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ABSTRACT 
Background: Software systems accumulate technical debt (TD) 
when short-term goals in software development are traded for 
long term goals (e.g., quick-and-dirty implementation to reach a 
release date vs. a well-refactored implementation that supports the 
long term health of the project). Some forms of TD accumulate 
over time in the form of source code that is difficult to work with 
and exhibits a variety of anomalies. A number of source code 
analysis techniques and tools have been proposed to potentially 
identify the code-level debt accumulated in a system. What has 
not yet been studied is if using multiple tools to detect TD can 
lead to benefits, i.e. if different tools will flag the same or 
different source code components. Further, these techniques also 
lack investigation into the symptoms of TD “interest” that they 
lead to. To address this latter question, we also investigated 
whether TD, as identified by the source code analysis techniques, 
correlates with interest payments in the form of increased defect- 
and change-proneness. 

Aims: Comparing the results of different TD identification 
approaches to understand their commonalities and differences and 
to evaluate their relationship to indicators of future TD “interest”.   

Method: We selected four different TD identification techniques 
(code smells, automatic static analysis (ASA) issues, grime 
buildup, and modularity violations) and applied them to 13 
versions of the Apache Hadoop open source software project. We 
collected and aggregated statistical measures to investigate 
whether the different techniques identified TD indicators in the 
same or different classes and whether those classes in turn 
exhibited high interest (in the form of a large number of defects 
and higher change proneness). 

Results: The outputs of the four approaches have very little 
overlap and are therefore pointing to different problems in the 
source code. Dispersed coupling and modularity violations were 
co-located in classes with higher defect proneness. We also 
observed a strong relationship between modularity violations and 
change proneness. 

Conclusions: Our main contribution is an initial overview of the 
TD landscape, showing that different TD techniques are loosely 
coupled and therefore indicate problems in different locations of 

the source code. Moreover, our proxy interest indicators (change- 
and defect-proneness) correlate with only a small subset of TD 
indicators. 

Categories and Subject Descriptors 
K.6.3 [Software Management]: Software Maintenance.  

General Terms 
Management, Measurement, Design, Economics, Experimentation 

Keywords 
Technical debt, software maintenance, software quality, source 
code analysis, modularity violations, grime, code smells, ASA. 

1. INTRODUCTION 
As Cunningham described [1], in a software development 

project, rushing implementation to meet pending deadlines is “like 
going into debt. A little debt speeds development so long as it is 
paid back promptly with a rewrite... The danger occurs when the 
debt is not repaid. Every minute spent on not-quite-right code 
counts as interest on that debt. Entire engineering organizations 
can be brought to a stand-still under the debt load of an 
unconsolidated implementation…”   

Nowadays “technical debt” (TD) has become a well-known 
metaphor indicating the possibly of significant economic 
consequences for such quick-and-dirty implementations. 
Accumulated technical debt may cause severe maintenance 
difficulty or even project cancellation. To prevent TD from 
accumulating, or to decide when, where and how to pay off such 
debt, the first step is to make it explicit, i.e. to identify TD. One 
important class of TD is manifested by problematic 
implementations in code. Many types of such code-based TD can 
be potentially detected automatically using static program analysis 
tools that find anomalies of various kinds in the source code.  

There are a number of tools designed for this purpose. Some 
tools are designed to detect design problems such as code smells 
[15] or modularity violations [9], some are designed to discover 
design pattern degradations [7], and some are intended to spot 
potential defects. From a tool user’s point of view, the relevant 
questions are: which tool(s) should be used to inform the 
existence of TD under what circumstances?, and, Is it sufficient to 



use one of the tools, or can the usage of multiple tools lead to 
benefits in finding more TD?  

Plus, not all problematic code detected by these tools is 
worth being fixed. Some detected source code problems are not 
likely to cause future maintenance problems or affect the overall 
quality of the system. In terms of the TD metaphor, the TD 
principal (i.e. the cost of fixing the debt) may be higher than the 
TD interest being paid on the debt (i.e. the probable future cost of 
not fixing it). Thus, another question is: Which tools reveal TD 
that is likely to incur interest?  

TD interest is inherently difficult to estimate or measure. 
Given the data that we had available in this study, we chose to use 
two proxies for expected interest (hereafter referred to as “interest 
indicators”): defect- and change-proneness. These proxies are 
concrete manifestations of problematic code and are related to 
future maintenance cost, and therefore are useful, independent 
indicators of likely interest payments. The proxy measures are 
well established and have been previously used in the assessment 
of maintenance problems [10][11][41][42]. However, they are not 
the only, and possibly not the best, indicators, since they do not 
capture other forms of TD interest, such as increasing effort to 
make changes. However, defect- and change-proneness are factors 
of concern to practitioners, and thus it is relevant to determine if 
they correlate with the TD indicators generated by the four 
approaches studied here. Thus, a lack of relationship between our 
selected interest indicators and a TD indicator cannot clearly be 
interpreted to mean that the associated TD identification approach 
is ineffective, but that instead it may identify TD that exhibits 
other forms of interest. 

It should be noted that our aim is not to predict either defects 
or change-proneness in future instances of the code base, as has 
been done by many other researchers (e.g., [26][27][28][29][30] ). 
Rather, we are calculating, for a given version of the system, 
which classes are already exhibiting change- or defect-proneness, 
and using these indicators as proxies of a construct (TD interest) 
that is more difficult to measure. 

So as a first attempt to compare and contrast different TD 
identification techniques, we conducted an empirical study to 
answer the following research questions:  

RQ1: Considering a set of four representative TD detection 
techniques (resulting in a set of 25 “TD indicators”), do they 
report the same set of modules as problematic? If not, how 
much overlap is there?  
RQ2: To what extent do any of the techniques for detecting 
TD in code happen to point to classes with high interest 
indicators (defect-proneness or change-proneness)?  
We first compare the results of applying the different TD 

identification techniques to 13 versions of the Apache Hadoop 
open source software project.  

Secondly, we investigate whether and how likely the 
problems detected by these different techniques are related to the 
two interest indicators we have chosen. This study is a first 
attempt to map out a “TD landscape” that illustrates the overlaps, 
gaps, and synergies between a variety of code analysis techniques 
with respect to their use in identifying TD. 

