different values of t .

The syndrome machine receives the codeword in words of s bits, starting from the most

signi�cant word. When the number of parity bits does not allow to align the codeword

to the parallelism s, the unused bits of the last word are �lled with 0. To correctly com-

pute each syndrome, the parity bit r0 of the codeword must enter the least signi�cant

bit of each LFSR. The aligner block of Fig. 4.9 assures this condition by properly right-

shifting the codeword while it is input into the syndrome machine. Let us consider the

following example: k ˘ 2KB, m ˘ 15, t ˘ 2, s ˘ 8 and therefore r ˘ m ¢ t ˘ 30. Since 30

is not multiple of s ˘ 8, the codeword is �lled with two zeros and p0 is saved in position

2 of the last byte of the codeword (m2047m2046...m1 m0 p29p28...p1 p0 00). In this case the

PLFSRs require a 2-bit alignment, implemented by the network of Fig. 4.10. It simply

delays the last 2 input bits resorting to two �ip-�ops, whose initial state has to be zero,

and properly rotates the remaining input bits. Changing the correction capability of the

decoder changes the number of parity bits of the codeword, and therefore the required

alignment. Given the parallelism s of the decoder, a maximum of s alignments must be

provided and implemented in the Aligner block of Fig. 4.9.

58

� �� �

4.5. Adaptable BCH Decoder

With the proper alignment, the PLFSRs can perform the correct division and the eval-

uators can provide the required syndromes. The evaluators are simple combinational

networks involving XOR operations, according to the Galois Fields theory (the reader

may refer to [81] for speci�c implementation details).

4.5.2 Adaptable Berlekamp Massey Machine

In our adaptable codec we implemented the inversion-less Berlekamp-Massey (iBM) al-

gorithm proposed in [140] which is able to compute the error locator polynomial ‚ (x) in

t iterations.

The main steps of the computation are reported in Alg. 1. At iteration i (rows 2 to 12),

the algorithm �nds an error locator polynomial ‚(x) whose coef�cients solve the �rst i

equations of (4.3) (row 4). It then tests if the same polynomial solves also i ¯ 1 equations

(row 5). If not, it computes a discrepancy term – so that ‚(x) ¯ – solves the �rst i ¯ 1

equations (row 9). This iterative process is repeated until all equations are solved. If, at

the end of the iterations, the computed polynomial has a degree lower than t , it correctly

represents the error locator polynomial and its degree represents the number of detected

errors; otherwise, the code is unable to correct the given codeword.

1: ‚(x) ˘ 1, k(x) ˘ 1, – ˘ 1
2: for i ˘ 0 to t ¡ 1 do
3: d ˘

Pt
j ˘1

‡
‚ j ¢ S2i¡ j

·

4: ‚(x) ˘ –‚(x) ¯ d ¢ x ¢ k(x)
5: if d ˘ 0 OR Deg (‚(x)) ¨ i then
6: k(x) ˘ x2 ¢ k(x)
7: else
8: k(x) ˘ x ¢ k(x)
9: – ˘ d

10: end if
11: i=i+1
12: end for
13: if Deg (‚(x)) ˙ t then
14: output ‚(x), Deg (‚(x))
15: else
16: output FAILURE
17: end if

Algorithm 1 Inversion-less Berlekamp-Massey alg.

The architecture of the iBM machine is intrinsically adaptive as long as one guaran-

tees that the internal buffers and the hardware structures are sized to deal with the worst

case design (i.e., t ˘ tM). The coef�cients of ‚ (x) are m¡bit registers whose number

59

� �� �

4. ADAPTABLE ERROR CORRECTING CODES DESIGN FOR NAND FLASH MEMORY

depends on the correction capability. In the worst case, up to tM coef�cients must be

stored for each polynomial.

The adaptable iBM machine therefore includes two m¡bit register �les with tM reg-

isters to store these coef�cients. Whenever the requested correction capability is lower

than tM some of the registers will remain unused. The number of multiplications per-

formed during the computations also depends on t . Row 3 requires t multiplications,

while row 4 requires t multiplications to compute –‚i (x) and t multiplications to com-

pute d ¢ x ¢ k(x).

We implemented a serial iBM Machine including 3 multipliers for GF(2m) to perform

multiplications of rows 3 and 4. It can perform each iteration of the iBM algorithm in

2t clock cycles (t cycles for row 3 and t cycles for row 4) achieving a time complexity

of 2t 2 clock cycles. This implementation is a good compromise between performance

and hardware complexity. An input t dynamically sets the number of iterations of the

algorithm, thus implementing the adaptation.

4.5.3 Adaptable Chien Machine

The overall architecture of the proposed adaptable Chien Machine is shown in the Fig.

4.11. The machine �rst loads into tM m-bit registers the coef�cients from ‚1 to ‚tM of the

error locator polynomial ‚(x) computed by the iBM machine (ld ˘ 0). The actual search

is then started (ld ˘ 1). At each clock cycle, the block performs h parallel evaluations

of ‚(x) in GF(2m) and outputs a h¡bit word, denoted as errmask. Each bit of errmask
corresponds to one of the h candidate error locations that have been evaluated. Asserted

bits denote detected errors. This mask can then be XORed (outside the Chien Machine)

with the related bits of the codeword in order to correct the detected erroneous bits.

The architecture of Fig. 4.11 provides an adaptable Chien machine with lower area

consumption than other designs [25], having, at the same time, a marginal impact on

performance. Four interesting features contribute to such optimization: (i) constant

multipliers substructure sharing, (ii) adaptability to the correction capability, (iii) im-

proved fast skipping to reduce the decoding time, and (iv) reduced full GF multipliers

area. In the sequel, we brie�y address each feature.

