
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Case Study on Effectively Identifying Technical Debt / Zazworka, N.; Spínola, R.; Vetro', Antonio; Shull, F.; Seaman,
C.. - STAMPA. - (2013), pp. 42-47. (Intervento presentato al convegno 17th International Conference on Evaluation and
Assessment in Software Engineering tenutosi a Porto de Galinhas, Brazil nel April 14th - 16th , 2013)
[10.1145/2460999.2461005].

Original

A Case Study on Effectively Identifying Technical Debt

Publisher:

Published
DOI:10.1145/2460999.2461005

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2506361 since:

ACM

A Case Study on Effectively Identifying Technical Debt
Nico Zazworka

Fraunhofer USA Center for
Experimental Software Engineering1

College Park, USA
+49 69 5050 4265

zazworka@gmail.com

Rodrigo O. Spínola
Graduate Program in Systems and

Computer – UNIFACS2
Salvador, Brasil

+55 71 3330-4630
rodrigo.spinola@pro.unifacs.br

Antonio Vetro’
Dept. of Control and Computer

Engineering – Politecnico di Torino
Torino, Italy

+39 011 090 71 69
antonio.vetro@polito.it

Forrest Shull

Fraunhofer USA Center for Experimental Software
Engineering

College Park, USA
+1 240 487 2904

fshull@fc-md.umd.edu

Carolyn Seaman
Department of Information Systems

UMBC
Baltimore, USA

+1 410 455 3937
cseaman@umbc.edu

ABSTRACT
Context: The technical debt (TD) concept describes a tradeoff
between short-term and long-term goals in software development.
While it is highly useful as a metaphor, it has utility beyond the
facilitation of discussion, to inspire a useful set of methods and
tools that support the identification, measurement, monitoring,
management, and payment of TD. Objective: This study focuses
on the identification of TD. We evaluate human elicitation of TD
and compare it to automated identification. Method: We asked a
development team to identify TD items in artifacts from a
software project on which they were working. We provided the
participants with a TD template and a short questionnaire. In
addition, we also collected the output of three tools to
automatically identify TD and compared it to the results of human
elicitation. Results: There is little overlap between the TD
reported by different developers, so aggregation, rather than
consensus, is an appropriate way to combine TD reported by
multiple developers. The tools used are especially useful for
identifying defect debt but cannot help in identifying many other
types of debt, so involving humans in the identification process is
necessary. Conclusion: We have conducted a case study that
focuses on the practical identification of TD, one area that could
be facilitated by tools and techniques. It contributes to the TD
landscape, which depicts an understanding of relationships
between different types of debt and how they are best discovered.

Categories and Subject Descriptors
K.2.7 [Management of Computing and Information Systems]:
Software Management - Software Maintenance

General Terms
Management, Measurement, Experimentation, Human Factors.

Keywords
Technical Debt, Software Maintenance, Automatic Static
Analysis, Code Smells.

1. INTRODUCTION1
Technical debt (TD) is a metaphor that describes the tradeoff
between the short-term payoffs (such as a timely software release)
of delaying some technical development activities and the long-
term consequences of those delays [1]. It has facilitated discussion
among practitioners and researchers by providing a familiar
vocabulary from the financial domain and has potential to become
a truly universal language for communicating technical tradeoffs.

Our vision for TD management, however, goes beyond facilitating
communication, to the development of a whole set of tools and
techniques, inspired by the TD metaphor. This toolset must
include tools for TD identification, which is essential to make TD
manageable and explicit, creating a TD “portfolio” that allows
better control of the debt situation. TD identification approaches
can be broadly categorized as those that elicit TD instances from
humans (i.e. developers and other stakeholders), and automated
tools of various kinds to detect potential debt in the source code.
Human, manual approaches are likely to be more time-consuming,
but have two advantages (at least in theory) over automated
approaches. One is that they might be more accurate, i.e. more
likely to identify TD that is most significant, while automated
analyses may reveal many anomalies that turn out to be
unimportant. The other advantage is that human stakeholders
might be able to provide additional important contextual
information related to each instance of TD (e.g. effort estimates,
impact, decision rationale, etc.) that is difficult or even impossible
to glean from analysis tools.

