

Politecnico di Torino
Dottorato in Ingegneria Informatica e Dei Sistemi

--

Ph.D. Dissertation of:

 Antonio Vetro’

Advisor:

Prof. Maurizio Morisio

XXV Cycle

EMPIRICAL ASSESSMENT OF THE
IMPACT OF USING

AUTOMATIC STATIC ANALYSIS ON
SOFTWARE QUALITY

Politecnico di Torino

Dipartimento di Automatica e Informatica

Corso Duca degli Abruzzi, 24, 10139 Torino

I

ACKNOWLEDGEMENTS

This thesis closes an intensive chapter of my life.

When I began the PhD three years ago, I would have imagined having at this point

clear and definitive answers not only to the questions of my research, but on my life as

well. Three years later, I have much more open questions than I had at the beginning. For

example, in my first year of PhD, when I finished my first experiment and I realized that I

came out with a few answers and many new doubts, I was astonished and I was wondering

whether a single hour of my work was valid. However, step by step, I understood that

learning implies uncertainty by definition: when you learn, you widen your vision of things.

Hence, after three years of research, I can get a bigger picture and have a wider landscape

in front of me: that is why I can ask myself more and more questions. This is science, this is

exploration.

I am grateful to my supervisor Maurizio Morisio to have wisely taught me how to

deal with uncertainty: I learnt that a carefree spirit of adventure is the best way to face the

questions. Not only in research, but in life as well. Moreso, I was so lucky to have even a

second, “unofficial”, supervisor: I am really grateful to Marco Torchiano. Observing the

passion that he puts in understanding the reality with facts and numbers, I learnt that

creativity and scientific rigour can coexist and you can do great things with both of them.

I spent my second year of the PhD at the Fraunhofer CESE, in Maryland, USA.

That was a cornerstone experience of my life: very tough at the beginning, but when I had

to leave I recognized that it was extremely generous and I had a lot of fun. The Wednesday

meetings at 3 pm with Forrest Shull, Nico Zazworka and Carolyn Seaman were the best

formative moments I ever had. I sincerely thank them for the time they spent in working

together with me. I would also like to thank Mikael Lindvall and Michele Shaw for their

precious suggestions and all the interns that were at Fraunhofer with me: I learnt a lot from

their innovative ideas. My American adventure would have not been so cool without the

wonderful flatmates at 435 11th Street NE and my first Couchsurfing host: Annick,

Henning, Natalie, James, you are awesome. Thanks for support and fun made in USA.

I was back in Turin for my third and final year of the PhD. In that period episodes

in my life put me in difficulties, but I found at Politecnico nice people to have fun while

working: that helped me in overcoming the storm. Giuseppe, Federico, Giuseppe, Luca and

Andrea: thanks to you and to all previous and current people in Lab 1 to have made this

place a bit more personal and unique for each of us.

I also would like to thank all technicians and clerks at DAUIN for their supporting

work, all co-authors and the anonymous reviewers to have helped me improving my work,

and all the companies that collaborated to my research.

As I wrote at the beginning of these acknowledgements, this work closes a chapter

of my life. However, I'm sure that some protagonists appeared in this chapter will still be

present in the next ones: I am talking about my closest friends. There's no need to mention

them by name: you all know how much is important what we are building up, and how

much is fun.

Finally, every building needs strong foundation. This PhD would have not been

possible without my family: my dead and mum, my brothers, my sister in law and my

wonderful, wonderful, nieces. I could never pay off what you have done and you do every

day for me. However, I am strongly convinced that the best way I can thank you is to

continue living all the next chapters of my life with passion and authenticity.

That’s all.

IV

ABSTRACT

Automatic static analysis (ASA) tools analyze the source or compiled code looking

for violations of recommended programming practices (called issues) that might cause

faults or might degrade some dimensions of software quality.

Antonio Vetro’ has focused his PhD in studying how applying ASA impacts

software quality, taking as reference point the different quality dimensions specified by the

standard ISO/IEC 25010. The epistemological approach he used is that one of empirical

software engineering. During his three years PhD, he’s been conducting experiments and

case studies on three main areas: Functionality/Reliability, Performance and

Maintainability. He empirically proved that specific ASA issues had impact on these

quality characteristics in the contexts under study: thus, removing them from the code

resulted in a quality improvement.

Vetro’ has also investigated and proposed new research directions for this field:

using ASA to improve software energy efficiency and to detect the problems deriving from

the interaction of multiple languages.

The contribution is enriched with the final recommendation of a generalized

process for researchers and practitioners with a twofold goal: improve software quality

through ASA and create a body of knowledge on the impact of using ASA on specific

software quality dimensions, based on empirical evidence.

This thesis represents a first step towards this goal.

Contents

Acknowledgements ... I
Abstract .. IV
1. Introduction ... 1
1.1. Automatic Static Analysis .. 1

1.2. Software Quality and ASA ... 2

1.3. Approach ... 5

1.4. Structure of the thesis ... 9

2 Functional Suitability and Reliability .. 10
2.1. Definitions .. 10

2.2. Automatic Static Analysis and defects ... 11

First research stream: looking at single ASA issues to find defects 11

Second research stream: using ASA issues to predict modules with more defects 13

Contribution to the state of the art .. 14

2.3. Assessing the Precision of FindBugs by mining java projects developed
at a university: first case study .. 15

Context .. 15

Experiment design .. 17

Results .. 21

Discussion ... 23

Threats to validity ... 24

Conclusions... 25

2.4. Assessing the Precision of FindBugs by mining java projects developed
at a university: second case study ... 26

Experiment Design ... 26

Data Collection ... 29

Threats to validity ... 30

Results .. 30

Validation of good defect predictor issues .. 34

Validation of Bad Defects Predictor Issues .. 36

External validation: Lucene project .. 37

Discussion on Results: Answer to RQ1. ... 42

2.5. Comparison with Previous and Related Work .. 47

2.6. An inductive study as a contribution to the second research stream........... 53

Study Context ... 55

Mapping between ASA issues, Defects, Files, and Components 56

Study Execution .. 58

Results .. 61

Discussion ... 71

Threats to validity ... 72

2.7. Conclusions ... 74

3 Maintainability .. 76
3.1. Definitions .. 76

3.2. Comparing four approaches for Technical Debt identification: analysis
on Hadoop Project .. 79

Related Work .. 81

Goals and research questions .. 82

Case Study .. 83

TD identification techniques selected ... 84

Data collection .. 86

Analysis Methodology .. 89

Results .. 95

Threats to validity ... 102

3.3. A Case Study of Effectively Identifying Technical Debt 105

Background and related work ... 107

Context of the study .. 110

Goal and research questions.. 111

Procedure and Data Collection ... 111

Results .. 113

Discussion ... 118

Threats to validity ... 119

Conclusions and contributions .. 120

4 Performance Efficiency .. 123
4.1. Definitions .. 123

4.2. Quantitative Assessment of the Impact of Automatic Static Analysis
Issues on Time Efficiency: a pilot study ... 124

Goal definition .. 125

Experiment Planning... 127

Variable selection and Hypotheses Formulation... 128

Instrumentation and Experiment Design ... 129

Analysis methodology .. 131

Validity evaluation .. 133

Analysis and Interpretation ... 135

Discussion ... 137

4.3. Execution Time Efficiency Improvement by Means of Code Issue
Refactoring: a Controlled Industrial Experiment .. 142

Goal and research question ... 143

Context description ... 144

Detected issues and selection .. 146

Experiment planning ... 148

Results .. 157

Related work ... 164

4.4. Conclusions ... 170

5 Future research challenges ... 172
5.1. Language Interaction and Quality Issues: An Exploratory Study 173

Definitions .. 174

Goals, Research Questions and Metrics ... 176

Case Study .. 177

Results and discussion .. 178

Threats to validity ... 181

Conclusions and future work .. 182

5.2. Definition, implementation and validation of Energy Code Smells 183

Green Code Smells: background and definition ... 184

Validation of Energy Code Smells ... 185

Potential Energy Code Smells selection ... 186

Experiment setup .. 189

Results .. 193

Discussion ... 195

Threats to validity ... 196

Related Work .. 197

Conclusions... 198

6 Summary and conclusions .. 200
7 Bibliography .. 205

List of Tables

Table 1. FindBugs detections .. 23

Table 2. Precision of the whole set of issues ... 23

Table 3. Precision: Spatial+Temporal coincidence ... 23

Table 4. Goal of the experiment .. 27

Table 5. Distribution of issues precisions .. 32

Table 6. Precision of good defect predictor issues .. 32

Table 7. Precision of bad defect predictor issues ... 33

Table 8. Manual inspection of good defects predictors issues ... 36

Table 9. Issues satisfying temporal+spatial coincidence ... 39

Table 10. Bad defect predictor issues .. 40

Table 11. Issues distribution by category .. 42

Table 12. Bad defect predictors ... 44

Table 13. Summary of comparisons with related work (paper-based) 51

Table 14. Summary of comparisons with related work (project-based) 52

Table 15. Resharper issues detections ... 60

Table 16. Resharper issues on components ... 60

Table 17. Defects per file .. 64

Table 18. Correlation between density of Resharper issue types and defect densities 64

Table 19. Research Question F2 (only statistically significant results) 65

Table 20. Research Question F1: results ... 71

Table 21. Indicators used in the analysis ... 88

Table 22. Association of TD indicators with interest indicators .. 101

Table 23. The Technical Debt BackLog .. 108

Table 24. Issues selection .. 131

Table 25. List of platforms hosting the experiments ... 132

Table 26. Summary of execution times ... 134

Table 27. P-values of Kruskal-Wallis test for co-factors ... 138

Table 28. Mean expected delay [ns] of verified issues. ... 139

Table 29. Issues and their characteristics .. 149

Table 30. Details about selected issues .. 150

Table 31. Variables .. 150

Table 32. Documents set size vs operation .. 152

Table 33. Summary of results .. 160

Table 34. Percentage of cross language commits (RQ 1) .. 179

Table 35. CLRext (RQ 2.1) ... 179

Table 36. CLR_(extA,extB) (RQ 2.2) ... 179

Table 37. Odds ratio of the defectivity in respect to the relation between pairs of extensions

(RQ 3.3) ... 179

Table 38. Relation between classification in ILM and CLM and presence of defects (RQ 3.1

and 3.2) .. 180

Table 39. Potential Energy Code Smells Selected for validation 188

Table 40. Results of power consumption... 195

Table 41. Results for execution time ... 195

List of Figures

Figure 1. Hierarchical structure of the quality model from ISO/IEC 25010 2

Figure 2. Software product quality measurement model from ISO/IEC 25010 3

Figure 3. Software product quality model from ISO/IEC 25010 .. 4

Figure 4. Empirical assessment of the impact of ASA on software quality.......................... 8

Figure 5. Temporal coincidence, lab version ... 19

Figure 6. Temporal coincidence, home version .. 19

Figure 7. Spatial + temporal coincidence, lab version ... 19

Figure 8. Spatial + temporal coincidence, home version ... 19

Figure 9. Histogram of precisions .. 23

Figure 10. Data Collection Process .. 29

Figure 11. Box plots of passed tests percentages: good defect predictors 35

Figure 12. Box plots of passed tests percentages: bad defect predictors 35

Figure 13. Bad defect predictors proprtions (Students projects vs Lucene) 46

Figure 14. Good defect predictors proprtions (Students projects vs Lucene) 46

Figure 15. Linkage between Resharper issues, source code files, issue and defect fixes,

and components. Yellow defects indicate that a file is linked to at least one defect issue in

JIRA. ... 57

Figure 16. Evidence-based binding of files to logical components 57

Figure 17. Defect classification .. 62

Figure 18. Cumulative distribution of defects in components and indicators 67

Figure 19. Cumulative distribution of defects in files and indicators 67

Figure 20. Predictor Performance for Functionality ... 70

Figure 21. Predictor Performance for Usability .. 70

Figure 22. Technical Debt representation .. 78

Figure 23. Three ways of computing defect proneness .. 89

Figure 24. Five-step analysis methodology .. 93

Figure 25. Graph of top ranked pairs (average score > 1) .. 102

Figure 26. Correlation plot for size vs defect proneness... 103

Figure 27. The Technical debt Landscape .. 106

Figure 28. Results of the human elicitation of TD items .. 115

Figure 29. Results of the tools compared to human elicitation. .. 116

Figure 30. Boxplot of execution times for all issues. ... 136

Figure 31. Boxplot of execution times for all issues, per platform 137

Figure 32. Interactions for search and filter operations .. 146

Figure 33. Experiment Design .. 154

Figure 34. Execution times vs. Document size and operation .. 158

Figure 35. Boxplot of execution times. Filter ... 162

Figure 36. Boxplot of execution times. Search ... 162

Figure 37. Experiment design ... 186

Figure 38. Circuit built to measure the power consumption ... 192

Figure 39. Sampling current intensity: an example .. 192

1

1. INTRODUCTION

1.1. AUTOMATIC STATIC ANALYSIS

Source code analysis is a specific technique of reverse engineering [1] that consists

in extracting information about a program from its source or artifacts (e.g., from Java byte

code or execution traces) generated from the source code using automatic tools [2].

Automatic static analysis (ASA) tools analyze source or compiled code looking for

violations of recommended programming practices (“issues”) that might cause faults or

might degrade some dimensions of software quality (e.g., maintainability, efficiency). The

purpose of these tools is to extract some information from the source code or make

judgments about it. The most common use of static analysis is in optimizing compilers. In

fact, most of the high-level optimizations performed by a modern compiler depend on the

results of static analyses such as control-flow and data-flow analysis. Outside of the

compiler realm, static analysis techniques are used primarily for computing software

metrics, in quality assurance, program understanding and refactoring. The area of our

interest is quality assurance and refactoring.

The first static analysis tool, Lint, was developed more than 30 years ago by

Stephen Johnson of Bell Labs [3]: it was able to examine C source programs that had

compiled without errors and to find bugs that had escaped detection. Thirty years later,

there are dozens of static analysis tools: comprehensive lists can be found both in the

literature [4] [5] and on the Internet1.

According to Li and Cui [4], currently-used static analysis techniques are: lexical

analysis, type inference, theorem proving, data flow analysis, model checking and symbolic

execution.

1 http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

2

1.2. SOFTWARE QUALITY AND ASA

The international standard ISO/IEC 25010 [44] defines two models for software

quality:

− a quality in use model;

− a product quality model.

The quality in use model refers to the final usage of software and its interaction

with human beings. It can be applied to both computer systems in use and software in use.

The product quality model refers to the static and dynamic properties of the computer

systems: it can be applied both to computer systems and software products.

Both models are hierarchically composed of characteristics and sub-characteristics,

which provide terminology for specifying, measuring and evaluating the system and

software product quality. Such decomposition permits to represent the stated and implied

Figure 1. Hierarchical structure of the quality model from ISO/IEC 25010

Quality

Characteristic 1 Characteristic 2 Characteristic 3 Characteristic n……..…

Quality property 1 Quality property 2 Quality property 3 Quality property n……..…

Quality property 1 Quality property 2 Quality property n……..…

Sub-characteristic 1 Sub-characteristics 2 Sub-characteristic n……..…

3

needs of the various stakeholders. The leaves of the tree structure are the measurable

quality properties, as depicted in Figure 1. Quality properties are measured by applying a

measurement method, i.e. a logical sequence of operations used to quantify the properties

with respect to a specific scale: the result of applying a measurement method is called a

quality measure element. Quality measure elements can be composed in a measurement

function in order to obtain a quality measure, which in turn quantifies the quality

characteristics and sub-characteristics. This quality measurement model is represented in

Figure 2 .

The focus of this work is in the software quality product model, which includes

eight characteristics: Functional suitability, Performance efficiency, Compatibility,

Usability, Reliability, Security, Maintainability, and Portability. Each of the characteristics

is further decomposed in sub-characteristics. Figure 3 represents the whole structure.

Software quality assurance is a critical activity [6]. It is possible to adopt several

techniques to improve quality: testing, code inspections and formal verification are the

Figure 2. Software product quality measurement model from ISO/IEC 25010

Software Product
Quality

Quality
Characteristics

Quality
Characteristics

Quality Measures
indicate

composed of

composed of
indicate

Measurement
function

Quality Measure
Elements

are applied to

generates

4

most widely used in industry. Although effectiveness and importance of these activities and

methodologies is historically proved, all these techniques share a common limitation if

compared to static analysis, i.e. the applicability during software development. In fact these

techniques can be applied only after the system or parts of it are built and working. This

necessity introduces a delay, which is quickly translated into money lost when

modifications to the code are necessary to fix a defect or improve certain aspects. On the

contrary, static analysis tools instead promise to speed up the software quality verification

process because they can be applied during development.

However, ASA tools need to be precise and effective, i.e. to signal real problems

(and not false positive) and to address the most urgent quality concerns of stakeholders.

These two properties cannot be achieved without a proper customization of the tools or a

triage of the produced warnings with respect to the contexts and the projects they are going

to be applied.

Here comes the underlying idea of this PhD work: customize ASA tools with

respect to different quality dimensions of interest.

Figure 3. Software product quality model from ISO/IEC 25010

System/Software
Product Quality

Reliability Security Maintainability PortabilityFunctional
suitability

Performance
Efficiency Compatibility Usability

Functional
completeness

Functional
correctness

Functional
appropriateness

Time behavior

Resource
utilization

Capacity

Co-existence

Interoperability

Appropriateness
recognizability

Learnability

Operability

User error
protection

User interface
aesthetics

Accessibility

Maturity

Availability

Fault tolerance

Recoverability

Confidentiality

Integrity

Non-repudiation

Accountability

Authenticity

Modularity

Reusability

Analysability

Modifiability

Testability

Adaptability

Installability

Replaceability

5

1.3. APPROACH

We assess the impact of using automatic static analysis on software quality

through the empirical approach.

According to Wohlin et al [7], this approach is fundamental to conduct the

software process quality improvement in the most objective and safe way, both in terms of

process assessment and evaluation of an improvement proposal. In fact, without a proper

methodology it is difficult to measure an improvement. Empirical studies have been

traditionally used in social sciences and psychology, and less frequently in technical fields.

Problems like the lack of applicability to the Software Engineering (SE) domain, the cost of

experimentation or the excessive level of noise in data collected, have been largely

discussed and finally rebutted in the literature (e.g, [8], [9]) and nowadays the need of a

more scientific approach and theory building in SE is impelling from several SE research

communities (e.g., [10], [11], [12] and [13]). Moreover, software production is a human-

intensive process and experimentation provides “a systematic, disciplined, quantifiable and

controlled way” [7] to evaluate the software production activities and their quality.

The Empirical Software Engineering (EMSE) research can be applied using two

paradigms: qualitative and quantitative research. Qualitative research studies objects in

their natural settings, and phenomena are explained by eliciting explanations from people.

This approach is for construction of perspective-based results and reflects the question

“Why…?” . Quantitative research is focused on the quantification of a relationship or a

comparison of two or more groups. This type of research answers the question “How…?”.

The two approaches are complementary and are often mixed or alternated in a

research. Both approaches provide a set of methodological tools defined by Shull et al. [14]

as “a set of organizing principles around which empirical data is collected and analyzed.”

These tools are called “empirical strategies” by Wohlin et al. [7], “kinds of empirical

studies” by Juristo et al. [15] and “research methods” by Shull et al. [14]. The first two

authors identify three methodological tools (experiments, surveys, case studies), the latter

6

one adds two more tools (ethnographies and action research). Below we present the tools as

defined by Shull et al [14].

− Survey: it is used to identify the characteristics of a broad population of

individuals. It is conducted through the use of questionnaires, structured

interviews, or data logging techniques. One important step in survey

researches is the identification of a representative subset of the

population, since usually it is not possible to poll every member.

− Case study: it investigates a phenomenon within its real-life context,

offering in-depth understanding of how and why certain phenomena

occur, thus investigating cause–effect relationships (qualitative research).

Exploratory case studies are used as initial investigations of some

phenomena to derive new hypotheses and build theories, while

confirmatory case studies are used to test existing theories.

− Controlled experiment: it is an investigation of a testable hypothesis

where one or more independent variables are manipulated to measure

their effect on one or more dependent variables. Each combination of

values of the independent variables is a treatment. Not always true

experiments are possible in SE (e.g., full randomization is often not

achievable in real contexts): in that case quasi-experiments can be

conducted (for instance, the subjects are not assigned randomly to the

treatments).

− Ethnography: this method is focused on the sociological aspects.

Ethnographies study a community of people to understand how the

members of that community make sense of their social interactions. For

software engineering, ethnography can help to understand how technical

communities build a culture of practices and communication strategies

that enables them to perform technical work collaboratively. A special

form of ethnography is participant observation, where the researcher

becomes a member of the community being studied for a period of time.

7

− Action Research: in Action Research, the researchers attempt to solve a

real-world problem while simultaneously studying the experience of

solving the problem, intervening inside the real contexts to improve the

situation.

The presented methodological tools can be mixed to form a more complex

research strategy where the weaknesses of one method can be compensated by the strengths

of other methods: this is the strategy that we followed to empirically evaluate the impact of

ASA issues on the quality characteristics of the ISO-IEC 25010 (former 9126) standard

quality model. The methodological tools used are experiments and case studies: for each

quality characteristic analyzed, we selected the more appropriate methodological tool with

respect to the research questions and the context of the assessment. Thus, given a software

quality characteristic and a quality measure related to it, we empirically assessed whether

applying ASA has a relevant impact on the quality measure and, as a consequence, on the

corresponding quality characteristic under study. In practice, this process is applied to the

software quality measurement model of the ISO/IEC 25010, as depicted in Figure 4.

8

Figure 4. Empirical assessment of the impact of ASA on software quality

Software Product
Quality

Quality
Characteristics

Quality
Characteristics

Quality Measures

Automatic
Static

Analysis

indicate

have
empirically
verified
impact

composed of

composed of
indicate

Measurement
function

Quality Measure
Elements

are applied to

generates

ASA issues

signals

9

1.4. STRUCTURE OF THE THESIS

The structure of the thesis is quality characteristic-oriented. Chapters 2, 3 and 4 are

related to a different software quality characteristic analyzed: Chapter 2 is about Functional

suitability and Reliability, Chapter 3 focuses on Maintainability in terms of Technical

Debt, Chapter 4 on Performance Efficiency. Chapters 2, 3 and 4 share the same logical

structure: their first section provides the reader with definitions and terminology, the

following sections contain the empirical studies conducted, and the last section draws the

conclusion. Chapter 2 adds specific related work sections before (2.2) and after (2.5) the

empirical study in order to compare our results with results of the state of the art. This was

not possible with Maintainability and Performance Efficiency because we did not find

similar approaches to compare with. However, each empirical study contains its own

background/related work sub section.

 Chapter 5 prepares the path for future directions of the research on ASA and

software quality: we present an experiment on the impact of ASA on Energy Efficiency and

a case study on the problem of ASA for multi-language software projects.

Finally, Chapter 6 summarizes the work done and the most important contribution

to the state of the art.

10

2 FUNCTIONAL SUITABILITY AND

RELIABILITY

2.1. DEFINITIONS

Functional suitability is defined in ISO-IEC 25010 as “the degree to which a

product provides functions that meet stated and implied needs when used under specified

conditions”. It is based on three sub-characteristics:

- Functional completeness: “degree to which the set of functions covers all

the specified tasks and user objectives”

- Functional correctness: “degree to which a product or system provides the

correct results with the needed degree of precision”

- Functional appropriateness: “degree to which the functions facilitate the

accomplishment of specified tasks and objectives”

Reliability is defined in ISO-IEC 25010 as “the degree to which a system, product

or component performs specified functions under specified conditions for a specific period

of time”. It is based on the following sub-characteristics:

- Maturity: “degree to which a system, product or component meets needs

for reliability under normal operation”

- Availability: “degree to which a system, product or component degree to

which is operational and accessible when required for use

- Fault tolerance: “operates as intended despite the presence of hardware or

software faults”

- Recoverability: “the degree to which, in the event of an interruption or a

failure, a product or system can recover the data affected and re-establish

the desired state of the system”

Both functional suitability and reliability are affected when defects in the software

cause faults or failures, and unexpected behaviors of the software occur.

11

2.2. AUTOMATIC STATIC ANALYSIS AND DEFECTS

One of the most promising advantages of using Automatic Static Analysis is the

possibility to find defects in the source code during development, without waiting test or

inspection (assuming the traditional software lifecycle). In fact ASA tool evaluate the

software in the abstract, without running it or considering a specific input. Yet another

advantage in terms of time is that ASA tools do not need a working code base, contrary to

the other usual VV activities like testing and code inspections that have hence a consistent

delay injection. Given that the longer the delay of a fault insert-remove is, the higher the

cost of removing that defect is [16], the introduction of ASA tools in software production

could lead to important benefits. However these benefits might be hindered by the rate of

false positive issues, i.e. issues that are not related to any defect. Despite the fact that the

definition of defect is dependent on the context and requirements of the software (e.g., a

function return with a delay of 0.5 second may be acceptable in a web application, but not

in real time systems), the problem has been widely reported in the literature. For this

reason, we started the empirical validation of ASA issues from defects, hence from

functional suitability and reliability.

The effort of the research community has focused on evaluating the capability of

using ASA tools to find defects in two main streams: I) looking at single ASA issues to

identify defects in single lines of code or II) looking at large sets of issues as early

indicators of the more defect-prone modules (e.g. classes, files, software components).

We now introduce the main results found in each of the two research streams. Our

contributions will follow, again using the logical framework of the two research streams.

FIRST RESEARCH STREAM: LOOKING AT SINGLE ASA ISSUES TO FIND DEFECTS

Several studies in the literature have reported on the percentage of false positive

ASA issues of different tools and in different contexts. For instance, Wagner et al. [17]

analyzed and classified with experienced developers issues from three ASA tools

12

(FindBugs, QJPro and PMD) on four industrial projects and one university project, and

they reported that the percentage of false positive was 47% for FindBugs, 31% for PMD

and 96% for QJ Pro.

Weydan et al. [18] reported that more than 96% of FindBugs and IntelliJ issues

did not relate to any fault or refactoring in two open source systems (jEdit and iText).

Lower percentages of false positives are reported by Ayewah et al. [19] running

FindBugs on the JDK 1.6.0-b105; the authors report that almost 50% of medium/high

priority issues related to correctness had impact on the functionality, and 10% had a serious

impact. On the flip side, 160 issues out of 379 were trivial (i.e., no impact), while 5 issues

were due to faulty analysis of FindBugs. A similar experiment with the same category of

issues was performed at Google, with similar percentages of false positive issues, and a

further validation conducted on Glassfish v2 showed an even better result: 50 defects out of

58 disappeared due to changes made to specifically address the issues raised by FindBugs.

Switching to the C languages, Boogerd and Moonen [20] [21] analyzed four

industrial projects in C and C++ with an ASA tool for the MISRA standard [22] , and they

discovered that a small set of rule violations (12 out of 72 in [20], and 10 out of 88 in [21])

were related to defects in source code. Finally, Nagappan and Ball [23] reported that only

12.5% of defects fixed in Windows Server 2003 pre-release were found with two ASA

tools (PREfix and PREfast). Precision was not reported in this study, so this figure is not

directly comparable to the previously reported results.

Overall, except for one study [19], we conclude that the precision of the ASA tools

is rather low, because high ratios of false positives (i.e. low precision) were reported in

many studies.

13

SECOND RESEARCH STREAM: USING ASA ISSUES TO PREDICT MODULES WITH

MORE DEFECTS

The second approach is to investigate whether static analysis issues can be used as

early predictors for the most defect prone modules in software systems, rather than identify

the single issues that point to specific defects.

Nagappan and Ball [23] discovered positive correlations (0.37 and 0.58) between

issue densities from two ASA tools, PREfix and PREfast, and the pre-release defect

density. Moreover, they successfully used the ASA issue densities to discriminate between

components of high and low quality.

A similar approach was used by the same author in a study carried out at

Nortel Networks [24], where automatic inspection defects found by ASA tools had a

positive correlation with failures (0.40 and 0.49). Moreover, together with code churn, ASA

issues were good discriminators in identifying fault-prone modules. The study at Nortel

continued and one year later Zheng et al. [25] reported even higher correlations between the

number of ASA issues in files and three different indicators of external quality, i.e. number

of tests failures, number of customer reported failures and number of total failures

(respectively 0.71, 0.60 and 0.73).

Other authors used a similar approach. For instance, Plosch et al. [26] studied the

correlation between the number of FindBugs and PMD issues, and defects in Eclipse SDK

2.0, 2.1 and 3.0. They found positive correlations for both tools (0.34, 0.25 and 0.30 for

PMD, and 0.20, 0.08, 0.20 for FindBugs). Excluding the LOC related metrics, PMD issues

correlated better with defects than other static metrics (e.g., number of methods, number of

fields, etc.)

Finally, Marchenko and Abrahamsson [27] used two tools, namely CodeScanner

and PC-LINT, to analyze five projects in the Symbian C++ environment. They computed

the correlation between issues and critical defects in two snapshots of the project (i.e.

within 90 days after the release and within 180 days after the release) and they observed

contradictory results: CodeScanner obtained very high positive correlations (0.70 and 0.90),

while PC-LINT issues strongly correlated negatively (-0.90 and -0.70) with defects.

14

Overall, all the current results available in the literature but one [27] show that

using ASA issues to find the most defect-prone files or modules is more effective than

using individual ASA issues to discover individual defects.

CONTRIBUTION TO THE STATE OF THE ART

We performed two experiments in the first research stream and a case study in the

second research stream. In the first stream, i.e. looking at single ASA issues to identify

defects, we analyzed two pools of small Java programs developed by students. Results were

compared later to the same analysis applied to an open source tool.

Regarding the second research stream, we conducted a case study with an

industrial application.

15

2.3. ASSESSING THE PRECISION OF FINDBUGS BY

MINING JAVA PROJECTS DEVELOPED AT A UNIVERSITY:
FIRST CASE STUDY

In a first experiment we studied the precision of issues revealed by bug findings

tools. Our goal is to answer the following research question: which issues are actual

predictors of bugs, and which are not? This knowledge is very important to provide the

developers with accurate information that can be used effectively in developing and

maintaining the software.

We conducted an empirical validation of the issues of a widely used tool:

FindBugs v1.3.8 [28]. In particular we analyzed the issues produced by FindBugs on a

large pool of similar programs. The main contributions of the work are:

- It provides empirical evidence about the validity of issues categories as

bug predictors;

- As a consequence identifies a first step to make bug-finding tool usage

more effective;

- Using a large pool of developers, it eliminates the effect of developer

style on the results

CONTEXT

The program pool was developed in the context of the Object Oriented

Programming (OOP) course at the authors’ university, where students develop

Java programs for the exam.

The program pool was developed in the context of the Object Oriented

Programming (OOP) course at the authors’ university, where students develop

Java programs for the exam. The exam procedure is carried out on six steps.

16

− Teachers define the project and provide the students with a

textual description and a set of wrapper classes. The students

develop a first version of the program in the laboratory (the “lab”

version) and submit it to a central server by means of an Eclipse

Plugin.

− A tool on the server, PoliGrader [29], manages the delivery

process and runs a suite of black box acceptance tests (JUnit

classes). Acceptance tests are written by teachers of the course to

check all functionalities required and the highest possible code

coverage is obtained running tests on a correct solution program.

− Results of test execution and test source code are sent back to the

students.

− Students improve the lab version at home, creating a new version

of the program (the “home” version), that must pass all

acceptance tests. This new version is submitted back to the

server.

− The PoliGrader tool checks that home versions pass all tests and

compute marks taking in considerations the numbers of tests

passed in the lab version and the diff between lab and home

version.

− All information (marks, source code, tests, and changes) is

available to teachers in order to finally evaluate the students.

 The code base used in the experiment consists of 85 Java assignments

from the 2009 OOP course: requirements are the same for all the assignments; and

they are publicy available at the following URL:

http://softeng.polito.it/vetro/confs/msr2010/Requirements.htm. Each assignment

contains both lab and home versions syntactically correct, and home version

passes 100% of the acceptance tests. Acceptance tests are written by teachers of

the course in such a way all functionalities are checked. Teachers develop also a

17

correct “solution program”, and they check test coverage on it. The average size of

projects is 166.4 NCSS (Non Commenting Source Statements) for lab versions and

183.81 NCSS for home versions. The estimated number of function points for the

project is 66.30.

An issue produced by FindBugs is characterized by an ID, a textual explanation,

and a location in the source code. The issues are categorized by FindBugs

according to two dimensions: category (Bad Practice, Correctness, Style,

Performance, and Malicious Code are the categories with at least one issue

signaled in our code base) and priority (Low, Medium, High). Both classifications

have been decided by the tool's authors and are based on their personal experience.

EXPERIMENT DESIGN

To address the research question we consider a main dependent measure: precision

of the issues that can be defined as the proportion of the signaled issues that correspond to

actual defects.

Precision is a derived measure that can be computed on the basis of the following

primitive measures: NI, the number of issues signaled by FindBugs and NA, the number of

issues corresponding to actual defects. We do not compute recall (commonly coupled with

precision), because it would require the knowledge of the complete set of defects. This can

be computed only by hand: given the large number of projects to be checked this is a long

and error prone process.

To determine NA we adopted the concepts of temporal and spatial coincidence,

previously presented in literature in [20] [21] [30].

We have temporal coincidence when one or more issues disappear in the evolution

from the lab to the home version, and in the same time one or more defects are fixed:

probably those issues were related to the fixed defects. In this context defects fixed are

revealed when a test that in lab version fails instead in home version succeeds. Figure 5

and Figure 6 show a real example of temporal coincidence, extracted from the programs

18

examined with FindBugs in the experiment. We observe in that an issue (self-assignment of

a field) is signaled on line 9: the field forum is assigned to itself. In the evolution from lab

to home version (Figure 6) the student discovers the error and adds a parameter to the

constructor’s method, in such a way it is assigned to the field forum. The issue effectively

disappears in the home version. However, the real cause of the fault isn’t on line 9, but on

the list of parameters on lines 1-2-3: in fact the student modified only line 3 (underlined in

Figure 6). Hence, there is a possibility that a disappearing issue is not related to the

disappearing defect: this is the noise of temporal coincidence metric that can be filtered out

by adding the spatial coincidence. We observe spatial coincidence when an issue's location

corresponds to lines in the source code that have been modified in the evolution from the

lab to the home versions. Figure 7 and Figure 8 show an example of temporal + spatial

coincidence. In the lab version (Figure 7), an issue is signaled on line 6: it is an infinite

recourse loop, because the function calls itself without any stopping criterion. In the new

version (Figure 8), the student detects the error and fixes it changing line 6 (underlined): in

the home version the issue is no longer signaled and it was located in the same line changed

during the fix, therefore we observe temporal + spatial coincidence. In practice the

combination of temporal and spatial coincidence is interpreted as a change intended to

remove the issue, which is linked to a defect. After the computation of precision with

temporal + spatial coincidence method, we establish 2 precision thresholds and we perform

a statistical test against null hypotheses to determine whether an issue is a good or bad

defect predictor.

The procedure followed to conduct the study is very simple: we ran the FindBugs

tool on both versions of each assignment in the repository, then we collected the

information about the change performed to evolve the lab version into the home version.

The changes were identified using the DiffJ tool, which operates on two versions of a Java

program and is able to compute for each pair of corresponding Java classes which lines

changed.

Fi

Fig

Figure 5. T

Figure 6. Te

igure 7. Spati

gure 8. Spatia

19

Temporal coinc

emporal coinci

ial + temporal

al + temporal c

cidence, lab ve

idence, home v

coincidence, la

oincidence, ho

ersion

version

ab version

me version

20

 Afterwards, we computed precision of issues, first without considering categories

and priorities, then analyzing results observing each issue group (combination of category

and priority) separately.

To determine whether an issue group is a good or bad defect predictor, we

established 2 precision thresholds and we performed statistical test against null hypotheses.

Thresholds were established after observing the distribution of issues precision for each

assignment (

 Bad Pr. Corr. Mal.C. Perf. Style

Low 5 / 70 1 / 3 0 / 0 0 / 7 5 / 11

Medium 2 / 145 12 / 45 4 / 15 31 / 144 6 / 16

High 13 / 28 12 / 19 0 / 0 0 / 0 3 / 5

Table 2 and Figure 9), without distinction of categories and priorities.

The mean of precisions is quite low (0.15) and the variability is high. We decided

to consider the issue group (group G in the following) as a defect predictor if it has a

precision greater than 30%. Such a low value is justified by the exploratory nature of this

work and it compensates for the large variability we expect to find in each group.

Furthermore this value is far enough from the average precisions of the issues: in 50% of

assignments precision is 0; in 75% (3rd quartile) of the assignments precision is at most

0.25, less than the threshold; finally, the 30% precision threshold is the double of the mean

of precisions, that is a quite wide ratio.

To identify the issue groups that can be considered as defect predictors, we define

the first null hypothesis:

HA0: precision of the issues belonging to group G is less than 30%.

21

The next step is to find false positives, the bad defects predictors. We consider as

false positives the ones with precision <5%, a very low threshold. So we formulate the

following parametric null hypothesis:

HB0: precision of the issues belonging to group G is greater than 5%.

Read together, the two hypotheses mean that a group of issues G is a good

predictor (GP) if precision of the issues that it contains is >30% and is a bad predictor (BP)

(i.e. a generator of false positives) if precision of the issues that it contains is <5%. The

goal of the data analysis is to reject the above null hypothesis by means of statistical tests.