The �rst feature is represented by the optimized GF Constant Multipliers (optGFCM)

networks of Fig. 4.11. The h parallel evaluations are based on equation (4.4). In the

worst case (t ˘ tM), the parallel evaluation of equation (4.4) requires a matrix of tM £ h

60

� �� �

4.5. Adaptable BCH Decoder

Figure 4.11: Architecture of the proposed parallel adaptable Chien Machine with parallelism
equal to h

constant Galois multipliers. They multiply the content of the tM registers by fi,fi2, ...,fitM ,

respectively. However, we can note that each column of constant GF multipliers shares

the same multiplicand. Therefore, we can iteratively group their best-matching combi-

nations [26] into the tM optGFCM networks of Fig. 4.11. Such optGFCMs provide up

to 60% reduction of the hardware complexity of the machine with no impact on perfor-

mance.

The second feature is the adaptability of the Chien machine. The rows of the ma-

trix de�ne the parallelism of the block (i.e., the number of evaluations per clock cycles),

while the columns de�ne the maximum correction capability of the block. Whenever

the selected correction capability t is lower than tM , the coef�cients of the error locator

polynomial of degree greater than t are equal to zero and do not contribute to equation

(4.4), thus allowing us to adapt the computation to the different correction capabilities.

The third feature stems from a simple observation. Depending on the selected correc-

tion capability t , not all the elements of GF(2m) represent realistic error locations. In fact,

considering a codeword composed of k bits of the original message and r ˘ m ¢ t parity

bits, only k ¯m ¢t out of 2m elements of the Galois �eld represent realistic error locations.

Given that an error location L is the inverse of the related GF element (L ˘ 2m ¡1¡i), the

elements of GF(2m) in which the error locator polynomial must be evaluated are in the

61

� �� �

4. ADAPTABLE ERROR CORRECTING CODES DESIGN FOR NAND FLASH MEMORY

following range:

2

4 fi2m¡1
| {z }

error location L˘0

, fi2m¡k¡m¢t
| {z }

error location L˘k¯m¢t¡1

3

5 (4.9)

All elements between fi0 and fi2m¡k¡m¢t
can be skipped to reduce the computation

time. Differently from �xed correction capability fast skipping Chien machines this in-

terval is not constant here but depends on the selected t . The architecture of Fig. 4.11

implements an adaptable fast skipping by initializing the internal registers to the coef�-

cients of the error corrector polynomial multiplied by a proper value flt
i ni ˘ fi2m¡k¡m¢t¡1.

For each value of t , tM m¡bit constant values corresponding to flt
i ni ,

¡
flt

i ni

¢2, . . .,
¡
flt

i ni

¢tM

must be stored in an internal ROM (not shown in Fig. 4.11) and multiplied by the coef�-

cients ‚i using a full GF multiplier.

This is connected with the last feature, the reduced GF Full Multipliers (redGFFM)

network of Fig. 4.11. Each full GF multiplier has a high cost in terms of area. Since they

are used only during initialization of the Chien, the redGFFM adopts only z 6 tM full

GF multipliers. It also includes a (‚) input port to input z coef�cients, per clock cycles,

of the error locator polynomial. This network enables to reduce area consumption, at a

reasonable cost in terms of latency.

For the sake of brevity, a detailed description of the controller required to fully coor-

dinate the decoder’s modules interaction is out of the scope of this chapter.

4.6 Experimental Results

This section provides experimental data from the implementation of the adaptable BCH

codec proposed on a selected case study.

4.6.1 Automatic generation framework

To cope with the complexity of a manual design of these blocks, a semi-automatic gen-

eration tool named ADAGE (ADaptive ECC Automatic GEnerator) [44] able to generate

a fully synthesizable adaptable BCH codec core following the proposed architecture has

been designed and exploited in this experimentation extending a preliminary framework

previously introduced in [19]. The overall architecture of the framework is in Fig. 4.12.

The code analyzer block represents the �rst computational step required to select the

desired code correction capability based on the Bit Error Rate (BER) of a page of the se-

62

� �� �

4.6. Experimental Results

Figure 4.12: BCH codec automatic generation framework.

63

� �� �

4. ADAPTABLE ERROR CORRECTING CODES DESIGN FOR NAND FLASH MEMORY

lected �ash [90]. The BER is the fraction of erroneous bits of the �ash. It is the key factor

used to select the correction capability. Two values of BER must be considered. The for-

mer is the raw bit error rate (RBER), i.e., the BER before applying the error correction. It is

technology/environment dependent and increases with the aging of the page [13, 141].

The latter is the uncorrectable bit error rate (UBER), i.e., the BER after the application

of the ECC, which is application dependent. It is computed as the probability of having

more than t errors in the codeword (calculated as a binomial distribution of randomly

occurred bit errors) divided by the length of the codeword [34]:

U BER ˘
P (E ¨ t)

n
˘

1
n

nX

i˘t¯1

ˆ
n
i

!

¢ RBERi ¢ (1 ¡ RBER)n¡i (4.10)

Given the RBER of the �ash and the target UBER, Eq. 4.10 can be exploited to com-

pute the maximum required correction capability of the code and consequently the value

of m that de�nes the target GF. Given these two parameters, the Galois Field manager ex-

ploits an internal polynomials database to generate the set of minimal polynomials and

the related generator polynomials for the selected code.

Finally, the RTL VHDL code generator combines these parameters and generates a

RTL description of the BCH encoder and decoder implementing the architecture illus-

trated in this paper.

The whole framework combines Matlab software modules with custom C programs.

The full framework code is available for download at http://www.testgroup.polito.

it in the Tools section of the website.

4.6.2 Experimental setup

Experiments have been performed, using as a case study a 2-bit per cell MLC NAND

Flash Memory featuring a 45nm manufacturing process designed for low-power appli-

cations, with page size of 2KB plus 64B of spare cells. The memory has an 8-bit I/O

interface. Considering the design of the BCH code, the current trend is to enlarge the

block size k over which ECC operations are performed. In fact, longer blocks better han-

dle higher concentrations of errors, providing more protection while using fewer parity

bits [42]. For this reason, we adopted a block size k ˘ 2KB, equal to the page size of the

selected memory.