The first contribution of our work is to better understand how to
elicit TD from humans. We propose and assess a TD template [2]
that can be used to capture, store, and communicate essential

1 Dr. Zazworka is currently employed at Elsevier Information

Systems GmbH, Frankfurt, Germany.
2 Dr. Spínola was previously employed at Kali Software, Rio de

Janeiro, Brazil, and was a visiting post-doc at UMBC for the
time of the study.

properties of TD that can feed into further decision making
processes about debt repayment. Besides the template, our case
study gives some insight into the dynamics of eliciting TD from a
team of developers, all familiar with different aspects of the
system being analyzed.

As a second contribution we compare several types of tool support
for TD identification. Some recent research has addressed the
issue of how close automated approaches can get to the results of
manual TD identification. Some of these studies have indicated
that it is possible to identify certain classes of potential TD (in
particular design debt) with computer-assisted methods [3][4].
Moreover, they have demonstrated that detection approaches can
succeed in finding issues that are of value to developers [3].
However, despite the fact that these approaches point to system
code fragments that need improvement, it is not clear yet if they
point to the most important TD, from software project
stakeholders’ point of view. Based on the current state-of-the-art,
we studied three automated approaches (code smells, automated
static analysis issues, and collection of code metrics), and how
their output compares to TD that is elicited from humans. All of
these approaches are well-established and have been extensively
studied, however, to be fair, none of these approaches claims to
identify a wide range of TD. Each of them aims to identify
specific deficiencies in code or measure a specific quality
dimension of software. Since these tools are available and stable
we are interested in exploring the extent to which they can support
TD identification, how big of a gap they leave if used without
human elicitation of TD, and whether new tools might be
warranted, possibly derived from knowledge of manual TD
inspections. This understanding can help address questions such
as how tools can best be used, instead of or in addition to manual
approaches, in the identification of TD.

This study, and others like it, will help evolve the TD landscape
[5], which lays out the different types and flavors of TD that exist
in real software projects with respect to their importance and
overlaps, and how those types are best identified by tools and
other methods. Such an evolved landscape is essential to achieve
our vision of building an effective toolkit for identifying,
quantifying and managing TD.

2. BACKGROUND AND RELATED WORK
According to Seaman and Guo [2], the management of TD can
center on a TD list, which is similar to a task backlog. The
backlog contains TD items (in the following simply referred to as
items), each of which represents a task that was left undone, but
that runs a risk of causing future problems if not completed. Each
item includes a description of what part of the system the debt
item is related to, why that task needs to be done, and estimates of
the TD’s principal and interest, as well as some other attributes, as
shown in Table 1.

The principal refers to the cost to fully eliminate the debt, i.e. to
completely repair the technical imperfection. Depending on the
type of TD this can translate into different kinds of activities, such
as adding missing documentation, refactoring code that is hard to
maintain, or maintaining a set of regression tests to align with the
code and requirements. The cost of TD repair might be
understood better in some cases than in others. For example,
adding missing documentation might be more straightforward to
estimate than a more complex code refactoring. Seaman and Guo
[2] propose to initially estimate the principal on a rough ordinal
scale from low to medium to high, that allows enough
understanding to contribute in iteration planning. To further help

in estimating principal, historical effort data can be used to make a
more accurate and reliable estimation beyond the initial
high/medium/low assessment. For example, if a debt item is a set
of classes that need to be refactored, the historical cost of
modification of those classes can be used as the future
modification cost (principal of the debt item) estimation.

The second main component of TD is interest, which is composed
of two parts: (1) the interest probability is the probability that the
debt, if not repaid, will make other work more expensive over a
given period of time or a release; (2) the interest amount is an
estimate of the amount of extra work that will be needed if this
debt item is not repaid.

Interest probability can be estimated using, e.g., historical usage
and defect data. In addition, it is also important to consider the
time variable because probability varies over time. For example,
the probability that a module that needs refactoring will cause
problems in the next release (because modifications will need to
be made to it) may be very low, but that probability rises if we
consider longer periods of time, e.g. over the next year or 5 years.

