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ABSTRACT 

Automatic static analysis (ASA) tools analyze the source or compiled code looking 

for violations of recommended programming practices (called issues) that might cause 

faults or might degrade some dimensions of software quality.  

Antonio Vetro’ has focused his PhD in studying how applying ASA impacts 

software quality, taking as reference point the different quality dimensions specified by the 

standard ISO/IEC 25010. The epistemological approach he used is that one of empirical 

software engineering. During his three years PhD, he’s been conducting experiments and 

case studies on three main areas: Functionality/Reliability, Performance and 

Maintainability. He empirically proved that specific ASA issues had impact on these 

quality characteristics in the contexts under study: thus, removing them from the code 

resulted in a quality improvement. 

Vetro’ has also investigated and proposed new research directions for this field: 

using ASA to improve software energy efficiency and to detect the problems deriving from 

the interaction of multiple languages. 

The contribution is enriched with the final recommendation of a generalized 

process for researchers and practitioners with a twofold goal: improve software quality 

through ASA and create a body of knowledge on the impact of using ASA on specific 

software quality dimensions, based on empirical evidence.  

This thesis represents a first step towards this goal. 
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1. INTRODUCTION 

1.1. AUTOMATIC STATIC ANALYSIS  

Source code analysis is a specific technique of reverse engineering [1] that consists 

in extracting information about a program from its source or artifacts (e.g., from Java byte 

code or execution traces) generated from the source code using automatic tools [2]. 

Automatic static analysis (ASA) tools analyze source or compiled code looking for 

violations of recommended programming practices (“issues”) that might cause faults or 

might degrade some dimensions of software quality (e.g., maintainability, efficiency). The 

purpose of these tools is to extract some information from the source code or make 

judgments about it. The most common use of static analysis is in optimizing compilers. In 

fact, most of the high-level optimizations performed by a modern compiler depend on the 

results of static analyses such as control-flow and data-flow analysis. Outside of the 

compiler realm, static analysis techniques are used primarily for computing software 

metrics, in quality assurance, program understanding and refactoring. The area of our 

interest is quality assurance and refactoring.  

The first static analysis tool, Lint, was developed more than 30 years ago by 

Stephen Johnson of Bell Labs [3]: it was able to examine C source programs that had 

compiled without errors and to find bugs that had escaped detection. Thirty years later, 

there are dozens of static analysis tools: comprehensive lists can be found both in the 

literature [4] [5] and on the Internet1.  

According to Li and Cui [4], currently-used static analysis techniques are: lexical 

analysis, type inference, theorem proving, data flow analysis, model checking and symbolic 

execution. 

                                                 
1 http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis 
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1.2. SOFTWARE QUALITY AND ASA 

The international standard ISO/IEC 25010 [44] defines two models for software 

quality:  

− a quality in use model; 

− a product quality model. 

The quality in use model refers to the final usage of software and its interaction 

with human beings. It can be applied to both computer systems in use and software in use. 

The product quality model refers to the static and dynamic properties of the computer 

systems: it can be applied both to computer systems and software products.  

Both models are hierarchically composed of characteristics and sub-characteristics, 

which provide terminology for specifying, measuring and evaluating the system and 

software product quality. Such decomposition permits to represent the stated and implied 

 
Figure  1. Hierarchical structure of the quality model from ISO/IEC 25010 
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needs of the various stakeholders. The leaves of the tree structure are the measurable 

quality properties, as depicted in Figure  1. Quality properties are measured by applying a 

measurement method, i.e. a logical sequence of operations used to quantify the properties 

with respect to a specific scale: the result of applying a measurement method is called a 

quality measure element. Quality measure elements can be composed in a measurement 

function in order to obtain a quality measure, which in turn quantifies the quality 

characteristics and sub-characteristics. This quality measurement model is represented in 

Figure  2 . 

The focus of this work is in the software quality product model, which includes 

eight characteristics: Functional suitability, Performance efficiency, Compatibility, 

Usability, Reliability, Security, Maintainability, and Portability. Each of the characteristics 

is further decomposed in sub-characteristics. Figure  3 represents the whole structure.  

Software quality assurance is a critical activity [6].  It is possible to adopt several 

techniques to improve quality:  testing, code inspections and formal verification are the 

 
Figure  2. Software product quality measurement model from ISO/IEC 25010 
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most widely used in industry. Although effectiveness and importance of these activities and 

methodologies is historically proved, all these techniques share a common limitation if 

compared to static analysis, i.e. the applicability during software development. In fact these 

techniques can be applied only after the system or parts of it are built and working. This 

necessity introduces a delay, which is quickly translated into money lost when 

modifications to the code are necessary to fix a defect or improve certain aspects. On the 

contrary, static analysis tools instead promise to speed up the software quality verification 

process because they can be applied during development.  

However, ASA tools need to be precise and effective, i.e. to signal real problems 

(and not false positive) and to address the most urgent quality concerns of stakeholders. 

These two properties cannot be achieved without a proper customization of the tools or a 

triage of the produced warnings with respect to the contexts and the projects they are going 

to be applied.  

Here comes the underlying idea of this PhD work: customize ASA tools with 

respect to different quality dimensions of interest. 

  

 
Figure  3. Software product quality model from ISO/IEC 25010 
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1.3. APPROACH 

We assess the impact of using automatic static analysis on software quality 

through the empirical approach.  

According to Wohlin et al [7], this approach is fundamental to conduct the 

software process quality improvement in the most objective and safe way, both in terms of 

process assessment and evaluation of an improvement proposal. In fact, without a proper 

methodology it is difficult to measure an improvement. Empirical studies have been 

traditionally used in social sciences and psychology, and less frequently in technical fields. 

Problems like the lack of applicability to the Software Engineering (SE) domain, the cost of 

experimentation or the excessive level of noise in data collected, have been largely 

discussed and finally rebutted in the literature (e.g, [8], [9] ) and nowadays the need of a 

more scientific approach and theory building in SE is impelling from several SE research 

communities (e.g.,  [10], [11], [12] and [13]).  Moreover, software production is a human-

intensive process and experimentation provides “a systematic, disciplined, quantifiable and 

controlled way” [7] to evaluate the software production activities and their quality. 

The Empirical Software Engineering (EMSE) research can be applied using two 

paradigms: qualitative and quantitative research. Qualitative research studies objects in 

their natural settings, and phenomena are explained by eliciting explanations from people. 

This approach is for construction of perspective-based results and reflects the question 

“Why…?” .  Quantitative research is focused on the quantification of a relationship or a 

comparison of two or more groups. This type of research answers the question “How…?”. 

The two approaches are complementary and are often mixed or alternated in a 

research. Both approaches provide a set of methodological tools defined by Shull et al. [14] 

as “a set of organizing principles around which empirical data is collected and analyzed.”  

These tools are called “empirical strategies” by Wohlin et al. [7], “kinds of empirical 

studies” by Juristo et al. [15] and “research methods” by Shull et al. [14].  The first two 

authors identify three methodological tools (experiments, surveys, case studies), the latter 
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one adds two more tools (ethnographies and action research). Below we present the tools as 

defined by Shull et al [14].   

− Survey:  it is used to identify the characteristics of a broad population of 

individuals.  It is conducted through the use of questionnaires, structured 

interviews, or data logging techniques. One important step in survey 

researches is the identification of a representative subset of the 

population, since usually it is not possible to poll every member.  

− Case study: it investigates a phenomenon within its real-life context, 

offering in-depth understanding of how and why certain phenomena 

occur, thus investigating cause–effect relationships (qualitative research).  

Exploratory case studies are used as initial investigations of some 

phenomena to derive new hypotheses and build theories, while 

confirmatory case studies are used to test existing theories. 

− Controlled experiment: it is an investigation of a testable hypothesis 

where one or more independent variables are manipulated to measure 

their effect on one or more dependent variables. Each combination of 

values of the independent variables is a treatment.  Not always true 

experiments are possible in SE (e.g., full randomization is often not 

achievable in real contexts): in that case quasi-experiments can be 

conducted (for instance, the subjects are not assigned randomly to the 

treatments).  

− Ethnography: this method is focused on the sociological aspects. 

Ethnographies study a community of people to understand how the 

members of that community make sense of their social interactions. For 

software engineering, ethnography can help to understand how technical 

communities build a culture of practices and communication strategies 

that enables them to perform technical work collaboratively. A special 

form of ethnography is participant observation, where the researcher 

becomes a member of the community being studied for a period of time.  
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− Action Research: in Action Research, the researchers attempt to solve a 

real-world problem while simultaneously studying the experience of 

solving the problem, intervening inside the real contexts to improve the 

situation. 

 

The presented methodological tools can be mixed to form a more complex 

research strategy where the weaknesses of one method can be compensated by the strengths 

of other methods: this is the strategy that we followed to empirically evaluate the impact of 

ASA issues on the quality characteristics of the ISO-IEC 25010 (former 9126) standard 

quality model.  The methodological tools used are experiments and case studies: for each 

quality characteristic analyzed, we selected the more appropriate methodological tool with 

respect to the research questions and the context of the assessment. Thus, given a software 

quality characteristic and a quality measure related to it, we empirically assessed whether 

applying ASA has a relevant impact on the quality measure and, as a consequence, on the 

corresponding quality characteristic under study. In practice, this process is applied to the 

software quality measurement model of the ISO/IEC 25010, as depicted in Figure  4. 
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Figure  4. Empirical assessment of the impact of ASA on software quality 
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1.4. STRUCTURE OF THE THESIS 

The structure of the thesis is quality characteristic-oriented. Chapters 2, 3 and 4 are 

related to a different software quality characteristic analyzed: Chapter 2 is about Functional 

suitability and Reliability, Chapter 3  focuses on Maintainability in terms of Technical 

Debt, Chapter 4 on Performance Efficiency. Chapters 2, 3 and 4 share the same logical 

structure: their first section provides the reader with definitions and terminology, the 

following sections contain the empirical studies conducted, and the last section draws the 

conclusion. Chapter 2 adds specific related work sections before (2.2) and after (2.5) the 

empirical study in order to compare our results with results of the state of the art. This was 

not possible with Maintainability and Performance Efficiency because we did not find 

similar approaches to compare with. However, each empirical study contains its own 

background/related work sub section. 

 Chapter 5 prepares the path for future directions of the research on ASA and 

software quality: we present an experiment on the impact of ASA on Energy Efficiency and 

a case study on the problem of ASA for multi-language software projects. 

Finally, Chapter 6 summarizes the work done and the most important contribution 

to the state of the art. 
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2 FUNCTIONAL SUITABILITY  AND 

RELIABILITY 

2.1. DEFINITIONS 

Functional suitability is defined in ISO-IEC 25010 as “the degree to which a 

product provides functions that meet stated and implied needs when used under specified 

conditions”. It is based on three sub-characteristics: 

- Functional completeness: “degree to which the set of functions covers all 

the specified tasks and user objectives” 

- Functional correctness: “degree to which a product or system provides the 

correct results with the needed degree of precision” 

- Functional appropriateness: “degree to which the functions facilitate the 

accomplishment of specified tasks and objectives” 

Reliability is defined in ISO-IEC 25010 as “the degree to which a system, product 

or component performs specified functions under specified conditions for a specific period 

of time”. It is based on the following sub-characteristics: 

- Maturity: “degree to which a system, product or component meets needs 

for reliability under normal operation” 

- Availability: “degree to which a system, product or component  degree to 

which is operational and accessible when required for use 

- Fault tolerance: “operates as intended despite the presence of hardware or 

software faults” 

- Recoverability: “the degree to which, in the event of an interruption or a 

failure, a product or system can recover the data affected and re-establish 

the desired state of the system” 

Both functional suitability and reliability are affected when defects in the software 

cause faults or failures, and unexpected behaviors of the software occur.  
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2.2. AUTOMATIC STATIC ANALYSIS AND DEFECTS 

One of the most promising advantages of using Automatic Static Analysis is the 

possibility to find defects in the source code during development, without waiting test or 

inspection (assuming the traditional software lifecycle). In fact ASA tool evaluate the 

software in the abstract, without running it or considering a specific input. Yet another 

advantage in terms of time is that ASA tools do not need a working code base, contrary to 

the other usual VV activities like testing and code inspections that have hence a consistent 

delay injection. Given that the longer the delay of a fault insert-remove is, the higher the 

cost of removing that defect is [16], the introduction of ASA tools in software production 

could lead to important benefits. However these benefits might be hindered by the rate of 

false positive issues, i.e. issues that are not related to any defect. Despite the fact that the 

definition of defect is dependent on the context and requirements of the software (e.g., a 

function return with a delay of 0.5 second may be acceptable in a web application, but not 

in real time systems), the problem has been widely reported in the literature. For this 

reason, we started the empirical validation of ASA issues from defects, hence from 

functional suitability and reliability.  

The effort of the research community has focused on evaluating the capability of 

using ASA tools to find defects in two main streams: I) looking at single ASA issues to 

identify defects in single lines of code or II) looking at large sets of issues as early 

indicators of the more defect-prone modules (e.g. classes, files, software components). 

We now introduce the main results found in each of the two research streams. Our 

contributions will follow, again using the logical framework of the two research streams. 

FIRST RESEARCH STREAM: LOOKING AT SINGLE ASA ISSUES TO FIND DEFECTS 

Several studies in the literature have reported on the percentage of false positive 

ASA issues of different tools and in different contexts. For instance, Wagner et al. [17] 

analyzed and classified with experienced developers issues from three ASA tools 
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(FindBugs, QJPro and PMD) on four industrial projects and one university project, and 

they reported that the percentage of false positive was 47% for FindBugs, 31% for PMD 

and 96% for QJ Pro.  

Weydan et al. [18] reported  that more than 96% of FindBugs and IntelliJ issues 

did not relate to any fault or refactoring in two open source systems (jEdit and iText).  

Lower percentages of false positives are reported by Ayewah et al. [19] running 

FindBugs on the JDK 1.6.0-b105; the authors report that almost 50% of medium/high 

priority issues related to correctness had impact on the functionality, and 10% had a serious 

impact. On the flip side, 160 issues out of 379 were trivial (i.e., no impact), while 5 issues 

were due to faulty analysis of FindBugs. A similar experiment with the same category of 

issues was performed at Google, with similar percentages of false positive issues, and a 

further validation conducted on Glassfish v2 showed an even better result: 50 defects out of 

58 disappeared due to changes made to specifically address the issues raised by FindBugs.  

Switching to the C languages, Boogerd and Moonen [20] [21] analyzed four 

industrial projects in C and C++ with an ASA tool for the MISRA standard [22] , and they 

discovered that a small set of rule violations (12 out of 72 in [20], and 10 out of 88 in [21]) 

were related to defects in source code. Finally, Nagappan and Ball [23] reported that only 

12.5% of defects fixed in Windows Server 2003 pre-release were found with two ASA 

tools (PREfix and PREfast). Precision was not reported in this study, so this figure is not 

directly comparable to the previously reported results. 

Overall, except for one study [19], we conclude that the precision of the ASA tools 

is rather low, because high ratios of false positives (i.e. low precision) were reported in 

many studies. 
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SECOND RESEARCH STREAM: USING ASA ISSUES TO PREDICT MODULES WITH 

MORE DEFECTS 

The second approach is to investigate whether static analysis issues can be used as 

early predictors for the most defect prone modules in software systems, rather than identify 

the single issues that point to specific defects. 

Nagappan and Ball [23] discovered positive correlations (0.37 and 0.58) between 

issue densities from two ASA tools, PREfix  and PREfast, and the pre-release defect 

density. Moreover, they successfully used the ASA issue densities to discriminate between 

components of high and low quality.  

A  similar  approach  was  used  by the same author in  a  study  carried  out  at  

Nortel Networks [24], where automatic inspection defects found by ASA tools had a 

positive correlation with failures (0.40 and 0.49). Moreover, together with code churn, ASA 

issues were good discriminators in identifying fault-prone modules. The study at Nortel 

continued and one year later Zheng et al. [25] reported even higher correlations between the 

number of ASA issues in files and three different indicators of external quality, i.e. number 

of tests failures, number of customer reported failures and number of total failures 

(respectively 0.71, 0.60 and 0.73). 

Other authors used a similar approach. For instance, Plosch et al. [26] studied the 

correlation between the number of FindBugs and PMD issues, and defects in Eclipse SDK 

2.0, 2.1 and 3.0. They found positive correlations for both tools (0.34, 0.25 and 0.30 for 

PMD, and 0.20, 0.08, 0.20 for FindBugs). Excluding the LOC related metrics, PMD issues 

correlated better with defects than other static metrics (e.g., number of methods, number of 

fields, etc.) 

Finally, Marchenko and Abrahamsson [27] used two tools, namely CodeScanner 

and PC-LINT, to analyze five projects in the Symbian C++ environment. They computed 

the correlation between issues and critical defects in two snapshots of the project (i.e. 

within 90 days after the release and within 180 days after the release) and they observed 

contradictory results: CodeScanner obtained very high positive correlations (0.70 and 0.90), 

while PC-LINT issues strongly correlated negatively (-0.90 and -0.70) with defects. 
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Overall, all the current results available in the literature but one [27] show that 

using ASA issues to find the most defect-prone files or modules is more effective than 

using individual ASA issues to discover individual defects. 

CONTRIBUTION TO THE STATE OF THE ART 

We performed two experiments in the first research stream and a case study in the 

second research stream. In the first stream, i.e. looking at single ASA issues to identify 

defects, we analyzed two pools of small Java programs developed by students. Results were 

compared later to the same analysis applied to an open source tool.  

Regarding the second research stream, we conducted a case study with an 

industrial application.  
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2.3. ASSESSING THE PRECISION OF FINDBUGS BY 

MINING  JAVA PROJECTS DEVELOPED AT A UNIVERSITY: 
FIRST CASE STUDY 

In a first experiment we studied the precision of issues revealed by bug findings 

tools. Our goal is to answer the following research question: which issues are actual 

predictors of bugs, and which are not? This knowledge is very important to provide the 

developers with accurate information that can be used effectively in developing and 

maintaining the software. 

We conducted an empirical validation of the issues of a widely used tool: 

FindBugs v1.3.8 [28]. In particular we analyzed the issues produced by FindBugs on a 

large pool of similar programs. The main contributions of the work are: 

 

- It provides empirical evidence about the validity of issues categories as 

bug predictors; 

- As a consequence identifies a first step to make bug-finding tool usage 

more effective; 

- Using a large pool of developers, it eliminates the effect of developer 

style on the results 

CONTEXT 

The program pool was developed in the context of the Object Oriented 

Programming (OOP) course at the authors’ university, where students develop 

Java programs for the exam.  

The program pool was developed in the context of the Object Oriented 

Programming (OOP) course at the authors’ university, where students develop 

Java programs for the exam. The exam procedure is carried out on six steps.  
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− Teachers define the project and provide the students with a 

textual description and a set of wrapper classes. The students 

develop a first version of the program in the laboratory (the “lab” 

version) and submit it to a central server by means of an Eclipse 

Plugin. 

− A tool on the server, PoliGrader [29], manages the delivery 

process and runs a suite of black box acceptance tests (JUnit 

classes). Acceptance tests are written by teachers of the course to 

check all functionalities required and the highest possible code 

coverage is obtained running tests on a correct solution program. 

− Results of test execution and test source code are sent back to the 

students. 

− Students improve the lab version at home, creating a new version 

of the program (the “home” version), that must pass all 

acceptance tests. This new version is submitted back to the 

server. 

− The PoliGrader tool checks that home versions pass all tests and 

compute marks taking in considerations the numbers of tests 

passed in the lab version and the diff between lab and home 

version.  

− All information (marks, source code, tests, and changes) is 

available to teachers in order to finally evaluate the students. 

 

 The code base used in the experiment consists of 85 Java assignments 

from the 2009 OOP course: requirements are the same for all the assignments; and 

they are publicy available at the following URL: 

http://softeng.polito.it/vetro/confs/msr2010/Requirements.htm. Each assignment 

contains both lab and home versions syntactically correct, and home version 

passes 100% of the acceptance tests. Acceptance tests are written by teachers of 

the course in such a way all functionalities are checked. Teachers develop also a 
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correct “solution program”, and they check test coverage on it. The average size of 

projects is 166.4 NCSS (Non Commenting Source Statements) for lab versions and 

183.81 NCSS for home versions. The estimated number of function points for the 

project is 66.30. 

An issue produced by FindBugs is characterized by an ID, a textual explanation, 

and a location in the source code. The issues are categorized by FindBugs 

according to two dimensions: category (Bad Practice, Correctness, Style, 

Performance, and Malicious Code are the categories with at least one issue 

signaled in our code base) and priority (Low, Medium, High). Both classifications 

have been decided by the tool's authors and are based on their personal experience. 

EXPERIMENT DESIGN 

To address the research question we consider a main dependent measure: precision 

of the issues that can be defined as the proportion of the signaled issues that correspond to 

actual defects.  

Precision is a derived measure that can be computed on the basis of the following 

primitive measures: NI, the number of issues signaled by FindBugs and NA, the number of 

issues corresponding to actual defects. We do not compute recall (commonly coupled with 

precision), because it would require the knowledge of the complete set of defects. This can 

be computed only by hand: given the large number of projects to be checked this is a long 

and error prone process. 

To determine NA we adopted the concepts of temporal and spatial coincidence, 

previously presented in literature in [20] [21] [30].  

We have temporal coincidence when one or more issues disappear in the evolution 

from the lab to the home version, and in the same time one or more defects are fixed: 

probably those issues were related to the fixed defects. In this context defects fixed are 

revealed when a test that in lab version fails instead in home version succeeds.   Figure  5 

and Figure  6 show a real example of temporal coincidence, extracted from the programs 
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examined with FindBugs in the experiment. We observe in that an issue (self-assignment of 

a field) is signaled on line 9: the field forum is assigned to itself. In the evolution from lab 

to home version (Figure  6) the student discovers the error and adds a parameter to the 

constructor’s method, in such a way it is assigned to the field forum. The issue effectively 

disappears in the home version. However, the real cause of the fault isn’t on line 9, but on 

the list of parameters on lines 1-2-3: in fact the student modified only line 3 (underlined in 

Figure  6). Hence, there is a possibility that a disappearing issue is not related to the 

disappearing defect: this is the noise of temporal coincidence metric that can be filtered out 

by adding the spatial coincidence. We observe spatial coincidence when an issue's location 

corresponds to lines in the source code that have been modified in the evolution from the 

lab to the home versions. Figure  7 and Figure  8 show an example of temporal + spatial 

coincidence. In the lab version (Figure  7), an issue is signaled on line 6: it is an infinite 

recourse loop, because the function calls itself without any stopping criterion. In the new 

version (Figure  8), the student detects the error and fixes it changing line 6 (underlined): in 

the home version the issue is no longer signaled and it was located in the same line changed 

during the fix, therefore we observe temporal + spatial coincidence. In practice the 

combination of temporal and spatial coincidence is interpreted as a change intended to 

remove the issue, which is linked to a defect. After the computation of precision with 

temporal + spatial coincidence method, we establish 2 precision thresholds and we perform 

a statistical test against null hypotheses to determine whether an issue is a good or bad 

defect predictor.  

The procedure followed to conduct the study is very simple: we ran the FindBugs 

tool on both versions of each assignment in the repository, then we collected the 

information about the change performed to evolve the lab version into the home version. 

The changes were identified using the DiffJ tool, which operates on two versions of a Java 

program and is able to compute for each pair of corresponding Java classes which lines 

changed. 
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 Afterwards, we computed precision of issues, first without considering categories 

and priorities, then analyzing results observing each issue group (combination of category 

and priority) separately.  

To determine whether an issue group is a good or bad defect predictor, we 

established 2 precision thresholds and we performed statistical test against null hypotheses. 

Thresholds were established after observing the distribution of issues precision for each 

assignment ( 

 

 Bad Pr. Corr. Mal.C. Perf. Style 

Low 5 / 70 1 / 3 0 / 0 0 / 7 5 / 11 

Medium 2 / 145 12 / 45 4 / 15 31 / 144 6 / 16 

High 13 / 28 12 / 19 0 / 0 0 / 0 3 / 5 

 

 

Table 2 and Figure  9), without distinction of categories and priorities. 

The mean of precisions is quite low (0.15) and the variability is high. We decided 

to consider the issue group (group G in the following) as a defect predictor if it has a 

precision greater than 30%. Such a low value is justified by the exploratory nature of this 

work and it compensates for the large variability we expect to find in each group. 

Furthermore this value is far enough from the average precisions of the issues: in 50% of 

assignments precision is 0; in 75% (3rd quartile) of the assignments precision is at most 

0.25, less than the threshold; finally, the 30% precision threshold is the double of the mean 

of precisions, that is a quite wide ratio.  

To  identify the issue groups that can be considered as defect predictors, we define 

the first null hypothesis:  

 

HA0:  precision of the issues belonging to group G is less  than 30%. 
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The next step is to find false positives, the bad defects predictors. We consider as 

false positives the ones with precision <5%, a very low threshold. So we formulate the 

following parametric null hypothesis: 

 

HB0:  precision of the issues belonging to group G is greater than 5%. 

 

Read together, the two hypotheses mean that a group of issues G is a good 

predictor (GP) if precision of the issues that it contains is >30% and is a bad predictor (BP) 

(i.e. a generator of false positives) if precision of the issues that it contains is <5%.  The 

goal of the data analysis is to reject the above null hypothesis by means of statistical tests. 

For this purpose we selected the single-tailed proportion test with binomial distribution 

[31]. Given a sample proportion and sample size, such a test computes the probability that 

the general population (from which the sample is extracted) has a proportion greater (or 

lower) than a reference proportion. To reject the null hypothesis we adopt the standard 

significance level at 5%, that is the probability of rejecting a null hypothesis when it is true 

(type I error) we consider acceptable. 

RESULTS 

Overall FindBugs revealed a total of 508 issues (NI) in the 85 lab versions of the 

assignments, among them 94 (NA) were removed in changed lines (temporal and spatial 

coincidence). Table II shows NA / NI at issue group level. Table III contains precisions and 

hypothesis tests computed for each different issue group (p-values are shown below 

precision). Columns of Table II and Table III contain abbreviations of the full names of 

categories, that are: Bad Practice, Correctness, Malicious Code, Performance, Style. 

The full tables with number of detections (NI) and number of issues removed in 

changed lines (NA) for each project and each issue group are available at the following 

URL: http://softeng.polito.it/vetro/confs/msr2010/ . 
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HA: The null hypothesis is rejected only for categories Bad Practice and 

Correctness both at High priority: this is the set of true positives for spatial + temporal 

coincidence. All the other groups have non significant p-values and exhibit low estimate 

precisions except for Style at High priority which has a relatively high precision, though 

not significant. 

HB: Bad Practice and Performance at Low priority, and Bad Practice Medium 

priority, are the groups whose precision is lower than 5%: however, only Bad Practice at 

Medium priority has a significant p-value, and we can reject HB0 for this group.  

The results from the hypothesis testing presented above let us identify the sets of 

good and bad defect predictor issue groups. 
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DISCUSSION 

On the basis of these results, we built a partial ordering of the issue groups 

dividing them into three sets: good, bad and ambiguous. We devised the ordering by putting 

in the set of good issues the issues marked as defect predictors, in the set of bad issues 

those issues marked as false positives, and in the set of ambiguous issues all the others that 

Table 1. FindBugs detections 

 Bad Pr. Corr. Mal.C. Perf. Style 

Low 5 / 70 1 / 3 0 / 0 0 / 7 5 / 11 

Medium 2 / 145 12 / 45 4 / 15 31 / 144 6 / 16 

High 13 / 28 12 / 19 0 / 0 0 / 0 3 / 5 

 

 

Table 2. Precision of the whole set of issues 

Min 1st Q Median Mean 3rd Q Max St dev 
0 0 0 0.149 0.25 0.8 0.226 

 

 

Figure  9. Histogram of precisions 

Table 3. Precision: Spatial+Temporal coincidence 

 Bad Pr. Corr. Mal.C. Perf. Style 

Low 7% 33% NA 0% 45% 

HA 1 0.50 NA 0.91 0.21 

HB 0.71 0.82 NA 0.50 1 

Medium 1% 27% 27% 22% 38% 

HA 1.00 0.63 0.50 0.98 0.35 

HB 0.04 1 1 1 1 

High 46% 63% NA NA 60% 

HA 0.05 <0.01 NA NA 0.16 

HB 1 1 NA NA 1 
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haven’t been classified . The set of good predictor issues is GP={Bad Practice High, 

Correctness High}, the set of bad predictors is BP={Bad Practice Medium}, and the 

remaining issue groups are ambiguous. Counting the single issues belonging to those 

groups, they are just 8 out of 359 ( 2.23 % ).  

The rationale of this ranking is a new prioritization of warnings based on groups, 

that takes into account the probability of signaling a defect. An important practical 

application of this finding is a filtering strategy that can avoid to developers the information 

overload constituted by a very large number of issues: in our datasets bad predictor issues 

are the 28.5 % of the total detections in lab versions. Fixing issues with a low probability of 

being related to a defect is dangerous since we know from Adam’s law [32] that the 

probability of introducing a new error during a fault correction is always different from 

zero. 

THREATS TO VALIDITY 

We can identify 2 threats: an external and a construct threat.  The external threat 

is: we have studied small student projects, hence the application of findings in industrial 

context is debatable.  Construct threats is concerning the identification of defects. In this 

study, no bug database was available: we made the assumption that all changes were done 

to fix a defect: actually, it is possible that some changes were not related to real defects, but 

to other motivations (cleaner code, more readable code, and so on). Nevertheless, we don't 

expect that this kind of noise could change results and ranking, because usually students 

correct the lab versions in a quick and dirty way, doing as few changes as possible, for two 

reasons: 1) the home version is the last version of the project, actually no maintenance has 

to be done subsequently; 2) students are discouraged in doing many changes, because the 

mark suggested by PoliGrader decreases with the quantity of changes made (see details in 

[29] ). 
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CONCLUSIONS 

The analysis of precisions demonstrated that only 2 out of 15 groups of issues can 

be considered as reliable predictors of actual defects, and one group of issues has a 

precision that is practically negligible. These findings and the adoption of the technique 

used may have a practical impact in filtering issue notifications for developers to reduce 

information overload.  

The experiment presented in the next section expands the current one in the 

following way: we apply the temporal and spatial analysis with higher level of detail, 

specifying the single issues, besides categories and priorities, and we enlarge the repository 

of projects.   
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2.4. ASSESSING THE PRECISION OF FINDBUGS BY 

MINING  JAVA PROJECTS DEVELOPED AT A UNIVERSITY: 
SECOND CASE STUDY 

In the previous work [33], described in Section 2.3, we analyzed the issues 

produced by FindBugs v1.3.8 on a pool of 85 similar small programs, each of them 

developed by a different student in our university. The goal of our experiment was to verify 

which FindBugs issues were related to real defects on source code and which not. 

 In the work we present hereby we reproduce the same experiment, with the 

following improvements:  

− we enlarge the code base (301 projects) 

− we consider the single FindBugs issues instead of considering only the 

categories 

− we use functional tests failures to validate the relationship FindBugs 

between issues and defects in the code.  

The knowledge of the issues related to defects is very important to provide the 

developers with accurate information that can be used effectively in developing and 

maintaining the software. 

 

EXPERIMENT DESIGN 

Adhering to the Goal-Question-Metric approach [34] we first define the goal of the 

research at conceptual level, which is formally presented in Table 4. The goal aims at 

identifying the issues revealed by FindBugs and their relationship with the defects. 

Corresponding to the goal we formulate the research question (RQ1) and identified the 

relative metric (M1). 
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− RQ1: Which FindBugs issues are related to defects (good defect predictors) and 
which not (bad defect predictors)? 

− M1: Issue precision (spatial + temporal coincidence) 
 

To address research question RQ1 we consider the same main dependent measure 

used in the former experiment: the precision of the issues (M1) that can be defined as the 

proportion of the signaled issues that correspond to actual defects. 

We establish 2 precision thresholds and we perform a statistical test against null 

hypotheses to determine whether an issue is a good or bad defect predictor. 

The 2 thresholds are: 

− a minimum precision threshold that issue must exceed to be considered  

as good defect predictor,  

− a maximum precision threshold that issues must not exceed to be eligible 

to the role of bad defects predictors. 

Given the exploratory nature of this work, we decide to consider an issue as a good 

defect predictor if it has a precision greater or equal to 50%. Such threshold is also a 

compromise between the different true positive ratios of FindBugs issues found in 

literature, and it is higher than the threshold used in [33] because we want to achieve 

stronger results. Therefore, we can formulate the first null hypothesis as follows: 

 

HA0: the precision of issue I is not greater than 50%. 

Table 4. Goal of the experiment 

 Goal 

Purpose Identify and characterize 

Issue issues linked to real defects and generated 

Object 
(Process)  

by FindBugs 1.3.8 analysis on 301 University 
Java Projects 

Viewpoint from the view point of a student Java 
programmer 
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The next step is to find false positives, i.e. bad defects predictors. We consider as 

bad defects predictors those issues with precision <=5%, a very low threshold, that we 

consider a strict inclusion criterion. So we formulate the following null hypothesis: 

 

HB0: the precision of issues I is not lower than 5%. 

 

Read together, the two hypotheses mean that an issue I is a good predictor (GP) if 

hypothesis HA0 can be rejected, i.e. its precision is >=50%, conversely it is a bad predictor 

(BP) (or source of false positives) if hypothesis HB0 can be rejected, i.e. its precision is 

<=5%. The goal of the data analysis is to reject the above null hypothesis by means of 

statistical tests. Since data is not normally distributed, for these tests we select the Mann-

Whitney test [35] that estimates the median. To reject the null hypotheses we adopt the 

standard significance level at 5%, that is the probability of rejecting a null hypothesis when 

it is true (type I error).  