Both research questions are answered through the 
computation and combination of the pairwise relationship 
between TD indicators (RQ1) and TD indicators vs. interest 
indicators (RQ2). The aim is to understand which TD and interest 
indicators point to the same locations (i.e. Java classes). 

We use four different statistical association measures: 
Pearson correlation, conditional probability, chance agreement 
and Cohen’s Kappa. Each of the selected four measures assesses 
association from different perspectives that complement each 
other (see Section 4.3.1 for further details). 

The TD indicators and interest indicators are computed for 
each class and each of the 13 selected versions of the Hadoop 
software: hence a further aggregation is needed to combine 
measures from all versions and have a unique association measure 
for every possible combination of TD indicators (RQ1) or TD 
indicator vs interest indicator (RQ2). 

The results in this paper have the potential to improve our 
understanding about how existing source code analysis 
approaches can be tailored towards identifying TD. The long-term 
vision of this work is to create practical approaches that software 
developers can use to make TD visible, to help assess the 
principal (i.e. value) and interest (i.e. long-term cost) of the debt, 
and to assist managers in making educated decisions on strategies 
for debt retirement. 

2. RELATED WORK 
Past research efforts into TD have focused on building 

techniques that independently identify TD through source code 
analysis. For instance, Gat and Heintz [3] identified TD in a 
customer system using both dynamic (i.e., unit testing and code 
coverage) and static (computing rule conformance, code 
complexity, duplication of code, design properties) program 
analysis techniques.  

Nugroho et al. [4] also performed static analysis to identify 
TD. They first calculated lines of code, code duplication, 
McCabe’s cyclomatic complexity, parameter counts, and 
dependency counts. After that, they assigned these metrics to risk 
categories to quantify the amount of interest owed in the form of 
estimated maintainability cost.  

 A CAST report [5] also presented the usage of static 
analysis as a way to identify technical debt. The proposed 
approach examines the density of static analysis issues on 
security, performance, robustness, and changeability of the code. 
The authors built a pricing model assuming that only a percentage 
of the issues are actually being fixed.  

The Sonar tool (http://www.sonarsource.org/) is an open 
source application that has gained in popularity. It also uses static 
measurements against various source code metrics and attributes 
to assess the level of TD in a code base. 

The approaches discussed thus far calculate TD holistically, 
i.e. they yield an overall assessment of the total TD in a system, 
but do not point to specific problematic parts of the code base, or 
to specific remedies applicable to those parts. Another approach to 
TD identification, that attempts to yield more actionable 
information, is to use source code analysis to identify potentially 
problematic parts of the code, and to use the results of that 
analysis to suggest specific changes to be made to that code. 
Examples of such approaches that have been partly evaluated to 
be valid TD indicators are code smells [6], grime build up [7] [8] 
and modularity violations [9].  We discuss these techniques in 
more detail in Section 4.  

This works further evolves the study of these analysis 
techniques by investigating the amount of similarity between 
them. If it turned out that many, or even all, of the TD indicators 
point to the same code, one could propose to choose only one of 
the tools when searching for TD. Alternatively, if each of the 
techniques selects a unique subset of problems, the usage of 



multiple tools can be recommended, where a particular project 
must make intentional decisions about which types of TD they are 
most interested in, and choose tools accordingly. The relationships 
among different TD identification approaches have not previously 
been addressed in the literature. 

3. GOALS AND RESEARCH QUESTIONS 
The objective of our research is twofold: the first goal is to 

compare the similarities and differences between four code 
analysis techniques in terms of TD identification. We are 
interested in understanding the degree of convergence and 
divergence of these techniques and their associations. The second 
goal is to understand how the problematic code identified by these 
four techniques relates to our chosen proxies for TD interest, 
defect and change-proneness. As explained in Section 1 these 
proxies are well-established and feasible to compute given the 
available data, but do not constitute a complete assessment of all 
TD types. We define the goals of our research according to the 
Goal Question Metric framework [16]. 

Goal 1: Characterizing the similarities and differences in the 
problematic classes reported by these four different TD detection 
approaches, in the context of an open source software project.  

Goal 2: Comparing these four TD detection approaches in 
terms of their correlation to one subset of interest indicators, 
namely change-proneness and defect-proneness, in the context of 
an open source project. 

We deduced from the above goals the following research 
questions: 
(RQ1)  Considering a set of four representative TD detection 

techniques (resulting in a set of 25 “TD indicators”), do they 
report the same set of modules as problematic? If not, how 
much overlap is there?  

(RQ2)  To what extent do any of the techniques for detecting 
TD in code happen to point to classes with high interest 
indicators (defect-proneness or change-proneness)? 

4. Case Study 
The application studied is Apache Hadoop 

(http://hadoop.apache.org). Hadoop is a software library for the 
distributed processing of data across numerous computer nodes, 
based on the map-reduce processing model. It provides two key 
services: reliable data storage using the Hadoop Distributed File 
System (HDFS) and high-performance parallel data processing 
using a technique called MapReduce. Data are spread and 
replicated differently among all the nodes of the cluster, while 
operations are split so that each node works on its own piece of 
data and then sends results into a unified whole.  

We selected Hadoop because it is a mature project (it has 
been released 59 times starting from 2 April 2006). We focused 
our analysis on the Java core packages of the system   
(java/org.apache.hadoop.*), which includes the common utilities 
that support the other Hadoop subprojects and provides access to 
the file systems supported by Hadoop. We focused the analysis 
from release 0.2.0 to release 0.14.0 (the latest release, at the time 
this paper was written, is 1.0.3). The system initially had 10.5k 
NCSS (non- commented source statements) and 126 Java classes, 
and grew to 37k NCSS and 373 Java classes by release 0.14.0.  

4.1 TD Identification Techniques Selected 
We selected four main techniques for identifying technical 

debt in source code: modularity violations, grime buildup, code 
smells, and automatic static analysis (ASA). These approaches 
have all been studied in previous work by the collaborating 

authors and institutions [9, 10, 12, 14], and we chose to select 
these techniques as a proof of concept because the authors are 
most experienced with installing, using and interpreting the results 
of these four approaches. This work can be extended in the future 
to incorporate comparisons to other techniques. This section 
introduces the basic concepts of our selected techniques, and 
reports on our and other related past work. 

