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ABSTRACT 
Context: The technical debt (TD) concept describes a tradeoff 
between short-term and long-term goals in software development. 
While it is highly useful as a metaphor, it has utility beyond the 
facilitation of discussion, to inspire a useful set of methods and 
tools that support the identification, measurement, monitoring, 
management, and payment of TD. Objective: This study focuses 
on the identification of TD. We evaluate human elicitation of TD 
and compare it to automated identification. Method: We asked a 
development team to identify TD items in artifacts from a 
software project on which they were working. We provided the 
participants with a TD template and a short questionnaire. In 
addition, we also collected the output of three tools to 
automatically identify TD and compared it to the results of human 
elicitation. Results: There is little overlap between the TD 
reported by different developers, so aggregation, rather than 
consensus, is an appropriate way to combine TD reported by 
multiple developers. The tools used are especially useful for 
identifying defect debt but cannot help in identifying many other 
types of debt, so involving humans in the identification process is 
necessary. Conclusion: We have conducted a case study that 
focuses on the practical identification of TD, one area that could 
be facilitated by tools and techniques. It contributes to the TD 
landscape, which depicts an understanding of relationships 
between different types of debt and how they are best discovered. 

Categories and Subject Descriptors 
K.2.7 [Management of Computing and Information Systems]: 
Software Management - Software Maintenance 

General Terms 
Management, Measurement, Experimentation, Human Factors. 

 

Keywords 
Technical Debt, Software Maintenance, Automatic Static 
Analysis, Code Smells. 

1. INTRODUCTION1 
Technical debt (TD) is a metaphor that describes the tradeoff 
between the short-term payoffs (such as a timely software release) 
of delaying some technical development activities and the long-
term consequences of those delays [1]. It has facilitated discussion 
among practitioners and researchers by providing a familiar 
vocabulary from the financial domain and has potential to become 
a truly universal language for communicating technical tradeoffs. 

Our vision for TD management, however, goes beyond facilitating 
communication, to the development of a whole set of tools and 
techniques, inspired by the TD metaphor. This toolset must 
include tools for TD identification, which is essential to make TD 
manageable and explicit, creating a TD “portfolio” that allows 
better control of the debt situation. TD identification approaches 
can be broadly categorized as those that elicit TD instances from 
humans (i.e. developers and other stakeholders), and automated 
tools of various kinds to detect potential debt in the source code. 
Human, manual approaches are likely to be more time-consuming, 
but have two advantages (at least in theory) over automated 
approaches. One is that they might be more accurate, i.e. more 
likely to identify TD that is most significant, while automated 
analyses may reveal many anomalies that turn out to be 
unimportant. The other advantage is that human stakeholders 
might be able to provide additional important contextual 
information related to each instance of TD (e.g. effort estimates, 
impact, decision rationale, etc.) that is difficult or even impossible 
to glean from analysis tools. 

The first contribution of our work is to better understand how to 
elicit TD from humans. We propose and assess a TD template [2] 
that can be used to capture, store, and communicate essential 
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properties of TD that can feed into further decision making 
processes about debt repayment. Besides the template, our case 
study gives some insight into the dynamics of eliciting TD from a 
team of developers, all familiar with different aspects of the 
system being analyzed.    

As a second contribution we compare several types of tool support 
for TD identification. Some recent research has addressed the 
issue of how close automated approaches can get to the results of 
manual TD identification. Some of these studies have indicated 
that it is possible to identify certain classes of potential TD (in 
particular design debt) with computer-assisted methods [3][4]. 
Moreover, they have demonstrated that detection approaches can 
succeed in finding issues that are of value to developers [3]. 
However, despite the fact that these approaches point to system 
code fragments that need improvement, it is not clear yet if they 
point to the most important TD, from software project 
stakeholders’ point of view. Based on the current state-of-the-art, 
we studied three automated approaches (code smells, automated 
static analysis issues, and collection of code metrics), and how 
their output compares to TD that is elicited from humans. All of 
these approaches are well-established and have been extensively 
studied, however, to be fair, none of these approaches claims to 
identify a wide range of TD. Each of them aims to identify 
specific deficiencies in code or measure a specific quality 
dimension of software. Since these tools are available and stable 
we are interested in exploring the extent to which they can support 
TD identification, how big of a gap they leave if used without 
human elicitation of TD, and whether new tools might be 
warranted, possibly derived from knowledge of manual TD 
inspections.  This understanding can help address questions such 
as how tools can best be used, instead of or in addition to manual 
approaches, in the identification of TD.   