Experiments performed on the �ash provided that, in a range between 10 and 100,000

program/erase (P/E) cycles on a page, the estimated RBER changes in a range
£
9 £ 10¡6 ¥ 3.5 £ 10¡4⁄

64

http://www.testgroup.polito.it
http://www.testgroup.polito.it

� �� �

4.6. Experimental Results

[142]. With a target UBER of 10¡13, which is typical for commercial applications [55, 90],

according to equation (4.10) we need to design a codec with correction capability in the

range tmi n ˘ 5 up to tM ˘ 24. Since k ˘ 214 and tM ˘ 24, from the expression k ¯ m ¢ tM •

2m ¡ 1 we deduce m ˘ 15, thus obtaining a maximum of r ˘ m ¢ tM w 45B of parity infor-

mation. Given the 8-bit I/O interface of the memory, both the encoder and the decoder

have been designed with an input parallelism of s ˘ 8 bits. The values of h and z of the

Chien Machine are a trade-off between the complexity of the decoder and the decoding

time. Given the I/O parallelism of the �ash and the area optimizations of Fig. 4.11, we

opted for a Chien machine with parallelism h ˘ 8 and z ˘ 1 full GF multipliers.

In this experimentation we analyzed the three architectures summarized in Table 4.3.

Arch. 1 is classic BCH architecture with �xed correction capability of 24 errors per

page. It represents the reference to compare our adaptable architectures.

Arch. 2 is an adaptable architecture with tmi n ˘ 5 ˙ t • 24 using a traditional PPLFSR

for the encoder and 24 PLFSRs for the syndrome calculation. It is worth mentioning

here that, differently from what reported in the previous sections, the minimum required

correction capability of the codec is higher than 1. This allows us to save space in the

encoder PPLFSR since less polynomials must be stored, and in the Chien Machine’s ROM

since less fli ni terms must be stored.

Arch. 3 is an optimized version of Arch. 2 exploiting the use of a shOPPLFSR shared

between the encoder and the decoder, to trade-off design complexity and decoding time.

In order to optimize the use of the shOPPLFSR, we exploited the algorithm proposed

in Section 4.3.1. Given our adaptable BCH code, a set of ad-hoc Matlab simulation

scripts implement this preliminary analysis of 1,8001 set ›i of polynomials. Each set

›i contains tM ¡ tmi n ¡ 1 ˘ 20 generator polynomials required in the encoder and tM ˘

24 minimal polynomials required in the decoder. This analysis aimed at �nding the

most suitable set of shared generator and minimal polynomials to trade-off between

decoder’s area and latency. A reasonable trade-off has been found using a shOPPLFSR

composed of N ˘ 5 OPPLFSRs, each of which dividing by the following set of polynomi-

als:
'

g5,ˆ29,ˆ39
“
,

'
g6,ˆ31,ˆ41

“
,

'
g7,ˆ33,ˆ43

“
,

'
g8,ˆ35,ˆ45

“
, and

'
g9, ..., g24,ˆ37,ˆ47

“
.

The reader may refer to the appendix of this chapter for the full list of employed polyno-

mials. All other structures remain almost unchanged. The comparison between Arch.1

and Arch. 2 enables to highlight the bene�ts of using an adaptable codec, while the com-

1our BCH code has 1,800 primitive polynomials ˆ1 (x)

65

� �� �

4. ADAPTABLE ERROR CORRECTING CODES DESIGN FOR NAND FLASH MEMORY

parison between Arch. 2 and Arch. 3 shows the advantages of adding optimized shared

blocks.

Table 4.3: Characteristics of the analyzed architectures

Adaptable OPPLFSRs Chien Machine

Arch. 1 No - h ˘ 8, t ˘ 24

Arch. 2 Yes - h ˘ 8, t 2 [5,24]

Arch. 3 Yes 5 h ˘ 8, t 2 [5,24]

4.6.3 Performance evaluations

Table 4.4 summarizes the main implementation details of the three selected architec-

tures in terms of required parity bits and worst case encoding/decoding latency, ex-

pressed in terms of clock cycles.

Let us start with the evaluation of the amount of redundancy introduced by the two

architectures. Arch. 1, which has a �xed correction capability of 24 errors per page, re-

quires to store m ¢tM ˘ 24 ¢ 15 ˘ 360 parity bits (about 45B) for each 2KB page of the �ash.

This accounts for about 70% of the full spare area available for each page. Since the spare

area cannot be fully reserved for storing ECC information (high-level functions, such as

�le system management and wear-leveling need to save considerable amount of infor-

mation in this area), this percentage represents a considerable overhead for the selected

device. Based on the results of Table 4.4, Fig. 4.13 shows how, for the adaptable codecs

of both Arch. 2 and Arch. 3, the percentage of spare area dedicated for storing parity bits

changes with the selected correction capability. The total occupation ranges in this case

from 15% to 70% of the total spare area. This mitigates the overhead for storing parity

bits whenever the error rate enables to select low correction capabilities (e.g., for devices

in the early stages of their life).

For all implementations, the encoding latency depends on the size of the incoming

message and is therefore constant regardless the adaptability of the encoder (see Table

4.4). The decoding latency is instead in�uenced by the correction capability, as reported

in Table 4.4. Fig. 4.14 compares the decoding latency of the three architectures for each

considered correction capability. Results are provided in number of clock cycles. It is

worth mentioning here that timing estimations of Table 4.4 and Fig. 4.14 depict the

worst-case scenario in which the Chien Machine must search all possible positions prior

66

� �� �

4.6. Experimental Results

Ta
bl

e
4.