Furthermore, to increase results reliability, we perform a sensitivity analysis and a 

validation of results. The sensitivity analysis is carried out by computing threshold ranges 

in which the composition of good/bad predictor sets remains the same: in this way we 

understand the impact of the thresholds choice on results, and we also exanimate border 

values. The validation is based on the idea that the good predictors effectively identify real 

bugs in the programs, therefore affecting their external quality, whereas the bad predictors 

are not related to defects and do not have impact on external quality. Hence quality of 

projects that contain good predictor issues detections should be lower than the mean quality 

of all the other projects, whilst quality of projects that contain bad predictor issues 

detections should be not different from the mean quality of the remaining projects. The 

proxy for projects’ external quality is the percentage of passed tests in lab versions, 

positively correlated to the quality. Therefore we carry out the validation by comparing the 

proportion of acceptance tests passed by projects containing at least one occurrence of the 

issues in the set to be validated vs. the same proportion in the remaining programs. 
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DATA COLLECTION 

An issue produced by FindBugs is characterized by an ID, a textual explanation, 

and a location in the source code. The issues are grouped by FindBugs in category (Bad 

Practice, Correctness, Style, Performance, and Malicious Code have at least one occurrence 

in the code base) and priority (Low, Medium, and High): hence the single issue is uniquely 

identified by the combination of ID, category, and priority. We store also their locations in 

the source code (file name, class, method, line number) and in the project (course ID, 

student ID, lab/home version). Afterwards, we use the DiffJ tool  to collect the changes 

done to evolve the lab version into the home version: DiffJ operates on two versions of a 

Java program and is able to compute for each pair of corresponding Java classes which 

lines changed. Finally, results of functional tests are obtained through the PoliGrader tool. 

The data collection process is represented in Figure  10.  

 
 

Figure  10. Data Collection Process 
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THREATS TO VALIDITY 

 We can identify three main threats: two external and one construct threat. The first 

external threat is: we study small student projects, hence the application of findings in 

industrial context is debatable. However, this weakness is balanced by the fact that this 

study eliminates the effect of developer style on the results, because a large pool of 

developers is used for the same projects. In addition, we recall the study of  P. Runeson 

[36], whose conclusions could neither reject nor accept the hypothesis on differences 

between freshmen, graduate students and industry people. We also draw in section 5.2 

similar conclusions. The construct threat is concerning the identification of defects. We do 

not have a bug database but only tests failures: we make the assumption that all changes are 

done to fix a defect. It could be possible that some changes are not related to real defects, 

but to other motivations (cleaner code, more readable code, and so on). 

RESULTS 

The automatic application of FindBugs on all the 301 projects (both versions, lab 

and home) produced a large collection of detections: 1692 in lab versions, belonging to 77 

issues, whilst home versions detections are 1662, belonging to 73 issues (this does not 

mean that 30 issues were removed across all projects, since the number of issues in home 

version is given by: issues in lab version – issues fixed + new issues introduced). We 

answer to RQ1 computing Metric M1, that is the precision of the issues, with respect to 

temporal + spatial coincidence. Table 2 indicates minimum, maximum, 1st and 3rd quartile, 

median and mean of precisions (NA/NI) in projects. 

The mean of precisions in projects is low (0.126) and the variability is high 

(standard deviation is 0.22, almost the double of the mean). More than 2/3 of projects have 

a precision lower than the selected minimum threshold 0.50 (only 6 projects out of 301 

have a higher precision), and in half of the projects precision is about 1/5 of this threshold. 
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These observations show that the threshold selected is very strict, despite of the initial 

considerations.  and  show the issues for which we could reject either of the two null 

hypotheses. We do not provide the precision of issues for which we can not reject either of 

the two null hypotheses because of their large number (77), however the full list is available 

on line .   The columns in the tables show: the issues ID, the average precision (sum of 

NA/sum of NI), the estimated median of precision, and finally the p-value of the Mann-

Whitney single-tailed test.  

The set of good defects predictors is composed of 4 elements: 3 out of 4 have an 

estimated median precision of 1, the double that of the threshold. The median of the last 

issue, UUF_UNUSED_FIELD (Performance, 2), is exactly the threshold value: this is a 

border value and it will be examined in depth in Section 5. The 4 issues are:  

− GC_UNRELATED_TYPES: a call to a generic collection method that 

contains an argument with an incompatible class from the collection’s 

parameter. 

− SA_FIELD_SELF_ASSIGNMENT: a self-assignment of a field, like int 

y = y. 

− UR_UNINIT_READ: the constructor reads a field which has not yet been 

assigned a value. 

− UUF_UNUSED_FIELD: a field is never used. 

In contrast there are many more issues among the defect predictors set i.e. 16. All 

of them have median = 0. Since they are many, for their descriptions please refer to 

FindBugs website .  

We perform a sensitivity analysis of results to check their stability with respect to 

the inclusion criteria: we compute the threshold ranges in which the composition of groups 

remains the same. The good predictors set is stable in the range 0.21–0.50. For threshold 

values greater than 0.5 the issues GC_UNRELATED_TYPES (Correctness,1) and 

UUF_UNUSED_FIELD (Performance,2) are excluded, and above 0.51 the set becomes 

empty. Analyzing instead lower bound, a new issue could be included in the set of good 

predictors only putting a very low threshold: at 0.20 issue NP_UNWRITTEN_FIELD 

(Correctness,2) could enter the group, and 2 more issues can enter with even lower 
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thresholds : 0.12 and 0.11. Since the upper bound is already very strict and lower bound 

must be relaxed from 0.50 to 0.20 to change the set, we can affirm that results about good 

predictors are reliable.        

The sensitivity analysis of bad predictors have the following result: the set is stable 

in the threshold range 0 – 0.15, so again a wide range. In fact we should use a high 

threshold, 0.16 (3 times bigger than the 5% of the original one) to change the set and 

include a new issue, NM_FIELD_NAMING_CONVENTION(BadPractice,3). A further 

issue, REC_CATCH_EXCEPTION (Style,3), enters only with threshold = 0.25. We 

conclude that also bad predictors set is robust. 

  Table 5. Distribution of issues precisions 

Min 1st q Median Mean 3rd q Max 

0 0 0 0.126 0.20 1 

 
Table 6. Precision of good defect predictor issues 

Issue ID NA/NI 
 

Prec.  
Est. 

p-val 

GC_UNRELATED_TYPES 
(Correctness,1) 

12/15 1 0.048 

SA_FIELD_SELF_ASSIGNM
ENT(Correctness,1) 

7/10 1 0.012 

UR_UNINIT_READ 
(Correctness,1) 

6/7 1 0.012 

UUF_UNUSED_FIELD 
(Performance,2) 

26/55 0.5 0.045 
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Table 7. Precision of bad defect predictor issues 

Issue ID NA/NI Prec. 
Est. 

p-val 

DM_NUMBER_CTOR (Performance,2) 0/6 0 0.018 

DM_STRING_CTOR (Performance,2) 0/29 0 <0.01 

DM_STRING_TOSTRING(Performance,3) 0/5 0 0.018 

EQ_COMPARETO_USE_OBJECT_EQUALS 
(Bad_Practice,2) 

5/275 0 <0.01 

ES_COMPARING_STRINGS_WITH_EQ 
(Bad_Practice,2) 

0/10 0 <0.01 

IL_INFINITE_LOOP (Correctness,1) 0/5 0 0.036 

NM_CLASS_NAMING_CONVENTION 
(Bad_Practice,2) 

0/17 0 <0.01 

NM_CONFUSING (Bad_Practice,3) 0/6 0 0.01 

NM_METHOD_NAMING_CONVENTION 
(Bad_Practice,2) 

2/44 0 <0.01 

NP_NULL_ON_SOME_PATH (Correctness,2) 0/4 0 0.036 

OS_OPEN_STREAM (Bad_Practice,2) 0/71 0 <0.01 

OS_OPEN_STREAM_EXCEPTION_PATH 
(Bad_Practice,3) 

0/5 0 0.018 

SE_BAD_FIELD (Bad_Practice,3) 0/11 0 <0.01 

SE_COMPARATOR_SHOULD_BE_SERIALIZA
BLE(Bad_Practice,2) 

0/49 0 <0.01 

SIC_INNER_SHOULD_BE_STATIC_ANON 
(Performance,3) 

0/92 0 <0.01 

URF_UNREAD_FIELD (Performance,2) 33/259 0 <0.01 



34 
 

VALIDATION OF GOOD DEFECT PREDICTOR ISSUES 

Figure  11 shows the boxplots of passed tests percentages in lab versions: NO_GP 

is the set of projects that do not contain any detection of a good predictor issue (259 

projects), while GP is the set of projects containing at least one good predictor issue 

detection (the remaining 42 projects). The box plots clearly show that external quality of 

GP set is lower than external quality of NO_GP set: medians are respectively 63.64% and 

40.91% . According to Mann-Whitney tests, we observe significant (p=0.001) differences 

between the two groups of projects. The 95% confidence interval for the difference 

between the medians is [6.29,∞]. There is strong statistical evidence that average external 

quality of projects with at least one good defect predictor issue detected is lower than the 

average externally quality of all projects. It is very likely that defects in projects with lower 

quality are correctly identified by the good predictor issues.  

We continue the validation and we inspect all the good predictors issues signaled 

on source code, manually determining whether they were correctly detected by the tool and 

whether the problem signaled actually caused a wrong behavior of the program (failure of 

functional test). The detections of issues identified as good defects predictors are 87. We 

present the results of the manual code inspection in Table 8: for each issue, we indicate the 

ID, the total number of detections, the number of correct detections and the number of 

detections that impacted the functionality. Three issues of four have all detections correct 

and are the cause of an incorrect behavior of the program. 

UUF_UNUSED_FIELD (Performance,2) is the exception: we discuss it later. 
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Figure  11. Box plots of passed tests percentages: good defect predictors 

 

 
Figure  12. Box plots of passed tests percentages: bad defect predictors 
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VALIDATION OF BAD DEFECTS PREDICTOR ISSUES 

Figure  12  contains boxplots of passed tests percentages: NO_BP is the set of 

projects that do not contain any detection of a bad predictor issue (they are just 9), on the 

right BP is the set of projects with at least one detection of a bad predictor issue (292 

projects). We observe that projects BP have higher percentages of passed tests then NO_BP 

projects. The medians are respectively 62.02% and 31.25%. However, the number of 

projects in NO_BP is so small that they cannot be a representative sample. In fact, although 

medians are so different, the null hypothesis that the two medians are equals cannot be 

rejected with α=0.05 and p-value is 0.1041 (according to Mann-Whitney test). The 95% 

confidence interval for the difference is [-∞,+3.75]. We can therefore assume that no 

difference exists among the two sets. We do not perform a manual validation because of the 

high number of detections related to bad predictors issues (888 in lab versions): we 

consider the manual check of a representative sample of this bigger population an error 

prone task. 

Table 8. Manual inspection of good defects predictors issues 

Issue Nr of dete-
ctions  

Correct 
detections 

Impact on 
functiona-lity 

GC_UNRELATED_TYPES 
(Correctness,1) 

15 15 15 

SA_FIELD_SELF_ASSIGNME
NT(Correctness,1) 

10 10 10 

UR_UNINIT_READ 
(Correctness,1) 

7 7 7 

UUF_UNUSED_FIELD 
(Performance,2) 

55 46 0 
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EXTERNAL VALIDATION: LUCENE PROJECT 

We addressed the external validity threats identified in Section 3.2 through a 

validation of good and bad defect predictor issues on a real project. We selected the open-

source system Lucene2, Apache’s free information retrieval software library. We made this 

choice because it provides a very good infrastructure to access its data and because it was 

peviously studied in the FindBugs literature  [37].We selected for the validation the release 

of the project with the highest number of fixed and closed bugs among those that compile 

under JDK 5, i.e. version 3.1.0, and the following one 3.2.0. We applied to Lucene the 

same methodology applied to our student’s case study, computing the spatial + temporal 

coincidence to assess those FindBugs issues that are related to defects. 

The Apache Software Foundation has a unified bug tracking system (JIRA3) for 

all its projects: we downloaded from the Lucene JIRA database (webref3)) the list of fixed 

and closed bugs that affected version 3.1.0, obtaining 27 defects at the time this paper was 

written.4 Then we collected from Lucene Subversion repository the relative bug fixes 

commits and corresponding modified java files, thus obtaining a list of ‘buggy files’, i.e. 

the files where the bug had impact. After that, we ran FindBugs on Lucene’s source code, 

analyzing all classes under package org.apache.lucene, in version 3.1.0 and in the following 

released version, 3.2.0. We enabled all FindBugs issues except the “noisy issues”, i.e. those 

issues randomly inserted for data mining experimentation, and we set the analysis effort to 

Maximal to be consistent with our experiment on students’ projects.  We obtained 332 

issues in version 3.1.0. Some issues occurrences as CD_CIRCULAR_DEPENDENCY 

were pointing to more than a class, thus we reported each of them for each class impacted. 

We also computed through the FindBugs command “computeBugHistory” which issues 

were deleted in the evolution from version 3.1.0 to 3.2.0: they were 30. Finally, to achieve 

                                                 
2 http://lucene.apache.org/java/docs/index.html , last access 27/12/2012 
3 http://www.atlassian.com/software/jira/overview , last access  27/12/2012 
4 The permanent link to reproduce the search is : 
https://issues.apache.org/jira/secure/IssueNavigator.jspa?reset=true&jqlQuery=project+%3D+LUCENE+AND+iss
uetype+%3D+Bug+AND+resolution+%3D+Fixed+AND+affectedVersion+%3D+12314822+AND+status+%3D+
Closed+ORDER+BY+priority+DESC 
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the spatial+temporal coincidence, we computed with DiffJ which lines were modified in the 

buggy files in their evolution from release 3.1.0 and release 3.2.0, and compared those lines 

with the location of the issues. We recall that a FindBugs issue occurrence satisfies the 

temporal+spatial coincidence if it disappeared from a version of the code and the following 

one and if it was located on lines that changed in a bug fix. For those issues whose location 

is the whole class instead of specific lines of code, the criterion is to be located in a buggy 

file. Having only one project analyzed, the precision of a FindBugs issue is defined as the 

ratio NA/NI, where NI is the total number of detections of an issue and NA is the number 

of occurrences in bug fixes. This is a minor difference from the students’ project analysis. 

We adopt again the same two thresholds, considering an issue as a good defect 

predictor if it has a precision greater or equal to 50%. On the contrary, we consider as bad 

defects predictors those issues with precision <=5%.  Therefore, we can formulate same 

pair of null hypotheses: 

 

HA0: the precision of issue I is not greater than 50%. 

HB0: the precision of issues I is not lower than 5%. 

  

We use the Mann-Whitney test to reject the above null hypothesis with the 

standard significance level 5%. 

 

Table 9 shows the FindBugs issues satisfying the spatial+ temporal coincidence: 

we found 9 occurrences, that determined an overall precision of 2.71% (9/332). We applied 

Mann-Whitney test and we obtained that none of the issues rejected HA0 : the set of good 

predictors is empty. Table 10  reports the issues that are potential bad predictors, together 

with the result of the test for hypothesis HB0. 
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The goal of the external validation is to understand if results hold in a very 

different context. We highlight the differences of the two contexts analyzed reporting the 

distribution of issues categories in Table 11: Lucene had more Style, Malicious Code and 

Multi Thread (MT) Correctness issues, whilst the issues on students code are more related 

to Performance, Bad Practice and Correctness. Also [37] found many race-condition-related 

issues running FindBugs on Lucene.  

The temporal + spatial coincidence criterion produced no Good Predictors issues 

and no comparisons are possible with the students’ projects results. A motivation beyond 

the difference of contexts is that we probably underestimated the Good Predictor issues, 

since it is possible that not all defects that affected release 3.1.0 have been fixed in release 

3.2.0, therefore some FindBugs issues related to those defects could have been fixed later. 

However, the overall precision 2.71% is similar to the precision we found in the students’ 

pool of projects (median 0%, average 12.6 %). 

On the contrary, the set of Bad Defects Predictor contained 17 issues that were 

responsible of almost 90% of all detections (292 in 332). We found in students projects 16 

issues, and 4 of them are in common with Lucene:  

Table 9. Issues satisfying temporal+spatial coincidence 

Issue ID Priority Category Classname 

CD_CIRCULAR_DEPENDENCY 2 STYLE org.apache.lucene.index.DocumentsWriter 

CD_CIRCULAR_DEPENDENCY 2 STYLE org.apache.lucene.index.IndexWriter 

CD_CIRCULAR_DEPENDENCY 2 STYLE org.apache.lucene.index.IndexReader 

CD_CIRCULAR_DEPENDENCY 2 STYLE org.apache.lucene.index.DirectoryReader 

CD_CIRCULAR_DEPENDENCY 2 STYLE org.apache.lucene.index.IndexWriter 

CD_CIRCULAR_DEPENDENCY 2 STYLE org.apache.lucene.index.IndexReader 

CD_CIRCULAR_DEPENDENCY 2 STYLE org.apache.lucene.index.IndexWriter 

CD_CIRCULAR_DEPENDENCY 2 STYLE org.apache.lucene.index.SegmentMerger 

EQ_COMPARETO_USE_OBJECT_EQUALS 2 BAD_PRACTICE org.apache.lucene.search.PhraseQuery 
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− ES_COMPARING_STRINGS_WITH_EQ (Bad_Practice,2) 

FindBugs Description: “Comparison of String objects using == or !=. 

This code compares java.lang.String objects for reference equality using 

Table 10. Bad defect predictor issues 

Issue ID Category Precision NA NI P value 

CD_CIRCULAR_DEPENDENCY STYLE 2 8 59 0.0001 

CN_IDIOM_NO_SUPER_CALL BAD_PRACTICE 1 0 6 0.0098 

CN_IDIOM_NO_SUPER_CALL BAD_PRACTICE 2 0 8 0.003 

DLS_DEAD_LOCAL_STORE STYLE 2 0 12 0.0003 

EI_EXPOSE_REP MALICIOUS_CODE 2 0 16 0 

EI_EXPOSE_REP2 MALICIOUS_CODE 2 0 17 0 

EQ_DOESNT_OVERRIDE_EQUALS STYLE 2 0 37 0 

ES_COMPARING_STRINGS_WITH_EQ BAD_PRACTICE 2 0 17 0 

FL_MATH_USING_FLOAT_PRECISION CORRECTNESS 2 0 17 0 

ICAST_INTEGER_MULTIPLY_CAST_TO_LONG STYLE 2 0 4 0.0359 

ICAST_QUESTIONABLE_UNSIGNED_RIGHT_SHIFT STYLE 2 0 7 0.0054 

IS_INCONSISTENT_SYNC MT_CORRECTNESS 2 0 16 0 

IS2_INCONSISTENT_SYNC MT_CORRECTNESS 2 0 20 0 

MS_PKGPROTECT MALICIOUS_CODE 2 0 12 0.0003 

NM_METHOD_NAMING_CONVENTION BAD_PRACTICE 2 0 29 0 

SE_BAD_FIELD BAD_PRACTICE 2 0 4 0.0359 

URF_UNREAD_FIELD PERFORMANCE 2 0 16 0 
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the == or != operators. Unless both strings are either constants in a source 

file, or have been interned using the String.intern() method, the same 

string value may be represented by two different String objects. Consider 

using the equals(Object) method instead.” 

 

− NM_METHOD_NAMING_CONVENTION (Bad_Practice,2) 

FindBugs Description: “Method names should start with a lower case 

letter . Methods should be verbs, in mixed case with the first letter 

lowercase, with the first letter of each internal word capitalized.” 

 

− SE_BAD_FIELD (Bad_Practice,3) –Priority is 2 in Lucene validation 

FindBugs Description: “Non-transient non-serializable instance field in 

serializable class. This Serializable class defines a non-primitive instance 

field which is neither transient, Serializable, or java.lang.Object, and does 

not appear to implement the Externalizable interface or the readObject() 

and writeObject() methods.  Objects of this class will not be deserialized 

correctly if a non-Serializable object is stored in this field.” 

 

− URF_UNREAD_FIELD (Performance,2) 

FindBugs Description: “Unread field. This field is never read.  Consider 

removing it from the class” 
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Because of the differences in the nature of the projects, our external validation 

produced two categories of Bad Predictors issues: Generally Bad Defect Predictors, 

containing the 4 issues in the intersection, and Context-Specific Bad Defect Predictors, 

containing the remaining 10 issues. We share the dataset online to enable repetitions and 

validations of the study5. 

DISCUSSION ON RESULTS: ANSWER TO RQ1. 

 On the basis of the temporal + spatial coincidence criterion, issues related to 

defects are: call to unrelated types, field self-assignment, uninitialized read of field in 

constructor (Correctness, 1), and unused field  (Performance,2). 

The manual validation (see Table 8) of detections showed that Correctness 

detections are all valid and have an impact on functionality. However, the Performance 

issue is the only one that has no correct detections that cause an incorrect behavior of the 

                                                 
5 http://softeng.polito.it/vetro/confs/iet2011/data.zip  

Table 11. Issues distribution by category 

Category Occurrences - 
Lucene 

Occurrences - 
Students 

% Occurrences 
- Lucene 

% Occurrences 
- Students 

BAD_PRACTICE 80 701 24.10 % 41.43 % 

CORRECTNESS 21 230 6.33 % 13.59 % 

MALICIOUS_CODE 49 19 14.76 % 1.12 % 

MT_CORRECTNESS 38 0 11.45 % 0.00 % 

PERFORMANCE 20 453 6.02 % 26.77 % 

STYLE 124 248 37.35 % 14.66 % 

 INTERNAZIONALIZATION 0 41 0.00 % 2.42 % 

TOT 332 1692 100.00 % 100.00 % 
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program. This fact is reasonable because the issue, as the name of the category suggests, is 

just signaling waste of memory (variable never used), and it is not a real error (because in 

this kind of little Java projects, performance of the program is neither mission nor safety 

critical). However, since their detections are about the 63% of all detections in the set, their 

contribution to the external quality prediction is important. In fact, there is a reason why 

projects with detections of unused fields have lower quality: their presence in a program 

means that the student encountered difficulties in the design of the program, because he 

planned to use more/different variables that in fact were not necessary. In contrast students 

who developed applications with higher external quality did not have this kind of problem. 

This is the reason why we decided to leave this issue in the set of good defect predictors 

issues, despite the category it belongs is Performance. Furthermore, the double internal 

validations confirmed that all the 4 issues have a clear impact on external code quality and 

they can be considered as good defects predictors, with a very high confidence that limit the 

impact of the internal threats to validity. The external validation was not possible for the 

GDP, therefore we couldn’t assess the impact of external threats on this set. 

We also identify 16 issues that are bad defects predictors, and the statistical 

validation confirms that their detection has no correlation with the external quality of the 

projects. The internal threat (assumption that all changes are done to fix a defect) could 

affect results on Bad Defects Predictors, because students must make as few changes as 

possible, otherwise their mark will decrease: for this reason, they just correct errors and do 

not perform any change related to performance, maintainability or even errors that are in 

impossible paths. It is possible that in other projects some of these issues could be fixed by 

developers. Observing the type of issues in the set, we could assert that the majority of 

them could be related to this fact. However, this threat is controlled by the comparison with 

related work in Section 2.5.  

For instance, 3 issues are naming convention violations, whose importance for 

code comprehension is well known, and 4 of the 5 issues belonging to the category 

Performance are memory leaks (useless constructor of String and Number, unread field and 

field that should be static). The fifth issue of Performance, i.e. useless toString() applied on 

a String, could indicate that students have not fully understood the nature of the objects in 
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Java, as the GC_UNRELATED_TYPES “good” issue demonstrates. Also the issues on the 

comparison of Strings or Objects with == (Bad Practice) could be related to this problem. 

The remaining issues of category Bad Practice do not signal bugs but do indicate code that 

could lead to a waste of resources or to difficulties in maintenance. Finally, there are 2 

issues in the category Correctness in the list: the infinite loop (IL_INFINITE_LOOP) and 

the null pointer dereference in some path (NP_NULL_ON_SOME_PATH). We checked 

them manually and we discovered that they are actually errors: however all the 9 detections 

are on unfeasible paths, and this is probably the reason that students did not notice these 

errors with tests execution. Thus, we decided to remove the two issues of category 

Correctness from the list of bad predictors.  The definitive set of bad predictors is reported 

on Table 12. 

 

Table 12. Bad defect predictors 

Issue ID NA/NI Prec. 
Est. 

p-val 

DM_NUMBER_CTOR (Performance,2) 0/6 0 0.018 

DM_STRING_CTOR (Performance,2) 0/29 0 <0.01 

DM_STRING_TOSTRING(Performance,3) 0/5 0 0.018 

EQ_COMPARETO_USE_OBJECT_EQUALS (Bad_Practice,2) 5/275 0 <0.01 

ES_COMPARING_STRINGS_WITH_EQ (Bad_Practice,2) 0/10 0 <0.01 

NM_CLASS_NAMING_CONVENTION (Bad_Practice,2) 0/17 0 <0.01 

NM_CONFUSING (Bad_Practice,3) 0/6 0 0.01 

NM_METHOD_NAMING_CONVENTION (Bad_Practice,2) 2/44 0 <0.01 

OS_OPEN_STREAM (Bad_Practice,2) 0/71 0 <0.01 

OS_OPEN_STREAM_EXCEPTION_PATH (Bad_Practice,3) 0/5 0 0.018 

SE_BAD_FIELD (Bad_Practice,3) 0/11 0 <0.01 

SE_COMPARATOR_SHOULD_BE_SERIALIZABLE(Bad_Practice,2) 0/49 0 <0.01 

SIC_INNER_SHOULD_BE_STATIC_ANON (Performance,3) 0/92 0 <0.01 

URF_UNREAD_FIELD (Performance,2) 33/259 0 <0.01 
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A further control strategy against external threat is applied in this paper with the 

external validation towards Apache Lucene. We observed that some issues remain Bad 

Defect Predictors even when we switch context and we analyze real projects. The Generally 

Bad Defect Predictors, that are the 1% of the total number of issues in FindBugs (4 in 359), 

were responsible of 62 detections in Lucene (18.7% of the total) and 324 in the students’ 

projects repository (19.1% of the total): these digits are the basis of an important practical 

application of our findings, i.e. the adoption of a filtering strategy that can avoid 

information overload on developers caused by a very large number of detections with a 

very low probability to be related to defects. In particular fixing issues with a low 

probability of being related to a defect is dangerous because we know from Adam’s law 

[32] that the probability of introducing a new error during a fault correction is always 

greater than zero. The ranking of Bad Defects Predictors could be adopted by developers 

that want to enable only those issues with the highest precision. For instance, in this 

experiment, the Good Defects Predictors issues are just 4 out of 359 in FindBugs 1.3.8 

database (about 1%) and they are responsible for only the 4.4% of all detections in lab 

versions. Finally, the Context-Specific Bad Predictor issues (about 3% of the complete set) 

produced a further 15% of detections in lab versions. Therefore, summing up the Context 

Specific Bad Defects Predictors and the Generally Bad Defects Predictors, we obtain that 

more than a third of the detections in the students projects (34%) were not related to defects 

and could be ignored. In Lucene they were the 88%. These comments are summarized in 

Figure  13 and Figure  14 . Finally, from an educational perspective, although the 

occurrences of good predictors are few, we consider them important topics to be stressed 

more in future iterations of the OOP course.  
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Figure  13. Bad defect predictors proprtions (Students projects vs Lucene) 

 

 

Figure  14. Good defect predictors proprtions (Students projects vs Lucene) 
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2.5. COMPARISON WITH PREVIOUS AND RELATED WORK 

The main threat to validity of the experiments with students is the generalizability 

of the findings because we analyzed small projects developed at our University. We faced 

such an external validity threat  by conducting an external validation, repeating the analysis 

with the same methodology on a real project, Apache Lucene.  

The cross validation wasn’t applicable to the set of Good Defect Predictors since 

none was found, but to the Bad Defects Predictors set only. Four issues among the latter 

were in common with the students project analysis (they produced the 19% of total 

detections in LAB version and 18% in Lucene 3.1.0).  

In the first experiment [33], we analyzed a small repository of Java projects (85 

projects) and we studied the precision of issues at group level (combination of category and 

priority): the analysis showed that only 2 groups (Bad Practice High, Correctness High ) 

out of 15 groups of issues could be considered as reliable predictors of actual defects, and 

one group of issues (Bad Practice Medium) had a precision that was practically negligible. 

We group the good and bad defects predictors issues found in this study by the 

same criteria of the previous work to compare the findings. Since the repository in the 

replicated study is larger, we find more kinds of issues and more groups, however the group 

Correctness High is still in the good defects predictors set as well as Bad Practice Medium 

is still in the Bad Defect Predictors set. While the group Bad Practice High is not present in 

either of the two sets. Therefore, 2 out of 3 groups are confirmed in the respective sets and, 

most important, there are no conflicts in the group compositions of the two studies: we 

conclude that the finding of our previous work are confirmed and improved in this study. 

 Before us, Boogerd and Moonen [20] [21] and Kim and Ernst [30] also used 

temporal and spatial coincidence in their research. Our research confirms the findings of 

Boogerd and Moonen: a reduced set of rule violations are strongly related to defects in 

source code, and many violations are not related to real defects at all. Kim and Ernst also 

applied FindBugs on Lucene  in another paper [37], and they reached a similar finding: 
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only 9% of the warnings issued by FindBugs were removed by a fix-change in the period 

10/19/2001~11/9/2006.  

Furthermore, in our analysis there are 3 high priorities issues and 1 medium 

priority in the good defects predictors, whilst the majority of issues in the bad predictors set 

are medium and low priority (respectively 10 and 5 issues, 1 high priority): thus the tool’s 

default prioritization of issues seems to be effective, in contrast with what is found by Kim 

and Ernst [30] in two open source projects (Columba and jEdit).  

Differently from our second experiment [38], the new comparison includes the 

validation on Lucene and it is performed with more objective criteria, specific to each 

study. We couldn't apply the same criteria because every study had its own methodology. 

The first comparison we present is that with Kim and Ernst [30]. The authors list 

the FindBugs issues with shortest and longest “life” in multiple versions of two open source 

projects: the underlying idea is that if some issues are resolved quickly by developers, those 

issues are important and likely related to real defects. The issue 

SA_FIELD_SELF_ASSIGNMENT, which we identify as good defect indicator, is also 

among the issues with shortest life in one of the two projects analyzed by Kim and Ernst 

(Columba).  The bad defect predictors issues in common are instead two: 

ES_COMPARING_STRINGS_WITH_EQ and OS_OPEN_STREAM, both of  Category 

BadPractice and Priority 2. Furthermore, we do not observe any conflict with this study, i.e. 

none of our “good” issues have long life in the experiment of Kim and Ernst and none of 

the “bad” have short life.  

We are also able to compare our findings with the findings of Ayewah and Pugh 

[39], who analyzed thousands of FindBugs warnings fixed by engineers during the May 

2009 “Google FixIt”. The authors used a lightly modified temporal coincidence to find 

which FindBugs issues were fixed with higher frequency in the Google code base in a 

period of 9 months. In their paper they show 12 issues with high removal rate and 3 with 

low removal rate, distinguishing issues only by bug pattern and category. We found in the 

first set 3 out of 4 of our “good” issues (only the self-assignment is not present). Moreover, 

“our” bad issue DM_NUMBER_CTOR (Performance) has low fix rate. We didn't find any 

conflict also with this study.  
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In a previous work of the same authors [19], they tried to understand the efficiency 

of FindBugs by manually checking medium/high priority Correctness issues signalled on 3 

projects: Glassfish v2, JDK 1.6.0-b105 and the Google code base. The authors classified 

issues in different groups, based on their impact on code. Overall, they observe that in JDK 

1.6.0-b105 almost 50% of them had an impact (misbehaviour of the program), a further 

10% had a serious impact, 160/379 were trivial, whilst 5 issues were due to bad analysis by 

FindBugs. The comparison with this work is more difficult because the authors reported the 

issues descriptions but not the issues Ids. We applied the following strategy to make the 

comparison possible: 

 

− We looked at the issue description and try to find the respective issue ID 

on FindBugs website (section Bug Bug descriptions. We considered the 

issue only if the description corresponded univokely to an ID. 

− We applied our precisions threshold to their results with the following 

schema: 

− NI = Number of reviews “Impact” + Number of reviews “Serious” 

− NA = Total number of reviews  

− Precision = NI/NA 

− If precision >= 0.50, then the issue is a good predictor, otherwise it is 

a bad predictor 

 

  We were able to unambiguously identify 2 issues: the uninitialized read of field 

in constructor (1 detection had impact and 7 tagged as trivial, resulting in a Bad Predictor 

and then a conflict) and the self-assignment of field (1 “impact” and 2 “trivial”), that is 

confirmed as good predictor.  

In the same paper the authors provide the results of a similar review that was 

performed at Google, where they classified issues reviewed in impossible (i.e. wrong 

detection), trivial, open, fixed.  We applied the same strategy but we defined NI = fixed. 

Looking at the results, 2 out of 13 uninitialized reads were fixed (but 7 were wrong), whilst 

all the 7 detections of the issue GC_UNRELATED_TYPES (Correctness) were still open. 
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Among the 12 detections of the self-assignment issue, 5 were fixed, 1 classified as trivial 

and the remaining left open.  

We present a synopsis of the above comparisons in Table 13, according to the 

following binding id-study on columns: 

 

1. Ayewah et al 2007 [19] 

2. Kim and Ernst 2007 [30] 

3. Ayewah and Pugh 2010 [39] 

4. Validation of Vetro’ et al. 2011 [38] on Lucene 

 

X marks in the table indicate that the corresponding issue was identified as 

related/not related to defects in that study. The areas in gray represent the agreements. The 

only study that presented conflicting results is study 1 [19], that in any case resulted in 

conflict with their later study conducted at Google. Overall, we obtained a proportion of 

agreement within studies of 70.59 % (100% without considering study number 1).  

Table 14 reports the comparison of our findings with related work on a project 

basis instead of paper base: we observe a 50% of agreement in industry projects and 100 % 

in open source projects. Finally, stratifying data by Good/Bad Predictors, we observe that 

agreement has the following proportions: 55.56% Good Predictors, 87.50% Bad Predictors. 

In summary, the highest agreement of results in the comparison between our study and 

related work in reached in Open Source projects and in the set of the Bad Defects Predictor 

issues. We include in the Generally Bad Predictors issues set also the issues coming from 

the meta-analysis conducted, i.e. with at least an agreement with another study and no 

disagreement. The new elements are the following ones: 

  

− ES_COMPARING_STRINGS_WITH_EQ (Bad_Practice,2) 

− DM_NUMBER_CTOR (Performance,2) 

− NM_METHOD_NAMING_CONVENTION (Bad_Practice,2) 

− SE_BAD_FIELD (Bad_Practice,3) 

− URF_UNREAD_FIELD (Performance,2)  
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Given the large variety of contexts, we assert that these issues have a very low 

probability to detect a defect.  Although the double internal empirical validation on the 

Good Defects Predictors confirmed them, the comparison with the related work showed 

that they are context specific, differently from the Bad Predictors.  