This study, and others like it, will help evolve the TD landscape 
[5], which lays out the different types and flavors of TD that exist 
in real software projects with respect to their importance and 
overlaps, and how those types are best identified by tools and 
other methods. Such an evolved landscape is essential to achieve 
our vision of building an effective toolkit for identifying, 
quantifying and managing TD. 

2. BACKGROUND AND RELATED WORK 
According to Seaman and Guo [2], the management of TD can 
center on a TD list, which is similar to a task backlog. The 
backlog contains TD items (in the following simply referred to as 
items), each of which represents a task that was left undone, but 
that runs a risk of causing future problems if not completed. Each 
item includes a description of what part of the system the debt 
item is related to, why that task needs to be done, and estimates of 
the TD’s principal and interest, as well as some other attributes, as 
shown in Table 1.  

The principal refers to the cost to fully eliminate the debt, i.e. to 
completely repair the technical imperfection. Depending on the 
type of TD this can translate into different kinds of activities, such 
as adding missing documentation, refactoring code that is hard to 
maintain, or maintaining a set of regression tests to align with the 
code and requirements. The cost of TD repair might be 
understood better in some cases than in others. For example, 
adding missing documentation might be more straightforward to 
estimate than a more complex code refactoring. Seaman and Guo 
[2] propose to initially estimate the principal on a rough ordinal 
scale from low to medium to high, that allows enough 
understanding to contribute in iteration planning.  To further help 

in estimating principal, historical effort data can be used to make a 
more accurate and reliable estimation beyond the initial 
high/medium/low assessment. For example, if a debt item is a set 
of classes that need to be refactored, the historical cost of 
modification of those classes can be used as the future 
modification cost (principal of the debt item) estimation.  

The second main component of TD is interest, which is composed 
of two parts: (1) the interest probability is the probability that the 
debt, if not repaid, will make other work more expensive over a 
given period of time or a release; (2) the interest amount is an 
estimate of the amount of extra work that will be needed if this 
debt item is not repaid.  

Interest probability can be estimated using, e.g., historical usage 
and defect data. In addition, it is also important to consider the 
time variable because probability varies over time. For example, 
the probability that a module that needs refactoring will cause 
problems in the next release (because modifications will need to 
be made to it) may be very low, but that probability rises if we 
consider longer periods of time, e.g. over the next year or 5 years. 

Finally, interest amount can also be estimated using historical 
data. Like TD principal, data on past defects, effort, and changes 
can be useful. 

In addition to the financial properties of TD, several properties 
that support decisions on repayment are captured in the TD 
template: 

1. The type of debt can be helpful to tailor debt payment to 
critical quality characteristics of interest. For example, 
known defect debt (known latent defects that have not been 
fixed) may be differently perceived in life critical software 
applications. Other known TD types are: design debt (an 
imperfection of the software’s design or architecture 
negatively affecting future maintenance), documentation debt 
(missing, outdated, or incomplete documentation), and 
testing debt (missing test cases, test cases that are not 
executed, or missing test plans).  

2. Was the original decision to go into debt made intentionally 
or  unintentionally?  This information can help to understand 
how explicit debt and TD decisions are managed in a project.  