4:
W

or
st

ca
se

Pa
ri

ty
Bi

ts
an

d
En

co
di

ng
/D

ec
od

in
g

La
te

nc
y.

sh
p

ol
y

de
no

te
s

th
e

m
ax

im
um

nu
m

be
ro

fm
in

im
al

po
ly

no
m

ia
ls

sh
ar

ed
in

th
e

sh
O

PP
LF

SR
of

th
e

sy
nd

ro
m

e
m

ac
hi

ne

C
or

re
ct

io
n

C
ap

ab
ili

ty
Pa

ri
ty

Bi
ts

En
co

di
ng

la
te

nc
y

(#
C

lk
cy

cl
es

)
D

ec
od

in
g

la
te

nc
y

(#
C

lk
cy

cl
es

)

Sy
nd

ro
m

e
iB

M
C

hi
en

m
¢t

k s
sh

p
ol

y
¢k¯

m
t

s
2t

2
h z

¯
k¯

m
t

h

A
rc

h.
1

t˘
24

36
0

2,
04

8
2,

09
3

11
52

2,
09

3

A
rc

h.
2

t˘
{5

,6
,..

.,2
4 }

15
¢t

2,
04

8
2,

04
8¢

8¯
15

¢t
8

2t
2

2,
04

8¢
8¯

15
¢t

8

A
rc

h.
3

t˘
{5

,6
,..

.,2
4 }

15
¢t

2,
04

8
2£

(2
,0

48
¢8

¯
15

¢t
)

8
2t

2
8

¯
2,

04
8¢

8¯
15

¢t
8

67

� �� �

4. ADAPTABLE ERROR CORRECTING CODES DESIGN FOR NAND FLASH MEMORY

Figure 4.13: Percentage of spare area dedicated to parity bits while changing the correction capa-
bility of the adaptable codec of Arch. 2 and Arch. 3

to �nd the detected number of errors. Fig. 4.14 highlights that, for the lowest correc-

tion capability, both Arch. 2 and Arch. 3 enable 22% of decoding time reduction when

compared to the �xed decoding time of Arch. 1. The decoding time increases with the

correction capability. For Arch. 2, it reaches the same level of the �xed architecture when

the correction capability reaches t ˘ 24. Arch. 3 deviates from this behavior for t > 20.

This penalty is introduced by the use of the shOPPLFSR in the Syndrome Machine. In

this case, the codec includes 5 blocks to perform remainder computation with 10 min-

imal polynomials
'
ˆ29,ˆ39,ˆ31,ˆ41,ˆ33,ˆ43,ˆ35,ˆ45,ˆ37,ˆ47

“
. This implies doubling

the syndrome computation time every time the required correction capability reaches a

level in which all these polynomials must be used. Nevertheless, we will show that this

reduced performance is counterbalanced by a reduced area overhead.

4.6.4 Synthesis Results

Synopsys Design Vision and a CORE 45nm technology cell library have been exploited to

synthesize the designs. Table 4.5 shows the results of the synthesis of the three architec-

tures. The hardware structures required to obtain the adaptability of the code introduce

a certain area overhead. Considering Arch. 2, the area of the encoder increases since 19

68

� �� �

4.6. Experimental Results

Figure 4.14: Worst case decoding latency for the three architectures considered.

generator polynomials must be stored in its ROM, while the area of the decoder increases

due both to the aligners in the syndrome machine and to the ROM in the Chien machine

to adapt the fast skipping process. Nevertheless, the introduced overhead is about 14%

which is still acceptable. Considering Arch. 3, the introduced overhead is halved w.r.t.

Arch. 2. The area of the encoder is almost comparable with Arch. 2. However, it now in-

cludes the shOPPLFSR and a smaller ROMs which contribute, with the LFSR sharing, at

decreasing the area of the decoder. For both architectures we obtained a maximum clock

frequency of 100MHz, which con�rms that the adaptability does not impact the maxi-

mum speed of the circuit. This area result is interesting if compared with an estimation

of the area for the adaptable architecture proposed in [25]. [25] designed a codec work-

ing on blocks of data of 512B, smaller than the 2KB used in this paper. Given the same

maximum correction capability (tM ˘ 24), [25] uses a code de�ned on GF (213) instead

of the code de�ned on GF (215) used in this paper. However, even if the code is simpler

and the number of correction modes is smaller (only 4 correction modes), the area of the

codec accounts about 158.9K equivalent gates2, which is higher than the 111.4K and the

105.2K equivalent gates of the Arch. 2 and Arch. 3 proposed.

Fig. 4.15 compares the decoder’s dynamic power dissipation of the three architec-

tures computed using Synopsys PrimeTime. As for the decoding latency the analysis has

2Equivalent gates for state-of-the-art architectures have been estimated from the information provided in the papers

69

� �� �

4. ADAPTABLE ERROR CORRECTING CODES DESIGN FOR NAND FLASH MEMORY

Table 4.5: Synthesis Results

Comp. Max Clock Equiv. Gates Over-head

Encoder 100 MHz 33.3 K
Arch. 1 Decoder 100 MHz 64.1 K

Overall 100 MHz 97.4 K (ref.)

Encoder 100 MHz 40.8 K
Arch. 2 Decoder 100 MHz 70.6 K

Overall 100 MHz 111.4 K 14%

Encoder 100 MHz 39.2 K
Arch. 3 Decoder 100 MHz 66.0 K

Overall 100 MHz 105.2 K 7%

been performed for a worst-case simulation in which t errors are injected at the end of

the codeword so that the Chien Machine must search all possible positions prior to de-

tect all errors. Considering Arch. 2, results show that the introduction of the adaptability

enables up to 15% of dynamic power saving when the lowest correction capability can

be selected. This is due to the fact that the portions of the circuits not required for low

correction capabilities are disabled. The introduction of the optimizations proposed in

Arch. 3 has no signi�cant impact on the dynamic power that remains almost equal to the

one of Arch. 2.