Finally, interest amount can also be estimated using historical
data. Like TD principal, data on past defects, effort, and changes
can be useful.

In addition to the financial properties of TD, several properties
that support decisions on repayment are captured in the TD
template:

1. The type of debt can be helpful to tailor debt payment to
critical quality characteristics of interest. For example,
known defect debt (known latent defects that have not been
fixed) may be differently perceived in life critical software
applications. Other known TD types are: design debt (an
imperfection of the software’s design or architecture
negatively affecting future maintenance), documentation debt
(missing, outdated, or incomplete documentation), and
testing debt (missing test cases, test cases that are not
executed, or missing test plans).

2. Was the original decision to go into debt made intentionally
or unintentionally? This information can help to understand
how explicit debt and TD decisions are managed in a project.

Table 1. The TD Template

ID TD identification number
Responsible Person or role who should fix this TD item
Type design, documentation, defect, testing, or other

type of debt
Location List of files/classes/methods or

documents/pages involved
Description Describes the anomaly and possible impacts on

future maintenance
Estimated
principal

How much work is required to pay off this TD
item on a three point scale: High/Medium/Low

Estimated
interest
amount

How much extra work will need to be
performed in the future if this TD item is not
paid off now on a three point scale:
High/Medium/Low

Estimated
interest
probability

How likely is it that this item, if not paid off,
will cause extra work to be necessary in the
future on a three point scale:
High/Medium/Low

Intentional? Yes/No/Don’t Know

3. Who is responsible for fixing the TD? This information is
important for administrative reasons and may help to provide
a basis for assessing principal and interest.

4. Where is the TD located? This information is important to
understand impact on the product, relationships between
items, and ripple effects in source code when repaying the
debt.

The process of managing TD using this approach starts with
detecting TD items to construct the TD list. The next step is to
measure the debt items on the list by estimating the principal,
interest amount and interest probability. Then the debt items are
monitored and decisions can be made on when and what debt
items should be paid or deferred.

In this work, we are focused on the first step of this process: TD
Identification. We can use different strategies to find TD items for
each TD type. Two automated strategies that have been proposed
to support the identification of design debt in software projects are
identification of code smells and issues raised by automatic static
analysis (ASA) tools, aka ASA issues.

Code smells refer to potential violations of good object-oriented
design principles in source code and can be identified by
comparing values of software metrics to defined thresholds [6].
Past studies have shown that some code smells are correlated with
defect- and change-proneness [7]. In this study, we use
CodeVizard [8] to detect 10 code smells as proposed in [6].

ASA is a reverse engineering technique that consists of extracting
information about a program from its source or source code based
artifacts using automatic tools [9]. ASA tools look for issues in
terms of violations of recommended programming practices and
potential defects that might cause faults or might degrade some
dimensions of software quality (e.g., maintainability, efficiency).
Issues should be removed through refactoring to avoid future
problems, and thus may constitute TD. Many ASA tools exist; for
this study we selected FindBugs, which is widely used in the
literature and already used in past work [10][11].

In addition to code smells and issues, in this study we also
collected basic structural code metrics for size and complexity, in
order to study whether any relationship exists between high levels
of these metrics and the existence of TD.

3. THE STUDY
3.1 Context
The study was conducted at Kali Software, a small software
development company located in Rio de Janeiro, Brazil, that
develops primarily web applications written in Java and based on
the MVC framework. The project we studied consisted of a small
application of 25K non-commented lines of code. It is a database-
driven web application for the sea transportation domain. It has
undergone a full product lifecycle (elicitation, design,
implementation, deployment, and maintenance). The project team
is composed of five professionals: two developers, one
maintainer, one tester, and one project manager who also plays the
role of the requirements analyst.

3.2 Goal and research questions
The goal of the research is to understand the human elicitation of
TD and compare it to automated TD identification. The study’s
research questions are:

RQ1- Do the TD identification tools find the TD items that were
reported by the developers?

