
27 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Comparing Four Approaches for Technical Debt Identification / Zazworka, N.; Vetro', Antonio; Izurieta, C.; Wong, S.; Cai,
Y.; Seaman, C.; Shull, F.. - In: SOFTWARE QUALITY JOURNAL. - ISSN 0963-9314. - STAMPA. - (2014), pp. 403-426.
[10.1007/s11219-013-9200-8]

Original

Comparing Four Approaches for Technical Debt Identification

Publisher:

Published
DOI:10.1007/s11219-013-9200-8

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2506360 since:

Springer US

Comparing Four Approaches for Technical Debt
Identification

Nico Zazworka1, Antonio Vetro’1,2, Clemente Izurieta3, Sunny Wong4,
Yuanfang Cai5, Carolyn Seaman1,6, Forrest Shull1

1Fraunhofer CESE

College Park, MD, USA
nzazworka@fc-md.umd.edu

fshull@fc-md.umd.edu

4Siemens Healthcare
Malvern, PA, USA

sunny.wong@siemens.com

2Automatics and Informatics Dept.
Politecnico di Torino

Torino, Italy
antonio.vetro@polito.it

5Dept. of Computer Science
Drexel University

Philadelphia, PA, USA
yfcai@cs.drexel.edu

3Dept. of Computer Science
Montana State University

Bozeman, MT, USA
clemente.izurieta

@cs.montana.edu

6Dept. of Information Systems
UMBC

Baltimore, MD, USA
cseaman@umbc.edu

ABSTRACT
Background: Software systems accumulate technical debt (TD)
when short-term goals in software development are traded for
long term goals (e.g., quick-and-dirty implementation to reach a
release date vs. a well-refactored implementation that supports the
long term health of the project). Some forms of TD accumulate
over time in the form of source code that is difficult to work with
and exhibits a variety of anomalies. A number of source code
analysis techniques and tools have been proposed to potentially
identify the code-level debt accumulated in a system. What has
not yet been studied is if using multiple tools to detect TD can
lead to benefits, i.e. if different tools will flag the same or
different source code components. Further, these techniques also
lack investigation into the symptoms of TD “interest” that they
lead to. To address this latter question, we also investigated
whether TD, as identified by the source code analysis techniques,
correlates with interest payments in the form of increased defect-
and change-proneness.

Aims: Comparing the results of different TD identification
approaches to understand their commonalities and differences and
to evaluate their relationship to indicators of future TD “interest”.

Method: We selected four different TD identification techniques
(code smells, automatic static analysis (ASA) issues, grime
buildup, and modularity violations) and applied them to 13
versions of the Apache Hadoop open source software project. We
collected and aggregated statistical measures to investigate
whether the different techniques identified TD indicators in the
same or different classes and whether those classes in turn
exhibited high interest (in the form of a large number of defects
and higher change proneness).

Results: The outputs of the four approaches have very little
overlap and are therefore pointing to different problems in the
source code. Dispersed coupling and modularity violations were
co-located in classes with higher defect proneness. We also
observed a strong relationship between modularity violations and
change proneness.

Conclusions: Our main contribution is an initial overview of the
TD landscape, showing that different TD techniques are loosely
coupled and therefore indicate problems in different locations of

the source code. Moreover, our proxy interest indicators (change-
and defect-proneness) correlate with only a small subset of TD
indicators.

Categories and Subject Descriptors
K.6.3 [Software Management]: Software Maintenance.

General Terms
Management, Measurement, Design, Economics, Experimentation

Keywords
Technical debt, software maintenance, software quality, source
code analysis, modularity violations, grime, code smells, ASA.

1. INTRODUCTION
As Cunningham described [1], in a software development

project, rushing implementation to meet pending deadlines is “like
going into debt. A little debt speeds development so long as it is
paid back promptly with a rewrite... The danger occurs when the
debt is not repaid. Every minute spent on not-quite-right code
counts as interest on that debt. Entire engineering organizations
can be brought to a stand-still under the debt load of an
unconsolidated implementation…”

Nowadays “technical debt” (TD) has become a well-known
metaphor indicating the possibly of significant economic
consequences for such quick-and-dirty implementations.
Accumulated technical debt may cause severe maintenance
difficulty or even project cancellation. To prevent TD from
accumulating, or to decide when, where and how to pay off such
debt, the first step is to make it explicit, i.e. to identify TD. One
important class of TD is manifested by problematic
implementations in code. Many types of such code-based TD can
be potentially detected automatically using static program analysis
tools that find anomalies of various kinds in the source code.

There are a number of tools designed for this purpose. Some
tools are designed to detect design problems such as code smells
[15] or modularity violations [9], some are designed to discover
design pattern degradations [7], and some are intended to spot
potential defects. From a tool user’s point of view, the relevant
questions are: which tool(s) should be used to inform the
existence of TD under what circumstances?, and, Is it sufficient to

use one of the tools, or can the usage of multiple tools lead to
benefits in finding more TD?

Plus, not all problematic code detected by these tools is
worth being fixed. Some detected source code problems are not
likely to cause future maintenance problems or affect the overall
quality of the system. In terms of the TD metaphor, the TD
principal (i.e. the cost of fixing the debt) may be higher than the
TD interest being paid on the debt (i.e. the probable future cost of
not fixing it). Thus, another question is: Which tools reveal TD
that is likely to incur interest?

TD interest is inherently difficult to estimate or measure.
Given the data that we had available in this study, we chose to use
two proxies for expected interest (hereafter referred to as “interest
indicators”): defect- and change-proneness. These proxies are
concrete manifestations of problematic code and are related to
future maintenance cost, and therefore are useful, independent
indicators of likely interest payments. The proxy measures are
well established and have been previously used in the assessment
of maintenance problems [10][11][41][42]. However, they are not
the only, and possibly not the best, indicators, since they do not
capture other forms of TD interest, such as increasing effort to
make changes. However, defect- and change-proneness are factors
of concern to practitioners, and thus it is relevant to determine if
they correlate with the TD indicators generated by the four
approaches studied here. Thus, a lack of relationship between our
selected interest indicators and a TD indicator cannot clearly be
interpreted to mean that the associated TD identification approach
is ineffective, but that instead it may identify TD that exhibits
other forms of interest.

It should be noted that our aim is not to predict either defects
or change-proneness in future instances of the code base, as has
been done by many other researchers (e.g., [26][27][28][29][30]).
Rather, we are calculating, for a given version of the system,
which classes are already exhibiting change- or defect-proneness,
and using these indicators as proxies of a construct (TD interest)
that is more difficult to measure.

So as a first attempt to compare and contrast different TD
identification techniques, we conducted an empirical study to
answer the following research questions:

RQ1: Considering a set of four representative TD detection
techniques (resulting in a set of 25 “TD indicators”), do they
report the same set of modules as problematic? If not, how
much overlap is there?
RQ2: To what extent do any of the techniques for detecting
TD in code happen to point to classes with high interest
indicators (defect-proneness or change-proneness)?
We first compare the results of applying the different TD

identification techniques to 13 versions of the Apache Hadoop
open source software project.

Secondly, we investigate whether and how likely the
problems detected by these different techniques are related to the
two interest indicators we have chosen. This study is a first
attempt to map out a “TD landscape” that illustrates the overlaps,
gaps, and synergies between a variety of code analysis techniques
with respect to their use in identifying TD.

Both research questions are answered through the
computation and combination of the pairwise relationship
between TD indicators (RQ1) and TD indicators vs. interest
indicators (RQ2). The aim is to understand which TD and interest
indicators point to the same locations (i.e. Java classes).