Figure 4.15: Worst case dynamic power consumption of the three decoders for the three consid-
ered architectures. Power is expressed in mW.

70

� �� �

4.7. A Cross-Layer Approach for New Reliability-Performance Trade-Offs in MLC NAND Flash
Memories

4.7 A Cross-Layer Approach for New Reliability-Performance Trade-Offs in

MLC NAND Flash Memories

In spite of the mature cell structure, the memory controller architecture of MLC NAND

Flash memories is evolving fast in an attempt to improve the uncorrected/miscorrected

bit error rate (UBER) and to provide a more �exible usage model where the performance-

reliability trade-off point can be adjusted at runtime. However, optimization techniques

in the memory controller architecture cannot avoid a strict trade-off between Uncorrected

BER (UBER) and read throughput. In collaboration with the Universita’ di Ferrara, we

show that co-optimizing ECC architecture con�guration in the memory controller with

program algorithm selection at the technology layer, a more �exible memory sub-system

arises, which is capable of unprecedented trade-offs points between performance and

reliability. For sake of brevity, this is out of the scope of this chapter. The interested

reader may refer to [142] for more details about this topic.

4.8 Conclusions

This chapter proposed a BCH codec architectures and its related automatic generation

framework which enables its code correction capability to be selected in a prede�ned

range of values. Designing an ECC system whose correction capability can be modi-

�ed in-�eld has the potentiality to adapt the correction schema to the reliability require-

ments the �ash encounters during its life-time, thus maximizing performance and relia-

bility.

Experimental results on a selected NAND �ash memory architecture proved that the

proposed solution reduces spare area usage, decoding time, and power dissipation when-

ever small correction capability can be selected.

Ongoing research is currently focusing on the de�nition of an ef�cient heuristic to

compute, at run-time, the best correction capability that must be applied to a page of the

�ash to adapt the code to the instantaneous error rate of the device. Such an heuristic

could be coupled with the hardware architecture proposed in this chapter and integrated

at the �le system level to obtain a full adaptive �ash based storage system.

71

� �� �

4. ADAPTABLE ERROR CORRECTING CODES DESIGN FOR NAND FLASH MEMORY

Table 4.6: Minimal polynomials expressed with the corresponding hexadecimal string of coef�-
cients

ˆ1 0x F465 ˆ17 0x B13D ˆ33 0x 8011
ˆ3 0x C209 ˆ19 0x B305 ˆ35 0x BA2B
ˆ5 0x B3B7 ˆ21 0x A495 ˆ37 0x D95F
ˆ7 0x E6EB ˆ23 0x 88C7 ˆ39 0x BFF5
ˆ9 0x E647 ˆ25 0x C357 ˆ41 0x BA87
ˆ11 0x D4E5 ˆ27 0x B2C1 ˆ43 0x 9BEB
ˆ13 0x 8371 ˆ29 0x 97DD ˆ45 0x 93CB
ˆ15 0x EDD9 ˆ31 0x FA49 ˆ47 0x F385

SUMMARY

The strong transistor miniaturization and the adoption of an increasing

number of levels per cell require ECCs to be systematically applied to NAND

�ash. Choosing the correction capability of an ECC is a trade-off between re-

liability and code complexity. We therefore designed a BCH system whose

correction capability can be modi�ed in-�eld. In fact, it is an attractive solu-

tion to adapt the correction schema to the reliability requirements the �ash

encounters during its life-time, thus maximizing performance and reliabil-

ity. Experimental results on a selected NAND �ash memory architecture

have been able to show that the proposed codec enables to reduce spare

area usage, decoding time and power dissipation.

The whole design process was supported by the novel ADaptive ECC Auto-

matic GEnerator (ADAGE) design environment. ADAGE is a fully customiz-

able tool aimed at automatic generation of adaptable BCH architectures.

ADAGE is able to automatically generate the VHDL code of the designed

adaptable BCH-based architecture. Such a code can be thoroughly sim-

ulated, validated and synthesized on ASIC or FPGA. Experimental results

con�rmed the ef�ciency of our ADAGE tool.

Ongoing research is currently focusing on the de�nition of an ef�cient

heuristic to compute, at run-time, the best correction capability that must

be applied to a page of the �ash to adapt the code to the instantaneous er-

ror rate of the device. Such an heuristic could be coupled with the hardware

architecture proposed in this chapter and integrated into an open-source

�ash memory �le system in order to test its ef�ciency in a real working en-

vironment.72

� �� �

4.8. Conclusions

Ta
bl

e
4.