 

  

Table 13. Summary of comparisons with related work (paper-based) 

 Issue ID  Related to defects Not related to defects 

1 2 3 4 1 2 3 4 

G
oo

d
 

GC_UNRELATED_TYPES (Correctness,1) X X 

SA_FIELD_SELF_ASSIGNMENT(Correctness,1) X X X 

UR_UNINIT_READ (Correctness,1) X X X 

UUF_UNUSED_FIELD (Performance,2) X 

B
ad

 

DM_NUMBER_CTOR (Performance,2) X 

DM_STRING_CTOR (Performance,2) 

DM_STRING_TOSTRING(Performance,3) 

EQ_COMPARETO_USE_OBJECT_EQUALS (Bad_Practice,2) 

ES_COMPARING_STRINGS_WITH_EQ (Bad_Practice,2) X X 

NM_CLASS_NAMING_CONVENTION (Bad_Practice,2) 

NM_CONFUSING (Bad_Practice,3) 

NM_METHOD_NAMING_CONVENTION (Bad_Practice,2) X 

OS_OPEN_STREAM (Bad_Practice,2) X X 

OS_OPEN_STREAM_EXCEPTION_PATH (Bad_Practice,3) 

SE_BAD_FIELD (Bad_Practice,3) X 

SE_COMPARATOR_SHOULD_BE_SERIALIZABLE(Bad_Practice,2) 

SIC_INNER_SHOULD_BE_STATIC_ANON (Performance,3) 

URF_UNREAD_FIELD (Performance,2) X 
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Table 14. Summary of comparisons with related work (project-based) 

Projects Agreements Disagreements Proportion of 
Agreement 

 Good Bad Tot Good Bad Tot Good Bad Tot 

Industry 

Google (Ayewah et al 2007) 0 0 0 3 1 4 0.00% 0.00% 0.00%

JDK 1.6.0-b105 (Ayewah et 
al 2007) 

1 0 1 1 0 1 50.00% NA 50.00%

Google (Ayewah et Pugh 
2010) 

3 1 4 0 0 0 100.00% 100.00% 100.00% 

Tot Industry 4 1 5 4 1 5 50.00% 50.00% 50.00% 

Open Source 

Columba (Kim and Ernst 
2007) 

1 1 2 0 0 0 100.00 % 100.00% 100.00% 

jEdit (Kim and Ernst 2007) 0 1 1 0 0 0 NA 100.00% 100.00% 

Lucene (current paper) 0 4 4 0 0 0 NA 100.00% 100.00% 

Tot Open Source 1 6 8 0 0 0 100.00% 100.00% 100.00% 

          

TOT 5 7 12 4 1 5 55.56% 87.50% 70.59% 
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2.6. AN INDUCTIVE STUDY AS A CONTRIBUTION TO THE 

SECOND RESEARCH STREAM 

We helped an industrial partner in understanding the usefulness and effectiveness 

of the Resharper ASA tool in their development projects and we decided to adopt the 

second approach because it is more promising than the first one, as summarized in Section 

2.2.  Our long term aim is to provide our partner with models that use ASA issues to point 

to more specific quality problems. These models should be able to make recommendations 

for code inspections based on a set of quality characteristics of interest. For example, a 

security inspection should be able to use a prediction model pointing to software files and 

components with potential security flaws. Or, the user experience review should be able to 

use a model that selects parts of the software with potential usability problems. 

The main novelties that we introduce with respect to the previously conducted 

related work are: 

− We contribute to the body of evidence of the second research stream by 

adding a new tool/language/application combination (Resharper/ C#/ 

Web application). The Resharper tool has, to our knowledge, not yet been 

evaluated in past work. 

− We perform the analysis at two granularity levels, i.e. software 

components and source code files. Components are high-level functional 

units encapsulating one or more main functionalities of the software 

system, such as: “User Login”, “Database Access”, or “Admin Backend”. 

Source code files are low-level artifacts, usually containing classes that 

are the building blocks for components.  Since past studies were done at 

only one of the two levels this study will give some insight into the 

comparison between the two levels. 

We investigate whether specific types of ASA issues can be linked to specific 

quality dimensions. This is helpful to understand if an increased importance of one quality 

dimension, such as usability, can help to pre-select the set of ASA issue types that will 
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predict usability defects with the highest precision. Or more generally, the approach can be 

used to prioritize the set of ASA issues a reviewer would have to inspect, based on a 

prioritization of desired quality characteristics.  

To our knowledge, no past work has yet studied the correlation between ASA 

issue types and quality characteristics. The most similar works we found were two studies 

that investigated instead the typology of defects found by ASA tools. The first one is a 

study conducted by Nagappan  et al. [24], who classified defects found by the FlexeLint 

tool using the ODC classification schema [40] and found that defects associated with ASA 

fell into three ODC defect types: checking,    assignment/initialization, and interface. 

Wagner et al. [17] also classified ASA issues, but they focused on their effect on code 

rather than their causes. The authors used a 5-point scale of severity to classify the true 

positive issues signaled by FindBugs, PMD and QJPro on five industrial projects. The 

highest category level was “Defects that lead to a crash of the application”, while the lowest 

was “Defects that reduce the maintainability of the code”. The authors found that most of 

the true positives were related to maintainability of the code (e.g., readability and 

changeability). They also compared ASA issues with defects found using code reviews and 

unit tests, and they discovered that all defects found by ASA tools were also found by the 

review, while testing activities found different categories of defects.  

We adopt a different perspective from these two studies, and we focus on whether 

any ASA issues can predict defects relating to a very general set of software quality 

attributes, using the well-known ISO/IEC 9126 quality model [41]  as a basis for defect 

classification. The ISO/IEC 9126 Software engineering Product Quality Model is an 

international standard for the evaluation of software quality.  It defines a quality model with 

six main characteristics namely, functionality (F), reliability (R), usability (U), efficiency 

(E), maintainability (M), and portability (P), which are further broken down into 22 sub-

characteristics. The standard was revised in March 2011 by the ISO/IEC 25010 standard 

committee [42]. Our defect classification based on the standard was created two months 

after the new standard was released, but we decided to keep the old standard because of its 

widespread use and because of the large overlap between the two. 
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We proposed our defect classification in a previous work [43]; it is complementary 

to already existing defect classifications because it helps in understanding the impact of the 

software on different quality attributes. Such classification might help programmers and 

managers with practical tasks, such as the prioritization of defects according to the different 

stakeholders’ interests, the ease of process improvement measurement on specific quality 

dimensions or tuning verification activities according to specific quality dimensions. This 

work is specific to the latter point and it is a first step towards understanding whether 

different ASA issues could be related to specific quality dimensions. 

The first goal of this study is to understand whether some predefined subsets of 

ASA issues (a.k.a. ASA issue categories6) are eligible as indicators of defect-proneness. 

The second goal is to understand whether and which categories of ASA issues are related to 

specific software quality dimensions. Both questions are analyzed at two levels of 

granularity: firstly with respect to components, and secondly source code files. The 

rationale behind the decision to perform analysis on different levels is to better comprehend 

if results would differ, be the same, or even contradict each other.   

STUDY CONTEXT 

The study was carried out at a software company that develops web-based 

applications in C# (using .NET and Visual Studio). The company uses the JIRA tracking 

system7 to record defects.  

Of the current projects at this company, we selected one for in-depth analysis 

based on data quality. Preliminary analysis showed that data quality varied considerably 

between available projects, reflecting the level of process conformance [44] with which 

developers recorded defects in JIRA. We chose the project with the best data quality 

                                                 
6 Issue categories vary depending on the ASA tool used. Typical categories for the Resharper tool 
used in this study are: Redundancies in Code, Common Practices and Code Improvements, Compiler 
Warnings, etc. 
7 http://www.atlassian.com/software/jira 
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(according to the three criteria below) to reduce the influence of incomplete or noisy data 

on the results:  

A. Number of empty fields in defect reports (e.g. missing data). 

B. Number of defect report fields that were filled with the default value 

(which may indicate the default value was accepted rather than that the 

true value was investigated). 

C. Percentage of components that could be bound to files (our approach for 

this is described below).  

The selected application has about 35 KLocs and has been active in production 

since November 2009, with 4 developers working on it in parallel. At the time of the 

analysis, the JIRA system contained 78 fixed and closed  defects for the selected project 

(which we will call J). 

MAPPING BETWEEN ASA ISSUES, DEFECTS, FILES, AND COMPONENTS  

Our methodology for performing the mapping between components, files, and 

ASA issues, as illustrated in Figure  15, is based upon the fact that JIRA systems can track 

not only defects but any other element that can be associated with software artifacts. Those 

elements are called “JIRA issues”, and each project has its own set of issues. Example of 

JIRA issues are change requests, system incident reports, implementation tasks, etc. 

Moreover, developers establish links between files in the SVN code repository to JIRA 

issues by including ticket ids in their SVN commit comments. Finally, each JIRA issue is 

linked by the software developers to one or more software components. 

With this information one can build a frequency table (see Figure  16) of files 

(rows) and components (cells) indicating how often files were changed (i.e. added, 

modified, or deleted) when working on a component. If a JIRA issue is related to one or 

more logical components, then the set of modified files belong to the respective 

components. Using this method a mapping is built based on evidence of how the system 

changed and evolved over time.  



57 
 

Since a file can belong to many logical components, we accept multiple 

classifications. Further we reduce some possible noise by mapping a file only to a 

component if it was linked to this component in at least 20% of all the files’ changes. This 

percentage was set after an analysis of frequency distributions. 

 
Figure  15.  Linkage between Resharper issues, source code files, issue and defect fixes, and 
components. Yellow defects indicate that a file is linked to at least one defect issue in JIRA. 

 

 
Figure  16. Evidence-based binding of files to logical components 
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STUDY EXECUTION 

We derive from our first goal two research questions on component (C) and file 

(F) level: 

 

− RQ C1: Which ASA issue categories can identify defect-prone 

components?  

− RQ F1: Which ASA issue categories can identify defect-prone files?  

 

Additional research questions are derived from our second goal: 

− RQ C2: Which ASA issue categories can point to defect-prone 

components that impact various system quality characteristics? 

− RQ F2: Which ASA issue categories can point to defect-prone files that 

impact various system quality characteristics? 

 

We address these questions inductively, investigating whether the detection of 

defect-proneness was possible and if so, which types of ASA issues were useful for doing 

so. We discuss the metrics and the methodology separately for each research question 

below. 

RQ C1: Which ASA issue categories can identify defect-prone components?  

To answer RQ1-C1, we first performed the mapping as described earlier to link 

Resharper issues to components. Secondly, we checked to see if the number of Resharper 

issues is correlated with software size. This step was necessary to investigate a possible 

bias from code size. If such a correlation exists, it is necessary to normalize the data (e.g. by 

using issue density instead of number of issues). The same analysis is done for defects.  

In a third step we test for correlations between numbers of defects and numbers of 

Resharper issues in each Resharper category, per component. We use the Spearman 

coefficient correlation (a non-parametric statistic), since we observe a wide range of issues 
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and defects that do not appear to follow any defined distribution (see Table 15 and Table 

16). 

RQ F1: Which ASA issue categories can identify defect-prone files?  

To answer this research question we used again the mapping procedure from sub-

section 3.2. We also checked for possible bias as described in RQ-C1. Lastly, we tested for 

correlation between Resharper issue categories and defects by using a two sample Mann-

Whitney test [23] after running an unsuccessful Shapiro test for normality. This type of test 

was more appropriate than the Spearman correlation due the sparseness of the data; it has 

also been used in previous studies [21] [33]. As the results will show, only a small number 

of files (about 10%) were associated with defects. Therefore, we partitioned the sample into 

non-defect-prone files and defect-prone files in order to perform the Mann-Whitney test. 

This decision implies that the analysis will investigate if files with at least one defect can be 

identified by the Resharper issues residing in the same file. 

 

RQ C2: Which ASA issue categories can point to defect-prone components that 

impact various system quality characteristics? 

RQ F2: Which ASA issue categories can point to defect-prone files that impact 

various system quality characteristics? 

 

For both of these research questions, we used the ISO/IEC 9126 quality model as a 

basis for classifying the defects according to different quality characteristics. The method 

for classifying defects in this way was developed and validated in a prior experiment [43], 

which also used the same project as the subject project.  In that study, six different subjects, 

divided into two groups with respect to their expertise, classified the 78 defects using the 

ISO/IEC 9126 quality main characteristics and sub-characteristics. Subjects read the defect 

reports and assigned each defect to one or more quality characteristics and sub-

characteristics (the classification is not orthogonal). The underlying idea is that each defect 

reduces a software capability and impacts the corresponding characteristic and sub-

characteristic. 
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Table 15. Resharper issues detections 

Resharper category Number of 
issues 

ASP.NET 2 

Common Practices and Code Improvements 521 

Compiler Warnings 36 

Constraints Violations 445 

Language Usage Opportunities 591 

Potential Code Quality Issues 14 

Redundancies in Code 645 

Redundancies in Symbol Declarations 82 

Unused Symbols 7 

Sum of issues 2343 

 
Table 16. Resharper issues on components 

Component
Sum of

ReSharper 
issues

Defects NCSS 

Cmp 1 1407 43 3192 

Cmp 2 324 13 961 

Cmp 3 232 6 711 

Cmp 4 29 5 97 

Cmp 5  7 4 9 

Cmp 6  29 4 97 

Cmp 7  0 3 0 

Cmp 8  119 2 246 

Cmp 9  93 1 208 

Cmp 10  0 0 0 

Cmp 11 428 0 1392 

Cmp 12  0 0 0 

Cmp 13 0 0 147 

Cmp 14 0 0 0 
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We observed that more experienced software engineers produced classifications 

with less variability, and that the classification at characteristic level was more reliable than 

those at sub-characteristics level. As a consequence, we adopted as the final classification 

the one created by experts at the characteristics level. 

Using that classification we were then able to check, in the work described in this 

paper, whether various types of Resharper issues are correlated to the defects related to 

specific quality characteristics. 

RESULTS 

We collected metrics on the revision of the target project preceding the first defect 

fix commit to include as many defects as possible. Resharper reported 2343 issues on the 

source code of the web application: Table I reports the issues per each Resharper category 

and Table II reports, for each logical component, total number of Resharper issues, number 

of defects and non-commented source statements. Some components have 0 NCSS for two 

reasons: a component was built after the version of the software analyzed, or the files-

component mapping produced zero files for a component, or in some cases both. Resharper 

reported issues on files with extension .aspx, .xaml, .csproj, .cs (including .xaml.cs, 

.ascx.cs, .aspx.cs, .ashx.cs, .Master.cs). .  

Among the 78 fixed and closed defects, 65 had commits linked to them.  

According to the experts’ classification [43] ( Figure  17 ), the majority of defects (58%) 

impacted only functionality, followed by usability (26%) and reliability (6%). Mixed 

classifications (FR and FU) accounted for 5% each, while no defects had impact in the 

remaining three categories. 

The total number of files with at least one defect fix is 58. However, excluding 

those files that were out of scope of the Resharper analysis (e.g., .sql files, .css files) and 

those files that were added after the revision we analyzed, only 11 of the 58 remained. 

These files are listed in Table 17.  As with components, the data indicates that there is not a 

clear relationship between number of defects and Resharper issues: the most defect prone 
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file (C) has 35 issues whereas some of the less defect prone files (G,I,J) have up to twice 

the issue count.   

As this is an exploratory study, when analyzing statistical significance we ran our 

tests at a 90% confidence level. As we are intending to discover relationships that can be 

later more rigorously examined, we would prefer to err on the side of finding false 

positives, rather than missing any relationship. 

We now answer separately each research question. 

 

RQ C1-C2: Which ASA issue categories can identify defect-prone components?  

 

Table 18, first column, reports Spearman correlations between Resharper issues 

densities of specific issue categories and defects. Statistically significant values (i.e., p-

value ≤ 0.10) are shown in bold. 

We used issue densities (issues/NCSS) in the following computations because a 

positive Spearman correlation (rho=0.93, pval < 0.01) was found between NCSS and 

 
Figure  17. Defect classification 

Functionality
58%

Usability
26%

Reliability
6%

Functionality 
& Reliability
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Functionality 
& Usability
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number of issues. We did not normalize the number of defects because the correlation 

between defects and size was not significant (rho= 0.42, pval= 0.15). 

The total number of Resharper issues has an insignificant but positive correlation 

with defect-proneness (0.19, p = 0.29) with all defects. Looking at Table 18, column “All 

RQ C1”, we observe positive correlations for all but one category (Common Practices and 

Code Improvements), and one (Language Usage Opportunities, rho= 0.57) is significant at 

the 90% confidence level (in bold). Hence, the answer to RQ C1 is:  

Only a few issue categories, such as Language Usage Opportunities in this 

example, are positively correlated with defects at the component level. Issues in the 

category Language Usage Opportunities identify optimizations at code level based on 

specific characteristics of C#. The most frequent detections were: 

 

− Convert 'if' statement to 'switch' statement  

− Invert 'if' statement to reduce nesting 

− Loop can be converted into LINQ-expression 

− Use 'var' keyword when initializer explicitly declares type 

− Use 'var' keyword when possible  

 

Possible root causes for this correlation are that the usage of more advances 

language features leads to less defect (i.e. the more language usage opportunities, the less 

code features are used in the code). Or, it might be that junior developers use less advanced 

language features than their more experience peers, and also produce more defect prone 

code.  
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Table 17. Defects per file 

File 
ID 

Component(s) Resharper 
issues 

Defects 

A C1, 29 1 

B C1,C2, 15 4 

C  35 6 

D C1, 84 3 

E  7 1 

F C1,C2, 73 4 

G C3,C1,C2, 73 2 

H  1 2 

I C1, 45 1 

J C1, 65 2 

K C5,C9, 7 2 

 

Table 18. Correlation between density of Resharper issue types and defect densities 

Defect types: All 
 RQ1C1 

F 
 

FR  
 

FU  
 

R  
 

U  
 

ASP.NET       

Common 
Practicesand 
Code 
Improvements 

-0.14 -0.13 -0.34 0.07 0 -0.2 

Compiler 
Warnings 

0.3 0.31 0.48 0.28 0.04 0.25 

Constraints 
Violations 

0.11 0.1 0.03 0.09 0.23 0.18 

Language 
Usage 
Opportunities 

0.57 0.53 0.55 0.5 0.2 0.43 

Potential Code 
Quality Issues 

0.54 0.5 0.51 0.44 0.22 0.44 

Redundancies 
in Code 

0.52 0.49 0.47 0.33 0.39 0.53 

Redundancies 
in Symbol 
Declarations 

0.42 0.45 0.01 0.28 0.17 0.14 

Unused 
symbols 

0.53 0.53 0.75 0.57 0.33 0.56 

Sum of 
Resharper 
issues 

0.19 0.18 0.1 0.09 0.23 0.23 
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Table 18, columns 2-6, reports on the correlations between Resharper issue 

densities and defects, divided into the ISO\IEC 9126 quality characteristics. The only 

category with significant positive correlations (in bold) is Unused Symbols: 0.75 with FR 

defects, 0.57 with FU defects, 0.56 with U defects. All Unused symbols issues were type 

members never used. We answer the research question the following way: Only very few 

indicators can be mapped to defects on the component level, and these indicators point to a 

wider range of quality characteristics rather than on a single one. 

We performed a follow-up analysis to see whether the two categories Language 

Usage Opportunities and Unused Symbols could be used as defect locators. We tested their 

Table 19. Research Question F2 (only statistically significant results) 

Quality characteristic – 
Resharper issue category 

Defect prone files Non defect prone files 
 

Pval 
 

Mean 
Resharper 

issues/NCSS 

Sd 
Resharper 

issues/NCSS 

Nr of 
files 

Mean 
Resharper 

issues/NCSS 

Sd 
Resharper 

issues/NCSS 

Nr of 
files 

F – Constraints Violations 0.14 0.06 6 0.08 0.05 94 0.013 

F – Redundancies in Code 0.23 0.14 6 0.09 0.13 94 0.002 

FR – Compiler Warnings 0.02 NA 1 0 0.01 99 0.001 

FU – Constraints Violations 0.18 0.04 3 0.08 0.05 97 0.002 

FU – Redundancies in Code 0.35 0.05 3 0.09 0.13 97 0.004 

FU - Sum 0.74 0.09 3 0.53 0.24 97 0.062 

R – Redundancies in Code 0.39 0.39 2 0.09 0.12 98 0.033 

R - Sum 0.93 0.21 2 0.53 0.23 98 0.029 

U – Constraints Violations 0.13 0.07 4 0.08 0.05 96 0.085 

U – Language Usage Opportunities 0.15 0.07 4 0.09 0.08 96 0.042 

U – Potential Code Quality Issues 0.01 0.01 4 0 0 96 <0.001 

U – Redundancies in Code 0.16 0.12 4 0.09 0.13 96 0.033 
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capability to detect defects earlier than metrics of size and complexity, widely used in the 

defect prediction literature (e.g., [45] , [46], [47], [48], [49]). Figure  18 shows the 

cumulative distribution of defects found ranking logical components with respect to the 

following indicators: 

− An ideal indicator that perfectly rank logical components from the 

faultiest one to the ones with no defect. 

− The density of issues of each of the following  Resharper issues 

categories: 

− Unused Symbols  

− Language usage opportunities  

− The density of all Resharper issues. 

− The number of statements (NCSS). 

− The average McCabe complexity. 

 

In other words, the curves in Figure  18 represent how quickly defects would be 

found if components were tested in different orders, sorted by the criteria listed above. A 

horizontal line on the graph indicates the point at which 80% of defects have been found. 

 We observe in Figure  18 that the first 3 components contain 80% of the defects 

using the ideal locator. Language Usage Opportunities issue density and the total Resharper 

issue density find 80% of defects at the 5th component, and all the other indicators at the 

6th (Unused Symbols, Complexity and Size). The figure also shows that the two selected 

Resharper categories are overall close to the “all issues” data line which does not consider 

the category of Resharper issues. This indicates that, at the component level, the distinction 

between issue categories might lead to small but not vast improvement compared to using 

all issues. 
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Figure  18. Cumulative distribution of defects in components and indicators 

 

 
Figure  19. Cumulative distribution of defects in files and indicators 
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RQ F1-F2: Which ASA issue categories can identify defect-prone files?  

 

    Table 20 and Table 19 show, both for defect prone files and non-defect prone 

files and for each Resharper issue category, mean and standard deviation of Resharper 

issues densities, the number of files for each set and the p-value of the Mann-Whitney test 

on the difference between the two sets. Bold percentages indicate p-values that are 

significant at our chosen confidence level of 90%. Table 19 presents only combinations of 

Resharper categories and ISO\IEC 9126 defect classifications for which the null hypothesis 

was rejected. 

The categories with highest differences on Resharper issues densities in defect 

prone/non defect prone files are Redundiancies in Code and Language usage opportunities. 

Redundancies in Code are related to Functionality and Usability defects, both separately 

and together. Constraints violations are related to Functionality and Functionality-Usability, 

while Language usage opportunities only with Usability.  

We already presented examples of the issues of the category Language Usage. 

Examples of Redundancies in Code are: 

− Assignment is not used 

− Explicit delegate creation expression is redundant 

− Expression is always 'true' or always 'false' 

− Redundant boolean comparison 

− Redundant cast 

− Redundant 'else' keyword 

− Redundant explicit type in array creation 

− Redundant 'this.' qualifier 

We performed the same follow up analysis that we did for components and we 

report in Figure  19 the cumulative distribution of defects found ranking files with respect 

to the following indicators: 

− an ideal indicator that perfectly rank logical components from the 

faultiest one to the ones with no defect; 
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− the density of issues of each of the following  Resharper issues 

categories: 

− Language Usage Opportunities  

− Redundancies in code  

− the density of all Resharper issues; 

− the average McCabe complexity ; 

− the number of statements (NCSS). 

− A horizontal line in the graphs indicates the point at which 80% of 

defects are found. 

− Results at file level are more diverse than at component level: 

Selecting files based on the density of Redundancies in code issues 

outperforms all the other indicators, reaching 80% of defects at the 

41st file (compared to the 9th file of the ideal locator). The second 

best indicator is the sum of Resharper issues: however, it reaches the 

threshold at the 74th position. NCSS and McCabe complexity are less 

precise indicators at file level: they are able to identify the 80% of 

defects only very late: a user will have to examine at 90% of all files 

before capturing 80% of all defect prone ones. 

 

Overall we answer the research questions on file level the following way: 

1. Multiple Resharper categories are good candidates for 

building predictive models for defect prone modules.  

2. There is a set of promising candidates of Resharper 

categories that is able to predict the quality impact of defect more 

precisely. 

 

In a follow up analysis we picked two quality characteristics of interest, 

Functionality (F) and Usability (U), and plotted the same graphs as before (see Figure  20 
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and Figure  21) for the respective significant issue categories from Table 19 . In both cases 

Redundancies in Code is a more efficient predictor than the sum of all issues. 

  

 
Figure  20. Predictor Performance for Functionality 

 

 
Figure  21. Predictor Performance for Usability 
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DISCUSSION 

The presented data indicates that the answer to the research questions is not 

straight forward in all cases. Most statistics on component level were rather inconclusive 

and showed only small correlations or a small set of useful issue categories. We believe that 

this indicates the high-level component view is perhaps not the right perspective for future 

research direction. The more promising results showed on file level, even if we had to deal 

with a sparse data set. The results indicated that number of promising indicators is larger, 

and this also holds for the number of categories pointing to specific quality problems. 

 

Table 20. Research Question F1: results 

 Defect prone files (11) Non defect prone files (101) 

Pval 
 

Resharper issues 
Mean 

Resharper 
issue/NCSS 

Sd 
Resharper 

issues/NCSS 

Mean 
Resharper 

issues/NCSS 

Sd Resharper 
issues/NCSS 

ASP.NET 0 0 0 0 NA 

Common Practices and Code Improvements 0.13 0.19 0.21 0.18 0.983 

Compiler Warnings 0 0.01 0 0.01 0.333 

Constraints Violations 0.13 0.05 0.08 0.05 0.014 

Language Usage Opportunities 0.14 0.07 0.08 0.08 0.026 

Potential Code Quality Issues 0 0.01 0 0 0.021 

Redundancies in Code 0.27 0.20 0.08 0.11 <0.001 

Redundancies in Symbol Declarations 0 0 0.06 0.1 0.969 

Unused.Symbols 0 0 0 0 NA 

Sum 0.67 0.24 0.52 0.23 0.133 
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On both analysis levels we could improve the defect prediction quality by using 

selected single predictors, e.g. as Figures 4-7 show. Results also indicate that ASA issues 

are more promising to be good defect predictors than traditional software metrics, such as 

complexity or size.  

Some of the inspected issue categories, such as redundancies in code and unused 

symbols (both components and file level) indicate problems regarding memory waste. In 

the previous experiment with students data [38] we also found a correlation between a 

similar category of FindBugs issues (unused variables) and defects in students’ projects. 

We  commented that this correlation could be the consequence of the programmers’ 

difficulties in the design of the class, because they planned to use more/different variables 

that indeed were not necessary. A similar explanation could be extended for these 

categories of Resharper.  

Further, some of the issues of category Language Usage Opportunities can also be 

an indicator of the level of programmers’ knowledge on the language. 

THREATS TO VALIDITY 

We identify a first construct threat in the mapping files- components. Even though 

this heuristic eliminates the subjectivity of the manual mapping, 18% of the files were not 

assigned to any component. 

Another threat is subjectivity in the ISO 9126 defect classification. We controlled 

this threat selecting the most reliable classification made by the experts. A more 

comprehensive discussion of this threat is found in the original study [43]. 

The small number of components and of files with defects (11) makes statistical 

significance and a definitive answer to our research questions hard to obtain. We were 

aware of this threat and also for this reason we performed an explorative study and findings 

will be evaluated and better investigated in future work.  

As in any inductive study, the generalization of these findings is debatable because 

they are tied to the specific context of the analysis. Our research design reflects this 
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concern: in this study we were focused on identifying whether there was any evidence that 

Resharper issues could be used as early indicators of defect-prone parts of the system, and 

especially whether estimates could be made regarding the type of quality impacted by those 

defects. Having obtained an initial indication that this is in fact a feasible approach, further 

study is necessary to determine whether the specific correlations found in this study can be 

replicated elsewhere. 
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2.7. CONCLUSIONS 

We analyzed the state of the art and we found two main research streams: I) 

looking at single ASA issues to identify defects in single lines of code or II) looking at 

large sets of issues as early indicators of the more defect-prone modules (e.g. classes, files, 

software components). 

Regarding the first research stream, we conducted two case studies: we analyzed 

the relationship between FindBugs issues and defects on two different pools of  University 

Java projects [33] [38], using information on changes in source code and tests failures. We 

obtained that only 4 issues could be considered as reliable predictors of real defects and 14 

issues had a negligible precision. We conducted both internal and external validations. 

Internal validations included correlation observations with projects quality and a manual 

inspection of issues. The external validation included a repetition of the study on an open 

source project (Lucene) and a comparison with similar studies in literature.  The validation 

of results against internal threats confirmed all issues except two (both in the Bad 

Predictors sets), whilst the external validation showed some different results. We obtained 

high agreement in open source projects and in the Bad Predictors set. From these 

observations, we consider the Good Predictors and 9 Bad issues as Context Specific, whilst 

the remaining 5 issues are confirmed as Generally Bad Defects Predictors. 

We can summarize our experience in the form of advices to practitioners that aim 

at using FindBugs on their code with the goal of predicting defects (not taking into account 

other quality aspects such as performance or maintainance): 

− disable the Generally Bad Defects Predictors (they are unlikely to predict 

any defect nevertheless they represented the 19% of total detections in 

LAB versions and 18% in Lucene 3.1.0).  

− analyze the history of your software and apply the temporal + spatial 

coincidence (with information on test failures if present) and identify 

Context Specific Good/Bad Defects Predictors 

− disable the Context Specific Defects Predictors 
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Regarding the second research stream, the study presented added the following 

contributions: 

− We evaluated a combination tool-language (Resharper,C#) not yet 

evaluated in past works, up to our knowledge. 

− We performed and compared the analysis at two granularity levels, i.e. 

logical components and files.  

− We investigate whether ASA issues are able to identify specific 

categories of defects belonging to specific quality dimension. 

We found that few Resharper categories had positive correlations with defects at 

component level, while several categories were more efficient at file level. The issues with 

higher correlations identify problems regarding code readability, performance, and more in 

general related to maintainability problems. Moreover, classifying the defects according to 

the ISO 9126 quality characteristics, different ASA issues categories were positively 

correlated to different quality characteristics.  

We compared the capability of Resharper issues to detect the faultiest modules, 

both at components and files levels with the result that specific ASA issues were more 

efficient than the sum of them or traditional indicators (i.e. software metrics).  

Based on the experience of this study, we provide future researchers with the 

following set of recommendations: 

− Analysis on file level might lead to more promising results than on 

component level. 

− The size of the project should be at least, but preferably larger than our 

medium sized project, to avoid data sparseness problems as we found in 

our study. 

Considering future research directions, we suggest to better understand if results 

for specific categories are useful in other environments, or if this approach will always 

require a process of exploration, data analysis, and tailoring towards a specific software 

environment. In latter case, the contribution of future research should focus on building 

practitioner-oriented methods to build such prediction models rather than building new 

models. 
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3 MAINTAINABILITY 

3.1. DEFINITIONS 

Maintainability is defined in ISO/IEC 25010 [42] in the following way: “degree of 

effectiveness and efficiency with which a product or system can be modified by the 

intended maintainers”. The standard also specifies what a modification is: “modifications 

can include corrections, improvements or adaptation of the software to changes in 

environment, and in requirements and functional specifications. Modifications include 

those carried out by specialized support staff, and those carried out by business or 

operational staff, or end users. Maintainability “includes installation of updates and 

upgrades”, and it is built atop five sub-characteristics: 

− Modularity: “degree to which a system or computer program is composed 

of discrete component such that a change to one component has minimal 

impact on other components” 

− Reusability: “degree to which an asset can be used in more than one 

system, or in building other assets” 

− Analysability: “degree of effectiveness and efficiency with which it is 

possible to assess the impact on a product or system of an intended 

change to one or more of its parts, or to diagnose a product for 

deficiencies or causes of failures, or to identify parts to be modified”. 

− Modifiability: “degree to which a product or system can be effectively 

and efficiently modified without introducing defects or degrading existing 

product quality”. 

− Testability: “degree of effectiveness and efficiency with which test 

criteria can be established for a system, product or component and tests 

can be performed to determine whether those criteria have been met”. 
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In practice, Maintainability can be interpreted as “either an inherent capability of 

the product or system to facilitate maintenance activities, or the quality in use experienced 

by the maintainers for the goal of maintaining the product”. 

We studied Maintainability in relation to the concept of Technical Debt.  

Technical debt is a metaphor that describes the trade-off between the short-term 

payoffs (such as a timely software release) of delaying some maintenance activities and the 

long-term consequences of those delays [50].  

As Cunningham described [51], in a software development project, rushing 

implementation to meet pending deadlines “is like going into debt. A little debt speeds 

development so long as it is paid back promptly with a rewrite. Objects make the cost of 

this transaction tolerable. The danger occurs when the debt is not repaid. Every minute 

spent on not-quite-right code counts as interest on that debt. . Entire engineering 

organizations can be brought to a stand-still under the debt load of an unconsolidated 

implementation…”   

The Technical Debt (TD) problem is depicted in Figure  228: any time we degrade 

the quality of our work we introduce new issues (e.g. defects, hard-to-understand code, 

tangled design etc.) that will induce extra maintenance effort, i.e. additional costs. The 

additional costs are in practice the interests that must be repaid to reduce the TD and restore 

the health of the system, avoiding that future changes in the system become too costly and 

hard to perform. Following the schema in Figure  22, the interest we pay on debt 

corresponds to the difference between the present value of future cost of extra maintenance 

minus the cost we save by choosing a less than optimal practice. 

 

                                                 
8 From Marco Torchiano, http://mtorchiano.wordpress.com/2012/02/24/software-technical-debt/  
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3.2. COMPARING FOUR APPROACHES FOR TECHNICAL 

DEBT IDENTIFICATION: ANALYSIS ON HADOOP PROJECT 

One important class of TD is manifested by problematic implementations in code. 

Many types of such code-based TD can be potentially detected automatically using static 

program analysis tools that find anomalies of various kinds in the source code.  

There are a number of tools designed for this purpose. Some tools are designed to 

detect design problems such as code smells [54] or modularity violations [55], some are 

designed to discover design pattern degradations [56], and some are intended to spot 

potential defects. From a tool user’s point of view, the relevant questions are: which tool(s) 

should be used to inform the existence of TD under what circumstances?, and, Is it 

sufficient to use one of the tools, or can the usage of multiple tools lead to benefits in 

finding more TD?  