We use four different statistical association measures:
Pearson correlation, conditional probability, chance agreement
and Cohen’s Kappa. Each of the selected four measures assesses
association from different perspectives that complement each
other (see Section 4.3.1 for further details).

The TD indicators and interest indicators are computed for
each class and each of the 13 selected versions of the Hadoop
software: hence a further aggregation is needed to combine
measures from all versions and have a unique association measure
for every possible combination of TD indicators (RQ1) or TD
indicator vs interest indicator (RQ2).

The results in this paper have the potential to improve our
understanding about how existing source code analysis
approaches can be tailored towards identifying TD. The long-term
vision of this work is to create practical approaches that software
developers can use to make TD visible, to help assess the
principal (i.e. value) and interest (i.e. long-term cost) of the debt,
and to assist managers in making educated decisions on strategies
for debt retirement.

2. RELATED WORK
Past research efforts into TD have focused on building

techniques that independently identify TD through source code
analysis. For instance, Gat and Heintz [3] identified TD in a
customer system using both dynamic (i.e., unit testing and code
coverage) and static (computing rule conformance, code
complexity, duplication of code, design properties) program
analysis techniques.

Nugroho et al. [4] also performed static analysis to identify
TD. They first calculated lines of code, code duplication,
McCabe’s cyclomatic complexity, parameter counts, and
dependency counts. After that, they assigned these metrics to risk
categories to quantify the amount of interest owed in the form of
estimated maintainability cost.

 A CAST report [5] also presented the usage of static
analysis as a way to identify technical debt. The proposed
approach examines the density of static analysis issues on
security, performance, robustness, and changeability of the code.
The authors built a pricing model assuming that only a percentage
of the issues are actually being fixed.

The Sonar tool (http://www.sonarsource.org/) is an open
source application that has gained in popularity. It also uses static
measurements against various source code metrics and attributes
to assess the level of TD in a code base.

The approaches discussed thus far calculate TD holistically,
i.e. they yield an overall assessment of the total TD in a system,
but do not point to specific problematic parts of the code base, or
to specific remedies applicable to those parts. Another approach to
TD identification, that attempts to yield more actionable
information, is to use source code analysis to identify potentially
problematic parts of the code, and to use the results of that
analysis to suggest specific changes to be made to that code.
Examples of such approaches that have been partly evaluated to
be valid TD indicators are code smells [6], grime build up [7] [8]
and modularity violations [9]. We discuss these techniques in
more detail in Section 4.

This works further evolves the study of these analysis
techniques by investigating the amount of similarity between
them. If it turned out that many, or even all, of the TD indicators
point to the same code, one could propose to choose only one of
the tools when searching for TD. Alternatively, if each of the
techniques selects a unique subset of problems, the usage of

multiple tools can be recommended, where a particular project
must make intentional decisions about which types of TD they are
most interested in, and choose tools accordingly. The relationships
among different TD identification approaches have not previously
been addressed in the literature.

3. GOALS AND RESEARCH QUESTIONS
The objective of our research is twofold: the first goal is to

compare the similarities and differences between four code
analysis techniques in terms of TD identification. We are
interested in understanding the degree of convergence and
divergence of these techniques and their associations. The second
goal is to understand how the problematic code identified by these
four techniques relates to our chosen proxies for TD interest,
defect and change-proneness. As explained in Section 1 these
proxies are well-established and feasible to compute given the
available data, but do not constitute a complete assessment of all
TD types. We define the goals of our research according to the
Goal Question Metric framework [16].

Goal 1: Characterizing the similarities and differences in the
problematic classes reported by these four different TD detection
approaches, in the context of an open source software project.

Goal 2: Comparing these four TD detection approaches in
terms of their correlation to one subset of interest indicators,
namely change-proneness and defect-proneness, in the context of
an open source project.

We deduced from the above goals the following research
questions:
(RQ1) Considering a set of four representative TD detection

techniques (resulting in a set of 25 “TD indicators”), do they
report the same set of modules as problematic? If not, how
much overlap is there?

(RQ2) To what extent do any of the techniques for detecting
TD in code happen to point to classes with high interest
indicators (defect-proneness or change-proneness)?

4. Case Study
The application studied is Apache Hadoop

(http://hadoop.apache.org). Hadoop is a software library for the
distributed processing of data across numerous computer nodes,
based on the map-reduce processing model. It provides two key
services: reliable data storage using the Hadoop Distributed File
System (HDFS) and high-performance parallel data processing
using a technique called MapReduce. Data are spread and
replicated differently among all the nodes of the cluster, while
operations are split so that each node works on its own piece of
data and then sends results into a unified whole.

We selected Hadoop because it is a mature project (it has
been released 59 times starting from 2 April 2006). We focused
our analysis on the Java core packages of the system
(java/org.apache.hadoop.*), which includes the common utilities
that support the other Hadoop subprojects and provides access to
the file systems supported by Hadoop. We focused the analysis
from release 0.2.0 to release 0.14.0 (the latest release, at the time
this paper was written, is 1.0.3). The system initially had 10.5k
NCSS (non- commented source statements) and 126 Java classes,
and grew to 37k NCSS and 373 Java classes by release 0.14.0.

4.1 TD Identification Techniques Selected
We selected four main techniques for identifying technical

debt in source code: modularity violations, grime buildup, code
smells, and automatic static analysis (ASA). These approaches
have all been studied in previous work by the collaborating

authors and institutions [9, 10, 12, 14], and we chose to select
these techniques as a proof of concept because the authors are
most experienced with installing, using and interpreting the results
of these four approaches. This work can be extended in the future
to incorporate comparisons to other techniques. This section
introduces the basic concepts of our selected techniques, and
reports on our and other related past work.

Modularity Violations (tool: CLIO). In large software
systems, modules represent subsystems that are typically designed
to evolve independently. During software evolution, components
that evolve together though belonging to distinct modules
represent a discrepancy. This discrepancy may be caused by side
effects of a quick and dirty implementation, or requirements may
have changed such that the original designed architecture could
not easily adapt. When such discrepancies exist, the software can
deviate from its designed modular structure, which is called a
modularity violation. Wong et al. [9] have demonstrated the
feasibility and utility of this approach. In their experiment using
Hadoop, they identified 231 modularity violations from 490
modification requests, of which 152 (65%) violations were
conservatively confirmed by the fact that they were either indeed

TABLE I. INDICATORS USED IN OUR ANALYSIS

Technical	
Debt	
Indicators	

Modularity	
Violations	

[1]Presence	 of	 Modularity	 Violation	
CLIO	

[0,1]	

Grime	 [2]Presence	 of	 Grime	 [0,1]	

[3]Absence	 of	 Design	 Pattern	 [0,1]	

Code	
Smells	
CodeVizard	

Cl
as
s	 L

ev
el
	 C
od

e	
Sm

el
ls	 [4]God	 Class	 [0,1]	

[5]Brain	 Class	 [0,1]	

[6]Refused	 Parent	
Bequest	

[0,1]	

[7]Tradition	 Breaker	 [0,1]	

[8]Feature	 Envy	 [0,1]	

[9]Data	 Class	 [0,1]	

M
et
ho

d	
Le
ve
l	 C
od

e	
Sm

el
ls	

[10]Brain	 Method	 [0..N]	

[11]Intensive	 Coupling	 [0..N]	

[12]Dispersed	 Coupling	 [0..N]	

[13]Shotgun	 Surgery	 [0..N]	