Modularity Violations (tool: CLIO). In large software 
systems, modules represent subsystems that are typically designed 
to evolve independently. During software evolution, components 
that evolve together though belonging to distinct modules 
represent a discrepancy. This discrepancy may be caused by side 
effects of a quick and dirty implementation, or requirements may 
have changed such that the original designed architecture could 
not easily adapt. When such discrepancies exist, the software can 
deviate from its designed modular structure, which is called a 
modularity violation. Wong et al. [9] have demonstrated the 
feasibility and utility of this approach. In their experiment using 
Hadoop, they identified 231 modularity violations from 490 
modification requests, of which 152 (65%) violations were 
conservatively confirmed by the fact that they were either indeed 

TABLE I. INDICATORS USED IN OUR ANALYSIS 

Technical	  
Debt	  
Indicators	  

Modularity	  
Violations	  

[1]Presence	  of	  Modularity	  Violation	  
CLIO	  

[0,1]	  

Grime	   [2]Presence	  of	  Grime	   [0,1]	  

[3]Absence	  of	  Design	  Pattern	   [0,1]	  

Code	  
Smells	  
CodeVizard	  

Cl
as
s	  L

ev
el
	  C
od

e	  
Sm

el
ls	   [4]God	  Class	   [0,1]	  

[5]Brain	  Class	   [0,1]	  

[6]Refused	  Parent	  
Bequest	  

[0,1]	  

[7]Tradition	  Breaker	   [0,1]	  

[8]Feature	  Envy	   [0,1]	  

[9]Data	  Class	   [0,1]	  

M
et
ho

d	  
Le
ve
l	  C
od

e	  
Sm

el
ls	  

[10]Brain	  Method	   [0..N]	  

[11]Intensive	  Coupling	   [0..N]	  

[12]Dispersed	  Coupling	   [0..N]	  

[13]Shotgun	  Surgery	   [0..N]	  

ASA	  Issues	  
FindBugs	  

By
	  

Pr
io
rit
y	  

[14]High	  	   [0..N]	  

[15]Medium	   [0..N]	  

[16]Low	   [0..N]	  

By
	  C
at
eg
or
y	  

[17]Bad	  Practice	   [0..N]	  

[18]Correctness	   [0..N]	  

[19]Experimental	   [0..N]	  

[20]I18N	  
(internationalization)	  

[0..N]	  

[21]Malicious	  Code	   [0..N]	  

[22]Multi	  Thread	  (MT)	  
Correctness	  

[0..N]	  

[23]Performance	  	   [0..N]	  

[24]Security	   [0..N]	  

[25]Style	   [0..N]	  

Other	  
Metrics	  

Size	   [26]Number	  of	  Methods	  	  
Eclipse	  Metrics	  Plugin	  

[0..N]	  

	  

Interest	  
Indicators	  	  

Defect	  
Proneness	  

[27]Number	  of	  bug	  fixes	  affecting	  this	  
version	  

[0..N]	  

[28]Number	  of	  bug	  fixes	  fixed	  in	  this	  
version	  

[0..N]	  

[29]Number	  of	  bug	  fixes	  counting	  
between	  affected	  and	  fixed	  in	  this	  
version	  

[0..N]	  

Change	  
Proneness	  

[30]Change	  Likelihood	   [0.0…1.0]	  

 



addressed in later versions, or were recognized as problems in the 
developers’ subsequent comments.  

Design Patterns and Grime Buildup. Design patterns are 
popular for a number of reasons, including but not limited to 
claims of easier maintainability and flexibility of designs, reduced 
number of defects and faults [17], and improved architectural 
designs. Software designs decay as systems, uses, and operational 
environments evolve, and decay can involve design patterns.  
Classes that participate in design pattern realizations accumulate 
grime – non-pattern-related code. Design pattern realizations can 
also rot, when changes break the structural or functional integrity 
of a design pattern. Both grime and rot represent forms of TD.  
Izurieta and Bieman [7] introduced the notion of design pattern 
grime and performed a pilot study of the effects of decay on one 
small part of an open-source system, JRefactory. They studied a 
small number of pattern realizations and found that coupling 
increased and namespace organization became more complex due 
to design pattern grime, but they did not find changes that “break” 
the pattern (design pattern rot). Izurieta and Bieman [14] also 
examined the effects of design pattern grime on the testability of 
JRefactory, a handful of patterns were examined, and they found 
that there are at least two potential mechanisms that can impact 
testability: 1) the appearance of design anti-patterns [18] and 2) 
the increases in relationships (associations, realizations, and 
dependencies) that in turn increase test requirements.  They also 
found that the majority of grime buildup is attributable to 
increases in coupling.   

Code Smells (tool: CodeVizard). The concept of code 
smells (aka bad smells) was first introduced by Fowler [6] and 
describes choices in object-oriented systems that do not comply 
with widely accepted principles of good object oriented design 
(e.g., information hiding, encapsulation, use of inheritance). Code 
smells can be roughly classified into identity, collaboration, and 
classification disharmonies [19]. Automatic approaches (detection 
strategies [20]) have been developed to identify code smells. 
Schumacher et al.’s research [15] focused on evaluating these 
automatic approaches with respect to their precision and recall, 
and their other work [10] [11] evaluated the relationship between 
code smells (e.g., god classes) and the defect and change 
proneness of software components. This work showed that 
automatic classifiers for god classes yield high recall and 
precision when studied in industrial environments. Further, in 
these environments, god classes were up to 13 times more likely 
to be affected by defects and up to seven times more change-
prone than their non-smelly counterparts.  

ASA issues (tool: FindBugs). Automatic static analysis 
(ASA) tools analyze source or compiled code looking for 
violations of recommended programming practices (“issues”) that 
might cause faults or might degrade some dimensions of software 
quality (e.g., maintainability, efficiency). Some issues can be 
removed through refactoring to avoid future problems. Vetro’ et 
al. [12][13] analyzed the issues detected by FindBugs [21] on two 

pools of similar small programs (85 and 301 programs 
respectively), each of them developed by a different student. Their 
purpose was to examine which issues detected by FindBugs were 
related to real defects in the source code. By analyzing the 
changes and test failures in both studies they observed that a small 
percentage of detected issues were related to known defects in the 
code. Some of the issues identified as good/bad defect detectors 
by the authors in these studies were also found in similar studies 
with FindBugs, both in industry [22] and open source software 
[23]. Similar studies have also been conducted with other tools 
[24] [25] and the overall finding is: a small set of ASA issues is 
related to defects in the software, but the set depends on the 
context and type of the software. 