Plus, not all problematic code detected by these tools is worth being fixed. Some 

detected source code problems are not likely to cause future maintenance problems or affect 

the overall quality of the system. In terms of the TD metaphor, the TD principal (i.e. the 

cost of fixing the debt) may be higher than the TD interest being paid on the debt (i.e. the 

probable future cost of not fixing it). Thus, another question is: Which tools reveal TD that 

is likely to incur interest?  

TD interest is inherently difficult to estimate or measure. Given the data that we 

had available in this study, we chose to use two proxies for expected interest (hereafter 

referred to as “interest indicators”): defect- and change-proneness. These proxies are 

concrete manifestations of problematic code and are related to future maintenance cost, and 

therefore are useful, independent indicators of likely interest payments. However, they are 

not the only, and possibly not the best, indicators, since they do not capture other forms of 

TD interest, such as increasing effort to make changes. However, defect- and change-

proneness are flavours of interest that are of concern to practitioners, and thus it is relevant 

to determine if they correlate with the TD indicators generated by the four approaches 

studied here. Thus, a lack of relationship between our selected interest indicators and a TD 
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indicator cannot clearly be interpreted to mean that the associated TD identification 

approach is ineffective, but that instead it may identify TD that exhibits other forms of 

interest. 

It should be noted that our aim is not to predict either defects or change-proneness 

in future instances of the code base, as has been done by many other researchers (e.g., [23] 

[46] [57] [58] [59] ). Rather, we are calculating, for a given version of the system, which 

classes are already exhibiting change- or defect-proneness, and using these indicators as 

proxies of a construct (TD interest) that is more difficult to measure. 

So as a first attempt to compare and contrast different TD identification 

techniques, we conducted an empirical study to answer the following research questions:  

− (RQ1) Considering a set of four representative TD detection techniques 

(resulting in a set of 25 “TD indicators”), do they report the same set of 

modules as problematic? If not, how much overlap is there?  

− (RQ2) To what extent do any of the techniques for detecting TD in code 

happen to point to classes with high interest indicators (defect-proneness 

or change-proneness)?  

We first compare the results of applying the different TD identification techniques 

to 13 versions of the Apache Hadoop open source software project.  

Secondly, we investigate whether and how likely the problems detected by these 

different techniques are related to the two interest indicators we’ve chosen. This study is a 

first attempt to map out a “TD landscape” that illustrates the overlaps, gaps, and synergies 

between a variety of code analysis techniques with respect to their use in identifying TD. 

Both research questions are answered through the computation and combination of 

the pairwise relationship between TD indicators (RQ1) and TD indicators vs interest 

indicators (RQ2). The aim is to understand which TD and interest indicators point to the 

same locations (i.e. Java classes). 

We use four different statistical association measures: Pearson correlation, 

conditional probability, chance agreement and Cohen’s Kappa. Each of the selected four 

measures assesses association from different perspectives that complement each other . 
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Measures are computed for each class and each of the 13 selected versions of the 

Hadoop software: hence a further aggregation is needed to combine measures from all 

versions and have a unique association measure for every possible combination of TD 

indicators (RQ1) or TD indicator vs interest indicator (RQ2). 

The results of this study have the potential to improve our understanding about 

how existing source code analysis approaches can be tailored towards identifying TD. The 

long-term vision of this work is to create practical approaches that software developers can 

use to make TD visible, to help assess the principal (i.e. value) and interest (i.e. long-term 

cost) of the debt, and to assist managers in making educated decisions on strategies for debt 

retirement. 

RELATED WORK 

Past research efforts into TD have focused on building techniques that 

independently identify TD through source code analysis. For instance, Gat and Heintz [60] 

identified TD in a customer system using both dynamic (i.e., unit testing and code 

coverage) and static (computing rule conformance, code complexity, duplication of code, 

design properties) program analysis techniques.  

Nugroho et al. [61]also performed static analysis to identify TD. They first 

calculated lines of code, code duplication, McCabe’s cyclomatic complexity, parameter 

counts, and dependency counts. After that, they assigned these metrics to risk categories to 

quantify the amount of interest owed in the form of estimated maintainability cost.  

 A CAST report 9 also presented the usage of static analysis as a way to identify 

technical debt. The proposed approach examines the density of static analysis issues on 

security, performance, robustness, and changeability of the code. The authors built a pricing 

model assuming that only a percentage of the issues are actually being fixed.  

                                                 
9 Available at 
http://docs.media.bitpipe.com/io_10x/io_102267/item_465972/whitepaper_77813451881.pdf  
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The Sonar tool10 is an open source application that has gained in popularity. It also 

uses static measurements against various source code metrics and attributes to assess the 

level of TD in a code base. 

The approaches discussed thus far calculate TD holistically, i.e. they yield an 

overall assessment of the total TD in a system, but do not point to specific problematic 

parts of the code base, or to specific remedies applicable to those parts. Another approach 

to TD identification, that attempts to yield more actionable information, is to use source 

code analysis to identify potentially problematic parts of the code, and to use the results of 

that analysis to suggest specific changes to be made to that code. Examples of such 

approaches that have been partly evaluated to be valid TD indicators are code smells [62], 

grime build up [56] [63] and modularity violations [55].  We discuss these techniques in 

more detail in Section 4.  

This works further evolves the study on these analysis techniques by asking the 

question of the amount of similarity between them. If it turned out that many, or even all, of 

the TD indicators point to the same code, one could propose to choose only one of the tools 

when searching for TD. Alternatively, if each of the techniques selects a unique subset of 

problems, the usage of multiple tools can be recommended. The relationships among 

different TD identification approaches have not previously been addressed in the literature. 

GOALS AND RESEARCH QUESTIONS 

The objective of our research is twofold: the first goal is to compare the 

similarities and differences between four code analysis techniques in terms of TD 

identification. We are interested in understanding the degree of convergence and 

divergence of these techniques and their associations. The second goal is to understand how 

the problematic code identified by these four techniques relates to our chosen proxies for 

TD interest, defect and change-proneness, as explained in Section 1. We define the goals of 

our research according to the Goal Question Metric framework [16]. 

                                                 
10 http://www.sonarsource.org/ 
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− Goal 1: Characterizing the similarities and differences in the problematic 

classes reported by these four different TD detection approaches, in the 

context of an open source software project.  

− Goal 2: Comparing these four TD detection approaches in terms of their 

correlation to one subset of interest indicators, namely change-proneness 

and defect-proneness, in the context of an open source project. 

We deduced from the above goals the following research questions: 

− R1: Which of these techniques tend to report problems in the same sets of 

classes?  

− R2: Which TD indicators (derived from the four TD detection techniques) 

correlate with the interest indicators defect- and change-proneness? 

CASE STUDY 

The application studied is Apache Hadoop11. Hadoop is a software library for the 

distributed processing of data across numerous computer nodes, based on the map-reduce 

processing model. It provides two key services: reliable data storage using the Hadoop 

Distributed File System (HDFS) and high-performance parallel data processing using a 

technique called MapReduce. Data are spread and replicated differently among all the 

nodes of the cluster, while operations are split so that each node works on its own piece of 

data and then sends results into a unified whole.  

We selected Hadoop because it is a mature project (it has been released 59 times 

starting from 2 April 2006). We focused our analysis on the Java core packages of the 

system   (java/org.apache.hadoop.*), which includes the common utilities that support the 

other Hadoop subprojects and provides access to the file systems supported by Hadoop. We 

focused the analysis from release 0.2.0 to release 0.14.0 (the latest release, at the time this 

paper was written, is 1.0.3). The system initially had 10.5k NCSS (non- commented source 

                                                 
11 http://hadoop.apache.org 
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statements) and 126 Java classes, and grew to 37k NCSS and 373 Java classes by release 

0.14.0.  

TD IDENTIFICATION TECHNIQUES SELECTED 

We selected four main techniques for identifying technical debt in source code: 

modularity violations, grime buildup, code smells, and automatic static analysis (ASA). We 

introduce their basic concepts and report on our and other related past work. 

Modularity Violations (tool: CLIO).  In large software systems, modules represent 

subsystems that are typically designed to evolve independently. During software evolution, 

components that evolve together though belonging to distinct modules represent a 

discrepancy. This discrepancy may be caused by side effects of a quick and dirty 

implementation, or requirements may have changed such that the original designed 

architecture could not easily adapt. When such discrepancies exist, the software can deviate 

from its designed modular structure, which is called a modularity violation. Wong et al. 

[55] have demonstrated the feasibility and utility of this approach. In their experiment using 

Hadoop, they identified 231 modularity violations from 490 modification requests, of 

which 152 (65%) violations were conservatively confirmed by the fact that they were either 

indeed addressed in later versions, or were recognized as problems in the developers’ 

subsequent comments.  

Design Patterns and Grime Buildup. Design patterns are popular for a number of 

reasons, including but not limited to claims of easier maintainability and flexibility of 

designs, reduced number of defects and faults [64], and improved architectural designs. 

Software designs decay as systems, uses, and operational environments evolve, and decay 

can involve design patterns.  Classes that participate in design pattern realizations 

accumulate grime – non-pattern-related code. Design pattern realizations can also rot, when 

changes break the structural or functional integrity of a design pattern. Both grime and rot 

represent forms of TD.  Izurieta and Bieman [56] introduced the notion of design pattern 

grime and performed a pilot study of the effects of decay on one small part of an open-
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source system, JRefactory. They studied a small number of pattern realizations and found 

that coupling increased and namespace organization became more complex due to design 

pattern grime, but they did not find changes that “break” the pattern (design pattern rot). 

Izurieta and Bieman [65] also examined the effects of design pattern grime on the 

testability of JRefactory, a handful of patterns were examined, and they found that there are 

at least two potential mechanisms that can impact testability: 1) the appearance of design 

anti-patterns [66] and 2) the increases in relationships (associations, realizations, and 

dependencies) that in turn increase test requirements.  They also found that the majority of 

grime buildup is attributable to increases in coupling.   

Code Smells (tool: CodeVizard). The concept of code smells (aka bad smells) was 

first introduced by Fowler [62]and describes choices in object-oriented systems that do not 

comply with widely accepted principles of good object oriented design (e.g., information 

hiding, encapsulation, use of inheritance). Code smells can be roughly classified into 

identity, collaboration, and classification disharmonies [67]. Automatic approaches 

(detection strategies [68]) have been developed to identify code smells. Schumacher et al.’s 

research [54] focused on evaluating these automatic approaches with respect to their 

precision and recall, and their other work [69] [70] evaluated the relationship between code 

smells (e.g., god classes) and the defect and change proneness of software components. 

This work showed that automatic classifiers for god classes yield high recall and precision 

when studied in industrial environments. Further, in these environments, god classes were 

up to 13 times more likely to be affected by defects and up to seven times more change-

prone than their non-smelly counterparts.  

ASA issues (tool: FindBugs). Automatic static analysis (ASA) tools analyze source 

or compiled code looking for violations of recommended programming practices (“issues”) 

that might cause faults or might degrade some dimensions of software quality (e.g., 

maintainability, efficiency). Some issues can be removed through refactoring to avoid 

future problems. We have analyzed in sections 2.3 and 0 the issues detected by FindBugs 

on two pools of similar small programs (85 and 301 programs respectively), each of them 

developed by a different student. Their purpose was to examine which issues detected by 

FindBugs were related to real defects in the source code. By analyzing the changes and test 
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failures in both studies they observed that a small percentage of detected issues were related 

to known defects in the code. Some of the issues identified as good/bad defect detectors by 

the authors in these studies were also found in similar studies with FindBugs, both in 

industry [39] and open source software  [30][23]. Similar studies have also been conducted 

with other tools [21] [37] and the overall finding is: a small set of ASA issues is related to 

defects in the software, but the set depends on the context and type of the software. 

DATA COLLECTION 

For our analysis we considered 13 Hadoop releases. We ignored the very first one 

(0.1.0) since CLIO’s modularity violation computation is based on the current and previous 

versions. Across the 13 Hadoop releases, from 0.2.0 to 0.14.0, and all 30 indicators over 

every class, the total size of our data set was 96,720 data points. Due to limitations in the 

tools used for TD identification we excluded nested classes from our analysis. To 

understand the threat to validity, we inspected all versions of Hadoop and found that 

(depending on the version) 39-45% of all classes were nested classes. We will discuss this 

threat in Section 6. 

It should be noted that the range (i.e., possible values) of each indicator varies. As 

shown in Table 21, TD indicators that solely express the presence of TD (e.g., the presence 

of a modularity violation or a code smell on class level) map to 0 (meaning no presence) or 

1 (meaning the indicator is present). This is expressed by [0,1] in Table 21. For indicators 

that can be identified multiple times in a Java class (e.g. code smells on the method level 

and ASA issues that can be repeatedly detected) the measure indicates how many times the 

indicator was identified. Table 21 shows this as [0..N]. We measured the presence of grime 

as well as the absence of design patterns. Even if we cannot be sure that the absence of 

design patterns is harmful, we included this information to investigate if we can find 

interesting relationships. Therefore classes not following design patterns received a value of 

“1” for the indicator. We collected issues reported by FindBugs (version 1.3.9) from the 
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source code of each Hadoop version, considering all issues of any FindBugs category 

(Table 21: 17-25) and priority (Table 21: 14-16).   

Defect proneness measurement. To link classes with defects, for a bug that was 

fixed and closed in a version v, we computed which classes were modified during the fix 

change (identifiable through Subversion repository by using bug links provided in commit 

comments, e.g. HADOOP-123). The linkage between source code anomalies and their 

resulting defects is potentially stretched temporally over time. For example, as illustrated in 

Figure  23. Three ways of computing defect proneness, a bug can be found and reported in 

version 0.3.0, but may not be fixed until version 0.5.0. We thus measure the defect 

proneness of a class c in version v using the following three different ways respectively:   

− The number of times class c is involved in fixing bugs that were injected 

in version v, that is, the version where the bugs were found and reported.  

− The number of times class c is involved in fixing bugs that were resolved 

in version v. 

− The number of times class c is involved in fixing bugs that were alive in 

version v, that is, the bugs were reported before or in version v, and were 

resolved after or in version v.  

Change proneness measurement. Following the work of Schumacher et al. [54], 

we measure the change proneness of class c in version v as the number of repository 

changes affecting class c divided by the total number of changes in the repository during 

the class’ lifetime (e.g., creation to deletion date).  
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Size measurement. We chose the Number of Methods in each class as a measure of 

 

Table 21. Indicators used in the analysis 

Technical 
Debt 
Indicators 

Modularity 
Violations 

[1]Presence of Modularity Violation 
CLIO 

[0,1] 

Grime [2]Presence of Grime [0,1] 

[3]Absence of Design Pattern [0,1] 

Code 
Smells 
CodeVizard 
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e 
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ls [4]God Class [0,1] 

[5]Brain Class [0,1] 

[6]Refused Parent 
Bequest 

[0,1] 

[7]Tradition Breaker [0,1] 

[8]Feature Envy [0,1] 

[9]Data Class [0,1] 

M
et

ho
d 

Le
ve

l C
od

e 
Sm

el
ls 

[10]Brain Method [0..N] 

[11]Intensive Coupling [0..N] 

[12]Dispersed Coupling [0..N] 

[13]Shotgun Surgery [0..N] 

ASA Issues 
FindBugs 

By
 

Pr
io

rit
y [14]High  [0..N] 

[15]Medium [0..N] 

[16]Low [0..N] 

By
 C

at
eg

or
y 

[17]Bad Practice [0..N] 

[18]Correctness [0..N] 

[19]Experimental [0..N] 

[20]I18N 
(internationalization) 

[0..N] 

[21]Malicious Code [0..N] 

[22]Multi Thread (MT) 
Correctness 

[0..N] 

[23]Performance  [0..N] 

[24]Security [0..N] 

[25]Style [0..N] 

Other 
Metrics 

Size [26]Number of Methods  
Eclipse Metrics Plugin 

[0..N] 

 
Interest 
Indicators  

Defect 
Proneness 

[27]Number of bug fixes affecting this 
version 

[0..N] 

[28]Number of bug fixes fixed in this 
version 

[0..N] 

[29]Number of bug fixes counting 
between affected and fixed in this 
version 

[0..N] 

Change 
Proneness 

[30]Change Likelihood [0.0…1.0] 
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To answer the first research question regarding to the overlap between the results 

reported by these techniques, we examine the association measures between their respective 

TD indicators. To answer the second research question regarding interest indicators, we 

order the TD indicators (and the one size measure) by their level of association with the 

four interest indicators.  

 

Step1: Compute Statistical Association Measures 

We identified different statistical techniques to quantify the relationship between 

pairs of TD indicators in each version of Hadoop. Because there are many choices for 

association measurement (e.g. Pearson correlation, conditional probability), we performed a 

sensitivity analysis to investigate how the results generated from these statistic models 

differ from each other. This analysis showed that different statistical analysis techniques 

result in different answers: from the top 50 list of the most highly associated pairs of 

indicators and metrics generated by each of the statistical analysis techniques, only three 

pairs were common. Therefore we concluded that using only one single measure of 

association would be inadequate because different statistic models assess association from 

different perspectives that complement each other.  We thus apply 4 different association 

models to assess the relation between the 30 X 30 pairs of indicators. The different 

association measures will be combined in one unique measure in Step 3.  

In order to illustrate our methodology, we use a pair of TD indicators, Dispersed 

Coupling (one type of code smell) and Performance issues (reported by FindBugs), as a 

running example.  The four association techniques are described below: 

1. The Pearson correlation between the number of occurrences of Dispersed 

Coupling and the number of occurrences of Performance issues across all 

Java classes of one Hadoop version (Figure  24: Step 1, M1). Pearson 

correlation is widely used in the literature on defect prediction models   

[46], including the usage of ASA issues as an early indicator of defects 

[23], and in maintainability prediction [57]. 

2. The conditional probability of a Java class having at least one occurrence 

of Dispersed Coupling given that the same class has at least one 
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occurrence of Performance issue, and vice versa: P(Dispersed 

Coupling│Performance), P(Performance│Dispersed Coupling) (Figure  

24: Step 1, M2). The conditional Probability is used for software defects 

and maintainability predictions [58] [59]. 

3. The chance agreement, which is the probability that a Java class holds an 

occurrence of Dispersed Coupling and Performance issue at the same 

time by chance. This probability is computed as: 

P(Performance)*P(Dispersed Coupling)+P(No Performance)*P(No 

Dispersed Coupling) (Figure  24: Step 1, M3). Chance agreement is at the 

basis of Cohen’s Kappa computation [71]. 

4. Cohen’s Kappa, which is an inter-rater agreement between Dispersed 

Coupling and Performance issues, and indicates the strength of agreement 

and disagreement of two raters (e.g., TD indicators). Cohen’s Kappa is 

appropriate for testing whether agreement exceeds chance levels for 

binary and nominal ratings. Therefore, Dispersed Coupling and 

Performance issues are in agreement if both occur at least once in the 

same Java class, or if both of them are not present. In any other case, they 

are in disagreement (Figure  24: Step 1, M4). Cohen’s Kappa was used 

for the assessment of defect classification schemes [72] and in software 

process assessment [73].  Used in conjunction with other statistical 

measures, it prevents the misinterpretation of results possibly affected by 

prevalence and bias. 

The computation of chance agreement, conditional probability and Cohen’s Kappa 

required data transformation for some measures: all metrics ranges [0..N] were reduced to 

[0,1], where “1” indicates that at least one occurrence of the TD indicator was found in the 

class and “0” otherwise. For example, for the Number of bug fixes (fixed) in version v, we 

assign “1” if the Java class was part of at least one defect fix during the analyzed version. 

The partial loss of measurement resolution is further discussed in Threats to validity 

subsection. 
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For change likelihood, where the metric ranges from 0.0 to 1.0 (floating point 

numbers), we investigated its empirical distribution on each version and selected a 

threshold value to be used in the data transformation. This threshold was computed so as to 

guarantee that, on average, only the top 25% of classes with high change likelihood 

obtained a value of “1” in the data transformation, “0” otherwise. The computed threshold 

was 0.01, indicating that a Java class that is changed more often than in 1 out of 100 cases 

is considered change prone. 

The same was done for the size metric, Number of Methods. We use a threshold of 

11 to guarantee that only the top 25% of classes were considered large. The computation of 

the four statistical analysis techniques produced four respective matrices shown in Figure  

24: M1, M2, M3 and M4. Each of the statistical measures offers a different perspective on 

the association between pairs of metrics. 

The Pearson correlation indicates whether two indicators increase/decrease 

together following a linear pattern. The conditional probability is useful in understanding 

the direction of the association, since it indicates whether an indicator is present in a class 

given that another indicator is present. The chance agreement, instead, is the probability 

that two indicators are either indicating or not indicating a problem in the same class 

randomly; in the following section we will see how we use this measure with the 

conditional probability. Finally, the Cohen’s Kappa is useful because the agreement takes 

into account not only when two indicators are present in the same class, but also when they 

are not present simultaneously. 



 

 

 

Fig
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Step 2: Apply Significance Functions 

After applying the different techniques in Step 1, the goal was to filter the more 

significant associations from the less significant ones. Therefore we applied different 

significance functions Ω. The significance functions map the associations between each 

pair of indicators to [0,1], expressing that the pairs are strongly associated (“1”) or not 

associated strongly enough (“0”). The following three formulae define the functions applied 

to produce matrices M5, M6 and M7 for each of the 13 versions in Figure  24: 

− Significant Pearson Correlations: 

 

 

− Significant Conditional Probability: using M2 (Cond. 

Probability) and M3 (Chance agreement): 

 

− Significant Cohen’s Kappa: 

 

The goal of the significance function Ω is to discern significant relations from 

insignificant ones. Parameters T1, T2 and T3 are three specific thresholds of the respective 

significance functions that we chose based on the association strength levels found in the 

literature:  

T1 (Correlation) = 0.60.  We found two main correlation strength classifications, 

Cohen [74] and Evan [75]. We adopt Evan’s strong definition because it is stricter than 

Cohen’s definition.  

T2 (Conditional probability) = 0.60. To our knowledge, existing literature does 

not provide a commonly accepted and generally applicable threshold for conditional 

probability. Therefore, we calculated the distribution of conditional probabilities in the 

different versions and we selected the threshold 0.60, which on average filtered out 80% of 

Ω(M1i,j )= ൜1,  if(M1i,j)≥T1 ∧ p-val ≤0.05 ∧ (i≠j)  
0,  &otherwise

 

Ω(M2i,j ,M3i,j)= ൜1,  if(M2i,j)>(M3i,j) ∧ (M2i,j)≥T2  ∧ (i≠j)
0,  &otherwise

 

Ω(M4i,j )= ൜1,  if(M4i,j)>T3  ∧ (i≠j)
0,  &otherwise
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all data. Moreover, since this criterion is merged with the criterion conditional probability > 

chance agreement, we consider such threshold high enough to discriminate significant data. 

T3 (Cohen’s Kappa) = 0.60. Many tables of Kappa’s strength of agreement can be 

found in the literature, the most relevant of which are [76] [77] [71] .  We adopt a threshold 

value of 0.60. Thus, a constraint > 0.60 corresponds to a “good”/”substantial” agreement in 

all the proposed ranks. 

 

Step 3: Combine Statistical Association Measures 

The next step is an aggregation of the statistical association measures. For each 

cell of a matrix (a pair of indicators), we compute the sum over all three matrices M5, M6, 

and M7. The resulting matrix (displayed as M8 in Figure  24) contains the significance 

score for each pair and version that ranges from 0 (not significant in any of the three 

methods) to 3 (significant in all three methods). 

Step 4: Combine Versions 

The fourth and final computation step of the process is the aggregation of the 

significance score over versions. For every cell in Matrix M8, we compute the mean over 

the 13 versions of Hadoop, resulting in a single matrix (M9 in Figure  24).  

 

Step 5: Visualize Most Significant Outcomes 

In the final step, we visualize the pairs of TD indicators with most significant 

associations as a graph (Figure  25) and a list of TD indicators most related to interest 

indicators (Table 22). 

RESULTS 

We made the following observations from the result. First, the value of TD 

indicators increases together with the size of Hadoop. The sum of all TD indicators 

increases in the evolution from release 0.2.0 to release 0.14.0. FindBugs issues ranged from 
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307 to 486 but the average number of issues per class does not expose the same monotone 

increasing trend, and the range of the average number of issues per class is [1.30-1.76]. 

Code smells in the last release (352) are more than twofold the number of code 

smells in the first release (143), and the average of code smells per class is [0.78-1.01]. 

Modularity violations have the sharpest increase: they were 8 in the first analyzed release 

and 37 in the last one (reaching a maximum of 38 in v. 0.13.0). The average number of 

Modularity violations per class ranged from 0.04 to 0.11. Moreover, we detected in each 

version two realizations of Singleton design pattern, two realizations of State pattern and 

six of Abstract factory. However, none of the classes that are participating in these design 

patterns was affected by grime. 

We do not observe a trend in any of the interest indicators. The sum of Bug fixes 

collected with the defect proneness strategy “inject” ranges from a minimum of 16 (v 0.8.0) 

to a maximum of 102 (v 0.3.0), while the range of the average number per class is [0.06-

0.53]. Version 0.8.0 has no Bug fixes (fixed) and version 0.7.0 is the version with the 

largest number (590). The average of all classes per version is in the range [0-2.63].  The 

ranges of Bug fixes (between) are [162-675] and [0.55-3.01], respectively for their total by 

version and average of all classes by version. Finally, the Change likelihood range is 

[0.006-0.017] per class.  

Figure  25 shows the resulting directional graph of the TD pairs and interest 

indicators that were on average significant in more than one statistical measure (overall 

mean score in Matrix M9 > 1). The nodes of the graph show the indicators. The color (or 

shade) of the node indicates which TD indicators were derived from the same TD detection 

technique. The directional edges are further labeled by their association strength (ranging 

from 1 to 3). And lastly, the direction indicates the conditional properties inherited from the 

conditional probability metric. For example, Modularity violations and Bug fixes are 

associated, meaning that if a class has a Modularity violation, then it is also likely that such 

a class will have Bug fixes. However, the reverse statement (i.e. classes containing Bug 

fixes are not as likely to have Modularity violations at the same time) is not necessarily 

true, and does not show in the graph.  
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Figure  25 represents the strongest associations found in our analysis. The graph 

contains 24 relationships (edges), one of them between TD indicators (nodes) belonging to 

different techniques (colors or shades), three of them between TD indicators and interest 

indicators or size, and the remaining 20 are among TD indicators detected by the same 

technique or among the interest indicators.  

As for correlations between TD indicators and interest indicators, Dispersed 

Coupling points to classes that are more defect prone. Modularity Violations do not 

strongly co-occur with code smells or ASA issues but are likely to point to defect and 

change prone classes.  

Seven out of the twelve ASA/FindBugs issue types appear in the graph. The 

strongest associations (average score ≥ 2) are between Style and Low and Bad Practice and 

Medium. We also observe an association between a FindBugs issue (High) and a Code 

Smell (Intensive Coupling). Four out of ten code smells show up in the graph. Brain Class 

and Brain Method code smells are related in both directions, as well as Dispersed and 

Intensive Coupling (but only one direction). 

Lastly, defect prone classes tend to be also change prone, and vice-versa. The size 

metric Number of Methods does not shoot up in the graph indicating that neither the TD 

indicators nor the interest indicators are very strongly associated with size. 

 

RQ 1: Which techniques tend to report problems in the same sets of classes? 

The results shown in Figure  25 lead to our first finding in response to RQ1: 

Different TD techniques point to different classes and therefore to different problems. 

The only arc in Figure  25 that relates two different types of TD identification 

approaches is Intensive Coupling and FindBugs High priority issues. A method exhibits 

intensive coupling if it “calls too many methods from a few unrelated classes” [67]. 

FindBugs High priority issues are those issues thought to have higher probability to detect 

serious problems in the code. The direction of the association indicates that classes with 

many High priority issues have methods affected by Intensive Coupling. A possible 

explanation for this relation is that both of these indicators point, more than any others, to 

generally poorly designed code.   
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Looking at the associations inside the boundaries of the techniques, we observe a 

characteristic of all FindBugs issues in the graph: significant relationships are only revealed 

between priority and type categories, which are not independent indicators and are 

constructed by the FindBugs authors12. Therefore this relationship is not a surprising result. 

A follow up analysis revealed that 81-87% (depending on version) of all classes contain 

FindBugs issues of only one single category.  

Shifting the focus of the results analysis to the code smells group, we observe three 

associations between particular code smells: Brain Class → Brain Method (2.0), Brain 

Method → Brain Class (1.15) and Dispersed Coupling → Intensive Coupling (1.23). The 

first relationship is stronger in the direction → Brain Method and it indicates that Brain 

classes are more prone to contain Brain methods. This observation can be explained by the 

way Brain Class code smells are detected using Marinescu’s detection strategy [67] [68]: 

the Brain Class detection requires that the inspected class contains at least one Brain 

Method. Therefore the conditional probability as defined in Section IV of P(Brain Method | 

Brain Class) is always 1.0.  The second relationship between code smells is Dispersed 

Coupling → Intensive Coupling (1.20). While the latter indicates that a class has methods 

that invoke many functions of a few other classes, the former shows classes having 

methods invoking functions of many other classes. Their association demonstrates that 

classes in Hadoop having the former of the coupling smells also have the latter smell, 

which intensifies the problem of coupling. No other relationship within different code 

smells was found in this analysis. 

We also observe that modularity violations are not strongly related to any other 

indicator. This confirms and validates one of the findings reported in Wong et al  [55], who 

found that 40% of modularity violations in Hadoop are not defined as code smells and are 

not detectable using existing approaches. 

To conclude, the 4 TD detection approaches (modularity violation, code smells, 

grime, and ASA issues) have only very little overlap and are therefore pointing to different 

problems. Within the broad approaches, relations are stronger (as one would expect). 

                                                 
12 Each bug pattern is assigned a priority and category by the FindBugs authors. Some categories are 
biased towards single priorities: e.g., correctness is considered more often to be of high priority. 
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However the data also shows that many code smells and some ASA issue types are not 

inter-related (i.e. the ones not showing in Figure  25) indicating that even at a lower level 

indicators point to different problem classes. 

 

RQ2: Which TD indicators correlate with the interest indicators defect- and 

change-proneness? 

Turning to RQ2, our major finding concerning defect-proneness is summarized as 

follows: The dispersed coupling code smell and modularity violations are located in the 

classes that are more defect-prone. 

For each TD indicator (Column 1), Table 22 reports the average score obtained in 

matrix M9 for the association between the indicator and defect proneness (columns 2-4) 

and change proneness (column 5). TD indicators are listed in the same order as Table 21, 

but those with average score less than or equal to 0.3 in all associations with interest 

indicators are not shown. 

Figure  25 shows that no single FindBugs indicator has a very strong relationship 

(>1) with Bug fixes.  However, when investigating less correlated indicators we find the 

strongest FindBugs indicator to be Multithread Correctness having a borderline value of 1.0 

(Table II). This category is very specific but ties very well into the studied application; 

Hadoop has to deal with both distributed data storage and computations. Previous work 

[17] [33] [38]  reported that only a small percentage of FindBugs issues are actually related 

to bug fixes. This is supported by our results and a follow up analysis: Multithread 

Correctness issues make up only 5.3% of the total of FindBugs issues found in Hadoop. 

Another strong relationship with Bug fixes (in two approaches, between and fixed) 

involves the Dispersed Coupling code smell. In a related work [78], Dispersed Coupling 

was highly correlated with bug fixes only when the prevalence of this smell increased 

during the evolution of the software. We observe a border value (1.0) also for one other 

code smell: the God Class indicator has an average score of 1.0. Zazworka et al. [69] 

reported in their previous work that in an industrial system god classes contained up to 13 

times more defects than non-god classes. 
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The last indicator strongly related to Bug fixes (between) is Modularity violations, 

which are located in the same classes where the more bug fixes are found (but not in all of 

them).  

Although defect prediction is not a goal of this work, it is useful to look at 

measures of precision and recall to further describe the relationships we’ve found. We used 

the two TD indicators most strongly related to bug fixes and the two border value indicators 

to predict, in each version, classes with at least one bug fix (strategy between). We observe 

in Table III high precision and low recall values. Each of the four indicators points out a 

small subset of defect-prone classes very well. When using all four indicators together 

recall can be raised to 0.33 by trading off some precision. 

The second part of RQ2 was concerned with change proneness. The following 

summarizes this result. Modularity violations point to change prone classes. 

Change-prone classes might indicate maintenance problems (e.g., classes that have 

to be changed unusually often are candidates for refactoring). We labeled on average the 

top 25% most frequently changed classes as “change-prone.”   

The results indicate that Modularity Violations are strongly related to change 

likelihood. Table 22 shows that the highest average scores are Modularity violations (1.38), 

Dispersed coupling (0.92) and God Classes (0.85). This fits expectations since all of the 

three approaches claim to identify maintenance problems. Modularity violations and 

Dispersed coupling point to classes that have collaboration disharmonies. The God class 

code smell identifies classes that implement multiple responsibilities and should be 

refactored (e.g. split up into multiple classes).  

Further, the relation between defect and change proneness shows that these issues 

are interconnected. Explanations for the phenomena can be that maintenance problems lead 

to less correct code, or that many quick-and-dirty bug fixes lead to less maintainable code. 

Finally, we point out that a large set of TD indicators (i.e. 9 out of 25) do not show 

significant associations with defect or change proneness. This proportion suggests that 

these indicators either point to different classes of quality issues (e.g. FindBugs type 

Performance) or to none at all. Therefore these results can be further used to tailor TD 

indicators towards quality attributes of interest. If one is most interested in defect and 
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change proneness issues in Hadoop (or similar software) we suggest analyzing for 

dispersed coupling and modularity violations. 

 
 

Table 22. Association of TD indicators with interest indicators 

 
TD 

Indicator 

Bug  
fixes 

(between) 

Bug  
fixes  

(inject) 

Bug  
fixes 

(fixed) 

Change 
likeli-
hood 

M
od

 
V

io
l Modularity 

violations 
1.23 0.23 0.54 1.38 

C
od

e 
S

m
el

ls
 

God Class 1.00 0.23 0.77 0.85 

Brain Class 0.62 0.23 0.46 0.62 

Tradition 
Breaker 

0.69 0.31 0.38 0.69 

Feature 
Envy 

0.54 0.15 0.31 0.15 

Brain 
Method 

0.77 0.23 0.54 0.46 

Intensive 
Coupling 

0.54 0.00 0.08 0.15 

Dispersed 
Coupling 

1.31 0.23 0.54 0.92 

Shotgun 
Surgery 

0.31 0.00 0.08 0.08 

F
in

dB
ug

s 
is

su
es

 

High 0.92 0.08 0.46 0.62 

MT 
Correctness 

1.00 0.08 0.46 0.69 

Correctness 0.92 0.15 0.46 0.62 

Performance 0.31 0.00 0.08 0.08 

Style 0.31 0.00 0.08 0.38 

S
iz

e Number of 
Methods 

0.62 0.00 0.08 0.08 
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THREATS TO VALIDITY 

We list the threats to the validity and generalizability of the study following the 

structure proposed by Wohlin et al. [7], who identify four categories: construct, internal, 

conclusion and external threats.  