ASA	 Issues	
FindBugs	

By
	

Pr
io
rit
y	

[14]High	 	 [0..N]	

[15]Medium	 [0..N]	

[16]Low	 [0..N]	

By
	 C
at
eg
or
y	

[17]Bad	 Practice	 [0..N]	

[18]Correctness	 [0..N]	

[19]Experimental	 [0..N]	

[20]I18N	
(internationalization)	

[0..N]	

[21]Malicious	 Code	 [0..N]	

[22]Multi	 Thread	 (MT)	
Correctness	

[0..N]	

[23]Performance	 	 [0..N]	

[24]Security	 [0..N]	

[25]Style	 [0..N]	

Other	
Metrics	

Size	 [26]Number	 of	 Methods	 	
Eclipse	 Metrics	 Plugin	

[0..N]	

	

Interest	
Indicators	 	

Defect	
Proneness	

[27]Number	 of	 bug	 fixes	 affecting	 this	
version	

[0..N]	

[28]Number	 of	 bug	 fixes	 fixed	 in	 this	
version	

[0..N]	

[29]Number	 of	 bug	 fixes	 counting	
between	 affected	 and	 fixed	 in	 this	
version	

[0..N]	

Change	
Proneness	

[30]Change	 Likelihood	 [0.0…1.0]	

addressed in later versions, or were recognized as problems in the
developers’ subsequent comments.

Design Patterns and Grime Buildup. Design patterns are
popular for a number of reasons, including but not limited to
claims of easier maintainability and flexibility of designs, reduced
number of defects and faults [17], and improved architectural
designs. Software designs decay as systems, uses, and operational
environments evolve, and decay can involve design patterns.
Classes that participate in design pattern realizations accumulate
grime – non-pattern-related code. Design pattern realizations can
also rot, when changes break the structural or functional integrity
of a design pattern. Both grime and rot represent forms of TD.
Izurieta and Bieman [7] introduced the notion of design pattern
grime and performed a pilot study of the effects of decay on one
small part of an open-source system, JRefactory. They studied a
small number of pattern realizations and found that coupling
increased and namespace organization became more complex due
to design pattern grime, but they did not find changes that “break”
the pattern (design pattern rot). Izurieta and Bieman [14] also
examined the effects of design pattern grime on the testability of
JRefactory, a handful of patterns were examined, and they found
that there are at least two potential mechanisms that can impact
testability: 1) the appearance of design anti-patterns [18] and 2)
the increases in relationships (associations, realizations, and
dependencies) that in turn increase test requirements. They also
found that the majority of grime buildup is attributable to
increases in coupling.

Code Smells (tool: CodeVizard). The concept of code
smells (aka bad smells) was first introduced by Fowler [6] and
describes choices in object-oriented systems that do not comply
with widely accepted principles of good object oriented design
(e.g., information hiding, encapsulation, use of inheritance). Code
smells can be roughly classified into identity, collaboration, and
classification disharmonies [19]. Automatic approaches (detection
strategies [20]) have been developed to identify code smells.
Schumacher et al.’s research [15] focused on evaluating these
automatic approaches with respect to their precision and recall,
and their other work [10] [11] evaluated the relationship between
code smells (e.g., god classes) and the defect and change
proneness of software components. This work showed that
automatic classifiers for god classes yield high recall and
precision when studied in industrial environments. Further, in
these environments, god classes were up to 13 times more likely
to be affected by defects and up to seven times more change-
prone than their non-smelly counterparts.

ASA issues (tool: FindBugs). Automatic static analysis
(ASA) tools analyze source or compiled code looking for
violations of recommended programming practices (“issues”) that
might cause faults or might degrade some dimensions of software
quality (e.g., maintainability, efficiency). Some issues can be
removed through refactoring to avoid future problems. Vetro’ et
al. [12][13] analyzed the issues detected by FindBugs [21] on two

pools of similar small programs (85 and 301 programs
respectively), each of them developed by a different student. Their
purpose was to examine which issues detected by FindBugs were
related to real defects in the source code. By analyzing the
changes and test failures in both studies they observed that a small
percentage of detected issues were related to known defects in the
code. Some of the issues identified as good/bad defect detectors
by the authors in these studies were also found in similar studies
with FindBugs, both in industry [22] and open source software
[23]. Similar studies have also been conducted with other tools
[24] [25] and the overall finding is: a small set of ASA issues is
related to defects in the software, but the set depends on the
context and type of the software.

4.2 Data Collection
We measured each class of every Hadoop version using the

30 class-level indicators listed in Table I. We call each of the
measurements a data point. Of all the 30 indicators, 25 (Table I:
indicators 1-25) were calculated by the four techniques described
in Section 2. We included one additional size metric (Table I:
metric 26) to provide a point of comparison. We also considered
four software interest indicators (Table I: metrics 27-30), which
reflect defect- and change-proneness, for studying our second
goal.

For our analysis we considered 13 Hadoop releases. We
ignored the very first one (0.1.0) since CLIO’s modularity
violation computation is based on the current and previous
versions. Across the 13 Hadoop releases, from 0.2.0 to 0.14.0, and
all 30 indicators over every class, the total size of our data set was
96,720 data points. Due to limitations in the tools used for TD
identification we excluded nested classes from our analysis. To
understand the threat to validity, we inspected all versions of
Hadoop and found that (depending on the version) 39-45% of all
classes were nested classes. We will discuss this threat in Section
6.

It should be noted that the range (i.e., possible values) of
each indicator varies. As shown in Table I, TD indicators that
solely express the presence of TD (e.g., the presence of a
modularity violation or a code smell on class level) map to 0
(meaning no presence) or 1 (meaning the indicator is present).
This is expressed by [0,1] in Table I. For indicators that can be
identified multiple times in a Java class (e.g. code smells on the
method level and ASA issues that can be repeatedly detected) the
measure indicates how many times the indicator was identified.
Table I shows this as [0..N].

We measured the presence of grime as well as the absence of
design patterns. Even if we cannot be sure that the absence of
design patterns is harmful, we included this information to
investigate if we can find interesting relationships. Therefore
classes not following design patterns received a value of “1” for
the indicator. We collected issues reported by FindBugs (version
1.3.9) from the source code of each Hadoop version, considering
all issues of any FindBugs category (Table I: 17-25) and priority
(Table I: 14-16).

Defect proneness measurement. To link classes with
defects, for a bug that was fixed and closed in a version v, we
computed which classes were modified during the fix change
(identifiable through Subversion repository by using bug links
provided in commit comments, e.g. HADOOP-123). The linkage
between source code anomalies and their resulting defects is
potentially stretched over time. For example, as illustrated in
Error! Reference source not found., a bug can be found and
reported in version 0.3.0, but may not be fixed until version 0.5.0.

Figure 1: Three ways of computing defect proneness

We thus measure the defect proneness of a class c in version v
using the following three different ways respectively:
1. The number of times class c is involved in fixing bugs that

were injected in version v, that is, the version where the bugs
were found and reported.

2. The number of times class c is involved in fixing bugs that
were resolved in version v.

3. The number of times class c is involved in fixing bugs that
were alive in version v, that is, the bugs were reported before
or in version v, and were resolved after or in version v.1
Change proneness measurement. Following the work of

Schumacher et al. [15], we measure the change proneness of class
c in version v as the number of repository changes affecting class
c divided by the total number of changes in the repository during
the class’ lifetime (e.g., creation to deletion date).

1 This approach is necessary since versions can overlap (in time)

in the SVN repository and single revisions cannot always be
clearly assigned to a single version.