RQ2-How much overlap is there between the TD items reported
by different developers?

RQ3-How hard is the TD item template to fill in?

Given the exploratory nature of this case study and the small
amount of TD items collected (21), we chose to address the
research questions using exploratory analysis and presentation of
data, rathter than a confirmatory type of analysis.

3.3 Procedure and Data Collection
The development team was first trained in TD basic concepts by
the second author, including an opportunity for Q&A, via Skype.
All the material was in Portuguese since this is the natural
language of the development team.

During the training, only abstract TD items were used as
examples (for instance: “TD items” on house or car repair) to
avoid bias on identifying TD items during the second phase of the
study. All types of TD (defect, design, etc.) were described, but no
examples were given.

After the training, two parallel activities took place: manual and
automatic TD identification, i.e. collecting TD items from the
development team and collecting the output of tool-based analysis
on the source code.

For the manual identification of TD, the development team
(project manager, developers, and testers) were asked to report
TD items individually. For this, we provided the team members
with a short questionnaire to both report the TD items through the
TD template (question 1) and provide information about the
difficulty of documenting debt items (questions 2 to 5). The
respondents were asked to document up to five of the most
pressing TD items they knew of in the current version of the
software. The questions were the following:

1. If you were given a week to work on this application, and
were told not to add any new features or fix any bugs, but
only to address TD (i.e. make it more maintainable for the
future), what would you spend your time on?

2. How difficult was it to identify TD items?

3. How difficult was it to report TD items (i.e. fill in the
template)?

4. How much effort did you need to identify and document all
the TD items?

5. Which are the most difficult fields to fill in / which are the
least difficult ones?

All answers were given as free text, although the respondents
were asked to use the TD template to answer question 1.

In parallel to the questionnaire, we applied the CodeVizard and
FindBugs tools to the latest version of the subject project source
code, in order to identify code smells and ASA issues. The
resulting data described, for each file (i.e. class) in the code base,
how many of each type of code smells were identified, and how
many of each type of ASA issues were present. Each FindBugs
issue has a category, (e.g., Performance, Correctness, etc.), and a
priority from 1 (highest) to 3 (lowest).

Regarding the structural metrics, we selected and computed for
each file the following ones: Lines of Code, McCabe’s
Cyclomatic Complexity, Density of Comments, and Sum of
Maximum Nesting of all Methods in a Class.

Lines of Code and McCabe’s Cyclomatic Complexity are widely
used in the literature of defect and maintainability prediction (e.g.,
[12], [13]). Higher accidental complexity is hypothesized to point
to TD since complexity increases maintenance cost (TD interest).
Density of Comments was selected to study whether highly
commented code might have a relationship with TD, while Max
Nesting measures complexity in depth similar to McCabe’s
Complexity measure.

The metrics were computed with ad-hoc scripts/tools.

4. RESULTS
Results in Figure 1 show how the 21 TD items identified by the
software team, each represented as a colored box, were distributed
over project roles and types of debt. Note that one new TD type,
usability debt, was introduced by one of the subjects to describe
the lack of a common user interface template.

As the legend indicates, each box has three faces, corresponding
to principal (front), interest probability (right side) and interest
amount (up). Each face can be green, yellow or red with respect to
the estimation of the team member (respectively low, medium and
high). An “i” on the front face indicates that the debt was
intentionally introduced.

Figure 2 shows the results of automated identification approaches
(FindBugs, Code Smells, Metrics) compared to the items reported
by the development team. Each box in Figure 2 corresponds to
one of the boxes (elicited TD items) shown in Figure 1. An “s”
on the front face of a box shows that TD item was located in the
source code by the subject who reported it.

We pre-filtered the results and we chose only the best automatic
predictors of manually elicited TD to present here. For each
automatically generated indicator, we sorted the source code files
by the number or severity of issues found. For example, we sorted
by the number of FindBugs Priority 1 issues, and by the value of
the metric MAX nesting, and the number of each kind of code
smell found. For each indicator, we examine the top 10% of the
sorted list and determined how many source files in that 10%

corresponded to TD items reported by developers. The indicators
having the most developer-reported source files in the top 10%
were FindBugs P1 issues, the MAX nesting metric, and Intensive
Coupling code smell. We present results from these three
indicators in Figure 2.