7:
G

en
er

at
or

po
ly

no
m

ia
le

xp
re

ss
ed

w
ith

th
e

co
rr

es
po

nd
in

g
he

xa
de

ci
m

al
st

ri
ng

of
co

ef
�c

ie
nt

s

g 5
0x

01
63

C
68

D
76

66
35

25
3

g 6
0x

01
8F

B
E3

6E
3B

71
6D

8B
C

E3
2

g 7
0x

01
E5

73
FB

B
06

E4
6A

82
8C

1C
77

0C
g 8

0x
01

F2
8E

94
D

9B
55

05
43

AC
42

28
6C

F4
18

g 9
0x

01
D

66
34

FC
56

5E
60

12
E4

41
92

6C
07

B
8D

59
g 1

0
0x

01
8B

24
C

1E
93

5C
04

D
C

6B
C

73
E0

B
D

B
98

40
5C

4E
A

g 1
1

0x
01

E8
B

4B
A1

1F
71

7E
75

A1
F5

E0
EC

4F
B

C
D

65
D

A8
FF

F2
4

g 1
2

0x
01

8F
B

50
FA

29
69

C
D

C
5E

AF
A1

C
24

B
D

9E
5A

A9
2A

22
27

EC
66

8
g 1

3
0x

01
2E

91
9C

71
5C

15
31

0D
A7

10
3C

0A
B

65
6C

7F
E3

30
61

31
97

63
1D

g 1
4

0x
01

E5
91

54
D

47
57

E3
5C

B
D

C
E8

24
7F

46
86

EA
C

C
2C

96
C

82
09

D
84

8B
D

C
E

g 1
5

0x
01

E1
2C

45
39

A4
37

98
83

18
B

8B
0A

75
64

26
E9

3C
D

50
01

03
1D

C
B

5D
C

43
0A

0C
g 1

6
0x

01
B

E6
2D

0F
7C

4D
16

FC
C

D
D

3C
E2

0D
79

98
28

0B
59

17
02

D
45

2F
35

41
A5

1D
A9

55
D

8
g 1

7
0x

01
97

55
B

57
B

EB
A0

D
D

4C
28

4F
E4

B
4F

45
49

C
19

4C
A6

E7
5E

54
23

22
12

3E
AB

27
04

47
82

17
12

g 1
8

0x
01

62
40

D
5F

33
84

73
A9

65
38

92
D

4D
D

C
33

4A
EF

9F
E7

8E
9B

83
5C

10
D

1C
91

06
B

14
AA

4A
B

4B
D

5C
D

4
g 1

9
0x

01
B

54
AF

F8
01

C
5E

B
B

55
EA

21
4A

D
C

C
B

05
13

47
A1

64
18

26
82

64
26

42
99

43
1B

25
E5

B
7C

E3
4F

40
2D

93
8

g 2
0

0x
01

C
A7

88
66

8B
13

03
E4

8C
4A

41
B

E6
29

00
68

5C
4A

42
D

B
04

E2
67

A6
42

AC
82

88
41

76
19

45
01

F0
76

D
19

C
F5

3
g 2

1
0x

01
5E

83
06

24
B

4D
70

87
88

17
77

87
C

A2
D

C
6C

89
F7

55
8E

79
9E

84
D

D
10

27
03

4F
4D

EC
74

76
AD

A5
65

B
11

24
0F

B
4E

E
g 2

2
0x

01
D

6E
C

B
00

41
A4

02
58

AD
A4

65
42

D
B

36
57

C
FA

04
22

27
D

7C
AA

D
D

77
08

09
AC

C
68

0C
28

86
C

0E
AC

D
C

8D
81

D
34

56
5F

7F
C

g 2
3

0x
01

02
92

4C
5C

EA
2B

43
96

8E
FF

54
D

1E
0F

AB
54

D
EB

FD
C

54
42

8E
D

AE
6F

E2
EE

72
4B

79
C

B
C

07
2C

19
C

EB
76

68
64

09
1E

55
51

A3
8

g 2
4

0x
01

41
AE

12
62

15
09

74
03

F1
3F

41
B

E9
36

02
0F

AA
0D

6D
48

6A
D

40
B

E0
B

ED
62

D
C

87
C

4D
8C

F9
45

A4
D

2A
80

44
11

21
7E

82
82

91
27

AD

73

� �� �

� �� �

Those parts of the system that you

can hit with a hammer (not advised)

are called hardware; those program

instructions that you can only curse

at are called software.

Unknown

C
H

A
P

T
E

R

5
SOFTWARE MANAGEMENT OF NAND FLASH MEMORY:

ISSUES AND CHALLENGES

Contents of this chapter

5.1 File systems for �ash memories [47]

5.2 Comparisons of the presented FFS [47]

5.3 FLARE: a Design Environment for Flash-based Space Applications [17, 50]

5.4 Wear Leveling Strategies: An Example

Among the different issues to consider when designing a �ash-based mass stor-

age system, the �le management represents a challenging problem to address

[47]. In fact, �ash memories store and access data in a completely different

manner if compared to magnetic disks. This must be considered at the OS level to grant

existing applications an ef�cient access to the stored information. Two main approaches

are pursuit by OSs and �ash memory designers: (i) block-device emulation, and (ii) de-

velopment of native �le systems optimized to operate with �ash-based devices [22].

Block-device emulation refers to the development of a hardware/software layer (i.e.,

Flash Translation Layer (FTL)) able to emulate the behavior of a traditional block de-

vice such as a hard-disk, allowing the OS to communicate with the �ash using the same

primitives exploited to communicate with magnetic-disks. The main advantage of this

approach is the possibility of reusing available �le systems (e.g., FAT, NTFS, ext2) to ac-

75

� �� �

5. SOFTWARE MANAGEMENT OF NAND FLASH MEMORY: ISSUES AND CHALLENGES

cess the information stored in the �ash, allowing maximum compatibility with mini-

mum intervention on the OS. However, traditional �le systems do not take into account

the speci�c peculiarities of the �ash memories, and the emulation layer alone may be

not enough to guarantee maximum performance.

The alternative to the block-device emulation is to exploit the hardware features of

the �ash device in the development of a native Flash File System (FFS). An end-to-end

�ash-friendly solution can be more ef�cient than stacking a �le system designed for the

characteristics of magnetic hard-disks on top of a device driver designed to emulate disks

using �ash memories [52]. For ef�ciency reasons, this approach is becoming the pre-

ferred solution whenever embedded NAND �ash memories are massively exploited.

The literature is rich of strategies involving block-device emulation, while, to the best

of our knowledge, a comprehensive comparison of available native �le systems is still

missing. This chapter discusses how to properly address the issues of using NAND �ash

memories as mass-memory devices from the native �le system standpoint. We hope that

the ideas and the solutions proposed in this chapter will be a valuable starting point for

designers of NAND �ash-based mass-memory devices.