A first conclusion threat concerns the impact of thresholds T1, T2 and T3 applied 

on Step 2 on the results. We documented the choice of thresholds based on values discussed 

and adopted in the literature, and we adopted higher values to decrease the level of 

uncertainty. The collection and aggregation of different statistical measures also lowers the 

risk associated with this threat.  

A further statistical point of discussion is the loss of measurement resolution in 

data transformation from ranges [0..N] to the range [0,1]. The transformation was required 

 
Figure  25. Graph of top ranked pairs (average score > 1) 
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checked, for each version, the correlation between the Number of Methods and two other 

metrics, i.e. the Number of Lines of Code and the Number of Statements in Java classes. 

We also obtained at this granularity very high correlation, respectively 0.8975 and 0.8780. 

We conclude that using Number of Methods as measure of class size is equivalent to lines 

of code and did not affect results. 

A further construct threat is the selection of outer classes, ignoring nested classes. 

At this point in time, the tools used did not allow the collection of all metrics for nested 

classes. Therefore the validity scope of our results is limited to outer classes only. 

We believe that the findings of this work apply only in the context analyzed 

(external threat). They may apply in similar applications, but we are not aware of any other 

published results that can be compared to ours. However, although results cannot be 

generalized, they contribute to begin composing the TD landscape.  
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3.3. A CASE STUDY OF EFFECTIVELY IDENTIFYING 

TECHNICAL DEBT 

The TD metaphor has facilitated discussion among practitioners and researchers 

by providing a familiar framework and vocabulary from the financial domain. Since the 

metaphor appears to be sound and intuitively understandable by all stakeholders involved in 

the software development process, it has potential to become a truly universal language for 

communicating technical tradeoffs. 

Our vision, however, goes beyond facilitating communication, to the development 

of a set of such tools, inspired by the technical debt metaphor, which stakeholders can use 

in today’s software projects. Identification is essential to transform the technical debt in a 

project into a manageable body that would allow one, such as with a portfolio of financial 

debt, to better control the current debt situation. Technical debt identification approaches 

broadly consist of methods to elicit technical debt instances from humans (i.e. developers 

and other stakeholders), and methods that rely on automated tools of various kinds to detect 

potential debt in the source code. Human, manual approaches are likely to be more time-

consuming, but have two advantages (at least in theory) over automated approaches. One is 

that they might be more accurate, i.e. more likely to identify technical debt that is most 

significant, while automated analyses may reveal many anomalies that turn out to be 

unimportant. The other advantage is that human stakeholders might be able to provide 

additional important contextual information related to each instance of technical debt (e.g. 

effort estimates, impact, decision rationale, etc.) that is difficult or even impossible to glean 

from analysis tools. 

The first contribution of our work is the evaluation of human elicitation of 

technical debt. We propose and evaluate a technical debt backlog [79] that can be used to 

capture, store, and communicate essential properties of technical debt that can feed into 

further decision making processes about debt repayment. Besides the template, our case 

study gives some insight into the dynamics of eliciting technical debt from a team of 

developers, all familiar with different aspects of the system being analyzed. 
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As a second contribution we evaluate the utility of tool support for technical debt 

identification. Some recent research has addressed the issue of how close automated 

approaches can get to the accuracy and informativeness of manual technical debt 

identification. Some of these studies have indicated that it is possible to identify certain 

classes of potential technical debt (in particular design debt) with computer-assisted 

methods [54] [80]. Moreover, they have demonstrated that detection approaches can 

succeed in finding issues that are of value to developers [54]. However, despite the fact that 

these approaches point to system code fragments that need improvement, it is not clear yet 

if they point to the most important technical debt, from software project stakeholders’ point 

of view. Based on the current state-of-the-art, we studied three automated approaches (code 

smells, automated static analysis issues, and collection of code metrics), and how their 

output compares to technical debt that is elicited from humans. This understanding can help 

address questions such about how tools can best be used, instead of or in addition to manual 

approaches, in the identification of technical debt. 

 
Figure  27. The Technical debt Landscape 



107 
 

This study, and others like it, will help evolve the technical debt landscape, as 

conceptually outlined in Figure  27 [52]. The landscape lays out the different types and 

flavors of technical debt that exist in real software projects with respect to their importance 

and overlaps, and how those types are best identified by tools and other methods. Such an 

evolved landscape is essential to achieve our vision of building an effective toolkit for 

identifying, quantifying, and managing technical debt. 

BACKGROUND AND RELATED WORK 

According to Seaman and Guo [79], the management of technical debt can center 

on a technical debt list, which is similar to a task backlog. The backlog contains technical 

debt items (in the following simply referred to as items), each of which represents a task 

that was left undone, but that runs a risk of causing future problems if not completed. Each 

item includes a description of what part of the system the debt item is related to, why that 

task needs to be done, and estimates of the technical debt’s principal and interest, as well as 

some other attributes, as shown in Table 23.  

The principal refers to the cost to fully eliminate the debt, i.e. to completely repair 

the technical imperfection. Depending on the type of technical debt this can translate into 

different kind of activities, such as, adding missing documentation, refactor code that is 

hard to maintain, or maintaining a set of regression tests to align with the code and 

requirements. The cost of techincal debt repair might be in some cases understood better 

than in others. For example, adding missing documentation might be more straight forward 

to estimate than a more complex code refactoring. Seaman and Guo propose to initially 

estimate the principal on a rough ordinal scale from low to medium to high, that allows to 

some extend to understand effort and can contribute in iteration planning.  To further help 

estimating principal, historical effort data can be used to make a more accurate and reliable 

estimation beyond the initial high/medium/low assessment. For example, if a debt item is a 

set of classes that need to be refactored, the historical cost of modification of those classes 

can be used as the future modification cost (principal of the debt item) estimation.  
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The second main compound of technical debt is interest, which is composed of 

two parts: (1) the interest probability is the probability that the debt, if not repaid, will make 

other work more expensive over a given period of time or a release; (2) the interest amount 

is an estimate of the amount of extra work that will be needed if this debt item is not repaid.  

Interest probability can be estimated using historical data like usage and defect. In 

addition, it is also important to consider time variable because probability varies over the 

time. For example, the probability that a particular module contains hidden defects can be 

estimated based on the past defect profile of that module. If that module will be deployed 

soon to the user, the interest probability will be higher because the chance of those defects 

be identified is bigger. 

Table 23. The Technical Debt BackLog 

ID Technical debt identification number 

Responsible Person or role who should fix this TD item 

Type design, documentation, defect, testing, or 
other type of debt 

Location List of files/classes/methods or 
documents/pages involved 

Description Describes the anomaly and possible impacts 
on future maintenance 

Estimated 
principal 

How much work is required to pay off this 
TD item on a three point scale: 
High/Medium/Low 

Estimated 
interest 
amount 

How much extra work will need to be 
performed in the future if this TD item is not 
paid off now on a three point scale: 
High/Medium/Low 

Estimated 
interest 
probability 

How likely is it that this item, if not paid off, 
will cause extra work to be necessary in the 
future on a three point scale: 
High/Medium/Low 

Intentional? Yes/No/Don’t Know
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Finally, interest amount can also be estimated using historical data. In addition to 

the financial properties of technical debt, several properties that support decisions on 

repayment are worth capturing: 

1. The type of debt can be helpful to tailor debt payment to project critical 

quality characteristics. For example, known defect debt will be differently 

perceived in life critical software applications. Currently known types, 

besides latent defect debt, are: design debt (an imperfection of the 

software’s design or architecture negatively affecting future 

maintenance), documentation debt (missing, outdated, or incomplete 

documentation), and testing debt (missing test cases, test cases that are 

not executed, or missing test plans). Studies like these will contribute to a 

more complete set of types of debt. 

2. Was the original decision to go into debt made intentional or  

unintentional?  This information can help to understand how explicit debt 

and technical debt decisions are managed in a project. In an ideal case 

any decision to incur debt is made intentionally to reduce the risk of 

surprises caused by unintentional, potentially even unknown debt. 

3. Who is responsible for fixing the technical debt. This information is 

important to understand the basis on which principal and interest was 

assessed. For example, the effort involved in eliminating debt might 

depend on the developer who originally designed a piece of code. 

4. Where is the technical debt located? This information is important to 

understand impact on product, relationships between items, and ripple 

effects in source code when repaying the debt. For example, debt might 

be cheap to eliminate but resist in parts of a software system that are risky 

to modify. Or, several items might point to the same parts of code and 

fixing this code might eliminate multiple items at the same time. 

 

The process of managing technical debt using this approach starts with detecting 

technical debt items to construct the technical debt list. The next step is to measure the debt 
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items on the list by estimating the principal, interest amount and interest probability. Then 

the debt items are monitored and decisions can be made on when and what debt items 

should be paid or deferred. 

In this work, we are focused on the first step of this process: TD Identification. We 

can use different strategies to find TD items for each TD type. Two automated strategies 

that have been proposed to support the identification of technical debt in software projects 

are identification of code smells and issues raised by automatic static code analysis tools, 

aka ASA issues.   

Past studies have shown that some code smells are correlated with defect- and 

change-proneness [69]. In this study, we use CodeVizard [81]  to detect a set of 10 code 

smells as proposed in [67].  

As far ASA, also for this study we selected FindBugs. 

In addition to code smells and issues, in this study we are also interested in 

collecting basic structural code metrics for size and complexity to study whether any 

relationship with TD items exists. 

CONTEXT OF THE STUDY 

The study was conducted at Kali Software, a small software development 

company located in Rio de Janeiro, Brazil, that develops primarily web applications written 

in Java and based on the MVC framework. The project we studied consisted of a small 

application over 25K non-commented lines of code. It is a database-driven web application 

for the sea transportation domain. It has undergone a full product lifecycle (elicitation, 

design, implementation, deployment, and maintenance). The project team is composed of 

five professionals: two developers, one maintainer, one tester, and one project manager who 

also plays the role of the requirements analyst. 
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GOAL AND RESEARCH QUESTIONS 

The goal of the research is to evaluate the human elicitation of technical debt ad 

how it relates with the output of tools for technical debt identification. 

The study’s research questions are:  

(RQ1) Do tools output correspond to technical debt from a developer 

perspective?  

(RQ2) How much do different developers technical debt items overlap? 

(RQ3) How hard is the technical debt item report template to fill in? 

Given the exploratory nature of this case study and the small amount of TD items 

collected (21), we preferred to answer the research questions in a qualitative way rather 

than building hypotheses and test them. 

PROCEDURE AND DATA COLLECTION 

The study has been implemented with two phases: (1) Training on Technical Debt 

and (2) Collection of Technical Debt Items. 

 

Phase 1: Training on Technical Debt 

For the first phase, the development team has been trained on technical debt theory 

using a PowerPoint presentation followed by an opportunity for Q&A. Given to practical 

constraints, the presentation was done via Skype. All the material was in Portuguese since 

this is the natural language of the development team.  

During the training, only abstract technical debt items have been used as examples 

(for instance: “technical debt items on” house repair or car repair) to avoid bias on 

identifying technical debt items during the second phase of the study. 

 

Phase 2: Collect Technical Debt Items 



112 
 

The second phase was composed of two parallel activities: manual and automatic 

TD identification, i.e. collecting TD items from the development team and collecting the 

output of tools analysis on the source code. 

For the manual identification of TD, the development team (project manager, 

developers, and testers) has been asked to report technical debt items individually. For this, 

we provided the team components with a short questionnaire to both report the TD items 

through the Technical Debt back Log (question 1) and provide information about the 

difficulty of documenting debt items (questions from 2 to 5). The respondents were asked 

to document up to five of the most pressing technical debt items they knew of in the current 

version of the software. 

The questions are the following ones: 

1. If you were given a week to work on this application, and were 

told not to add any new features or fix any bugs, but only to 

address Technical Debt (i.e. make it more maintainable for the 

future), what would you spend your time on? 

2. How difficult was it to identify TD items? 

3. How difficult was it to report TD items (i.e. fill in the template)? 

4. How much effort did you need to identify and document all the 

TD items? 

5. Which are the most difficult fields to fill in / which are the least 

difficult ones? 

 

All answers were given as free text. 

In parallel to the questionnaire, we applied the CodeVizard and FindBugs tools to 

the latest version of the subject project source code, in order to identify code smells and 

ASA issues. The data described, for each file (i.e. class) in the code base, how many of 

each type of code smell were identified, and how many of each type of ASA issue were 

present. Each FindBugs issue has a category, (e.g., Performance, Correctness, etc.), and a 

priority from 1 (highest) to 3 (lowest).  
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As a result of this analysis, a list of CV and FindBugs results that agree and that 

disagree (are not mentioned) with the survey results is created and analyzed. 

Regarding the structural metrics, we selected and computed for each file the 

following ones: Lines of Code, McCabe’s Cyclomatic Complexity, Density of Comments, 

and Sum of Maximum Nesting of all Methods in a Class. 

Lines of Code and McCabe’s Cyclomatic Complexity are widely used in the 

literature of defect and maintainability prediction (e.g., [46] , [59] ). Density of Comments 

was selected to study whether highly commented code might have a relationship with 

technical debt, while Max Nesting measures complexity in depth (the higher is the nesting, 

the more complex is the code).  

The metrics were computed with ad-hoc scripts/tools. 

RESULTS 

Results in Figure  28 show how the 21 technical debt items identified by the 

software team, each represented as a colored box, were distributed over project roles and 

types of debt.  

As the legend indicates, each box has three faces, corresponding to principal 

(front), interest probability (right side) and interest amount (up). Each face can be green, 

yellow or red with respect to the estimation of the team member (respectively low, medium 

and high). An “i” on the front face indicates whether the debt was intentionally introduced 

or not. 

Figure  29 shows the results of automated identification approaches (FindBugs, 

Code Smells, Metrics) compared to the items reported by the development team.  The 

boxes refer to the same elicited technical debt items as are shown in Figure  28.  An S on 

the front face shows which technical debt items were given a location by the subjects that 

pointed to source code.  

For each automatic approach, we pre-filtered the results and we choose only the 

best predictors of technical debt: FindBugs Priority 1 issues (highest priority), MAX 
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nesting for metrics, and Intensive Coupling for code smells. For every indicator, the top 

10% cut off is considered in Figure  29. The top 10% cutoff value means that a human 

would have to inspect only the top 10% of all source code files with respect to the tool 

output (in this project 30 out of 303 files) to catch all files associated with technical debt. 

The answers to the research questions follow. 

 

 

RQ 1-Do tools output correspond to technical debt from a developer perspective?  

We observe in Figure  29  that the three automated approaches (code smells, ASA, 

and code metrics) do about equally well in identifying defect debt. By selecting the three 

best predictors for defect debt as shown in Figure  29 (i.e., Max Nesting, Intensive 

Coupling, and High Priority FindBugs issues), and looking at the top 10% of files for each 

of the predictors, permitted to capture all affected source code components. 

On the contrary, only five out of twelve reported items of type documentation 

debt, testing debt, and usability debt were related to source code files, the remaining seven 

were related to artifacts (e.g. requirements documents and test plans) other than source 

code.  The five TD items located on source code are design debt, one is located to a source 

file identified by all automatic approaches, and the last one only to Intensive Coupling top 

10% and FindBugs Priority 1 top 10%. 

For design debt, automated approaches capture about half of the technical debt 

items, although ASA issues and code smells identify more than traditional code metrics.  

Summarizing, these results lead to answer RQ1 in the following way: tools can 

support the identification of defect debt in this project, but not other types of debt that were 

found by developers. 
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Figure  28. Results of the human elicitation of TD items 
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Figure  29. Results of the tools compared to human elicitation. 
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RQ2-How much do different developers technical debt items overlap? 

Only one technical debt item was reported by two different stakeholders (the 

manager and one developer). None of the remaining 19 items were reported by more than 

one stakeholder. This result indicates that, in this project, technical debt knowledge is 

dispersed and perceived differently by different stakeholders. The software tester reported 

the widest range of technical debt types including one previously unknown type, usability 

debt, which in this case had to do with the lack of a common user interface template. 

 

RQ 3-How hard is the technical debt item report template to fill in? 

The five subjects of the study reported that it took between 50 minutes and 2 hours 

to identify and document the technical debt items (average of 19 minutes per item). 

Answers about difficulty of the task ranged from “easy” to “difficult/high” (all answers 

were given as free text). Subjects agreed that the fields principal, interest amount, and 

interest probability were the most difficult to fill in, although we did not ask for estimates 

beyond high, medium, and low. On the contrary, location, type, and responsible were 

commonly noted as the least difficult fields. These results indicate that, in this project, the 

initial elicitation of technical debt items could be done in reasonable time, but that the key 

financial parameters of technical debt were difficult to estimate and might require better 

process or tool support in future. 
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DISCUSSION 

Results of research questions showed that in the project studied: 

− the tools used could properly identify files affected by defect debt but no 

other types of debt identified by developers in other artifacts; 

− different stakeholders identified different debt; 

− the initial elicitation of technical debt items could be done in reasonable 

time, but that the key financial parameters of technical debt were difficult 

to estimate; 

Some additional observations, beyond or complementary to the scope of the 

research questions, are possible from the data collected.  

The first observation is that the majority of items reported falls into the defect debt 

category. This indicates that known defects are of concern to the development team of this 

project.  

Secondly, the colors of the TD items, indicating principal, interest amount, and 

interest probability are rather equally distributed among the different type of debts. This 

suggests that debt characteristics are not tied to the type of debt, i.e. no type of debt has 

noticeably higher overall interest or principal. 

Thirdly, we find intentionally earned debt in almost every category, except 

usability. This is especially interesting for defect debt. Many of the defect debt items were 

requirements that were not fully implemented. The intentionality of these items indicates 

that a decision was made to not fully implement those requirements, most likely due to time 

constraints, which makes these instances conceptually different from defects caused by 

unintentional programming mistakes.  

Further, many TD items could not have been found by the tools or metrics since 

the artifacts they were located are not included in the static code analysis. This suggests that 

a focus on source code as the single source of technical debt is too narrow, as developers 

reported a significant number of such items among their most important. Future studies 

might consider including or proposing tools for other kinds of development artifacts 
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affected by technical debt. Finally, we think that the figure and color coding hints at how 

this information can be further used to manage debt and make clearer decisions on which 

debt to pay. For example, items that have generally a low principal (e.g. green principal), 

but yellow or red interest characteristics are good candidates for paying off first, since their 

return on investment is more favorable than for other items. This idea of a cost/benefit 

decision approach has been previously proposed and discussed in [82]. 

 THREATS TO VALIDITY 

As with any case study, especially of a small project such as this one, threats to 

external validity are significant. We accept these threats, and attempt to trade off breadth 

for depth, by doing a thorough analysis of a small case, yielding deeper insights that would 

not have been possible in a much larger sample.  

In Figure  29, we chose the code smell, ASA category, and code metric that were 

the best predictors of technical debt. In practice, however, these choices cannot be made a 

priori. Our motivation for this approach was to determine simply if any of the automated 

approaches were related to the technical debt elicited from developers. Further work is 

needed to determine whether the choices we have made hold in all situations. 

An important construct threat derives from the following assumption made in the 

design of this study: we assumed that the perceptions of software developers about the 

technical debt in their code can serve as a “ground truth” against which other types of 

technical debt identification can usefully be compared. However, the ultimate and 

authoritative “ground truth” for studies of technical debt would be a measure based on 

future maintenance effort associated with technical debt items. That is, a “real” technical 

debt item is one that leads to higher maintenance effort than would have been incurred if 

the debt did not exist. However, measuring “real” technical debt in this way was not 

possible in this study, nor is it in many studies. For the study in this paper, the assumption 

we have made represents a threat to construct validity in the sense that the technical debt 

reported by the developers might not lead to future increases in maintenance cost. 



120 
 

CONCLUSIONS AND CONTRIBUTIONS 

We have conducted two empirical studies to understand how ASA impact 

maintainability in terms of Technical Debt.  

We conducted an inductive study within a Brazilian software company, in which 

we compared ASA and Code Smells with the manual elicitation of Technical Debt. 

We have presented and evaluated how the technical debt backlog can be populated 

by developers through a common technical debt template, and how existing tool approaches 

can help to identify certain types of debt. We have further shown that different stakeholders 

know about different debt in their project, indicating that technical debt elicitation should 

include a range of project team members. Aggregation, not consensus, would appear to be 

the most effective approach to combining the input from different team members. In 

addition, three different automated approaches - code smells, ASA issues, and traditional 

code metrics - did well in pointing to source code files with defect debt, and also could 

point to a partial set of files with design debt.  

We encourage practitioners to use the proposed template in their projects and to 

share results and experiences (e.g. at www.technicaldebt.umbc.edu). It will require 

evidence from a variety of environments to build a full picture of how different technical 

debt identification approaches interact, overlap, and are (or are not) synergistic. This 

evidence is necessary to further refine and to bring into focus the technical debt landscape. 

A first step towards defining the TD landscape was done in the analysis of 13 

versions of the Hadoop projects, in which we combined four different TD identification 

techniques: code smells, ASA, modularity violations and grime.  We computed the 

association of these indicators with two TD interest indicators: change and defect 

proneness.  

The main findings of this study are:  
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− Different TD techniques point to different classes and therefore to 

different problems. There are very few overlaps among the results 

reported by these techniques.  

− Dispersed coupling, god classes, modularity violations and multithread 

correctness issues are located in classes with higher defect-proneness.  

− Modularity violations are strongly associated with change proneness. 

Our results indicate that the issues raised by the different code analysis techniques 

are in different software classes. Moreover, only a subset of the problematic issue types 

identified by these techniques is shown to be more defective or change prone. This is 

consistent with the result of earlier work where these techniques were applied 

independently ([33] [38] [69] [70]).  

These findings contribute to building an initial picture of the TD landscape, where 

TD techniques are loosely overlapping and only a subset of them is strongly associated to 

software components’ defect and change proneness. 

 

Implications for Practice 

In practice, results indicate that multiple technical debt indicators should be used 

instead of only one of the investigated tools. As recommendation to practitioners, these 

initial results evidently show that different tools point to different problems in a code base. 

The use of a single tool or single indicator (e.g. a single code smells) will only in rare cases 

point all project important technical debt issues. It also shows that within the set of selected 

approaches none supersede another, making none of them dispensable. In the current state 

of research we cannot yet give a more complete recommendation on which indicators are 

best for signalling specific quality shortcomings, however, our results give some 

preliminary advice on which indicators to start with when looking for TD related to defects 

and maintenance bottlenecks, namely: Modularity Violations, God Class, Dispersed 

Coupling, and MT Correctness issues.  

 

Implications for Research 
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Since results indicate that there might not be a project independent one-size-fits-all 

tool to detect technical debt, but rather a tailoring process to the right subset of indicators 

required, future research should be concerned about investigating and showing connections 

between TD techniques, types of technical debt, effect and tailoring towards project 

specific software quality characteristics. Future work should also investigate other TD 

indicators when they become available to broaden the landscape. 

As more specific advice for future research directions, we recommend to extend 

the interest indicators towards a broader range of software quality aspects, besides defect 

and change-proneness as investigated here. Further, we recommend to extend this type of 

quantitative study with qualitative insights, e.g. from practitioners that investigate if the 

studied approaches point to the most important kinds of technical debt. 
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4 PERFORMANCE EFFICIENCY 

4.1. DEFINITIONS 

Performance efficiency is “the performance relative to the amount of resources 

used under stated conditions. Resources can include other software products, the software 

and hardware configuration of the system, and materials (e.g. print paper, storage media)”. 

Performance efficiency is composed of two sub-characteristics:  

− Time behaviour: “degree to which the response and processing times and 

throughput rates of a product or system, when performing its functions, 

meet requirements” 

− Resource utilization: “degree to which the amounts and types of resources 

used by a product or system, when performing its functions, meet 

requirements”. 

 

We focused our analysis on Time behaviour, and we assessed whether refactoring 

the code to remove ASA issues improve the processing times of software functions. 

We performed two studies: a pilot study in laboratory settings, and an experiment 

in industrial settings. 
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4.2. QUANTITATIVE ASSESSMENT OF THE IMPACT OF 

AUTOMATIC STATIC ANALYSIS ISSUES ON TIME 

EFFICIENCY: A PILOT STUDY 

As we have seen in Section 4.1, efficiency, in terms of time behaviour, is measured 

by computation or approximation of the execution time of the software function under 

study. A fundamental concept in this computation is that the execution time is not 

deterministic, but it has a certain variation depending on the input data or on different 

contexts of the platform in which it is executed. For this reason, for a given code there is a 

best-case execution time (BCET), i.e. the shortest possible execution time, and a worst-case 

execution time (WCET), i.e. the longest possible execution time. Whilhelm et al. [83] 

identified in literature and industrial practices two approaches to determine the BCET and 

the WCET. The first approach is characterized by static methods: the code and the possible 

paths are analyzed and, combining different techniques, upper and lower bounds for the 

execution time are provided. This methodology does not take into account the hardware and 

the environment on which the code is executed, hence the bounds overestimate the WCET 

and underestimate the BCET. The second methodology is measurement-based: the code, or 

a portion of it, is executed on a given hardware or a simulator for a set of inputs. 

Then, WCET and BCET are obtained from observation: these methods provide 

estimates and not bounds, and they usually underestimate the WCET and overestimate the 

BCET. Despite the high number of techniques developed for both approaches, the problem 

for WCET analysis in the field of Java applications has not been deeply examined yet: 

Harmon and Klefstad conducted a survey of WCET analysis for Real- Time Java [84], but 

they were able to find fewer than twenty publications addressing the problem. Source code 

annotations as instructions to WCET tools ([85] [86] ), low-level and high level analysis of 

bytecode ([87] [88] ) and Java-native processors ([89]) are the most common solutions 

proposed, however it is very difficult to find a methodology to obtain precise and 

generalizable bounds for the WCET and the BCET in Java: the main motivation is the 

overhead and the variability introduced at execution time by VM services (e.g. automatic 
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memory management)[90] . However, since the object of our experiment is very simple 

code, makes measurement simpler for us. For instance, we test code with only one possible 

path, thus we can exclude all static measurement-based approaches.  

Moreover, we are interested in the comparison of execution times: for this reason, 

we think it is considerable to abandon the usual concepts of WCET and BCET and adopt 

average values and confidence intervals. We focused on a specific ASA tool that is 

FindBugs v1.3.9. FindBugs uses analyzers called Bug Detectors to search for simple bug 

patterns. These bug detectors contain numerous heuristics to filter out or deprioritize 

warnings that may be inaccurate, or that may not represent serious problems in practice. 

FindBugs warnings are organized in 369 issues or bug patterns13 , grouped subsequently 

into Categories (Correctness, Performance, Security, etc) and priorities (high, medium, or 

low), based to the severity of the problem detected. Both categories and priorities are 

assigned by tool's authors, based on their wisdom and experience reviewing warnings in 

industrial and university contexts. A subset of FindBugs patterns is part of category 

Performance: they are supposed by tools' authors to have negative impact on Performance, 

i.e. the efficiency of the code. 

GOAL DEFINITION 

Let us consider a simple code fragment: 

Collection<Integer> col = new LinkedList<Integer>(); 

... 

col.removeAll(col); 

 

If FindBugs were run on the above code it would signal the issue DMI USING 

REMOVEALL TO CLEAR COLLECTION. The description of the issues provided by the 

tool is: “If you want to remove all elements from a collection c, use c.clear() , not 

c.removeAll(c)”. In response to such a notification from the tool the developer should 

                                                 
13 The full list of patterns is available at http://findbugs.sourceforge.net/bugDescriptions.html 
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refactor the code according to what is suggested by the issue description, i.e. replacing 

col.removeAll(col) with col.clear() . The research question we would like to 

answer with this study is whether the issue represents an actual threat to time efficiency. In 

other words: does refactoring out the issue yields a code that exhibits an improved time 

efficiency?  

We define our experiment following the GQM template [34]. 

 

Object of study. The object of the study is represented by the issues signaled by 

FindBugs. 

Purpose. The purpose of the experiment is to identify those issues that impact time 

efficiency and quantitatively assess the delay introduced. Having experimental evidence of 

this impact, programmers can be sure that if they refactor the code deleting these issues, the 

system will be faster. 

Perspective. The perspective is from the point of view of programmers of Java 

applications that take care of performance issues in delivering their software. 

Quality focus. Efficiency is the quality characteristic that we address. We focus our 

experiment on time behavior, i.e. the amount of time to perform one or more operations. 

Context. The context is artificially developed code. We conduct our tests on code 

developed ad hoc to violate the issues that might impact negatively the efficiency-time 

behavior of the code. 

 

Summarizing, our goal is defined by the following scheme: 

 

Evaluate a subset of FindBugs issues 

for the purpose of assessing the actual impact 

compared to their removal by refactoring 

with respect to the time efficiency of code 

from the viewpoint of Java programmers 

in the context of archetypal ad-hoc code. 
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EXPERIMENT PLANNING 

A. Context and Variable Selection 

Although one of the categories defined by the FindBugs tool is named 

Performance, we think that also issues belonging to other categories could actually affect 

the time efficiency of code. For this reason, we select from FindBugs site a subsection of 

issues that might have a negative impact on the time efficiency with respect to the 

following set of criteria. 

A Issue belongs to category performance  

B Issue has a negative impact on performance with respect to expert judgment. 

The selection is made by the authors of this paper: two of them are professors of Java 

Programming course at Politecnico di Torino since more than ten years, whilst the first 

author is a second year PhD Student assisting the professors in the Java Course since four 

years. The experts read the description of the issues and for each of them classified them 

into one of the following categories (and implicitly assigned the relative score): 

a) the issue impacts negatively the time efficiency of code (score: +1)  

b) the issue does not impact negatively the time efficiency of code (score: -

1)  

c) no decision (score: 0)  

Each issue is assigned a score that is the sum of the scores corresponding to the 

categories selected by the experts. Then an issue is selected for the experimentation when 

the total score is ≥2. 

C Refactoring does not change functionality. For instance, the issue DLS 

OVERWRITTEN INCREMENT looks for code that performs an increment operation and 

then immediately overwrites it (e.g., i++; added in a for loop to skip an iteration). A 

possible code refactoring action would be to delete the offending increment: however, this 

action could change the functional behavior of the code, hence the issue is not selected.  

D Efficiency does not depend on local (e.g. network) factors. For example, the 

issue DMI BLOCKING METHODS ON URL has a negative impact on performance 

because the equals and hashCode method of URL perform domain name resolution, thus 
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this can result in a performance hit. However, this case is out of our interest because the 

cause of delay is the network and not the code. For the same reason we do not include in 

the experimentation DMI COLLECTION OF URLS . 

E Identification of one issue per equivalence classes. The aim is to pick only one 

issue from each set of similar issues. In fact some issues are redundant, or one is a 

generalization of many others. For instance, consider the issue BC IMPOSSIBLE 

INSTANCEOF: it is signaled when the instanceof operator will always return false, hence 

this is a useless operation that might lead to a delay. A similar issue is BC VACUOUS 

INSTANCEOF, that is complementary to the previous one, because it is signaled when 

instanceof test will always return true. Therefore latter issue is representative also for the 

former one.  

An issue is selected if it satisfies the following combination of the five criteria: 

(A∨B)∧C∧D∧E. 

Table 24 shows all the issues selected as objects in the experiment. The first 

column indicates the numerical ID of the issue, the second column indicates its name, the 

last indicates whether the issue belongs to category performance or not (criterion A).  

 

VARIABLE SELECTION AND HYPOTHESES FORMULATION 

Since the goal of the study is to evaluate the relationship of issues with time 

efficiency the only dependent variable is the execution time t. We will consider two 

variants of the same code: either containing the issue (I) or with the issue refactored out (R). 

Therefore the main factor we use is the code type, C ∈{I,R}. 

In addition we measure and control other independent variables:  

− the specific issues (Issue∈1..20) in the set of issues selected as described 

above,  

− the platform (P), both hardware and software, where the experiment is 

conducted,  
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− the batch run (B) of each specific experiment.  

Given our original research question and the selected variables we can formulate 

our null and alternative hypotheses, where the subscript indicates the level of the factor.  

H0:tI≥tR  

Ha:tI<tR  

INSTRUMENTATION AND EXPERIMENT DESIGN 

The instrumentation required for our experiment is a software framework that 

allow the measurement of the execution times of the two different code fragments. Inspired 

by the JUnit14 framework for automated software testing we developed a very simple 

framework. It consists of an abstract class, Experiment, that can be extended by concrete 

experimental classes. Each experimental class must provide two methods 

performWithIssue() and performWithoutIssue() that contain respectively the code including 

the issue and with the issue refactored out. In addition the method setUp() may be 

optionally redefined to prepare for the execution. For instance the experimental class for the 

issue DMI USING REMOVEALL TO CLEAR COLLECTION can be written as follows: 

 

public class  

DMI_USING_REMOVEALL_TO_CLEAR_COLLECTION 

extends Experiment { 

  Collection<Integer> col; 

  private void setUp(){ 

   col = new LinkedList<Integer>(); 

            for(int i=0;i<1000;i++){ 

                 col.add(Integer.valueOf(i)); 

        }   

                                                 
14 http://www.junit.org/ 
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  } 

  public void performWithIssue() {  

    col.removeAll(col);   

  } 

  public void performWithoutIssue() {   

    col.clear(); 

  } 

} 

 

The execution times of the methods performWithIssue() and 

performWithoutIssue() are expected to be in the order of nanoseconds. 

Unfortunately the standard measurement methods are not able to record precisely times at 

such order of magnitude. For this reason, the execution of each method is repeated 

consecutively a very high number of times (e.g. 1 million) to accumulate enough time to be 

detected by system APIs. We assume that each execution of the measured methods is 

independent on each other. This is true if no attribute is used except those initialized in the 

setUp() method. 