We realize that this filtering approach somewhat biases our results
by only showing the automated tool results that performed best.
Our motivation was to determine simply if any of the automated
approaches were related to the TD elicited from developers, and
to simplify the presentation of results. Clearly, we cannot claim
that these three top performing indicators in this study would also
be the best ones in any given case.

The overlapping shaded areas in Figure 2 depict the overlaps
between the TD items reported by the human subjects (shown in
Figure 1), and the TD items found by the top 3 automated
indicators (MAX Nesting, FindBugs P1, and Intensive Coupling).
For example, the shaded area labeled “Defect Debt” contains the 9
defect debt items reported by the development team (actually by
Developer 2 and the Maintainer), and that are depicted in the
“Defect Debt” shaded area of Figure 1. Figure 2 shows that, of
these 9 defect debt items, 7 were also found by all three
automated indicators.

The answers to the research questions follow.

RQ 1- Do the TD identification tools find the TD items that were
reported by the developers?

We observe in Figure 2 that the three top automated approaches
do about equally as well as manual elicitation in identifying defect
debt. As shown in Figure 2, the three best automated indicators
captured all source code components identified by the
development team as having defect debt.

For design debt, automated approaches capture about half of the
human-reported TD items, although ASA issues (in particular P1
issues) and code smells (i.e. Intensive Coupling) identify more TD
items than traditional code metrics (i.e. MAX Nesting). One
design debt item was located in a source file identified by all

Figure 1. Results of the human elicitation of TD items

Figure 2. Results of the tools compared to human elicitation.

automatic approaches, and another was identified by ASA issues
and code smells, but not traditional metrics. Three developer-
reported design debt items (two of which were actually the same
item) were not identified by any automated approach. The first
item (covered by two reports) was described as TD caused by
information stored redundantly in two databases. Subjects
reporting this TD said that this kind of debt was distributed over
many files. Thus, it is likely that the tools investigating single
lines, methods, and classes could not point out this type of TD
easily. The second missed item was reported as insufficient use of
system resources (i.e. memory usage). This type of TD was
missed even though one approach (FindBugs) reports on bug
patterns related to performance problems.

Seven human-reported TD items were of type documentation
debt, testing debt, or usability debt. Only one of these TD items
was related to source code files, all other were related to other
development artifacts (e.g. requirements documents and test
plans).

Summarizing, these results lead to answer RQ1 in the following
way: tools can support the identification of defect and design debt
in this project, but not other types of debt that were found by
developers.

RQ2- How much overlap is there between the TD items reported
by different developers?

Only one TD item was reported by two different stakeholders (the
manager and one developer). None of the remaining 19 items
were reported by more than one stakeholder. This result indicates
that, in this project, TD knowledge is dispersed and perceived
differently by different stakeholders. The software tester reported
the widest range of TD types including one previously unknown
type, usability debt.

RQ 3-How hard is the TD item template to fill in?

The five study subjects reported that it took between 50 minutes
and 2 hours to identify and document the TD items (average of 19
minutes per item). Answers about difficulty of the task ranged
from “easy” to “difficult/high” (all answers were given as free
text). Subjects agreed that the fields principal, interest amount,
and interest probability were the most difficult to fill in. Location,
type, and responsible were commonly noted as the least difficult
fields. These results indicate that, in this project, the initial
elicitation of TD items could be done in reasonable time, but that
the key financial parameters of TD were difficult to estimate and
might require better process or tool support in future.

5. DISCUSSION
The results addressing our research questions showed that in the
project studied:

• the tools used identified all files affected by developer-
identified defect debt, two out of five files affected by
design debt items, and no other types of debt identified
by developers in code or other artifacts;

• different stakeholders identified different debt;
• the initial human elicitation of TD items could be done

in reasonable time, but that the key financial parameters
of TD were difficult to estimate;

Some additional observations, beyond or complementary to the
scope of the research questions, are possible from the data
collected.