5.1 File systems for �ash memories

As shortly described in the introduction of this chapter, at the OS level the common al-

ternatives to manage �ash based mass-storage devices are block-device emulation and

native �ash �le systems [22]. Both approaches try to address the issues discussed in Sec-

tion 2.1. Fig. 5.1 shows how the two solutions can be mapped in a generic OS.

The block-device emulation approach hides the presence of a �ash memory device,

by emulating the behavior of a traditional magnetic hard-disk. The �ash device is seen as

a contiguous array of storage blocks. This emulation mechanism is achieved by insert-

ing at the OS level a new layer, referred to as FTL. Different implementations of FTL have

been proposed [23, 61, 66]. The advantage of using an FTL is that existing �le systems,

such as NTFS, ext2 and FAT, usually supported by the majority of modern OSs, can be

directly used to store information in the �ash. However, this approach has many per-

formance restrictions. In fact, existing �le systems do not take into account the critical

issues imposed by the �ash technology (see Section 2.1) and in several situations they

may behave in contrast with these constraints. Very sophisticated FTL must be therefore

designed with heavy consequences on the performance of the system. Moreover, the

76

� �� �

5.1. File systems for �ash memories

Figure 5.1: Flash Translation Layer and Flash File Systems

typical block size managed by traditional �le systems usually does not match the block

size of a �ash memory. This imposes the implementation of complex mechanisms to

properly manage write operations [52].

The alternative solution, to overcome the limitation of using an FTL, is to expose the

hardware characteristics of the �ash memory to the �le system layer, demanding to this

module the full management of the device. These new �le systems, speci�cally designed

to work with �ash memories, are usually referred to as Flash File System (FFS). This

approach allows the �le system to fully exploit the potentiality of a �ash memory guar-

anteeing increased performance, reliability and endurance of the device. In other words,

if ef�ciency is more important than compatibility, FFS is the best option to choose.

The way FFSs manage the information is somehow derived from the model of jour-

naled �le systems. In a journaled �le system, each metadata modi�cation is written

into a journal (i.e., a log) before the actual block of data is modi�ed. This in general

helps recovering information in case of crash. In particular log-structured �le systems

[7, 110, 132] take the journaling approach to the limit since the journal is the �le system.

The disk is organized as a log consisting of �xed-sized segments of contiguous areas of

the disk, chained together to form a linked list. Data and metadata are always written

to the end of the log, never overwriting old data. Although this organization has been

in general avoided for traditional magnetic disks, it perfectly �ts the way information

can be saved into a �ash memory since data cannot be overwritten in these devices, and

write operations must be performed on new pages. Furthermore, log-structuring the �le

77

� �� �

5. SOFTWARE MANAGEMENT OF NAND FLASH MEMORY: ISSUES AND CHALLENGES

system on a �ash does not in�uence the read performance as in traditional disks, since

the access time on a �ash is constant and does not depend on the position where the

information is stored [52].

FFSs are nowadays mainly used whenever so called Memory Technology Device (MTD)

is available in the system, i.e., embedded �ash memories that do not have a dedicated

hardware controller. Removable �ash memory cards and USB �ash drives are in gen-

eral provided with a built-in controller that in fact behaves as an FTL and allows high

compatibility and portability of the device. FFSs have therefore limited bene�ts on these

devices.

Several FFSs are available. A possible approach to perform a taxonomy of the avail-

able FFSs is to split them into three categories: (i) experimental FFSs documented in

scienti�c and technical publications, (ii) open source projects and (iii) proprietary prod-

ucts.

5.1.1 Flash �le systems in the technical and scienti�c literature

Several publications proposed interesting solutions for implementing new FFSs [69, 72,

124, 135]. In general each of these solutions aims at optimizing a subset of the issues

proposed in Section 2.1.

Although these publications in general concentrate on algorithmic aspects, and pro-

vide reduced information about the real implementation, they represent a good starting

point to understand how speci�c problems can be solved in the implementation of a new

FFS.

5.1.1.1 eNVy

Fig. 5.2 describes the architecture of a system based on eNVy, a large non-volatile main

memory storage system built to work with �ash memories [135].

The main goal of eNVy is to present the �ash memory to a host computer as a simple

linear array of non-volatile memory. The additional goal is to guarantee an access time

to the memory array as close as possible to those of an SRAM (about 100us) [52].

The reader may refer to [134] for a complete description of the eNVy FFS.

Technology eNVy adopts an SLC NAND �ash memory with page size of 256B.

78

� �� �

5.1. File systems for �ash memories

Figure 5.2: Architecture of eNVy

Architecture The eNVy architecture combines an SLC NAND �ash memory with a small

and fast battery-backed Static RAM (SRAM). This small SRAM is used as a very fast write

buffer required to implement an ef�cient copy-on-write strategy.

Address translation The physical address space is partitioned into pages of 256B that

are mapped to the pages of the �ash. A page table stored in the SRAM maintains the

mapping between the linear logical address space presented to the host and the physical

address space of the �ash. When performing a write operation, the target �ash page is

copied into the SRAM (if not already loaded), the page table is updated and the actual

write request is performed into this fast memory. As long as the page is mapped into

the SRAM, further read and write requests are performed directly using this buffer. The

SRAM is managed as a First In First Out (FIFO), new pages are inserted at the end, while

pages are �ushed from the tail when their number exceeds a certain threshold [52].

Garbage collection When the SRAM write buffer is full, eNVy attempts to �ush pages

from the SRAM to the �ash. This in turn requires to allocate a set of free pages in the

�ash. If there is no free space, the eNVy controller starts a garbage collection process

called cleaning in the eNVy terminology (see Fig. 5.3).

When eNVy cleans a block (segment in the eNVy terminology), all of its live data (i.e.,

valid pages) are copied into an empty block. The original block is then erased and reused.

The new block will contain a cluster of valid pages at its head, while the remaining space

will be ready to accept new pages. A clean (i.e., completely erased) block must be always

available for the next cleaning operation.