For this purpose we selected the single-tailed proportion test with binomial distribution

[31]. Given a sample proportion and sample size, such a test computes the probability that

the general population (from which the sample is extracted) has a proportion greater (or

lower) than a reference proportion. To reject the null hypothesis we adopt the standard

significance level at 5%, that is the probability of rejecting a null hypothesis when it is true

(type I error) we consider acceptable.

RESULTS

Overall FindBugs revealed a total of 508 issues (NI) in the 85 lab versions of the

assignments, among them 94 (NA) were removed in changed lines (temporal and spatial

coincidence). Table II shows NA / NI at issue group level. Table III contains precisions and

hypothesis tests computed for each different issue group (p-values are shown below

precision). Columns of Table II and Table III contain abbreviations of the full names of

categories, that are: Bad Practice, Correctness, Malicious Code, Performance, Style.

The full tables with number of detections (NI) and number of issues removed in

changed lines (NA) for each project and each issue group are available at the following

URL: http://softeng.polito.it/vetro/confs/msr2010/ .

22

HA: The null hypothesis is rejected only for categories Bad Practice and

Correctness both at High priority: this is the set of true positives for spatial + temporal

coincidence. All the other groups have non significant p-values and exhibit low estimate

precisions except for Style at High priority which has a relatively high precision, though

not significant.

HB: Bad Practice and Performance at Low priority, and Bad Practice Medium

priority, are the groups whose precision is lower than 5%: however, only Bad Practice at

Medium priority has a significant p-value, and we can reject HB0 for this group.

The results from the hypothesis testing presented above let us identify the sets of

good and bad defect predictor issue groups.

23

DISCUSSION

On the basis of these results, we built a partial ordering of the issue groups

dividing them into three sets: good, bad and ambiguous. We devised the ordering by putting

in the set of good issues the issues marked as defect predictors, in the set of bad issues

those issues marked as false positives, and in the set of ambiguous issues all the others that

Table 1. FindBugs detections

 Bad Pr. Corr. Mal.C. Perf. Style

Low 5 / 70 1 / 3 0 / 0 0 / 7 5 / 11

Medium 2 / 145 12 / 45 4 / 15 31 / 144 6 / 16

High 13 / 28 12 / 19 0 / 0 0 / 0 3 / 5

Table 2. Precision of the whole set of issues

Min 1st Q Median Mean 3rd Q Max St dev
0 0 0 0.149 0.25 0.8 0.226

Figure 9. Histogram of precisions

Table 3. Precision: Spatial+Temporal coincidence

 Bad Pr. Corr. Mal.C. Perf. Style

Low 7% 33% NA 0% 45%

HA 1 0.50 NA 0.91 0.21

HB 0.71 0.82 NA 0.50 1

Medium 1% 27% 27% 22% 38%

HA 1.00 0.63 0.50 0.98 0.35

HB 0.04 1 1 1 1

High 46% 63% NA NA 60%

HA 0.05 <0.01 NA NA 0.16

HB 1 1 NA NA 1

24

haven’t been classified . The set of good predictor issues is GP={Bad Practice High,

Correctness High}, the set of bad predictors is BP={Bad Practice Medium}, and the

remaining issue groups are ambiguous. Counting the single issues belonging to those

groups, they are just 8 out of 359 (2.23 %).

The rationale of this ranking is a new prioritization of warnings based on groups,

that takes into account the probability of signaling a defect. An important practical

application of this finding is a filtering strategy that can avoid to developers the information

overload constituted by a very large number of issues: in our datasets bad predictor issues

are the 28.5 % of the total detections in lab versions. Fixing issues with a low probability of

being related to a defect is dangerous since we know from Adam’s law [32] that the

probability of introducing a new error during a fault correction is always different from

zero.

THREATS TO VALIDITY

We can identify 2 threats: an external and a construct threat. The external threat

is: we have studied small student projects, hence the application of findings in industrial

context is debatable. Construct threats is concerning the identification of defects. In this

study, no bug database was available: we made the assumption that all changes were done

to fix a defect: actually, it is possible that some changes were not related to real defects, but

to other motivations (cleaner code, more readable code, and so on). Nevertheless, we don't

expect that this kind of noise could change results and ranking, because usually students

correct the lab versions in a quick and dirty way, doing as few changes as possible, for two

reasons: 1) the home version is the last version of the project, actually no maintenance has

to be done subsequently; 2) students are discouraged in doing many changes, because the

mark suggested by PoliGrader decreases with the quantity of changes made (see details in

[29]).

25

CONCLUSIONS

The analysis of precisions demonstrated that only 2 out of 15 groups of issues can

be considered as reliable predictors of actual defects, and one group of issues has a

precision that is practically negligible. These findings and the adoption of the technique

used may have a practical impact in filtering issue notifications for developers to reduce

information overload.

The experiment presented in the next section expands the current one in the

following way: we apply the temporal and spatial analysis with higher level of detail,

specifying the single issues, besides categories and priorities, and we enlarge the repository

of projects.

26

2.4. ASSESSING THE PRECISION OF FINDBUGS BY

MINING JAVA PROJECTS DEVELOPED AT A UNIVERSITY:
SECOND CASE STUDY

In the previous work [33], described in Section 2.3, we analyzed the issues

produced by FindBugs v1.3.8 on a pool of 85 similar small programs, each of them

developed by a different student in our university. The goal of our experiment was to verify

which FindBugs issues were related to real defects on source code and which not.

 In the work we present hereby we reproduce the same experiment, with the

following improvements:

− we enlarge the code base (301 projects)

− we consider the single FindBugs issues instead of considering only the

categories

− we use functional tests failures to validate the relationship FindBugs

between issues and defects in the code.

The knowledge of the issues related to defects is very important to provide the

developers with accurate information that can be used effectively in developing and

maintaining the software.

EXPERIMENT DESIGN

Adhering to the Goal-Question-Metric approach [34] we first define the goal of the

research at conceptual level, which is formally presented in Table 4. The goal aims at

identifying the issues revealed by FindBugs and their relationship with the defects.

Corresponding to the goal we formulate the research question (RQ1) and identified the

relative metric (M1).

27

− RQ1: Which FindBugs issues are related to defects (good defect predictors) and
which not (bad defect predictors)?

− M1: Issue precision (spatial + temporal coincidence)

To address research question RQ1 we consider the same main dependent measure

used in the former experiment: the precision of the issues (M1) that can be defined as the

proportion of the signaled issues that correspond to actual defects.

We establish 2 precision thresholds and we perform a statistical test against null

hypotheses to determine whether an issue is a good or bad defect predictor.

The 2 thresholds are:

− a minimum precision threshold that issue must exceed to be considered

as good defect predictor,

− a maximum precision threshold that issues must not exceed to be eligible

to the role of bad defects predictors.

Given the exploratory nature of this work, we decide to consider an issue as a good

defect predictor if it has a precision greater or equal to 50%. Such threshold is also a

compromise between the different true positive ratios of FindBugs issues found in

literature, and it is higher than the threshold used in [33] because we want to achieve

stronger results. Therefore, we can formulate the first null hypothesis as follows:

HA0: the precision of issue I is not greater than 50%.

Table 4. Goal of the experiment

 Goal

Purpose Identify and characterize

Issue issues linked to real defects and generated

Object
(Process)

by FindBugs 1.3.8 analysis on 301 University
Java Projects

Viewpoint from the view point of a student Java
programmer

28

The next step is to find false positives, i.e. bad defects predictors. We consider as

bad defects predictors those issues with precision <=5%, a very low threshold, that we

consider a strict inclusion criterion. So we formulate the following null hypothesis:

HB0: the precision of issues I is not lower than 5%.

Read together, the two hypotheses mean that an issue I is a good predictor (GP) if

hypothesis HA0 can be rejected, i.e. its precision is >=50%, conversely it is a bad predictor

(BP) (or source of false positives) if hypothesis HB0 can be rejected, i.e. its precision is

<=5%. The goal of the data analysis is to reject the above null hypothesis by means of

statistical tests. Since data is not normally distributed, for these tests we select the Mann-

Whitney test [35] that estimates the median. To reject the null hypotheses we adopt the

standard significance level at 5%, that is the probability of rejecting a null hypothesis when

it is true (type I error).

Furthermore, to increase results reliability, we perform a sensitivity analysis and a

validation of results. The sensitivity analysis is carried out by computing threshold ranges

in which the composition of good/bad predictor sets remains the same: in this way we

understand the impact of the thresholds choice on results, and we also exanimate border

values. The validation is based on the idea that the good predictors effectively identify real

bugs in the programs, therefore affecting their external quality, whereas the bad predictors

are not related to defects and do not have impact on external quality. Hence quality of

projects that contain good predictor issues detections should be lower than the mean quality

of all the other projects, whilst quality of projects that contain bad predictor issues

detections should be not different from the mean quality of the remaining projects. The

proxy for projects’ external quality is the percentage of passed tests in lab versions,

positively correlated to the quality. Therefore we carry out the validation by comparing the

proportion of acceptance tests passed by projects containing at least one occurrence of the

issues in the set to be validated vs. the same proportion in the remaining programs.

29

DATA COLLECTION

An issue produced by FindBugs is characterized by an ID, a textual explanation,

and a location in the source code. The issues are grouped by FindBugs in category (Bad

Practice, Correctness, Style, Performance, and Malicious Code have at least one occurrence

in the code base) and priority (Low, Medium, and High): hence the single issue is uniquely

identified by the combination of ID, category, and priority. We store also their locations in

the source code (file name, class, method, line number) and in the project (course ID,

student ID, lab/home version). Afterwards, we use the DiffJ tool to collect the changes

done to evolve the lab version into the home version: DiffJ operates on two versions of a

Java program and is able to compute for each pair of corresponding Java classes which

lines changed. Finally, results of functional tests are obtained through the PoliGrader tool.

The data collection process is represented in Figure 10.

Figure 10. Data Collection Process

30

THREATS TO VALIDITY

 We can identify three main threats: two external and one construct threat. The first

external threat is: we study small student projects, hence the application of findings in

industrial context is debatable. However, this weakness is balanced by the fact that this

study eliminates the effect of developer style on the results, because a large pool of

developers is used for the same projects. In addition, we recall the study of P. Runeson

[36], whose conclusions could neither reject nor accept the hypothesis on differences

between freshmen, graduate students and industry people. We also draw in section 5.2

similar conclusions. The construct threat is concerning the identification of defects. We do

not have a bug database but only tests failures: we make the assumption that all changes are

done to fix a defect. It could be possible that some changes are not related to real defects,

but to other motivations (cleaner code, more readable code, and so on).

RESULTS

The automatic application of FindBugs on all the 301 projects (both versions, lab

and home) produced a large collection of detections: 1692 in lab versions, belonging to 77

issues, whilst home versions detections are 1662, belonging to 73 issues (this does not

mean that 30 issues were removed across all projects, since the number of issues in home

version is given by: issues in lab version – issues fixed + new issues introduced). We

answer to RQ1 computing Metric M1, that is the precision of the issues, with respect to

temporal + spatial coincidence. Table 2 indicates minimum, maximum, 1st and 3rd quartile,

median and mean of precisions (NA/NI) in projects.

The mean of precisions in projects is low (0.126) and the variability is high

(standard deviation is 0.22, almost the double of the mean). More than 2/3 of projects have

a precision lower than the selected minimum threshold 0.50 (only 6 projects out of 301

have a higher precision), and in half of the projects precision is about 1/5 of this threshold.

31

These observations show that the threshold selected is very strict, despite of the initial

considerations. and show the issues for which we could reject either of the two null

hypotheses. We do not provide the precision of issues for which we can not reject either of

the two null hypotheses because of their large number (77), however the full list is available

on line . The columns in the tables show: the issues ID, the average precision (sum of

NA/sum of NI), the estimated median of precision, and finally the p-value of the Mann-

Whitney single-tailed test.

The set of good defects predictors is composed of 4 elements: 3 out of 4 have an

estimated median precision of 1, the double that of the threshold. The median of the last

issue, UUF_UNUSED_FIELD (Performance, 2), is exactly the threshold value: this is a

border value and it will be examined in depth in Section 5. The 4 issues are:

− GC_UNRELATED_TYPES: a call to a generic collection method that

contains an argument with an incompatible class from the collection’s

parameter.

− SA_FIELD_SELF_ASSIGNMENT: a self-assignment of a field, like int

y = y.

− UR_UNINIT_READ: the constructor reads a field which has not yet been

assigned a value.

− UUF_UNUSED_FIELD: a field is never used.

In contrast there are many more issues among the defect predictors set i.e. 16. All

of them have median = 0. Since they are many, for their descriptions please refer to

FindBugs website .

We perform a sensitivity analysis of results to check their stability with respect to

the inclusion criteria: we compute the threshold ranges in which the composition of groups

remains the same. The good predictors set is stable in the range 0.21–0.50. For threshold

values greater than 0.5 the issues GC_UNRELATED_TYPES (Correctness,1) and

UUF_UNUSED_FIELD (Performance,2) are excluded, and above 0.51 the set becomes

empty. Analyzing instead lower bound, a new issue could be included in the set of good

predictors only putting a very low threshold: at 0.20 issue NP_UNWRITTEN_FIELD

(Correctness,2) could enter the group, and 2 more issues can enter with even lower

32

thresholds : 0.12 and 0.11. Since the upper bound is already very strict and lower bound

must be relaxed from 0.50 to 0.20 to change the set, we can affirm that results about good

predictors are reliable.

The sensitivity analysis of bad predictors have the following result: the set is stable

in the threshold range 0 – 0.15, so again a wide range. In fact we should use a high

threshold, 0.16 (3 times bigger than the 5% of the original one) to change the set and

include a new issue, NM_FIELD_NAMING_CONVENTION(BadPractice,3). A further

issue, REC_CATCH_EXCEPTION (Style,3), enters only with threshold = 0.25. We

conclude that also bad predictors set is robust.

 Table 5. Distribution of issues precisions

Min 1st q Median Mean 3rd q Max

0 0 0 0.126 0.20 1

Table 6. Precision of good defect predictor issues

Issue ID NA/NI

Prec.
Est.

p-val

GC_UNRELATED_TYPES
(Correctness,1)

12/15 1 0.048

SA_FIELD_SELF_ASSIGNM
ENT(Correctness,1)

7/10 1 0.012

UR_UNINIT_READ
(Correctness,1)

6/7 1 0.012

UUF_UNUSED_FIELD
(Performance,2)

26/55 0.5 0.045

33

Table 7. Precision of bad defect predictor issues

Issue ID NA/NI Prec.
Est.

p-val

DM_NUMBER_CTOR (Performance,2) 0/6 0 0.018

DM_STRING_CTOR (Performance,2) 0/29 0 <0.01

DM_STRING_TOSTRING(Performance,3) 0/5 0 0.018

EQ_COMPARETO_USE_OBJECT_EQUALS
(Bad_Practice,2)

5/275 0 <0.01

ES_COMPARING_STRINGS_WITH_EQ
(Bad_Practice,2)

0/10 0 <0.01

IL_INFINITE_LOOP (Correctness,1) 0/5 0 0.036

NM_CLASS_NAMING_CONVENTION
(Bad_Practice,2)

0/17 0 <0.01

NM_CONFUSING (Bad_Practice,3) 0/6 0 0.01

NM_METHOD_NAMING_CONVENTION
(Bad_Practice,2)

2/44 0 <0.01

NP_NULL_ON_SOME_PATH (Correctness,2) 0/4 0 0.036

OS_OPEN_STREAM (Bad_Practice,2) 0/71 0 <0.01

OS_OPEN_STREAM_EXCEPTION_PATH
(Bad_Practice,3)

0/5 0 0.018

SE_BAD_FIELD (Bad_Practice,3) 0/11 0 <0.01

SE_COMPARATOR_SHOULD_BE_SERIALIZA
BLE(Bad_Practice,2)

0/49 0 <0.01

SIC_INNER_SHOULD_BE_STATIC_ANON
(Performance,3)

0/92 0 <0.01

URF_UNREAD_FIELD (Performance,2) 33/259 0 <0.01

34

VALIDATION OF GOOD DEFECT PREDICTOR ISSUES

Figure 11 shows the boxplots of passed tests percentages in lab versions: NO_GP

is the set of projects that do not contain any detection of a good predictor issue (259

projects), while GP is the set of projects containing at least one good predictor issue

detection (the remaining 42 projects). The box plots clearly show that external quality of

GP set is lower than external quality of NO_GP set: medians are respectively 63.64% and

40.91% . According to Mann-Whitney tests, we observe significant (p=0.001) differences

between the two groups of projects. The 95% confidence interval for the difference

between the medians is [6.29,∞]. There is strong statistical evidence that average external

quality of projects with at least one good defect predictor issue detected is lower than the

average externally quality of all projects. It is very likely that defects in projects with lower

quality are correctly identified by the good predictor issues.

We continue the validation and we inspect all the good predictors issues signaled

on source code, manually determining whether they were correctly detected by the tool and

whether the problem signaled actually caused a wrong behavior of the program (failure of

functional test). The detections of issues identified as good defects predictors are 87. We

present the results of the manual code inspection in Table 8: for each issue, we indicate the

ID, the total number of detections, the number of correct detections and the number of

detections that impacted the functionality. Three issues of four have all detections correct

and are the cause of an incorrect behavior of the program.

UUF_UNUSED_FIELD (Performance,2) is the exception: we discuss it later.

35

Figure 11. Box plots of passed tests percentages: good defect predictors

Figure 12. Box plots of passed tests percentages: bad defect predictors

36

VALIDATION OF BAD DEFECTS PREDICTOR ISSUES

Figure 12 contains boxplots of passed tests percentages: NO_BP is the set of

projects that do not contain any detection of a bad predictor issue (they are just 9), on the

right BP is the set of projects with at least one detection of a bad predictor issue (292

projects). We observe that projects BP have higher percentages of passed tests then NO_BP

projects. The medians are respectively 62.02% and 31.25%. However, the number of

projects in NO_BP is so small that they cannot be a representative sample. In fact, although

medians are so different, the null hypothesis that the two medians are equals cannot be

rejected with α=0.05 and p-value is 0.1041 (according to Mann-Whitney test). The 95%

confidence interval for the difference is [-∞,+3.75]. We can therefore assume that no

difference exists among the two sets. We do not perform a manual validation because of the

high number of detections related to bad predictors issues (888 in lab versions): we

consider the manual check of a representative sample of this bigger population an error

prone task.

Table 8. Manual inspection of good defects predictors issues

Issue Nr of dete-
ctions

Correct
detections

Impact on
functiona-lity

GC_UNRELATED_TYPES
(Correctness,1)

15 15 15

SA_FIELD_SELF_ASSIGNME
NT(Correctness,1)

10 10 10

UR_UNINIT_READ
(Correctness,1)

7 7 7

UUF_UNUSED_FIELD
(Performance,2)

55 46 0

37

EXTERNAL VALIDATION: LUCENE PROJECT

We addressed the external validity threats identified in Section 3.2 through a

validation of good and bad defect predictor issues on a real project. We selected the open-

source system Lucene2, Apache’s free information retrieval software library. We made this

choice because it provides a very good infrastructure to access its data and because it was

peviously studied in the FindBugs literature [37].We selected for the validation the release

of the project with the highest number of fixed and closed bugs among those that compile

under JDK 5, i.e. version 3.1.0, and the following one 3.2.0. We applied to Lucene the

same methodology applied to our student’s case study, computing the spatial + temporal

coincidence to assess those FindBugs issues that are related to defects.

The Apache Software Foundation has a unified bug tracking system (JIRA3) for

all its projects: we downloaded from the Lucene JIRA database (webref3)) the list of fixed

and closed bugs that affected version 3.1.0, obtaining 27 defects at the time this paper was

written.4 Then we collected from Lucene Subversion repository the relative bug fixes

commits and corresponding modified java files, thus obtaining a list of ‘buggy files’, i.e.

the files where the bug had impact. After that, we ran FindBugs on Lucene’s source code,

analyzing all classes under package org.apache.lucene, in version 3.1.0 and in the following

released version, 3.2.0. We enabled all FindBugs issues except the “noisy issues”, i.e. those

issues randomly inserted for data mining experimentation, and we set the analysis effort to

Maximal to be consistent with our experiment on students’ projects. We obtained 332

issues in version 3.1.0. Some issues occurrences as CD_CIRCULAR_DEPENDENCY

were pointing to more than a class, thus we reported each of them for each class impacted.

We also computed through the FindBugs command “computeBugHistory” which issues

were deleted in the evolution from version 3.1.0 to 3.2.0: they were 30. Finally, to achieve

2 http://lucene.apache.org/java/docs/index.html , last access 27/12/2012
3 http://www.atlassian.com/software/jira/overview , last access 27/12/2012
4 The permanent link to reproduce the search is :
https://issues.apache.org/jira/secure/IssueNavigator.jspa?reset=true&jqlQuery=project+%3D+LUCENE+AND+iss
uetype+%3D+Bug+AND+resolution+%3D+Fixed+AND+affectedVersion+%3D+12314822+AND+status+%3D+
Closed+ORDER+BY+priority+DESC

38

the spatial+temporal coincidence, we computed with DiffJ which lines were modified in the

buggy files in their evolution from release 3.1.0 and release 3.2.0, and compared those lines

with the location of the issues. We recall that a FindBugs issue occurrence satisfies the

temporal+spatial coincidence if it disappeared from a version of the code and the following

one and if it was located on lines that changed in a bug fix. For those issues whose location

is the whole class instead of specific lines of code, the criterion is to be located in a buggy

file. Having only one project analyzed, the precision of a FindBugs issue is defined as the

ratio NA/NI, where NI is the total number of detections of an issue and NA is the number

of occurrences in bug fixes. This is a minor difference from the students’ project analysis.

We adopt again the same two thresholds, considering an issue as a good defect

predictor if it has a precision greater or equal to 50%. On the contrary, we consider as bad

defects predictors those issues with precision <=5%. Therefore, we can formulate same

pair of null hypotheses:

HA0: the precision of issue I is not greater than 50%.

HB0: the precision of issues I is not lower than 5%.

We use the Mann-Whitney test to reject the above null hypothesis with the

standard significance level 5%.

Table 9 shows the FindBugs issues satisfying the spatial+ temporal coincidence:

we found 9 occurrences, that determined an overall precision of 2.71% (9/332). We applied

Mann-Whitney test and we obtained that none of the issues rejected HA0 : the set of good

predictors is empty. Table 10 reports the issues that are potential bad predictors, together

with the result of the test for hypothesis HB0.

39

The goal of the external validation is to understand if results hold in a very

different context. We highlight the differences of the two contexts analyzed reporting the

distribution of issues categories in Table 11: Lucene had more Style, Malicious Code and

Multi Thread (MT) Correctness issues, whilst the issues on students code are more related

to Performance, Bad Practice and Correctness. Also [37] found many race-condition-related

issues running FindBugs on Lucene.

The temporal + spatial coincidence criterion produced no Good Predictors issues

and no comparisons are possible with the students’ projects results. A motivation beyond

the difference of contexts is that we probably underestimated the Good Predictor issues,

since it is possible that not all defects that affected release 3.1.0 have been fixed in release

3.2.0, therefore some FindBugs issues related to those defects could have been fixed later.

However, the overall precision 2.71% is similar to the precision we found in the students’

pool of projects (median 0%, average 12.6 %).

On the contrary, the set of Bad Defects Predictor contained 17 issues that were

responsible of almost 90% of all detections (292 in 332). We found in students projects 16

issues, and 4 of them are in common with Lucene:

Table 9. Issues satisfying temporal+spatial coincidence

Issue ID Priority Category Classname

CD_CIRCULAR_DEPENDENCY 2 STYLE org.apache.lucene.index.DocumentsWriter

CD_CIRCULAR_DEPENDENCY 2 STYLE org.apache.lucene.index.IndexWriter

CD_CIRCULAR_DEPENDENCY 2 STYLE org.apache.lucene.index.IndexReader

CD_CIRCULAR_DEPENDENCY 2 STYLE org.apache.lucene.index.DirectoryReader

CD_CIRCULAR_DEPENDENCY 2 STYLE org.apache.lucene.index.IndexWriter

CD_CIRCULAR_DEPENDENCY 2 STYLE org.apache.lucene.index.IndexReader

CD_CIRCULAR_DEPENDENCY 2 STYLE org.apache.lucene.index.IndexWriter

CD_CIRCULAR_DEPENDENCY 2 STYLE org.apache.lucene.index.SegmentMerger

EQ_COMPARETO_USE_OBJECT_EQUALS 2 BAD_PRACTICE org.apache.lucene.search.PhraseQuery

40

− ES_COMPARING_STRINGS_WITH_EQ (Bad_Practice,2)

FindBugs Description: “Comparison of String objects using == or !=.

This code compares java.lang.String objects for reference equality using

Table 10. Bad defect predictor issues

Issue ID Category Precision NA NI P value

CD_CIRCULAR_DEPENDENCY STYLE 2 8 59 0.0001

CN_IDIOM_NO_SUPER_CALL BAD_PRACTICE 1 0 6 0.0098

CN_IDIOM_NO_SUPER_CALL BAD_PRACTICE 2 0 8 0.003

DLS_DEAD_LOCAL_STORE STYLE 2 0 12 0.0003

EI_EXPOSE_REP MALICIOUS_CODE 2 0 16 0

EI_EXPOSE_REP2 MALICIOUS_CODE 2 0 17 0

EQ_DOESNT_OVERRIDE_EQUALS STYLE 2 0 37 0

ES_COMPARING_STRINGS_WITH_EQ BAD_PRACTICE 2 0 17 0

FL_MATH_USING_FLOAT_PRECISION CORRECTNESS 2 0 17 0

ICAST_INTEGER_MULTIPLY_CAST_TO_LONG STYLE 2 0 4 0.0359

ICAST_QUESTIONABLE_UNSIGNED_RIGHT_SHIFT STYLE 2 0 7 0.0054

IS_INCONSISTENT_SYNC MT_CORRECTNESS 2 0 16 0

IS2_INCONSISTENT_SYNC MT_CORRECTNESS 2 0 20 0

MS_PKGPROTECT MALICIOUS_CODE 2 0 12 0.0003

NM_METHOD_NAMING_CONVENTION BAD_PRACTICE 2 0 29 0

SE_BAD_FIELD BAD_PRACTICE 2 0 4 0.0359

URF_UNREAD_FIELD PERFORMANCE 2 0 16 0

41

the == or != operators. Unless both strings are either constants in a source

file, or have been interned using the String.intern() method, the same

string value may be represented by two different String objects. Consider

using the equals(Object) method instead.”

− NM_METHOD_NAMING_CONVENTION (Bad_Practice,2)

FindBugs Description: “Method names should start with a lower case

letter . Methods should be verbs, in mixed case with the first letter

lowercase, with the first letter of each internal word capitalized.”

− SE_BAD_FIELD (Bad_Practice,3) –Priority is 2 in Lucene validation

FindBugs Description: “Non-transient non-serializable instance field in

serializable class. This Serializable class defines a non-primitive instance

field which is neither transient, Serializable, or java.lang.Object, and does

not appear to implement the Externalizable interface or the readObject()

and writeObject() methods. Objects of this class will not be deserialized

correctly if a non-Serializable object is stored in this field.”

− URF_UNREAD_FIELD (Performance,2)

FindBugs Description: “Unread field. This field is never read. Consider

removing it from the class”

42

Because of the differences in the nature of the projects, our external validation

produced two categories of Bad Predictors issues: Generally Bad Defect Predictors,

containing the 4 issues in the intersection, and Context-Specific Bad Defect Predictors,

containing the remaining 10 issues. We share the dataset online to enable repetitions and

validations of the study5.

DISCUSSION ON RESULTS: ANSWER TO RQ1.

 On the basis of the temporal + spatial coincidence criterion, issues related to

defects are: call to unrelated types, field self-assignment, uninitialized read of field in

constructor (Correctness, 1), and unused field (Performance,2).

The manual validation (see Table 8) of detections showed that Correctness

detections are all valid and have an impact on functionality. However, the Performance

issue is the only one that has no correct detections that cause an incorrect behavior of the

5 http://softeng.polito.it/vetro/confs/iet2011/data.zip

Table 11. Issues distribution by category

Category Occurrences -
Lucene

Occurrences -
Students

% Occurrences
- Lucene

% Occurrences
- Students

BAD_PRACTICE 80 701 24.10 % 41.43 %

CORRECTNESS 21 230 6.33 % 13.59 %

MALICIOUS_CODE 49 19 14.76 % 1.12 %

MT_CORRECTNESS 38 0 11.45 % 0.00 %

PERFORMANCE 20 453 6.02 % 26.77 %

STYLE 124 248 37.35 % 14.66 %

 INTERNAZIONALIZATION 0 41 0.00 % 2.42 %

TOT 332 1692 100.00 % 100.00 %

43

program. This fact is reasonable because the issue, as the name of the category suggests, is

just signaling waste of memory (variable never used), and it is not a real error (because in

this kind of little Java projects, performance of the program is neither mission nor safety

critical). However, since their detections are about the 63% of all detections in the set, their

contribution to the external quality prediction is important. In fact, there is a reason why

projects with detections of unused fields have lower quality: their presence in a program

means that the student encountered difficulties in the design of the program, because he

planned to use more/different variables that in fact were not necessary. In contrast students

who developed applications with higher external quality did not have this kind of problem.

This is the reason why we decided to leave this issue in the set of good defect predictors

issues, despite the category it belongs is Performance. Furthermore, the double internal

validations confirmed that all the 4 issues have a clear impact on external code quality and

they can be considered as good defects predictors, with a very high confidence that limit the

impact of the internal threats to validity. The external validation was not possible for the

GDP, therefore we couldn’t assess the impact of external threats on this set.

We also identify 16 issues that are bad defects predictors, and the statistical

validation confirms that their detection has no correlation with the external quality of the

projects. The internal threat (assumption that all changes are done to fix a defect) could

affect results on Bad Defects Predictors, because students must make as few changes as

possible, otherwise their mark will decrease: for this reason, they just correct errors and do

not perform any change related to performance, maintainability or even errors that are in

impossible paths. It is possible that in other projects some of these issues could be fixed by

developers. Observing the type of issues in the set, we could assert that the majority of

them could be related to this fact. However, this threat is controlled by the comparison with

related work in Section 2.5.

For instance, 3 issues are naming convention violations, whose importance for

code comprehension is well known, and 4 of the 5 issues belonging to the category

Performance are memory leaks (useless constructor of String and Number, unread field and

field that should be static). The fifth issue of Performance, i.e. useless toString() applied on

a String, could indicate that students have not fully understood the nature of the objects in

44

Java, as the GC_UNRELATED_TYPES “good” issue demonstrates. Also the issues on the

comparison of Strings or Objects with == (Bad Practice) could be related to this problem.

The remaining issues of category Bad Practice do not signal bugs but do indicate code that

could lead to a waste of resources or to difficulties in maintenance. Finally, there are 2

issues in the category Correctness in the list: the infinite loop (IL_INFINITE_LOOP) and

the null pointer dereference in some path (NP_NULL_ON_SOME_PATH). We checked

them manually and we discovered that they are actually errors: however all the 9 detections

are on unfeasible paths, and this is probably the reason that students did not notice these

errors with tests execution. Thus, we decided to remove the two issues of category

Correctness from the list of bad predictors. The definitive set of bad predictors is reported

on Table 12.

Table 12. Bad defect predictors

Issue ID NA/NI Prec.
Est.

p-val

DM_NUMBER_CTOR (Performance,2) 0/6 0 0.018

DM_STRING_CTOR (Performance,2) 0/29 0 <0.01

DM_STRING_TOSTRING(Performance,3) 0/5 0 0.018

EQ_COMPARETO_USE_OBJECT_EQUALS (Bad_Practice,2) 5/275 0 <0.01

ES_COMPARING_STRINGS_WITH_EQ (Bad_Practice,2) 0/10 0 <0.01

NM_CLASS_NAMING_CONVENTION (Bad_Practice,2) 0/17 0 <0.01

NM_CONFUSING (Bad_Practice,3) 0/6 0 0.01

NM_METHOD_NAMING_CONVENTION (Bad_Practice,2) 2/44 0 <0.01

OS_OPEN_STREAM (Bad_Practice,2) 0/71 0 <0.01

OS_OPEN_STREAM_EXCEPTION_PATH (Bad_Practice,3) 0/5 0 0.018

SE_BAD_FIELD (Bad_Practice,3) 0/11 0 <0.01

SE_COMPARATOR_SHOULD_BE_SERIALIZABLE(Bad_Practice,2) 0/49 0 <0.01

SIC_INNER_SHOULD_BE_STATIC_ANON (Performance,3) 0/92 0 <0.01

URF_UNREAD_FIELD (Performance,2) 33/259 0 <0.01

45

A further control strategy against external threat is applied in this paper with the

external validation towards Apache Lucene. We observed that some issues remain Bad

Defect Predictors even when we switch context and we analyze real projects. The Generally

Bad Defect Predictors, that are the 1% of the total number of issues in FindBugs (4 in 359),

were responsible of 62 detections in Lucene (18.7% of the total) and 324 in the students’

projects repository (19.1% of the total): these digits are the basis of an important practical

application of our findings, i.e. the adoption of a filtering strategy that can avoid

information overload on developers caused by a very large number of detections with a

very low probability to be related to defects. In particular fixing issues with a low

probability of being related to a defect is dangerous because we know from Adam’s law

[32] that the probability of introducing a new error during a fault correction is always

greater than zero. The ranking of Bad Defects Predictors could be adopted by developers

that want to enable only those issues with the highest precision. For instance, in this

experiment, the Good Defects Predictors issues are just 4 out of 359 in FindBugs 1.3.8

database (about 1%) and they are responsible for only the 4.4% of all detections in lab

versions. Finally, the Context-Specific Bad Predictor issues (about 3% of the complete set)

produced a further 15% of detections in lab versions. Therefore, summing up the Context

Specific Bad Defects Predictors and the Generally Bad Defects Predictors, we obtain that

more than a third of the detections in the students projects (34%) were not related to defects

and could be ignored. In Lucene they were the 88%. These comments are summarized in

Figure 13 and Figure 14 . Finally, from an educational perspective, although the

occurrences of good predictors are few, we consider them important topics to be stressed

more in future iterations of the OOP course.

46

Figure 13. Bad defect predictors proprtions (Students projects vs Lucene)

Figure 14. Good defect predictors proprtions (Students projects vs Lucene)

0 500 1000 1500 2000

Lucene

Students
Occurrences from Bad
Defects Predictors

Remaining occurrences

0 1000 2000

Lucene

Students Occurrences from
Good Defect
Predictors

Remaining
occurrences

47

2.5. COMPARISON WITH PREVIOUS AND RELATED WORK

The main threat to validity of the experiments with students is the generalizability

of the findings because we analyzed small projects developed at our University. We faced

such an external validity threat by conducting an external validation, repeating the analysis

with the same methodology on a real project, Apache Lucene.

The cross validation wasn’t applicable to the set of Good Defect Predictors since

none was found, but to the Bad Defects Predictors set only. Four issues among the latter

were in common with the students project analysis (they produced the 19% of total

detections in LAB version and 18% in Lucene 3.1.0).

In the first experiment [33], we analyzed a small repository of Java projects (85

projects) and we studied the precision of issues at group level (combination of category and

priority): the analysis showed that only 2 groups (Bad Practice High, Correctness High)

out of 15 groups of issues could be considered as reliable predictors of actual defects, and

one group of issues (Bad Practice Medium) had a precision that was practically negligible.

We group the good and bad defects predictors issues found in this study by the

same criteria of the previous work to compare the findings. Since the repository in the

replicated study is larger, we find more kinds of issues and more groups, however the group

Correctness High is still in the good defects predictors set as well as Bad Practice Medium

is still in the Bad Defect Predictors set. While the group Bad Practice High is not present in

either of the two sets. Therefore, 2 out of 3 groups are confirmed in the respective sets and,

most important, there are no conflicts in the group compositions of the two studies: we

conclude that the finding of our previous work are confirmed and improved in this study.

 Before us, Boogerd and Moonen [20] [21] and Kim and Ernst [30] also used

temporal and spatial coincidence in their research. Our research confirms the findings of

Boogerd and Moonen: a reduced set of rule violations are strongly related to defects in

source code, and many violations are not related to real defects at all. Kim and Ernst also

applied FindBugs on Lucene in another paper [37], and they reached a similar finding:

48

only 9% of the warnings issued by FindBugs were removed by a fix-change in the period

10/19/2001~11/9/2006.

Furthermore, in our analysis there are 3 high priorities issues and 1 medium

priority in the good defects predictors, whilst the majority of issues in the bad predictors set

are medium and low priority (respectively 10 and 5 issues, 1 high priority): thus the tool’s

default prioritization of issues seems to be effective, in contrast with what is found by Kim

and Ernst [30] in two open source projects (Columba and jEdit).

Differently from our second experiment [38], the new comparison includes the

validation on Lucene and it is performed with more objective criteria, specific to each

study. We couldn't apply the same criteria because every study had its own methodology.