The first observation is that the majority of items reported by
developers fall into the defect debt category. This indicates that
known defects are of concern to the development team of this
project.

Secondly, the colors of the TD items in Figure 1, indicating
principal, interest amount, and interest probability, are rather
equally distributed among the different types of debt. This
suggests that debt characteristics are not tied to the type of debt,
i.e. no type of debt has noticeably higher overall interest or
principal.

Thirdly, we find intentionally earned debt in almost every
category, except usability. This is especially interesting for defect
debt. Many of the defect debt items were requirements that were
not fully implemented. The intentionality of these items indicates
that a decision was made to not fully implement those
requirements, most likely due to time constraints, which makes
these instances conceptually different from defects caused by
unintentional programming mistakes.

Further, many developer-identified TD items could not have been
found by the tools or metrics since the artifacts they were located
are not included in the static code analysis. This suggests that a
focus on source code as the single source of TD is too narrow, as
developers reported a significant number of such items among
their most important. Future studies might consider including or
proposing tools for other kinds of development artifacts affected
by TD.

Finally, we think that the color coding in Figure 1 hints at how
this information can be further used to manage debt and make
clearer decisions on which debt to pay. For example, items that
have generally a low principal (e.g. green front face), but yellow
or red interest characteristics are good candidates for paying off
first, since their return on investment is more favorable than for
other items. This idea of a cost/benefit decision approach has been
previously proposed and discussed in [14].

6. THREATS TO VALIDITY
As with any case study, especially of a small project such as this
one, threats to external validity are significant. We accept these
threats, and attempt to trade off breadth for depth, by doing a
thorough analysis of a small case, yielding deeper insights that
would not have been possible in a much larger sample.

An important construct threat derives from the following
assumption made in the design of this study: we assumed that the
perceptions of software developers about the TD in their code can
serve as a “ground truth” against which other types of TD
identification can usefully be compared. However, the ultimate
and authoritative “ground truth” for studies of TD would be a
measure based on future maintenance effort associated with TD
items. That is, a “real” TD item is one that leads to higher
maintenance effort than would have been incurred if the debt did
not exist. However, measuring “real” TD in this way was not
possible in this study, nor is it in many studies. For the study in
this paper, the assumption we have made represents a threat to
construct validity in the sense that the TD reported by the
developers might not lead to future increases in maintenance cost.

Another assumption that we have made that may also lead to a
construct threat is that, when an automated approach identifies a
problem in a source code module that is also indicated in a TD
item reported by a developer, that the two indicators are actually
pointing to the same TD instance, not to two separate TD

instances that happen to reside in the same source module. While
this assumption may not be strictly true, from a practical
perspective it is reasonable, as fixing one instance of TD in a class
(e.g. by refactoring) will very often, as a side effect, fix other
instances of TD in the same class.

7. CONCLUSIONS
The TD metaphor has the potential to go beyond a mechanism for
communication, to be translated into a whole set of tools and
methods for measuring and managing debt. We have presented
and evaluated how the TD list can be populated by developers
through a common TD template, and how existing tool
approaches can help to identify certain types of debt. We have
further shown that different stakeholders know about different
debt in their project, indicating that TD elicitation should include
a range of project team members. Aggregation, not consensus,
would appear to be the most effective approach to combining the
input from different team members. In addition, three different
automated approaches - code smells, ASA issues, and traditional
code metrics - did well in pointing to source code files with defect
debt, and also could point to a partial set of files with design debt.

This study raised, but did not answer, a number of interesting and
important questions that we commend to future researchers
(including ourselves):

• How much of the potential TD reported by tools, but not
reported by developers, is “real” TD? That is, is there a
value in using tools to identify TD that developers are
not aware of?

• How can manual TD identification be better integrated
into the development process, in order to make it more
efficient and feasible?

• Is developer-identified or tool-identified TD more likely
to lead to future maintenance issues (i.e. which is more
likely to be “real” TD)?