The framework provides the method: 

perform(int nSamples , long nIter) 

that returns the results of the experiment in terms of the execution times. It takes as 

parameters two integers: the number of measurement samples to be generated (nSamples, 

set to 100 by default), and the number of iterations of the perform methods (nIter, set to 

1 million by default). At the end of the experiment we will have nSamples samples, each of 

them representing the execution times of nIter iterations of both perform methods. We 

decide to have a batch of 6 runs of the basic experiment; each run was carried on at 

different random times during the day to compensate the possible confounding effect of 

periodical tasks performed by the operating system. 

In addition, since the software and hardware platform is extremely relevant in 

terms of complexity when compared to the experimented code fragments, we decided to 
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execute the experiment batch on three different platforms. Table 25 contains the 

characteristics of the platforms that hosted the experiments.  

 

ANALYSIS METHODOLOGY 

The goal of data analysis is to apply appropriate statistical tests to reject the null 

hypothesis. The analysis will be conducted separately for each issue in order to evaluate 

Table 24. Issues selection 

 Code Issue A 

 1 BC VACUOUS INSTANCEOF  

2 BX BOXING IMMEDIATELY UNBOXED TO PERFORM  

 COERCION X 

3 DLS DEAD LOCAL STORE  

4 DM BOOLEAN CTOR X 

5 DM NEW FOR GETCLASS X 

6 DM NUMBER CTOR X 

7 DM STRING CTOR X 

8 DM STRING TOSTRING X 

9 DMI RANDOM USED ONLY ONCE  

10 DMI USING REMOVEALL TO CLEAR COLLECTION  

11 ISC INSTANTIATE STATIC CLASS  

12 RCN REDUNDANT NULLCHECK OF NONNULL VALUE  

13 REC CATCH EXCEPTION  

14 SBSC USE STRINGBUFFER CONCATENATION X 

15 SIC INNER SHOULD BE STATIC X 

16 SS SHOULD BE STATIC X 

17 UM UNNECESSARY MATH X 

18 UPM UNCALLED PRIVATE METHOD X 

19 URF UNREAD FIELD X 

20 WMI WRONG MAP ITERATOR X 
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which one has an actual impact on time efficiency. 

First of all we will test the null hypothesis H0 for each issue across all platforms. 

Then we will analyze separately the different platforms. 

Since we expect the values not to be normally distributed, we will adopt non 

parametric tests, in particular we selected the Mann-Whitney test [91]. Since the hypothesis 

is clearly directional the one-tailed variant of the test will be applied. We will draw 

conclusions from our tests based on a significance level α=0.01, that is we accept a 1% risk 

of type I error – i.e. rejecting the null hypothesis when it is actually true. Moreover, since 

we perform multiple tests on the same data – precisely twice: first overall and then by 

platform – we apply the Bonferroni correction to the significance level and we actually 

compare the test results versus a αB=0.01/2=0.005. 

After testing our experimental hypothesis, we will also check the potential 

confounding effect introduced by the co-factors: the platform and the different batch runs. 

Since the co-factors have more than two levels, we analyze the dependence of execution 

time on them using the Kruskall-Wallis rank sum test [91]. The null hypotheses we will 

attempt rejecting is that the co-factors have no effect on the dependent variable (time). 

Table 25. List of platforms hosting the experiments 

 Platform U W M 

 Operating Ubuntu 10.10 Windows 7 Mac OS X 10.6.6 

System kernel 2.6.35-25 Home Premium Darwin 10.6.0 

Bits 64 64 64 

Processors 2 2 2 

Proc. Type Intel Core 2 Pentium Dual Intel Core 2 Duo 

 T5270 Core T4500  

Proc. Freq. 1.40 GhZ 2.30 GHz 2.66 GHz 

Memory 2 GB 4 GB 4 GB 

Java SE 1.6.0 1.6.0 1.6.0 

build _22-b04 _23-b05 24-b07 



133 
 

VALIDITY EVALUATION 

We identify two important threats to the validity of the experiment. The first threat 

affects the internal validity: experiments are executed inside an operating system, hence 

confounding factors could affect final results. Moreover, it is possible that the execution 

times for individual instructions are not independent from the execution history [83], 

because of caches and pipelines in processors, that could also cause the appearance of 

timing anomalies: therefore, we accept that the execution time of individual instructions 

may vary depending on the state of the processor in which they are executed, because we 

can not control the processor and avoid the hardware-related problems. However, it is 

possible to take some counter measures to reduce the noise introduced by the upper levels 

(OS and VM): we repeat the experiment 6 times on three different operating systems and 

machines, obtaining overall 1800 samples for each version of the code, and we isolate as 

much as possible the environment in which the experiment program runs, disabling for 

instance network and network routines or avoiding to launch the program in the same time 

of operating system subroutines. Furthermore, the experiment is the only user program that 

runs in the machine. All these provisions do not delete the confounding factors, but limit 

them and let us to have a reduced noise on results.  

The second threat is a construct threat: if a difference is found, we say that the 

cause of the difference is the refactoring action. However, the platform on which the code 

runs is also affecting results. Therefore, there are generalization problems derived from this 

issue: we try to control this threat by using three different platforms. Another issue is that 

the code refactoring could not unique for each code smell, and different refactorings can 

bring to very different improvements of execution times: for this reason, the estimated 

improvements are specific to refactoring action we implemented. 
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We make available on our website 15 the Eclipse project of the experiment 

framework developed and we invite other researchers to repeat the experiment and compare 

the results with ours. This is a further strategy control for the threats mentioned above: in 

                                                 
15 http://softeng.polito.it/vetro/confs/InfQ2011/EfficiencySmells.zip 

Table 26. Summary of execution times 

 Platform: all   M U  W 
 ID t

I
 t

R
 p  t

I
 t

R
 p t

I
 t

R
 p  t

I
 t

R
 p 

1 
 

34.72 34.48 < 0.001 55.41 55.32 0.01 47.04 47.13 1.00 1.70 1.00 < 0.001

2 8.39 2.78 < 0.001 10.03 3.67 < 0.001 12.70 2.73 < 0.001 2.45 1.93 < 0.001

3 68.10 35.27 < 0.001 109.43 54.32 < 0.001 90.78 46.99 < 0.001 4.10 4.51 1.00

4 9.81 5.43 < 0.001 10.57 4.19 < 0.001 13.63 7.18 < 0.001 5.24 4.93 < 0.001

5 180.20 183.31 1.00 167.03 155.49 < 0.001 237.84 242.74 1.00 135.72 151.69 1.00

6 9.65 4.78 < 0.001 10.64 3.07 < 0.001 13.77 7.12 < 0.001 4.53 4.16 < 0.001

7 14.72 5.15 < 0.001 17.29 4.20 < 0.001 18.88 7.09 < 0.001 7.99 4.16 < 0.001

8 84.16 88.54 1.00 75.29 75.79 1.00 113.92 121.16 1.00 63.26 68.67 1.00

9 2162.58 1117.11 < 0.001 326.57 164.02 < 0.001 3687.10 1901.80 < 0.001 2474.06 1285.49 < 0.001

10 468.66 213.77 < 0.001 411.45 210.21 < 0.001 728.38 278.32 < 0.001 266.16 152.78 < 0.001

11 8.70 5.08 < 0.001 8.24 4.17 < 0.001 13.15 6.84 < 0.001 4.70 4.22 < 0.001

12 591.41 592.08 0.74 80.33 80.22 0.42 1671.77 1673.89 1.00 22.14 22.14 0.47

13 35.81 35.47 < 0.001 55.64 55.08 < 0.001 47.25 47.31 1.00 4.54 4.03 < 0.001

14 561.95 302.34 < 0.001 455.71 268.63 < 0.001 767.91 409.92 < 0.001 462.24 228.46 < 0.001

15 6.98 7.04 0.08 5.28 5.66 1.00 8.82 9.07 1.00 6.83 6.39 < 0.001

16 9.71 8.62 < 0.001 10.78 8.35 < 0.001 13.77 13.45 < 0.001 4.57 4.05 < 0.001

17 592.05 594.41 0.55 3.84 4.15 1.00 1767.72 1775.06 0.01 4.59 4.01 < 0.001

18 537.67 544.22 1.00 462.41 462.53 1.00 707.32 716.04 1.00 443.28 454.10 1.00

19 11.80 11.04 < 0.001 13.94 13.89 < 0.001 16.23 13.93 < 0.001 5.22 5.30 < 0.001

20 582.91 539.86 < 0.001 558.12 514.13 < 0.001 668.55 633.61 < 0.001 522.05 471.84 < 0.001
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this way it is possible to build up a benchmark and make the empirical validation of the 

impact of issues on efficiency more reliable. 

ANALYSIS AND INTERPRETATION 

The data collected during the experiments are summarized in Table 26, which 

reports the average execution times expressed in milliseconds, for the three different 

platforms and separating the execution time of the code containing the issue (tI) from the 

execution time of code with the issue refactored out (tR). 

We can immediately observe a wide variability of times and small differences 

mainly among different issues, but also to a smaller extent between platforms. In order to 

report in the same diagram such varying values we opted for the rest of this analysis to plot 

times using a logarithmic scale. 
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Based on results in Table 26, 11 of the issues selected have undoubtably a negative 

impact on time efficiency, since there is a statistically significant difference in all 

conditions. Such issues are:  

2) A primitive boxed value is constructed and then immediately converted into a 

different primitive type (e.g., newDouble(d).intValue()) instead of performing direct 

primitive coercion (e.g., (int)d).  

4) A method invokes a Boolean constructor, instead of using Boolean.valueOf(...)  

6) Code uses newInteger(int) whereas Integer.valueOf(int) should be used, because 

it allows caching of values to be done by the compiler, class library, or JVM.  

7) The java.lang.String(String) constructor is used instead of String parameter 

directly.  

9) Code creates a java.util.Random object, uses it to generate one random number, 

and then discards the Random object. Subsequently, to generate a new random number, a 

new java.util.Random object is created. Code should be refactored so that the Random 

object is created once and saved to be invoked each time a new random number is needed.  

10) The code removes all elements from a collection c, using c.removeAll(c) 

instead of c.clear().  

Table 27. P-values of Kruskal-Wallis test for co-factors 

ID Platform Run 
1 ≤ 0.001 * 0.01 
2 ≤ 0.001 * 0.60 
3 ≤ 0.001 * ≤ 0.001* 
4 ≤ 0.001 * 0.02 
5 ≤ 0.001 * 0.16 
6 ≤ 0.001 * 0.02 
7 ≤ 0.001 * ≤ 0.001* 
8 ≤ 0.001 * ≤ 0.001* 
9 ≤ 0.001 * 0.19 
10 ≤ 0.001 * 0.18 
11 ≤ 0.001 * ≤ 0.001* 
12 ≤ 0.001 * 0.04 
13 ≤ 0.001 * ≤ 0.001* 
14 ≤ 0.001 * ≤ 0.001* 
15 ≤ 0.001 * ≤ 0.001* 
16 ≤ 0.001 * 0.05 
17 ≤ 0.001 * ≤ 0.001* 
18 ≤ 0.001 * ≤ 0.001* 
19 ≤ 0.001 * ≤ 0.001* 
20 ≤ 0.001 * ≤ 0.001* 
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11) A class allocates an instance of a class that only supplies static methods. The 

refactoring action is to use the static methods directly using the class name as a qualifier.  

14) Code builds a String using concatenation in a loop instead of using 

StringBuffer.  

16) A class contains an instance final field that is initialized to a compile-time 

static value. Since the field is immutable for each object of the class, it should be static.  

19) A field which is never read  

20) Code accesses the value of a Map entry, using a key that was retrieved from a 

keySet iterator. It is more efficient to use an iterator on the entrySet of the map, to avoid the 

Map.get(key) lookup.  

More than half of the issues (nr 2, 4, 6, 7, 9, 11) concerns a useless creation of 

objects. The other issues are related to different problems, relating to inefficient, albeit 

functionally correct, set of operations.  

Being known the number of times that the code containing the issues is invoked, it 

is possible to estimate the average delay that each of these issues bring to the code. The 

code fragments invoke issues only once to minimize the confounding factors: therefore the 

total number of invocations is 1 million times. However, issues 14 and 20 are inside a for 

cycle of respectively 5 and 10 iterations, thus they are executed 5 and 10 million of times. 

Table 28 contains the estimated delays, in nanoseconds, for each issue and platform, 

computed aggregating the measurements of the different batches. 

All issues concerning the useless creation of objects (except nr 9) have similar 

Table 28. Mean expected delay [ns] of verified issues. 

                                 Platform 
Issue Iterations U W M

2 1 M 8.23 0.43 6.14
4 1 M 6.43 0.43 6.29
6 1 M 6.67 0.43 7.40
7 1 M 11.81 3.91 13.02
9 1 M 1786.00 1185.80 159.60

10 1 M 449.20 113.00 201.10
11 1 M 6.29 0.43 3.90
14 5 M 74.74 51.16 37.81
16 1 M 0.40 0.43 2.36
19 1 M 2.21 0.44 0.11
20 10 M 4.36 4.96 4.07
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unitary delays: few nanoseconds (3 to 11) in environments U and M, less than 1 in 

environment W. Similar delay is for the wrong map iteration (issue 20). The issue nr 9 

(useless Random object) has the highest delay, that is in the order of magnitude of 1 μs. 

Also issue 10 (emptying the content of a collection) exhibits high delays (in the order of 

magnitude of some hundreds of ns), whereas issue 14 causes a delay of tens of ns. The 

smallest delays are those ones of issue 16, a field that should be static, and issue 19, a field 

that is never read. In real contexts these numbers can easily reach the order of ms and s: in 

real projects there are millions of lines of code where there can be millions of these simple 

issues or even billions if they are inside for/while cycles. Moreover, these figures may be 

directly relevant in Real Time Applications, where the usage of Java is steadily increasing 

(for instance, Boeing has adopted real-time Java in drone aircrafts, and the United States 

Navy decided to use it in its next-generation battleships [84]. 

On the basis of the above findings, we can assert that likely also the following 

issues, which were not object of our experiments, have impact on time efficiency, because 

related to the previous eleven: BX BOXING IMMEDIATELY UNBOXED, BX 

UNBOXED AND COERCED FOR TERNARY OPERATOR, DM BOXED PRIMITIVE 

TOSTRING, DM FP NUMBER CTOR (similar to issues 2, 6), DM STRING VOID CTOR 

(similar to issue 7), issue UUF UNUSED FIELD (similar to issue 19).  

Moreover, we observe that issues 8, 12 and 18, instead, do not have any negative 

impact on performance. We further investigate this fact computing the estimated 

differences between the two set of execution times (tI−tR). Issue DM STRING TOSTRING 

(nr 8, call toString() on a String) has negative differences both overall and in every 

platform; issue RCN REDUNDANT NULLCHECK OF NONNULL VALUE (nr 12, check 

of a known null value) has a significant difference only in platform U, whilst UPM 

UNCALLED PRIVATE METHOD (nr 18, a private method never used) is significantly 

different under all conditions. These data shows that the refactored code of these three 

issues performs worse than the original code: this is an unexpected result. Nevertheless, it is 

probable that optimization enforced by the compiler and/or the hardware deletes the 

negative effect of the three issues at run time. All the three issues concern useless 
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operations and bad programming practice: even if they do not impact the efficiency, 

refactor the code is worthy to increase its maintainability or decrease its complexity. 

Similar issues in Findbugs, not selected for our experiment, are : RCN REDUNDANT ( 

COMPARISON OF NULL AND NONNULL VALUE, COMPARISON TWO NULL 

VALUES, NULLCHECK OF NULL VALUE, NULLCHECK WOULD HAVE BEEN A 

NPE) that are similar to issue nr 12, and UMAC UNCALLABLE METHOD OF 

ANONYMOUS CLASS that is similar to issue 18. 
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4.3. EXECUTION TIME EFFICIENCY IMPROVEMENT BY 

MEANS OF CODE ISSUE REFACTORING: A CONTROLLED 

INDUSTRIAL EXPERIMENT 

The execution time efficiency of a software function can be assessed by measuring 

the execution time: the shorter the better, trivializing the concept. 

Excluding the obvious hardware techniques, time efficiency can be improved 

selecting appropriate algorithms, leveraging compiler optimization capabilities, and relying 

on execution infrastructures such as operating systems and virtual machines.  

Java offers many benefits: portability, security, dynamic program composition 

through dynamic class loading and automatic memory management. However, these 

advantages become drawbacks when dealing with performance. A possible explanation is 

the overhead introduced at execution time by the features mentioned above, that make Java 

applications several times slower than equivalent compiled C programs [90]. Moreover, the 

high level of hardware abstraction used by Java produces byte code without any knowledge 

of the underlying CPU, thus without an efficient optimization. 

Most Java optimization techniques operate statically [92], others try to improve the 

performance of a program while it executes [90]. Considering the three code representation 

levels [93]  – high-level representation (HLR), directly interpretable representation (DIR), 

and directly executable representation (DER) – the most common static and dynamic 

techniques operate at the DIR or DER level. However, recent studies [94] demonstrated that 

optimizations at DIR or DER levels do not guarantee lower execution time. For this reason 

we faced the Java optimization problem at HLR with a new approach based on Automated 

Static Analysis (ASA). ASA focuses on the HLR with the goal of identifying issues and 

possible improvement areas. 

A common drawback to most ASA tools is the huge number of code issue 

detections that is signaled to the developers. The challenge in adopting ASA tools is to 

customize them in order to detect only relevant issues. 
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The problem we address in this paper is to identify the issues having an impact on 

time efficiency and empirically assess them. 

In particular we used FindBugs, a widely used ASA tool for the Java code, to 

analyze the source code of a web application developed by a large Italian company. The 

goal is to identify the performance problems of the application and verify whether they 

derive from bad programming practices detectable by means of FindBugs.  

To do that, we set up the empirical methodology already applied in the previous 

study. 

GOAL AND RESEARCH QUESTION 

As we have seen in Section  4.1, Performance efficiency is defined in ISO-IEC 

25010 [42] as “the performance relative to the amount of resources used under stated 

conditions”. Based on the type of resources under measurement, two efficiency sub-

characteristics are specified by the standard:  time behavior and resource utilization. We 

focus our study on time behavior, i.e. the amount of time to perform one or more 

operations. 

Code performance issues, revealed through static analysis, are cues that indicate 

potential efficiency problems. Therefore a refactoring operation that removes the issue will 

probably remove the problem too. Apparently pure speculation does not always lead to the 

identification of the right issues, as our previous experiment in Section 4.2 showed. Only 

empirical evidence can provide a credible support to performance issues as indicators of 

actual problems. Our aim is to empirically assess the impact on time efficiency of code 

issues detectable by ASA.  

We formalize the goal of our study according to the GQM template [34]: 



144 
 

 

 

 

 

 

 

The selected epistemological approach consists in the empirical comparison of the 

original application with a modified version with the issues removed by means of 

refactoring. The research question we aim to answer is: 

 

Does the refactoring of code issues affect the time efficiency of the 

application? 

A possible evidence of an effect, where the refactored version is faster than the 

original, would confirm the role of the issue as a performance problem predictor. 

CONTEXT DESCRIPTION 

The study was conducted  in the IT department of a large Italian company (about 

21000 employees in 110 countries). The focus was on a web application developed in Java. 

The application is a J2EE, servlet-based software developed with the modeling 

tool Web Dynpro, a client-independent UI builder in the SAP NetWeaver platform. Web 

Dynpro is used to develop user interfaces for business applications, based on the model-

view-controller paradigm [95]. The use of Web Dynpro minimizes manual UI coding 

because programmers use visual tools to design and reuse components. However, some 

customization of components and implementation of additional logic are performed 

manually on the generated code. 

The application size is 18142 NCSS (non-commented source statements), it has 49 

dependencies on external libraries and it is compiled with Java 1.4.2. The application runs 

on SAP NetWeaver 7.01 sp0. 

 
Analyze  code  performance issues on source code 
For the purpose of identifying their effect 
With respect to execution time efficiency 
From the point of view of developers 

In the context of an industrial Java web application 
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 The application architecture conforms to the MVC pattern: the user interacts with 

a View component that takes care of the presentation, user requests are processed by the 

Controller component, and the Model component holds the data communication with the 

Controller through a network connection. 

The main functionality of the application is to let the user search and filter 

documents from the company repository, which contains thousands of documents in XML 

format. In our study we focus on the two basic operations: search and filter. Figure  32 

shows the interactions taking place among the main components to carry out the two 

operations. The application, accessed via a web browser, is part of a pool of web 

applications and servlets hosted in the SAP portal of the company. 

Concerning the search operation: the user enters one or more keywords ks in a text 

box and submits her request pushing the search button (onActionSearch(ks)). The controller, 

invoked by executeSimpleSearch(ks), receives the text from the view and performs some 

checks. Finally it forwards the request to a web service located on a remote machine. The 

web service is in charge of looking in the repository for documents containing ks and 

sending them back to the controller. Data are sent back to the view, which builds up a table 

containing a row for each document retrieved and a column for each different property of 

documents (e.g.: title, owner, date, etc.).  

Once results are displayed on the screen, the user can filter them specifying a 

keyword or key phrase kf corresponding to a property p. The view transmits the keyword kf 

and the property p to the controller (onActionFilter(kf,p)), which in turns selects, among the 

documents already retrieved from the web service, those in which p contains kf . 
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An issue can be detected in different places of the code: we call them occurrences 

or detections. Table 29 reports for each issue type (first column) the number of detections 

(second column). In addition the table reports the category of each issue type according to 

the FindBugs classification (third column). Just three out of the 14 detected issue types, 

counting 48 detections, belong to the performance category according to the classification 

of the FindBugs tool. 

It is important to remark that, according to the FindBugs classification, each issue 

type belongs to exactly one category. However, issues belonging to other categories may 

have a performance impact too. For instance, the issue DLS DEAD LOCAL STORE 

belonging to category Style could impact the time efficiency of code. In fact, the issue 

detects an instruction that assigns a value to a local variable, but the value is not used in any 

subsequent instructions: time is wasted in a useless operation.  

So, we decided to set up an expert assessment procedure to identify, among the 

detected code issues, which have a potential impact on performance. 

The experts are the three academic authors of this paper: two of them taught 

object-oriented programming for more than ten years, another is a PhD candidate working 

as teaching assistant in a Java course since six years. 

The procedure they followed is straightforward: 

− each expert carefully read the issues description and classified them into 

one of the following categories which is associated with a score:  

− issue with a negative effect on time efficiency of code (score: 

+1) 

− issue without a negative effect on time efficiency (score: -1) 

− no decision (score: 0) 

− each issue is assigned a total score that is the sum of the scores assigned 

to the issue by the experts.  

− An issue with a total score greater or equal than 2 is considered 

performance relevant (fourth column of Table 29). 

Since the refactoring operations are fundamental in our investigation, we analyzed 

the corresponding refactoring operation for each issue type. The goal was to identify those 
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refactoring that could be implemented without affecting the behavior of the code. For 

instance, the issue DLS OVERWRITTEN INCREMENT does not satisfy these 

requirements for the following reason: since the issue detects a double write operation on a 

loop counter (eg. twice i++), the associate refactoring action is to delete the second write 

operation. However this change will alter the functional behavior of the code. Or must be 

supervised by the developer to check the refactoring is correct. The fifth column in Table 

29  indicates which issues might be refactored preserving the functional behaviour. 

Yet another selection criterion is the number of detections. The impact of issues 

with a few detections is expected to be smaller than the impact of issues detected more 

times.  We filtered out less frequent issues in the following way: we computed the 

distribution of the issues occurrences, and we decided that a reasonable limit is the median, 

which takes out 50% of the issues. The resulting inclusion criterion is: issue frequency > 2. 

Issues satisfying this criterion have the number of detections in bold in the second column 

of Table 29. 

The last column of Table 29 indicates which issues satisfied all criteria and were 

selected for the experimentation: this resulted in total of 26 occurrences all together. 

EXPERIMENT PLANNING 

We structured our study as a controlled experiment and we planned it following a 

typical approach for experiments in software engineering [7]. We list and describe in the 

following subsections the main steps performed: 

A. Treatment selection 

B. Hypothesis formulation 

C. Variable description 
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D. Experiment Design 

E. Analysis method 

F. Threats to validity 

 

A. Treatments selection 

Table 30 reports the details about the three issue types that satisfy all conditions in 

the selection process, out of the 14 detected. 

The treatment is the program with and without issues. Since there are three issues 

we manually refactored the original program three times, removing one issue type at a time, 

in order to understand the effect of each issue type. In addition we included also a version 

of the program where all detections of the three issues types were removed. Overall we 

have these four treatments plus the original program: 

 

Table 29.  Issues and their characteristics 

Issue  ID Detections FindBugs 
Category 

Performance 
Relevance 
(Expert) 

Function 
Preserving 
Refactoring 

Selected in 
Experiment 

URF UNREAD FIELD   43 Performance  − − 

BC UNCONFIRMED CAST   27 Bad Practice − − − 

DLS DEAD LOCAL STORE   20 Style   

DM BOOLEAN CTOR   3 Performance   

REC CATCH EXCEPTION   3 Style   

BC VACUOUS INSTANCEOF   2 Style   − 

NM CONFUSING   2 Bad Practice −  − 

SIC INNER SHOULD BE STATIC   2 Performance   − 

SIO SUPERFLUOUS INSTANCEOF   2 Correctness   − 

DB DUPLICATE BRANCHES   1 Style − − − 

NP LOAD OF KNOWN NULL VALUE   1 Style − − − 

NS DANGEROUS NON SHORT CIRCUIT   1 Style  − − 

RV CHECK FOR POSITIVE INDEXOF   1 Style − − − 

SA FIELD DOUBLE ASSIGNMENT   1 Style − − − 
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− OR (Original): the original application, 

− DS (Dead Stores): refactored version with DLS DEAD LOCAL STORE 

occurrences removed, 

− IBC (Inefficient Boolean Constructor): refactored version with DM 

BOOLEAN CTOR occurrences removed, 

− UE (Useless Exception): refactored version with REC CATCH 

EXCEPTION occurrences removed, 

− ALL: refactored version with occurrences of all the three issues removed. 

After performing the refactoring, we run a suite of functional tests to ensure that 

refactoring did not introduce errors. 

 

B. Hypothesis formulation 

Table 30. Details about selected issues 

Issue Description Refactoring action 

DLS DEAD LOCAL STORE  An instruction assigns a value to a local variable. 
However, the value is neither read nor used in 
subsequent instructions.  

Delete the instruction and, if the variable is 
not used anymore, delete also the variable. 

DM BOOLEAN CTOR Creation of new instances of java.lang.Boolean wastes 
memory, because Boolean objects are immutable.  

Use Boolean:valueOf() instead of the 
constructor to use objects from a pool 

REC CATCH EXCEPTION A method uses a try-catch block that catches Exception 
objects, but Exception is not thrown within the try block 

Remove the try-catch block 

 

Table 31. Variables 

 Variable  Description  Type Role 

Independent 

Version  The program version obtained by refactoring  
Nominal:{OR, DS, IBC, 
UE, ALL}  

Block 

Operation The type of operation, either search or filter. Nominal: {S, F} Block 

Size  
The size category of the document set retrieved: small, 
medium or large 

Ordinal: (SM, M, L)  Block 

 
Execution 
order 

The order in which operations of a given version are 
executed 

Ordinal: {1,2,3…36}  Random 

Dependent t Time to perform the operation  Ratio  Block 
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On the basis of the research question formulated, we define a formal hypothesis 

that can be verified by means of statistical tests. As customary in empirical investigations 

we define a null hypothesis, which we will try to refute, and an alternative one, which we 

aim at confirming:  

H0: tOR < tRefactor  

Ha: tOR ≥ tRefactor 

Where tOR is the time taken by the original application and tRefactor  is the time taken 

by the refactored version. 

The above null hypothesis will be tested for each refactored version of the program 

(DS, IBC, UE, and ALL). 

 

C. Variable description 

The dependent and independent variables considered in the experiment are 

summarized in Table 31. The treatment in the experiment consists in applying the 

refactoring transformation to the application in order to remove issues. So the main  

independent variable is  the Version of program (OR, DS, IBC, UE, and ALL). 

The second independent variable is related to the two operations – search and filter 

– performed by the application. Since they are profoundly different, we control the specific 

Operation performed in any experimental. 

Both the search and filter operation time may depend on the number of documents 

retrieved from the repository. Therefore we defined another co-factor representing the 

document set Size as a categorical ordinal variable, with three values: small, medium, and 

large. Table 32 reports, for each category, the number of documents retrieved from the 

repository through the search and filter operations. The repository available for the 

experiment contained 179 documents (retrieved by the large search) and it is a small 

portion of the repository actually used, which is composed of thousands of documents. 

The last co-factor is the order in which operations are performed, that might 

impact the execution time due to problems like memory degradation.  
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We could block [96] all independent variables but the operation execution order, 

which is randomized. 

Finally, the study measures only one dependent variable, the execution time, t. We 

measure the average execution times and the relative confidence intervals. For this purpose 

we used a profiler tool: the only one suitable for our context was CA Wily Introscope 

Release 8.0.2.0 (Build 470970). The tool allowed us to monitor the web application through 

instrumentation and record the execution time of the application. All the runs were 

automatically launched and managed through Selenium tools. The raw metrics that we were 

able to collect from the software execution are: 

 tWDA: time in SAP J2EE - WebDynpro Application that corresponds to the time 

employed by the application to complete the request. Looking at the sequence of the 

operations in Figure  32, tWDA is the time elapsed between the message 1: onActionSearch() 

and the related return message. As a consequence it includes  controller, view and model. It 

is also close to the total time observed by the users, except the browser-server 

communication delay. 

tWS: time in WebService that accounts for the time spent for acquiring the results 

of web service computation. Looking at Figure  32, it is the time spent in the “Net” cloud 

plus the time spent in the Model. 

Since the web service is not considered in the experiment, as far as the search 

operation is concerned we must exclude the time spent in that component, including the 

time devoted to the communication; such time is represented by tWS. Therefore the 

execution time, depending on the operation, is measured as follows: 

tSearch = tWDA – tWS  

Table 32. Documents set size vs operation 

 Documents retrieved 

Size Category   Search  Filter 

Small (SM)   1  1 

Medium (M)   100  9 

Large (L)   179  12 
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tFilter = tWDA  

 

D. Experiment Design 

The obvious design to adopt is a full factorial design, where a triplet (Version, 

Operation, Size) corresponding to the values of the block independent variables 

characterizes each experimental task. For instance, (IBC, S, SM) indicates that the IBC 

version is used to perform the search operation (S) on a small document set (SM), whereas 

(DS, F, L) indicates DS version, performing a find operation (F) on a large document set 

(L). As a consequence, considering both the main factor and the co-factor, the original 

generic hypothesis H0 must be specialized into Nhp detailed hypotheses: 

Nhp = NRefactor  NOperation   NSize 

where:  

− NRefactor = (NVersion - 1 ) = 4: is the number of Versions but the 

original one, which is the reference version to compare with, 

− NOperation = 2: is the number of operations, 

− NSize = 3: is the number of document set sizes. 

 

As a result we derived 24 detailed hypotheses. 

In order to statistically test the detailed hypotheses, thus taking into account other 

potential confounding factors, we need to collect several execution time measures for each 

triplet (Version, Operation, Size). 

To plan the collection of measures, it is important to recall that search and filter 

operations must be executed in pair therefore each experimental task included two 

operations: first a search and then a filter Operation; the execution time ought to be 

collected independently for each operation. 
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Operation, Size). We achieved this by using each Version in six different buckets, as 

depicted in Figure  33 : the figure summarizes the overall design and the organization of 

buckets, sequences and tasks. 

 

E. Analysis Method 

In the analysis of data we followed a four steps approach.  

First we perform a post-survey adjustment aimed at identifying and removing 

possible outliers and locating potential missing data. 

In order to gauge the variability of the data we used the dispersion index and the 

coefficient of variation [97]. The first index is defined as the ratio of the variance to the 

mean, whereas the second one is a normalized measure of the dispersion of a probability 

distribution and it is defined as ratio of the standard deviation to the absolute value of the 

mean.  

We identify outliers using a conservative criterion based on interquartile distance: 

a value is considered an outlier if its distance d from the third quartile (q3) is d > 3 * (q3-

q1), where q1 is the first quartile.  

Then we provide an overview of the data by means of descriptive statistics; in 

addition we attempt matching measured data to known distributions. We perform test of 

normality also to determine the statistical methods to be used in the results analysis. The fit 

to gamma distribution is tested because execution times typically fit this distribution. In 

fact, usually execution times are modeled with an exponential distribution and the M/M/1 

queue is the model that better fits execution times of web based applications [98] [99]. 

Since the execution of the search and filter is composed of a sequence of Java methods, 

assuming the execution times of the single Java methods exponentially distributed, the 

execution time of the whole operation might be modeled with a gamma distribution, which 

is the sum of exponential distributions. 

Distribution fitting is performed by means of two distinct goodness of fit tests: the 

Kolmogorov Smirnov (KS) test [100]  and the Anderson Darling (AD) test [101] with 

estimated critical values for gamma distribution from Shawky and Bakoban [102]. KS test 

is more stringent than AD test. AD test is more sensitive test but has the disadvantage that 
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critical values must be calculated for each distribution. KS test is more conservative 

because the critical values do not depend on the specific distribution, hence it is distribution 

independent. 

As a third step we test the hypotheses outlined above. Due to the nature of the 

hypotheses we used one-tailed tests to compare two populations. In particular we use t-test 

[97] if the data is normally distributed (according to the tests outlined above), otherwise we 

adopt the Mann-Whitney test [103]. Since the same sample (OR) is used in multiple 

comparisons – four times, corresponding to the four refactored versions –, the probability 

of type I error is increased. A common practical remedy consists in applying the Bonferroni 

correction [104]. We will reject the null hypothesis with a p-value < α/4 

The fourth and latest stage consists in checking for the effect of additional co-

factors. In particular we focused on the execution order of the tasks. For this purpose we 

formulate the null hypothesis that no trend exists in the temporal sequence of execution 

times. To test the hypothesis we perform the Sign test of Cox and Stuart [97] for the 

detection of a monotone trend. 

For all the hypotheses tests we set a confidence level of 95%, that is we accept a 

probability α = 5% of committing a type I error, i.e. rejecting the null hypothesis when it is 

true.  

F. Threats to validity 

We evaluate the threats of our study dividing them in external and internal threats. 

A first external threat occurs for results generalization. Although delays computed 

are verified and consistent, they could change in other environments. A more powerful 

platform could mitigate the effect of the issues, whereas a less powerful platform could 

amplify them. However, we expect an amplification of delays when the application runs in 

a real usage scenario, with dozens of parallel accesses and with other web application 

concurrently running on the same SAP Netweaver server.  