4.2 Data Collection 
We measured each class of every Hadoop version using the 

30 class-level indicators listed in Table I. We call each of the 
measurements a data point. Of all the 30 indicators, 25 (Table I: 
indicators 1-25) were calculated by the four techniques described 
in Section 2. We included one additional size metric (Table I: 
metric 26) to provide a point of comparison. We also considered 
four software interest indicators (Table I: metrics 27-30), which 
reflect defect- and change-proneness, for studying our second 
goal. 

For our analysis we considered 13 Hadoop releases. We 
ignored the very first one (0.1.0) since CLIO’s modularity 
violation computation is based on the current and previous 
versions. Across the 13 Hadoop releases, from 0.2.0 to 0.14.0, and 
all 30 indicators over every class, the total size of our data set was 
96,720 data points. Due to limitations in the tools used for TD 
identification we excluded nested classes from our analysis. To 
understand the threat to validity, we inspected all versions of 
Hadoop and found that (depending on the version) 39-45% of all 
classes were nested classes. We will discuss this threat in Section 
6. 

It should be noted that the range (i.e., possible values) of 
each indicator varies. As shown in Table I, TD indicators that 
solely express the presence of TD (e.g., the presence of a 
modularity violation or a code smell on class level) map to 0 
(meaning no presence) or 1 (meaning the indicator is present). 
This is expressed by [0,1] in Table I. For indicators that can be 
identified multiple times in a Java class (e.g. code smells on the 
method level and ASA issues that can be repeatedly detected) the 
measure indicates how many times the indicator was identified. 
Table I shows this as [0..N].  

We measured the presence of grime as well as the absence of 
design patterns. Even if we cannot be sure that the absence of 
design patterns is harmful, we included this information to 
investigate if we can find interesting relationships. Therefore 
classes not following design patterns received a value of “1” for 
the indicator. We collected issues reported by FindBugs (version 
1.3.9) from the source code of each Hadoop version, considering 
all issues of any FindBugs category (Table I: 17-25) and priority 
(Table I: 14-16).   

Defect proneness measurement. To link classes with 
defects, for a bug that was fixed and closed in a version v, we 
computed which classes were modified during the fix change 
(identifiable through Subversion repository by using bug links 
provided in commit comments, e.g. HADOOP-123). The linkage 
between source code anomalies and their resulting defects is 
potentially stretched over time. For example, as illustrated in 
Error! Reference source not found., a bug can be found and 
reported in version 0.3.0, but may not be fixed until version 0.5.0. 

 
Figure 1: Three ways of computing defect proneness 

 



We thus measure the defect proneness of a class c in version v 
using the following three different ways respectively:   
1. The number of times class c is involved in fixing bugs that 

were injected in version v, that is, the version where the bugs 
were found and reported.  

2. The number of times class c is involved in fixing bugs that 
were resolved in version v. 

3. The number of times class c is involved in fixing bugs that 
were alive in version v, that is, the bugs were reported before 
or in version v, and were resolved after or in version v.1 
Change proneness measurement. Following the work of 

Schumacher et al. [15], we measure the change proneness of class 
c in version v as the number of repository changes affecting class 
c divided by the total number of changes in the repository during 
the class’ lifetime (e.g., creation to deletion date).  
                                                                    
1 This approach is necessary since versions can overlap (in time) 

in the SVN repository and single revisions cannot always be 
clearly assigned to a single version.  

Size measurement. We chose the Number of Methods in 
each class as a measure of size. In Section 6 we discuss possible 
threats posed by this choice. 

4.3 Analysis Methodology 
In order to investigate the two research questions proposed in 

Section 3, that is, the overlap between the results generated by 
these TD detection techniques (TD indicators), and their 
correlation with defect- and change- proneness (interest 
indicators), we designed a 5-step methodology that reduces the 
complex set of indicator values on the large, multidimensional 
dataset into a graph. The methodology is illustrated in Figure 2:  
Step 1: Compute a set of association measures to examine how 
each TD indicator and each interest indicator are related to each 
other. 
Step 2: Apply statistical and significance functions to filter only 
highly associated pairs of indicators. 
Step 3: Combine the set of three significant association measures 
into one measure. 

 
Figure 2: Five-step analysis methodology 

 



Step 4: Combine measures from each of the 13 Hadoop versions 
to one set of aggregate measures. 
Step 5:  Build visualization and data tables to provide insight into 
the most strongly associated indicators. 

To answer the first research question regarding the overlap 
between the results reported by these techniques, we examine the 
association measures between their respective TD indicators. To 
answer the second research question regarding interest indicators, 
we order the TD indicators (and the one size measure) by their 
level of association with the four interest indicators introduced in 
Section 4.2.  

4.3.1 Step1: Compute Statistical Association 
Measures 

We identified different statistical techniques to quantify the 
relationship between pairs of TD indicators in each version of 
Hadoop. Because there are many choices for association 
measurement (e.g. Pearson correlation, conditional probability), 
we performed a sensitivity analysis to investigate how the results 
generated from these statistic models differ from each other. This 
analysis showed that different statistical analysis techniques result 
in different answers: from the top 50 list of the most highly 
associated pairs of indicators and metrics generated by each of the 
statistical analysis techniques, only three pairs were common. 
Therefore we concluded that using only one single measure of 
association would be inadequate because different statistic models 
assess association from different perspectives that complement 
each other.  We thus apply 4 different association models to assess 
the relation between the 30 X 30 pairs of indicators. The different 
association measures will be combined in one unique measure in 
Step 3. 

In order to illustrate our methodology, we use a pair of TD 
indicators, Dispersed Coupling (one type of code smell) and 
Performance issues (reported by FindBugs), as a running example.  
The four association techniques are described below: 

1. The Pearson correlation between the number of 
occurrences of Dispersed Coupling and the number of occurrences 
of Performance issues across all Java classes of one Hadoop 
version (Figure 2: Step 1, M1). Pearson correlation is widely used 
in the literature on defect prediction models [26], including the 
usage of ASA issues as an early indicator of defects [27], and in 
maintainability prediction [28]. 