Size measurement. We chose the Number of Methods in
each class as a measure of size. In Section 6 we discuss possible
threats posed by this choice.

4.3 Analysis Methodology
In order to investigate the two research questions proposed in

Section 3, that is, the overlap between the results generated by
these TD detection techniques (TD indicators), and their
correlation with defect- and change- proneness (interest
indicators), we designed a 5-step methodology that reduces the
complex set of indicator values on the large, multidimensional
dataset into a graph. The methodology is illustrated in Figure 2:
Step 1: Compute a set of association measures to examine how
each TD indicator and each interest indicator are related to each
other.
Step 2: Apply statistical and significance functions to filter only
highly associated pairs of indicators.
Step 3: Combine the set of three significant association measures
into one measure.

Figure 2: Five-step analysis methodology

Step 4: Combine measures from each of the 13 Hadoop versions
to one set of aggregate measures.
Step 5: Build visualization and data tables to provide insight into
the most strongly associated indicators.

To answer the first research question regarding the overlap
between the results reported by these techniques, we examine the
association measures between their respective TD indicators. To
answer the second research question regarding interest indicators,
we order the TD indicators (and the one size measure) by their
level of association with the four interest indicators introduced in
Section 4.2.

4.3.1 Step1: Compute Statistical Association
Measures

We identified different statistical techniques to quantify the
relationship between pairs of TD indicators in each version of
Hadoop. Because there are many choices for association
measurement (e.g. Pearson correlation, conditional probability),
we performed a sensitivity analysis to investigate how the results
generated from these statistic models differ from each other. This
analysis showed that different statistical analysis techniques result
in different answers: from the top 50 list of the most highly
associated pairs of indicators and metrics generated by each of the
statistical analysis techniques, only three pairs were common.
Therefore we concluded that using only one single measure of
association would be inadequate because different statistic models
assess association from different perspectives that complement
each other. We thus apply 4 different association models to assess
the relation between the 30 X 30 pairs of indicators. The different
association measures will be combined in one unique measure in
Step 3.

In order to illustrate our methodology, we use a pair of TD
indicators, Dispersed Coupling (one type of code smell) and
Performance issues (reported by FindBugs), as a running example.
The four association techniques are described below:

1. The Pearson correlation between the number of
occurrences of Dispersed Coupling and the number of occurrences
of Performance issues across all Java classes of one Hadoop
version (Figure 2: Step 1, M1). Pearson correlation is widely used
in the literature on defect prediction models [26], including the
usage of ASA issues as an early indicator of defects [27], and in
maintainability prediction [28].

2. The conditional probability of a Java class having at least
one occurrence of Dispersed Coupling given that the same class
has at least one occurrence of Performance issue, and vice versa:
P(Dispersed Coupling│Performance), P(Performance│Dispersed
Coupling) (Figure 2: Step 1, M2). The conditional Probability has
been used previously for software defects and maintainability
predictions [29] [30].

3. The chance agreement, which is the probability that a
Java class holds an occurrence of Dispersed Coupling and
Performance issue at the same time by chance. This probability is
computed as: P(Performance)*P(Dispersed Coupling)+P(No
Performance)*P(No Dispersed Coupling) (Figure 2: Step 1, M3).
Chance agreement is at the basis of Cohen’s Kappa computation
[31].

4. Cohen’s Kappa, which is an inter-rater agreement
between Dispersed Coupling and Performance issues, and
indicates the strength of agreement and disagreement of two raters
(e.g., TD indicators). Cohen’s Kappa is appropriate for testing
whether agreement exceeds chance levels for binary and nominal
ratings. Therefore, Dispersed Coupling and Performance issues

are in agreement if both occur at least once in the same Java class,
or if both of them are not present. In any other case, they are in
disagreement (Figure 2: Step 1, M4). Cohen’s Kappa has been
used for the assessment of defect classification schemes [32] and
in software process assessment [33]. Used in conjunction with
other statistical measures, it prevents the misinterpretation of
results possibly affected by prevalence and bias.

The computation of chance agreement, conditional
probability and Cohen’s Kappa required data transformation for
some measures: all metrics ranges [0..N] were reduced to [0,1],
where “1” indicates that at least one occurrence of the TD
indicator was found in the class and “0” otherwise. For example,
for the Number of bug fixes (fixed) in version v, we assign “1” if
the Java class was part of at least one defect fix during the
analyzed version. The partial loss of measurement resolution is
further discussed in Section 6.

For change likelihood, where the metric ranges from 0.0 to
1.0 (floating point numbers), we investigated its empirical
distribution on each version and selected a threshold value to be
used in the data transformation. This threshold was computed so
as to guarantee that, on average, only the top 25% of classes with
high change likelihood obtained a value of “1” in the data
transformation, “0” otherwise. The computed threshold was 0.01,
indicating that a Java class that is changed more often than in 1
out of 100 cases is considered change prone.

The same was done for the size metric, Number of Methods.
We use a threshold of 11 to guarantee that only the top 25% of
classes were considered large. The computation of the four
statistical analysis techniques produced four respective matrices
shown in Figure 2: M1, M2, M3 and M4. Each of the statistical
measures offers a different perspective on the association between
pairs of metrics.

The Pearson correlation indicates whether two indicators
increase/decrease together following a linear pattern. The
conditional probability is useful in understanding the direction of
the association, since it indicates whether an indicator is present in
a class given that another indicator is present. The chance
agreement, instead, is the probability that two indicators are either
indicating or not indicating a problem in the same class randomly;
in the following section we will see how we use this measure with
the conditional probability. Finally, the Cohen’s Kappa is useful
because the agreement takes into account not only when two
indicators are present in the same class, but also when they are not
present simultaneously.

4.3.2 Step 2: Apply Significance Functions
After applying the different techniques in Step 1, the goal

was to filter the more significant associations from the less
significant ones. Therefore we applied different significance
functions Ω. The significance functions map the associations
between each pair of indicators to [0,1], expressing that the pairs
are strongly associated (“1”) or not associated strongly enough
(“0”). The following three formulae define the functions applied
to produce matrices M5, M6 and M7 for each of the 13 versions in
Figure 2:

• Significant Pearson Correlations:
Ω(M1i, j)

= 1, 𝑖𝑓(M1i, j)≥T1 ∧ p-‐val ≤0.05 ∧ (i≠j)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Significant Conditional Probability: using M2 (Cond.
Probability) and M3 (Chance agreement):

Ω(M2i, j ,M3i, j)

= 1, 𝑖𝑓(M2i, j)>(M3i, j) ∧ (M2i, j)≥T2 ∧ (i≠j)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Significant Cohen’s Kappa:

Ω(M4i, j) = 1, 𝑖𝑓(𝑀4i, j)>T3 ∧ (i≠j)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The goal of the significance function Ω is to discern
significant relations from insignificant ones. Parameters T1, T2
and T3 are three specific thresholds of the respective significance
functions that we chose based on the association strength levels
found in the literature:

T1 (Correlation) = 0.60. We found two main correlation
strength classifications, Cohen [34] and Evan [35]. We adopt
Evan’s strong definition because it is stricter than Cohen’s
definition.

T2 (Conditional probability) = 0.60. To our knowledge,
existing literature does not provide a commonly accepted and
generally applicable threshold for conditional probability.
Therefore, we calculated the distribution of conditional
probabilities in the different versions and we selected the
threshold 0.60, which on average filtered out 80% of all data.
Moreover, since this criterion is merged with the criterion
conditional probability > chance agreement, we consider such
threshold high enough to discriminate significant data.