A second generalizability threat regards the effect of the document set size on 

execution times: we expect not homogeneous results and especially when the document set 

is small the execution times might be too short to be significantly compared. Moreover, the 

repository of documents used for the experiment is only a portion of the actual repository 
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used for the experimentation. Given that we only have 3 levels for the size co-factor, we 

will not be able to build a comprehensive model for the effect of the document set size on 

execution times, and as a consequence of the possible effect of the code issues delays on 

larger search/filter operations.  

The last external threat is related to the generalizability of the performance 

refactorings to other software systems. This study shows that the performance refactoring 

adopted improve the execution time efficiency in a SAP module, but we do not know 

whether this is a special case due to the nature of the software or these selected refactoring 

actions might improve performance in other software system in general. 

Regarding the internal threats, a first confounding factor is the fact that the server 

used for the experiment is not completely isolated. Although we asked employees to do not 

use it during experiments, we could not prevent it. We registered a few accesses to the 

virtual machine and a few requests to the SAP Netweaver server during the experiment. 

However, the small number of accesses let us consider the impact negligible on results.  

Confounding threats related to the order of runs are verified and controlled in the 

experiment design. Finally, all measurements were done through Wily Introscope, and lack 

of precision of this tool could bring construct threats: we assume this possibility an outside 

chance. 

RESULTS 

A. Post-experiment adjustement 

We adjusted the data by looking at their variability and searching for outliers. 

We found that in 22 filter and 15 search task executions the time samples have a 

coefficient of variation > 1, i.e. the majority of execution times are more than twice the 

mean. Moreover, all task samples have dispersion indexes >> 1, which means over-

dispersed data.  
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Based on our interquartile distance criterion for identifying outliers we observed a 

significant number of outliers: 123 out of 1245 samples, i.e. about the 10% of whole 

dataset. The very large variability of data and the high number of outliers observed 

motivates outliers’ removal. However   we conduct two analysis on results, firstly keeping 

outliers, secondly removing them to check the stability of the analysis:  since results did not 

change after removing the outliers, hereinafter the diagrams and values refer to the data 

without outliers. 

 

B. Data description 

Figure  34 reports the average time to complete the search (blue) and filter 

(yellow) tasks. We can observe a huge difference between the two operations and a time 

increasing with the size of the handled document set, especially for the search. This is a 

confirmation of the assumption we made while designing the experiment. 

Mean and median execution times of all operations are presented in Table 33 with 

variability. Standard deviation values indicate a large variability in all task types. 

We check whether data distribution fits the normal and the gamma distribution. 

Results of the normality tests for Search and Filter operations show that in no combination 

of version-operation-size data are neither normally distributed (for both AD and KS tests) 

nor follow the Gamma distribution (for both tests as well).  

 

Figure  34. Execution times vs. Document size and operation 
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C. Co-factor analysis 

We measured the effect of the order of tasks execution, which was randomized in 

the experiment design. We investigate whether there is a dependence of execution times on 

task order. The null hypothesis that no trend exists is rejected in two cases for search, (all 

decreasing: DS-S-M (p-value = 0.0176) and IBC-S-L (p-value=0.0461). The test was 

rejected in one filter: IBC-F-M, p-value=0.005, decreasing trend again. Since only 4 times 

out of 30 showed trends for different sizes and versions, we can exclude that execution 

times systematically degrade or improve due to the order of tasks execution. 

 

D. Hypotheses testing 

Figure  35 reports the boxplot of execution times for the filter operation, while 

Figure  36 reports the boxplot for the search operation: the colored boxplots indicate the 

original application. The vertical lines group boxplots according to the document set size 

(first small, then medium, finally large). 

To test the hypotheses, we compare the execution of each refactored version (DS, 

IBC, UE, ALL) to the original version (OR) time. Table 33 reports the mean and median 

difference together with the test p-value. Since the data is not normally distributed we opted 

for the non-parametric Mann-Whitney test. 

In medium and large searches, the refactored versions were always faster than the 

original one as we can easily observe in Figure  36.  The p-values reported in Table 33 are 

all far smaller than the  α  threshold therefore we can safely reject the null hypothesis for 

the search operation on medium and large sized document sets. 

Conversely, based on the information gathered by boxplot observation and 

represented by p-values we cannot reject the null hypothesis for search operation on small 

document sets.  

Concerning the Filter operation, for large document sets the boxplot in Figure  35 

provides a clear indication of a significant difference that is confirmed by test results. 
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Therefore we can reject the null hypothesis for the filter operation on large 

document sets. 

Less clear-cut and consistent results could be found for the medium and small 

document sets. Regarding medium sized sets, the null hypothesis can be rejected for all 

cases but for the IBC version. While as far as the small document set is concerned, in 

general the null hypothesis could not be rejected except for the combined refactoring 

version (ALL). 

 

  

 
Table 33. Summary of results 

Document 
set size 

App 
version 

Search   Filter 

Mean  Sd 
Delta 

means 
Median

Delta 
median

p-val   Mean  Sd
Delta 

means 
Median 

Delta 
median

p-val

Small 

OR 16.71 12.74   16   9.97 7.70   15   

DS 21.06 19.33 -4.35 16 0 0.819 9.49 7.86 0.45 15 0 0.55

IBC 15.67 12.31 1.05 16 0 0.476 9.48 7.77 0.45 15 0 0.39

UE 13.93 11.50 2.79 15.5 0 0.253 5.84 7.67 4.09 0 15 0.02

ALL 12.52 16.19 4.20 0 1 0.062 5.22 7.50 4.71 0 15 0.01

      

Medium 

OR 138.35 16.91   140.5   20.77 7.59   16   

DS 66.15 15.45 77.50 63 78 <0.001 13.80 8.24 6.97 16 0 0.01

IBC 73.43 13.15 62.50 78 63 <0.001 14.26 8.82 6.50 16 0 0.02

UE 68.23 15.65 77.50 63 63 <0.001 10.85 7.38 9.92 15 1 <0.001

ALL 59.09 11.40 78.50 62 78 <0.001 10.48 7.54 10.28 15 1 <0.001

      

Large 

OR 225.69 15.89   219   31.19 0.40   31   

DS 99.35 28.00 126.33 94 125 <0.001 17.06 11.03 14.13 16 15 <0.001

IBC 111.40 32.59 114.29 109 110 <0.001 17.06 8.01 14.13 16 15 <0.001

UE 101.03 16.34 124.65 94 125 <0.001 13.86 5.07 17.33 16 15 <0.001

ALL 95.70 17.82 129.99 94 125 <0.001  12.36 6.58 18.83 16 15 <0.001
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E. Discussion 

The design of this experiment allows us, starting from observed differences in 

execution time, to draw conclusion about the time efficiency impact of detected code issues 

– the main construct of the design –.  

For the large document set we observed a significant search time difference 

ranging between 114 and 130 ms (delta of the means) between OR and DS, IBC and UE 

versions. Considering the number of documents in the set and hypothetically assuming a 

cumulative time gain per document, such difference means that issues are responsible for 

around 1ms of delay per retrieved document. 

Concerning the filter operation, the differences of the means range between 14 and 

19ms. That corresponds to a delay per document of 1ms up to 1.5ms per filtered document. 

The above differences are reduced for medium-sized documents sets, and for the 

filter operation and the IBS issue it is not statistically significant. 

No statistical significance, except in one case, could be observed for the small-

sized document set. 
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To summarize, we observe an impact of FindBugs issues on time efficiency in 

medium and large searches (number of documents retrieved ≥ 100) and large filters 

(number of documents to filter ≥179).  

 
Figure  35. Boxplot of execution times. Filter 

 
Figure  36. Boxplot of execution times. Search 
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Given an estimated impact of issues in the order of a millisecond per document, 

practically significant time efficiency degradation can occur when hundreds, thousands or 

millions of issue invocations take place (for example, inside loops).  

Moreover, the speed of web application is an important characteristic because it 

might deeply affect the user experience. In fact, it is experimentally estimated ([105], [106], 

[107] and [108]) that:   

− 0.1 second is about the limit for having the user feel that the system is 

reacting instantaneously  

− 1 second is about the limit for the user’s flow of thought to stay 

uninterrupted, even though the user will notice the delay.  

So delays should be between 0.1 and 1.0 seconds to avoid negative impact on the 

user experience.  

In our experiment, the difference between the refactored and the original version 

was up to 130ms for the search operations, i.e. beyond the 0.1 limit of the user perception. 

Considering that issues are responsible for a delay of about 1 ms per retrieved document, 

when the document set is more than 1 thousands of documents the overall delay becomes ≥ 

1 second. The combined effects of issues deserve some considerations: removing all issues 

together (ALL) results into a speed-up that is smaller than the sum of the individual speed-

ups achievable by removing individual issues. In practice we observe a sub-linear sum of 

delays when we remove all the occurrences of the three issues.  

We conclude this discussion asserting that, based on our results, not all the 

inefficiencies of the source code can be mitigated through compilers and virtual machines 

optimizations, as also found by Lau et al. [94]. As a consequence, bad programming 

practices can lead to performance inefficiencies and ought to be refactored. From this 

perspective, we see two important applications of Automatic Static Analysis to code 

development: 

− it can drive programmers to develop a more efficient code and to refactor 

existing code; 
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− it can be applied to code generation tools to produce a more efficient code: as a 

matter of fact, 15 out of the 26 issues detections of the experiment were located 

in code automatically generated.  

In both cases, we see the strong need for triaging and empirical evaluation of 

issues that may have a negative impact on performance. 

RELATED WORK 

We summarize in this section the related work in the field of Java optimization 

(A), Automatic Static Analysis (B) and execution time measurement (C). The majority of 

discussion is devoted to the first topic: we describe the several approaches commonly 

adopted to optimize Java code, listing their benefits and drawbacks and motivating our 

choice to focus on HLR level (i.e,  source code level) to optimize Java programs.  

 

A. Java optimization 

1) Static optimization 

The first approach to improve Java code is static, i.e. before execution. Kazi et al. 

[92] conducted a survey on this topic: they present the transformation of Java byte code to 

an intermediate source code as one of the first attempts to statically optimize code (e.g. 

[109], [110]): unfortunately this technique does not guarantee portability. For this reason, 

other techniques were developed without impairing portability. For example, it is possible 

to apply standard compiler optimizations directly to the Java byte code (e.g. [111] [112]): 

however, only a limited number of optimization techniques can be applied to byte code, 

because the whole program structure is not available at this level. The two approaches 

presented above share a common drawback: they are all based on performance predictions. 

Moreover, if the code is written in an inefficient way, the static optimizations are not 

powerful make the program efficient. Lau et al. [94] faced this problem, realizing an 

experiment that demonstrated the possible inefficiency of such techniques. They modified 

the IBMs J9 JIT compiler to measure the total number of cycles spent in a given method. 
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Afterwards they designed an experiment with the goal of evaluating the impact of 

optimizations on 101 methods selected from 20 benchmarks. The methods were compiled 

twice, with the two highest optimization levels of the J9 JIT compiler (O4 and O5). 

Subsequently, they ran them and compared the execution times of these two versions, 

obtaining that the highest level (O5) offered substantial speedups only for a small number 

of methods, whereas modest effects were observed on the majority of methods. Moreover, 

level O5 actually degraded performances relative to O4 for about a third of the methods, 

with a negative pick of -21%. Then, the authors repeated the experiment focusing only on a 

specific optimization technique, i.e. method inlining. They adopted a subset of the methods 

used in the former experiment, comparing the execution time of the methods normally 

compiled and the execution time of the methods compiled with inlining optimization. They 

obtained that 7 methods were improved by over 10%, but 5 methods degraded by over 

10%. These results demonstrate that static optimizations work for the average case, and 

they do not assure that code will be actually faster. The possible motivations are two: 

overhead introduced by the common services of VMs (e.g.: automatic memory and thread 

management, dynamic loading, and so on) and limits of static optimizations. 

Our approach is also static but, being located at HLR, limits the two main flip 

sides highlighted above: it guarantees portability and it works at the very first level of the 

code.  

 

2)Dynamic optimization 

The second optimization approach that we present is dynamic, i.e. during program 

execution. Techniques belonging to this approach dynamically translate Java bytecode into 

native machine code (this is the case of JIT [113] compilation techniques) using adaptive 

runtime mechanisms that are executed by the virtual machine during program execution. 

Arnold et al. reviewed adaptive optimization technologies [90]. The goal of 

adaptive optimization technologies is to improve performance by monitoring a program’s 

behavior and using this information to drive optimization decisions. Arnold et al. [90] 

identified three main categories: 1) selective optimization, 2) profiling techniques for 

feedback-directed optimization (FDO) and 3) feedback-directed code generation. With 
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selective optimization (1) the VM determines at runtime which parts of the program should 

be optimized: this solution was firstly proposed by Hansen [114], afterwards many others 

have implemented the concepts of his doctoral work. For instance the SELF-93 

implementation [115] applied many of Hansens’ techniques, whereas the SELF-91 [116] 

was the base for many techniques of the HotSpot Server VM [117].  

FDO techniques (2) are focused on the collection of profiling information. Smith 

[118] identified three advantages for these techniques: 1) they use dynamic information that 

cannot be inferred by static optimizer technologies, 2) they enable the system to change and 

revert decisions if conditions change, and 3) runtime binding allows more flexible and 

easy-to change software systems. Moreover, FDO can be implemented using different 

profiling techniques (runtime service monitoring, hardware performance monitors, 

sampling, and program instrumentation). The last pool of techniques is the feedback-

directed code generation (3), whose aim is to improve the quality of the code generated by 

an optimizing compiler using different feedbacks. Among these three categories, selective 

optimization (1) has obtained a major impact on production systems, serving as a core 

technology in many production VMs. 

Dynamic optimization solves many limitations of compiler optimization, but they 

add overhead during software execution. Moreover, many profiling-based optimizations 

can work only on a subset of the possible application inputs. 

 

3)Various techniques 

We also found a pool of others techniques, which we list here because they are 

applicable only in specific environments.  

A first example is the parallelization of loops or recursive procedures ([119], 

[120]). This static approach produces high benefits only on source code with a significant 

amount of parallelism.   

A second approach is the development of ad-hoc Java processors (e.g., [121] [122] 

[123] [124]) that execute the Java byte code as their native instruction set. This solution 

permits to highly improve the time efficiency of programs, but the cost to pay is a processor 
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optimized just for Java, therefore other programming languages achieve poor efficiency on 

them.  

Higher performance is also achievable by focusing on those JVM features such as 

garbage collection, exception handling or thread synchronization that are the bottlenecks of 

the execution time because they add overhead (for instance [125]).  

A totally different set of problems arises when Java is executed in parallel and 

distributed environments [126]. The bottleneck in this case is the performance of the 

message passing, multithreading and synchronization mechanisms. 

The few approaches listed in this section do not represent a comprehensive list of 

all various techniques. However, this small set is sufficient to draw the following 

consideration: though very efficient ad-hoc solutions are present in the literature and are 

applied in industry, they work very well only for very specific requirements and types of 

applications, and they are not generalizable.  

 

4)High level optimization 

Little effort is dedicated to the exploration of techniques to optimize HLR, i.e. the 

code written by programmers or generated through modeling systems. Many books on Java 

source code optimization can be found in the literature, but no empirical evaluations that 

assess and quantify the benefits of applying optimization at HLR level. Kernighan [127] 

reserved a chapter of his book to performance, identifying possible bottleneck in programs 

and suggesting simple profiling mechanisms and strategies to tune programs. Few years 

later, Shirazi [128] offered to programmers a wider collection of tips about efficient 

programming, related to Object creation and reuse, efficient use of Strings, Exceptions, 

variables, or suggestions on how to tune loops. The author also provided some comparisons 

of timings and performance tuning checklists for developers. 

Other books dedicated to the performance problem from a programmer perspective 

are written by Wilson and Kesselman [129] and Bentley [130]. Moreover, there is a lot of 

work in the “grey” literature (for instance [131] [132] [133]), but no evaluations are 

provided.  
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This work provides a quantitative assessment of the impact of HRL optimizations 

detectable by automatic static analysis. Our former study [134] was conducted with a 

similar goal, but in a laboratory setting. In that work 20 FindBugs issues were selected and 

for each of them two source code fragments were prepared: one containing the issue and the 

corresponding refactored version, functionally identical but without the issue. Then three 

different platforms, isolated from network and other user programs to limit overhead due 

the execution environment, were used to execute a large number of times the code 

fragments measuring the execution time of both code versions. The authors found that 

eleven issues have an actual negative impact on performance in all platforms (up to 6 times 

slower). Among the eleven issues, the inefficient boolean constructor (IBC) was also 

proved to degrade the time efficiency.  The dead store DS had a negative impact on two 

platforms over three. The useless exception (UE) was not tested. 

The methodology used in this paper is similar; however we proved the effect of 

code issues in a real industrial application, with real usage scenarios.  

 

B. Measurement of execution time 

The efficiency of a software function, in terms of time behavior, is evaluated by 

computing or measuring the execution time. Measuring the execution time is not trivial 

because it is not deterministic, but it has a certain variation. In fact, the program behavior 

can be modeled with the following equation [135]:  

Program Behaviors = Inputs + Code + Environments. The running environments 

consist of all the elements in the execution platform (architecture, virtual machine, parallel 

threads or processes, operating system, and so on); program inputs determine the path 

executed or data to be accessed. Finally, the program code determines the set of instructions 

that may be executed in a path. The variability coming from software (operating system, 

programs, processes and threads) could make execution times unpredictable. For this 

reason, there is a best-case execution time (BCET), i.e. the shortest possible execution time, 

and a worst-case execution time (WCET), i.e. the longest possible execution time. It is 

possible to use two techniques to determine the BCET and the WCET [83]. The first 

approach is the use of static methods: the code and the possible paths are analyzed and, 
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combining different techniques, upper and lower bounds for the execution time are 

provided. This methodology does not take into account the hardware and the platform on 

which the code is executed, hence the bounds overestimate the WCET and underestimate 

the BCET and the variability is determined only by input data and code. The second 

method is measurement-based: the code, or a portion of it, is executed on a given hardware 

or a simulator for a set of inputs, and the pair WCET/BCET is obtained from direct 

observation. This method provides estimates and not bounds, underestimating the WCET 

and overestimating the BCET. Despite the high number of techniques developed for both 

approaches, the problem for WCET analysis in the field of Java applications has not been 

deeply examined yet: Harmon and Klefstad conducted a survey of WCET analysis for Real-

Time Java [84], but they were able to find fewer than twenty publications addressing the 

problem, and typical issues like the precision of measures and their generalizability are still 

open. 

We adopted in this work a measurement-based approach to measure the execution 

time, using a profiling tool.  
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4.4. CONCLUSIONS 

In the first experiment, we set up an experiment to quantitatively assess the impact 

of selected FindBugs issues on time efficiency. We selected, through expert judgments, 20 

representative issues and for each one we compared the average execution time of a code 

fragment containing that issue against the same code with the issue refactored out. The 

measurements were conducted on three different platforms. 

Experts’ examination of issues revealed that, mainly because FindBugs issue 

taxonomy is exclusive, a few issues having a potential impact on performance in fact do not 

belong to the Performance category. Moreover experiment revealed that 3 out of 11 verified 

issues do not belong to the Performance category, while 2 out of 3 unverified issues belong 

– apparently without justification – to that category. Overall, based on our findings we can 

select 11 issues that have a proved and quantified impact on time efficiency 

The second experiment was performed with an industrial application. We 

quantitatively assessed the impact on performance of three code patterns identified as issues 

by FindBugs. The issues are: dead store to local variable, useless try-catch block and 

inefficient construction of Boolean objects. We instrumented an industrial Java web 

application on two commonly executed operations: a search that retrieves documents from 

a remote repository, and a filter that works on the output of the search. A co-factor included 

in the experiment design is the document set size, for which we identified three levels: 

small, medium and large number of documents retrieved.  

We observe a significant effect of issues on searches on medium and large 

document sets, and on filter on large documents sets. The estimated overall delays ranged 

from 19 ms (filter) to 130 ms (search), and the execution time of the refactored code 

version was up to two times faster. Moreover, the delay inserted in large searches is beyond 

the threshold of the user perception of 100ms, thus implying a perceivable effect. We also 

observed that issues are responsible from 1 ms to 1.5 ms of delay per retrieved document: 

the time efficiency degradation for thousands of documents has a noticeable impact.  
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The information we provide is useful to practitioners to estimate potential delays 

introduced by the three code patterns in similar applications and to tune the ASA tools to 

identify and refactor them on source code. 

In both experiments, results proved that bad programming practices can lead to 

significant performance degradation. Automatic Static Analysis can play an important role 

in this scenario, either driving programmers or tuning code generation tools to produce 

more efficient code. 
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5 FUTURE RESEARCH CHALLENGES  

This chapter is devoted to the future research challenges for Automatic Static 

Analysis.  

The first challenge is ASA for multi-language projects. Most software systems are 

complex and composed of a large number of artifacts. To realize each different artifact 

specific techniques are used resorting to different abstractions, languages and tools. 

Successful composition of different elements requires coherence among them. 

Unfortunately constraints between artifacts written in different languages are usually not 

formally expressed nor checked by automatic static analysis tools; as a consequence they 

can be a source of problems.  We explore the role of the relations between artifacts written 

in different languages by means of a case study on the Hadoop open source project, in 

which we quantify the phenomenon and investigate its relation with defect proneness. 

The second identified challenge is ASA for energy efficiency. 

The assessment of the impact of software over IT power consumption is still at its 

initial phase. However, recent works suggest how this contribution might be even more 

significant as the hardware evolves towards more powerful and scalable architectures. 

Thus, optimizing software in terms of energy efficiency is one of the challenges that both 

research and industry will have to face in the next few years. Previous works have shown 

how software optimization might be achieved through identifying and refactoring code 

patterns that negatively impact a certain software characteristic, such as maintainability or 

efficiency. Those code patterns have been defined as Code Smells. If we consider energy 

efficiency as a software characteristic, we can apply the same idea of Code Smells 

identifying those code patterns, hereby defined as Energy Code Smells, which might 

increase the impact of software over power consumption. 
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5.1. LANGUAGE INTERACTION AND QUALITY ISSUES: 
AN EXPLORATORY STUDY 

Most software projects nowadays are polyglot, i.e. files written using different 

languages interact with each other. Wampler et al. [136] introduced a special issue on this 

topic writing “Most teams are by necessity MPP [Multi-Paradigm programming] teams 

now. No one writes in a single language anymore. Even trivial applications have a general-

purpose language, SQL, JavaScript, CSS, and dozens of frameworks, each of which 

includes an external DSL [Domain Specific Language] (usually in XML) that is its own 

mini language (the syntax is XML, but the XMLSchema defines the semantics)”. 

Given this scenario we seek to study the effects of language interaction and 

eventually evolve development techniques and supporting tools to consider these aspects. 

Nowadays tools used by developers help them only to verify the consistency internal to a 

language, i.e. consistency within a set of artifacts written in the same language. For 

example, editors check that an expression in Java code invokes a Java method which exists 

in the codebase, either in the same file or in another Java file. On the other hand there are 

major limitations in verifying the consistency across the language boundaries. For example 

can tools help the developer to understand immediately if a piece of XML code used for 

configuration refers to a really existing Java class? Normally currently available tools 

cannot do this because they are not aware of the cross-language semantics. 

While the issue of language interaction is already very relevant today, the 

appearance of language workbenches [137] let us suppose that this issue is going to become 

even more important in the future. For example, with Xtext [138] and GMF [139] we can 

create, textual and graphical DSLs with custom editors integrated in the Eclipse platform 

with a minimal effort. Other tools like Intentional Software [140] and the Meta-

Programming System [141] fully support the Language Oriented Programming paradigm 

[142] and are based on projectional editing. The existence of these tools and their usage in 

industrial projects [143] seem to indicate that the interaction between languages in projects 

will increase in the future. 
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Pfeiffer et al. [144] conducted a study related to language interaction. They 

realized a tool named GenDeMoG to mine inter-languages interaction based on text 

analysis. Their work was motivated by observing the amount of errors introduced by 

undocumented relations that cross the language border (i.e., they involve modules written 

in different languages) and the resulting complexity. 

Our hypothesis is that in the long run we need to support cross language 

development, including design, modeling, and validation. To reach this goal we first need 

to start understanding the effects of languages interaction: this work is intended as a first 

step in that direction. 

DEFINITIONS 

Before stating our goals and translating them into actionable research questions, 

we define how we do identify and measure the languages interaction. We provide here a list 

of definitions used throughout the rest of the paper.   

Module: we considered a module each single file. 

We consider a commit16 as a unit of work, consequently we suppose that files 

committed together are related. 

Intra-language commit (ILC): a commit containing a set of modules with the 

same extension. 

Cross-language commit (CLC): a commit containing modules with different 

extensions. 

Cross-language commit for an extension (࢚࢞ࢋ࡯ࡸ࡯): a CLC containing that 

includes modules with the extension ext. 

Defect fix: a commit executed to fix a defect. 

We consider a module to be cross language when it is related to modules written 

in a different language (e.g., a Java file loading the configuration from an XML file). To 

measure how much a module is cross language we analyze its history: if the module was 

                                                 
16 We refer to the term commit as used in the context of version control systems. 
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frequently committed with files written in other languages we consider that as an indicator 

of interaction between the module and those files. This interaction is measured through 

different variants of the cross language ratio (CLR). 

Cross language ratio of a module (࢓ࡾࡸ࡯):  the CLR of a module m is the 

fraction of cross-language commits in which m was involved with regard to the total 

number of commits regarding the module (both intra-language and cross-language):  ܴܮܥ௠ =	 ܥܮܥ	#ܥܮܥ	# +  	ܥܮܫ	#
Cross language ratio of a module with regard to an extension (࢚࢞ࢋ,࢓ࡾࡸ࡯):  the 

CLR of a module m considering as CLC only the commits involving m and a module with 

extension ext:  ܴܮܥ௠,௘௫௧ = 	 ௘௫௧ܥܮܥ	#௘௫௧ܥܮܥ	# +  	ܥܮܫ	#
Cross language ratio of an extension (࢚࢞ࢋࡾࡸ࡯):  for each extension ext we 

compute its cross language ratio as the mean of the ܴܮܥ௠ considering all modules having 

extension ext:   ܴܮܥ௘௫௧ = ௠ܴܮܥ∑	 ,݉ ∈ #ݐݔ݁ ∗. ݐݔ݁ 	 
Cross language ratio of an extension extA with respect to an extension extB 

௘௫௧஺,௘௫௧஻ܴܮܥ :௠,௘௫௧஻  among all modules m with extension extAܴܮܥ the mean of :(࡮࢚࢞ࢋ,࡭࢚࢞ࢋࡾࡸ࡯) = ௠,௘௫௧஻ܴܮܥ∑	 ,݉ ∈ #ܣݐݔ݁ ∗. ܣݐݔ݁  

Cross Language Module (CLM): a module is cross language if its CLR is ≥ 

tCLM%, where tCLM is a threshold to be defined. 

Intra Language Modules (ILM): a module is intra language if its CLR is < 

tILM%, where tILM is a threshold to be defined. 
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GOALS, RESEARCH  QUESTIONS AND METRICS 

 The goal of this preliminary study is two-fold. Firstly we investigate the level of 

languages interaction in a common project. Secondly, we verify whether the level of 

interaction is related to quality problems. We look at defects as a proxy of software external 

quality. We identify two research questions related to the first goal. 

RQ1 How much interaction is there among the languages present in a project? 

The interaction is computed as the percentage of CLC among a set of commits. 

First we consider all type of commits (RQ1.1), then (RQ1.2) we consider separately the 

commits related to a particular activity (e.g., improvement, bug fixing, new feature).  

Once we have defined the size of the phenomenon by answering to RQ1, we will 

go deeper considering the behavior of each single extension.  

RQ2 Which extensions interact more? 

The second research question is answered at two levels, i.e. firstly investigating the 

relationship between one extension versus all the other extensions (RQ2.1), then analyzing 

the most interacting pairs of extensions (RQ2.2). 

We answer RQ2.1 computing the ܴܮܥ௘௫௧ for each extension, while we answer RQ 

2.2 computing the ܴܮܥ௘௫௧஺,௘௫௧஻ for all pairs of extensions. 

The last research question is related to the second goal, i.e. investigating whether a 

high interaction between languages might result in higher defect proneness.  

RQ3 Are Cross Language Modules more defect-prone? 

We answer RQ 3 computing the number of Cross Language  Modules (CLM) with 

and without defects, and the number of Intra Language Modules (ILM) also with and 

without defects. Then we compare the two proportions with/without defects by means of 

the F-test to see whether the proportion of Cross Language Modules with defects is 

different from the one of Intra Language modules.  

This metric is computed at three granularity levels: 

− considering all files regardless of their extension (RQ3.1), 
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− considering for each single extension its level of interaction with all the other 

extensions as aggregate (RQ3.2), 

− considering interaction between specific ordered pairs of extensions (RQ3.3). 

CASE STUDY 

This exploratory study aims at understanding the phenomenon of language 

interaction and derived quality issues. We also use it to investigate whether the 

methodology defined above is applicable. We selected as a case study Apache Hadoop17, 

which is a set of libraries to support distributed data processing. We selected Hadoop 

because it is a mature project (it is supported since April 2006) and it is used in many 

industrial applications (e.g., Yahoo, and Facebook). 

Our methodology for computing the metrics defined above is based upon the fact 

that Hadoop uses SVN18 to manage artifacts versions and JIRA19 to track not only defects 

but any other activity that can be associated with software artifacts. Those elements are 

called “JIRA issues”, and each project has its own set of issues. Example of JIRA issues are 

the implementation of a new feature, a single implementation task, a bug report, and so on. 

Hadoop developers established links between commits in the SVN code repository to JIRA 

issues by systematically including issue ids in their SVN commit comments. 

We downloaded the SVN log from the Hadoop repository (last revision retrieved 

is the 1233090, from 01/18/2012, the first available revision is the 776174 from 5/19/2009). 

We also extracted all JIRA issues from the Apache JIRA database. 

We computed all modules CLRm and observed their distribution: about 30% of 

modules have CLRm between 0 and 0.1, and about 55% files have CLRm between 0.9 and 1. 

Given these percentage and given that the remaining files have a positive (right) skewed 

distribution, we decided to use as thresholds tCLM=tILM=50% to define CLM and ILM 

modules. 
                                                 
17 http://hadoop.apache.org 
18 http://subversion.tigris.org/ 
19 http://www.atlassian.com/software/jira/overview 
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RESULTS AND DISCUSSION 

Table 34 reports the percentage of cross language commits in the Hadoop 

repository: 53% of all commits (first column) are CLC, i.e. containing files of different 

languages. Looking at the portion of CLC related to the different activities (i.e., JIRA 

issues), we observe that their percentage varies with respect to the type of issue (from 2nd to 

last column in Table 34). It goes from a minimum of 5% in commits related to Test up to a 

maximum of 45% in Sub Tasks (since not all issues are linked to JIRA issues, the mean 

“All” in the first column is not related to the other means in the following columns).  

RQ 1.1 answer: the 53% of commits in Hadoop are cross language.  

RQ 1.2 answer: looking at the single activities, we derive that writing/modifying 

tests or fixing bugs are activities that involve mainly a single language, while adding new 

features is an activity that involves multiple types (or at least extensions).  

We now proceed to RQ 2.1 and 2.2. Table 35 contains the top 5 extensions in 

terms of number of files: c, sh, properties, xml and java. Among them, four extensions 

correspond to programming languages and one is used for configuration files. 

Subsequently, we compute the CLRextA,extB for all combinations of the five extensions . 

Table 36 reports the CLRextA,extB.  

RQ 2.1 answer: all most common extensions in Hadoop are highly interacting with 

other extensions (i.e., CLRext, > 0.50).  

RQ2.2 answer: the most frequent interactions (CLRextA,extB ≥ 0.50) are: C-XML 

(0.83), Properties-Java (0.54), XML-Java (0.52), C-Java (0.51),  C-sh(0.50). Border values 

are: Java-XML (0.48), sh-XML (0.47) Properties-XML (0.46), and XML-Properties (0.43). 

We observe that the only pairs with frequent interactions in both directions are 

Java-XML and Properties-XML. All the other pairs have frequent interactions in only one 

direction. For instance, CLRXML-C = 0.04 and CLRC-XML=0.83 means that most of the 

commits involving C contain also XML files, but not the other way around. 
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We now focus on the last RQ, i.e. on the relation between languages interaction 

and defect proneness. Table 38 contains metrics to answer RQ 3.1 (first line) and RQ 3.2 

 
Table 34. Percentage of cross language commits (RQ 1) 

All Bug Improvement New 

Feature 
Sub 

task 
Task Test 

0.53 0.12 0.26 0.30 0.45 0.26 0.05 

 
Table 35. CLRext (RQ 2.1) 

CLRext Nr files Extension 

0.96 49 c 

0.87 114 sh 

0.72 75 properties 

0.71 320 xml 

0.59 4328 java 

 
 

Table 36. CLR_(extA,extB) (RQ 2.2) 

extA/extB C Java Properties Sh XML 

C - 0.51  0.10  0.50  0.83  

Java 0.01  - 0.28  0.04  0.48 

Properties 0  0.54  - 0.36 0.46 

Sh 0.09 0.22 0.24 - 0.47 

Xml 0.04  0.52  0.43  0.24 - 

 
 
Table 37. Odds ratio of the defectivity in respect to the relation between pairs of extensions (RQ 3.3) 

 C Java Properties sh XML 

C - Inf 0 0 Inf 

Java 2.79 - 0.32 0.43 0.96 

Properties Inf 1 - 12.08 0.94 

Sh 3.55 4.45 17.17 - 7.44 

Xml 3.83 0.95 3.22 4.73 - 
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(from 2nd to last line). The following columns contain, in the order: the number of ILM with 

no defects and then with at least one defect, the number of CLM with no defects and then 

with at least one defect, the p-value of the F-test and finally the odds ratios (which is 

greater than 1 when CLM are more defect prone than ILM).  

RQ 3.1 answer: considering all extensions, ILM are more defect prone that CLM 

(about 5 times less).   

RQ 3.2 answer: considering the five most common extensions, we observe that 

three extensions (XML, Properties and C) have CLM with higher defect proneness, while 

two extensions (Java and Sh) exhibit the opposite relation.  

Among the above differences, only all extensions and Java are statistically 

significant (p-value ≤ 0.05). 

Finally, Table 37 contains the odds for each pair of extensions to answer to RQ 

3.3. We report in bold the values for which we obtained a p-value ≤ 0.05. We observe 7 

pairs for which ILM are less defect prone than CLM, 12 pairs with CLM more defect prone 

than ILM and one pair with odds ratio =1. We consider only values with p-value ≤ 0.05 to 

answer RQ 3.3.  