2. The conditional probability of a Java class having at least 
one occurrence of Dispersed Coupling given that the same class 
has at least one occurrence of Performance issue, and vice versa: 
P(Dispersed Coupling│Performance), P(Performance│Dispersed 
Coupling) (Figure 2: Step 1, M2). The conditional Probability has 
been used previously for software defects and maintainability 
predictions [29] [30]. 

3. The chance agreement, which is the probability that a 
Java class holds an occurrence of Dispersed Coupling and 
Performance issue at the same time by chance. This probability is 
computed as: P(Performance)*P(Dispersed Coupling)+P(No 
Performance)*P(No Dispersed Coupling) (Figure 2: Step 1, M3). 
Chance agreement is at the basis of Cohen’s Kappa computation 
[31]. 

4. Cohen’s Kappa, which is an inter-rater agreement 
between Dispersed Coupling and Performance issues, and 
indicates the strength of agreement and disagreement of two raters 
(e.g., TD indicators). Cohen’s Kappa is appropriate for testing 
whether agreement exceeds chance levels for binary and nominal 
ratings. Therefore, Dispersed Coupling and Performance issues 

are in agreement if both occur at least once in the same Java class, 
or if both of them are not present. In any other case, they are in 
disagreement (Figure 2: Step 1, M4). Cohen’s Kappa has been 
used for the assessment of defect classification schemes [32] and 
in software process assessment [33]. Used in conjunction with 
other statistical measures, it prevents the misinterpretation of 
results possibly affected by prevalence and bias. 

The computation of chance agreement, conditional 
probability and Cohen’s Kappa required data transformation for 
some measures: all metrics ranges [0..N] were reduced to [0,1], 
where “1” indicates that at least one occurrence of the TD 
indicator was found in the class and “0” otherwise. For example, 
for the Number of bug fixes (fixed) in version v, we assign “1” if 
the Java class was part of at least one defect fix during the 
analyzed version. The partial loss of measurement resolution is 
further discussed in Section 6. 

For change likelihood, where the metric ranges from 0.0 to 
1.0 (floating point numbers), we investigated its empirical 
distribution on each version and selected a threshold value to be 
used in the data transformation. This threshold was computed so 
as to guarantee that, on average, only the top 25% of classes with 
high change likelihood obtained a value of “1” in the data 
transformation, “0” otherwise. The computed threshold was 0.01, 
indicating that a Java class that is changed more often than in 1 
out of 100 cases is considered change prone. 

The same was done for the size metric, Number of Methods. 
We use a threshold of 11 to guarantee that only the top 25% of 
classes were considered large. The computation of the four 
statistical analysis techniques produced four respective matrices 
shown in Figure 2: M1, M2, M3 and M4. Each of the statistical 
measures offers a different perspective on the association between 
pairs of metrics. 

The Pearson correlation indicates whether two indicators 
increase/decrease together following a linear pattern. The 
conditional probability is useful in understanding the direction of 
the association, since it indicates whether an indicator is present in 
a class given that another indicator is present. The chance 
agreement, instead, is the probability that two indicators are either 
indicating or not indicating a problem in the same class randomly; 
in the following section we will see how we use this measure with 
the conditional probability. Finally, the Cohen’s Kappa is useful 
because the agreement takes into account not only when two 
indicators are present in the same class, but also when they are not 
present simultaneously. 

4.3.2 Step 2: Apply Significance Functions 
After applying the different techniques in Step 1, the goal 

was to filter the more significant associations from the less 
significant ones. Therefore we applied different significance 
functions Ω. The significance functions map the associations 
between each pair of indicators to [0,1], expressing that the pairs 
are strongly associated (“1”) or not associated strongly enough 
(“0”). The following three formulae define the functions applied 
to produce matrices M5, M6 and M7 for each of the 13 versions in 
Figure 2: 

• Significant Pearson Correlations: 
Ω(M1i, j  )

= 1, 𝑖𝑓(M1i, j)≥T1  ∧  p-‐val  ≤0.05  ∧  (i≠j)    
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

• Significant Conditional Probability: using M2 (Cond. 
Probability) and M3 (Chance agreement): 



Ω(M2i, j  ,M3i, j)

= 1, 𝑖𝑓(M2i, j)>(M3i, j)  ∧  (M2i, j)≥T2    ∧ (i≠j)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

• Significant Cohen’s Kappa: 

Ω(M4i, j  ) = 1, 𝑖𝑓(𝑀4i, j)>T3    ∧ (i≠j)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

The goal of the significance function Ω is to discern 
significant relations from insignificant ones. Parameters T1, T2 
and T3 are three specific thresholds of the respective significance 
functions that we chose based on the association strength levels 
found in the literature:  

T1 (Correlation) = 0.60.  We found two main correlation 
strength classifications, Cohen [34] and Evan [35]. We adopt 
Evan’s strong definition because it is stricter than Cohen’s 
definition.  

T2 (Conditional probability) = 0.60. To our knowledge, 
existing literature does not provide a commonly accepted and 
generally applicable threshold for conditional probability. 
Therefore, we calculated the distribution of conditional 
probabilities in the different versions and we selected the 
threshold 0.60, which on average filtered out 80% of all data. 
Moreover, since this criterion is merged with the criterion 
conditional probability > chance agreement, we consider such 
threshold high enough to discriminate significant data. 

T3 (Cohen’s Kappa) = 0.60. Many tables of Kappa’s 
strength of agreement can be found in the literature, the most 
relevant of which are [36] [37] [31]. We adopt a threshold value 
of 0.60. Thus, a constraint > 0.60 corresponds to a 
“good”/”substantial” agreement in all the proposed ranks. 

4.3.3 Step 3: Combine Statistical Association 
Measures 

The next step is an aggregation of the association measures.. 
For each cell of a matrix (a pair of indicators), we compute the 
sum over all three matrices M5, M6, and M7. The resulting matrix 

(displayed as M8 in Figure 2) contains the significance score for 
each pair and version that ranges from 0 (not significant in any of 
the three methods) to 3 (significant in all three methods). 

4.3.4 Step 4: Combine Versions 
The fourth and final computation step of the process is the 

aggregation of the significance score over versions. For every cell 
in Matrix M8, we compute the mean over the 13 versions of 
Hadoop, resulting in a single matrix (M9 in Figure 2).  