The policy for deciding which block to clean is an hybrid between a greedy and a lo-

cality gathering method. Both methods are based on the concept of "�ash cleaning cost",

79

� �� �

5. SOFTWARE MANAGEMENT OF NAND FLASH MEMORY: ISSUES AND CHALLENGES

Figure 5.3: Steps of the eNVy cleaning process

de�ned as „
1¡„ where „ is the utilization of the block. Since after about 80% utilization

the cleaning cost reaches unreasonable levels, „ in cannot exceed this threshold.

The greedy method cleans the block with the majority of invalidated pages in order to

maximize the recovered space. This method lowers cleaning costs for uniform distribu-

tions (i.e., it tends to clean blocks in a FIFO order), but performance suffers as the locality

of references increases.

The locality gathering algorithm attempts to take advantage from high locality of ref-

erences. Since hot blocks are cleaned more often than cold blocks, their cleaning cost

can be lowered by redistributing data among blocks. However, for uniform access distri-

butions, this technique prevents cleaning performance from being improved. In fact, if

all data are accessed with the same frequency, the data distribution procedure allocates

the same amount of data to each segment. Since pages are �ushed back to their original

segments to preserve locality, all blocks always stay at „ ˘ 80% utilization, leading to a

�xed cleaning cost of 4.

eNVy adopts an hybrid approach, which combines the good performance of the FIFO

algorithm for uniform access distributions and the good results of the locality gathering

algorithm for higher locality of references.

The high performance of the system is guaranteed by adopting a wide bus between

the �ash and the internal RAM, and by temporarily buffering accessed �ash pages. The

wide bus allows pages stored in the �ash to be transferred to the RAM in one cycle, while

buffering pages in RAM allows to perform several updates to a single page with a single

RAM-to-�ash page transfer. Reducing the number of �ash writes reduces the number of

unit erasures, thereby improving performance and extending the lifetime of the device

80

� �� �

5.1. File systems for �ash memories

[52].

However, using a wide bus has a signi�cant drawback. To build a wide bus, several

�ash chips are used in parallel [135]. This increases the effective size of each erase unit.

Large erase units are harder to manage and, as a result, they are prone to accelerated

wear [52]. Finally, although [135] states that a cleaning algorithm is designed to evenly

wear the memory and to extend its lifetime, the work does not present any explicit wear

leveling algorithm. The bad block management and the ECC strategies are missing as

well.

5.1.1.2 Core �ash �le system (CFFS)

[124] proposes the Core Flash File System (CFFS) for NAND �ash-based devices. CFFS is

speci�cally designed to improve the booting time and to reduce the garbage collection

overhead.

The reader may refer to [124] for a complete description of CFFS. While concentrat-

ing on boot time and garbage collection optimizations, the work neither presents any

explicit bad block management nor any error correction code strategy.

Address translation CFFS is a log-structured �le system. Information items about each

�le (e.g., �le name, �le size, timestamps, �le modes, index of pages where data are al-

located, etc.) are saved into a special data structure called inode. Two solutions can be

in general adopted to store inodes in the �ash: (i) storing several inodes per page, thus

optimizing the available space, or (ii) storing a single inode per page. CFFS adopts the

second solution. Storing a single inode per page introduces a certain overhead in terms

of �ash occupation, but, at the same time, it guarantees enough space to store the index

of pages composing a �le, thus reducing the �ash scan time at the boot.

CFFS classi�es inodes in two classes as reported in Fig. 5.4. i-class1 maintains direct

indexing for all index entries except the �nal one, while i-class2 maintains indirect index-

ing for all index entries except the �nal one. The �nal index entry is indirectly indexed

for i-class1 and double indirectly indexed for i-class2. This classi�cation impacts the �le

size range allowed by the �le system. Let us assume to have 256B of metadata for each

inode and a �ash page size of 512B. The inode will therefore contain 256B available to

store index pointers. A four-byte pointer is suf�cient to point to an individual �ash page.

As a consequence, 256/4 ˘ 64 pointers �t the page. This leads to:

81

� �� �

5. SOFTWARE MANAGEMENT OF NAND FLASH MEMORY: ISSUES AND CHALLENGES

Figure 5.4: An example of direct (i-class1) and indirect (i-class2) indexing for a NAND �ash

� i-class1: 63 pages are directly indexed and 1 page is indirectly indexed, which in

turn can directly index 512/4 ˘ 128 pages; as a consequence the maximum allowed

�le size is (63 ¯ 128) £ 512B ˘ 96K B

� i-class2: 63 pages are indirectly indexed, each of which can directly index 512/4 ˘

128 pages, thus they can address an overall amount of 63 £ 128 ˘ 8064 pages. 1

page is double indirectly indexed, which in turn can indirectly index up to (512/4)2 ˘

16384 pages. Therefore, the maximum allowed �le size is (8064 ¯ 16384) £ 512B ˘

12MB

If the �ash page is 2K B , the maximum �le size is 1916K B for i-class1 and 960MB for

i-class2.

The reason CFFS classi�es inodes into two types is the relationship between the �le

size and the �le usage patterns. In fact, most �les are small and most write accesses are

to small �les. However, most storage is also consumed by large �les that are usually only

accessed for reading [124]. The i-class1 requires one additional page consumption for

the inode1, but can address only pretty small �les. Each writing into an indirect indexing

entry of i-class2 causes the consumption of two additional pages, but it is able to address

bigger �les.

When a �le is created in CFFS, the �le is �rst set to i-class1 and it is maintained in

this state until all index entries are allocated. As the �le size grows, the inode class is

altered from i-class1 to i-class2. As a consequence, most �les are included in i-class1

1in general, the number of additional �ash pages consumed due to updating the inode index information is propor-
tional to the degree of the indexing level

82