The first comparison we present is that with Kim and Ernst [30]. The authors list

the FindBugs issues with shortest and longest “life” in multiple versions of two open source

projects: the underlying idea is that if some issues are resolved quickly by developers, those

issues are important and likely related to real defects. The issue

SA_FIELD_SELF_ASSIGNMENT, which we identify as good defect indicator, is also

among the issues with shortest life in one of the two projects analyzed by Kim and Ernst

(Columba). The bad defect predictors issues in common are instead two:

ES_COMPARING_STRINGS_WITH_EQ and OS_OPEN_STREAM, both of Category

BadPractice and Priority 2. Furthermore, we do not observe any conflict with this study, i.e.

none of our “good” issues have long life in the experiment of Kim and Ernst and none of

the “bad” have short life.

We are also able to compare our findings with the findings of Ayewah and Pugh

[39], who analyzed thousands of FindBugs warnings fixed by engineers during the May

2009 “Google FixIt”. The authors used a lightly modified temporal coincidence to find

which FindBugs issues were fixed with higher frequency in the Google code base in a

period of 9 months. In their paper they show 12 issues with high removal rate and 3 with

low removal rate, distinguishing issues only by bug pattern and category. We found in the

first set 3 out of 4 of our “good” issues (only the self-assignment is not present). Moreover,

“our” bad issue DM_NUMBER_CTOR (Performance) has low fix rate. We didn't find any

conflict also with this study.

49

In a previous work of the same authors [19], they tried to understand the efficiency

of FindBugs by manually checking medium/high priority Correctness issues signalled on 3

projects: Glassfish v2, JDK 1.6.0-b105 and the Google code base. The authors classified

issues in different groups, based on their impact on code. Overall, they observe that in JDK

1.6.0-b105 almost 50% of them had an impact (misbehaviour of the program), a further

10% had a serious impact, 160/379 were trivial, whilst 5 issues were due to bad analysis by

FindBugs. The comparison with this work is more difficult because the authors reported the

issues descriptions but not the issues Ids. We applied the following strategy to make the

comparison possible:

− We looked at the issue description and try to find the respective issue ID

on FindBugs website (section Bug Bug descriptions. We considered the

issue only if the description corresponded univokely to an ID.

− We applied our precisions threshold to their results with the following

schema:

− NI = Number of reviews “Impact” + Number of reviews “Serious”

− NA = Total number of reviews

− Precision = NI/NA

− If precision >= 0.50, then the issue is a good predictor, otherwise it is

a bad predictor

 We were able to unambiguously identify 2 issues: the uninitialized read of field

in constructor (1 detection had impact and 7 tagged as trivial, resulting in a Bad Predictor

and then a conflict) and the self-assignment of field (1 “impact” and 2 “trivial”), that is

confirmed as good predictor.

In the same paper the authors provide the results of a similar review that was

performed at Google, where they classified issues reviewed in impossible (i.e. wrong

detection), trivial, open, fixed. We applied the same strategy but we defined NI = fixed.

Looking at the results, 2 out of 13 uninitialized reads were fixed (but 7 were wrong), whilst

all the 7 detections of the issue GC_UNRELATED_TYPES (Correctness) were still open.

50

Among the 12 detections of the self-assignment issue, 5 were fixed, 1 classified as trivial

and the remaining left open.

We present a synopsis of the above comparisons in Table 13, according to the

following binding id-study on columns:

1. Ayewah et al 2007 [19]

2. Kim and Ernst 2007 [30]

3. Ayewah and Pugh 2010 [39]

4. Validation of Vetro’ et al. 2011 [38] on Lucene

X marks in the table indicate that the corresponding issue was identified as

related/not related to defects in that study. The areas in gray represent the agreements. The

only study that presented conflicting results is study 1 [19], that in any case resulted in

conflict with their later study conducted at Google. Overall, we obtained a proportion of

agreement within studies of 70.59 % (100% without considering study number 1).

Table 14 reports the comparison of our findings with related work on a project

basis instead of paper base: we observe a 50% of agreement in industry projects and 100 %

in open source projects. Finally, stratifying data by Good/Bad Predictors, we observe that

agreement has the following proportions: 55.56% Good Predictors, 87.50% Bad Predictors.

In summary, the highest agreement of results in the comparison between our study and

related work in reached in Open Source projects and in the set of the Bad Defects Predictor

issues. We include in the Generally Bad Predictors issues set also the issues coming from

the meta-analysis conducted, i.e. with at least an agreement with another study and no

disagreement. The new elements are the following ones:

− ES_COMPARING_STRINGS_WITH_EQ (Bad_Practice,2)

− DM_NUMBER_CTOR (Performance,2)

− NM_METHOD_NAMING_CONVENTION (Bad_Practice,2)

− SE_BAD_FIELD (Bad_Practice,3)

− URF_UNREAD_FIELD (Performance,2)

51

Given the large variety of contexts, we assert that these issues have a very low

probability to detect a defect. Although the double internal empirical validation on the

Good Defects Predictors confirmed them, the comparison with the related work showed

that they are context specific, differently from the Bad Predictors.

Table 13. Summary of comparisons with related work (paper-based)

 Issue ID Related to defects Not related to defects

1 2 3 4 1 2 3 4

G
oo

d

GC_UNRELATED_TYPES (Correctness,1) X X

SA_FIELD_SELF_ASSIGNMENT(Correctness,1) X X X

UR_UNINIT_READ (Correctness,1) X X X

UUF_UNUSED_FIELD (Performance,2) X

B
ad

DM_NUMBER_CTOR (Performance,2) X

DM_STRING_CTOR (Performance,2)

DM_STRING_TOSTRING(Performance,3)

EQ_COMPARETO_USE_OBJECT_EQUALS (Bad_Practice,2)

ES_COMPARING_STRINGS_WITH_EQ (Bad_Practice,2) X X

NM_CLASS_NAMING_CONVENTION (Bad_Practice,2)

NM_CONFUSING (Bad_Practice,3)

NM_METHOD_NAMING_CONVENTION (Bad_Practice,2) X

OS_OPEN_STREAM (Bad_Practice,2) X X

OS_OPEN_STREAM_EXCEPTION_PATH (Bad_Practice,3)

SE_BAD_FIELD (Bad_Practice,3) X

SE_COMPARATOR_SHOULD_BE_SERIALIZABLE(Bad_Practice,2)

SIC_INNER_SHOULD_BE_STATIC_ANON (Performance,3)

URF_UNREAD_FIELD (Performance,2) X

52

Table 14. Summary of comparisons with related work (project-based)

Projects Agreements Disagreements Proportion of
Agreement

 Good Bad Tot Good Bad Tot Good Bad Tot

Industry

Google (Ayewah et al 2007) 0 0 0 3 1 4 0.00% 0.00% 0.00%

JDK 1.6.0-b105 (Ayewah et
al 2007)

1 0 1 1 0 1 50.00% NA 50.00%

Google (Ayewah et Pugh
2010)

3 1 4 0 0 0 100.00% 100.00% 100.00%

Tot Industry 4 1 5 4 1 5 50.00% 50.00% 50.00%

Open Source

Columba (Kim and Ernst
2007)

1 1 2 0 0 0 100.00 % 100.00% 100.00%

jEdit (Kim and Ernst 2007) 0 1 1 0 0 0 NA 100.00% 100.00%

Lucene (current paper) 0 4 4 0 0 0 NA 100.00% 100.00%

Tot Open Source 1 6 8 0 0 0 100.00% 100.00% 100.00%

TOT 5 7 12 4 1 5 55.56% 87.50% 70.59%

53

2.6. AN INDUCTIVE STUDY AS A CONTRIBUTION TO THE

SECOND RESEARCH STREAM

We helped an industrial partner in understanding the usefulness and effectiveness

of the Resharper ASA tool in their development projects and we decided to adopt the

second approach because it is more promising than the first one, as summarized in Section

2.2. Our long term aim is to provide our partner with models that use ASA issues to point

to more specific quality problems. These models should be able to make recommendations

for code inspections based on a set of quality characteristics of interest. For example, a

security inspection should be able to use a prediction model pointing to software files and

components with potential security flaws. Or, the user experience review should be able to

use a model that selects parts of the software with potential usability problems.

The main novelties that we introduce with respect to the previously conducted

related work are:

− We contribute to the body of evidence of the second research stream by

adding a new tool/language/application combination (Resharper/ C#/

Web application). The Resharper tool has, to our knowledge, not yet been

evaluated in past work.

− We perform the analysis at two granularity levels, i.e. software

components and source code files. Components are high-level functional

units encapsulating one or more main functionalities of the software

system, such as: “User Login”, “Database Access”, or “Admin Backend”.

Source code files are low-level artifacts, usually containing classes that

are the building blocks for components. Since past studies were done at

only one of the two levels this study will give some insight into the

comparison between the two levels.

We investigate whether specific types of ASA issues can be linked to specific

quality dimensions. This is helpful to understand if an increased importance of one quality

dimension, such as usability, can help to pre-select the set of ASA issue types that will

54

predict usability defects with the highest precision. Or more generally, the approach can be

used to prioritize the set of ASA issues a reviewer would have to inspect, based on a

prioritization of desired quality characteristics.

To our knowledge, no past work has yet studied the correlation between ASA

issue types and quality characteristics. The most similar works we found were two studies

that investigated instead the typology of defects found by ASA tools. The first one is a

study conducted by Nagappan et al. [24], who classified defects found by the FlexeLint

tool using the ODC classification schema [40] and found that defects associated with ASA

fell into three ODC defect types: checking, assignment/initialization, and interface.

Wagner et al. [17] also classified ASA issues, but they focused on their effect on code

rather than their causes. The authors used a 5-point scale of severity to classify the true

positive issues signaled by FindBugs, PMD and QJPro on five industrial projects. The

highest category level was “Defects that lead to a crash of the application”, while the lowest

was “Defects that reduce the maintainability of the code”. The authors found that most of

the true positives were related to maintainability of the code (e.g., readability and

changeability). They also compared ASA issues with defects found using code reviews and

unit tests, and they discovered that all defects found by ASA tools were also found by the

review, while testing activities found different categories of defects.

We adopt a different perspective from these two studies, and we focus on whether

any ASA issues can predict defects relating to a very general set of software quality

attributes, using the well-known ISO/IEC 9126 quality model [41] as a basis for defect

classification. The ISO/IEC 9126 Software engineering Product Quality Model is an

international standard for the evaluation of software quality. It defines a quality model with

six main characteristics namely, functionality (F), reliability (R), usability (U), efficiency

(E), maintainability (M), and portability (P), which are further broken down into 22 sub-

characteristics. The standard was revised in March 2011 by the ISO/IEC 25010 standard

committee [42]. Our defect classification based on the standard was created two months

after the new standard was released, but we decided to keep the old standard because of its

widespread use and because of the large overlap between the two.

55

We proposed our defect classification in a previous work [43]; it is complementary

to already existing defect classifications because it helps in understanding the impact of the

software on different quality attributes. Such classification might help programmers and

managers with practical tasks, such as the prioritization of defects according to the different

stakeholders’ interests, the ease of process improvement measurement on specific quality

dimensions or tuning verification activities according to specific quality dimensions. This

work is specific to the latter point and it is a first step towards understanding whether

different ASA issues could be related to specific quality dimensions.

The first goal of this study is to understand whether some predefined subsets of

ASA issues (a.k.a. ASA issue categories6) are eligible as indicators of defect-proneness.

The second goal is to understand whether and which categories of ASA issues are related to

specific software quality dimensions. Both questions are analyzed at two levels of

granularity: firstly with respect to components, and secondly source code files. The

rationale behind the decision to perform analysis on different levels is to better comprehend

if results would differ, be the same, or even contradict each other.

STUDY CONTEXT

The study was carried out at a software company that develops web-based

applications in C# (using .NET and Visual Studio). The company uses the JIRA tracking

system7 to record defects.

Of the current projects at this company, we selected one for in-depth analysis

based on data quality. Preliminary analysis showed that data quality varied considerably

between available projects, reflecting the level of process conformance [44] with which

developers recorded defects in JIRA. We chose the project with the best data quality

6 Issue categories vary depending on the ASA tool used. Typical categories for the Resharper tool
used in this study are: Redundancies in Code, Common Practices and Code Improvements, Compiler
Warnings, etc.
7 http://www.atlassian.com/software/jira

56

(according to the three criteria below) to reduce the influence of incomplete or noisy data

on the results:

A. Number of empty fields in defect reports (e.g. missing data).

B. Number of defect report fields that were filled with the default value

(which may indicate the default value was accepted rather than that the

true value was investigated).

C. Percentage of components that could be bound to files (our approach for

this is described below).

The selected application has about 35 KLocs and has been active in production

since November 2009, with 4 developers working on it in parallel. At the time of the

analysis, the JIRA system contained 78 fixed and closed defects for the selected project

(which we will call J).

MAPPING BETWEEN ASA ISSUES, DEFECTS, FILES, AND COMPONENTS

Our methodology for performing the mapping between components, files, and

ASA issues, as illustrated in Figure 15, is based upon the fact that JIRA systems can track

not only defects but any other element that can be associated with software artifacts. Those

elements are called “JIRA issues”, and each project has its own set of issues. Example of

JIRA issues are change requests, system incident reports, implementation tasks, etc.

Moreover, developers establish links between files in the SVN code repository to JIRA

issues by including ticket ids in their SVN commit comments. Finally, each JIRA issue is

linked by the software developers to one or more software components.

With this information one can build a frequency table (see Figure 16) of files

(rows) and components (cells) indicating how often files were changed (i.e. added,

modified, or deleted) when working on a component. If a JIRA issue is related to one or

more logical components, then the set of modified files belong to the respective

components. Using this method a mapping is built based on evidence of how the system

changed and evolved over time.

57

Since a file can belong to many logical components, we accept multiple

classifications. Further we reduce some possible noise by mapping a file only to a

component if it was linked to this component in at least 20% of all the files’ changes. This

percentage was set after an analysis of frequency distributions.

Figure 15. Linkage between Resharper issues, source code files, issue and defect fixes, and
components. Yellow defects indicate that a file is linked to at least one defect issue in JIRA.

Figure 16. Evidence-based binding of files to logical components

58

STUDY EXECUTION

We derive from our first goal two research questions on component (C) and file

(F) level:

− RQ C1: Which ASA issue categories can identify defect-prone

components?

− RQ F1: Which ASA issue categories can identify defect-prone files?

Additional research questions are derived from our second goal:

− RQ C2: Which ASA issue categories can point to defect-prone

components that impact various system quality characteristics?

− RQ F2: Which ASA issue categories can point to defect-prone files that

impact various system quality characteristics?

We address these questions inductively, investigating whether the detection of

defect-proneness was possible and if so, which types of ASA issues were useful for doing

so. We discuss the metrics and the methodology separately for each research question

below.

RQ C1: Which ASA issue categories can identify defect-prone components?

To answer RQ1-C1, we first performed the mapping as described earlier to link

Resharper issues to components. Secondly, we checked to see if the number of Resharper

issues is correlated with software size. This step was necessary to investigate a possible

bias from code size. If such a correlation exists, it is necessary to normalize the data (e.g. by

using issue density instead of number of issues). The same analysis is done for defects.

In a third step we test for correlations between numbers of defects and numbers of

Resharper issues in each Resharper category, per component. We use the Spearman

coefficient correlation (a non-parametric statistic), since we observe a wide range of issues

59

and defects that do not appear to follow any defined distribution (see Table 15 and Table

16).

RQ F1: Which ASA issue categories can identify defect-prone files?

To answer this research question we used again the mapping procedure from sub-

section 3.2. We also checked for possible bias as described in RQ-C1. Lastly, we tested for

correlation between Resharper issue categories and defects by using a two sample Mann-

Whitney test [23] after running an unsuccessful Shapiro test for normality. This type of test

was more appropriate than the Spearman correlation due the sparseness of the data; it has

also been used in previous studies [21] [33]. As the results will show, only a small number

of files (about 10%) were associated with defects. Therefore, we partitioned the sample into

non-defect-prone files and defect-prone files in order to perform the Mann-Whitney test.

This decision implies that the analysis will investigate if files with at least one defect can be

identified by the Resharper issues residing in the same file.

RQ C2: Which ASA issue categories can point to defect-prone components that

impact various system quality characteristics?

RQ F2: Which ASA issue categories can point to defect-prone files that impact

various system quality characteristics?

For both of these research questions, we used the ISO/IEC 9126 quality model as a

basis for classifying the defects according to different quality characteristics. The method

for classifying defects in this way was developed and validated in a prior experiment [43],

which also used the same project as the subject project. In that study, six different subjects,

divided into two groups with respect to their expertise, classified the 78 defects using the

ISO/IEC 9126 quality main characteristics and sub-characteristics. Subjects read the defect

reports and assigned each defect to one or more quality characteristics and sub-

characteristics (the classification is not orthogonal). The underlying idea is that each defect

reduces a software capability and impacts the corresponding characteristic and sub-

characteristic.

60

Table 15. Resharper issues detections

Resharper category Number of
issues

ASP.NET 2

Common Practices and Code Improvements 521

Compiler Warnings 36

Constraints Violations 445

Language Usage Opportunities 591

Potential Code Quality Issues 14

Redundancies in Code 645

Redundancies in Symbol Declarations 82

Unused Symbols 7

Sum of issues 2343

Table 16. Resharper issues on components

Component
Sum of

ReSharper
issues

Defects NCSS

Cmp 1 1407 43 3192

Cmp 2 324 13 961

Cmp 3 232 6 711

Cmp 4 29 5 97

Cmp 5 7 4 9

Cmp 6 29 4 97

Cmp 7 0 3 0

Cmp 8 119 2 246

Cmp 9 93 1 208

Cmp 10 0 0 0

Cmp 11 428 0 1392

Cmp 12 0 0 0

Cmp 13 0 0 147

Cmp 14 0 0 0

61

We observed that more experienced software engineers produced classifications

with less variability, and that the classification at characteristic level was more reliable than

those at sub-characteristics level. As a consequence, we adopted as the final classification

the one created by experts at the characteristics level.

Using that classification we were then able to check, in the work described in this

paper, whether various types of Resharper issues are correlated to the defects related to

specific quality characteristics.

RESULTS

We collected metrics on the revision of the target project preceding the first defect

fix commit to include as many defects as possible. Resharper reported 2343 issues on the

source code of the web application: Table I reports the issues per each Resharper category

and Table II reports, for each logical component, total number of Resharper issues, number

of defects and non-commented source statements. Some components have 0 NCSS for two

reasons: a component was built after the version of the software analyzed, or the files-

component mapping produced zero files for a component, or in some cases both. Resharper

reported issues on files with extension .aspx, .xaml, .csproj, .cs (including .xaml.cs,

.ascx.cs, .aspx.cs, .ashx.cs, .Master.cs). .

Among the 78 fixed and closed defects, 65 had commits linked to them.

According to the experts’ classification [43] (Figure 17), the majority of defects (58%)

impacted only functionality, followed by usability (26%) and reliability (6%). Mixed

classifications (FR and FU) accounted for 5% each, while no defects had impact in the

remaining three categories.

The total number of files with at least one defect fix is 58. However, excluding

those files that were out of scope of the Resharper analysis (e.g., .sql files, .css files) and

those files that were added after the revision we analyzed, only 11 of the 58 remained.

These files are listed in Table 17. As with components, the data indicates that there is not a

clear relationship between number of defects and Resharper issues: the most defect prone

62

file (C) has 35 issues whereas some of the less defect prone files (G,I,J) have up to twice

the issue count.

As this is an exploratory study, when analyzing statistical significance we ran our

tests at a 90% confidence level. As we are intending to discover relationships that can be

later more rigorously examined, we would prefer to err on the side of finding false

positives, rather than missing any relationship.

We now answer separately each research question.

RQ C1-C2: Which ASA issue categories can identify defect-prone components?

Table 18, first column, reports Spearman correlations between Resharper issues

densities of specific issue categories and defects. Statistically significant values (i.e., p-

value ≤ 0.10) are shown in bold.

We used issue densities (issues/NCSS) in the following computations because a

positive Spearman correlation (rho=0.93, pval < 0.01) was found between NCSS and

Figure 17. Defect classification

Functionality
58%

Usability
26%

Reliability
6%

Functionality
& Reliability

5%

Functionality
& Usability

5%

63

number of issues. We did not normalize the number of defects because the correlation

between defects and size was not significant (rho= 0.42, pval= 0.15).

The total number of Resharper issues has an insignificant but positive correlation

with defect-proneness (0.19, p = 0.29) with all defects. Looking at Table 18, column “All

RQ C1”, we observe positive correlations for all but one category (Common Practices and

Code Improvements), and one (Language Usage Opportunities, rho= 0.57) is significant at

the 90% confidence level (in bold). Hence, the answer to RQ C1 is:

Only a few issue categories, such as Language Usage Opportunities in this

example, are positively correlated with defects at the component level. Issues in the

category Language Usage Opportunities identify optimizations at code level based on

specific characteristics of C#. The most frequent detections were:

− Convert 'if' statement to 'switch' statement

− Invert 'if' statement to reduce nesting

− Loop can be converted into LINQ-expression

− Use 'var' keyword when initializer explicitly declares type

− Use 'var' keyword when possible

Possible root causes for this correlation are that the usage of more advances

language features leads to less defect (i.e. the more language usage opportunities, the less

code features are used in the code). Or, it might be that junior developers use less advanced

language features than their more experience peers, and also produce more defect prone

code.

64

Table 17. Defects per file

File
ID

Component(s) Resharper
issues

Defects

A C1, 29 1

B C1,C2, 15 4

C 35 6

D C1, 84 3

E 7 1

F C1,C2, 73 4

G C3,C1,C2, 73 2

H 1 2

I C1, 45 1

J C1, 65 2

K C5,C9, 7 2

Table 18. Correlation between density of Resharper issue types and defect densities

Defect types: All
 RQ1C1

F

FR

FU

R

U

ASP.NET

Common
Practicesand
Code
Improvements

-0.14 -0.13 -0.34 0.07 0 -0.2

Compiler
Warnings

0.3 0.31 0.48 0.28 0.04 0.25

Constraints
Violations

0.11 0.1 0.03 0.09 0.23 0.18

Language
Usage
Opportunities

0.57 0.53 0.55 0.5 0.2 0.43

Potential Code
Quality Issues

0.54 0.5 0.51 0.44 0.22 0.44

Redundancies
in Code

0.52 0.49 0.47 0.33 0.39 0.53

Redundancies
in Symbol
Declarations

0.42 0.45 0.01 0.28 0.17 0.14

Unused
symbols

0.53 0.53 0.75 0.57 0.33 0.56

Sum of
Resharper
issues

0.19 0.18 0.1 0.09 0.23 0.23

65

Table 18, columns 2-6, reports on the correlations between Resharper issue

densities and defects, divided into the ISO\IEC 9126 quality characteristics. The only

category with significant positive correlations (in bold) is Unused Symbols: 0.75 with FR

defects, 0.57 with FU defects, 0.56 with U defects. All Unused symbols issues were type

members never used. We answer the research question the following way: Only very few

indicators can be mapped to defects on the component level, and these indicators point to a

wider range of quality characteristics rather than on a single one.

We performed a follow-up analysis to see whether the two categories Language

Usage Opportunities and Unused Symbols could be used as defect locators. We tested their

Table 19. Research Question F2 (only statistically significant results)

Quality characteristic –
Resharper issue category

Defect prone files Non defect prone files

Pval

Mean
Resharper

issues/NCSS

Sd
Resharper

issues/NCSS

Nr of
files

Mean
Resharper

issues/NCSS

Sd
Resharper

issues/NCSS

Nr of
files

F – Constraints Violations 0.14 0.06 6 0.08 0.05 94 0.013

F – Redundancies in Code 0.23 0.14 6 0.09 0.13 94 0.002

FR – Compiler Warnings 0.02 NA 1 0 0.01 99 0.001

FU – Constraints Violations 0.18 0.04 3 0.08 0.05 97 0.002

FU – Redundancies in Code 0.35 0.05 3 0.09 0.13 97 0.004

FU - Sum 0.74 0.09 3 0.53 0.24 97 0.062

R – Redundancies in Code 0.39 0.39 2 0.09 0.12 98 0.033

R - Sum 0.93 0.21 2 0.53 0.23 98 0.029

U – Constraints Violations 0.13 0.07 4 0.08 0.05 96 0.085

U – Language Usage Opportunities 0.15 0.07 4 0.09 0.08 96 0.042

U – Potential Code Quality Issues 0.01 0.01 4 0 0 96 <0.001

U – Redundancies in Code 0.16 0.12 4 0.09 0.13 96 0.033

66

capability to detect defects earlier than metrics of size and complexity, widely used in the

defect prediction literature (e.g., [45] , [46], [47], [48], [49]). Figure 18 shows the

cumulative distribution of defects found ranking logical components with respect to the

following indicators:

− An ideal indicator that perfectly rank logical components from the

faultiest one to the ones with no defect.

− The density of issues of each of the following Resharper issues

categories:

− Unused Symbols

− Language usage opportunities

− The density of all Resharper issues.

− The number of statements (NCSS).

− The average McCabe complexity.

In other words, the curves in Figure 18 represent how quickly defects would be

found if components were tested in different orders, sorted by the criteria listed above. A

horizontal line on the graph indicates the point at which 80% of defects have been found.

 We observe in Figure 18 that the first 3 components contain 80% of the defects

using the ideal locator. Language Usage Opportunities issue density and the total Resharper

issue density find 80% of defects at the 5th component, and all the other indicators at the

6th (Unused Symbols, Complexity and Size). The figure also shows that the two selected

Resharper categories are overall close to the “all issues” data line which does not consider

the category of Resharper issues. This indicates that, at the component level, the distinction

between issue categories might lead to small but not vast improvement compared to using

all issues.

67

Figure 18. Cumulative distribution of defects in components and indicators

Figure 19. Cumulative distribution of defects in files and indicators

68

RQ F1-F2: Which ASA issue categories can identify defect-prone files?

 Table 20 and Table 19 show, both for defect prone files and non-defect prone

files and for each Resharper issue category, mean and standard deviation of Resharper

issues densities, the number of files for each set and the p-value of the Mann-Whitney test

on the difference between the two sets. Bold percentages indicate p-values that are

significant at our chosen confidence level of 90%. Table 19 presents only combinations of

Resharper categories and ISO\IEC 9126 defect classifications for which the null hypothesis

was rejected.

The categories with highest differences on Resharper issues densities in defect

prone/non defect prone files are Redundiancies in Code and Language usage opportunities.

Redundancies in Code are related to Functionality and Usability defects, both separately

and together. Constraints violations are related to Functionality and Functionality-Usability,

while Language usage opportunities only with Usability.

We already presented examples of the issues of the category Language Usage.

Examples of Redundancies in Code are:

− Assignment is not used

− Explicit delegate creation expression is redundant

− Expression is always 'true' or always 'false'

− Redundant boolean comparison

− Redundant cast

− Redundant 'else' keyword

− Redundant explicit type in array creation

− Redundant 'this.' qualifier

We performed the same follow up analysis that we did for components and we

report in Figure 19 the cumulative distribution of defects found ranking files with respect

to the following indicators:

− an ideal indicator that perfectly rank logical components from the

faultiest one to the ones with no defect;

69

− the density of issues of each of the following Resharper issues

categories:

− Language Usage Opportunities

− Redundancies in code

− the density of all Resharper issues;

− the average McCabe complexity ;

− the number of statements (NCSS).

− A horizontal line in the graphs indicates the point at which 80% of

defects are found.

− Results at file level are more diverse than at component level:

Selecting files based on the density of Redundancies in code issues

outperforms all the other indicators, reaching 80% of defects at the

41st file (compared to the 9th file of the ideal locator). The second

best indicator is the sum of Resharper issues: however, it reaches the

threshold at the 74th position. NCSS and McCabe complexity are less

precise indicators at file level: they are able to identify the 80% of

defects only very late: a user will have to examine at 90% of all files

before capturing 80% of all defect prone ones.

Overall we answer the research questions on file level the following way:

1. Multiple Resharper categories are good candidates for

building predictive models for defect prone modules.

2. There is a set of promising candidates of Resharper

categories that is able to predict the quality impact of defect more

precisely.

In a follow up analysis we picked two quality characteristics of interest,

Functionality (F) and Usability (U), and plotted the same graphs as before (see Figure 20

70

and Figure 21) for the respective significant issue categories from Table 19 . In both cases

Redundancies in Code is a more efficient predictor than the sum of all issues.

Figure 20. Predictor Performance for Functionality

Figure 21. Predictor Performance for Usability

71

DISCUSSION

The presented data indicates that the answer to the research questions is not

straight forward in all cases. Most statistics on component level were rather inconclusive

and showed only small correlations or a small set of useful issue categories. We believe that

this indicates the high-level component view is perhaps not the right perspective for future

research direction. The more promising results showed on file level, even if we had to deal

with a sparse data set. The results indicated that number of promising indicators is larger,

and this also holds for the number of categories pointing to specific quality problems.

Table 20. Research Question F1: results

 Defect prone files (11) Non defect prone files (101)

Pval

Resharper issues
Mean

Resharper
issue/NCSS

Sd
Resharper

issues/NCSS

Mean
Resharper

issues/NCSS

Sd Resharper
issues/NCSS

ASP.NET 0 0 0 0 NA

Common Practices and Code Improvements 0.13 0.19 0.21 0.18 0.983

Compiler Warnings 0 0.01 0 0.01 0.333

Constraints Violations 0.13 0.05 0.08 0.05 0.014

Language Usage Opportunities 0.14 0.07 0.08 0.08 0.026

Potential Code Quality Issues 0 0.01 0 0 0.021

Redundancies in Code 0.27 0.20 0.08 0.11 <0.001

Redundancies in Symbol Declarations 0 0 0.06 0.1 0.969

Unused.Symbols 0 0 0 0 NA

Sum 0.67 0.24 0.52 0.23 0.133

72

On both analysis levels we could improve the defect prediction quality by using

selected single predictors, e.g. as Figures 4-7 show. Results also indicate that ASA issues

are more promising to be good defect predictors than traditional software metrics, such as

complexity or size.

Some of the inspected issue categories, such as redundancies in code and unused

symbols (both components and file level) indicate problems regarding memory waste. In

the previous experiment with students data [38] we also found a correlation between a

similar category of FindBugs issues (unused variables) and defects in students’ projects.

We commented that this correlation could be the consequence of the programmers’

difficulties in the design of the class, because they planned to use more/different variables

that indeed were not necessary. A similar explanation could be extended for these

categories of Resharper.

Further, some of the issues of category Language Usage Opportunities can also be

an indicator of the level of programmers’ knowledge on the language.

THREATS TO VALIDITY

We identify a first construct threat in the mapping files- components. Even though

this heuristic eliminates the subjectivity of the manual mapping, 18% of the files were not

assigned to any component.

Another threat is subjectivity in the ISO 9126 defect classification. We controlled

this threat selecting the most reliable classification made by the experts. A more

comprehensive discussion of this threat is found in the original study [43].

The small number of components and of files with defects (11) makes statistical

significance and a definitive answer to our research questions hard to obtain. We were

aware of this threat and also for this reason we performed an explorative study and findings

will be evaluated and better investigated in future work.

As in any inductive study, the generalization of these findings is debatable because

they are tied to the specific context of the analysis. Our research design reflects this

73

concern: in this study we were focused on identifying whether there was any evidence that

Resharper issues could be used as early indicators of defect-prone parts of the system, and

especially whether estimates could be made regarding the type of quality impacted by those

defects. Having obtained an initial indication that this is in fact a feasible approach, further

study is necessary to determine whether the specific correlations found in this study can be

replicated elsewhere.

74

2.7. CONCLUSIONS

We analyzed the state of the art and we found two main research streams: I)

looking at single ASA issues to identify defects in single lines of code or II) looking at

large sets of issues as early indicators of the more defect-prone modules (e.g. classes, files,

software components).

Regarding the first research stream, we conducted two case studies: we analyzed

the relationship between FindBugs issues and defects on two different pools of University

Java projects [33] [38], using information on changes in source code and tests failures. We

obtained that only 4 issues could be considered as reliable predictors of real defects and 14

issues had a negligible precision. We conducted both internal and external validations.

Internal validations included correlation observations with projects quality and a manual

inspection of issues. The external validation included a repetition of the study on an open

source project (Lucene) and a comparison with similar studies in literature. The validation

of results against internal threats confirmed all issues except two (both in the Bad

Predictors sets), whilst the external validation showed some different results. We obtained

high agreement in open source projects and in the Bad Predictors set. From these

observations, we consider the Good Predictors and 9 Bad issues as Context Specific, whilst

the remaining 5 issues are confirmed as Generally Bad Defects Predictors.

We can summarize our experience in the form of advices to practitioners that aim

at using FindBugs on their code with the goal of predicting defects (not taking into account

other quality aspects such as performance or maintainance):

− disable the Generally Bad Defects Predictors (they are unlikely to predict

any defect nevertheless they represented the 19% of total detections in

LAB versions and 18% in Lucene 3.1.0).

− analyze the history of your software and apply the temporal + spatial

coincidence (with information on test failures if present) and identify

Context Specific Good/Bad Defects Predictors

− disable the Context Specific Defects Predictors

75

Regarding the second research stream, the study presented added the following

contributions:

− We evaluated a combination tool-language (Resharper,C#) not yet

evaluated in past works, up to our knowledge.

− We performed and compared the analysis at two granularity levels, i.e.

logical components and files.

− We investigate whether ASA issues are able to identify specific

categories of defects belonging to specific quality dimension.

We found that few Resharper categories had positive correlations with defects at

component level, while several categories were more efficient at file level. The issues with

higher correlations identify problems regarding code readability, performance, and more in

general related to maintainability problems. Moreover, classifying the defects according to

the ISO 9126 quality characteristics, different ASA issues categories were positively

correlated to different quality characteristics.

We compared the capability of Resharper issues to detect the faultiest modules,

both at components and files levels with the result that specific ASA issues were more

efficient than the sum of them or traditional indicators (i.e. software metrics).

Based on the experience of this study, we provide future researchers with the

following set of recommendations:

− Analysis on file level might lead to more promising results than on

component level.

− The size of the project should be at least, but preferably larger than our

medium sized project, to avoid data sparseness problems as we found in

our study.

Considering future research directions, we suggest to better understand if results

for specific categories are useful in other environments, or if this approach will always

require a process of exploration, data analysis, and tailoring towards a specific software

environment. In latter case, the contribution of future research should focus on building

practitioner-oriented methods to build such prediction models rather than building new

models.

76

3 MAINTAINABILITY

3.1. DEFINITIONS

Maintainability is defined in ISO/IEC 25010 [42] in the following way: “degree of

effectiveness and efficiency with which a product or system can be modified by the

intended maintainers”. The standard also specifies what a modification is: “modifications

can include corrections, improvements or adaptation of the software to changes in

environment, and in requirements and functional specifications. Modifications include

those carried out by specialized support staff, and those carried out by business or

operational staff, or end users. Maintainability “includes installation of updates and

upgrades”, and it is built atop five sub-characteristics:

− Modularity: “degree to which a system or computer program is composed

of discrete component such that a change to one component has minimal

impact on other components”

− Reusability: “degree to which an asset can be used in more than one

system, or in building other assets”

− Analysability: “degree of effectiveness and efficiency with which it is

possible to assess the impact on a product or system of an intended

change to one or more of its parts, or to diagnose a product for

deficiencies or causes of failures, or to identify parts to be modified”.

− Modifiability: “degree to which a product or system can be effectively

and efficiently modified without introducing defects or degrading existing

product quality”.

− Testability: “degree of effectiveness and efficiency with which test

criteria can be established for a system, product or component and tests

can be performed to determine whether those criteria have been met”.

77

In practice, Maintainability can be interpreted as “either an inherent capability of

the product or system to facilitate maintenance activities, or the quality in use experienced

by the maintainers for the goal of maintaining the product”.

We studied Maintainability in relation to the concept of Technical Debt.

Technical debt is a metaphor that describes the trade-off between the short-term

payoffs (such as a timely software release) of delaying some maintenance activities and the

long-term consequences of those delays [50].

As Cunningham described [51], in a software development project, rushing

implementation to meet pending deadlines “is like going into debt. A little debt speeds

development so long as it is paid back promptly with a rewrite. Objects make the cost of

this transaction tolerable. The danger occurs when the debt is not repaid. Every minute

spent on not-quite-right code counts as interest on that debt. . Entire engineering

organizations can be brought to a stand-still under the debt load of an unconsolidated

implementation…”

The Technical Debt (TD) problem is depicted in Figure 228: any time we degrade

the quality of our work we introduce new issues (e.g. defects, hard-to-understand code,

tangled design etc.) that will induce extra maintenance effort, i.e. additional costs. The

additional costs are in practice the interests that must be repaid to reduce the TD and restore

the health of the system, avoiding that future changes in the system become too costly and

hard to perform. Following the schema in Figure 22, the interest we pay on debt

corresponds to the difference between the present value of future cost of extra maintenance

minus the cost we save by choosing a less than optimal practice.

8 From Marco Torchiano, http://mtorchiano.wordpress.com/2012/02/24/software-technical-debt/

economi

discussio

vocabula

intuitive

process,

tradeoffs

making [

identific

open sou

TD has bec

ic consequen

on among pra

ary from the

ly understand

it has potenti

s.