4.3.5 Step 5: Visualize Most Significant Outcomes 
In the final step, we visualize the pairs of TD indicators with 

most significant associations as a graph (Figure 3) and a list of TD 
indicators most related to interest indicators (Table II). 

5. RESULTS 
We made the following observations from the result. First, 

the value of TD indicators increases together with the size of 
Hadoop. The sum of all TD indicators increases in the evolution 
from release 0.2.0 to release 0.14.0. FindBugs issues ranged from 
307 to 486 but the average number of issues per class does not 
expose the same monotone increasing trend, and the range of the 
average number of issues per class is [1.30-1.76].  

 Code smells in the last release (352) are more than twofold 
the number of code smells in the first release (143), and the 
average of code smells per class is [0.78-1.01]. Modularity 
violations have the sharpest increase: they were 8 in the first 
analyzed release and 37 in the last one (reaching a maximum of 
38 in v. 0.13.0). The average number of Modularity violations per 
class ranged from 0.04 to 0.11. Moreover, we detected in each 
version two realizations of Singleton design pattern, two 
realizations of State pattern and six of Abstract factory. However, 
none of the classes that are participating in these design patterns 
was affected by grime. 

We do not observe a trend in any of the interest indicators. 
The sum of Bug fixes collected with the defect proneness strategy 
“inject” ranges from a minimum of 16 (v 0.8.0) to a maximum of 
102 (v 0.3.0), while the range of the average number per class is 

 
Figure 3: Graph of top ranked pairs (average score > 1) 



[0.06-0.53]. Version 0.8.0 has no Bug fixes (fixed) and version 
0.7.0 is the version with the largest number (590). The average of 
all classes per version is in the range [0-2.63].  The ranges of Bug 
fixes (between) are [162-675] and [0.55-3.01], respectively for 
their total by version and average of all classes by version. 
Finally, the Change likelihood range is [0.006-0.017] per class.  

Figure 3 shows the resulting directional graph of the TD 
pairs and interest indicators that were on average significant in 
more than one statistical measure (overall mean score in Matrix 
M9 > 1). The nodes of the graph show the indicators. The color 
(or shade) of the node indicates which TD indicators were derived 
from the same TD detection technique. The directional edges are 
further labeled by their association strength (ranging from 1 to 3). 
And lastly, the direction indicates the conditional properties 
inherited from the conditional probability metric. For example, 
Modularity violations and Bug fixes are associated, meaning that 
if a class has a Modularity violation, then it is also likely that such 
a class will have Bug fixes. However, the reverse statement (i.e. 
classes containing Bug fixes are not as likely to have Modularity 
violations at the same time) is not necessarily true, and does not 
show in the graph.  

Figure 3 represents the strongest associations found in our 
analysis. The graph contains 24 relationships (edges), one of them 
between TD indicators (nodes) belonging to different techniques 
(colors or shades), three of them between TD indicators and 
interest indicators or size, and the remaining 20 are among TD 
indicators detected by the same technique or among the interest 
indicators.  

As for correlations between TD indicators and interest 
indicators, Dispersed Coupling points to classes that are more 
defect prone. Modularity Violations do not strongly co-occur with 
code smells or ASA issues but are likely to point to defect and 
change prone classes.  

Seven out of the twelve ASA/FindBugs issue types appear in 
the graph. The strongest associations (average score ≥ 2) are 
between Style and Low and Bad Practice and Medium. We also 
observe an association between a FindBugs issue (High) and a 
Code Smell (Intensive Coupling). Four out of ten code smells 
show up in the graph. Brain Class and Brain Method code smells 
are related in both directions, as well as Dispersed and Intensive 
Coupling (but only one direction). 

Lastly, defect prone classes tend to be also change prone, and 
vice-versa. The size metric Number of Methods does not shoot up 
in the graph indicating that neither the TD indicators nor the 
interest indicators are very strongly associated with size.   

5.1 RQ 1: Which techniques tend to report 
problems in the same sets of classes? 

The results shown in Figure 3 lead to our first finding in 
response to RQ1: Different TD techniques point to different 
classes and therefore to different problems. 

The only arc in Figure 3 that relates two different types of 
TD identification approaches is Intensive Coupling and FindBugs 
High priority issues. A method exhibits intensive coupling if it 
“calls too many methods from a few unrelated classes” [19]. 
FindBugs High priority issues are those issues thought to have 
higher probability to detect serious problems in the code. The 
direction of the association indicates that classes with many High 
priority issues have methods affected by Intensive Coupling. A 
possible explanation for this relation is that both of these 
indicators point, more than any others, to generally poorly 
designed code.   

Looking at the associations inside the boundaries of the 
techniques, we observe a characteristic of all FindBugs issues in 
the graph: significant relationships are only revealed between 
priority and type categories, which are not independent indicators 
and are constructed by the FindBugs authors2. Therefore this 
relationship is not a surprising result. A follow up analysis 
revealed that 81-87% (depending on version) of all classes contain 
FindBugs issues of only one single category.  

Shifting the focus of the results analysis to the code smells 
group, we observe three associations between particular code 
smells: Brain Class → Brain Method (2.0), Brain Method → 
Brain Class (1.15) and Dispersed Coupling → Intensive Coupling 
(1.23). The first relationship is stronger in the direction → Brain 
Method and it indicates that Brain classes are more prone to 
contain Brain methods. This observation can be explained by the 
way Brain Class code smells are detected using Marinescu’s 
detection strategy [19] [20]: the Brain Class detection requires 
that the inspected class contains at least one Brain Method. 
Therefore the conditional probability as defined in Section IV of 
P(Brain Method | Brain Class) is always 1.0.  The second 
relationship between code smells is Dispersed Coupling → 
Intensive Coupling (1.20). While the latter indicates that a class 
has methods that invoke many functions of a few other classes, the 
former shows classes having methods invoking functions of many 
other classes. Their association demonstrates that classes in 
Hadoop having the former of the coupling smells also have the 
latter smell, which intensifies the problem of coupling. No other 
relationship within different code smells was found in this 
analysis. 

We also observe that modularity violations are not strongly 
related to any other indicator. This confirms and validates one of 
the findings reported in Wong et al [9], who found that 40% of 
modularity violations in Hadoop are not defined as code smells 
and are not detectable using existing approaches. 