T3 (Cohen’s Kappa) = 0.60. Many tables of Kappa’s
strength of agreement can be found in the literature, the most
relevant of which are [36] [37] [31]. We adopt a threshold value
of 0.60. Thus, a constraint > 0.60 corresponds to a
“good”/”substantial” agreement in all the proposed ranks.

4.3.3 Step 3: Combine Statistical Association
Measures

The next step is an aggregation of the association measures..
For each cell of a matrix (a pair of indicators), we compute the
sum over all three matrices M5, M6, and M7. The resulting matrix

(displayed as M8 in Figure 2) contains the significance score for
each pair and version that ranges from 0 (not significant in any of
the three methods) to 3 (significant in all three methods).

4.3.4 Step 4: Combine Versions
The fourth and final computation step of the process is the

aggregation of the significance score over versions. For every cell
in Matrix M8, we compute the mean over the 13 versions of
Hadoop, resulting in a single matrix (M9 in Figure 2).

4.3.5 Step 5: Visualize Most Significant Outcomes
In the final step, we visualize the pairs of TD indicators with

most significant associations as a graph (Figure 3) and a list of TD
indicators most related to interest indicators (Table II).

5. RESULTS
We made the following observations from the result. First,

the value of TD indicators increases together with the size of
Hadoop. The sum of all TD indicators increases in the evolution
from release 0.2.0 to release 0.14.0. FindBugs issues ranged from
307 to 486 but the average number of issues per class does not
expose the same monotone increasing trend, and the range of the
average number of issues per class is [1.30-1.76].

 Code smells in the last release (352) are more than twofold
the number of code smells in the first release (143), and the
average of code smells per class is [0.78-1.01]. Modularity
violations have the sharpest increase: they were 8 in the first
analyzed release and 37 in the last one (reaching a maximum of
38 in v. 0.13.0). The average number of Modularity violations per
class ranged from 0.04 to 0.11. Moreover, we detected in each
version two realizations of Singleton design pattern, two
realizations of State pattern and six of Abstract factory. However,
none of the classes that are participating in these design patterns
was affected by grime.

We do not observe a trend in any of the interest indicators.
The sum of Bug fixes collected with the defect proneness strategy
“inject” ranges from a minimum of 16 (v 0.8.0) to a maximum of
102 (v 0.3.0), while the range of the average number per class is

Figure 3: Graph of top ranked pairs (average score > 1)

[0.06-0.53]. Version 0.8.0 has no Bug fixes (fixed) and version
0.7.0 is the version with the largest number (590). The average of
all classes per version is in the range [0-2.63]. The ranges of Bug
fixes (between) are [162-675] and [0.55-3.01], respectively for
their total by version and average of all classes by version.
Finally, the Change likelihood range is [0.006-0.017] per class.

Figure 3 shows the resulting directional graph of the TD
pairs and interest indicators that were on average significant in
more than one statistical measure (overall mean score in Matrix
M9 > 1). The nodes of the graph show the indicators. The color
(or shade) of the node indicates which TD indicators were derived
from the same TD detection technique. The directional edges are
further labeled by their association strength (ranging from 1 to 3).
And lastly, the direction indicates the conditional properties
inherited from the conditional probability metric. For example,
Modularity violations and Bug fixes are associated, meaning that
if a class has a Modularity violation, then it is also likely that such
a class will have Bug fixes. However, the reverse statement (i.e.
classes containing Bug fixes are not as likely to have Modularity
violations at the same time) is not necessarily true, and does not
show in the graph.

Figure 3 represents the strongest associations found in our
analysis. The graph contains 24 relationships (edges), one of them
between TD indicators (nodes) belonging to different techniques
(colors or shades), three of them between TD indicators and
interest indicators or size, and the remaining 20 are among TD
indicators detected by the same technique or among the interest
indicators.

As for correlations between TD indicators and interest
indicators, Dispersed Coupling points to classes that are more
defect prone. Modularity Violations do not strongly co-occur with
code smells or ASA issues but are likely to point to defect and
change prone classes.

Seven out of the twelve ASA/FindBugs issue types appear in
the graph. The strongest associations (average score ≥ 2) are
between Style and Low and Bad Practice and Medium. We also
observe an association between a FindBugs issue (High) and a
Code Smell (Intensive Coupling). Four out of ten code smells
show up in the graph. Brain Class and Brain Method code smells
are related in both directions, as well as Dispersed and Intensive
Coupling (but only one direction).

Lastly, defect prone classes tend to be also change prone, and
vice-versa. The size metric Number of Methods does not shoot up
in the graph indicating that neither the TD indicators nor the
interest indicators are very strongly associated with size.

5.1 RQ 1: Which techniques tend to report
problems in the same sets of classes?

The results shown in Figure 3 lead to our first finding in
response to RQ1: Different TD techniques point to different
classes and therefore to different problems.

The only arc in Figure 3 that relates two different types of
TD identification approaches is Intensive Coupling and FindBugs
High priority issues. A method exhibits intensive coupling if it
“calls too many methods from a few unrelated classes” [19].
FindBugs High priority issues are those issues thought to have
higher probability to detect serious problems in the code. The
direction of the association indicates that classes with many High
priority issues have methods affected by Intensive Coupling. A
possible explanation for this relation is that both of these
indicators point, more than any others, to generally poorly
designed code.

Looking at the associations inside the boundaries of the
techniques, we observe a characteristic of all FindBugs issues in
the graph: significant relationships are only revealed between
priority and type categories, which are not independent indicators
and are constructed by the FindBugs authors2. Therefore this
relationship is not a surprising result. A follow up analysis
revealed that 81-87% (depending on version) of all classes contain
FindBugs issues of only one single category.

Shifting the focus of the results analysis to the code smells
group, we observe three associations between particular code
smells: Brain Class → Brain Method (2.0), Brain Method →
Brain Class (1.15) and Dispersed Coupling → Intensive Coupling
(1.23). The first relationship is stronger in the direction → Brain
Method and it indicates that Brain classes are more prone to
contain Brain methods. This observation can be explained by the
way Brain Class code smells are detected using Marinescu’s
detection strategy [19] [20]: the Brain Class detection requires
that the inspected class contains at least one Brain Method.
Therefore the conditional probability as defined in Section IV of
P(Brain Method | Brain Class) is always 1.0. The second
relationship between code smells is Dispersed Coupling →
Intensive Coupling (1.20). While the latter indicates that a class
has methods that invoke many functions of a few other classes, the
former shows classes having methods invoking functions of many
other classes. Their association demonstrates that classes in
Hadoop having the former of the coupling smells also have the
latter smell, which intensifies the problem of coupling. No other
relationship within different code smells was found in this
analysis.

We also observe that modularity violations are not strongly
related to any other indicator. This confirms and validates one of
the findings reported in Wong et al [9], who found that 40% of
modularity violations in Hadoop are not defined as code smells
and are not detectable using existing approaches.

To conclude, the 4 TD detection approaches (modularity
violation, code smells, grime, and ASA issues) have only very
little overlap and are therefore pointing to different problems.
Within the broad approaches, relations are stronger (as one would
expect). However the data also shows that many code smells and
some ASA issue types are not inter-related (i.e. the ones not
showing in Figure 3) indicating that even at a lower level
indicators point to different problem classes.

5.2 RQ2: Which TD indicators correlate with
the interest indicators defect- and change-
proneness?

Turning to RQ2, our major finding concerning defect-
proneness is summarized as follows: The dispersed coupling
code smell and modularity violations are located in the classes
that are more defect-prone.