Identifying T

[53] are some

The research

ation at code

urce platform

come a well-

nces of such

actitioners an

financial do

dable by all

ial to become

TD [52], qua

of the open is

h done for

e level. We p

(Hadoop) and

Figure 22

78

-known meta

h quick-and-d

nd researchers

omain. Since

stakeholders

a truly unive

antifying the

ssues in the cu

this PhD wo

performed two

d an industrial

2. Technical D

aphor indicat

dirty implem

s by providin

the metapho

s involved in

ersal language

value of deb

urrent research

ork is focus

o studies: a c

 case study w

ebt representa

ing the poss

mentations. It

ng a familiar

or appears to

n the softwa

 for communi

bt and make

h on TD [50].

ed on the p

correlational a

ith a Brazilian

ation

sibly signific

has facilita

framework a

o be sound a

are developm

icating techni

proper decis

.

problem of T

analysis with

n company.

ant

ated

and

and

ment

ical

ion

TD

an

79

3.2. COMPARING FOUR APPROACHES FOR TECHNICAL

DEBT IDENTIFICATION: ANALYSIS ON HADOOP PROJECT

One important class of TD is manifested by problematic implementations in code.

Many types of such code-based TD can be potentially detected automatically using static

program analysis tools that find anomalies of various kinds in the source code.

There are a number of tools designed for this purpose. Some tools are designed to

detect design problems such as code smells [54] or modularity violations [55], some are

designed to discover design pattern degradations [56], and some are intended to spot

potential defects. From a tool user’s point of view, the relevant questions are: which tool(s)

should be used to inform the existence of TD under what circumstances?, and, Is it

sufficient to use one of the tools, or can the usage of multiple tools lead to benefits in

finding more TD?

Plus, not all problematic code detected by these tools is worth being fixed. Some

detected source code problems are not likely to cause future maintenance problems or affect

the overall quality of the system. In terms of the TD metaphor, the TD principal (i.e. the

cost of fixing the debt) may be higher than the TD interest being paid on the debt (i.e. the

probable future cost of not fixing it). Thus, another question is: Which tools reveal TD that

is likely to incur interest?

TD interest is inherently difficult to estimate or measure. Given the data that we

had available in this study, we chose to use two proxies for expected interest (hereafter

referred to as “interest indicators”): defect- and change-proneness. These proxies are

concrete manifestations of problematic code and are related to future maintenance cost, and

therefore are useful, independent indicators of likely interest payments. However, they are

not the only, and possibly not the best, indicators, since they do not capture other forms of

TD interest, such as increasing effort to make changes. However, defect- and change-

proneness are flavours of interest that are of concern to practitioners, and thus it is relevant

to determine if they correlate with the TD indicators generated by the four approaches

studied here. Thus, a lack of relationship between our selected interest indicators and a TD

80

indicator cannot clearly be interpreted to mean that the associated TD identification

approach is ineffective, but that instead it may identify TD that exhibits other forms of

interest.

It should be noted that our aim is not to predict either defects or change-proneness

in future instances of the code base, as has been done by many other researchers (e.g., [23]

[46] [57] [58] [59]). Rather, we are calculating, for a given version of the system, which

classes are already exhibiting change- or defect-proneness, and using these indicators as

proxies of a construct (TD interest) that is more difficult to measure.

So as a first attempt to compare and contrast different TD identification

techniques, we conducted an empirical study to answer the following research questions:

− (RQ1) Considering a set of four representative TD detection techniques

(resulting in a set of 25 “TD indicators”), do they report the same set of

modules as problematic? If not, how much overlap is there?

− (RQ2) To what extent do any of the techniques for detecting TD in code

happen to point to classes with high interest indicators (defect-proneness

or change-proneness)?

We first compare the results of applying the different TD identification techniques

to 13 versions of the Apache Hadoop open source software project.

Secondly, we investigate whether and how likely the problems detected by these

different techniques are related to the two interest indicators we’ve chosen. This study is a

first attempt to map out a “TD landscape” that illustrates the overlaps, gaps, and synergies

between a variety of code analysis techniques with respect to their use in identifying TD.

Both research questions are answered through the computation and combination of

the pairwise relationship between TD indicators (RQ1) and TD indicators vs interest

indicators (RQ2). The aim is to understand which TD and interest indicators point to the

same locations (i.e. Java classes).

We use four different statistical association measures: Pearson correlation,

conditional probability, chance agreement and Cohen’s Kappa. Each of the selected four

measures assesses association from different perspectives that complement each other .

81

Measures are computed for each class and each of the 13 selected versions of the

Hadoop software: hence a further aggregation is needed to combine measures from all

versions and have a unique association measure for every possible combination of TD

indicators (RQ1) or TD indicator vs interest indicator (RQ2).

The results of this study have the potential to improve our understanding about

how existing source code analysis approaches can be tailored towards identifying TD. The

long-term vision of this work is to create practical approaches that software developers can

use to make TD visible, to help assess the principal (i.e. value) and interest (i.e. long-term

cost) of the debt, and to assist managers in making educated decisions on strategies for debt

retirement.

RELATED WORK

Past research efforts into TD have focused on building techniques that

independently identify TD through source code analysis. For instance, Gat and Heintz [60]

identified TD in a customer system using both dynamic (i.e., unit testing and code

coverage) and static (computing rule conformance, code complexity, duplication of code,

design properties) program analysis techniques.

Nugroho et al. [61]also performed static analysis to identify TD. They first

calculated lines of code, code duplication, McCabe’s cyclomatic complexity, parameter

counts, and dependency counts. After that, they assigned these metrics to risk categories to

quantify the amount of interest owed in the form of estimated maintainability cost.

 A CAST report 9 also presented the usage of static analysis as a way to identify

technical debt. The proposed approach examines the density of static analysis issues on

security, performance, robustness, and changeability of the code. The authors built a pricing

model assuming that only a percentage of the issues are actually being fixed.

9 Available at
http://docs.media.bitpipe.com/io_10x/io_102267/item_465972/whitepaper_77813451881.pdf

82

The Sonar tool10 is an open source application that has gained in popularity. It also

uses static measurements against various source code metrics and attributes to assess the

level of TD in a code base.

The approaches discussed thus far calculate TD holistically, i.e. they yield an

overall assessment of the total TD in a system, but do not point to specific problematic

parts of the code base, or to specific remedies applicable to those parts. Another approach

to TD identification, that attempts to yield more actionable information, is to use source

code analysis to identify potentially problematic parts of the code, and to use the results of

that analysis to suggest specific changes to be made to that code. Examples of such

approaches that have been partly evaluated to be valid TD indicators are code smells [62],

grime build up [56] [63] and modularity violations [55]. We discuss these techniques in

more detail in Section 4.

This works further evolves the study on these analysis techniques by asking the

question of the amount of similarity between them. If it turned out that many, or even all, of

the TD indicators point to the same code, one could propose to choose only one of the tools

when searching for TD. Alternatively, if each of the techniques selects a unique subset of

problems, the usage of multiple tools can be recommended. The relationships among

different TD identification approaches have not previously been addressed in the literature.

GOALS AND RESEARCH QUESTIONS

The objective of our research is twofold: the first goal is to compare the

similarities and differences between four code analysis techniques in terms of TD

identification. We are interested in understanding the degree of convergence and

divergence of these techniques and their associations. The second goal is to understand how

the problematic code identified by these four techniques relates to our chosen proxies for

TD interest, defect and change-proneness, as explained in Section 1. We define the goals of

our research according to the Goal Question Metric framework [16].

10 http://www.sonarsource.org/

83

− Goal 1: Characterizing the similarities and differences in the problematic

classes reported by these four different TD detection approaches, in the

context of an open source software project.

− Goal 2: Comparing these four TD detection approaches in terms of their

correlation to one subset of interest indicators, namely change-proneness

and defect-proneness, in the context of an open source project.

We deduced from the above goals the following research questions:

− R1: Which of these techniques tend to report problems in the same sets of

classes?

− R2: Which TD indicators (derived from the four TD detection techniques)

correlate with the interest indicators defect- and change-proneness?

CASE STUDY

The application studied is Apache Hadoop11. Hadoop is a software library for the

distributed processing of data across numerous computer nodes, based on the map-reduce

processing model. It provides two key services: reliable data storage using the Hadoop

Distributed File System (HDFS) and high-performance parallel data processing using a

technique called MapReduce. Data are spread and replicated differently among all the

nodes of the cluster, while operations are split so that each node works on its own piece of

data and then sends results into a unified whole.

We selected Hadoop because it is a mature project (it has been released 59 times

starting from 2 April 2006). We focused our analysis on the Java core packages of the

system (java/org.apache.hadoop.*), which includes the common utilities that support the

other Hadoop subprojects and provides access to the file systems supported by Hadoop. We

focused the analysis from release 0.2.0 to release 0.14.0 (the latest release, at the time this

paper was written, is 1.0.3). The system initially had 10.5k NCSS (non- commented source

11 http://hadoop.apache.org

84

statements) and 126 Java classes, and grew to 37k NCSS and 373 Java classes by release

0.14.0.

TD IDENTIFICATION TECHNIQUES SELECTED

We selected four main techniques for identifying technical debt in source code:

modularity violations, grime buildup, code smells, and automatic static analysis (ASA). We

introduce their basic concepts and report on our and other related past work.

Modularity Violations (tool: CLIO). In large software systems, modules represent

subsystems that are typically designed to evolve independently. During software evolution,

components that evolve together though belonging to distinct modules represent a

discrepancy. This discrepancy may be caused by side effects of a quick and dirty

implementation, or requirements may have changed such that the original designed

architecture could not easily adapt. When such discrepancies exist, the software can deviate

from its designed modular structure, which is called a modularity violation. Wong et al.

[55] have demonstrated the feasibility and utility of this approach. In their experiment using

Hadoop, they identified 231 modularity violations from 490 modification requests, of

which 152 (65%) violations were conservatively confirmed by the fact that they were either

indeed addressed in later versions, or were recognized as problems in the developers’

subsequent comments.

Design Patterns and Grime Buildup. Design patterns are popular for a number of

reasons, including but not limited to claims of easier maintainability and flexibility of

designs, reduced number of defects and faults [64], and improved architectural designs.

Software designs decay as systems, uses, and operational environments evolve, and decay

can involve design patterns. Classes that participate in design pattern realizations

accumulate grime – non-pattern-related code. Design pattern realizations can also rot, when

changes break the structural or functional integrity of a design pattern. Both grime and rot

represent forms of TD. Izurieta and Bieman [56] introduced the notion of design pattern

grime and performed a pilot study of the effects of decay on one small part of an open-

85

source system, JRefactory. They studied a small number of pattern realizations and found

that coupling increased and namespace organization became more complex due to design

pattern grime, but they did not find changes that “break” the pattern (design pattern rot).

Izurieta and Bieman [65] also examined the effects of design pattern grime on the

testability of JRefactory, a handful of patterns were examined, and they found that there are

at least two potential mechanisms that can impact testability: 1) the appearance of design

anti-patterns [66] and 2) the increases in relationships (associations, realizations, and

dependencies) that in turn increase test requirements. They also found that the majority of

grime buildup is attributable to increases in coupling.

Code Smells (tool: CodeVizard). The concept of code smells (aka bad smells) was

first introduced by Fowler [62]and describes choices in object-oriented systems that do not

comply with widely accepted principles of good object oriented design (e.g., information

hiding, encapsulation, use of inheritance). Code smells can be roughly classified into

identity, collaboration, and classification disharmonies [67]. Automatic approaches

(detection strategies [68]) have been developed to identify code smells. Schumacher et al.’s

research [54] focused on evaluating these automatic approaches with respect to their

precision and recall, and their other work [69] [70] evaluated the relationship between code

smells (e.g., god classes) and the defect and change proneness of software components.

This work showed that automatic classifiers for god classes yield high recall and precision

when studied in industrial environments. Further, in these environments, god classes were

up to 13 times more likely to be affected by defects and up to seven times more change-

prone than their non-smelly counterparts.

ASA issues (tool: FindBugs). Automatic static analysis (ASA) tools analyze source

or compiled code looking for violations of recommended programming practices (“issues”)

that might cause faults or might degrade some dimensions of software quality (e.g.,

maintainability, efficiency). Some issues can be removed through refactoring to avoid

future problems. We have analyzed in sections 2.3 and 0 the issues detected by FindBugs

on two pools of similar small programs (85 and 301 programs respectively), each of them

developed by a different student. Their purpose was to examine which issues detected by

FindBugs were related to real defects in the source code. By analyzing the changes and test

86

failures in both studies they observed that a small percentage of detected issues were related

to known defects in the code. Some of the issues identified as good/bad defect detectors by

the authors in these studies were also found in similar studies with FindBugs, both in

industry [39] and open source software [30][23]. Similar studies have also been conducted

with other tools [21] [37] and the overall finding is: a small set of ASA issues is related to

defects in the software, but the set depends on the context and type of the software.

DATA COLLECTION

For our analysis we considered 13 Hadoop releases. We ignored the very first one

(0.1.0) since CLIO’s modularity violation computation is based on the current and previous

versions. Across the 13 Hadoop releases, from 0.2.0 to 0.14.0, and all 30 indicators over

every class, the total size of our data set was 96,720 data points. Due to limitations in the

tools used for TD identification we excluded nested classes from our analysis. To

understand the threat to validity, we inspected all versions of Hadoop and found that

(depending on the version) 39-45% of all classes were nested classes. We will discuss this

threat in Section 6.

It should be noted that the range (i.e., possible values) of each indicator varies. As

shown in Table 21, TD indicators that solely express the presence of TD (e.g., the presence

of a modularity violation or a code smell on class level) map to 0 (meaning no presence) or

1 (meaning the indicator is present). This is expressed by [0,1] in Table 21. For indicators

that can be identified multiple times in a Java class (e.g. code smells on the method level

and ASA issues that can be repeatedly detected) the measure indicates how many times the

indicator was identified. Table 21 shows this as [0..N]. We measured the presence of grime

as well as the absence of design patterns. Even if we cannot be sure that the absence of

design patterns is harmful, we included this information to investigate if we can find

interesting relationships. Therefore classes not following design patterns received a value of

“1” for the indicator. We collected issues reported by FindBugs (version 1.3.9) from the

87

source code of each Hadoop version, considering all issues of any FindBugs category

(Table 21: 17-25) and priority (Table 21: 14-16).

Defect proneness measurement. To link classes with defects, for a bug that was

fixed and closed in a version v, we computed which classes were modified during the fix

change (identifiable through Subversion repository by using bug links provided in commit

comments, e.g. HADOOP-123). The linkage between source code anomalies and their

resulting defects is potentially stretched temporally over time. For example, as illustrated in

Figure 23. Three ways of computing defect proneness, a bug can be found and reported in

version 0.3.0, but may not be fixed until version 0.5.0. We thus measure the defect

proneness of a class c in version v using the following three different ways respectively:

− The number of times class c is involved in fixing bugs that were injected

in version v, that is, the version where the bugs were found and reported.

− The number of times class c is involved in fixing bugs that were resolved

in version v.

− The number of times class c is involved in fixing bugs that were alive in

version v, that is, the bugs were reported before or in version v, and were

resolved after or in version v.

Change proneness measurement. Following the work of Schumacher et al. [54],

we measure the change proneness of class c in version v as the number of repository

changes affecting class c divided by the total number of changes in the repository during

the class’ lifetime (e.g., creation to deletion date).

88

Size measurement. We chose the Number of Methods in each class as a measure of

Table 21. Indicators used in the analysis

Technical
Debt
Indicators

Modularity
Violations

[1]Presence of Modularity Violation
CLIO

[0,1]

Grime [2]Presence of Grime [0,1]

[3]Absence of Design Pattern [0,1]

Code
Smells
CodeVizard

Cl
as

s L
ev

el
 C

od
e

Sm
el

ls [4]God Class [0,1]

[5]Brain Class [0,1]

[6]Refused Parent
Bequest

[0,1]

[7]Tradition Breaker [0,1]

[8]Feature Envy [0,1]

[9]Data Class [0,1]

M
et

ho
d

Le
ve

l C
od

e
Sm

el
ls

[10]Brain Method [0..N]

[11]Intensive Coupling [0..N]

[12]Dispersed Coupling [0..N]

[13]Shotgun Surgery [0..N]

ASA Issues
FindBugs

By

Pr
io

rit
y [14]High [0..N]

[15]Medium [0..N]

[16]Low [0..N]

By
 C

at
eg

or
y

[17]Bad Practice [0..N]

[18]Correctness [0..N]

[19]Experimental [0..N]

[20]I18N
(internationalization)

[0..N]

[21]Malicious Code [0..N]

[22]Multi Thread (MT)
Correctness

[0..N]

[23]Performance [0..N]

[24]Security [0..N]

[25]Style [0..N]

Other
Metrics

Size [26]Number of Methods
Eclipse Metrics Plugin

[0..N]

Interest
Indicators

Defect
Proneness

[27]Number of bug fixes affecting this
version

[0..N]

[28]Number of bug fixes fixed in this
version

[0..N]

[29]Number of bug fixes counting
between affected and fixed in this
version

[0..N]

Change
Proneness

[30]Change Likelihood [0.0…1.0]

size.

ANALY

overlap

and their

5-step m

multidim

YSIS METHOD

In order to in

between the r

r correlation w

methodology

mensional data

− Step

indi

− Step

asso

− Step

mea

− Step

set o

− Step

mos

DOLOGY

nvestigate the t

results genera

with defect- an

that reduces

aset into a grap

p 1: Compute

cator and each

p 2: Apply sta

ociated pairs o

p 3: Combine

asure.

p 4: Combine

of aggregate m

p 5: Build vi

st strongly asso

Figure 23. T

89

two research

ated by these

nd change- pro

 the comple

ph. The metho

a set of assoc

h interest indi

atistical and s

of indicators.

the set of thre

measures fro

measures.

isualization a

ociated indica

Three ways of c

questions prop

TD detection

oneness (inter

ex set of ind

odology is illu

ciation measu

cator are relat

significance f

ee significant

om each of th

and data table

ators.

computing defe

posed in Secti

n techniques

rest indicators

dicator values

ustrated in Fig

ures to examin

ted to each oth

functions to fi

association m

he 13 Hadoop

es to provide

ect proneness

ion 3, that is,

(TD indicator

s), we designe

s on the lar

gure 24:

ne how each T

her.

filter only high

measures into o

 versions to o

insight into

the

rs),

ed a

rge,

TD

hly

one

one

the

90

To answer the first research question regarding to the overlap between the results

reported by these techniques, we examine the association measures between their respective

TD indicators. To answer the second research question regarding interest indicators, we

order the TD indicators (and the one size measure) by their level of association with the

four interest indicators.

Step1: Compute Statistical Association Measures

We identified different statistical techniques to quantify the relationship between

pairs of TD indicators in each version of Hadoop. Because there are many choices for

association measurement (e.g. Pearson correlation, conditional probability), we performed a

sensitivity analysis to investigate how the results generated from these statistic models

differ from each other. This analysis showed that different statistical analysis techniques

result in different answers: from the top 50 list of the most highly associated pairs of

indicators and metrics generated by each of the statistical analysis techniques, only three

pairs were common. Therefore we concluded that using only one single measure of

association would be inadequate because different statistic models assess association from

different perspectives that complement each other. We thus apply 4 different association

models to assess the relation between the 30 X 30 pairs of indicators. The different

association measures will be combined in one unique measure in Step 3.

In order to illustrate our methodology, we use a pair of TD indicators, Dispersed

Coupling (one type of code smell) and Performance issues (reported by FindBugs), as a

running example. The four association techniques are described below:

1. The Pearson correlation between the number of occurrences of Dispersed

Coupling and the number of occurrences of Performance issues across all

Java classes of one Hadoop version (Figure 24: Step 1, M1). Pearson

correlation is widely used in the literature on defect prediction models

[46], including the usage of ASA issues as an early indicator of defects

[23], and in maintainability prediction [57].

2. The conditional probability of a Java class having at least one occurrence

of Dispersed Coupling given that the same class has at least one

91

occurrence of Performance issue, and vice versa: P(Dispersed

Coupling│Performance), P(Performance│Dispersed Coupling) (Figure

24: Step 1, M2). The conditional Probability is used for software defects

and maintainability predictions [58] [59].

3. The chance agreement, which is the probability that a Java class holds an

occurrence of Dispersed Coupling and Performance issue at the same

time by chance. This probability is computed as:

P(Performance)*P(Dispersed Coupling)+P(No Performance)*P(No

Dispersed Coupling) (Figure 24: Step 1, M3). Chance agreement is at the

basis of Cohen’s Kappa computation [71].

4. Cohen’s Kappa, which is an inter-rater agreement between Dispersed

Coupling and Performance issues, and indicates the strength of agreement

and disagreement of two raters (e.g., TD indicators). Cohen’s Kappa is

appropriate for testing whether agreement exceeds chance levels for

binary and nominal ratings. Therefore, Dispersed Coupling and

Performance issues are in agreement if both occur at least once in the

same Java class, or if both of them are not present. In any other case, they

are in disagreement (Figure 24: Step 1, M4). Cohen’s Kappa was used

for the assessment of defect classification schemes [72] and in software

process assessment [73]. Used in conjunction with other statistical

measures, it prevents the misinterpretation of results possibly affected by

prevalence and bias.

The computation of chance agreement, conditional probability and Cohen’s Kappa

required data transformation for some measures: all metrics ranges [0..N] were reduced to

[0,1], where “1” indicates that at least one occurrence of the TD indicator was found in the

class and “0” otherwise. For example, for the Number of bug fixes (fixed) in version v, we

assign “1” if the Java class was part of at least one defect fix during the analyzed version.

The partial loss of measurement resolution is further discussed in Threats to validity

subsection.

92

For change likelihood, where the metric ranges from 0.0 to 1.0 (floating point

numbers), we investigated its empirical distribution on each version and selected a

threshold value to be used in the data transformation. This threshold was computed so as to

guarantee that, on average, only the top 25% of classes with high change likelihood

obtained a value of “1” in the data transformation, “0” otherwise. The computed threshold

was 0.01, indicating that a Java class that is changed more often than in 1 out of 100 cases

is considered change prone.

The same was done for the size metric, Number of Methods. We use a threshold of

11 to guarantee that only the top 25% of classes were considered large. The computation of

the four statistical analysis techniques produced four respective matrices shown in Figure

24: M1, M2, M3 and M4. Each of the statistical measures offers a different perspective on

the association between pairs of metrics.

The Pearson correlation indicates whether two indicators increase/decrease

together following a linear pattern. The conditional probability is useful in understanding

the direction of the association, since it indicates whether an indicator is present in a class

given that another indicator is present. The chance agreement, instead, is the probability

that two indicators are either indicating or not indicating a problem in the same class

randomly; in the following section we will see how we use this measure with the

conditional probability. Finally, the Cohen’s Kappa is useful because the agreement takes

into account not only when two indicators are present in the same class, but also when they

are not present simultaneously.

Fig

93

gure 24. Five--step analysis mmethodology

94

Step 2: Apply Significance Functions

After applying the different techniques in Step 1, the goal was to filter the more

significant associations from the less significant ones. Therefore we applied different

significance functions Ω. The significance functions map the associations between each

pair of indicators to [0,1], expressing that the pairs are strongly associated (“1”) or not

associated strongly enough (“0”). The following three formulae define the functions applied

to produce matrices M5, M6 and M7 for each of the 13 versions in Figure 24:

− Significant Pearson Correlations:

− Significant Conditional Probability: using M2 (Cond.

Probability) and M3 (Chance agreement):

− Significant Cohen’s Kappa:

The goal of the significance function Ω is to discern significant relations from

insignificant ones. Parameters T1, T2 and T3 are three specific thresholds of the respective

significance functions that we chose based on the association strength levels found in the

literature:

T1 (Correlation) = 0.60. We found two main correlation strength classifications,

Cohen [74] and Evan [75]. We adopt Evan’s strong definition because it is stricter than

Cohen’s definition.

T2 (Conditional probability) = 0.60. To our knowledge, existing literature does

not provide a commonly accepted and generally applicable threshold for conditional

probability. Therefore, we calculated the distribution of conditional probabilities in the

different versions and we selected the threshold 0.60, which on average filtered out 80% of

Ω(M1i,j)= ൜1, if(M1i,j)≥T1 ∧ p-val ≤0.05 ∧ (i≠j)
0, &otherwise

Ω(M2i,j ,M3i,j)= ൜1, if(M2i,j)>(M3i,j) ∧ (M2i,j)≥T2 ∧ (i≠j)
0, &otherwise

Ω(M4i,j)= ൜1, if(M4i,j)>T3 ∧ (i≠j)
0, &otherwise

95

all data. Moreover, since this criterion is merged with the criterion conditional probability >

chance agreement, we consider such threshold high enough to discriminate significant data.

T3 (Cohen’s Kappa) = 0.60. Many tables of Kappa’s strength of agreement can be

found in the literature, the most relevant of which are [76] [77] [71] . We adopt a threshold

value of 0.60. Thus, a constraint > 0.60 corresponds to a “good”/”substantial” agreement in

all the proposed ranks.

Step 3: Combine Statistical Association Measures

The next step is an aggregation of the statistical association measures. For each

cell of a matrix (a pair of indicators), we compute the sum over all three matrices M5, M6,

and M7. The resulting matrix (displayed as M8 in Figure 24) contains the significance

score for each pair and version that ranges from 0 (not significant in any of the three

methods) to 3 (significant in all three methods).

Step 4: Combine Versions

The fourth and final computation step of the process is the aggregation of the

significance score over versions. For every cell in Matrix M8, we compute the mean over

the 13 versions of Hadoop, resulting in a single matrix (M9 in Figure 24).

Step 5: Visualize Most Significant Outcomes

In the final step, we visualize the pairs of TD indicators with most significant

associations as a graph (Figure 25) and a list of TD indicators most related to interest

indicators (Table 22).

RESULTS

We made the following observations from the result. First, the value of TD

indicators increases together with the size of Hadoop. The sum of all TD indicators

increases in the evolution from release 0.2.0 to release 0.14.0. FindBugs issues ranged from

96

307 to 486 but the average number of issues per class does not expose the same monotone

increasing trend, and the range of the average number of issues per class is [1.30-1.76].

Code smells in the last release (352) are more than twofold the number of code

smells in the first release (143), and the average of code smells per class is [0.78-1.01].

Modularity violations have the sharpest increase: they were 8 in the first analyzed release

and 37 in the last one (reaching a maximum of 38 in v. 0.13.0). The average number of

Modularity violations per class ranged from 0.04 to 0.11. Moreover, we detected in each

version two realizations of Singleton design pattern, two realizations of State pattern and

six of Abstract factory. However, none of the classes that are participating in these design

patterns was affected by grime.

We do not observe a trend in any of the interest indicators. The sum of Bug fixes

collected with the defect proneness strategy “inject” ranges from a minimum of 16 (v 0.8.0)

to a maximum of 102 (v 0.3.0), while the range of the average number per class is [0.06-

0.53]. Version 0.8.0 has no Bug fixes (fixed) and version 0.7.0 is the version with the

largest number (590). The average of all classes per version is in the range [0-2.63]. The

ranges of Bug fixes (between) are [162-675] and [0.55-3.01], respectively for their total by

version and average of all classes by version. Finally, the Change likelihood range is

[0.006-0.017] per class.

Figure 25 shows the resulting directional graph of the TD pairs and interest

indicators that were on average significant in more than one statistical measure (overall

mean score in Matrix M9 > 1). The nodes of the graph show the indicators. The color (or

shade) of the node indicates which TD indicators were derived from the same TD detection

technique. The directional edges are further labeled by their association strength (ranging

from 1 to 3). And lastly, the direction indicates the conditional properties inherited from the

conditional probability metric. For example, Modularity violations and Bug fixes are

associated, meaning that if a class has a Modularity violation, then it is also likely that such

a class will have Bug fixes. However, the reverse statement (i.e. classes containing Bug

fixes are not as likely to have Modularity violations at the same time) is not necessarily

true, and does not show in the graph.

97

Figure 25 represents the strongest associations found in our analysis. The graph

contains 24 relationships (edges), one of them between TD indicators (nodes) belonging to

different techniques (colors or shades), three of them between TD indicators and interest

indicators or size, and the remaining 20 are among TD indicators detected by the same

technique or among the interest indicators.

As for correlations between TD indicators and interest indicators, Dispersed

Coupling points to classes that are more defect prone. Modularity Violations do not

strongly co-occur with code smells or ASA issues but are likely to point to defect and

change prone classes.

Seven out of the twelve ASA/FindBugs issue types appear in the graph. The

strongest associations (average score ≥ 2) are between Style and Low and Bad Practice and

Medium. We also observe an association between a FindBugs issue (High) and a Code

Smell (Intensive Coupling). Four out of ten code smells show up in the graph. Brain Class

and Brain Method code smells are related in both directions, as well as Dispersed and

Intensive Coupling (but only one direction).

Lastly, defect prone classes tend to be also change prone, and vice-versa. The size

metric Number of Methods does not shoot up in the graph indicating that neither the TD

indicators nor the interest indicators are very strongly associated with size.

RQ 1: Which techniques tend to report problems in the same sets of classes?

The results shown in Figure 25 lead to our first finding in response to RQ1:

Different TD techniques point to different classes and therefore to different problems.

The only arc in Figure 25 that relates two different types of TD identification

approaches is Intensive Coupling and FindBugs High priority issues. A method exhibits

intensive coupling if it “calls too many methods from a few unrelated classes” [67].

FindBugs High priority issues are those issues thought to have higher probability to detect

serious problems in the code. The direction of the association indicates that classes with

many High priority issues have methods affected by Intensive Coupling. A possible

explanation for this relation is that both of these indicators point, more than any others, to

generally poorly designed code.

98

Looking at the associations inside the boundaries of the techniques, we observe a

characteristic of all FindBugs issues in the graph: significant relationships are only revealed

between priority and type categories, which are not independent indicators and are

constructed by the FindBugs authors12. Therefore this relationship is not a surprising result.

A follow up analysis revealed that 81-87% (depending on version) of all classes contain

FindBugs issues of only one single category.

Shifting the focus of the results analysis to the code smells group, we observe three

associations between particular code smells: Brain Class → Brain Method (2.0), Brain

Method → Brain Class (1.15) and Dispersed Coupling → Intensive Coupling (1.23). The

first relationship is stronger in the direction → Brain Method and it indicates that Brain

classes are more prone to contain Brain methods. This observation can be explained by the

way Brain Class code smells are detected using Marinescu’s detection strategy [67] [68]:

the Brain Class detection requires that the inspected class contains at least one Brain

Method. Therefore the conditional probability as defined in Section IV of P(Brain Method |

Brain Class) is always 1.0. The second relationship between code smells is Dispersed

Coupling → Intensive Coupling (1.20). While the latter indicates that a class has methods

that invoke many functions of a few other classes, the former shows classes having

methods invoking functions of many other classes. Their association demonstrates that

classes in Hadoop having the former of the coupling smells also have the latter smell,

which intensifies the problem of coupling. No other relationship within different code

smells was found in this analysis.

We also observe that modularity violations are not strongly related to any other

indicator. This confirms and validates one of the findings reported in Wong et al [55], who

found that 40% of modularity violations in Hadoop are not defined as code smells and are

not detectable using existing approaches.

To conclude, the 4 TD detection approaches (modularity violation, code smells,

grime, and ASA issues) have only very little overlap and are therefore pointing to different

problems. Within the broad approaches, relations are stronger (as one would expect).

12 Each bug pattern is assigned a priority and category by the FindBugs authors. Some categories are
biased towards single priorities: e.g., correctness is considered more often to be of high priority.

99

However the data also shows that many code smells and some ASA issue types are not

inter-related (i.e. the ones not showing in Figure 25) indicating that even at a lower level

indicators point to different problem classes.

RQ2: Which TD indicators correlate with the interest indicators defect- and

change-proneness?

Turning to RQ2, our major finding concerning defect-proneness is summarized as

follows: The dispersed coupling code smell and modularity violations are located in the

classes that are more defect-prone.

For each TD indicator (Column 1), Table 22 reports the average score obtained in

matrix M9 for the association between the indicator and defect proneness (columns 2-4)

and change proneness (column 5). TD indicators are listed in the same order as Table 21,

but those with average score less than or equal to 0.3 in all associations with interest

indicators are not shown.

Figure 25 shows that no single FindBugs indicator has a very strong relationship

(>1) with Bug fixes. However, when investigating less correlated indicators we find the

strongest FindBugs indicator to be Multithread Correctness having a borderline value of 1.0

(Table II). This category is very specific but ties very well into the studied application;

Hadoop has to deal with both distributed data storage and computations. Previous work

[17] [33] [38] reported that only a small percentage of FindBugs issues are actually related

to bug fixes. This is supported by our results and a follow up analysis: Multithread

Correctness issues make up only 5.3% of the total of FindBugs issues found in Hadoop.

Another strong relationship with Bug fixes (in two approaches, between and fixed)

involves the Dispersed Coupling code smell. In a related work [78], Dispersed Coupling

was highly correlated with bug fixes only when the prevalence of this smell increased

during the evolution of the software. We observe a border value (1.0) also for one other

code smell: the God Class indicator has an average score of 1.0. Zazworka et al. [69]

reported in their previous work that in an industrial system god classes contained up to 13

times more defects than non-god classes.

100

The last indicator strongly related to Bug fixes (between) is Modularity violations,

which are located in the same classes where the more bug fixes are found (but not in all of

them).

Although defect prediction is not a goal of this work, it is useful to look at

measures of precision and recall to further describe the relationships we’ve found. We used

the two TD indicators most strongly related to bug fixes and the two border value indicators

to predict, in each version, classes with at least one bug fix (strategy between). We observe

in Table III high precision and low recall values. Each of the four indicators points out a

small subset of defect-prone classes very well. When using all four indicators together

recall can be raised to 0.33 by trading off some precision.

The second part of RQ2 was concerned with change proneness. The following

summarizes this result. Modularity violations point to change prone classes.

Change-prone classes might indicate maintenance problems (e.g., classes that have

to be changed unusually often are candidates for refactoring). We labeled on average the

top 25% most frequently changed classes as “change-prone.”

The results indicate that Modularity Violations are strongly related to change

likelihood. Table 22 shows that the highest average scores are Modularity violations (1.38),

Dispersed coupling (0.92) and God Classes (0.85). This fits expectations since all of the

three approaches claim to identify maintenance problems. Modularity violations and

Dispersed coupling point to classes that have collaboration disharmonies. The God class

code smell identifies classes that implement multiple responsibilities and should be

refactored (e.g. split up into multiple classes).

Further, the relation between defect and change proneness shows that these issues

are interconnected. Explanations for the phenomena can be that maintenance problems lead

to less correct code, or that many quick-and-dirty bug fixes lead to less maintainable code.

Finally, we point out that a large set of TD indicators (i.e. 9 out of 25) do not show

significant associations with defect or change proneness. This proportion suggests that

these indicators either point to different classes of quality issues (e.g. FindBugs type

Performance) or to none at all. Therefore these results can be further used to tailor TD

indicators towards quality attributes of interest. If one is most interested in defect and

101

change proneness issues in Hadoop (or similar software) we suggest analyzing for

dispersed coupling and modularity violations.

Table 22. Association of TD indicators with interest indicators

TD

Indicator

Bug
fixes

(between)

Bug
fixes

(inject)

Bug
fixes

(fixed)

Change
likeli-
hood

M
od

V

io
l Modularity

violations
1.23 0.23 0.54 1.38

C
od

e
S

m
el

ls

God Class 1.00 0.23 0.77 0.85

Brain Class 0.62 0.23 0.46 0.62

Tradition
Breaker

0.69 0.31 0.38 0.69

Feature
Envy

0.54 0.15 0.31 0.15

Brain
Method

0.77 0.23 0.54 0.46

Intensive
Coupling

0.54 0.00 0.08 0.15

Dispersed
Coupling

1.31 0.23 0.54 0.92

Shotgun
Surgery

0.31 0.00 0.08 0.08

F
in

dB
ug

s
is

su
es

High 0.92 0.08 0.46 0.62

MT
Correctness

1.00 0.08 0.46 0.69

Correctness 0.92 0.15 0.46 0.62

Performance 0.31 0.00 0.08 0.08

Style 0.31 0.00 0.08 0.38

S
iz

e Number of
Methods

0.62 0.00 0.08 0.08

102

THREATS TO VALIDITY

We list the threats to the validity and generalizability of the study following the

structure proposed by Wohlin et al. [7], who identify four categories: construct, internal,

conclusion and external threats.

A first conclusion threat concerns the impact of thresholds T1, T2 and T3 applied

on Step 2 on the results. We documented the choice of thresholds based on values discussed

and adopted in the literature, and we adopted higher values to decrease the level of

uncertainty. The collection and aggregation of different statistical measures also lowers the

risk associated with this threat.

A further statistical point of discussion is the loss of measurement resolution in

data transformation from ranges [0..N] to the range [0,1]. The transformation was required

Figure 25. Graph of top ranked pairs (average score > 1)

to compu

investiga

Methods

least one

distribut

90% of t

size. Our

the curre

file over

simply li

that a lin

threat (c

other siz

with Tot

and Tota

ute Cohen’s K

ated distributio

s we decide on

e occurrence a

ion that revea

the classes.