Table 1. The TD Template 

ID TD identification number 
Responsible Person or role who should fix this TD item 
Type design, documentation, defect, testing, or other 

type of debt 
Location List of files/classes/methods or 

documents/pages involved 
Description Describes the anomaly and possible impacts on 

future maintenance 
Estimated 
principal 

How much work is required to pay off this TD 
item on a three point scale: High/Medium/Low 

Estimated 
interest 
amount 

How much extra work will need to be 
performed in the future if this TD item is not 
paid off now on a three point scale: 
High/Medium/Low 

Estimated 
interest 
probability 

How likely is it that this item, if not paid off, 
will cause extra work to be necessary in the 
future on a three point scale: 
High/Medium/Low 

Intentional? Yes/No/Don’t Know 
 



3. Who is responsible for fixing the TD? This information is 
important for administrative reasons and may help to provide 
a basis for assessing principal and interest.  

4. Where is the TD located? This information is important to 
understand impact on the product, relationships between 
items, and ripple effects in source code when repaying the 
debt.  

The process of managing TD using this approach starts with 
detecting TD items to construct the TD list. The next step is to 
measure the debt items on the list by estimating the principal, 
interest amount and interest probability. Then the debt items are 
monitored and decisions can be made on when and what debt 
items should be paid or deferred. 

In this work, we are focused on the first step of this process: TD 
Identification. We can use different strategies to find TD items for 
each TD type. Two automated strategies that have been proposed 
to support the identification of design debt in software projects are 
identification of code smells and issues raised by automatic static 
analysis (ASA) tools, aka ASA issues.   

Code smells refer to potential violations of good object-oriented 
design principles in source code and can be identified by 
comparing values of software metrics to defined thresholds [6]. 
Past studies have shown that some code smells are correlated with 
defect- and change-proneness [7]. In this study, we use 
CodeVizard [8] to detect 10 code smells as proposed in [6]. 

ASA is a reverse engineering technique that consists of extracting 
information about a program from its source or source code based 
artifacts using automatic tools [9].  ASA tools look for issues in 
terms of violations of recommended programming practices and 
potential defects that might cause faults or might degrade some 
dimensions of software quality (e.g., maintainability, efficiency). 
Issues should be removed through refactoring to avoid future 
problems, and thus may constitute TD. Many ASA tools exist; for 
this study we selected FindBugs, which is widely used in the 
literature and already used in past work [10][11]. 

In addition to code smells and issues, in this study we also 
collected basic structural code metrics for size and complexity, in 
order to study whether any relationship exists between high levels 
of these metrics and the existence of TD. 

3. THE STUDY 
3.1 Context 
The study was conducted at Kali Software, a small software 
development company located in Rio de Janeiro, Brazil, that 
develops primarily web applications written in Java and based on 
the MVC framework. The project we studied consisted of a small 
application of 25K non-commented lines of code. It is a database-
driven web application for the sea transportation domain. It has 
undergone a full product lifecycle (elicitation, design, 
implementation, deployment, and maintenance). The project team 
is composed of five professionals: two developers, one 
maintainer, one tester, and one project manager who also plays the 
role of the requirements analyst.  

3.2 Goal and research questions 
The goal of the research is to understand the human elicitation of 
TD and compare it to automated TD identification. The study’s 
research questions are:  

RQ1- Do the TD identification tools find the TD items that were 
reported by the developers?  

RQ2-How much overlap is there between the TD items reported 
by different developers? 

RQ3-How hard is the TD item template to fill in? 

Given the exploratory nature of this case study and the small 
amount of TD items collected (21), we chose to address the 
research questions using exploratory analysis and presentation of 
data, rathter than a confirmatory type of analysis.  

3.3 Procedure and Data Collection 
The development team was first trained in TD basic concepts by 
the second author, including an opportunity for Q&A, via Skype. 
All the material was in Portuguese since this is the natural 
language of the development team.  

During the training, only abstract TD items were used as 
examples (for instance: “TD items” on house or car repair) to 
avoid bias on identifying TD items during the second phase of the 
study. All types of TD (defect, design, etc.) were described, but no 
examples were given. 

After the training, two parallel activities took place: manual and 
automatic TD identification, i.e. collecting TD items from the 
development team and collecting the output of tool-based analysis 
on the source code. 