For each TD indicator (Column 1), Table II reports the
average score obtained in matrix M9 for the association between
the indicator and defect proneness (columns 2-4) and change
proneness (column 5). TD indicators are listed in the same order
as Table I, but those with average score less than or equal to 0.3 in
all associations with interest indicators are not shown.

2 Each bug pattern is assigned a priority and category by the

FindBugs authors. Some categories are biased towards single
priorities: e.g., correctness is considered more often to be of
high priority.

Figure 3 shows that no single FindBugs indicator has a very
strong relationship (>1) with Bug fixes. However, when
investigating less correlated indicators we find the strongest
FindBugs indicator to be Multithread Correctness having a
borderline value of 1.0 (Table II). This category is very specific
but ties very well into the studied application; Hadoop has to deal
with both distributed data storage and computations. Previous
work [12] [13] [38] reported that only a small percentage of
FindBugs issues are actually related to bug fixes. This is
supported by our results and a follow up analysis: Multithread
Correctness issues make up only 5.3% of the total of FindBugs
issues found in Hadoop.

Another strong relationship with Bug fixes (in two
approaches, between and fixed) involves the Dispersed Coupling
code smell. In a related work [39], Dispersed Coupling was highly
correlated with bug fixes only when the prevalence of this smell
increased during the evolution of the software. We observe a
border value (1.0) also for one other code smell: the God Class
indicator has an average score of 1.0. Zazworka et al. [11]
reported in their previous work that in an industrial system god
classes contained up to 13 times more defects than non-god
classes.

The last indicator strongly related to Bug fixes (between) is
Modularity violations, which are located in the same classes
where the more bug fixes are found (but not in all of them).

Although defect prediction is not a goal of this work, it is
useful to look at measures of precision and recall to further
describe the relationships we’ve found. We used the two TD
indicators most strongly related to bug fixes and the two border
value indicators to predict, in each version, classes with at least

one bug fix (strategy between). We observe in Table III high
precision and low recall values. Each of the four indicators points
out a small subset of defect-prone classes very well. When using
all four indicators together recall can be raised to 0.33 by trading
off some precision.

The second part of RQ2 was concerned with change
proneness. The following summarizes this result. Modularity
violations point to change prone classes.

Change-prone classes might indicate maintenance problems
(e.g., classes that have to be changed unusually often are
candidates for refactoring). As outlined in Section IV we labeled
on average the top 25% most frequently changed classes as
“change-prone.”

The results indicate that Modularity Violations are strongly
related to change likelihood. Table II shows that the highest
average scores are Modularity violations (1.38), Dispersed
coupling (0.92) and God Classes (0.85). This fits expectations
since all of the three approaches claim to identify maintenance
problems. Modularity violations and Dispersed coupling point to
classes that have collaboration disharmonies. The God class code
smell identifies classes that implement multiple responsibilities
and should be refactored (e.g. split up into multiple classes).

Further, the relation between defect and change proneness
shows that these issues are interconnected. Explanations for the
phenomena can be that maintenance problems lead to less correct
code, or that many quick-and-dirty bug fixes lead to less
maintainable code.

Finally, we point out that a large set of TD indicators (i.e. 9
out of 25) do not show significant associations with defect or
change proneness. This proportion suggests that these indicators
either point to different classes of quality issues (e.g. FindBugs
type Performance) or to none at all. Therefore these results can be
further used to tailor TD indicators towards quality attributes of
interest. If one is most interested in defect and change proneness
issues in Hadoop (or similar software) we suggest analyzing for
dispersed coupling and modularity violations.

6. THREATS TO VALIDITY
We list the threats to the validity and generalizability of the

study following the structure proposed by Wohlin et al. [40], who
identify four categories: construct, internal, conclusion and
external threats.

A first conclusion threat concerns the impact of thresholds
T1, T2 and T3 applied on Step 2 (Section 4.3.2) on the results. We
documented the choice of thresholds based on values discussed
and adopted in the literature, and we adopted higher values to
decrease the level of uncertainty. The collection and aggregation
of different statistical measures also lowers the risk associated
with this threat.

A further statistical point of discussion is the loss of
measurement resolution in data transformation from ranges [0..N]

	

TD	 Indicator	

Bug	 	
fixes	

(between)	

Bug	 	
fixes	 	

(inject)	

Bug	 	
fixes	
(fixed)	

Change	
likeli-‐
hood	

M
od

	
Vi
ol
	 Modularity	

violations	
1.23	 0.23	 0.54	 1.38	

Co
de

	 S
m
el
ls
	

God	 Class	 1.00	 0.23	 0.77	 0.85	

Brain	 Class	 0.62	 0.23	 0.46	 0.62	

Tradition	
Breaker	

0.69	 0.31	 0.38	 0.69	

Feature	
Envy	

0.54	 0.15	 0.31	 0.15	

Brain	
Method	

0.77	 0.23	 0.54	 0.46	

Intensive	
Coupling	

0.54	 0.00	 0.08	 0.15	

Dispersed	
Coupling	

1.31	 0.23	 0.54	 0.92	

Shotgun	
Surgery	

0.31	 0.00	 0.08	 0.08	

Fi
nd

Bu
gs
	 is
su
es
	

High	 0.92	 0.08	 0.46	 0.62	

MT	
Correctness	

1.00	 0.08	 0.46	 0.69	

Correctness	 0.92	 0.15	 0.46	 0.62	

Performance	 0.31	 0.00	 0.08	 0.08	

Style	 0.31	 0.00	 0.08	 0.38	

Si
ze
	 Number	 of	

Methods	
0.62	 0.00	 0.08	 0.08	

TABLE II: ASSOCIATION OF TD INDICATORS WITH INTEREST INDICATORS

TABLE III: PRECISION AND RECALL WHEN PREDICTING DEFECTS PRONE
CLASSES

	 Multithread	

Correctness	
Dispersed	
Coupling	

God	
Class	

Modularity	
Violations	

All	
4	

Avg.	
prec.	 0.78	 0.81	 0.96	 0.85	 0.77	

Avg.	
recall	

0.13	 0.12	 0.11	 0.21	 0.33	

to the range [0,1]. The transformation was required to compute
Cohen’s Kappa and the conditional probability. To limit this
threat we investigated distributions carefully to find reasonable
thresholds (e.g. for Number of Methods we decide on a threshold
of 11 for a top 25% cutoff). Moreover, the choice of at least one
occurrence as criterion for transformation was driven by a
preliminary analysis of distribution that revealed that TD and
interest indicators were equal to zero on average in 90% of the
classes.

Another conclusion threat is derived by the decision to not
normalize measures by size. Our choice was based on past
experiences [10] and from the analysis of the results of the current
study. Figure 4 shows a correlation plot between size and number
of defect fixes for each file over all versions. The 3rd order
polynomial trend line shows that the correlation is not simply
linear, e.g. a class twice as large is not twice as defect-prone. This
analysis suggests that a linear normalization by number of
methods is not required.

Moreover, the choice of this size metric rather than other size
metrics is also a threat (construct). We examined whether the
Total Number of Methods correlates with other size metrics in the
different Hadoop versions. We obtained almost perfect
correlations with Total Number of Statements, Total Number of
Lines of Code (that include comments) and Total Number of
Files: 0.9958, 0.9950 and 0.9711 respectively. In addition to that,
we checked, for each version, the correlation between the Number
of Methods and two other metrics, i.e. the Number of Lines of
Code and the Number of Statements in Java classes. We also
obtained at this granularity very high correlation, respectively
0.8975 and 0.8780. We conclude that using Number of Methods
as measure of class size is equivalent to lines of code and did not
affect results.