To conclude, the 4 TD detection approaches (modularity 
violation, code smells, grime, and ASA issues) have only very 
little overlap and are therefore pointing to different problems. 
Within the broad approaches, relations are stronger (as one would 
expect). However the data also shows that many code smells and 
some ASA issue types are not inter-related (i.e. the ones not 
showing in Figure 3) indicating that even at a lower level 
indicators point to different problem classes. 

5.2 RQ2: Which TD indicators correlate with 
the interest indicators defect- and change-
proneness? 

Turning to RQ2, our major finding concerning defect-
proneness is summarized as follows: The dispersed coupling 
code smell and modularity violations are located in the classes 
that are more defect-prone. 

For each TD indicator (Column 1), Table II reports the 
average score obtained in matrix M9 for the association between 
the indicator and defect proneness (columns 2-4) and change 
proneness (column 5). TD indicators are listed in the same order 
as Table I, but those with average score less than or equal to 0.3 in 
all associations with interest indicators are not shown.  

                                                                    
2 Each bug pattern is assigned a priority and category by the 

FindBugs authors. Some categories are biased towards single 
priorities: e.g., correctness is considered more often to be of 
high priority. 



Figure 3 shows that no single FindBugs indicator has a very 
strong relationship (>1) with Bug fixes.  However, when 
investigating less correlated indicators we find the strongest 
FindBugs indicator to be Multithread Correctness having a 
borderline value of 1.0 (Table II). This category is very specific 
but ties very well into the studied application; Hadoop has to deal 
with both distributed data storage and computations. Previous 
work [12] [13] [38] reported that only a small percentage of 
FindBugs issues are actually related to bug fixes. This is 
supported by our results and a follow up analysis: Multithread 
Correctness issues make up only 5.3% of the total of FindBugs 
issues found in Hadoop. 

Another strong relationship with Bug fixes (in two 
approaches, between and fixed) involves the Dispersed Coupling 
code smell. In a related work [39], Dispersed Coupling was highly 
correlated with bug fixes only when the prevalence of this smell 
increased during the evolution of the software. We observe a 
border value (1.0) also for one other code smell: the God Class 
indicator has an average score of 1.0. Zazworka et al. [11] 
reported in their previous work that in an industrial system god 
classes contained up to 13 times more defects than non-god 
classes. 

The last indicator strongly related to Bug fixes (between) is 
Modularity violations, which are located in the same classes 
where the more bug fixes are found (but not in all of them).  

Although defect prediction is not a goal of this work, it is 
useful to look at measures of precision and recall to further 
describe the relationships we’ve found. We used the two TD 
indicators most strongly related to bug fixes and the two border 
value indicators to predict, in each version, classes with at least 

one bug fix (strategy between). We observe in Table III high 
precision and low recall values. Each of the four indicators points 
out a small subset of defect-prone classes very well. When using 
all four indicators together recall can be raised to 0.33 by trading 
off some precision. 

The second part of RQ2 was concerned with change 
proneness. The following summarizes this result. Modularity 
violations point to change prone classes. 

Change-prone classes might indicate maintenance problems 
(e.g., classes that have to be changed unusually often are 
candidates for refactoring). As outlined in Section IV we labeled 
on average the top 25% most frequently changed classes as 
“change-prone.”   

The results indicate that Modularity Violations are strongly 
related to change likelihood. Table II shows that the highest 
average scores are Modularity violations (1.38), Dispersed 
coupling (0.92) and God Classes (0.85). This fits expectations 
since all of the three approaches claim to identify maintenance 
problems. Modularity violations and Dispersed coupling point to 
classes that have collaboration disharmonies. The God class code 
smell identifies classes that implement multiple responsibilities 
and should be refactored (e.g. split up into multiple classes).  

Further, the relation between defect and change proneness 
shows that these issues are interconnected. Explanations for the 
phenomena can be that maintenance problems lead to less correct 
code, or that many quick-and-dirty bug fixes lead to less 
maintainable code. 

Finally, we point out that a large set of TD indicators (i.e. 9 
out of 25) do not show significant associations with defect or 
change proneness. This proportion suggests that these indicators 
either point to different classes of quality issues (e.g. FindBugs 
type Performance) or to none at all. Therefore these results can be 
further used to tailor TD indicators towards quality attributes of 
interest. If one is most interested in defect and change proneness 
issues in Hadoop (or similar software) we suggest analyzing for 
dispersed coupling and modularity violations. 

 

6. THREATS TO VALIDITY 
We list the threats to the validity and generalizability of the 

study following the structure proposed by Wohlin et al. [40], who 
identify four categories: construct, internal, conclusion and 
external threats. 

A first conclusion threat concerns the impact of thresholds 
T1, T2 and T3 applied on Step 2 (Section 4.3.2) on the results. We 
documented the choice of thresholds based on values discussed 
and adopted in the literature, and we adopted higher values to 
decrease the level of uncertainty. The collection and aggregation 
of different statistical measures also lowers the risk associated 
with this threat.  

A further statistical point of discussion is the loss of 
measurement resolution in data transformation from ranges [0..N] 

 
	  

TD	  Indicator	  

Bug	  	  
fixes	  

(between)	  

Bug	  	  
fixes	  	  

(inject)	  

Bug	  	  
fixes	  
(fixed)	  

Change	  
likeli-‐
hood	  

M
od

	  
Vi
ol
	   Modularity	  

violations	  
1.23	   0.23	   0.54	   1.38	  

Co
de

	  S
m
el
ls
	  

God	  Class	   1.00	   0.23	   0.77	   0.85	  

Brain	  Class	   0.62	   0.23	   0.46	   0.62	  

Tradition	  
Breaker	  

0.69	   0.31	   0.38	   0.69	  

Feature	  
Envy	  

0.54	   0.15	   0.31	   0.15	  

Brain	  
Method	  

0.77	   0.23	   0.54	   0.46	  

Intensive	  
Coupling	  

0.54	   0.00	   0.08	   0.15	  

Dispersed	  
Coupling	  

1.31	   0.23	   0.54	   0.92	  

Shotgun	  
Surgery	  

0.31	   0.00	   0.08	   0.08	  

Fi
nd

Bu
gs
	  is
su
es
	  

High	   0.92	   0.08	   0.46	   0.62	  

MT	  
Correctness	  

1.00	   0.08	   0.46	   0.69	  

Correctness	   0.92	   0.15	   0.46	   0.62	  

Performance	   0.31	   0.00	   0.08	   0.08	  

Style	   0.31	   0.00	   0.08	   0.38	  

Si
ze
	   Number	   of	  

Methods	  
0.62	   0.00	   0.08	   0.08	  

 