RQ 3.3 answer:  

− four extension pairs have CLM more defect prone then ILM (C-Java, C-

XML, Properties-C, Sh-C),  

− five extension pairs have ILM more defect prone then CLM (C-

Properties, C-sh, Java-XML, Properties-XML, XML-Java)  

                   
Table 38. Relation between classification in ILM and CLM and presence of defects (RQ 3.1 and 3.2) 

 RQ MN MY CN CY P Odds 

all 2 1891 225 2875 89 0.000 0.26 

c 2.1 2 0 46 1 1.000 Inf 

java 2.1 1692 201 2239 25 0.000 0.09 

properties 2.1 19 1 45 7 0.429 2.92 

sh 2.1 10 5 64 13 0.162 0.41 

xml 2.1 96 11 184 24 0.851 1.14 
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− one extension pair have exactly same defect proneness  (Properties-

Java).  

We notice that interactions where CLM results more defect prone involve always 

the C files. While interactions where ILM results more defect prone involve mainly XML, 

however C is also present. An interesting fact is that the pair Sh-C is in the first set, the pair 

C-sh is in the second. Besides these considerations, we do not have an unique answer for 

RQ3. However, we observe that having languages interacting with other languages is 

related to higher defect proneness for certain languages (mainly C) and specific 

interactions. 

THREATS TO VALIDITY 

Internal: in this exploratory case-study different aspects were not considered. In 

particular we did not examine all the possible confounding factors influencing the defect 

proneness of the modules. Among them the age and the size of modules (expressed in LOC, 

for example) are the most relevant ones. 

We discriminated between modules on their names while the same module can 

change name in the course of the project. We grouped the files by their extension while a 

different extension could not always indicate a different language. 

Construction: we are unable to measure directly the interaction between modules 

written in different languages and consequently we use as a proxy their concurrent presence 

in the same commits, which may be an imprecise approximation. 

External: another threat is due to selection bias: we have no particular reason to 

believe that Hadoop is representative of other software projects. Of course having 

considered only one project generalization of the results presented is not possible at all. 
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CONCLUSIONS AND FUTURE WORK 

Although we do not have unique answers, the results and observations from this 

exploratory study let us understand that the problem is worthy to be investigated. In fact we 

observed that more than half of the commits in Hadoop are cross language (at least 

according to our definition). However we also observed that this property depends on the 

type of the activities and the extensions of the modules.  

Commits related to testing or fixing bugs involve mainly a single language, while 

adding new features or doing implementation sub-task are activities which involve multiple 

languages (or at least extensions).  

Looking at the single extensions, we verified that the most common extensions are 

frequently changed together with files with different extensions. Frequent interactions are 

generally not symmetric, and many of them involve XML.  

When we look at defect proneness, we observe that for Java modules the 

interactions with other languages (as an aggregate) is not problematic at all: we observed 

that Java CLMs files are ten times less defect prone than ILMs. However, when looking at 

single pairs of interactions, we notice that several pairs have CLM significantly more defect 

prone then ILM, especially C modules. Finally, the widespread interaction between Java 

and XML apparently is not related to defect proneness. 

Today Automatic Static Analysis tools cannot cross the boundaries of the 

languages and are not able to analyze the interactions between languages [2]. This study 

represents a first step in understanding the phenomenon of languages interaction and it let 

us hypothesize that the interaction of languages might be problematic for specific languages 

interactions.  

The new challenge for Automatic Static Analysis is to become polyglot. 
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5.2. DEFINITION, IMPLEMENTATION AND VALIDATION OF 

ENERGY CODE SMELLS 

The issue of sustainability is starting to be addressed among the software 

engineering community. Although during the First International Workshop on Green and 

Sustainable Software20  there was a common agreement that sustainability is and will be a 

key aspect of software, it is still unclear how to design sustainable software. While for other 

characteristics (reliability, performance, security, etc.) processes and metrics have been 

proposed and widely investigated by the SE community, as regards sustainability the 

discussion is still in its initial phase. In addition to that, software sustainability has an 

intrinsic difficulty because the topic invests not only technological aspects, but also 

economic, social and environmental, which are under the broad umbrella of sustainability 

as defined in 1987 by the Bruntland commission .  

Among the kaleidoscope of aspects related to software sustainability, one of the 

most visible is the energy (or, alternatively, power) consumption of software systems. 

Indeed, software does not consume energy directly, however it has a direct influence on the 

energy consumption of the hardware underneath. In fact, applications and operating 

systems indicate how the information is processed and, consequently, drive the hardware 

behaviour: previous work [145] suggested that software can increase the total power 

consumption of a computer system up to 10%. This and other initial findings [146] open 

investigation spaces on the optimization of energy and power consumption of IT devices 

acting on the software instead of the hardware. Moreover, nowadays the same software runs 

on multiple devices, thus it might be more productive and feasible for software houses to 

green the single software rather than relying on the greening of all the hardware 

implementations underneath (that could require competences commonly not owned by 

software houses). 

Optimizing a software product in terms of energy efficiency has also some issues. 

The absence of a standard procedure, or a benchmark, to compare systems is the most 

                                                 
20 http://greens.cs.vu.nl/?page_id=1262 
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prominent one. This is because software is intangible and it is deployed on devices with 

their own specifications and features. This makes really difficult to standardize a 

transparent, platform-independent measuring system for every software system.  

Another consideration must be done regarding software architectures. During the 

last years, software engineers always tried to increase the number of software layers - that 

is, for improving interoperability, abstraction, decoupling, etc. However, the steep increase 

of software layers directed the optimization efforts only on each layer (“horizontal” 

optimization) and not across them (“vertical” optimization). Since energy efficiency 

directly relates with hardware technologies, a more intense communication flow between 

hardware and software is needed to achieve significant optimizations. In this sense, 

embedded systems make a perfect case study, because their architecture is simplified by 

design, and also because power consumption issues acquire a peculiar importance, for 

operational reasons (most embedded systems are battery-powered).  

For this reason our work uses an embedded system as the test-bed to validate a 

new approach for the design and implementation of sustainable software. We investigate, 

and here we also introduce the goal and main contribution of this study, how software can 

be optimized by identifying code patterns that use in a sub-optimal way the hardware 

resources. These code patterns ought to be refactored in order to improve the energy 

efficiency of the software at run time. We define and name the code patterns Energy Code 

Smells, inspired by the well-known book of Fowler and Beck [62].  

GREEN CODE SMELLS: BACKGROUND AND DEFINITION 

The term “code smells” was coined by Fowler and Beck [62] referring to poor 

implementation choices that make the software difficult to maintain. These bad 

implementation practices can be characterized as patterns in source code. For instance, the 

smell “Long Method” refers to a method that has grown too large: typically, the longer is 

the method the more difficult is to maintain it. One or more refactoring actions are 

associated to code smells: for example all you have to do to refactor a Long Method is to 
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extract parts of the method that seem to go nicely together and make a new method. As a 

result the original method is shorter and easier to maintain. The goal of identifying and 

refactoring code smells is to make the code more understandable and flexible to evolution, 

i.e. more maintainable, and many studies in the literature have been devoted to this aspect 

[69] [147]. However refactoring code smells might have an effect also on other properties 

of the software, such as the portability, the testability or, as in the case of this work, the 

energy efficiency of the code. As a consequence, we take inspiration by the original work 

of Fowler and Beck and we introduce the concept of smells into the Green IT community, 

introducing the Green Smells: 

A Green Smell is an implementation choice that makes the software execution less 

energy efficient. 

Since software has different levels of abstractions and organizations, Green Smells 

can be located at code, design or architectural level. Therefore, Green Code Smells are 

implementation choices at source code level (code patterns) that make a sub-optimal usage 

of the hardware resources underneath. As a consequence, they provoke a higher energy (or 

alternatively, power) consumption. 

VALIDATION OF ENERGY CODE SMELLS 

The aim of our research is to identify Energy Code Smells. In addition to that, we 

are also interested in understanding whether the Energy Code Smells also degrade the 

performances of the application in terms of execution time. We set up two research 

questions for our investigation:  

RQ1. Which code patterns have an effect on power consumption (i.e. which code 

patterns are Energy Code Smells)?   

RQ2. Code smells that have an effect on execution time do also have an effect on 

energy consumption (i.e. are Energy Code Smells also Performance Smells) ?   

The epistemological approach adopted for this research is the empirical one. We 

set up an experiment observing two dependent variables: power consumption (W) for RQ1 
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and execution time (ms) for RQ2. The two dependent variables are measured on the 

execution of C++ functions running on an embedded device. The choice of the embedded 

device has several advantages, the main two being:  

− it has no operating system and thus confounding factors in the experiment are 

minimized;  

− it runs on a battery and it really needs energy efficient code.  

In other terms, refactoring Energy Code Smells in such an environment might 

lengthen the life of the battery. 

The potential Energy Code Smells selected for the experiment are code patterns 

used by two popular static analysis tools. For each code pattern selected for the experiment, 

we set up a C++ function with two implementations, one that violates the code pattern (thus 

contains a Code Smell) and the refactored one without the violation. Therefore the 

treatment is the refactoring of the smell and it is possible to observe an effect on the two 

variables by comparing the measurements on the two versions of the code. Figure  37 

represents the design described. 

POTENTIAL ENERGY CODE SMELLS SELECTION 

As introduced above, the software that runs on the selected device is C++ code. In 

order to identify Energy Code Smells on C++ code we look at already existing code 

patterns. In particular, we examined patterns implemented by Automatic Static Analysis 

 
Figure  37. Experiment design 
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(ASA) tools. The two tools selected for this study are Cpp-Check21 and Findbugs22. 

CppCheck is a well-known static analysis tool for C/C++ which contains many patterns 

regarding a variety of desired software properties: safety, portability, performance, etc . An 

example of C/C++ pattern on portability is “64 bits portability”, i.e. assign address to int or 

long. An example of checked pattern on performance is instead “Address not taken” of the 

category “Memory leaks”, which detects when the address to allocated memory is not 

taken. In order to identify which patterns can be considered relevant for energy efficiency,  

two of the authors carefully read all patterns and selected independently which ones could 

cause a higher power consumption of the Waspmote. All conflicts (a pattern selected by 

                                                 
21 http://cppcheck.sourceforge.net/, last visited on September 13th, 2012 
22 http://findbugs.sourceforge.net/, last visited on September 13th, 2012 
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only one expert) were resolved in a reconciliation meeting, where patterns were discussed 

and a final decision taken. In addition to the Cpp-Check patterns, we also reviewed the 

patterns of another static analysis tool, Findbugs. It is similar to Cpp-Check, but it analyzes 

Java code. The same two authors reviewed all FindBugs patterns and decided firstly if they 

can be applied to C++ code, then whether they might be related to energy efficiency. The 

selection process ended up with the patterns shown in Table 39. 

Subsequently, we wrote for each of the patterns a pair of C++ functions, one 

Table 39. Potential Energy Code Smells Selected for validation 

 Pattern Name Pattern Description Tool 

Parameter By Value Passing a parameter by value to a function CppCheck 

Self Assignment Assignment of a variable to itself. (e.g., 
x=x). 

CppCheck 

Mutual Exclusion OR OR operator between two mutually 
exclusive conditions (thus always 
evaluating to true). 

CppCheck 

Switch Redundant Assignment Redundant assignment in a switch 
statement: for example, assigning a value 
to a variable in a case block without a 
following break instruction, then re-
assigning another value to the same 
variable in the subsequent case block. 

CppCheck 

Dead Local Store A statement assigning a value to a local 
variable, which is not read or used in any 
subsequent instruction. 

FindBugs 

Dead Local Store Return A return statement assigning a value to a 
local variable, which is not read or used in 
any subsequent instruction. (i.e. 
return(x=1); ) 

FindBugs 

Repeated Conditionals A condition evaluated twice (e.g., x==0 —
— x==0). 

FindBugs 

Non Short Circuit Code using non-short-circuit logic boolean 
operators (e.g., & or |) rather than short-
circuit logic ones (&& or ||). Non-short-
circuit logic causes both sides of the 
expression to be evaluated even when the 
result can be inferred from knowing the 
left-hand side. 

FindBugs 

Useless Control Flow Control flow constructs which do not 
modify the flow of the program, regardless 
of whether or not the branch is taken (e.g., 
an if statement with an empty body).

FindBugs 
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containing a potential smell and another one refactored without that smell. For example, the 

“Non-Short Circuit Logic” pattern has the following two functions: 

void NonShortCircuit With(){ 

int count = 0; 

int total = 345; 

if ( count > 0 & total / count > 80 ) 

count=0; 

} 

void NonShortCircuit Without(){ 

 

int count = 0; 

int total = 345; 

if ( count > 0 && total / count > 80 ) 

count=0; 

} 

The function NonShortCircuit With() is the one with the potential smell “Non-

short circuit logic”. The smell is in the line if(count>0 & total/count>80) because the AND 

operator is single & and so both predicates in the expressions will be evaluated at run-time. 

In the function, NonShortCircuit Without() the code is refactored replacing & with &&. All 

functions are available online for the sake of replication23. 

EXPERIMENT SETUP 

A. Context: the WASP 

The device used for the experiment is the Waspmote V1.1 (Libelium 

Comunicaciones Distribuidas S.L. Esso). The hardware architecture is based on a ATmega 

1281 microcontroller with a CPU frequency of 8 MHz and 8KB of SRAM. It has no 

operating system: programs are directly loaded on a FLASH memory of 128 K. This 

                                                 
23 http:softeng.polito.it/greensmells/ 
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architecture well suites our experiment because no other threads run in parallel with the 

chosen program, thus eliminating any software noise for the energy measurement. The 

device is basically a motherboard with connectors to plug in other elements such as sensors, 

wireless modules (ZigBee, XBee, Bluetooth), GSM/GPRS modules and a GPS (Global 

Positioning System) module. For this reason it is used in different fields, such as Smart 

Metering, Building Automation, Agriculture etc. It runs on a lithium battery (3.7V and 

1150mAh), so the energy consumption of software has a key role here. To compile and 

load the C++ programs it is sufficient to use the IDE provided by the manufacturer and 

connect it to a computer via USB cable. 

 

B. Experiment setup 

The objective of the experiment is to measure power consumption and execution 

time on each function pair, in order to evaluate if the potential smell affects the two 

dependent variables. We divide the experiment in two parts: one for measuring power 

consumption, and another one for the execution time.  

Measuring power consumption and execution time for a single function is a 

challenging task because usually execution is too fast to get reliable data. We control this 

threat repeating each function 1 million of times, that makes one sample. We collect 50 

sample in order to reach statistical significance. Each function pair is loaded on the 

Waspmote and evaluated two times: the first one for the execution time, the latter one for 

the power consumption.  

No specific instrumentation was needed to obtain the execution time, because the 

Waspmote embeds a Real-Time Clock (RTC) with a millisecond accuracy. We measure the 

execution time of every loop (i.e. 50 measurements).  

On the other side, analyzing power consumption is more complicated. The only 

way to obtain a precise measure of the power consumption is using a power meter. The 

RTC is powered by an auxiliary battery, which makes it completely independent from the 

main power supply. Therefore it is possible to power the Waspmote with a constant voltage 
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(VG = 3.7 V) by means of a generator, and use a shunt resistor24  to measure the current 

intensity. An analog to digital converter (ADC) connected to the PC reads the voltage drop 

across a resistor R of 1 Ω. The current flowing in the circuit can be computed by measuring 

the voltage drop on the resistor (ܫ = ஺ܸ஽஼/ܴ). The instant power consumption value can be 

computed as: ܲ = ௅ܸ ⋅ ܫ = (ܸீ − ஺ܸ஽஼) ஺ܸ஽஼ܴ = ܸீ ஺ܸ஽஼ − ஺ܸ஽஼ଶܴ  

 

Figure  38 represents the circuit described. 

The device used to measure the power consumption has a frequency of 49KHz, i.e. 

it gets 49000 measurements each second. In order to precisely measure the power 

consumption relative to the execution of the function pairs, we inserted a sleep interval at 

the beginning of the data acquisition to exclude the peak of device power on, and we 

filtered out, through a threshold, all the measurements corresponding to the idle 

consumption between the iterations of the function execution. As shown in Figure  39, the 

threshold filters out the transient and includes only the peaks corresponding to the actual 

execution of the function. 

 

C. Analysis methodology 

For each research question we derived a pair of null and alternative hypotheses to 

test. 

                                                 
24 http://en.wikipedia.org/wiki/Shunt_(electrical)#Use_in_current_measuring, last visited September 13th, 2012 
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RQ1:  

H10 : Pwith⩽Pwithout  

H1a : Pwith>Pwithout  

where P is the power consumption of the function, with and without the potential 

smell. If the refactored version of the function consumes less than the function with the 

 
Figure  38. Circuit built to measure the power consumption 

 
Figure  39. Sampling current intensity: an example 
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smell, the null hypothesis is rejected in favor of the alternative one. As a consequence we 

consider the pattern an Energy Code Smell. The hypothesis is tested with the Mann-

Whitney test, given α=0.05.  

RQ2:  

H20 : Twith⩽Twithout  

H2a : Twith>Twithout  

where T is the execution time of the two functions. If the smell has a negative 

impact on performance, the refactored function will be faster and the null hypothesis is 

rejected. In that case, we consider the pattern a Performance Smell. In order to answer RQ2, 

we compare which Energy Code Smells are also Performance Smells. We also use Mann-

Whitney and α=0.05 to test the hypotheses.  

At the end of the experiment each function has 50 measurements of execution time 

and about 25 millions of power measures. Then, after filtering out values below the idle 

threshold (8mW), we obtained about 8 million values for power measurement, on which we 

ran the analysis.  

RESULTS 

We report results on the power consumption and execution time respectively in 

Table 40 and Table 41. The two tables report the name of the smell, the means and their 

difference for both the dependent variables, the p-value of the Mann Whitney test and the 

difference in percentage of the power consumption (or execution time) between the 

execution of the code with the smell and the execution with the refactored code. 

We observe from Table 40 that all power consumptions ranged from 40mW to 

about 42mW. Five code patterns over nine have a p-value < 0.05 (in bold) and therefore the 

null hypothesis is rejected for them. The code patterns are: 

− DeadLocalStore  

− NonShortCircuit  
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− ParameterByValue  

− RepeatedConditionals  

− SelfAssignment  

Overall the saved power consumption is less than 1%. The answer to RQ1 is:  

five code patterns (DeadLocalStore, NonShortCircuit, ParameterByValue, 

RepeatedConditionals, SelfAssignment) are Energy Code Smells, and their impact is in the 

order of μW. 

Focusing on performance, from Table 41 becomes evident that there is no 

difference in execution time. The null hypothesis is rejected only for MutualExclusionOr, 

however the magnitudo order is μ seconds. We also notice that DeadLocalStores are about 

5 times slower.  

Thus, our answer to RQ2 is: Energy Code Smells are not Performance Smells. 



195 
 

DISCUSSION 

We identified five smells which provoked a higher power consumption of the 

Waspmote in the use cases prepared for the experimentation. However, we observe that the 

saved power is less than 1 %. A first motivation resides in the implementation choices: the 

function pairs executed only differ in a single instruction, and the operations are done with 

primitive types (e.g., integer). The motivation of such implementation was the exclusion of 

any possible confounding factor in the analysis, but the drawback of such a choice is a very 

small achievement in energy efficiency improvements.  

Table 40. Results of power consumption 

 Smell name Mean 
with 
smell 
(μW) 

Mean 
w/o 

smell 
(μW) 

Diff. 
Means 
(μW) 

P-value  Impact% 

 DeadLocalStoreReturn 41241 41278 -37 1 -0.09 
 DeadLocalStore 40249 40205 44 < 0.01 0.11 
 MutualExclusionOR 40758 40772 -14 1 -0.03 
 NonShortCircuit 41113 41043 70 < 0.01 0.17 
 ParameterByValue 40967 40723 244 0 0.60 
 RepeatedConditionals 41155 41126 29 < 0.01 0.07 
 SelfAssignment 40952 40879 73 < 0.01 0.18 
 SwitchRedundantAssignment 40724 40756 -32 1 -0.08 
 UselessControlFlow 41051 41142 -91 1 -0.22 

 
Table 41. Results for execution time 

 Smell name Mean 
with 
smell 
(ms) 

Mean 
w/o 

smell 
(ms) 

Diff. 
Means 

(ms) 

P-value  Impact% 

 DeadLocalStoreReturn 3288.76 3288.74 0.02 0.41 6.08e-04 
 DeadLocalStore 17707.3

4 
17707.3
8 

-0.04 0.66 -2.26e-04 

 MutualExclusionOR 3540.76 3540.60 0.16 0.04 4.52e-03 
 NonShortCircuit 3288.74 3288.80 -0.06 0.76 -1.82e-03 
 ParameterByValue 3288.76 3288.74 0.02 0.41 6.08e-04 
 RepeatedConditionals 3288.80 3288.74 0.06 0.24 1.82e-03 
 SelfAssignment 3288.66 3288.78 -0.12 0.90 -3.64e-03 
 SwitchRedundantAssignment 3540.58 3540.62 -0.04 0.65 -1.13e-03 
 UselessControlFlow 3288.80 3288.74 0.06 0.24 1.82e-03 
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Let us take dead stores as example: the smell DeadLocalStore is implemented with 

an integer (we save a value on a variable and immediately overwrites it with another 

integer). Using a struct with several members is totally different and might lead to a higher 

impact, because the resulting compiled code requires the CPU to produce more instructions 

and interact more intensively with the memory. If increasing the complexity of the data 

structure will result in still negligible power consumption saving, the next step is to 

increase the logical complexity of the function, i.e. comparing complete algorithms that are 

functionally equivalent but differ in the implementation. A further step is to move the focus 

towards the comparison of functionally equivalent design choices. Understanding the 

impact of Green Code Smells over real power consumption could also contribute to build 

more precise models of the power consumption of software. As a matter of fact, it may be 

possible to categorize software instructions beforehand in terms of energy efficiency, then 

subsequently use this information in order to predict the resulting energy efficiency of a 

complete software product.  

Yet another research direction that is suggested by this first leap is: can the impact 

of Green Code Smells be higher in code that drives an hardware resource with higher 

energy needs?  For instance the impact on the code that handles the GPS transmitter is 

expected to be very different from the one used in this experiment, where the small 

functions use only CPU and RAM, besides in a not intensive way. The same investigation 

approaches can be applied to the domain of execution time. As can be noticed from the 

results, all the execution times are equal, exception given for the DeadLocalStore function 

pairs. We have observed that Green Code Smells do not degrade the performances, but we 

cannot generalize the findings for more complex code structures and usage scenarios, with 

different hardware resources involved (e.g, sensors).  

THREATS TO VALIDITY 

In this section, we expose the threats to validity that might affect our study. 
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As regards construct validity, our main threat regards instrumentation. We 

carefully evaluated the precision of our measures, comparing them with the specifications 

from Waspmote manufacturers. During our experimentation, the difference between actual 

and expected values was negligible and inside the specified ranges. As far as conclusion 

threats are concerned, in order to increase the statistical reliability of the results, we 

collected a relevant amount of values (e.g., every function is looped 1 million times for 

power consumption measurement resulting in 25 millions of samples). Internal validity is 

represented by confounding factors such as other processes running during execution. 

However, the Waspmote does not have an operating system and the only thread in 

execution during the tests is the code loaded. As regards external validity, we do not aim at 

generalizing our results to a family of embedded devices. This study aims at assessing the 

existence of the Green Code Smells in a single context: other empirical validations are 

necessary for other environments or devices. 

RELATED WORK 

The analysis of software energetic impact on embedded systems was initially 

conducted by Tiwari in 1994 [148]. The author proposed a software power model based 

upon the CPU instruction set, determining those instructions which had a higher cost in 

energy terms.  

Tiwari’s model, although limited in some cases, was the enabler of the energy 

optimizations in compilers for embedded systems. Power-aware compilers try to optimize 

the resources a program needs for its execution, through different techniques, such as loop 

unrolling, software pipelining and recursion elimination [149]. In order to achieve higher 

optimizations, higher-level techniques are needed, such as algorithmic and data 

optimizations, that is a research direction closer to our work. The algorithmic optimization 

has a high potential, but it is also a hard and time-consuming task, with no guaranteed 

results. Data optimization is based upon the efficient use of the system architecture. For 

example, as regards embedded systems, often software libraries are used for emulating 
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floating-point hardware components. Those libraries do not take into account the 

architecture of a specific system, thus their usage often leads to a high power consumption 

and low performance. Šimunić et al. [150] show that by removing those libraries and 

optimizing the source code, it is possible to significantly reduce power consumption (up to 

77%). 

In terms of benchmarks, SPECpower [151] is an initiative to extend existing SPEC 

benchmarks to power and energy measurement. SPECpower ssj2008 reports the energy 

efficiency in terms of overall ssj_ops/watt. This metric represents the sum of the 

performance measured at each target load level (in ssj_ops) divided by the sum of the 

average power (in watts) at each target load including active idle.  

In battery-powered systems, it is not enough to analyze algorithms based only on 

time and space complexity. Several research proposed energy aware algorithms for specific 

functionalities, such as supporting randomness [152] or focusing on cryptographic [153]. In 

particular, previous works by Bunse et al. [154] address the relationship between energy 

and performance optimizations, which is one of the research questions of the present work. 

Authors analyzed different implementations of several sorting algorithms, showing that 

implementations optimized for energy performed differently with respect to those 

optimized for performance. For example, one of their assumptions is that the use of 

recursion in a sorting algorithm might improve performance, but definitely increases power 

consumption. This finding shows how energy efficiency issues in software might lead to 

counter-intuitive conclusions. This is the reason why, in our work, we adopted an empirical 

approach in order to assess and validate our beliefs. In our opinion, more empirical studies 

focused on assessing the impact of software over power consumption might discover even 

more unexpected behaviors. 

CONCLUSIONS 

This is an exploratory study: we defined for the first time the concept of Energy 

Code Smells and we performed a first validation to understand not only the impact, but also 
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the boundaries of the concept. We identified some Energy Code Smells starting from code 

patterns implemented by two common Automatic Static Analysis tools - namely, CppCheck 

and FindBugs. We performed an experiment, on an embedded system, in order to assess the 

energetic impact of those code patterns, taking also into account the impact on execution 

time, to determine whether Energy Code Smells are also performance smells. Our 

experimental results showed that some of the code patterns actually have an impact over 

power consumption. This impact, however, is in the magnitude order of μW. Our future 

research works will be devoted to analyzing more complex data structures and using 

hardware resources which could increase this impact with respect to the overall power 

consumption. As regards time analysis, only one pattern had an actual impact over 

execution time (a few μ seconds), and it is not identified as an Energy Code Smell. Thus, 

we conclude that Energy Code Smells are not Performance Smells.  

However, results suggest that the target and applicability of Energy Code Smells 

should be refined with further investigations. The lessons learned in this exploratory study 

let us identify several research threads that the research community might address, such as 

the identification of Energy Code Smells that are higher-level constructs and use more 

complex data structures, the identification of Energy Design Smells and the use of more 

complex systems as test beds.  

The new challenge for ASA is to help greening the software identifying Energy 

Code Smells. 
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6 SUMMARY AND CONCLUSIONS  

This PhD work empirically evaluated the impact of Automatic Static Analysis 

(ASA) on Software Quality, taking as reference model the ISO/IEC 25010 Software 

Product Quality Model.  We conducted several experiments and case studies to understand 

whether applying ASA could improve certain software quality characteristics. We 

considered four quality characteristics:  Functional Suitability and Reliability, Performance 

efficiency and Maintainability. 

Regarding Functional Suitability and Reliability, we conducted two case studies 

analyzing the issues detected by the popular ASA tool FindBugs on two pools of similar 

small programs (85 and 301 programs respectively), each of them developed by a different 

student of the B.Sc. in Computer Engineering. By analyzing the changes and test failures in 

both studies, we observed that a small percentage of issues (about 3%) were related to 

known defects in the code.  

We also conducted another study on an industrial web application with the 

Resharper tool analyzing the capability of the issues categories to identify the most defect 

prone files and components of an industrial web application.  We found that resharper 

issues are better in identifying faulty modules than indicators of size and complexity. Using 

them we were able to find out problems associated to difficulty in the design of the code or 

a limited knowledge of the possibilities offered by the C# language. 

Regarding Performance-Efficiency, we conducted two experiments with FindBugs 

on which we empirically proved that refactoring code on the basis of certain FindBugs 

issues will improve its execution time. In the first experiment, we selected 20 issues and for 

each of them we set up two source code fragments: one containing the issue and one 

containing the corresponding refactored version, functionally identical but without the 

issue. We set up three different platforms, isolated from network and other user programs, 

and then we executed the code fragments measuring the execution time of both code 

versions. We found that eleven issues have an actual negative impact on performance in all 

platforms (up to 6 times slower). In the following industrial experiment we quantitatively 
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assessed the impact on time efficiency of three code patterns: dead store to local variable, 

useless try-catch block and inefficient construction of Boolean objects. We refactored an 

industrial Java web application removing the three code patterns and we observed that the 

refactored software was about two fold faster (100 milliseconds less) than the original 

application. 

Also regarding Maintainability we performed two case studies, focusing on the 

problem of Technical Debt. Technical Debt is a metaphor for the problem of high costs in 

the maintenance phase as a consequence of shortcuts taken during the development process 

(e.g., poor commented code, poor design, etc.).  In the first case study we compared four 

TD techniques (code smells, automatic static analysis issues, grime buildup, and modularity 

violations) and applied them to 13 versions of the Apache Hadoop open source software 

project. Although ASA issues were not directly associated with Maintainability issues, 

those with higher priority were associated with classes with intensive coupling. A possible 

explanation for this relation is that both indicators point, more than any others, to generally 

poorly designed code. Moreover, the study demonstrated that the four approaches for TD 

identification have very little overlap and are therefore pointing to different problems in 

source code. These findings were confirmed by a second study in which we evaluated 

human elicitation of TD and compared it to automated identification. We asked a 

development team to identify technical debt items in artifacts of a software project. We 

provided the participants with a TD backlog and a short questionnaire. In addition, we also 

collected the output of three tools to automatically identify technical and compared it to the 

human elicitation. Our results show that aggregation, rather than consensus is an 

appropriate way to combine developer-reported debt, and that ASA tools used are 

especially useful for identifying defect debt but cannot help in identifying many other types 

of debt.   

The last part of the thesis is devoted to new research challenges for ASA. We 

identified and proposed to the research community two innovative directions for future 

studies: ASA to green the software, and ASA for multi-language projects. 

The motivation of the first suggestion resides in the fact that nowadays the spread 

of mobile and embedded devices makes energy efficiency a key requirement in many 
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software applications: we envision energy efficiency as a software quality characteristic, to 

be optimized through the refactoring of appropriate code patterns. Therefore we overtook 

the path towards the identification of those code patterns (defined Energy Code Smells) that 

might increase the impact of software over power consumption. For our purposes, we 

performed an experiment consisting in the execution of several code patterns on an 

embedded system. These instances of code patterns were executed in two versions: as in the 

in the experiment for Performance Efficiency, the first code pattern contains a code issue 

that could negatively impact power consumption, the other one is refactored removing the 

issue. We measured the power consumption of the embedded device during the execution 

of each code pattern: our results show that some Energy Code Smells actually have an 

impact over power consumption (in our test bed the magnitude order was µWatts). 

Moreover, removing those Energy Smells did not introduce a performance decrease.  

The second research challenge is related to another observation: nowadays most 

software systems are complex and composed of a large number of artifacts. To realize each 

different artifact specific techniques are used resorting to different abstractions, languages 

and tools: successful composition of different elements requires coherence among them. 

Unfortunately constraints between artifacts written in different languages are usually not 

formally expressed nor checked by supporting tools; as a consequence they can be a source 

of problems. We explored the role of the relations between artifacts written in different 

languages by means of a case study on the Hadoop open source project, quantifying the 

phenomenon and investigating its relation with defect proneness. We observed that more 

than half of the commits in Hadoop are cross language (according to our definition). 

However we also observed that this property depends on the type of the activities and the 

extensions of the modules. Also looking at defect proneness, we observed that the 

interaction between specific pairs of extensions was related to higher defect proneness. 

Although we did not get unique answers, the results and observations from this exploratory 

study let us understand that the problem is worthy to be investigated, and that the agenda of 

the next years for ASA should include the capability to identify problems deriving from the 

interaction of multiple language, rather than focusing only on problems inside the 

boundaries of one specific programming language. 
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The findings and results summarized above are specific to the contexts of the 

experiments and case studies conducted. We attempted to generalize results on Functional 

Suitability and Reliability by a comparison with similar studies. However this was not 

possible for Performance Efficiency and Maintainability given the absence of similar 

approaches, and of course also for the new research directions identified. A broader 

generalization will be possible as soon as further evidence will be collected by means of 

other empirical studies on the different quality attributes. Although, this thesis provides, 

besides the first empirical results on the impact of ASA on different software quality 

characteristics, a modus operandi that can be applied to different contexts to enlarge the 

body of knowledge in the topic and form a grounded theory on ASA and software quality. 

This modus operandi can be packaged in a process composed of 5 steps:  

− Elicitation: elicit quality characteristics and/or sub-characteristic from the 

various stakeholders, such as software developers, system integrators, 

acquirers, owners, maintainers, etc. We suggest to start from the 

characteristics defined by the ISO/IEC 25010, but to not limit to them. As 

we have seen in Chapter 6, characteristics like energy efficiency are not 

included in the standard but have relevance in contexts like mobile 

application development or embedded devices. 

− Prioritization: prioritize the quality characteristics taking into 

consideration both the technical and the business view. It might be 

possible to use support decision systems or risk assessment tools. 

− Measurement: define the quality measure elements, the measurement 

functions and the quality measures for each quality characteristic (or sub-

characteristic) identified. 

− Assessment: identify a methodological tool to empirical assess which 

ASA issues have an impact on the quality measures one or more software 

project. Results might be compared with previous work in the literature or 

past experience.  Package results in a quality management base in the 

more appropriate form (e.g.: experience/technical report, database of 

statistics, wiki, etc). 
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− Monitoring, refactoring, reporting: enable the detection of the relevant 

ASA issues (according to the prioritization and the assessment) in the 

development process and when necessary refactor the code by removing 

the issues enabled. Measure the quality improvement and report in the 

quality management base. 

The goal of this process is twofold: not only improve and monitor the quality of 

your code through ASA, but also learn from past errors.  
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