For the manual identification of TD, the development team 
(project manager, developers, and testers) were asked to report 
TD items individually. For this, we provided the team members 
with a short questionnaire to both report the TD items through the 
TD template (question 1) and provide information about the 
difficulty of documenting debt items (questions 2 to 5). The 
respondents were asked to document up to five of the most 
pressing TD items they knew of in the current version of the 
software. The questions were the following: 

1. If you were given a week to work on this application, and 
were told not to add any new features or fix any bugs, but 
only to address TD (i.e. make it more maintainable for the 
future), what would you spend your time on? 

2. How difficult was it to identify TD items? 

3. How difficult was it to report TD items (i.e. fill in the 
template)? 

4. How much effort did you need to identify and document all 
the TD items? 

5. Which are the most difficult fields to fill in / which are the 
least difficult ones? 

All answers were given as free text, although the respondents 
were asked to use the TD template to answer question 1. 

In parallel to the questionnaire, we applied the CodeVizard and 
FindBugs tools to the latest version of the subject project source 
code, in order to identify code smells and ASA issues. The 
resulting data described, for each file (i.e. class) in the code base, 
how many of each type of code smells were identified, and how 
many of each type of ASA issues were present. Each FindBugs 
issue has a category, (e.g., Performance, Correctness, etc.), and a 
priority from 1 (highest) to 3 (lowest).  

Regarding the structural metrics, we selected and computed for 
each file the following ones: Lines of Code, McCabe’s 
Cyclomatic Complexity, Density of Comments, and Sum of 
Maximum Nesting of all Methods in a Class. 



Lines of Code and McCabe’s Cyclomatic Complexity are widely 
used in the literature of defect and maintainability prediction (e.g., 
[12], [13]). Higher accidental complexity is hypothesized to point 
to TD since complexity increases maintenance cost (TD interest). 
Density of Comments was selected to study whether highly 
commented code might have a relationship with TD, while Max 
Nesting measures complexity in depth similar to McCabe’s 
Complexity measure.  

The metrics were computed with ad-hoc scripts/tools. 

4. RESULTS 
Results in Figure 1 show how the 21 TD items identified by the 
software team, each represented as a colored box, were distributed 
over project roles and types of debt. Note that one new TD type, 
usability debt, was introduced by one of the subjects to describe 
the lack of a common user interface template. 

As the legend indicates, each box has three faces, corresponding 
to principal (front), interest probability (right side) and interest 
amount (up). Each face can be green, yellow or red with respect to 
the estimation of the team member (respectively low, medium and 
high). An “i” on the front face indicates that the debt was 
intentionally introduced. 

Figure 2 shows the results of automated identification approaches 
(FindBugs, Code Smells, Metrics) compared to the items reported 
by the development team. Each box in Figure 2 corresponds to 
one of the boxes (elicited TD items) shown in Figure 1.  An “s” 
on the front face of a box shows that TD item was located in the 
source code by the subject who reported it.  

We pre-filtered the results and we chose only the best automatic 
predictors of manually elicited TD to present here.  For each 
automatically generated indicator, we sorted the source code files 
by the number or severity of issues found. For example, we sorted 
by the number of FindBugs Priority 1 issues, and by the value of 
the metric MAX nesting, and the number of each kind of code 
smell found.  For each indicator, we examine the top 10% of the 
sorted list and determined how many source files in that 10% 

corresponded to TD items reported by developers. The indicators 
having the most developer-reported source files in the top 10% 
were FindBugs P1 issues, the MAX nesting metric, and Intensive 
Coupling code smell. We present results from these three 
indicators in Figure 2.  

We realize that this filtering approach somewhat biases our results 
by only showing the automated tool results that performed best. 
Our motivation was to determine simply if any of the automated 
approaches were related to the TD elicited from developers, and 
to simplify the presentation of results. Clearly, we cannot claim 
that these three top performing indicators in this study would also 
be the best ones in any given case.  