TABLE II: ASSOCIATION OF TD INDICATORS WITH INTEREST INDICATORS 

TABLE III: PRECISION AND RECALL WHEN PREDICTING DEFECTS PRONE 
CLASSES  

 
	   Multithread	  

Correctness	  
Dispersed	  
Coupling	  

God	  
Class	  

Modularity	  
Violations	  

All	  
4	  

Avg.	  
prec.	   0.78	   0.81	   0.96	   0.85	   0.77	  

Avg.	  
recall	  

0.13	   0.12	   0.11	   0.21	   0.33	  

 



to the range [0,1]. The transformation was required to compute 
Cohen’s Kappa and the conditional probability. To limit this 
threat we investigated distributions carefully to find reasonable 
thresholds (e.g. for Number of Methods we decide on a threshold 
of 11 for a top 25% cutoff). Moreover, the choice of at least one 
occurrence as criterion for transformation was driven by a 
preliminary analysis of distribution that revealed that TD and 
interest indicators were equal to zero on average in 90% of the 
classes.  

Another conclusion threat is derived by the decision to not 
normalize measures by size. Our choice was based on past 
experiences [10] and from the analysis of the results of the current 
study. Figure 4 shows a correlation plot between size and number 
of defect fixes for each file over all versions. The 3rd order 
polynomial trend line shows that the correlation is not simply 
linear, e.g. a class twice as large is not twice as defect-prone. This 
analysis suggests that a linear normalization by number of 
methods is not required.  

Moreover, the choice of this size metric rather than other size 
metrics is also a threat (construct). We examined whether the 
Total Number of Methods correlates with other size metrics in the 
different Hadoop versions. We obtained almost perfect 
correlations with Total Number of Statements, Total Number of 
Lines of Code (that include comments) and Total Number of 
Files: 0.9958, 0.9950 and 0.9711 respectively. In addition to that, 
we checked, for each version, the correlation between the Number 
of Methods and two other metrics, i.e. the Number of Lines of 
Code and the Number of Statements in Java classes. We also 
obtained at this granularity very high correlation, respectively 
0.8975 and 0.8780. We conclude that using Number of Methods 
as measure of class size is equivalent to lines of code and did not 
affect results. 

A further construct threat is the selection of outer classes, 
ignoring nested classes. At this point in time, the tools used did 
not allow the collection of all metrics for nested classes. Therefore 
the validity scope of our results is limited to outer classes only. 
Future work will be devoted to include nested classes in the 
analysis. 

We believe that the findings of this work apply only in the 
context analyzed (external threat). They may apply in similar 
applications, but we are not aware of any other published results 
that can be compared to ours. However, although results cannot be 
generalized, they contribute to begin composing the TD 
landscape. 

7. CONCLUSION 
The main findings of this study are:  

• Different TD techniques point to different classes and 
therefore to different problems. There are very few overlaps 
among the results reported by these techniques.  

• Dispersed coupling, god classes, modularity violations and 
multithread correctness issues are located in classes with 
higher defect-proneness.  
Modularity violations are strongly associated with change 
proneness. 
Our results indicate that the issues raised by the different 

code analysis techniques are in different software classes. 
Moreover, only a subset of the problematic issue types identified 
by these techniques is shown to be more defective or change 
prone. This is consistent with the result of earlier work where 
these techniques were applied independently ([10] [11] [12][13]).  

These findings contribute to building an initial picture of the 
TD landscape, where TD techniques are loosely overlapping and 
only a subset of them is strongly associated to software 
components’ defect and change proneness. 

This initial picture will contribute to future research efforts 
concerned about continuously monitoring and managing TD in 
software projects, a larger subject that is out of the scope of this 
study. But this study constitutes an important step in addressing 
the TD problem holistically: not all TD should be considered 
sufficiently harmful to warrant repayment, in particular if the cost 
of repair (paying the principal) outweighs the interest payments in 
long term. Thus, not all TD is bad, and not all TD needs to be 
avoided. The results of this study build a stepping-stone for 
further trade-off analysis studies by providing insights into how 
tools can help to point to TD that is worth being managed. 

7.1 Implications for Practice 
The results indicate that, in practice, multiple TD indicators 

should be used instead of only one of the investigated tools. As a 
recommendation to practitioners, these initial results evidently 
show that different tools point to different problems in a code 
base. The use of a single tool or single indicator (e.g. a single code 
smells) will only in rare cases point to all important TD issues in a 
project. As a result, development teams need to make intentional 
decisions about which of the TD indicators are of most relevance 
to them, based on the quality goals of their project, as suggested in 
[43]. For example, is maintainability a priority for the team, or is 
the system expected to be short-lived? Is code performance 
important? Different answers to questions like these would lead to 
different choices for a TD detection strategy. 

In the current state of research we cannot yet give a more 
complete recommendation on which indicators are best for 
signaling specific quality shortcomings, however, our results give 
some preliminary advice on which indicators to start with when 
looking for TD related to defects and maintenance bottlenecks, 
namely: Modularity Violations, God Class, Dispersed Coupling, 
and Multi Thread Correctness issues.  

7.2 Implications for Research 
Since results indicate that there might not be a project 

independent one-size-fits-all tool to detect TD, but rather a 
necessary tailoring process to the right subset of indicators 
required, future research should be concerned with investigating 
and showing connections between TD techniques, types of 
technical debt, effect and tailoring towards project specific 
software quality characteristics. Future work should also 

 
Figure 4: Correlation plot for size vs. defect proneness 



investigate other TD indicators when they become available to 
broaden the landscape. 

As more specific advice for future research directions, we 
recommend extending the interest indicators towards a broader 
range of software quality aspects, beyond defect and change-
proneness as investigated here. Further, we recommend extending 
this type of quantitative study with qualitative insights, e.g. from 
practitioners that investigate if the studied approaches point to the 
most important kinds of technical debt. 
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