Another conc

r choice was b

ent study. show

r all versions. T

inear, e.g. a cl

near normaliza

Moreover, th

construct). W

ze metrics in th

tal Number of

al Number of

Kappa and the

ons carefully

n a threshold o

as criterion for

aled that TD an

clusion threat

based on past

ws a correlatio

The 3rd order

lass twice as l

ation by numb

he choice of t

e examined w

he different H

f Statements, T

Files: 0.9958

Figure 26. Co

103

conditional p

to find reason

of 11 for a top

r transformatio

nd interest ind

is derived by

experiences [

on plot betwe

r polynomial t

arge is not tw

ber of methods

this size metr

whether the T

Hadoop version

Total Number

, 0.9950 and

orrelation plot

probability. To

nable threshold

p 25% cutoff).

on was driven

dicators were

the decision t

69] and from

en size and nu

trend line show

wice as defect-p

s is not requir

ric rather than

Total Number

ns. We obtain

r of Lines of C

0.9711 respec

t for size vs def

o limit this thr

ds (e.g. for Nu

 Moreover, th

n by a prelimin

equal to zero

to not normali

the analysis o

umber of defec

ws that the cor

prone. This an

ed.

n other size m

r of Methods

ned almost per

Code (that inc

ctively. In add

fect proneness

reat we

umber of

he choice of at

nary analysis

on average in

ize measures b

of the results o

ect fixes for ea

rrelation is no

nalysis sugges

metrics is also

s correlates w

rfect correlatio

clude commen

dition to that,

t

of

n

by

of

ach

ot

sts

o a

with

ons

nts)

we

104

checked, for each version, the correlation between the Number of Methods and two other

metrics, i.e. the Number of Lines of Code and the Number of Statements in Java classes.

We also obtained at this granularity very high correlation, respectively 0.8975 and 0.8780.

We conclude that using Number of Methods as measure of class size is equivalent to lines

of code and did not affect results.

A further construct threat is the selection of outer classes, ignoring nested classes.

At this point in time, the tools used did not allow the collection of all metrics for nested

classes. Therefore the validity scope of our results is limited to outer classes only.

We believe that the findings of this work apply only in the context analyzed

(external threat). They may apply in similar applications, but we are not aware of any other

published results that can be compared to ours. However, although results cannot be

generalized, they contribute to begin composing the TD landscape.

105

3.3. A CASE STUDY OF EFFECTIVELY IDENTIFYING

TECHNICAL DEBT

The TD metaphor has facilitated discussion among practitioners and researchers

by providing a familiar framework and vocabulary from the financial domain. Since the

metaphor appears to be sound and intuitively understandable by all stakeholders involved in

the software development process, it has potential to become a truly universal language for

communicating technical tradeoffs.

Our vision, however, goes beyond facilitating communication, to the development

of a set of such tools, inspired by the technical debt metaphor, which stakeholders can use

in today’s software projects. Identification is essential to transform the technical debt in a

project into a manageable body that would allow one, such as with a portfolio of financial

debt, to better control the current debt situation. Technical debt identification approaches

broadly consist of methods to elicit technical debt instances from humans (i.e. developers

and other stakeholders), and methods that rely on automated tools of various kinds to detect

potential debt in the source code. Human, manual approaches are likely to be more time-

consuming, but have two advantages (at least in theory) over automated approaches. One is

that they might be more accurate, i.e. more likely to identify technical debt that is most

significant, while automated analyses may reveal many anomalies that turn out to be

unimportant. The other advantage is that human stakeholders might be able to provide

additional important contextual information related to each instance of technical debt (e.g.

effort estimates, impact, decision rationale, etc.) that is difficult or even impossible to glean

from analysis tools.

The first contribution of our work is the evaluation of human elicitation of

technical debt. We propose and evaluate a technical debt backlog [79] that can be used to

capture, store, and communicate essential properties of technical debt that can feed into

further decision making processes about debt repayment. Besides the template, our case

study gives some insight into the dynamics of eliciting technical debt from a team of

developers, all familiar with different aspects of the system being analyzed.

106

As a second contribution we evaluate the utility of tool support for technical debt

identification. Some recent research has addressed the issue of how close automated

approaches can get to the accuracy and informativeness of manual technical debt

identification. Some of these studies have indicated that it is possible to identify certain

classes of potential technical debt (in particular design debt) with computer-assisted

methods [54] [80]. Moreover, they have demonstrated that detection approaches can

succeed in finding issues that are of value to developers [54]. However, despite the fact that

these approaches point to system code fragments that need improvement, it is not clear yet

if they point to the most important technical debt, from software project stakeholders’ point

of view. Based on the current state-of-the-art, we studied three automated approaches (code

smells, automated static analysis issues, and collection of code metrics), and how their

output compares to technical debt that is elicited from humans. This understanding can help

address questions such about how tools can best be used, instead of or in addition to manual

approaches, in the identification of technical debt.

Figure 27. The Technical debt Landscape

107

This study, and others like it, will help evolve the technical debt landscape, as

conceptually outlined in Figure 27 [52]. The landscape lays out the different types and

flavors of technical debt that exist in real software projects with respect to their importance

and overlaps, and how those types are best identified by tools and other methods. Such an

evolved landscape is essential to achieve our vision of building an effective toolkit for

identifying, quantifying, and managing technical debt.

BACKGROUND AND RELATED WORK

According to Seaman and Guo [79], the management of technical debt can center

on a technical debt list, which is similar to a task backlog. The backlog contains technical

debt items (in the following simply referred to as items), each of which represents a task

that was left undone, but that runs a risk of causing future problems if not completed. Each

item includes a description of what part of the system the debt item is related to, why that

task needs to be done, and estimates of the technical debt’s principal and interest, as well as

some other attributes, as shown in Table 23.

The principal refers to the cost to fully eliminate the debt, i.e. to completely repair

the technical imperfection. Depending on the type of technical debt this can translate into

different kind of activities, such as, adding missing documentation, refactor code that is

hard to maintain, or maintaining a set of regression tests to align with the code and

requirements. The cost of techincal debt repair might be in some cases understood better

than in others. For example, adding missing documentation might be more straight forward

to estimate than a more complex code refactoring. Seaman and Guo propose to initially

estimate the principal on a rough ordinal scale from low to medium to high, that allows to

some extend to understand effort and can contribute in iteration planning. To further help

estimating principal, historical effort data can be used to make a more accurate and reliable

estimation beyond the initial high/medium/low assessment. For example, if a debt item is a

set of classes that need to be refactored, the historical cost of modification of those classes

can be used as the future modification cost (principal of the debt item) estimation.

108

The second main compound of technical debt is interest, which is composed of

two parts: (1) the interest probability is the probability that the debt, if not repaid, will make

other work more expensive over a given period of time or a release; (2) the interest amount

is an estimate of the amount of extra work that will be needed if this debt item is not repaid.

Interest probability can be estimated using historical data like usage and defect. In

addition, it is also important to consider time variable because probability varies over the

time. For example, the probability that a particular module contains hidden defects can be

estimated based on the past defect profile of that module. If that module will be deployed

soon to the user, the interest probability will be higher because the chance of those defects

be identified is bigger.

Table 23. The Technical Debt BackLog

ID Technical debt identification number

Responsible Person or role who should fix this TD item

Type design, documentation, defect, testing, or
other type of debt

Location List of files/classes/methods or
documents/pages involved

Description Describes the anomaly and possible impacts
on future maintenance

Estimated
principal

How much work is required to pay off this
TD item on a three point scale:
High/Medium/Low

Estimated
interest
amount

How much extra work will need to be
performed in the future if this TD item is not
paid off now on a three point scale:
High/Medium/Low

Estimated
interest
probability

How likely is it that this item, if not paid off,
will cause extra work to be necessary in the
future on a three point scale:
High/Medium/Low

Intentional? Yes/No/Don’t Know

109

Finally, interest amount can also be estimated using historical data. In addition to

the financial properties of technical debt, several properties that support decisions on

repayment are worth capturing:

1. The type of debt can be helpful to tailor debt payment to project critical

quality characteristics. For example, known defect debt will be differently

perceived in life critical software applications. Currently known types,

besides latent defect debt, are: design debt (an imperfection of the

software’s design or architecture negatively affecting future

maintenance), documentation debt (missing, outdated, or incomplete

documentation), and testing debt (missing test cases, test cases that are

not executed, or missing test plans). Studies like these will contribute to a

more complete set of types of debt.

2. Was the original decision to go into debt made intentional or

unintentional? This information can help to understand how explicit debt

and technical debt decisions are managed in a project. In an ideal case

any decision to incur debt is made intentionally to reduce the risk of

surprises caused by unintentional, potentially even unknown debt.

3. Who is responsible for fixing the technical debt. This information is

important to understand the basis on which principal and interest was

assessed. For example, the effort involved in eliminating debt might

depend on the developer who originally designed a piece of code.

4. Where is the technical debt located? This information is important to

understand impact on product, relationships between items, and ripple

effects in source code when repaying the debt. For example, debt might

be cheap to eliminate but resist in parts of a software system that are risky

to modify. Or, several items might point to the same parts of code and

fixing this code might eliminate multiple items at the same time.

The process of managing technical debt using this approach starts with detecting

technical debt items to construct the technical debt list. The next step is to measure the debt

110

items on the list by estimating the principal, interest amount and interest probability. Then

the debt items are monitored and decisions can be made on when and what debt items

should be paid or deferred.

In this work, we are focused on the first step of this process: TD Identification. We

can use different strategies to find TD items for each TD type. Two automated strategies

that have been proposed to support the identification of technical debt in software projects

are identification of code smells and issues raised by automatic static code analysis tools,

aka ASA issues.

Past studies have shown that some code smells are correlated with defect- and

change-proneness [69]. In this study, we use CodeVizard [81] to detect a set of 10 code

smells as proposed in [67].

As far ASA, also for this study we selected FindBugs.

In addition to code smells and issues, in this study we are also interested in

collecting basic structural code metrics for size and complexity to study whether any

relationship with TD items exists.

CONTEXT OF THE STUDY

The study was conducted at Kali Software, a small software development

company located in Rio de Janeiro, Brazil, that develops primarily web applications written

in Java and based on the MVC framework. The project we studied consisted of a small

application over 25K non-commented lines of code. It is a database-driven web application

for the sea transportation domain. It has undergone a full product lifecycle (elicitation,

design, implementation, deployment, and maintenance). The project team is composed of

five professionals: two developers, one maintainer, one tester, and one project manager who

also plays the role of the requirements analyst.

111

GOAL AND RESEARCH QUESTIONS

The goal of the research is to evaluate the human elicitation of technical debt ad

how it relates with the output of tools for technical debt identification.

The study’s research questions are:

(RQ1) Do tools output correspond to technical debt from a developer

perspective?

(RQ2) How much do different developers technical debt items overlap?

(RQ3) How hard is the technical debt item report template to fill in?

Given the exploratory nature of this case study and the small amount of TD items

collected (21), we preferred to answer the research questions in a qualitative way rather

than building hypotheses and test them.

PROCEDURE AND DATA COLLECTION

The study has been implemented with two phases: (1) Training on Technical Debt

and (2) Collection of Technical Debt Items.

Phase 1: Training on Technical Debt

For the first phase, the development team has been trained on technical debt theory

using a PowerPoint presentation followed by an opportunity for Q&A. Given to practical

constraints, the presentation was done via Skype. All the material was in Portuguese since

this is the natural language of the development team.

During the training, only abstract technical debt items have been used as examples

(for instance: “technical debt items on” house repair or car repair) to avoid bias on

identifying technical debt items during the second phase of the study.

Phase 2: Collect Technical Debt Items

112

The second phase was composed of two parallel activities: manual and automatic

TD identification, i.e. collecting TD items from the development team and collecting the

output of tools analysis on the source code.

For the manual identification of TD, the development team (project manager,

developers, and testers) has been asked to report technical debt items individually. For this,

we provided the team components with a short questionnaire to both report the TD items

through the Technical Debt back Log (question 1) and provide information about the

difficulty of documenting debt items (questions from 2 to 5). The respondents were asked

to document up to five of the most pressing technical debt items they knew of in the current

version of the software.

The questions are the following ones:

1. If you were given a week to work on this application, and were

told not to add any new features or fix any bugs, but only to

address Technical Debt (i.e. make it more maintainable for the

future), what would you spend your time on?

2. How difficult was it to identify TD items?

3. How difficult was it to report TD items (i.e. fill in the template)?

4. How much effort did you need to identify and document all the

TD items?

5. Which are the most difficult fields to fill in / which are the least

difficult ones?

All answers were given as free text.

In parallel to the questionnaire, we applied the CodeVizard and FindBugs tools to

the latest version of the subject project source code, in order to identify code smells and

ASA issues. The data described, for each file (i.e. class) in the code base, how many of

each type of code smell were identified, and how many of each type of ASA issue were

present. Each FindBugs issue has a category, (e.g., Performance, Correctness, etc.), and a

priority from 1 (highest) to 3 (lowest).

113

As a result of this analysis, a list of CV and FindBugs results that agree and that

disagree (are not mentioned) with the survey results is created and analyzed.

Regarding the structural metrics, we selected and computed for each file the

following ones: Lines of Code, McCabe’s Cyclomatic Complexity, Density of Comments,

and Sum of Maximum Nesting of all Methods in a Class.

Lines of Code and McCabe’s Cyclomatic Complexity are widely used in the

literature of defect and maintainability prediction (e.g., [46] , [59]). Density of Comments

was selected to study whether highly commented code might have a relationship with

technical debt, while Max Nesting measures complexity in depth (the higher is the nesting,

the more complex is the code).

The metrics were computed with ad-hoc scripts/tools.

RESULTS

Results in Figure 28 show how the 21 technical debt items identified by the

software team, each represented as a colored box, were distributed over project roles and

types of debt.

As the legend indicates, each box has three faces, corresponding to principal

(front), interest probability (right side) and interest amount (up). Each face can be green,

yellow or red with respect to the estimation of the team member (respectively low, medium

and high). An “i” on the front face indicates whether the debt was intentionally introduced

or not.

Figure 29 shows the results of automated identification approaches (FindBugs,

Code Smells, Metrics) compared to the items reported by the development team. The

boxes refer to the same elicited technical debt items as are shown in Figure 28. An S on

the front face shows which technical debt items were given a location by the subjects that

pointed to source code.

For each automatic approach, we pre-filtered the results and we choose only the

best predictors of technical debt: FindBugs Priority 1 issues (highest priority), MAX

114

nesting for metrics, and Intensive Coupling for code smells. For every indicator, the top

10% cut off is considered in Figure 29. The top 10% cutoff value means that a human

would have to inspect only the top 10% of all source code files with respect to the tool

output (in this project 30 out of 303 files) to catch all files associated with technical debt.

The answers to the research questions follow.

RQ 1-Do tools output correspond to technical debt from a developer perspective?

We observe in Figure 29 that the three automated approaches (code smells, ASA,

and code metrics) do about equally well in identifying defect debt. By selecting the three

best predictors for defect debt as shown in Figure 29 (i.e., Max Nesting, Intensive

Coupling, and High Priority FindBugs issues), and looking at the top 10% of files for each

of the predictors, permitted to capture all affected source code components.

On the contrary, only five out of twelve reported items of type documentation

debt, testing debt, and usability debt were related to source code files, the remaining seven

were related to artifacts (e.g. requirements documents and test plans) other than source

code. The five TD items located on source code are design debt, one is located to a source

file identified by all automatic approaches, and the last one only to Intensive Coupling top

10% and FindBugs Priority 1 top 10%.

For design debt, automated approaches capture about half of the technical debt

items, although ASA issues and code smells identify more than traditional code metrics.

Summarizing, these results lead to answer RQ1 in the following way: tools can

support the identification of defect debt in this project, but not other types of debt that were

found by developers.

115

Figure 28. Results of the human elicitation of TD items

116

Figure 29. Results of the tools compared to human elicitation.

117

RQ2-How much do different developers technical debt items overlap?

Only one technical debt item was reported by two different stakeholders (the

manager and one developer). None of the remaining 19 items were reported by more than

one stakeholder. This result indicates that, in this project, technical debt knowledge is

dispersed and perceived differently by different stakeholders. The software tester reported

the widest range of technical debt types including one previously unknown type, usability

debt, which in this case had to do with the lack of a common user interface template.

RQ 3-How hard is the technical debt item report template to fill in?

The five subjects of the study reported that it took between 50 minutes and 2 hours

to identify and document the technical debt items (average of 19 minutes per item).

Answers about difficulty of the task ranged from “easy” to “difficult/high” (all answers

were given as free text). Subjects agreed that the fields principal, interest amount, and

interest probability were the most difficult to fill in, although we did not ask for estimates

beyond high, medium, and low. On the contrary, location, type, and responsible were

commonly noted as the least difficult fields. These results indicate that, in this project, the

initial elicitation of technical debt items could be done in reasonable time, but that the key

financial parameters of technical debt were difficult to estimate and might require better

process or tool support in future.

118

DISCUSSION

Results of research questions showed that in the project studied:

− the tools used could properly identify files affected by defect debt but no

other types of debt identified by developers in other artifacts;

− different stakeholders identified different debt;

− the initial elicitation of technical debt items could be done in reasonable

time, but that the key financial parameters of technical debt were difficult

to estimate;

Some additional observations, beyond or complementary to the scope of the

research questions, are possible from the data collected.

The first observation is that the majority of items reported falls into the defect debt

category. This indicates that known defects are of concern to the development team of this

project.

Secondly, the colors of the TD items, indicating principal, interest amount, and

interest probability are rather equally distributed among the different type of debts. This

suggests that debt characteristics are not tied to the type of debt, i.e. no type of debt has

noticeably higher overall interest or principal.

Thirdly, we find intentionally earned debt in almost every category, except

usability. This is especially interesting for defect debt. Many of the defect debt items were

requirements that were not fully implemented. The intentionality of these items indicates

that a decision was made to not fully implement those requirements, most likely due to time

constraints, which makes these instances conceptually different from defects caused by

unintentional programming mistakes.

Further, many TD items could not have been found by the tools or metrics since

the artifacts they were located are not included in the static code analysis. This suggests that

a focus on source code as the single source of technical debt is too narrow, as developers

reported a significant number of such items among their most important. Future studies

might consider including or proposing tools for other kinds of development artifacts

119

affected by technical debt. Finally, we think that the figure and color coding hints at how

this information can be further used to manage debt and make clearer decisions on which

debt to pay. For example, items that have generally a low principal (e.g. green principal),

but yellow or red interest characteristics are good candidates for paying off first, since their

return on investment is more favorable than for other items. This idea of a cost/benefit

decision approach has been previously proposed and discussed in [82].

 THREATS TO VALIDITY

As with any case study, especially of a small project such as this one, threats to

external validity are significant. We accept these threats, and attempt to trade off breadth

for depth, by doing a thorough analysis of a small case, yielding deeper insights that would

not have been possible in a much larger sample.

In Figure 29, we chose the code smell, ASA category, and code metric that were

the best predictors of technical debt. In practice, however, these choices cannot be made a

priori. Our motivation for this approach was to determine simply if any of the automated

approaches were related to the technical debt elicited from developers. Further work is

needed to determine whether the choices we have made hold in all situations.

An important construct threat derives from the following assumption made in the

design of this study: we assumed that the perceptions of software developers about the

technical debt in their code can serve as a “ground truth” against which other types of

technical debt identification can usefully be compared. However, the ultimate and

authoritative “ground truth” for studies of technical debt would be a measure based on

future maintenance effort associated with technical debt items. That is, a “real” technical

debt item is one that leads to higher maintenance effort than would have been incurred if

the debt did not exist. However, measuring “real” technical debt in this way was not

possible in this study, nor is it in many studies. For the study in this paper, the assumption

we have made represents a threat to construct validity in the sense that the technical debt

reported by the developers might not lead to future increases in maintenance cost.

120

CONCLUSIONS AND CONTRIBUTIONS

We have conducted two empirical studies to understand how ASA impact

maintainability in terms of Technical Debt.

We conducted an inductive study within a Brazilian software company, in which

we compared ASA and Code Smells with the manual elicitation of Technical Debt.

We have presented and evaluated how the technical debt backlog can be populated

by developers through a common technical debt template, and how existing tool approaches

can help to identify certain types of debt. We have further shown that different stakeholders

know about different debt in their project, indicating that technical debt elicitation should

include a range of project team members. Aggregation, not consensus, would appear to be

the most effective approach to combining the input from different team members. In

addition, three different automated approaches - code smells, ASA issues, and traditional

code metrics - did well in pointing to source code files with defect debt, and also could

point to a partial set of files with design debt.

We encourage practitioners to use the proposed template in their projects and to

share results and experiences (e.g. at www.technicaldebt.umbc.edu). It will require

evidence from a variety of environments to build a full picture of how different technical

debt identification approaches interact, overlap, and are (or are not) synergistic. This

evidence is necessary to further refine and to bring into focus the technical debt landscape.

A first step towards defining the TD landscape was done in the analysis of 13

versions of the Hadoop projects, in which we combined four different TD identification

techniques: code smells, ASA, modularity violations and grime. We computed the

association of these indicators with two TD interest indicators: change and defect

proneness.

The main findings of this study are:

121

− Different TD techniques point to different classes and therefore to

different problems. There are very few overlaps among the results

reported by these techniques.

− Dispersed coupling, god classes, modularity violations and multithread

correctness issues are located in classes with higher defect-proneness.

− Modularity violations are strongly associated with change proneness.

Our results indicate that the issues raised by the different code analysis techniques

are in different software classes. Moreover, only a subset of the problematic issue types

identified by these techniques is shown to be more defective or change prone. This is

consistent with the result of earlier work where these techniques were applied

independently ([33] [38] [69] [70]).

These findings contribute to building an initial picture of the TD landscape, where

TD techniques are loosely overlapping and only a subset of them is strongly associated to

software components’ defect and change proneness.

Implications for Practice

In practice, results indicate that multiple technical debt indicators should be used

instead of only one of the investigated tools. As recommendation to practitioners, these

initial results evidently show that different tools point to different problems in a code base.

The use of a single tool or single indicator (e.g. a single code smells) will only in rare cases

point all project important technical debt issues. It also shows that within the set of selected

approaches none supersede another, making none of them dispensable. In the current state

of research we cannot yet give a more complete recommendation on which indicators are

best for signalling specific quality shortcomings, however, our results give some

preliminary advice on which indicators to start with when looking for TD related to defects

and maintenance bottlenecks, namely: Modularity Violations, God Class, Dispersed

Coupling, and MT Correctness issues.

Implications for Research

122

Since results indicate that there might not be a project independent one-size-fits-all

tool to detect technical debt, but rather a tailoring process to the right subset of indicators

required, future research should be concerned about investigating and showing connections

between TD techniques, types of technical debt, effect and tailoring towards project

specific software quality characteristics. Future work should also investigate other TD

indicators when they become available to broaden the landscape.

As more specific advice for future research directions, we recommend to extend

the interest indicators towards a broader range of software quality aspects, besides defect

and change-proneness as investigated here. Further, we recommend to extend this type of

quantitative study with qualitative insights, e.g. from practitioners that investigate if the

studied approaches point to the most important kinds of technical debt.

123

4 PERFORMANCE EFFICIENCY

4.1. DEFINITIONS

Performance efficiency is “the performance relative to the amount of resources

used under stated conditions. Resources can include other software products, the software

and hardware configuration of the system, and materials (e.g. print paper, storage media)”.

Performance efficiency is composed of two sub-characteristics:

− Time behaviour: “degree to which the response and processing times and

throughput rates of a product or system, when performing its functions,

meet requirements”

− Resource utilization: “degree to which the amounts and types of resources

used by a product or system, when performing its functions, meet

requirements”.

We focused our analysis on Time behaviour, and we assessed whether refactoring

the code to remove ASA issues improve the processing times of software functions.

We performed two studies: a pilot study in laboratory settings, and an experiment

in industrial settings.

124

4.2. QUANTITATIVE ASSESSMENT OF THE IMPACT OF

AUTOMATIC STATIC ANALYSIS ISSUES ON TIME

EFFICIENCY: A PILOT STUDY

As we have seen in Section 4.1, efficiency, in terms of time behaviour, is measured

by computation or approximation of the execution time of the software function under

study. A fundamental concept in this computation is that the execution time is not

deterministic, but it has a certain variation depending on the input data or on different

contexts of the platform in which it is executed. For this reason, for a given code there is a

best-case execution time (BCET), i.e. the shortest possible execution time, and a worst-case

execution time (WCET), i.e. the longest possible execution time. Whilhelm et al. [83]

identified in literature and industrial practices two approaches to determine the BCET and

the WCET. The first approach is characterized by static methods: the code and the possible

paths are analyzed and, combining different techniques, upper and lower bounds for the

execution time are provided. This methodology does not take into account the hardware and

the environment on which the code is executed, hence the bounds overestimate the WCET

and underestimate the BCET. The second methodology is measurement-based: the code, or

a portion of it, is executed on a given hardware or a simulator for a set of inputs.

Then, WCET and BCET are obtained from observation: these methods provide

estimates and not bounds, and they usually underestimate the WCET and overestimate the

BCET. Despite the high number of techniques developed for both approaches, the problem

for WCET analysis in the field of Java applications has not been deeply examined yet:

Harmon and Klefstad conducted a survey of WCET analysis for Real- Time Java [84], but

they were able to find fewer than twenty publications addressing the problem. Source code

annotations as instructions to WCET tools ([85] [86]), low-level and high level analysis of

bytecode ([87] [88]) and Java-native processors ([89]) are the most common solutions

proposed, however it is very difficult to find a methodology to obtain precise and

generalizable bounds for the WCET and the BCET in Java: the main motivation is the

overhead and the variability introduced at execution time by VM services (e.g. automatic

125

memory management)[90] . However, since the object of our experiment is very simple

code, makes measurement simpler for us. For instance, we test code with only one possible

path, thus we can exclude all static measurement-based approaches.

Moreover, we are interested in the comparison of execution times: for this reason,

we think it is considerable to abandon the usual concepts of WCET and BCET and adopt

average values and confidence intervals. We focused on a specific ASA tool that is

FindBugs v1.3.9. FindBugs uses analyzers called Bug Detectors to search for simple bug

patterns. These bug detectors contain numerous heuristics to filter out or deprioritize

warnings that may be inaccurate, or that may not represent serious problems in practice.

FindBugs warnings are organized in 369 issues or bug patterns13 , grouped subsequently

into Categories (Correctness, Performance, Security, etc) and priorities (high, medium, or

low), based to the severity of the problem detected. Both categories and priorities are

assigned by tool's authors, based on their wisdom and experience reviewing warnings in

industrial and university contexts. A subset of FindBugs patterns is part of category

Performance: they are supposed by tools' authors to have negative impact on Performance,

i.e. the efficiency of the code.

GOAL DEFINITION

Let us consider a simple code fragment:

Collection<Integer> col = new LinkedList<Integer>();

...

col.removeAll(col);

If FindBugs were run on the above code it would signal the issue DMI USING

REMOVEALL TO CLEAR COLLECTION. The description of the issues provided by the

tool is: “If you want to remove all elements from a collection c, use c.clear() , not

c.removeAll(c)”. In response to such a notification from the tool the developer should

13 The full list of patterns is available at http://findbugs.sourceforge.net/bugDescriptions.html

126

refactor the code according to what is suggested by the issue description, i.e. replacing

col.removeAll(col) with col.clear() . The research question we would like to

answer with this study is whether the issue represents an actual threat to time efficiency. In

other words: does refactoring out the issue yields a code that exhibits an improved time

efficiency?

We define our experiment following the GQM template [34].

Object of study. The object of the study is represented by the issues signaled by

FindBugs.

Purpose. The purpose of the experiment is to identify those issues that impact time

efficiency and quantitatively assess the delay introduced. Having experimental evidence of

this impact, programmers can be sure that if they refactor the code deleting these issues, the

system will be faster.

Perspective. The perspective is from the point of view of programmers of Java

applications that take care of performance issues in delivering their software.

Quality focus. Efficiency is the quality characteristic that we address. We focus our

experiment on time behavior, i.e. the amount of time to perform one or more operations.

Context. The context is artificially developed code. We conduct our tests on code

developed ad hoc to violate the issues that might impact negatively the efficiency-time

behavior of the code.

Summarizing, our goal is defined by the following scheme:

Evaluate a subset of FindBugs issues

for the purpose of assessing the actual impact

compared to their removal by refactoring

with respect to the time efficiency of code

from the viewpoint of Java programmers

in the context of archetypal ad-hoc code.

127

EXPERIMENT PLANNING

A. Context and Variable Selection

Although one of the categories defined by the FindBugs tool is named

Performance, we think that also issues belonging to other categories could actually affect

the time efficiency of code. For this reason, we select from FindBugs site a subsection of

issues that might have a negative impact on the time efficiency with respect to the

following set of criteria.

A Issue belongs to category performance

B Issue has a negative impact on performance with respect to expert judgment.

The selection is made by the authors of this paper: two of them are professors of Java

Programming course at Politecnico di Torino since more than ten years, whilst the first

author is a second year PhD Student assisting the professors in the Java Course since four

years. The experts read the description of the issues and for each of them classified them

into one of the following categories (and implicitly assigned the relative score):

a) the issue impacts negatively the time efficiency of code (score: +1)

b) the issue does not impact negatively the time efficiency of code (score: -

1)

c) no decision (score: 0)

Each issue is assigned a score that is the sum of the scores corresponding to the

categories selected by the experts. Then an issue is selected for the experimentation when

the total score is ≥2.

C Refactoring does not change functionality. For instance, the issue DLS

OVERWRITTEN INCREMENT looks for code that performs an increment operation and

then immediately overwrites it (e.g., i++; added in a for loop to skip an iteration). A

possible code refactoring action would be to delete the offending increment: however, this

action could change the functional behavior of the code, hence the issue is not selected.

D Efficiency does not depend on local (e.g. network) factors. For example, the

issue DMI BLOCKING METHODS ON URL has a negative impact on performance

because the equals and hashCode method of URL perform domain name resolution, thus

128

this can result in a performance hit. However, this case is out of our interest because the

cause of delay is the network and not the code. For the same reason we do not include in

the experimentation DMI COLLECTION OF URLS .

E Identification of one issue per equivalence classes. The aim is to pick only one

issue from each set of similar issues. In fact some issues are redundant, or one is a

generalization of many others. For instance, consider the issue BC IMPOSSIBLE

INSTANCEOF: it is signaled when the instanceof operator will always return false, hence

this is a useless operation that might lead to a delay. A similar issue is BC VACUOUS

INSTANCEOF, that is complementary to the previous one, because it is signaled when

instanceof test will always return true. Therefore latter issue is representative also for the

former one.

An issue is selected if it satisfies the following combination of the five criteria:

(A∨B)∧C∧D∧E.

Table 24 shows all the issues selected as objects in the experiment. The first

column indicates the numerical ID of the issue, the second column indicates its name, the

last indicates whether the issue belongs to category performance or not (criterion A).

VARIABLE SELECTION AND HYPOTHESES FORMULATION

Since the goal of the study is to evaluate the relationship of issues with time

efficiency the only dependent variable is the execution time t. We will consider two

variants of the same code: either containing the issue (I) or with the issue refactored out (R).

Therefore the main factor we use is the code type, C ∈{I,R}.

In addition we measure and control other independent variables:

− the specific issues (Issue∈1..20) in the set of issues selected as described

above,

− the platform (P), both hardware and software, where the experiment is

conducted,

129

− the batch run (B) of each specific experiment.

Given our original research question and the selected variables we can formulate

our null and alternative hypotheses, where the subscript indicates the level of the factor.

H0:tI≥tR

Ha:tI<tR

INSTRUMENTATION AND EXPERIMENT DESIGN

The instrumentation required for our experiment is a software framework that

allow the measurement of the execution times of the two different code fragments. Inspired

by the JUnit14 framework for automated software testing we developed a very simple

framework. It consists of an abstract class, Experiment, that can be extended by concrete

experimental classes. Each experimental class must provide two methods

performWithIssue() and performWithoutIssue() that contain respectively the code including

the issue and with the issue refactored out. In addition the method setUp() may be

optionally redefined to prepare for the execution. For instance the experimental class for the

issue DMI USING REMOVEALL TO CLEAR COLLECTION can be written as follows:

public class

DMI_USING_REMOVEALL_TO_CLEAR_COLLECTION

extends Experiment {

 Collection<Integer> col;

 private void setUp(){

 col = new LinkedList<Integer>();

 for(int i=0;i<1000;i++){

 col.add(Integer.valueOf(i));

 }

14 http://www.junit.org/

130

 }

 public void performWithIssue() {

 col.removeAll(col);

 }

 public void performWithoutIssue() {

 col.clear();

 }

}

The execution times of the methods performWithIssue() and

performWithoutIssue() are expected to be in the order of nanoseconds.

Unfortunately the standard measurement methods are not able to record precisely times at

such order of magnitude. For this reason, the execution of each method is repeated

consecutively a very high number of times (e.g. 1 million) to accumulate enough time to be

detected by system APIs. We assume that each execution of the measured methods is

independent on each other. This is true if no attribute is used except those initialized in the

setUp() method.

The framework provides the method:

perform(int nSamples , long nIter)

that returns the results of the experiment in terms of the execution times. It takes as

parameters two integers: the number of measurement samples to be generated (nSamples,

set to 100 by default), and the number of iterations of the perform methods (nIter, set to

1 million by default). At the end of the experiment we will have nSamples samples, each of

them representing the execution times of nIter iterations of both perform methods. We

decide to have a batch of 6 runs of the basic experiment; each run was carried on at

different random times during the day to compensate the possible confounding effect of

periodical tasks performed by the operating system.

In addition, since the software and hardware platform is extremely relevant in

terms of complexity when compared to the experimented code fragments, we decided to

131

execute the experiment batch on three different platforms. Table 25 contains the

characteristics of the platforms that hosted the experiments.

ANALYSIS METHODOLOGY

The goal of data analysis is to apply appropriate statistical tests to reject the null

hypothesis. The analysis will be conducted separately for each issue in order to evaluate

Table 24. Issues selection

 Code Issue A

 1 BC VACUOUS INSTANCEOF

2 BX BOXING IMMEDIATELY UNBOXED TO PERFORM

 COERCION X

3 DLS DEAD LOCAL STORE

4 DM BOOLEAN CTOR X

5 DM NEW FOR GETCLASS X

6 DM NUMBER CTOR X

7 DM STRING CTOR X

8 DM STRING TOSTRING X

9 DMI RANDOM USED ONLY ONCE

10 DMI USING REMOVEALL TO CLEAR COLLECTION

11 ISC INSTANTIATE STATIC CLASS

12 RCN REDUNDANT NULLCHECK OF NONNULL VALUE

13 REC CATCH EXCEPTION

14 SBSC USE STRINGBUFFER CONCATENATION X

15 SIC INNER SHOULD BE STATIC X

16 SS SHOULD BE STATIC X

17 UM UNNECESSARY MATH X

18 UPM UNCALLED PRIVATE METHOD X

19 URF UNREAD FIELD X

20 WMI WRONG MAP ITERATOR X

132

which one has an actual impact on time efficiency.

First of all we will test the null hypothesis H0 for each issue across all platforms.

Then we will analyze separately the different platforms.

Since we expect the values not to be normally distributed, we will adopt non

parametric tests, in particular we selected the Mann-Whitney test [91]. Since the hypothesis

is clearly directional the one-tailed variant of the test will be applied. We will draw

conclusions from our tests based on a significance level α=0.01, that is we accept a 1% risk

of type I error – i.e. rejecting the null hypothesis when it is actually true. Moreover, since

we perform multiple tests on the same data – precisely twice: first overall and then by

platform – we apply the Bonferroni correction to the significance level and we actually

compare the test results versus a αB=0.01/2=0.005.

After testing our experimental hypothesis, we will also check the potential

confounding effect introduced by the co-factors: the platform and the different batch runs.

Since the co-factors have more than two levels, we analyze the dependence of execution

time on them using the Kruskall-Wallis rank sum test [91]. The null hypotheses we will

attempt rejecting is that the co-factors have no effect on the dependent variable (time).

Table 25. List of platforms hosting the experiments

 Platform U W M

 Operating Ubuntu 10.10 Windows 7 Mac OS X 10.6.6

System kernel 2.6.35-25 Home Premium Darwin 10.6.0

Bits 64 64 64

Processors 2 2 2

Proc. Type Intel Core 2 Pentium Dual Intel Core 2 Duo

 T5270 Core T4500

Proc. Freq. 1.40 GhZ 2.30 GHz 2.66 GHz

Memory 2 GB 4 GB 4 GB

Java SE 1.6.0 1.6.0 1.6.0

build _22-b04 _23-b05 24-b07

133

VALIDITY EVALUATION

We identify two important threats to the validity of the experiment. The first threat

affects the internal validity: experiments are executed inside an operating system, hence

confounding factors could affect final results. Moreover, it is possible that the execution

times for individual instructions are not independent from the execution history [83],

because of caches and pipelines in processors, that could also cause the appearance of

timing anomalies: therefore, we accept that the execution time of individual instructions

may vary depending on the state of the processor in which they are executed, because we

can not control the processor and avoid the hardware-related problems. However, it is

possible to take some counter measures to reduce the noise introduced by the upper levels

(OS and VM): we repeat the experiment 6 times on three different operating systems and

machines, obtaining overall 1800 samples for each version of the code, and we isolate as

much as possible the environment in which the experiment program runs, disabling for

instance network and network routines or avoiding to launch the program in the same time

of operating system subroutines. Furthermore, the experiment is the only user program that

runs in the machine. All these provisions do not delete the confounding factors, but limit

them and let us to have a reduced noise on results.

The second threat is a construct threat: if a difference is found, we say that the

cause of the difference is the refactoring action. However, the platform on which the code

runs is also affecting results. Therefore, there are generalization problems derived from this

issue: we try to control this threat by using three different platforms. Another issue is that

the code refactoring could not unique for each code smell, and different refactorings can

bring to very different improvements of execution times: for this reason, the estimated

improvements are specific to refactoring action we implemented.