A further construct threat is the selection of outer classes,
ignoring nested classes. At this point in time, the tools used did
not allow the collection of all metrics for nested classes. Therefore
the validity scope of our results is limited to outer classes only.
Future work will be devoted to include nested classes in the
analysis.

We believe that the findings of this work apply only in the
context analyzed (external threat). They may apply in similar
applications, but we are not aware of any other published results
that can be compared to ours. However, although results cannot be
generalized, they contribute to begin composing the TD
landscape.

7. CONCLUSION
The main findings of this study are:

• Different TD techniques point to different classes and
therefore to different problems. There are very few overlaps
among the results reported by these techniques.

• Dispersed coupling, god classes, modularity violations and
multithread correctness issues are located in classes with
higher defect-proneness.
Modularity violations are strongly associated with change
proneness.
Our results indicate that the issues raised by the different

code analysis techniques are in different software classes.
Moreover, only a subset of the problematic issue types identified
by these techniques is shown to be more defective or change
prone. This is consistent with the result of earlier work where
these techniques were applied independently ([10] [11] [12][13]).

These findings contribute to building an initial picture of the
TD landscape, where TD techniques are loosely overlapping and
only a subset of them is strongly associated to software
components’ defect and change proneness.

This initial picture will contribute to future research efforts
concerned about continuously monitoring and managing TD in
software projects, a larger subject that is out of the scope of this
study. But this study constitutes an important step in addressing
the TD problem holistically: not all TD should be considered
sufficiently harmful to warrant repayment, in particular if the cost
of repair (paying the principal) outweighs the interest payments in
long term. Thus, not all TD is bad, and not all TD needs to be
avoided. The results of this study build a stepping-stone for
further trade-off analysis studies by providing insights into how
tools can help to point to TD that is worth being managed.

7.1 Implications for Practice
The results indicate that, in practice, multiple TD indicators

should be used instead of only one of the investigated tools. As a
recommendation to practitioners, these initial results evidently
show that different tools point to different problems in a code
base. The use of a single tool or single indicator (e.g. a single code
smells) will only in rare cases point to all important TD issues in a
project. As a result, development teams need to make intentional
decisions about which of the TD indicators are of most relevance
to them, based on the quality goals of their project, as suggested in
[43]. For example, is maintainability a priority for the team, or is
the system expected to be short-lived? Is code performance
important? Different answers to questions like these would lead to
different choices for a TD detection strategy.

In the current state of research we cannot yet give a more
complete recommendation on which indicators are best for
signaling specific quality shortcomings, however, our results give
some preliminary advice on which indicators to start with when
looking for TD related to defects and maintenance bottlenecks,
namely: Modularity Violations, God Class, Dispersed Coupling,
and Multi Thread Correctness issues.

7.2 Implications for Research
Since results indicate that there might not be a project

independent one-size-fits-all tool to detect TD, but rather a
necessary tailoring process to the right subset of indicators
required, future research should be concerned with investigating
and showing connections between TD techniques, types of
technical debt, effect and tailoring towards project specific
software quality characteristics. Future work should also

Figure 4: Correlation plot for size vs. defect proneness

investigate other TD indicators when they become available to
broaden the landscape.

As more specific advice for future research directions, we
recommend extending the interest indicators towards a broader
range of software quality aspects, beyond defect and change-
proneness as investigated here. Further, we recommend extending
this type of quantitative study with qualitative insights, e.g. from
practitioners that investigate if the studied approaches point to the
most important kinds of technical debt.

8. REFERENCES
[1] W. Cunningham, “The wycash portfolio management

system,” in Addendum to the proceedings on Object-oriented
programming systems, languages, and applications
(Addendum), ser. OOPSLA ’92. New York, NY, USA:
ACM, 1992, pp. 29–30. [Online]. Available: http://-
doi.acm.org/10.1145/157709.157715

[2] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim,
P. Kruchten, E. Lim, A. MacCormack, R. Nord, I. Ozkaya,
R. Sangwan, C. Seaman, K. Sullivan, and N. Zazworka,
“Managing technical debt in software-reliant systems,” in
Proceedings of the FSE/SDP workshop on Future of software
engineering research, ser. FoSER ’10. New York, NY, USA:
ACM, 2010, pp. 47–52. [Online]. Available: http://-
doi.acm.org/10.1145/1882362.1882373

[3] I. Gat and J. D. Heintz, “From assessment to reduction: how
cutter consortium helps rein in millions of dollars in
technical debt,” in Proceedings of the 2nd Workshop on
Managing Technical Debt, ser. MTD ’11. New York, NY,
USA: ACM, 2011, pp. 24–26. [Online]. Available: http://-
doi.acm.org/10.1145/1985362.1985368

[4] A. Nugroho, J. Visser, and T. Kuipers, “An empirical model
of technical debt and interest,” in Proceedings of the 2nd
Workshop on Managing Technical Debt, ser. MTD ’11. New
York, NY, USA: ACM, 2011, pp. 1–8. [Online]. Available:
http://doi.acm.org/10.1145/1985362.1985364

[5] CAST, “Cast worldwide application software quality study:
Summary of key findings,” Tech. Rep.

[6] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,
Refactoring: Improving the Design of Existing Code, 1st ed.
Addison-Wesley Professional, Jul. 1999.

[7] C. Izurieta and J. Bieman, “How software designs decay: A
pilot study of pattern evolution,” in Empirical Software
Engineering and Measurement, 2007. ESEM 2007. First
International Symposium on, sept. 2007, pp. 449 –451.

[8] ——, “A multiple case study of design pattern decay, grime,
and rot in evolving software systems,” Springer Software
Quality Journal. February 2012, http://dx.doi.org/
10.1007/s11219-012-9175-x.

[9] S. Wong, Y. Cai, M. Kim, and M. Dalton, “Detecting
software modularity violations,” in Proc. 33th International
Conference on Software Engineering, May 2011, pp. 411–
420.

[10] N. Zazworka, M. A. Shaw, F. Shull, and C. Seaman,
“Investigating the impact of design debt on software
quality,” in Proceeding of the 2nd working on Managing
technical debt, ser. MTD ’11. New York, NY, USA: ACM,
2011, pp. 17–23. [Online]. Available: http://doi.acm.org/-
10.1145/1985362.1985366

[11] S. M. Olbrich, D. S. Cruzes, and D. I. K. Sjoberg, “Are all
code smells harmful? a study of god classes and brain classes
in the evolution of three open source systems,” in
Proceedings of the 2010 IEEE International Conference on
Software Maintenance, ser. ICSM ’10. Washington, DC,

USA: IEEE Computer Society, 2010, pp. 1–10. [Online].
Available: http://dx.doi.org/10.1109/ICSM.2010.5609564

[12] A. Vetro’, M. Torchiano, and M. Morisio, “Assessing the
precision of findbugs by mining java projects developed at a
university,” in Mining Software Repositories (MSR), 2010
7th IEEE Working Conference on, may 2010, pp. 110 –113.

[13] A. Vetro’, M. Morisio, and M. Torchiano, “An empirical
validation of findbugs issues related to defects,” IET Seminar
Digests, vol. 2011, no. 1, pp. 144–153, 2011. [Online].
Available: http://link.aip.org/link/abstract/IEESEM/v2011/-
i1/p144/s1

[14] C. Izurieta and J. Bieman, “Testing consequences of grime
buildup in object oriented design patterns,” in Software
Testing, Verification, and Validation, 2008 1st International
Conference on, april 2008, pp. 171 –179.