The overlapping shaded areas in Figure 2 depict the overlaps 
between the TD items reported by the human subjects (shown in 
Figure 1), and the TD items found by the top 3 automated 
indicators (MAX Nesting, FindBugs P1, and Intensive Coupling). 
For example, the shaded area labeled “Defect Debt” contains the 9 
defect debt items reported by the development team (actually by 
Developer 2 and the Maintainer), and that are depicted in the 
“Defect Debt” shaded area of Figure 1. Figure 2 shows that, of 
these 9 defect debt items, 7 were also found by all three 
automated indicators. 

The answers to the research questions follow. 

RQ 1- Do the TD identification tools find the TD items that were 
reported by the developers? 

We observe in Figure 2 that the three top automated approaches 
do about equally as well as manual elicitation in identifying defect 
debt. As shown in Figure 2, the three best automated indicators 
captured all source code components identified by the 
development team as having defect debt. 

For design debt, automated approaches capture about half of the 
human-reported TD items, although ASA issues (in particular P1 
issues) and code smells (i.e. Intensive Coupling) identify more TD 
items than traditional code metrics (i.e. MAX Nesting). One 
design debt item was located in a source file identified by all 

 
Figure 1. Results of the human elicitation of TD items 
 

 
Figure 2. Results of the tools compared to human elicitation. 
 



automatic approaches, and another was identified by ASA issues 
and code smells, but not traditional metrics. Three developer-
reported design debt items (two of which were actually the same 
item) were not identified by any automated approach. The first 
item (covered by two reports) was described as TD caused by 
information stored redundantly in two databases. Subjects 
reporting this TD said that this kind of debt was distributed over 
many files. Thus, it is likely that the tools investigating single 
lines, methods, and classes could not point out this type of TD 
easily. The second missed item was reported as insufficient use of 
system resources (i.e. memory usage). This type of TD was 
missed even though one approach (FindBugs) reports on bug 
patterns related to performance problems.  

Seven human-reported TD items were of type documentation 
debt, testing debt, or usability debt. Only one of these TD items 
was related to source code files, all other were related to other 
development artifacts (e.g. requirements documents and test 
plans). 

Summarizing, these results lead to answer RQ1 in the following 
way: tools can support the identification of defect and design debt 
in this project, but not other types of debt that were found by 
developers. 

RQ2- How much overlap is there between the TD items reported 
by different developers? 

Only one TD item was reported by two different stakeholders (the 
manager and one developer). None of the remaining 19 items 
were reported by more than one stakeholder. This result indicates 
that, in this project, TD knowledge is dispersed and perceived 
differently by different stakeholders. The software tester reported 
the widest range of TD types including one previously unknown 
type, usability debt. 

RQ 3-How hard is the TD item template to fill in? 

The five study subjects reported that it took between 50 minutes 
and 2 hours to identify and document the TD items (average of 19 
minutes per item). Answers about difficulty of the task ranged 
from “easy” to “difficult/high” (all answers were given as free 
text). Subjects agreed that the fields principal, interest amount, 
and interest probability were the most difficult to fill in. Location, 
type, and responsible were commonly noted as the least difficult 
fields. These results indicate that, in this project, the initial 
elicitation of TD items could be done in reasonable time, but that 
the key financial parameters of TD were difficult to estimate and 
might require better process or tool support in future. 

5. DISCUSSION 
The results addressing our research questions showed that in the 
project studied: 

• the tools used identified all files affected by developer-
identified defect debt, two out of five files affected by 
design debt items, and no other types of debt identified 
by developers in code or other artifacts; 

• different stakeholders identified different debt; 
• the initial human elicitation of TD items could be done 

in reasonable time, but that the key financial parameters 
of TD were difficult to estimate; 

Some additional observations, beyond or complementary to the 
scope of the research questions, are possible from the data 
collected.  

The first observation is that the majority of items reported by 
developers fall into the defect debt category. This indicates that 
known defects are of concern to the development team of this 
project.  

Secondly, the colors of the TD items in Figure 1, indicating 
principal, interest amount, and interest probability, are rather 
equally distributed among the different types of debt. This 
suggests that debt characteristics are not tied to the type of debt, 
i.e. no type of debt has noticeably higher overall interest or 
principal. 