134

We make available on our website 15 the Eclipse project of the experiment

framework developed and we invite other researchers to repeat the experiment and compare

the results with ours. This is a further strategy control for the threats mentioned above: in

15 http://softeng.polito.it/vetro/confs/InfQ2011/EfficiencySmells.zip

Table 26. Summary of execution times

 Platform: all M U W
 ID t

I
 t

R
 p t

I
 t

R
 p t

I
 t

R
 p t

I
 t

R
 p

1

34.72 34.48 < 0.001 55.41 55.32 0.01 47.04 47.13 1.00 1.70 1.00 < 0.001

2 8.39 2.78 < 0.001 10.03 3.67 < 0.001 12.70 2.73 < 0.001 2.45 1.93 < 0.001

3 68.10 35.27 < 0.001 109.43 54.32 < 0.001 90.78 46.99 < 0.001 4.10 4.51 1.00

4 9.81 5.43 < 0.001 10.57 4.19 < 0.001 13.63 7.18 < 0.001 5.24 4.93 < 0.001

5 180.20 183.31 1.00 167.03 155.49 < 0.001 237.84 242.74 1.00 135.72 151.69 1.00

6 9.65 4.78 < 0.001 10.64 3.07 < 0.001 13.77 7.12 < 0.001 4.53 4.16 < 0.001

7 14.72 5.15 < 0.001 17.29 4.20 < 0.001 18.88 7.09 < 0.001 7.99 4.16 < 0.001

8 84.16 88.54 1.00 75.29 75.79 1.00 113.92 121.16 1.00 63.26 68.67 1.00

9 2162.58 1117.11 < 0.001 326.57 164.02 < 0.001 3687.10 1901.80 < 0.001 2474.06 1285.49 < 0.001

10 468.66 213.77 < 0.001 411.45 210.21 < 0.001 728.38 278.32 < 0.001 266.16 152.78 < 0.001

11 8.70 5.08 < 0.001 8.24 4.17 < 0.001 13.15 6.84 < 0.001 4.70 4.22 < 0.001

12 591.41 592.08 0.74 80.33 80.22 0.42 1671.77 1673.89 1.00 22.14 22.14 0.47

13 35.81 35.47 < 0.001 55.64 55.08 < 0.001 47.25 47.31 1.00 4.54 4.03 < 0.001

14 561.95 302.34 < 0.001 455.71 268.63 < 0.001 767.91 409.92 < 0.001 462.24 228.46 < 0.001

15 6.98 7.04 0.08 5.28 5.66 1.00 8.82 9.07 1.00 6.83 6.39 < 0.001

16 9.71 8.62 < 0.001 10.78 8.35 < 0.001 13.77 13.45 < 0.001 4.57 4.05 < 0.001

17 592.05 594.41 0.55 3.84 4.15 1.00 1767.72 1775.06 0.01 4.59 4.01 < 0.001

18 537.67 544.22 1.00 462.41 462.53 1.00 707.32 716.04 1.00 443.28 454.10 1.00

19 11.80 11.04 < 0.001 13.94 13.89 < 0.001 16.23 13.93 < 0.001 5.22 5.30 < 0.001

20 582.91 539.86 < 0.001 558.12 514.13 < 0.001 668.55 633.61 < 0.001 522.05 471.84 < 0.001

135

this way it is possible to build up a benchmark and make the empirical validation of the

impact of issues on efficiency more reliable.

ANALYSIS AND INTERPRETATION

The data collected during the experiments are summarized in Table 26, which

reports the average execution times expressed in milliseconds, for the three different

platforms and separating the execution time of the code containing the issue (tI) from the

execution time of code with the issue refactored out (tR).

We can immediately observe a wide variability of times and small differences

mainly among different issues, but also to a smaller extent between platforms. In order to

report in the same diagram such varying values we opted for the rest of this analysis to plot

times using a logarithmic scale.

overall a

face. Th

divided b

four colu

while for

is presen

boxplot i

(Figure

rejected

and 20. A

any platf

rejected

and on 1

Kruskal-

Columns p i

and by platfo

he boxplot of

by issue, in p

umns of the ta

r code with th

nt correspond

in Figure 31 i

 We can obs

30) and for sp

both overall a

At the opposit

form for issue

H0 overall an

 platform, and

The effect of

-Wallis test, w

F

in Table 26 r

rms (W, U, M

Figure 30 r

practice it add

able. Executio

he issues refac

ding to the iss

is similar but

serve a range

pecific platfor

and for every t

te side, the nu

es 8, 12, and 1

nd on two ou

d for issues 5,

f co-factors on

whose results a

Figure 30. Box

136

report the p-v

M); statistical

reports the ex

ds the dispersi

on times of co

ctored out (R)

sues for whic

it reports the

e of patterns

rms (Figure 3

tested platform

ull hypothesis

18. Among th

ut of three pla

 15, and 17 w

n the main dep

are reported in

xplot of execut

values of Ma

lly significant

xecution times

ion to the info

ode containin

it is represent

ch we can rej

execution tim

in terms of

1). On one si

m for issues 2

could not be r

he remaining i

atforms, for is

we could reject

pendent variab

n Table 27 .

tion times for a

ann-Whitney

t values are r

s recorded in

ormation prov

g the issue is

ted in red. A g

ject the null

mes recorded in

hypothesis r

ide, the null hy

2, 4, 6, 7, 9, 10

rejected neithe

issues: for issu

sue 1 we cou

t only on one p

ble has been c

all issues.

tests carried

reported in b

the experime

vided in the f

drawn in bla

gray backgrou

hypothesis. T

n each platform

rejection over

hypothesis can

0, 11, 14, 16,

er overall nor

ues 3 and 13

uld reject over

platform.

checked with

on

old

ent,

first

ack,

und

The

m.

rall

n be

19,

on

we

rall

the

PerformanceTest
fig30

PerformanceTest
Font monospazio
Figure 30. Boxplot of execution times for all issues.

issues. W

DISCUS

We observe

While, the batc

SSION

Figu

that, concerni

ch Run influen

ure 31. Boxplo

137

ing the Platfo

nced the execu

ot of execution

orm, the hypo

ution time of

times for all is

othesis can be

11 out of 20 is

ssues, per platf

e rejected for

ssues.

form

all

PerformanceTest
fig31

PerformanceTest
Font monospazio
Figure 31. Boxplot of execution times for all issues, per platform

PerformanceTest
Font monospazio

PerformanceTest
Font monospazio

138

Based on results in Table 26, 11 of the issues selected have undoubtably a negative

impact on time efficiency, since there is a statistically significant difference in all

conditions. Such issues are:

2) A primitive boxed value is constructed and then immediately converted into a

different primitive type (e.g., newDouble(d).intValue()) instead of performing direct

primitive coercion (e.g., (int)d).

4) A method invokes a Boolean constructor, instead of using Boolean.valueOf(...)

6) Code uses newInteger(int) whereas Integer.valueOf(int) should be used, because

it allows caching of values to be done by the compiler, class library, or JVM.

7) The java.lang.String(String) constructor is used instead of String parameter

directly.

9) Code creates a java.util.Random object, uses it to generate one random number,

and then discards the Random object. Subsequently, to generate a new random number, a

new java.util.Random object is created. Code should be refactored so that the Random

object is created once and saved to be invoked each time a new random number is needed.

10) The code removes all elements from a collection c, using c.removeAll(c)

instead of c.clear().

Table 27. P-values of Kruskal-Wallis test for co-factors

ID Platform Run
1 ≤ 0.001 * 0.01
2 ≤ 0.001 * 0.60
3 ≤ 0.001 * ≤ 0.001*
4 ≤ 0.001 * 0.02
5 ≤ 0.001 * 0.16
6 ≤ 0.001 * 0.02
7 ≤ 0.001 * ≤ 0.001*
8 ≤ 0.001 * ≤ 0.001*
9 ≤ 0.001 * 0.19
10 ≤ 0.001 * 0.18
11 ≤ 0.001 * ≤ 0.001*
12 ≤ 0.001 * 0.04
13 ≤ 0.001 * ≤ 0.001*
14 ≤ 0.001 * ≤ 0.001*
15 ≤ 0.001 * ≤ 0.001*
16 ≤ 0.001 * 0.05
17 ≤ 0.001 * ≤ 0.001*
18 ≤ 0.001 * ≤ 0.001*
19 ≤ 0.001 * ≤ 0.001*
20 ≤ 0.001 * ≤ 0.001*

139

11) A class allocates an instance of a class that only supplies static methods. The

refactoring action is to use the static methods directly using the class name as a qualifier.

14) Code builds a String using concatenation in a loop instead of using

StringBuffer.

16) A class contains an instance final field that is initialized to a compile-time

static value. Since the field is immutable for each object of the class, it should be static.

19) A field which is never read

20) Code accesses the value of a Map entry, using a key that was retrieved from a

keySet iterator. It is more efficient to use an iterator on the entrySet of the map, to avoid the

Map.get(key) lookup.

More than half of the issues (nr 2, 4, 6, 7, 9, 11) concerns a useless creation of

objects. The other issues are related to different problems, relating to inefficient, albeit

functionally correct, set of operations.

Being known the number of times that the code containing the issues is invoked, it

is possible to estimate the average delay that each of these issues bring to the code. The

code fragments invoke issues only once to minimize the confounding factors: therefore the

total number of invocations is 1 million times. However, issues 14 and 20 are inside a for

cycle of respectively 5 and 10 iterations, thus they are executed 5 and 10 million of times.

Table 28 contains the estimated delays, in nanoseconds, for each issue and platform,

computed aggregating the measurements of the different batches.

All issues concerning the useless creation of objects (except nr 9) have similar

Table 28. Mean expected delay [ns] of verified issues.

 Platform
Issue Iterations U W M

2 1 M 8.23 0.43 6.14
4 1 M 6.43 0.43 6.29
6 1 M 6.67 0.43 7.40
7 1 M 11.81 3.91 13.02
9 1 M 1786.00 1185.80 159.60

10 1 M 449.20 113.00 201.10
11 1 M 6.29 0.43 3.90
14 5 M 74.74 51.16 37.81
16 1 M 0.40 0.43 2.36
19 1 M 2.21 0.44 0.11
20 10 M 4.36 4.96 4.07

140

unitary delays: few nanoseconds (3 to 11) in environments U and M, less than 1 in

environment W. Similar delay is for the wrong map iteration (issue 20). The issue nr 9

(useless Random object) has the highest delay, that is in the order of magnitude of 1 μs.

Also issue 10 (emptying the content of a collection) exhibits high delays (in the order of

magnitude of some hundreds of ns), whereas issue 14 causes a delay of tens of ns. The

smallest delays are those ones of issue 16, a field that should be static, and issue 19, a field

that is never read. In real contexts these numbers can easily reach the order of ms and s: in

real projects there are millions of lines of code where there can be millions of these simple

issues or even billions if they are inside for/while cycles. Moreover, these figures may be

directly relevant in Real Time Applications, where the usage of Java is steadily increasing

(for instance, Boeing has adopted real-time Java in drone aircrafts, and the United States

Navy decided to use it in its next-generation battleships [84].

On the basis of the above findings, we can assert that likely also the following

issues, which were not object of our experiments, have impact on time efficiency, because

related to the previous eleven: BX BOXING IMMEDIATELY UNBOXED, BX

UNBOXED AND COERCED FOR TERNARY OPERATOR, DM BOXED PRIMITIVE

TOSTRING, DM FP NUMBER CTOR (similar to issues 2, 6), DM STRING VOID CTOR

(similar to issue 7), issue UUF UNUSED FIELD (similar to issue 19).

Moreover, we observe that issues 8, 12 and 18, instead, do not have any negative

impact on performance. We further investigate this fact computing the estimated

differences between the two set of execution times (tI−tR). Issue DM STRING TOSTRING

(nr 8, call toString() on a String) has negative differences both overall and in every

platform; issue RCN REDUNDANT NULLCHECK OF NONNULL VALUE (nr 12, check

of a known null value) has a significant difference only in platform U, whilst UPM

UNCALLED PRIVATE METHOD (nr 18, a private method never used) is significantly

different under all conditions. These data shows that the refactored code of these three

issues performs worse than the original code: this is an unexpected result. Nevertheless, it is

probable that optimization enforced by the compiler and/or the hardware deletes the

negative effect of the three issues at run time. All the three issues concern useless

141

operations and bad programming practice: even if they do not impact the efficiency,

refactor the code is worthy to increase its maintainability or decrease its complexity.

Similar issues in Findbugs, not selected for our experiment, are : RCN REDUNDANT (

COMPARISON OF NULL AND NONNULL VALUE, COMPARISON TWO NULL

VALUES, NULLCHECK OF NULL VALUE, NULLCHECK WOULD HAVE BEEN A

NPE) that are similar to issue nr 12, and UMAC UNCALLABLE METHOD OF

ANONYMOUS CLASS that is similar to issue 18.

142

4.3. EXECUTION TIME EFFICIENCY IMPROVEMENT BY

MEANS OF CODE ISSUE REFACTORING: A CONTROLLED

INDUSTRIAL EXPERIMENT

The execution time efficiency of a software function can be assessed by measuring

the execution time: the shorter the better, trivializing the concept.

Excluding the obvious hardware techniques, time efficiency can be improved

selecting appropriate algorithms, leveraging compiler optimization capabilities, and relying

on execution infrastructures such as operating systems and virtual machines.

Java offers many benefits: portability, security, dynamic program composition

through dynamic class loading and automatic memory management. However, these

advantages become drawbacks when dealing with performance. A possible explanation is

the overhead introduced at execution time by the features mentioned above, that make Java

applications several times slower than equivalent compiled C programs [90]. Moreover, the

high level of hardware abstraction used by Java produces byte code without any knowledge

of the underlying CPU, thus without an efficient optimization.

Most Java optimization techniques operate statically [92], others try to improve the

performance of a program while it executes [90]. Considering the three code representation

levels [93] – high-level representation (HLR), directly interpretable representation (DIR),

and directly executable representation (DER) – the most common static and dynamic

techniques operate at the DIR or DER level. However, recent studies [94] demonstrated that

optimizations at DIR or DER levels do not guarantee lower execution time. For this reason

we faced the Java optimization problem at HLR with a new approach based on Automated

Static Analysis (ASA). ASA focuses on the HLR with the goal of identifying issues and

possible improvement areas.

A common drawback to most ASA tools is the huge number of code issue

detections that is signaled to the developers. The challenge in adopting ASA tools is to

customize them in order to detect only relevant issues.

143

The problem we address in this paper is to identify the issues having an impact on

time efficiency and empirically assess them.

In particular we used FindBugs, a widely used ASA tool for the Java code, to

analyze the source code of a web application developed by a large Italian company. The

goal is to identify the performance problems of the application and verify whether they

derive from bad programming practices detectable by means of FindBugs.

To do that, we set up the empirical methodology already applied in the previous

study.

GOAL AND RESEARCH QUESTION

As we have seen in Section 4.1, Performance efficiency is defined in ISO-IEC

25010 [42] as “the performance relative to the amount of resources used under stated

conditions”. Based on the type of resources under measurement, two efficiency sub-

characteristics are specified by the standard: time behavior and resource utilization. We

focus our study on time behavior, i.e. the amount of time to perform one or more

operations.

Code performance issues, revealed through static analysis, are cues that indicate

potential efficiency problems. Therefore a refactoring operation that removes the issue will

probably remove the problem too. Apparently pure speculation does not always lead to the

identification of the right issues, as our previous experiment in Section 4.2 showed. Only

empirical evidence can provide a credible support to performance issues as indicators of

actual problems. Our aim is to empirically assess the impact on time efficiency of code

issues detectable by ASA.

We formalize the goal of our study according to the GQM template [34]:

144

The selected epistemological approach consists in the empirical comparison of the

original application with a modified version with the issues removed by means of

refactoring. The research question we aim to answer is:

Does the refactoring of code issues affect the time efficiency of the

application?

A possible evidence of an effect, where the refactored version is faster than the

original, would confirm the role of the issue as a performance problem predictor.

CONTEXT DESCRIPTION

The study was conducted in the IT department of a large Italian company (about

21000 employees in 110 countries). The focus was on a web application developed in Java.

The application is a J2EE, servlet-based software developed with the modeling

tool Web Dynpro, a client-independent UI builder in the SAP NetWeaver platform. Web

Dynpro is used to develop user interfaces for business applications, based on the model-

view-controller paradigm [95]. The use of Web Dynpro minimizes manual UI coding

because programmers use visual tools to design and reuse components. However, some

customization of components and implementation of additional logic are performed

manually on the generated code.

The application size is 18142 NCSS (non-commented source statements), it has 49

dependencies on external libraries and it is compiled with Java 1.4.2. The application runs

on SAP NetWeaver 7.01 sp0.

Analyze code performance issues on source code
For the purpose of identifying their effect
With respect to execution time efficiency
From the point of view of developers

In the context of an industrial Java web application

145

 The application architecture conforms to the MVC pattern: the user interacts with

a View component that takes care of the presentation, user requests are processed by the

Controller component, and the Model component holds the data communication with the

Controller through a network connection.

The main functionality of the application is to let the user search and filter

documents from the company repository, which contains thousands of documents in XML

format. In our study we focus on the two basic operations: search and filter. Figure 32

shows the interactions taking place among the main components to carry out the two

operations. The application, accessed via a web browser, is part of a pool of web

applications and servlets hosted in the SAP portal of the company.

Concerning the search operation: the user enters one or more keywords ks in a text

box and submits her request pushing the search button (onActionSearch(ks)). The controller,

invoked by executeSimpleSearch(ks), receives the text from the view and performs some

checks. Finally it forwards the request to a web service located on a remote machine. The

web service is in charge of looking in the repository for documents containing ks and

sending them back to the controller. Data are sent back to the view, which builds up a table

containing a row for each document retrieved and a column for each different property of

documents (e.g.: title, owner, date, etc.).

Once results are displayed on the screen, the user can filter them specifying a

keyword or key phrase kf corresponding to a property p. The view transmits the keyword kf

and the property p to the controller (onActionFilter(kf,p)), which in turns selects, among the

documents already retrieved from the web service, those in which p contains kf .

sequence

access t

geograph

unpredic

XP Prof

E7430, 2

Vista.

DETECT

compone

out of 36

It is importan

e because the

The web serv

to its source

hically far fro

ctable role.

The server ru

fessional Vs 2

2.13GHz, and

TED ISSUES

The automa

ents. The Find

69 detectable b

Fi

nt to emphasi

filter operates

vice compone

 code. In ad

om the applic

uns on a virtu

002 Service P

RAM is 3 GB

AND SELECT

tic static an

dBugs tool de

by the tool.

igure 32. Inter
146

ize that search

s on the result

ent is outside

ddition since

cation host, t

ual machine w

Pack3. CPU o

B, Operating

TION

nalysis was c

etected 109 iss

ractions for sea

h and filter op

ts of a search o

the scope of

e the service

the network d

with operating

of the physica

System of the

conducted on

sues. The issu

arch and filter

perations mus

operation.

this work bec

 resided on

delay plays a

g system Mic

al machine is

e hosting mach

n the View

ues belong to

r operations

st be executed

cause we had

a remote h

a significant a

crosoft Windo

Intel Xeon CP

hine is Windo

and Control

14 distinct typ

d in

no

host

and

ows

PU

ows

ller

pes

147

An issue can be detected in different places of the code: we call them occurrences

or detections. Table 29 reports for each issue type (first column) the number of detections

(second column). In addition the table reports the category of each issue type according to

the FindBugs classification (third column). Just three out of the 14 detected issue types,

counting 48 detections, belong to the performance category according to the classification

of the FindBugs tool.

It is important to remark that, according to the FindBugs classification, each issue

type belongs to exactly one category. However, issues belonging to other categories may

have a performance impact too. For instance, the issue DLS DEAD LOCAL STORE

belonging to category Style could impact the time efficiency of code. In fact, the issue

detects an instruction that assigns a value to a local variable, but the value is not used in any

subsequent instructions: time is wasted in a useless operation.

So, we decided to set up an expert assessment procedure to identify, among the

detected code issues, which have a potential impact on performance.

The experts are the three academic authors of this paper: two of them taught

object-oriented programming for more than ten years, another is a PhD candidate working

as teaching assistant in a Java course since six years.

The procedure they followed is straightforward:

− each expert carefully read the issues description and classified them into

one of the following categories which is associated with a score:

− issue with a negative effect on time efficiency of code (score:

+1)

− issue without a negative effect on time efficiency (score: -1)

− no decision (score: 0)

− each issue is assigned a total score that is the sum of the scores assigned

to the issue by the experts.

− An issue with a total score greater or equal than 2 is considered

performance relevant (fourth column of Table 29).

Since the refactoring operations are fundamental in our investigation, we analyzed

the corresponding refactoring operation for each issue type. The goal was to identify those

148

refactoring that could be implemented without affecting the behavior of the code. For

instance, the issue DLS OVERWRITTEN INCREMENT does not satisfy these

requirements for the following reason: since the issue detects a double write operation on a

loop counter (eg. twice i++), the associate refactoring action is to delete the second write

operation. However this change will alter the functional behavior of the code. Or must be

supervised by the developer to check the refactoring is correct. The fifth column in Table

29 indicates which issues might be refactored preserving the functional behaviour.

Yet another selection criterion is the number of detections. The impact of issues

with a few detections is expected to be smaller than the impact of issues detected more

times. We filtered out less frequent issues in the following way: we computed the

distribution of the issues occurrences, and we decided that a reasonable limit is the median,

which takes out 50% of the issues. The resulting inclusion criterion is: issue frequency > 2.

Issues satisfying this criterion have the number of detections in bold in the second column

of Table 29.

The last column of Table 29 indicates which issues satisfied all criteria and were

selected for the experimentation: this resulted in total of 26 occurrences all together.

EXPERIMENT PLANNING

We structured our study as a controlled experiment and we planned it following a

typical approach for experiments in software engineering [7]. We list and describe in the

following subsections the main steps performed:

A. Treatment selection

B. Hypothesis formulation

C. Variable description

149

D. Experiment Design

E. Analysis method

F. Threats to validity

A. Treatments selection

Table 30 reports the details about the three issue types that satisfy all conditions in

the selection process, out of the 14 detected.

The treatment is the program with and without issues. Since there are three issues

we manually refactored the original program three times, removing one issue type at a time,

in order to understand the effect of each issue type. In addition we included also a version

of the program where all detections of the three issues types were removed. Overall we

have these four treatments plus the original program:

Table 29. Issues and their characteristics

Issue ID Detections FindBugs
Category

Performance
Relevance
(Expert)

Function
Preserving
Refactoring

Selected in
Experiment

URF UNREAD FIELD 43 Performance  − −

BC UNCONFIRMED CAST 27 Bad Practice − − −

DLS DEAD LOCAL STORE 20 Style   

DM BOOLEAN CTOR 3 Performance   

REC CATCH EXCEPTION 3 Style   

BC VACUOUS INSTANCEOF 2 Style   −

NM CONFUSING 2 Bad Practice −  −

SIC INNER SHOULD BE STATIC 2 Performance   −

SIO SUPERFLUOUS INSTANCEOF 2 Correctness   −

DB DUPLICATE BRANCHES 1 Style − − −

NP LOAD OF KNOWN NULL VALUE 1 Style − − −

NS DANGEROUS NON SHORT CIRCUIT 1 Style  − −

RV CHECK FOR POSITIVE INDEXOF 1 Style − − −

SA FIELD DOUBLE ASSIGNMENT 1 Style − − −

150

− OR (Original): the original application,

− DS (Dead Stores): refactored version with DLS DEAD LOCAL STORE

occurrences removed,

− IBC (Inefficient Boolean Constructor): refactored version with DM

BOOLEAN CTOR occurrences removed,

− UE (Useless Exception): refactored version with REC CATCH

EXCEPTION occurrences removed,

− ALL: refactored version with occurrences of all the three issues removed.

After performing the refactoring, we run a suite of functional tests to ensure that

refactoring did not introduce errors.

B. Hypothesis formulation

Table 30. Details about selected issues

Issue Description Refactoring action

DLS DEAD LOCAL STORE An instruction assigns a value to a local variable.
However, the value is neither read nor used in
subsequent instructions.

Delete the instruction and, if the variable is
not used anymore, delete also the variable.

DM BOOLEAN CTOR Creation of new instances of java.lang.Boolean wastes
memory, because Boolean objects are immutable.

Use Boolean:valueOf() instead of the
constructor to use objects from a pool

REC CATCH EXCEPTION A method uses a try-catch block that catches Exception
objects, but Exception is not thrown within the try block

Remove the try-catch block

Table 31. Variables

 Variable Description Type Role

Independent

Version The program version obtained by refactoring
Nominal:{OR, DS, IBC,
UE, ALL}

Block

Operation The type of operation, either search or filter. Nominal: {S, F} Block

Size
The size category of the document set retrieved: small,
medium or large

Ordinal: (SM, M, L) Block

Execution
order

The order in which operations of a given version are
executed

Ordinal: {1,2,3…36} Random

Dependent t Time to perform the operation Ratio Block

151

On the basis of the research question formulated, we define a formal hypothesis

that can be verified by means of statistical tests. As customary in empirical investigations

we define a null hypothesis, which we will try to refute, and an alternative one, which we

aim at confirming:

H0: tOR < tRefactor

Ha: tOR ≥ tRefactor

Where tOR is the time taken by the original application and tRefactor is the time taken

by the refactored version.

The above null hypothesis will be tested for each refactored version of the program

(DS, IBC, UE, and ALL).

C. Variable description

The dependent and independent variables considered in the experiment are

summarized in Table 31. The treatment in the experiment consists in applying the

refactoring transformation to the application in order to remove issues. So the main

independent variable is the Version of program (OR, DS, IBC, UE, and ALL).

The second independent variable is related to the two operations – search and filter

– performed by the application. Since they are profoundly different, we control the specific

Operation performed in any experimental.

Both the search and filter operation time may depend on the number of documents

retrieved from the repository. Therefore we defined another co-factor representing the

document set Size as a categorical ordinal variable, with three values: small, medium, and

large. Table 32 reports, for each category, the number of documents retrieved from the

repository through the search and filter operations. The repository available for the

experiment contained 179 documents (retrieved by the large search) and it is a small

portion of the repository actually used, which is composed of thousands of documents.

The last co-factor is the order in which operations are performed, that might

impact the execution time due to problems like memory degradation.

152

We could block [96] all independent variables but the operation execution order,

which is randomized.

Finally, the study measures only one dependent variable, the execution time, t. We

measure the average execution times and the relative confidence intervals. For this purpose

we used a profiler tool: the only one suitable for our context was CA Wily Introscope

Release 8.0.2.0 (Build 470970). The tool allowed us to monitor the web application through

instrumentation and record the execution time of the application. All the runs were

automatically launched and managed through Selenium tools. The raw metrics that we were

able to collect from the software execution are:

 tWDA: time in SAP J2EE - WebDynpro Application that corresponds to the time

employed by the application to complete the request. Looking at the sequence of the

operations in Figure 32, tWDA is the time elapsed between the message 1: onActionSearch()

and the related return message. As a consequence it includes controller, view and model. It

is also close to the total time observed by the users, except the browser-server

communication delay.

tWS: time in WebService that accounts for the time spent for acquiring the results

of web service computation. Looking at Figure 32, it is the time spent in the “Net” cloud

plus the time spent in the Model.

Since the web service is not considered in the experiment, as far as the search

operation is concerned we must exclude the time spent in that component, including the

time devoted to the communication; such time is represented by tWS. Therefore the

execution time, depending on the operation, is measured as follows:

tSearch = tWDA – tWS

Table 32. Documents set size vs operation

 Documents retrieved

Size Category Search Filter

Small (SM) 1 1

Medium (M) 100 9

Large (L) 179 12

153

tFilter = tWDA

D. Experiment Design

The obvious design to adopt is a full factorial design, where a triplet (Version,

Operation, Size) corresponding to the values of the block independent variables

characterizes each experimental task. For instance, (IBC, S, SM) indicates that the IBC

version is used to perform the search operation (S) on a small document set (SM), whereas

(DS, F, L) indicates DS version, performing a find operation (F) on a large document set

(L). As a consequence, considering both the main factor and the co-factor, the original

generic hypothesis H0 must be specialized into Nhp detailed hypotheses:

Nhp = NRefactor  NOperation  NSize

where:

− NRefactor = (NVersion - 1) = 4: is the number of Versions but the

original one, which is the reference version to compare with,

− NOperation = 2: is the number of operations,

− NSize = 3: is the number of document set sizes.

As a result we derived 24 detailed hypotheses.

In order to statistically test the detailed hypotheses, thus taking into account other

potential confounding factors, we need to collect several execution time measures for each

triplet (Version, Operation, Size).

To plan the collection of measures, it is important to recall that search and filter

operations must be executed in pair therefore each experimental task included two

operations: first a search and then a filter Operation; the execution time ought to be

collected independently for each operation.

correspo

L, 2)SM

sequence

set sizes

the sequ

with the

As far as Siz

onding to the p

M-L-M, 3)M-SM

We organize

es; each seque

. Since the or

uences within

e same Versio

e is concerned

possible perm

M-L, 4)M-L-S

d the task exe

ence was mad

rder of the task

the buckets w

on, and we de

Figu

154

d, tasks pairs

mutations of th

SM, 5)L-M-S

ecution in buc

de up of three

k pairs may r

was randomize

ecided to coll

ure 33. Experi

can be combi

he three levels

M, 6)L-SM-M

ckets: each bu

tasks pairs ea

represent a con

ed. All the tas

lect 36 measu

ment Design

ned in six diff

of the variabl

M.

ucket consiste

ach having dif

nfounding fac

sks in a bucke

ures for each

fferent sequen

ble, i.e. 1)SM-

ed of six disti

fferent docum

ctor, the order

et were execu

triplet (Versi

ces

M-

nct

ment

r of

uted

on,

PerformanceTest
fig33

PerformanceTest
Font monospazio

PerformanceTest
Font monospazio

PerformanceTest
Font monospazio

PerformanceTest
Font monospazio

PerformanceTest
Font monospazio

PerformanceTest
Font monospazio

PerformanceTest
Font monospazio

PerformanceTest
Font monospazio

PerformanceTest
Font monospazio

PerformanceTest
Font monospazio

PerformanceTest
Font monospazio

PerformanceTest
Font monospazio

PerformanceTest
Font monospazio

PerformanceTest
Font monospazio
Figure 33. Experiment Design

PerformanceTest
Font monospazio

PerformanceTest
Font monospazio

PerformanceTest
Font monospazio

PerformanceTest
Font monospazio

PerformanceTest
Font monospazio

PerformanceTest
Font monospazio

155

Operation, Size). We achieved this by using each Version in six different buckets, as

depicted in Figure 33 : the figure summarizes the overall design and the organization of

buckets, sequences and tasks.

E. Analysis Method

In the analysis of data we followed a four steps approach.

First we perform a post-survey adjustment aimed at identifying and removing

possible outliers and locating potential missing data.

In order to gauge the variability of the data we used the dispersion index and the

coefficient of variation [97]. The first index is defined as the ratio of the variance to the

mean, whereas the second one is a normalized measure of the dispersion of a probability

distribution and it is defined as ratio of the standard deviation to the absolute value of the

mean.

We identify outliers using a conservative criterion based on interquartile distance:

a value is considered an outlier if its distance d from the third quartile (q3) is d > 3 * (q3-

q1), where q1 is the first quartile.

Then we provide an overview of the data by means of descriptive statistics; in

addition we attempt matching measured data to known distributions. We perform test of

normality also to determine the statistical methods to be used in the results analysis. The fit

to gamma distribution is tested because execution times typically fit this distribution. In

fact, usually execution times are modeled with an exponential distribution and the M/M/1

queue is the model that better fits execution times of web based applications [98] [99].

Since the execution of the search and filter is composed of a sequence of Java methods,

assuming the execution times of the single Java methods exponentially distributed, the

execution time of the whole operation might be modeled with a gamma distribution, which

is the sum of exponential distributions.

Distribution fitting is performed by means of two distinct goodness of fit tests: the

Kolmogorov Smirnov (KS) test [100] and the Anderson Darling (AD) test [101] with

estimated critical values for gamma distribution from Shawky and Bakoban [102]. KS test

is more stringent than AD test. AD test is more sensitive test but has the disadvantage that

156

critical values must be calculated for each distribution. KS test is more conservative

because the critical values do not depend on the specific distribution, hence it is distribution

independent.

As a third step we test the hypotheses outlined above. Due to the nature of the

hypotheses we used one-tailed tests to compare two populations. In particular we use t-test

[97] if the data is normally distributed (according to the tests outlined above), otherwise we

adopt the Mann-Whitney test [103]. Since the same sample (OR) is used in multiple

comparisons – four times, corresponding to the four refactored versions –, the probability

of type I error is increased. A common practical remedy consists in applying the Bonferroni

correction [104]. We will reject the null hypothesis with a p-value < α/4

The fourth and latest stage consists in checking for the effect of additional co-

factors. In particular we focused on the execution order of the tasks. For this purpose we

formulate the null hypothesis that no trend exists in the temporal sequence of execution

times. To test the hypothesis we perform the Sign test of Cox and Stuart [97] for the

detection of a monotone trend.

For all the hypotheses tests we set a confidence level of 95%, that is we accept a

probability α = 5% of committing a type I error, i.e. rejecting the null hypothesis when it is

true.

F. Threats to validity

We evaluate the threats of our study dividing them in external and internal threats.

A first external threat occurs for results generalization. Although delays computed

are verified and consistent, they could change in other environments. A more powerful

platform could mitigate the effect of the issues, whereas a less powerful platform could

amplify them. However, we expect an amplification of delays when the application runs in

a real usage scenario, with dozens of parallel accesses and with other web application

concurrently running on the same SAP Netweaver server.

A second generalizability threat regards the effect of the document set size on

execution times: we expect not homogeneous results and especially when the document set

is small the execution times might be too short to be significantly compared. Moreover, the

repository of documents used for the experiment is only a portion of the actual repository

157

used for the experimentation. Given that we only have 3 levels for the size co-factor, we

will not be able to build a comprehensive model for the effect of the document set size on

execution times, and as a consequence of the possible effect of the code issues delays on

larger search/filter operations.

The last external threat is related to the generalizability of the performance

refactorings to other software systems. This study shows that the performance refactoring

adopted improve the execution time efficiency in a SAP module, but we do not know

whether this is a special case due to the nature of the software or these selected refactoring

actions might improve performance in other software system in general.

Regarding the internal threats, a first confounding factor is the fact that the server

used for the experiment is not completely isolated. Although we asked employees to do not

use it during experiments, we could not prevent it. We registered a few accesses to the

virtual machine and a few requests to the SAP Netweaver server during the experiment.

However, the small number of accesses let us consider the impact negligible on results.

Confounding threats related to the order of runs are verified and controlled in the

experiment design. Finally, all measurements were done through Wily Introscope, and lack

of precision of this tool could bring construct threats: we assume this possibility an outside

chance.

RESULTS

A. Post-experiment adjustement

We adjusted the data by looking at their variability and searching for outliers.

We found that in 22 filter and 15 search task executions the time samples have a

coefficient of variation > 1, i.e. the majority of execution times are more than twice the

mean. Moreover, all task samples have dispersion indexes >> 1, which means over-

dispersed data.

158

Based on our interquartile distance criterion for identifying outliers we observed a

significant number of outliers: 123 out of 1245 samples, i.e. about the 10% of whole

dataset. The very large variability of data and the high number of outliers observed

motivates outliers’ removal. However we conduct two analysis on results, firstly keeping

outliers, secondly removing them to check the stability of the analysis: since results did not

change after removing the outliers, hereinafter the diagrams and values refer to the data

without outliers.

B. Data description

Figure 34 reports the average time to complete the search (blue) and filter

(yellow) tasks. We can observe a huge difference between the two operations and a time

increasing with the size of the handled document set, especially for the search. This is a

confirmation of the assumption we made while designing the experiment.

Mean and median execution times of all operations are presented in Table 33 with

variability. Standard deviation values indicate a large variability in all task types.

We check whether data distribution fits the normal and the gamma distribution.

Results of the normality tests for Search and Filter operations show that in no combination

of version-operation-size data are neither normally distributed (for both AD and KS tests)

nor follow the Gamma distribution (for both tests as well).

Figure 34. Execution times vs. Document size and operation

0

50

100

150

200

250

300

Small Medium Large

Ti
m

e
(m

s)

Document set size

Search Filter

159

C. Co-factor analysis

We measured the effect of the order of tasks execution, which was randomized in

the experiment design. We investigate whether there is a dependence of execution times on

task order. The null hypothesis that no trend exists is rejected in two cases for search, (all

decreasing: DS-S-M (p-value = 0.0176) and IBC-S-L (p-value=0.0461). The test was

rejected in one filter: IBC-F-M, p-value=0.005, decreasing trend again. Since only 4 times

out of 30 showed trends for different sizes and versions, we can exclude that execution

times systematically degrade or improve due to the order of tasks execution.

D. Hypotheses testing

Figure 35 reports the boxplot of execution times for the filter operation, while

Figure 36 reports the boxplot for the search operation: the colored boxplots indicate the

original application. The vertical lines group boxplots according to the document set size

(first small, then medium, finally large).