[15] J. Schumacher, N. Zazworka, F. Shull, C. Seaman, and
M. Shaw, “Building empirical support for automated code
smell detection,” in Proceedings of the 2010 ACM-IEEE
International Symposium on Empirical Software Engineering
and Measurement, ser. ESEM ’10. New York, NY, USA:
ACM, 2010, pp. 8:1–8:10. [Online]. Available: http://-
doi.acm.org/10.1145/1852786.1852797

[16] V. R. Basili and D. M. Weiss, “A methodology for collecting
valid software engineering data,” Software Engineering,
IEEE Transactions on, vol. SE-10, no. 6, pp. 728 –738, nov.
1984.

[17] Y.-G. Guéhéneuc and H. Albin-Amiot, “Using design
patterns and constraints to automate the detection and
correction of inter-class design defects,” in Proceedings of
the 39th International Conference and Exhibition on
Technology of Object-Oriented Languages and Systems
(TOOLS39), ser. TOOLS ’01. Washington, DC, USA: IEEE
Computer Society, 2001, pp. 296–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=882501.884740

[18] W. J. Brown, R. C. Malveau, and T. J. Mowbray,
AntiPatterns: Refactoring Software, Architectures, and
Projects in Crisis. Wiley, Mar. 1998. [Online]. Available:
http://www.worldcat.org/isbn/0471197130

[19] M. Lanza and R. Marinescu, Object-oriented Metrics in
Practice. Berlin: Springer-Verlag, 2006.

[20] R. Marinescu, “Detection strategies: Metrics-based rules for
detecting design flaws,” Software Maintenance, IEEE
International Conference on, vol. 0, pp. 350–359, 2004.

[21] D. Hovemeyer and W. Pugh, “Finding bugs is easy,”
SIGPLAN Not., vol. 39, pp. 92–106, December 2004.
[Online]. Available: http://doi.acm.org/10.1145/-
1052883.1052895

[22] N. Ayewah and W. Pugh, “The google findbugs fixit,” in
Proceedings of the 19th international symposium on
Software testing and analysis, ser. ISSTA ’10. New York,
NY, USA: ACM, 2010, pp. 241–252. [Online]. Available:
http://doi.acm.org/10.1145/1831708.1831738

[23] S. Kim and M. D. Ernst, “Prioritizing warning categories by
analyzing software history,” in Proceedings of the Fourth
International Workshop on Mining Software Repositories,
ser. MSR ’07. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 27–. [Online]. Available: http://-
dx.doi.org/10.1109/MSR.2007.26

[24] C. Boogerd and L. Moonen, “Evaluating the relation between
coding standard violations and faultswithin and across
software versions,” in Mining Software Repositories, 2009.
MSR ’09. 6th IEEE International Working Conference on,
may 2009, pp. 41 –50.

[25] S. Kim and M. D. Ernst, “Which warnings should i fix first?”
in Proceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, ser.
ESEC-FSE ’07. New York, NY, USA: ACM, 2007, pp. 45–
54. [Online]. Available: http://doi.acm.org/10.1145/-
1287624.1287633

[26] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to
predict component failures,” in Proceedings of the 28th
international conference on Software engineering, ser. ICSE
’06. New York, NY, USA: ACM, 2006, pp. 452–461.
[Online]. Available: http://doi.acm.org/10.1145/-
1134285.1134349

[27] N. Nagappan and T. Ball, “Static analysis tools as early
indicators of pre-release defect density,” in Software
Engineering, 2005. ICSE 2005. Proceedings. 27th
International Conference on, may 2005.

[28] S. Muthanna, K. Kontogiannis, K. Ponnambalam, and
B. Stacey, “A maintainability model for industrial software
systems using design level metrics,” in Reverse Engineering,
2000. Proceedings. Seventh Working Conference on, 2000,
pp. 248 –256.

[29] N. Fenton, M. Neil, W. Marsh, P. Hearty, D. Marquez,
P. Krause, and R. Mishra, “Predicting software defects in
varying development lifecycles using bayesian nets,”
Information and Software Technology, vol. 49, no. 1, pp. 32
– 43, 2007, <ce:title>Most Cited Journal Articles in Software
Engineering - 2000</ce:title>. [Online]. Available: http://-
www.sciencedirect.com/science/article/pii/-
S0950584906001194

[30] M. Riaz, E. Mendes, and E. Tempero, “A systematic review
of software maintainability prediction and metrics,” in
Empirical Software Engineering and Measurement, 2009.
ESEM 2009. 3rd International Symposium on, oct. 2009, pp.
367 –377.

[31] J. L. Fleiss, Statistical Methods for Rates and Proportions,
2nd ed., ser. Wiley series in probability and mathematical
statistics. New York: John Wiley & Sons, 1981.

[32] K. El Emam and I. Wieczorek, “The repeatability of code
defect classifications,” in Software Reliability Engineering,
1998. Proceedings. The Ninth International Symposium on,
nov 1998, pp. 322 –333.

[33] H.-M. Park and H.-W. Jung, “Evaluating interrater
agreement with intraclass correlation coefficient in spice-
based software process assessment,” in Quality Software,
2003. Proceedings. Third International Conference on, nov.
2003, pp. 308 – 314.

[34] J. Cohen, Statistical power analysis for the behavioral
sciences : Jacob Cohen., 2nd ed. Lawrence Erlbaum, Jan.

1988. [Online]. Available: http://www.worldcat.org/isbn/-
0805802835

[35] J. Evans, Straightforward statistics for the behavioral
sciences. Brooks/Cole Pub. Co., 1996. [Online]. Available:
http://books.google.com/books?id=8Ca2AAAAIAAJ

[36] J. R. Landis and G. G. Koch, “The Measurement of Observer
Agreement for Categorical Data,” Biometrics, vol. 33, no. 1,
pp. 159–174, Mar. 1977.

[37] D. G. Altman, Practical Statistics for Medical Research
(Statistics texts), 1st ed. Chapman & Hall/CRC, Nov. 1990.
[Online]. Available: http://www.worldcat.org/isbn/-
0412276305

[38] S. Wagner, J. Jürjens, C. Koller, and P. Trischberger,
“Comparing bug finding tools with reviews and tests,” in
Proc. of Int’ Conf. on Testing of Communications Systems,
2005, pp. 40–55.

[39] M. D’Ambros, A. Bacchelli, and M. Lanza, “On the impact
of design flaws on software defects,” in Quality Software
(QSIC), 2010 10th International Conference on, July 2010,
pp. 23 –31.

[40] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell,
and A. Wesslén, Experimentation in software engineering:
an introduction. Norwell, MA, USA: Kluwer Academic
Publishers, 2000

[41] Bieman, J.M.; Straw, G.; Wang, H.; Munger, P.W.;
Alexander, R.T.; , "Design patterns and change proneness: an
examination of five evolving systems," Software Metrics
Symposium, 2003. Proceedings. Ninth International , vol.,
no., pp. 40- 49, 3-5 Sept. 2003

[42] Khomh, F.; Di Penta, M.; Gueheneuc, Y.-G.; , "An
Exploratory Study of the Impact of Code Smells on Software
Change-proneness," Reverse Engineering, 2009. WCRE '09.
16th Working Conference on , vol., no., pp.75-84, 13-16 Oct.
2009

[43] Shull, F. “Perfectionists in a World of Finite Resources,”
IEEE Software, vol. 28, no. 2, pp. 4-6, March / April 2011.