Thirdly, we find intentionally earned debt in almost every 
category, except usability. This is especially interesting for defect 
debt. Many of the defect debt items were requirements that were 
not fully implemented. The intentionality of these items indicates 
that a decision was made to not fully implement those 
requirements, most likely due to time constraints, which makes 
these instances conceptually different from defects caused by 
unintentional programming mistakes.  

Further, many developer-identified TD items could not have been 
found by the tools or metrics since the artifacts they were located 
are not included in the static code analysis. This suggests that a 
focus on source code as the single source of TD is too narrow, as 
developers reported a significant number of such items among 
their most important. Future studies might consider including or 
proposing tools for other kinds of development artifacts affected 
by TD. 

Finally, we think that the color coding in Figure 1 hints at how 
this information can be further used to manage debt and make 
clearer decisions on which debt to pay. For example, items that 
have generally a low principal (e.g. green front face), but yellow 
or red interest characteristics are good candidates for paying off 
first, since their return on investment is more favorable than for 
other items. This idea of a cost/benefit decision approach has been 
previously proposed and discussed in [14].  

6. THREATS TO VALIDITY 
As with any case study, especially of a small project such as this 
one, threats to external validity are significant. We accept these 
threats, and attempt to trade off breadth for depth, by doing a 
thorough analysis of a small case, yielding deeper insights that 
would not have been possible in a much larger sample.  

An important construct threat derives from the following 
assumption made in the design of this study: we assumed that the 
perceptions of software developers about the TD in their code can 
serve as a “ground truth” against which other types of TD 
identification can usefully be compared. However, the ultimate 
and authoritative “ground truth” for studies of TD would be a 
measure based on future maintenance effort associated with TD 
items. That is, a “real” TD item is one that leads to higher 
maintenance effort than would have been incurred if the debt did 
not exist. However, measuring “real” TD in this way was not 
possible in this study, nor is it in many studies. For the study in 
this paper, the assumption we have made represents a threat to 
construct validity in the sense that the TD reported by the 
developers might not lead to future increases in maintenance cost. 

Another assumption that we have made that may also lead to a 
construct threat is that, when an automated approach identifies a 
problem in a source code module that is also indicated in a TD 
item reported by a developer, that the two indicators are actually 
pointing to the same TD instance, not to two separate TD 



instances that happen to reside in the same source module. While 
this assumption may not be strictly true, from a practical 
perspective it is reasonable, as fixing one instance of TD in a class 
(e.g. by refactoring) will very often, as a side effect, fix other 
instances of TD in the same class.  

7. CONCLUSIONS 
The TD metaphor has the potential to go beyond a mechanism for 
communication, to be translated into a whole set of tools and 
methods for measuring and managing debt. We have presented 
and evaluated how the TD list can be populated by developers 
through a common TD template, and how existing tool 
approaches can help to identify certain types of debt. We have 
further shown that different stakeholders know about different 
debt in their project, indicating that TD elicitation should include 
a range of project team members. Aggregation, not consensus, 
would appear to be the most effective approach to combining the 
input from different team members. In addition, three different 
automated approaches - code smells, ASA issues, and traditional 
code metrics - did well in pointing to source code files with defect 
debt, and also could point to a partial set of files with design debt.  

This study raised, but did not answer, a number of interesting and 
important questions that we commend to future researchers 
(including ourselves): 

• How much of the potential TD reported by tools, but not 
reported by developers, is “real” TD? That is, is there a 
value in using tools to identify TD that developers are 
not aware of? 

• How can manual TD identification be better integrated 
into the development process, in order to make it more 
efficient and feasible? 

• Is developer-identified or tool-identified TD more likely 
to lead to future maintenance issues (i.e. which is more 
likely to be “real” TD)? 

We also encourage practitioners to use the proposed template in 
their projects and to share results and experiences (e.g. at 
www.technicaldebt.umbc.edu). It will require evidence from a 
variety of environments to build a full picture of how different TD 
identification approaches interact, overlap, and are (or are not) 
synergistic. This evidence is necessary to further refine and to 
bring into focus the TD landscape. 
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