To test the hypotheses, we compare the execution of each refactored version (DS,

IBC, UE, ALL) to the original version (OR) time. Table 33 reports the mean and median

difference together with the test p-value. Since the data is not normally distributed we opted

for the non-parametric Mann-Whitney test.

In medium and large searches, the refactored versions were always faster than the

original one as we can easily observe in Figure 36. The p-values reported in Table 33 are

all far smaller than the α threshold therefore we can safely reject the null hypothesis for

the search operation on medium and large sized document sets.

Conversely, based on the information gathered by boxplot observation and

represented by p-values we cannot reject the null hypothesis for search operation on small

document sets.

Concerning the Filter operation, for large document sets the boxplot in Figure 35

provides a clear indication of a significant difference that is confirmed by test results.

160

Therefore we can reject the null hypothesis for the filter operation on large

document sets.

Less clear-cut and consistent results could be found for the medium and small

document sets. Regarding medium sized sets, the null hypothesis can be rejected for all

cases but for the IBC version. While as far as the small document set is concerned, in

general the null hypothesis could not be rejected except for the combined refactoring

version (ALL).

Table 33. Summary of results

Document
set size

App
version

Search Filter

Mean Sd
Delta

means
Median

Delta
median

p-val Mean Sd
Delta

means
Median

Delta
median

p-val

Small

OR 16.71 12.74 16 9.97 7.70 15

DS 21.06 19.33 -4.35 16 0 0.819 9.49 7.86 0.45 15 0 0.55

IBC 15.67 12.31 1.05 16 0 0.476 9.48 7.77 0.45 15 0 0.39

UE 13.93 11.50 2.79 15.5 0 0.253 5.84 7.67 4.09 0 15 0.02

ALL 12.52 16.19 4.20 0 1 0.062 5.22 7.50 4.71 0 15 0.01

Medium

OR 138.35 16.91 140.5 20.77 7.59 16

DS 66.15 15.45 77.50 63 78 <0.001 13.80 8.24 6.97 16 0 0.01

IBC 73.43 13.15 62.50 78 63 <0.001 14.26 8.82 6.50 16 0 0.02

UE 68.23 15.65 77.50 63 63 <0.001 10.85 7.38 9.92 15 1 <0.001

ALL 59.09 11.40 78.50 62 78 <0.001 10.48 7.54 10.28 15 1 <0.001

Large

OR 225.69 15.89 219 31.19 0.40 31

DS 99.35 28.00 126.33 94 125 <0.001 17.06 11.03 14.13 16 15 <0.001

IBC 111.40 32.59 114.29 109 110 <0.001 17.06 8.01 14.13 16 15 <0.001

UE 101.03 16.34 124.65 94 125 <0.001 13.86 5.07 17.33 16 15 <0.001

ALL 95.70 17.82 129.99 94 125 <0.001 12.36 6.58 18.83 16 15 <0.001

161

E. Discussion

The design of this experiment allows us, starting from observed differences in

execution time, to draw conclusion about the time efficiency impact of detected code issues

– the main construct of the design –.

For the large document set we observed a significant search time difference

ranging between 114 and 130 ms (delta of the means) between OR and DS, IBC and UE

versions. Considering the number of documents in the set and hypothetically assuming a

cumulative time gain per document, such difference means that issues are responsible for

around 1ms of delay per retrieved document.

Concerning the filter operation, the differences of the means range between 14 and

19ms. That corresponds to a delay per document of 1ms up to 1.5ms per filtered document.

The above differences are reduced for medium-sized documents sets, and for the

filter operation and the IBS issue it is not statistically significant.

No statistical significance, except in one case, could be observed for the small-

sized document set.

162

To summarize, we observe an impact of FindBugs issues on time efficiency in

medium and large searches (number of documents retrieved ≥ 100) and large filters

(number of documents to filter ≥179).

Figure 35. Boxplot of execution times. Filter

Figure 36. Boxplot of execution times. Search

163

Given an estimated impact of issues in the order of a millisecond per document,

practically significant time efficiency degradation can occur when hundreds, thousands or

millions of issue invocations take place (for example, inside loops).

Moreover, the speed of web application is an important characteristic because it

might deeply affect the user experience. In fact, it is experimentally estimated ([105], [106],

[107] and [108]) that:

− 0.1 second is about the limit for having the user feel that the system is

reacting instantaneously

− 1 second is about the limit for the user’s flow of thought to stay

uninterrupted, even though the user will notice the delay.

So delays should be between 0.1 and 1.0 seconds to avoid negative impact on the

user experience.

In our experiment, the difference between the refactored and the original version

was up to 130ms for the search operations, i.e. beyond the 0.1 limit of the user perception.

Considering that issues are responsible for a delay of about 1 ms per retrieved document,

when the document set is more than 1 thousands of documents the overall delay becomes ≥

1 second. The combined effects of issues deserve some considerations: removing all issues

together (ALL) results into a speed-up that is smaller than the sum of the individual speed-

ups achievable by removing individual issues. In practice we observe a sub-linear sum of

delays when we remove all the occurrences of the three issues.

We conclude this discussion asserting that, based on our results, not all the

inefficiencies of the source code can be mitigated through compilers and virtual machines

optimizations, as also found by Lau et al. [94]. As a consequence, bad programming

practices can lead to performance inefficiencies and ought to be refactored. From this

perspective, we see two important applications of Automatic Static Analysis to code

development:

− it can drive programmers to develop a more efficient code and to refactor

existing code;

164

− it can be applied to code generation tools to produce a more efficient code: as a

matter of fact, 15 out of the 26 issues detections of the experiment were located

in code automatically generated.

In both cases, we see the strong need for triaging and empirical evaluation of

issues that may have a negative impact on performance.

RELATED WORK

We summarize in this section the related work in the field of Java optimization

(A), Automatic Static Analysis (B) and execution time measurement (C). The majority of

discussion is devoted to the first topic: we describe the several approaches commonly

adopted to optimize Java code, listing their benefits and drawbacks and motivating our

choice to focus on HLR level (i.e, source code level) to optimize Java programs.

A. Java optimization

1) Static optimization

The first approach to improve Java code is static, i.e. before execution. Kazi et al.

[92] conducted a survey on this topic: they present the transformation of Java byte code to

an intermediate source code as one of the first attempts to statically optimize code (e.g.

[109], [110]): unfortunately this technique does not guarantee portability. For this reason,

other techniques were developed without impairing portability. For example, it is possible

to apply standard compiler optimizations directly to the Java byte code (e.g. [111] [112]):

however, only a limited number of optimization techniques can be applied to byte code,

because the whole program structure is not available at this level. The two approaches

presented above share a common drawback: they are all based on performance predictions.

Moreover, if the code is written in an inefficient way, the static optimizations are not

powerful make the program efficient. Lau et al. [94] faced this problem, realizing an

experiment that demonstrated the possible inefficiency of such techniques. They modified

the IBMs J9 JIT compiler to measure the total number of cycles spent in a given method.

165

Afterwards they designed an experiment with the goal of evaluating the impact of

optimizations on 101 methods selected from 20 benchmarks. The methods were compiled

twice, with the two highest optimization levels of the J9 JIT compiler (O4 and O5).

Subsequently, they ran them and compared the execution times of these two versions,

obtaining that the highest level (O5) offered substantial speedups only for a small number

of methods, whereas modest effects were observed on the majority of methods. Moreover,

level O5 actually degraded performances relative to O4 for about a third of the methods,

with a negative pick of -21%. Then, the authors repeated the experiment focusing only on a

specific optimization technique, i.e. method inlining. They adopted a subset of the methods

used in the former experiment, comparing the execution time of the methods normally

compiled and the execution time of the methods compiled with inlining optimization. They

obtained that 7 methods were improved by over 10%, but 5 methods degraded by over

10%. These results demonstrate that static optimizations work for the average case, and

they do not assure that code will be actually faster. The possible motivations are two:

overhead introduced by the common services of VMs (e.g.: automatic memory and thread

management, dynamic loading, and so on) and limits of static optimizations.

Our approach is also static but, being located at HLR, limits the two main flip

sides highlighted above: it guarantees portability and it works at the very first level of the

code.

2)Dynamic optimization

The second optimization approach that we present is dynamic, i.e. during program

execution. Techniques belonging to this approach dynamically translate Java bytecode into

native machine code (this is the case of JIT [113] compilation techniques) using adaptive

runtime mechanisms that are executed by the virtual machine during program execution.

Arnold et al. reviewed adaptive optimization technologies [90]. The goal of

adaptive optimization technologies is to improve performance by monitoring a program’s

behavior and using this information to drive optimization decisions. Arnold et al. [90]

identified three main categories: 1) selective optimization, 2) profiling techniques for

feedback-directed optimization (FDO) and 3) feedback-directed code generation. With

166

selective optimization (1) the VM determines at runtime which parts of the program should

be optimized: this solution was firstly proposed by Hansen [114], afterwards many others

have implemented the concepts of his doctoral work. For instance the SELF-93

implementation [115] applied many of Hansens’ techniques, whereas the SELF-91 [116]

was the base for many techniques of the HotSpot Server VM [117].

FDO techniques (2) are focused on the collection of profiling information. Smith

[118] identified three advantages for these techniques: 1) they use dynamic information that

cannot be inferred by static optimizer technologies, 2) they enable the system to change and

revert decisions if conditions change, and 3) runtime binding allows more flexible and

easy-to change software systems. Moreover, FDO can be implemented using different

profiling techniques (runtime service monitoring, hardware performance monitors,

sampling, and program instrumentation). The last pool of techniques is the feedback-

directed code generation (3), whose aim is to improve the quality of the code generated by

an optimizing compiler using different feedbacks. Among these three categories, selective

optimization (1) has obtained a major impact on production systems, serving as a core

technology in many production VMs.

Dynamic optimization solves many limitations of compiler optimization, but they

add overhead during software execution. Moreover, many profiling-based optimizations

can work only on a subset of the possible application inputs.

3)Various techniques

We also found a pool of others techniques, which we list here because they are

applicable only in specific environments.

A first example is the parallelization of loops or recursive procedures ([119],

[120]). This static approach produces high benefits only on source code with a significant

amount of parallelism.

A second approach is the development of ad-hoc Java processors (e.g., [121] [122]

[123] [124]) that execute the Java byte code as their native instruction set. This solution

permits to highly improve the time efficiency of programs, but the cost to pay is a processor

167

optimized just for Java, therefore other programming languages achieve poor efficiency on

them.

Higher performance is also achievable by focusing on those JVM features such as

garbage collection, exception handling or thread synchronization that are the bottlenecks of

the execution time because they add overhead (for instance [125]).

A totally different set of problems arises when Java is executed in parallel and

distributed environments [126]. The bottleneck in this case is the performance of the

message passing, multithreading and synchronization mechanisms.

The few approaches listed in this section do not represent a comprehensive list of

all various techniques. However, this small set is sufficient to draw the following

consideration: though very efficient ad-hoc solutions are present in the literature and are

applied in industry, they work very well only for very specific requirements and types of

applications, and they are not generalizable.

4)High level optimization

Little effort is dedicated to the exploration of techniques to optimize HLR, i.e. the

code written by programmers or generated through modeling systems. Many books on Java

source code optimization can be found in the literature, but no empirical evaluations that

assess and quantify the benefits of applying optimization at HLR level. Kernighan [127]

reserved a chapter of his book to performance, identifying possible bottleneck in programs

and suggesting simple profiling mechanisms and strategies to tune programs. Few years

later, Shirazi [128] offered to programmers a wider collection of tips about efficient

programming, related to Object creation and reuse, efficient use of Strings, Exceptions,

variables, or suggestions on how to tune loops. The author also provided some comparisons

of timings and performance tuning checklists for developers.

Other books dedicated to the performance problem from a programmer perspective

are written by Wilson and Kesselman [129] and Bentley [130]. Moreover, there is a lot of

work in the “grey” literature (for instance [131] [132] [133]), but no evaluations are

provided.

168

This work provides a quantitative assessment of the impact of HRL optimizations

detectable by automatic static analysis. Our former study [134] was conducted with a

similar goal, but in a laboratory setting. In that work 20 FindBugs issues were selected and

for each of them two source code fragments were prepared: one containing the issue and the

corresponding refactored version, functionally identical but without the issue. Then three

different platforms, isolated from network and other user programs to limit overhead due

the execution environment, were used to execute a large number of times the code

fragments measuring the execution time of both code versions. The authors found that

eleven issues have an actual negative impact on performance in all platforms (up to 6 times

slower). Among the eleven issues, the inefficient boolean constructor (IBC) was also

proved to degrade the time efficiency. The dead store DS had a negative impact on two

platforms over three. The useless exception (UE) was not tested.

The methodology used in this paper is similar; however we proved the effect of

code issues in a real industrial application, with real usage scenarios.

B. Measurement of execution time

The efficiency of a software function, in terms of time behavior, is evaluated by

computing or measuring the execution time. Measuring the execution time is not trivial

because it is not deterministic, but it has a certain variation. In fact, the program behavior

can be modeled with the following equation [135]:

Program Behaviors = Inputs + Code + Environments. The running environments

consist of all the elements in the execution platform (architecture, virtual machine, parallel

threads or processes, operating system, and so on); program inputs determine the path

executed or data to be accessed. Finally, the program code determines the set of instructions

that may be executed in a path. The variability coming from software (operating system,

programs, processes and threads) could make execution times unpredictable. For this

reason, there is a best-case execution time (BCET), i.e. the shortest possible execution time,

and a worst-case execution time (WCET), i.e. the longest possible execution time. It is

possible to use two techniques to determine the BCET and the WCET [83]. The first

approach is the use of static methods: the code and the possible paths are analyzed and,

169

combining different techniques, upper and lower bounds for the execution time are

provided. This methodology does not take into account the hardware and the platform on

which the code is executed, hence the bounds overestimate the WCET and underestimate

the BCET and the variability is determined only by input data and code. The second

method is measurement-based: the code, or a portion of it, is executed on a given hardware

or a simulator for a set of inputs, and the pair WCET/BCET is obtained from direct

observation. This method provides estimates and not bounds, underestimating the WCET

and overestimating the BCET. Despite the high number of techniques developed for both

approaches, the problem for WCET analysis in the field of Java applications has not been

deeply examined yet: Harmon and Klefstad conducted a survey of WCET analysis for Real-

Time Java [84], but they were able to find fewer than twenty publications addressing the

problem, and typical issues like the precision of measures and their generalizability are still

open.

We adopted in this work a measurement-based approach to measure the execution

time, using a profiling tool.

170

4.4. CONCLUSIONS

In the first experiment, we set up an experiment to quantitatively assess the impact

of selected FindBugs issues on time efficiency. We selected, through expert judgments, 20

representative issues and for each one we compared the average execution time of a code

fragment containing that issue against the same code with the issue refactored out. The

measurements were conducted on three different platforms.

Experts’ examination of issues revealed that, mainly because FindBugs issue

taxonomy is exclusive, a few issues having a potential impact on performance in fact do not

belong to the Performance category. Moreover experiment revealed that 3 out of 11 verified

issues do not belong to the Performance category, while 2 out of 3 unverified issues belong

– apparently without justification – to that category. Overall, based on our findings we can

select 11 issues that have a proved and quantified impact on time efficiency

The second experiment was performed with an industrial application. We

quantitatively assessed the impact on performance of three code patterns identified as issues

by FindBugs. The issues are: dead store to local variable, useless try-catch block and

inefficient construction of Boolean objects. We instrumented an industrial Java web

application on two commonly executed operations: a search that retrieves documents from

a remote repository, and a filter that works on the output of the search. A co-factor included

in the experiment design is the document set size, for which we identified three levels:

small, medium and large number of documents retrieved.

We observe a significant effect of issues on searches on medium and large

document sets, and on filter on large documents sets. The estimated overall delays ranged

from 19 ms (filter) to 130 ms (search), and the execution time of the refactored code

version was up to two times faster. Moreover, the delay inserted in large searches is beyond

the threshold of the user perception of 100ms, thus implying a perceivable effect. We also

observed that issues are responsible from 1 ms to 1.5 ms of delay per retrieved document:

the time efficiency degradation for thousands of documents has a noticeable impact.

171

The information we provide is useful to practitioners to estimate potential delays

introduced by the three code patterns in similar applications and to tune the ASA tools to

identify and refactor them on source code.

In both experiments, results proved that bad programming practices can lead to

significant performance degradation. Automatic Static Analysis can play an important role

in this scenario, either driving programmers or tuning code generation tools to produce

more efficient code.

172

5 FUTURE RESEARCH CHALLENGES

This chapter is devoted to the future research challenges for Automatic Static

Analysis.

The first challenge is ASA for multi-language projects. Most software systems are

complex and composed of a large number of artifacts. To realize each different artifact

specific techniques are used resorting to different abstractions, languages and tools.

Successful composition of different elements requires coherence among them.

Unfortunately constraints between artifacts written in different languages are usually not

formally expressed nor checked by automatic static analysis tools; as a consequence they

can be a source of problems. We explore the role of the relations between artifacts written

in different languages by means of a case study on the Hadoop open source project, in

which we quantify the phenomenon and investigate its relation with defect proneness.

The second identified challenge is ASA for energy efficiency.

The assessment of the impact of software over IT power consumption is still at its

initial phase. However, recent works suggest how this contribution might be even more

significant as the hardware evolves towards more powerful and scalable architectures.

Thus, optimizing software in terms of energy efficiency is one of the challenges that both

research and industry will have to face in the next few years. Previous works have shown

how software optimization might be achieved through identifying and refactoring code

patterns that negatively impact a certain software characteristic, such as maintainability or

efficiency. Those code patterns have been defined as Code Smells. If we consider energy

efficiency as a software characteristic, we can apply the same idea of Code Smells

identifying those code patterns, hereby defined as Energy Code Smells, which might

increase the impact of software over power consumption.

173

5.1. LANGUAGE INTERACTION AND QUALITY ISSUES:
AN EXPLORATORY STUDY

Most software projects nowadays are polyglot, i.e. files written using different

languages interact with each other. Wampler et al. [136] introduced a special issue on this

topic writing “Most teams are by necessity MPP [Multi-Paradigm programming] teams

now. No one writes in a single language anymore. Even trivial applications have a general-

purpose language, SQL, JavaScript, CSS, and dozens of frameworks, each of which

includes an external DSL [Domain Specific Language] (usually in XML) that is its own

mini language (the syntax is XML, but the XMLSchema defines the semantics)”.

Given this scenario we seek to study the effects of language interaction and

eventually evolve development techniques and supporting tools to consider these aspects.

Nowadays tools used by developers help them only to verify the consistency internal to a

language, i.e. consistency within a set of artifacts written in the same language. For

example, editors check that an expression in Java code invokes a Java method which exists

in the codebase, either in the same file or in another Java file. On the other hand there are

major limitations in verifying the consistency across the language boundaries. For example

can tools help the developer to understand immediately if a piece of XML code used for

configuration refers to a really existing Java class? Normally currently available tools

cannot do this because they are not aware of the cross-language semantics.

While the issue of language interaction is already very relevant today, the

appearance of language workbenches [137] let us suppose that this issue is going to become

even more important in the future. For example, with Xtext [138] and GMF [139] we can

create, textual and graphical DSLs with custom editors integrated in the Eclipse platform

with a minimal effort. Other tools like Intentional Software [140] and the Meta-

Programming System [141] fully support the Language Oriented Programming paradigm

[142] and are based on projectional editing. The existence of these tools and their usage in

industrial projects [143] seem to indicate that the interaction between languages in projects

will increase in the future.

174

Pfeiffer et al. [144] conducted a study related to language interaction. They

realized a tool named GenDeMoG to mine inter-languages interaction based on text

analysis. Their work was motivated by observing the amount of errors introduced by

undocumented relations that cross the language border (i.e., they involve modules written

in different languages) and the resulting complexity.

Our hypothesis is that in the long run we need to support cross language

development, including design, modeling, and validation. To reach this goal we first need

to start understanding the effects of languages interaction: this work is intended as a first

step in that direction.

DEFINITIONS

Before stating our goals and translating them into actionable research questions,

we define how we do identify and measure the languages interaction. We provide here a list

of definitions used throughout the rest of the paper.

Module: we considered a module each single file.

We consider a commit16 as a unit of work, consequently we suppose that files

committed together are related.

Intra-language commit (ILC): a commit containing a set of modules with the

same extension.

Cross-language commit (CLC): a commit containing modules with different

extensions.

Cross-language commit for an extension (࢚࢞ࢋ࡯ࡸ࡯): a CLC containing that

includes modules with the extension ext.

Defect fix: a commit executed to fix a defect.

We consider a module to be cross language when it is related to modules written

in a different language (e.g., a Java file loading the configuration from an XML file). To

measure how much a module is cross language we analyze its history: if the module was

16 We refer to the term commit as used in the context of version control systems.

175

frequently committed with files written in other languages we consider that as an indicator

of interaction between the module and those files. This interaction is measured through

different variants of the cross language ratio (CLR).

Cross language ratio of a module (࢓ࡾࡸ࡯): the CLR of a module m is the

fraction of cross-language commits in which m was involved with regard to the total

number of commits regarding the module (both intra-language and cross-language): ܴܮܥ௠ =	 ܥܮܥ	#ܥܮܥ	# + 	ܥܮܫ	#
Cross language ratio of a module with regard to an extension (࢚࢞ࢋ,࢓ࡾࡸ࡯): the

CLR of a module m considering as CLC only the commits involving m and a module with

extension ext: ܴܮܥ௠,௘௫௧ = 	 ௘௫௧ܥܮܥ	#௘௫௧ܥܮܥ	# + 	ܥܮܫ	#
Cross language ratio of an extension (࢚࢞ࢋࡾࡸ࡯): for each extension ext we

compute its cross language ratio as the mean of the ܴܮܥ௠ considering all modules having

extension ext: ܴܮܥ௘௫௧ = ௠ܴܮܥ∑	 ,݉ ∈ #ݐݔ݁ ∗. ݐݔ݁ 	
Cross language ratio of an extension extA with respect to an extension extB

௘௫௧஺,௘௫௧஻ܴܮܥ :௠,௘௫௧஻ among all modules m with extension extAܴܮܥ the mean of :(࡮࢚࢞ࢋ,࡭࢚࢞ࢋࡾࡸ࡯) = ௠,௘௫௧஻ܴܮܥ∑	 ,݉ ∈ #ܣݐݔ݁ ∗. ܣݐݔ݁

Cross Language Module (CLM): a module is cross language if its CLR is ≥

tCLM%, where tCLM is a threshold to be defined.

Intra Language Modules (ILM): a module is intra language if its CLR is <

tILM%, where tILM is a threshold to be defined.

176

GOALS, RESEARCH QUESTIONS AND METRICS

 The goal of this preliminary study is two-fold. Firstly we investigate the level of

languages interaction in a common project. Secondly, we verify whether the level of

interaction is related to quality problems. We look at defects as a proxy of software external

quality. We identify two research questions related to the first goal.

RQ1 How much interaction is there among the languages present in a project?

The interaction is computed as the percentage of CLC among a set of commits.

First we consider all type of commits (RQ1.1), then (RQ1.2) we consider separately the

commits related to a particular activity (e.g., improvement, bug fixing, new feature).

Once we have defined the size of the phenomenon by answering to RQ1, we will

go deeper considering the behavior of each single extension.

RQ2 Which extensions interact more?

The second research question is answered at two levels, i.e. firstly investigating the

relationship between one extension versus all the other extensions (RQ2.1), then analyzing

the most interacting pairs of extensions (RQ2.2).

We answer RQ2.1 computing the ܴܮܥ௘௫௧ for each extension, while we answer RQ

2.2 computing the ܴܮܥ௘௫௧஺,௘௫௧஻ for all pairs of extensions.

The last research question is related to the second goal, i.e. investigating whether a

high interaction between languages might result in higher defect proneness.

RQ3 Are Cross Language Modules more defect-prone?

We answer RQ 3 computing the number of Cross Language Modules (CLM) with

and without defects, and the number of Intra Language Modules (ILM) also with and

without defects. Then we compare the two proportions with/without defects by means of

the F-test to see whether the proportion of Cross Language Modules with defects is

different from the one of Intra Language modules.

This metric is computed at three granularity levels:

− considering all files regardless of their extension (RQ3.1),

177

− considering for each single extension its level of interaction with all the other

extensions as aggregate (RQ3.2),

− considering interaction between specific ordered pairs of extensions (RQ3.3).

CASE STUDY

This exploratory study aims at understanding the phenomenon of language

interaction and derived quality issues. We also use it to investigate whether the

methodology defined above is applicable. We selected as a case study Apache Hadoop17,

which is a set of libraries to support distributed data processing. We selected Hadoop

because it is a mature project (it is supported since April 2006) and it is used in many

industrial applications (e.g., Yahoo, and Facebook).

Our methodology for computing the metrics defined above is based upon the fact

that Hadoop uses SVN18 to manage artifacts versions and JIRA19 to track not only defects

but any other activity that can be associated with software artifacts. Those elements are

called “JIRA issues”, and each project has its own set of issues. Example of JIRA issues are

the implementation of a new feature, a single implementation task, a bug report, and so on.

Hadoop developers established links between commits in the SVN code repository to JIRA

issues by systematically including issue ids in their SVN commit comments.

We downloaded the SVN log from the Hadoop repository (last revision retrieved

is the 1233090, from 01/18/2012, the first available revision is the 776174 from 5/19/2009).

We also extracted all JIRA issues from the Apache JIRA database.

We computed all modules CLRm and observed their distribution: about 30% of

modules have CLRm between 0 and 0.1, and about 55% files have CLRm between 0.9 and 1.

Given these percentage and given that the remaining files have a positive (right) skewed

distribution, we decided to use as thresholds tCLM=tILM=50% to define CLM and ILM

modules.

17 http://hadoop.apache.org
18 http://subversion.tigris.org/
19 http://www.atlassian.com/software/jira/overview

178

RESULTS AND DISCUSSION

Table 34 reports the percentage of cross language commits in the Hadoop

repository: 53% of all commits (first column) are CLC, i.e. containing files of different

languages. Looking at the portion of CLC related to the different activities (i.e., JIRA

issues), we observe that their percentage varies with respect to the type of issue (from 2nd to

last column in Table 34). It goes from a minimum of 5% in commits related to Test up to a

maximum of 45% in Sub Tasks (since not all issues are linked to JIRA issues, the mean

“All” in the first column is not related to the other means in the following columns).

RQ 1.1 answer: the 53% of commits in Hadoop are cross language.

RQ 1.2 answer: looking at the single activities, we derive that writing/modifying

tests or fixing bugs are activities that involve mainly a single language, while adding new

features is an activity that involves multiple types (or at least extensions).

We now proceed to RQ 2.1 and 2.2. Table 35 contains the top 5 extensions in

terms of number of files: c, sh, properties, xml and java. Among them, four extensions

correspond to programming languages and one is used for configuration files.

Subsequently, we compute the CLRextA,extB for all combinations of the five extensions .

Table 36 reports the CLRextA,extB.

RQ 2.1 answer: all most common extensions in Hadoop are highly interacting with

other extensions (i.e., CLRext, > 0.50).

RQ2.2 answer: the most frequent interactions (CLRextA,extB ≥ 0.50) are: C-XML

(0.83), Properties-Java (0.54), XML-Java (0.52), C-Java (0.51), C-sh(0.50). Border values

are: Java-XML (0.48), sh-XML (0.47) Properties-XML (0.46), and XML-Properties (0.43).

We observe that the only pairs with frequent interactions in both directions are

Java-XML and Properties-XML. All the other pairs have frequent interactions in only one

direction. For instance, CLRXML-C = 0.04 and CLRC-XML=0.83 means that most of the

commits involving C contain also XML files, but not the other way around.

179

We now focus on the last RQ, i.e. on the relation between languages interaction

and defect proneness. Table 38 contains metrics to answer RQ 3.1 (first line) and RQ 3.2

Table 34. Percentage of cross language commits (RQ 1)

All Bug Improvement New

Feature
Sub

task
Task Test

0.53 0.12 0.26 0.30 0.45 0.26 0.05

Table 35. CLRext (RQ 2.1)

CLRext Nr files Extension

0.96 49 c

0.87 114 sh

0.72 75 properties

0.71 320 xml

0.59 4328 java

Table 36. CLR_(extA,extB) (RQ 2.2)

extA/extB C Java Properties Sh XML

C - 0.51 0.10 0.50 0.83

Java 0.01 - 0.28 0.04 0.48

Properties 0 0.54 - 0.36 0.46

Sh 0.09 0.22 0.24 - 0.47

Xml 0.04 0.52 0.43 0.24 -

Table 37. Odds ratio of the defectivity in respect to the relation between pairs of extensions (RQ 3.3)

 C Java Properties sh XML

C - Inf 0 0 Inf

Java 2.79 - 0.32 0.43 0.96

Properties Inf 1 - 12.08 0.94

Sh 3.55 4.45 17.17 - 7.44

Xml 3.83 0.95 3.22 4.73 -

180

(from 2nd to last line). The following columns contain, in the order: the number of ILM with

no defects and then with at least one defect, the number of CLM with no defects and then

with at least one defect, the p-value of the F-test and finally the odds ratios (which is

greater than 1 when CLM are more defect prone than ILM).

RQ 3.1 answer: considering all extensions, ILM are more defect prone that CLM

(about 5 times less).

RQ 3.2 answer: considering the five most common extensions, we observe that

three extensions (XML, Properties and C) have CLM with higher defect proneness, while

two extensions (Java and Sh) exhibit the opposite relation.

Among the above differences, only all extensions and Java are statistically

significant (p-value ≤ 0.05).

Finally, Table 37 contains the odds for each pair of extensions to answer to RQ

3.3. We report in bold the values for which we obtained a p-value ≤ 0.05. We observe 7

pairs for which ILM are less defect prone than CLM, 12 pairs with CLM more defect prone

than ILM and one pair with odds ratio =1. We consider only values with p-value ≤ 0.05 to

answer RQ 3.3.

RQ 3.3 answer:

− four extension pairs have CLM more defect prone then ILM (C-Java, C-

XML, Properties-C, Sh-C),

− five extension pairs have ILM more defect prone then CLM (C-

Properties, C-sh, Java-XML, Properties-XML, XML-Java)

Table 38. Relation between classification in ILM and CLM and presence of defects (RQ 3.1 and 3.2)

 RQ MN MY CN CY P Odds

all 2 1891 225 2875 89 0.000 0.26

c 2.1 2 0 46 1 1.000 Inf

java 2.1 1692 201 2239 25 0.000 0.09

properties 2.1 19 1 45 7 0.429 2.92

sh 2.1 10 5 64 13 0.162 0.41

xml 2.1 96 11 184 24 0.851 1.14

181

− one extension pair have exactly same defect proneness (Properties-

Java).

We notice that interactions where CLM results more defect prone involve always

the C files. While interactions where ILM results more defect prone involve mainly XML,

however C is also present. An interesting fact is that the pair Sh-C is in the first set, the pair

C-sh is in the second. Besides these considerations, we do not have an unique answer for

RQ3. However, we observe that having languages interacting with other languages is

related to higher defect proneness for certain languages (mainly C) and specific

interactions.

THREATS TO VALIDITY

Internal: in this exploratory case-study different aspects were not considered. In

particular we did not examine all the possible confounding factors influencing the defect

proneness of the modules. Among them the age and the size of modules (expressed in LOC,

for example) are the most relevant ones.

We discriminated between modules on their names while the same module can

change name in the course of the project. We grouped the files by their extension while a

different extension could not always indicate a different language.

Construction: we are unable to measure directly the interaction between modules

written in different languages and consequently we use as a proxy their concurrent presence

in the same commits, which may be an imprecise approximation.

External: another threat is due to selection bias: we have no particular reason to

believe that Hadoop is representative of other software projects. Of course having

considered only one project generalization of the results presented is not possible at all.

182

CONCLUSIONS AND FUTURE WORK

Although we do not have unique answers, the results and observations from this

exploratory study let us understand that the problem is worthy to be investigated. In fact we

observed that more than half of the commits in Hadoop are cross language (at least

according to our definition). However we also observed that this property depends on the

type of the activities and the extensions of the modules.

Commits related to testing or fixing bugs involve mainly a single language, while

adding new features or doing implementation sub-task are activities which involve multiple

languages (or at least extensions).

Looking at the single extensions, we verified that the most common extensions are

frequently changed together with files with different extensions. Frequent interactions are

generally not symmetric, and many of them involve XML.

When we look at defect proneness, we observe that for Java modules the

interactions with other languages (as an aggregate) is not problematic at all: we observed

that Java CLMs files are ten times less defect prone than ILMs. However, when looking at

single pairs of interactions, we notice that several pairs have CLM significantly more defect

prone then ILM, especially C modules. Finally, the widespread interaction between Java

and XML apparently is not related to defect proneness.

Today Automatic Static Analysis tools cannot cross the boundaries of the

languages and are not able to analyze the interactions between languages [2]. This study

represents a first step in understanding the phenomenon of languages interaction and it let

us hypothesize that the interaction of languages might be problematic for specific languages

interactions.

The new challenge for Automatic Static Analysis is to become polyglot.

183

5.2. DEFINITION, IMPLEMENTATION AND VALIDATION OF

ENERGY CODE SMELLS

The issue of sustainability is starting to be addressed among the software

engineering community. Although during the First International Workshop on Green and

Sustainable Software20 there was a common agreement that sustainability is and will be a

key aspect of software, it is still unclear how to design sustainable software. While for other

characteristics (reliability, performance, security, etc.) processes and metrics have been

proposed and widely investigated by the SE community, as regards sustainability the

discussion is still in its initial phase. In addition to that, software sustainability has an

intrinsic difficulty because the topic invests not only technological aspects, but also

economic, social and environmental, which are under the broad umbrella of sustainability

as defined in 1987 by the Bruntland commission .

Among the kaleidoscope of aspects related to software sustainability, one of the

most visible is the energy (or, alternatively, power) consumption of software systems.

Indeed, software does not consume energy directly, however it has a direct influence on the

energy consumption of the hardware underneath. In fact, applications and operating

systems indicate how the information is processed and, consequently, drive the hardware

behaviour: previous work [145] suggested that software can increase the total power

consumption of a computer system up to 10%. This and other initial findings [146] open

investigation spaces on the optimization of energy and power consumption of IT devices

acting on the software instead of the hardware. Moreover, nowadays the same software runs

on multiple devices, thus it might be more productive and feasible for software houses to

green the single software rather than relying on the greening of all the hardware

implementations underneath (that could require competences commonly not owned by

software houses).

Optimizing a software product in terms of energy efficiency has also some issues.

The absence of a standard procedure, or a benchmark, to compare systems is the most

20 http://greens.cs.vu.nl/?page_id=1262

184

prominent one. This is because software is intangible and it is deployed on devices with

their own specifications and features. This makes really difficult to standardize a

transparent, platform-independent measuring system for every software system.

Another consideration must be done regarding software architectures. During the

last years, software engineers always tried to increase the number of software layers - that

is, for improving interoperability, abstraction, decoupling, etc. However, the steep increase

of software layers directed the optimization efforts only on each layer (“horizontal”

optimization) and not across them (“vertical” optimization). Since energy efficiency

directly relates with hardware technologies, a more intense communication flow between

hardware and software is needed to achieve significant optimizations. In this sense,

embedded systems make a perfect case study, because their architecture is simplified by

design, and also because power consumption issues acquire a peculiar importance, for

operational reasons (most embedded systems are battery-powered).

For this reason our work uses an embedded system as the test-bed to validate a

new approach for the design and implementation of sustainable software. We investigate,

and here we also introduce the goal and main contribution of this study, how software can

be optimized by identifying code patterns that use in a sub-optimal way the hardware

resources. These code patterns ought to be refactored in order to improve the energy

efficiency of the software at run time. We define and name the code patterns Energy Code

Smells, inspired by the well-known book of Fowler and Beck [62].

GREEN CODE SMELLS: BACKGROUND AND DEFINITION

The term “code smells” was coined by Fowler and Beck [62] referring to poor

implementation choices that make the software difficult to maintain. These bad

implementation practices can be characterized as patterns in source code. For instance, the

smell “Long Method” refers to a method that has grown too large: typically, the longer is

the method the more difficult is to maintain it. One or more refactoring actions are

associated to code smells: for example all you have to do to refactor a Long Method is to

185

extract parts of the method that seem to go nicely together and make a new method. As a

result the original method is shorter and easier to maintain. The goal of identifying and

refactoring code smells is to make the code more understandable and flexible to evolution,

i.e. more maintainable, and many studies in the literature have been devoted to this aspect

[69] [147]. However refactoring code smells might have an effect also on other properties

of the software, such as the portability, the testability or, as in the case of this work, the

energy efficiency of the code. As a consequence, we take inspiration by the original work

of Fowler and Beck and we introduce the concept of smells into the Green IT community,

introducing the Green Smells:

A Green Smell is an implementation choice that makes the software execution less

energy efficient.

Since software has different levels of abstractions and organizations, Green Smells

can be located at code, design or architectural level. Therefore, Green Code Smells are

implementation choices at source code level (code patterns) that make a sub-optimal usage

of the hardware resources underneath. As a consequence, they provoke a higher energy (or

alternatively, power) consumption.

VALIDATION OF ENERGY CODE SMELLS

The aim of our research is to identify Energy Code Smells. In addition to that, we

are also interested in understanding whether the Energy Code Smells also degrade the

performances of the application in terms of execution time. We set up two research

questions for our investigation:

RQ1. Which code patterns have an effect on power consumption (i.e. which code

patterns are Energy Code Smells)?