We also encourage practitioners to use the proposed template in
their projects and to share results and experiences (e.g. at
www.technicaldebt.umbc.edu). It will require evidence from a
variety of environments to build a full picture of how different TD
identification approaches interact, overlap, and are (or are not)
synergistic. This evidence is necessary to further refine and to
bring into focus the TD landscape.

8. ACKNOWLEDGMENTS
The participation of Seaman and Zazworka in this work is
supported by the US National Science Foundation, award
#0916699. The author Spínola would like to thank the Brazilian
National Council for Scientific and Technological Development
(CNPq) for their support of this research, award #201440/2011-3.

9. REFERENCES
[1] Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M.,

Kruchten, P., Lim, E., MacCormack, A., Nord, R., Ozkaya,
I., Sangwan,R., Seaman, C., Sullivan, K., and Zazworka, N.
2010. Managing technical debt in software-reliant systems.
In Proceedings of the FSE/SDP workshop on Future of

Software Engineering Research (FoSER '10). ACM, New
York, NY, USA, 47-52.

[2] Seaman, C., and Guo, Y. 2011. Measuring and Monitoring
Technical Debt. In Advances in Computers, Vol.82,pp.25-46.

[3] Schumacher, J., Zazworka, N., Shull,F., Seaman, C., and
Shaw, M. 2010. Building empirical support for automated
code smell detection. In Proceedings of the 2010 ACM-IEEE
International Symposium on Empirical Software Engineering
and Measurement (ESEM '10). ACM, New York, NY, USA,
Article 8 , 10 pages..

[4] Guo, Y., Seaman, C., Zazworka, N., Shull, F. 2011. Domain-
Specific Tailoring of Code Smells: An Empirical Study. In
Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering, 167-170.

[5] Izurieta, C., Vetro’ A., Zazworka, N., Cai, Y., Seaman, C.,
Shull, F., "Organizing the Technical Debt Landscape." IEEE
ACM MTD 2012 3rd International Workshop on Managing
Technical Debt. In association with the 34th International
Conference on Software Engineering ICSE, Zurich,
Switzerland, June 2-9, 2012.

[6] Lanza, M., Marinescu, R., and Ducasse, S. 2005. Object-
Oriented Metrics in Practice. Springer-Verlag New York,
Inc., Secaucus, NJ, USA.

[7] Zazworka, N., Shaw, M.A., Shull, F., Seaman, C. 2011.
"Investigating the Impact of Design Debt on Software
Quality" In Proceedings of the 2nd Workshop on Managing
Technical Debt (MTD '11). ACM, New York, NY, USA, 17-
23.

[8] Zazworka, N., and Ackermann, C. 2010. CodeVizard: a tool
to aid the analysis of software evolution. In Proceedings of
the 2010 ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM '10). ACM,
New York, NY, USA, Article 63 , 1 pages (Poster).

[9] Binkley, D.“Source code analysis: A road map,” in Future of
Software Engineering, 2007, pp. 104 –119.

[10] Hovemeyer, D., and Pugh, W. 2004. Finding bugs is easy.
SIGPLAN Not. 39, 12 (December 2004), 92-106.

[11] Vetro', A., Morisio, M., Torchiano, M. "An empirical
validation of FindBugs issues related to defects," Evaluation
& Assessment in Software Engineering (EASE 2011), 15th
Annual Conference on , vol., no., pp.144-153, 11-12 April
2011, doi: 10.1049/ic.2011.0018.

[12] Nagappan, N., Ball, T., and Zeller, A. “Mining metrics to
predict component failures,” in Proceedings of the 28th
international conference on Software engineering, ser. ICSE
’06. New York, NY, USA: ACM, 2006, pp. 452–461.

[13] Riaz, M., Mendes, E., and Tempero, E. 2009. “A systematic
review of software maintainability prediction and metrics,”
in 3rd International Symposium on Empirical Software
Engineering and Measurement, 2009, pp. 367-377.

[14] Zazworka, N., Seaman, C., Shull, F.: "Prioritizing Design
Debt Investment Opportunities" In Proceedings of the 2nd
Workshop on Managing Technical Debt (MTD '11). ACM,
New York, NY, USA, 39-42.