RQ2. Code smells that have an effect on execution time do also have an effect on

energy consumption (i.e. are Energy Code Smells also Performance Smells) ?

The epistemological approach adopted for this research is the empirical one. We

set up an experiment observing two dependent variables: power consumption (W) for RQ1

186

and execution time (ms) for RQ2. The two dependent variables are measured on the

execution of C++ functions running on an embedded device. The choice of the embedded

device has several advantages, the main two being:

− it has no operating system and thus confounding factors in the experiment are

minimized;

− it runs on a battery and it really needs energy efficient code.

In other terms, refactoring Energy Code Smells in such an environment might

lengthen the life of the battery.

The potential Energy Code Smells selected for the experiment are code patterns

used by two popular static analysis tools. For each code pattern selected for the experiment,

we set up a C++ function with two implementations, one that violates the code pattern (thus

contains a Code Smell) and the refactored one without the violation. Therefore the

treatment is the refactoring of the smell and it is possible to observe an effect on the two

variables by comparing the measurements on the two versions of the code. Figure 37

represents the design described.

POTENTIAL ENERGY CODE SMELLS SELECTION

As introduced above, the software that runs on the selected device is C++ code. In

order to identify Energy Code Smells on C++ code we look at already existing code

patterns. In particular, we examined patterns implemented by Automatic Static Analysis

Figure 37. Experiment design

187

(ASA) tools. The two tools selected for this study are Cpp-Check21 and Findbugs22.

CppCheck is a well-known static analysis tool for C/C++ which contains many patterns

regarding a variety of desired software properties: safety, portability, performance, etc . An

example of C/C++ pattern on portability is “64 bits portability”, i.e. assign address to int or

long. An example of checked pattern on performance is instead “Address not taken” of the

category “Memory leaks”, which detects when the address to allocated memory is not

taken. In order to identify which patterns can be considered relevant for energy efficiency,

two of the authors carefully read all patterns and selected independently which ones could

cause a higher power consumption of the Waspmote. All conflicts (a pattern selected by

21 http://cppcheck.sourceforge.net/, last visited on September 13th, 2012
22 http://findbugs.sourceforge.net/, last visited on September 13th, 2012

188

only one expert) were resolved in a reconciliation meeting, where patterns were discussed

and a final decision taken. In addition to the Cpp-Check patterns, we also reviewed the

patterns of another static analysis tool, Findbugs. It is similar to Cpp-Check, but it analyzes

Java code. The same two authors reviewed all FindBugs patterns and decided firstly if they

can be applied to C++ code, then whether they might be related to energy efficiency. The

selection process ended up with the patterns shown in Table 39.

Subsequently, we wrote for each of the patterns a pair of C++ functions, one

Table 39. Potential Energy Code Smells Selected for validation

 Pattern Name Pattern Description Tool

Parameter By Value Passing a parameter by value to a function CppCheck

Self Assignment Assignment of a variable to itself. (e.g.,
x=x).

CppCheck

Mutual Exclusion OR OR operator between two mutually
exclusive conditions (thus always
evaluating to true).

CppCheck

Switch Redundant Assignment Redundant assignment in a switch
statement: for example, assigning a value
to a variable in a case block without a
following break instruction, then re-
assigning another value to the same
variable in the subsequent case block.

CppCheck

Dead Local Store A statement assigning a value to a local
variable, which is not read or used in any
subsequent instruction.

FindBugs

Dead Local Store Return A return statement assigning a value to a
local variable, which is not read or used in
any subsequent instruction. (i.e.
return(x=1);)

FindBugs

Repeated Conditionals A condition evaluated twice (e.g., x==0 —
— x==0).

FindBugs

Non Short Circuit Code using non-short-circuit logic boolean
operators (e.g., & or |) rather than short-
circuit logic ones (&& or ||). Non-short-
circuit logic causes both sides of the
expression to be evaluated even when the
result can be inferred from knowing the
left-hand side.

FindBugs

Useless Control Flow Control flow constructs which do not
modify the flow of the program, regardless
of whether or not the branch is taken (e.g.,
an if statement with an empty body).

FindBugs

189

containing a potential smell and another one refactored without that smell. For example, the

“Non-Short Circuit Logic” pattern has the following two functions:

void NonShortCircuit With(){

int count = 0;

int total = 345;

if (count > 0 & total / count > 80)

count=0;

}

void NonShortCircuit Without(){

int count = 0;

int total = 345;

if (count > 0 && total / count > 80)

count=0;

}

The function NonShortCircuit With() is the one with the potential smell “Non-

short circuit logic”. The smell is in the line if(count>0 & total/count>80) because the AND

operator is single & and so both predicates in the expressions will be evaluated at run-time.

In the function, NonShortCircuit Without() the code is refactored replacing & with &&. All

functions are available online for the sake of replication23.

EXPERIMENT SETUP

A. Context: the WASP

The device used for the experiment is the Waspmote V1.1 (Libelium

Comunicaciones Distribuidas S.L. Esso). The hardware architecture is based on a ATmega

1281 microcontroller with a CPU frequency of 8 MHz and 8KB of SRAM. It has no

operating system: programs are directly loaded on a FLASH memory of 128 K. This

23 http:softeng.polito.it/greensmells/

190

architecture well suites our experiment because no other threads run in parallel with the

chosen program, thus eliminating any software noise for the energy measurement. The

device is basically a motherboard with connectors to plug in other elements such as sensors,

wireless modules (ZigBee, XBee, Bluetooth), GSM/GPRS modules and a GPS (Global

Positioning System) module. For this reason it is used in different fields, such as Smart

Metering, Building Automation, Agriculture etc. It runs on a lithium battery (3.7V and

1150mAh), so the energy consumption of software has a key role here. To compile and

load the C++ programs it is sufficient to use the IDE provided by the manufacturer and

connect it to a computer via USB cable.

B. Experiment setup

The objective of the experiment is to measure power consumption and execution

time on each function pair, in order to evaluate if the potential smell affects the two

dependent variables. We divide the experiment in two parts: one for measuring power

consumption, and another one for the execution time.

Measuring power consumption and execution time for a single function is a

challenging task because usually execution is too fast to get reliable data. We control this

threat repeating each function 1 million of times, that makes one sample. We collect 50

sample in order to reach statistical significance. Each function pair is loaded on the

Waspmote and evaluated two times: the first one for the execution time, the latter one for

the power consumption.

No specific instrumentation was needed to obtain the execution time, because the

Waspmote embeds a Real-Time Clock (RTC) with a millisecond accuracy. We measure the

execution time of every loop (i.e. 50 measurements).

On the other side, analyzing power consumption is more complicated. The only

way to obtain a precise measure of the power consumption is using a power meter. The

RTC is powered by an auxiliary battery, which makes it completely independent from the

main power supply. Therefore it is possible to power the Waspmote with a constant voltage

191

(VG = 3.7 V) by means of a generator, and use a shunt resistor24 to measure the current

intensity. An analog to digital converter (ADC) connected to the PC reads the voltage drop

across a resistor R of 1 Ω. The current flowing in the circuit can be computed by measuring

the voltage drop on the resistor (ܫ = ஺ܸ஽஼/ܴ). The instant power consumption value can be

computed as: ܲ = ௅ܸ ⋅ ܫ = (ܸீ − ஺ܸ஽஼) ஺ܸ஽஼ܴ = ܸீ ஺ܸ஽஼ − ஺ܸ஽஼ଶܴ

Figure 38 represents the circuit described.

The device used to measure the power consumption has a frequency of 49KHz, i.e.

it gets 49000 measurements each second. In order to precisely measure the power

consumption relative to the execution of the function pairs, we inserted a sleep interval at

the beginning of the data acquisition to exclude the peak of device power on, and we

filtered out, through a threshold, all the measurements corresponding to the idle

consumption between the iterations of the function execution. As shown in Figure 39, the

threshold filters out the transient and includes only the peaks corresponding to the actual

execution of the function.

C. Analysis methodology

For each research question we derived a pair of null and alternative hypotheses to

test.

24 http://en.wikipedia.org/wiki/Shunt_(electrical)#Use_in_current_measuring, last visited September 13th, 2012

192

RQ1:

H10 : Pwith⩽Pwithout

H1a : Pwith>Pwithout

where P is the power consumption of the function, with and without the potential

smell. If the refactored version of the function consumes less than the function with the

Figure 38. Circuit built to measure the power consumption

Figure 39. Sampling current intensity: an example

193

smell, the null hypothesis is rejected in favor of the alternative one. As a consequence we

consider the pattern an Energy Code Smell. The hypothesis is tested with the Mann-

Whitney test, given α=0.05.

RQ2:

H20 : Twith⩽Twithout

H2a : Twith>Twithout

where T is the execution time of the two functions. If the smell has a negative

impact on performance, the refactored function will be faster and the null hypothesis is

rejected. In that case, we consider the pattern a Performance Smell. In order to answer RQ2,

we compare which Energy Code Smells are also Performance Smells. We also use Mann-

Whitney and α=0.05 to test the hypotheses.

At the end of the experiment each function has 50 measurements of execution time

and about 25 millions of power measures. Then, after filtering out values below the idle

threshold (8mW), we obtained about 8 million values for power measurement, on which we

ran the analysis.

RESULTS

We report results on the power consumption and execution time respectively in

Table 40 and Table 41. The two tables report the name of the smell, the means and their

difference for both the dependent variables, the p-value of the Mann Whitney test and the

difference in percentage of the power consumption (or execution time) between the

execution of the code with the smell and the execution with the refactored code.

We observe from Table 40 that all power consumptions ranged from 40mW to

about 42mW. Five code patterns over nine have a p-value < 0.05 (in bold) and therefore the

null hypothesis is rejected for them. The code patterns are:

− DeadLocalStore

− NonShortCircuit

194

− ParameterByValue

− RepeatedConditionals

− SelfAssignment

Overall the saved power consumption is less than 1%. The answer to RQ1 is:

five code patterns (DeadLocalStore, NonShortCircuit, ParameterByValue,

RepeatedConditionals, SelfAssignment) are Energy Code Smells, and their impact is in the

order of μW.

Focusing on performance, from Table 41 becomes evident that there is no

difference in execution time. The null hypothesis is rejected only for MutualExclusionOr,

however the magnitudo order is μ seconds. We also notice that DeadLocalStores are about

5 times slower.

Thus, our answer to RQ2 is: Energy Code Smells are not Performance Smells.

195

DISCUSSION

We identified five smells which provoked a higher power consumption of the

Waspmote in the use cases prepared for the experimentation. However, we observe that the

saved power is less than 1 %. A first motivation resides in the implementation choices: the

function pairs executed only differ in a single instruction, and the operations are done with

primitive types (e.g., integer). The motivation of such implementation was the exclusion of

any possible confounding factor in the analysis, but the drawback of such a choice is a very

small achievement in energy efficiency improvements.

Table 40. Results of power consumption

 Smell name Mean
with
smell
(μW)

Mean
w/o

smell
(μW)

Diff.
Means
(μW)

P-value Impact%

 DeadLocalStoreReturn 41241 41278 -37 1 -0.09
 DeadLocalStore 40249 40205 44 < 0.01 0.11
 MutualExclusionOR 40758 40772 -14 1 -0.03
 NonShortCircuit 41113 41043 70 < 0.01 0.17
 ParameterByValue 40967 40723 244 0 0.60
 RepeatedConditionals 41155 41126 29 < 0.01 0.07
 SelfAssignment 40952 40879 73 < 0.01 0.18
 SwitchRedundantAssignment 40724 40756 -32 1 -0.08
 UselessControlFlow 41051 41142 -91 1 -0.22

Table 41. Results for execution time

 Smell name Mean
with
smell
(ms)

Mean
w/o

smell
(ms)

Diff.
Means

(ms)

P-value Impact%

 DeadLocalStoreReturn 3288.76 3288.74 0.02 0.41 6.08e-04
 DeadLocalStore 17707.3

4
17707.3
8

-0.04 0.66 -2.26e-04

 MutualExclusionOR 3540.76 3540.60 0.16 0.04 4.52e-03
 NonShortCircuit 3288.74 3288.80 -0.06 0.76 -1.82e-03
 ParameterByValue 3288.76 3288.74 0.02 0.41 6.08e-04
 RepeatedConditionals 3288.80 3288.74 0.06 0.24 1.82e-03
 SelfAssignment 3288.66 3288.78 -0.12 0.90 -3.64e-03
 SwitchRedundantAssignment 3540.58 3540.62 -0.04 0.65 -1.13e-03
 UselessControlFlow 3288.80 3288.74 0.06 0.24 1.82e-03

196

Let us take dead stores as example: the smell DeadLocalStore is implemented with

an integer (we save a value on a variable and immediately overwrites it with another

integer). Using a struct with several members is totally different and might lead to a higher

impact, because the resulting compiled code requires the CPU to produce more instructions

and interact more intensively with the memory. If increasing the complexity of the data

structure will result in still negligible power consumption saving, the next step is to

increase the logical complexity of the function, i.e. comparing complete algorithms that are

functionally equivalent but differ in the implementation. A further step is to move the focus

towards the comparison of functionally equivalent design choices. Understanding the

impact of Green Code Smells over real power consumption could also contribute to build

more precise models of the power consumption of software. As a matter of fact, it may be

possible to categorize software instructions beforehand in terms of energy efficiency, then

subsequently use this information in order to predict the resulting energy efficiency of a

complete software product.

Yet another research direction that is suggested by this first leap is: can the impact

of Green Code Smells be higher in code that drives an hardware resource with higher

energy needs? For instance the impact on the code that handles the GPS transmitter is

expected to be very different from the one used in this experiment, where the small

functions use only CPU and RAM, besides in a not intensive way. The same investigation

approaches can be applied to the domain of execution time. As can be noticed from the

results, all the execution times are equal, exception given for the DeadLocalStore function

pairs. We have observed that Green Code Smells do not degrade the performances, but we

cannot generalize the findings for more complex code structures and usage scenarios, with

different hardware resources involved (e.g, sensors).

THREATS TO VALIDITY

In this section, we expose the threats to validity that might affect our study.

197

As regards construct validity, our main threat regards instrumentation. We

carefully evaluated the precision of our measures, comparing them with the specifications

from Waspmote manufacturers. During our experimentation, the difference between actual

and expected values was negligible and inside the specified ranges. As far as conclusion

threats are concerned, in order to increase the statistical reliability of the results, we

collected a relevant amount of values (e.g., every function is looped 1 million times for

power consumption measurement resulting in 25 millions of samples). Internal validity is

represented by confounding factors such as other processes running during execution.

However, the Waspmote does not have an operating system and the only thread in

execution during the tests is the code loaded. As regards external validity, we do not aim at

generalizing our results to a family of embedded devices. This study aims at assessing the

existence of the Green Code Smells in a single context: other empirical validations are

necessary for other environments or devices.

RELATED WORK

The analysis of software energetic impact on embedded systems was initially

conducted by Tiwari in 1994 [148]. The author proposed a software power model based

upon the CPU instruction set, determining those instructions which had a higher cost in

energy terms.

Tiwari’s model, although limited in some cases, was the enabler of the energy

optimizations in compilers for embedded systems. Power-aware compilers try to optimize

the resources a program needs for its execution, through different techniques, such as loop

unrolling, software pipelining and recursion elimination [149]. In order to achieve higher

optimizations, higher-level techniques are needed, such as algorithmic and data

optimizations, that is a research direction closer to our work. The algorithmic optimization

has a high potential, but it is also a hard and time-consuming task, with no guaranteed

results. Data optimization is based upon the efficient use of the system architecture. For

example, as regards embedded systems, often software libraries are used for emulating

198

floating-point hardware components. Those libraries do not take into account the

architecture of a specific system, thus their usage often leads to a high power consumption

and low performance. Šimunić et al. [150] show that by removing those libraries and

optimizing the source code, it is possible to significantly reduce power consumption (up to

77%).

In terms of benchmarks, SPECpower [151] is an initiative to extend existing SPEC

benchmarks to power and energy measurement. SPECpower ssj2008 reports the energy

efficiency in terms of overall ssj_ops/watt. This metric represents the sum of the

performance measured at each target load level (in ssj_ops) divided by the sum of the

average power (in watts) at each target load including active idle.

In battery-powered systems, it is not enough to analyze algorithms based only on

time and space complexity. Several research proposed energy aware algorithms for specific

functionalities, such as supporting randomness [152] or focusing on cryptographic [153]. In

particular, previous works by Bunse et al. [154] address the relationship between energy

and performance optimizations, which is one of the research questions of the present work.

Authors analyzed different implementations of several sorting algorithms, showing that

implementations optimized for energy performed differently with respect to those

optimized for performance. For example, one of their assumptions is that the use of

recursion in a sorting algorithm might improve performance, but definitely increases power

consumption. This finding shows how energy efficiency issues in software might lead to

counter-intuitive conclusions. This is the reason why, in our work, we adopted an empirical

approach in order to assess and validate our beliefs. In our opinion, more empirical studies

focused on assessing the impact of software over power consumption might discover even

more unexpected behaviors.

CONCLUSIONS

This is an exploratory study: we defined for the first time the concept of Energy

Code Smells and we performed a first validation to understand not only the impact, but also

199

the boundaries of the concept. We identified some Energy Code Smells starting from code

patterns implemented by two common Automatic Static Analysis tools - namely, CppCheck

and FindBugs. We performed an experiment, on an embedded system, in order to assess the

energetic impact of those code patterns, taking also into account the impact on execution

time, to determine whether Energy Code Smells are also performance smells. Our

experimental results showed that some of the code patterns actually have an impact over

power consumption. This impact, however, is in the magnitude order of μW. Our future

research works will be devoted to analyzing more complex data structures and using

hardware resources which could increase this impact with respect to the overall power

consumption. As regards time analysis, only one pattern had an actual impact over

execution time (a few μ seconds), and it is not identified as an Energy Code Smell. Thus,

we conclude that Energy Code Smells are not Performance Smells.

However, results suggest that the target and applicability of Energy Code Smells

should be refined with further investigations. The lessons learned in this exploratory study

let us identify several research threads that the research community might address, such as

the identification of Energy Code Smells that are higher-level constructs and use more

complex data structures, the identification of Energy Design Smells and the use of more

complex systems as test beds.

The new challenge for ASA is to help greening the software identifying Energy

Code Smells.

200

6 SUMMARY AND CONCLUSIONS

This PhD work empirically evaluated the impact of Automatic Static Analysis

(ASA) on Software Quality, taking as reference model the ISO/IEC 25010 Software

Product Quality Model. We conducted several experiments and case studies to understand

whether applying ASA could improve certain software quality characteristics. We

considered four quality characteristics: Functional Suitability and Reliability, Performance

efficiency and Maintainability.

Regarding Functional Suitability and Reliability, we conducted two case studies

analyzing the issues detected by the popular ASA tool FindBugs on two pools of similar

small programs (85 and 301 programs respectively), each of them developed by a different

student of the B.Sc. in Computer Engineering. By analyzing the changes and test failures in

both studies, we observed that a small percentage of issues (about 3%) were related to

known defects in the code.

We also conducted another study on an industrial web application with the

Resharper tool analyzing the capability of the issues categories to identify the most defect

prone files and components of an industrial web application. We found that resharper

issues are better in identifying faulty modules than indicators of size and complexity. Using

them we were able to find out problems associated to difficulty in the design of the code or

a limited knowledge of the possibilities offered by the C# language.

Regarding Performance-Efficiency, we conducted two experiments with FindBugs

on which we empirically proved that refactoring code on the basis of certain FindBugs

issues will improve its execution time. In the first experiment, we selected 20 issues and for

each of them we set up two source code fragments: one containing the issue and one

containing the corresponding refactored version, functionally identical but without the

issue. We set up three different platforms, isolated from network and other user programs,

and then we executed the code fragments measuring the execution time of both code

versions. We found that eleven issues have an actual negative impact on performance in all

platforms (up to 6 times slower). In the following industrial experiment we quantitatively

201

assessed the impact on time efficiency of three code patterns: dead store to local variable,

useless try-catch block and inefficient construction of Boolean objects. We refactored an

industrial Java web application removing the three code patterns and we observed that the

refactored software was about two fold faster (100 milliseconds less) than the original

application.

Also regarding Maintainability we performed two case studies, focusing on the

problem of Technical Debt. Technical Debt is a metaphor for the problem of high costs in

the maintenance phase as a consequence of shortcuts taken during the development process

(e.g., poor commented code, poor design, etc.). In the first case study we compared four

TD techniques (code smells, automatic static analysis issues, grime buildup, and modularity

violations) and applied them to 13 versions of the Apache Hadoop open source software

project. Although ASA issues were not directly associated with Maintainability issues,

those with higher priority were associated with classes with intensive coupling. A possible

explanation for this relation is that both indicators point, more than any others, to generally

poorly designed code. Moreover, the study demonstrated that the four approaches for TD

identification have very little overlap and are therefore pointing to different problems in

source code. These findings were confirmed by a second study in which we evaluated

human elicitation of TD and compared it to automated identification. We asked a

development team to identify technical debt items in artifacts of a software project. We

provided the participants with a TD backlog and a short questionnaire. In addition, we also

collected the output of three tools to automatically identify technical and compared it to the

human elicitation. Our results show that aggregation, rather than consensus is an

appropriate way to combine developer-reported debt, and that ASA tools used are

especially useful for identifying defect debt but cannot help in identifying many other types

of debt.

The last part of the thesis is devoted to new research challenges for ASA. We

identified and proposed to the research community two innovative directions for future

studies: ASA to green the software, and ASA for multi-language projects.

The motivation of the first suggestion resides in the fact that nowadays the spread

of mobile and embedded devices makes energy efficiency a key requirement in many

202

software applications: we envision energy efficiency as a software quality characteristic, to

be optimized through the refactoring of appropriate code patterns. Therefore we overtook

the path towards the identification of those code patterns (defined Energy Code Smells) that

might increase the impact of software over power consumption. For our purposes, we

performed an experiment consisting in the execution of several code patterns on an

embedded system. These instances of code patterns were executed in two versions: as in the

in the experiment for Performance Efficiency, the first code pattern contains a code issue

that could negatively impact power consumption, the other one is refactored removing the

issue. We measured the power consumption of the embedded device during the execution

of each code pattern: our results show that some Energy Code Smells actually have an

impact over power consumption (in our test bed the magnitude order was µWatts).

Moreover, removing those Energy Smells did not introduce a performance decrease.

The second research challenge is related to another observation: nowadays most

software systems are complex and composed of a large number of artifacts. To realize each

different artifact specific techniques are used resorting to different abstractions, languages

and tools: successful composition of different elements requires coherence among them.

Unfortunately constraints between artifacts written in different languages are usually not

formally expressed nor checked by supporting tools; as a consequence they can be a source

of problems. We explored the role of the relations between artifacts written in different

languages by means of a case study on the Hadoop open source project, quantifying the

phenomenon and investigating its relation with defect proneness. We observed that more

than half of the commits in Hadoop are cross language (according to our definition).

However we also observed that this property depends on the type of the activities and the

extensions of the modules. Also looking at defect proneness, we observed that the

interaction between specific pairs of extensions was related to higher defect proneness.

Although we did not get unique answers, the results and observations from this exploratory

study let us understand that the problem is worthy to be investigated, and that the agenda of

the next years for ASA should include the capability to identify problems deriving from the

interaction of multiple language, rather than focusing only on problems inside the

boundaries of one specific programming language.

203

The findings and results summarized above are specific to the contexts of the

experiments and case studies conducted. We attempted to generalize results on Functional

Suitability and Reliability by a comparison with similar studies. However this was not

possible for Performance Efficiency and Maintainability given the absence of similar

approaches, and of course also for the new research directions identified. A broader

generalization will be possible as soon as further evidence will be collected by means of

other empirical studies on the different quality attributes. Although, this thesis provides,

besides the first empirical results on the impact of ASA on different software quality

characteristics, a modus operandi that can be applied to different contexts to enlarge the

body of knowledge in the topic and form a grounded theory on ASA and software quality.

This modus operandi can be packaged in a process composed of 5 steps:

− Elicitation: elicit quality characteristics and/or sub-characteristic from the

various stakeholders, such as software developers, system integrators,

acquirers, owners, maintainers, etc. We suggest to start from the

characteristics defined by the ISO/IEC 25010, but to not limit to them. As

we have seen in Chapter 6, characteristics like energy efficiency are not

included in the standard but have relevance in contexts like mobile

application development or embedded devices.

− Prioritization: prioritize the quality characteristics taking into

consideration both the technical and the business view. It might be

possible to use support decision systems or risk assessment tools.

− Measurement: define the quality measure elements, the measurement

functions and the quality measures for each quality characteristic (or sub-

characteristic) identified.

− Assessment: identify a methodological tool to empirical assess which

ASA issues have an impact on the quality measures one or more software

project. Results might be compared with previous work in the literature or

past experience. Package results in a quality management base in the

more appropriate form (e.g.: experience/technical report, database of

statistics, wiki, etc).

204

− Monitoring, refactoring, reporting: enable the detection of the relevant

ASA issues (according to the prioritization and the assessment) in the

development process and when necessary refactor the code by removing

the issues enabled. Measure the quality improvement and report in the

quality management base.

The goal of this process is twofold: not only improve and monitor the quality of

your code through ASA, but also learn from past errors.

205

7 BIBLIOGRAPHY

[1] P. Tonella, M. Torchiano, B. Du Bois, and T. Systä, “Empirical studies in

reverse engineering: state of the art and future trends,” Empirical Softw. Engg., vol. 12,

no. 5, pp. 551–571, Oct. 2007. [Online]. Available: http://dx.doi.org/10.1007/s10664-007-

9037-5

[2] D. Binkley, “Source code analysis: A road map,” in 2007 Future of

Software Engineering, ser. FOSE ’07. Washington, DC, USA: IEEE Computer Society,

2007, pp. 104–119. [Online]. Available: http://dx.doi.org/10.1109/FOSE.2007.27

[3] S. Johnson, “Lint: A c program checker,” Bell Laboratories, Tech.

Rep. 65, 1977.

[4] P. Li and B. Cui, “A comparative study on software vulnerability static

analysis techniques and tools,” in Information Theory and Information Security (ICITIS),

2010 IEEE International Conference on, dec. 2010, pp. 521 –524.

[5] P. Louridas, “Static code analysis,” Software, IEEE, vol. 23, no. 4, pp. 58

–61, july-aug. 2006.

[6] B. W. Boehm, “Software process management: lessons learned from

history,” in Proceedings of the 9th international conference on Software Engineering, ser.

ICSE ’87. Los Alamitos, CA, USA: IEEE Computer Society Press, 1987, pp. 296–298.

[Online]. Available: http://dl.acm.org/citation.cfm?id=41765.41798

[7] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and

A. Wesslén, Experimentation in software engineering: an introduction. Norwell, MA,

USA: Kluwer Academic Publishers, 2000.

[8] W. F. Tichy, “Should computer scientists experiment more?” Computer,

vol. 31, no. 5, pp. 32–40, May 1998. [Online]. Available: http://dx.doi.org/10.1109/-

2.675631

[9] V. R. Basili, “The role of experimentation in software engineering: past,

current, and future,” in Proceedings of the 18th international conference on Software

206

engineering, ser. ICSE ’96. Washington, DC, USA: IEEE Computer Society, 1996, pp.

442–449. [Online]. Available: http://dl.acm.org/citation.cfm?id=227726.227818

[10] J. D. Herbsleb, “Msr: Mining for scientific results?” in MSR, 2010.

[11] D. I. K. Sjoberg, T. Dyba, and M. Jorgensen, “The future of empirical

methods in software engineering research,” in 2007 Future of Software Engineering, ser.

FOSE ’07. Washington, DC, USA: IEEE Computer Society, 2007, pp. 358–378. [Online].

Available: http://dx.doi.org/10.1109/FOSE.2007.30

[12] B. Meyer, “Empirical research: questions from software engineering,”

http://esem2010.case.unibz.it/docs/Meyer-ESEM2010-KN.pdf, 2010, keynote ESEM 2010.

[13] J. E. Hannay, D. I. K. Sjoberg, and T. Dyba, “A systematic review of

theory use in software engineering experiments,” IEEE Trans. Softw. Eng., vol. 33, no. 2,

pp. 87–107, Feb. 2007. [Online]. Available: http://dx.doi.org/10.1109/TSE.2007.12

[14] F. Shull, J. Singer, and D. I. Sjøberg, Guide to Advanced Empirical

Software Engineering. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2007.

[15] N. Juristo and A. M. Moreno, Basics of Software Engineering

Experimentation, 1st ed. Springer Publishing Company, Incorporated, 2010.

[16] B. Boehm and V. R. Basili, “Software defect reduction top 10 list,”

Computer, vol. 34, no. 1, pp. 135–137, Jan. 2001. [Online]. Available: http://dx.doi.org/-

10.1109/2.962984

[17] S. Wagner, J. Jürjens, C. Koller, and P. Trischberger, “Comparing bug

finding tools with reviews and tests,” in Proceedings of the 17th IFIP TC6/WG 6.1

international conference on Testing of Communicating Systems, ser. TestCom’05. Berlin,

Heidelberg: Springer-Verlag, 2005, pp. 40–55. [Online]. Available: http://dx.doi.org/-

10.1007/11430230_4

[18] F. Wedyan, D. Alrmuny, and J. M. Bieman, “The effectiveness of

automated static analysis tools for fault detection and refactoring prediction,” in

Proceedings of the 2009 International Conference on Software Testing Verification and

Validation, ser. ICST ’09. Washington, DC, USA: IEEE Computer Society, 2009, pp. 141–

150. [Online]. Available: http://dx.doi.org/10.1109/ICST.2009.21

207

[19] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou,

“Evaluating static analysis defect warnings on production software,” in Proceedings of the

7th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and

engineering, ser. PASTE ’07. New York, NY, USA: ACM, 2007, pp. 1–8. [Online].

Available: http://doi.acm.org/10.1145/1251535.1251536

[20] C. Boogerd and L. Moonen, “Assessing the value of coding standards: An

empirical study,” in Software Maintenance, 2008. ICSM 2008. IEEE International

Conference on, 28 2008-oct. 4 2008, pp. 277 –286.

[21] ——, “Evaluating the relation between coding standard violations and

faultswithin and across software versions,” in Mining Software Repositories, 2009. MSR

’09. 6th IEEE International Working Conference on, may 2009, pp. 41 –50.

[22] MIRA Ltd, MISRA-C:2004 Guidelines for the use of the C language in

Critical Systems, MIRA Std., Oct. 2004. [Online]. Available: www.misra.org.uk

[23] N. Nagappan and T. Ball, “Static analysis tools as early indicators of pre-

release defect density,” in Software Engineering, 2005. ICSE 2005. Proceedings. 27th

International Conference on, may 2005, pp. 580 – 586.

[24] N. Nagappan, L. Williams, J. Hudepohl, W. Snipes, and M. Vouk,

“Preliminary results on using static analysis tools for software inspection,” in Software

Reliability Engineering, 2004. ISSRE 2004. 15th International Symposium on, nov. 2004,

pp. 429 – 439.

[25] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. Hudepohl, and

M. Vouk, “On the value of static analysis for fault detection in software,” Software

Engineering, IEEE Transactions on, vol. 32, no. 4, pp. 240 – 253, april 2006.

[26] R. Plosch, H. Gruber, A. Hentschel, G. Pomberger, and S. Schiffer, “On

the relation between external software quality and static code analysis,” in Software

Engineering Workshop, 2008. SEW ’08. 32nd Annual IEEE, oct. 2008, pp. 169 –174.

[27] A. Marchenko and P. Abrahamsson, “Predicting software defect density:

A case study on automated static code analysis.” in XP, ser. Lecture Notes in Computer

Science, G. Concas, E. Damiani, M. Scotto, and G. Succi, Eds., vol. 4536. Springer, 2007,

208

pp. 137–140. [Online]. Available: http://dblp.uni-trier.de/db/conf/xpu/-

xp2007.html#MarchenkoA07

[28] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” SIGPLAN Not.,

vol. 39, no. 12, pp. 92–106, Dec. 2004. [Online]. Available: http://doi.acm.org/10.1145/-

1052883.1052895

[29] M. Torchiano and M. Morisio, “A fully automatic approach to the

assessment of programming assignments,” International Journal of Engineering Education,

vol. 25, no. 4, pp. 814–829, 2009, cited By (since 1996) 1. [Online]. Available: http://-

www.scopus.com/inward/record.url?eid=2-s2.0-

69949175639&partnerID=40&md5=d82f7fd2f1e4f55f2d5cb5012822c498

[30] S. Kim and M. D. Ernst, “Prioritizing warning categories by analyzing

software history,” in Proceedings of the Fourth International Workshop on Mining

Software Repositories, ser. MSR ’07. Washington, DC, USA: IEEE Computer Society,

2007, pp. 27–. [Online]. Available: http://dx.doi.org/10.1109/MSR.2007.26

[31] A. Agresti, An Introduction to Categorical Data Analysis (Wiley Series in

Probability and Statistics), 2nd ed. Wiley-Interscience, Mar. 2007. [Online]. Available:

http://www.worldcat.org/isbn/0471226181

[32] E. N. Adams, “Optimizing preventive service of software products,” IBM

J. Res. Dev., vol. 28, no. 1, pp. 2–14, Jan. 1984. [Online]. Available: http://dx.doi.org/-

10.1147/rd.281.0002

[33] A. Vetro’, M. Torchiano, and M. Morisio, “Assessing the precision of

findbugs by mining java projects developed at a university,” in Mining Software

Repositories (MSR), 2010 7th IEEE Working Conference on, may 2010, pp. 110 –113.

[34] V. Basili, G. Caldiera, and D. H. Rombach, “The goal question metric

approach,” in Encyclopedia of Software Engineering, J. Marciniak, Ed. Wiley, 1994.

[Online]. Available: https://docweb.lrz-muenchen.de/cgi-bin/doc/nph-webdoc.cgi/-

000110A/http/scholar.google.de/-

scholar=3fhl=3dde&lr=3d&cluster=3d4068380033007143449

[35] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical

Procedures, 4th ed. Chapman & Hall/CRC, 2007.

209

[36] P. Runeson, “Using students as experiment subjects–an analysis on

graduate and freshmen student data,” in Proceedings of the 7th International Conference on

Empirical Assessment in Software Engineering. Citeseer, 2003, pp. 95–102.

[37] S. Kim and M. D. Ernst, “Which warnings should i fix first?” in

Proceedings of the the 6th joint meeting of the European software engineering conference

and the ACM SIGSOFT symposium on The foundations of software engineering, ser.

ESEC-FSE ’07. New York, NY, USA: ACM, 2007, pp. 45–54. [Online]. Available: http://-

doi.acm.org/10.1145/1287624.1287633

[38] A. Vetro’, M. Morisio, and M. Torchiano, “An empirical validation of

findbugs issues related to defects,” in Evaluation Assessment in Software Engineering

(EASE 2011), 15th Annual Conference on, april 2011, pp. 144 –153.

[39] N. Ayewah and W. Pugh, “The google findbugs fixit,” in Proceedings of

the Nineteenth International Symposium on Software Testing and Analysis, ISSTA 2010,

Trento, Italy, July 12-16, 2010, P. Tonella and A. Orso, Eds. ACM, 2010, pp. 241–252.

[40] R. Chillarege, I. Bhandari, J. Chaar, M. Halliday, D. Moebus, B. Ray, and

M.-Y. Wong, “Orthogonal defect classification-a concept for in-process measurements,”

Software Engineering, IEEE Transactions on, vol. 18, no. 11, pp. 943 –956, nov 1992.

[41] ISO/IEC, ISO/IEC 9126. Software engineering – Product quality,

ISO/IEC Std., 2001.

[42] ——, ISO/IEC 25010. Systems and software engineering – Systems and

software Quality Requirements and Evaluation (SQuaRE) – System and software quality

models, ISO/IEC Std., 2011.

[43] A. Vetro’, N. Zazworka, C. Seaman, and F. Shull, “Using the iso/iec 9126

product quality model to classify defects: A controlled experiment,” in Evaluation

Assessment in Software Engineering (EASE 2012), 16th International Conference on, may

2012, pp. 187 –196.

[44] N. Zazworka, K. Stapel, E. Knauss, F. Shull, V. R. Basili, and

K. Schneider, “Are developers complying with the process: an xp study,” in Proceedings of

the 2010 ACM-IEEE International Symposium on Empirical Software Engineering and

210

Measurement, ser. ESEM ’10. New York, NY, USA: ACM, 2010, pp. 14:1–14:10.

[Online]. Available: http://doi.acm.org/10.1145/1852786.1852805

[45] A. G. Koru, D. Zhang, and H. Liu, “Modeling the effect of size on defect

proneness for open-source software,” in Proceedings of the Third International Workshop

on Predictor Models in Software Engineering, ser. PROMISE ’07. Washington, DC, USA:

IEEE Computer Society, 2007, pp. 10–. [Online]. Available: http://dx.doi.org/10.1109/-

PROMISE.2007.9

[46] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict

component failures,” in Proceedings of the 28th international conference on Software

engineering, ser. ICSE ’06. New York, NY, USA: ACM, 2006, pp. 452–461. [Online].

Available: http://doi.acm.org/10.1145/1134285.1134349

[47] A. G. Koru, K. E. Emam, D. Zhang, H. Liu, and D. Mathew, “Theory of

relative defect proneness,” Empirical Softw. Engg., vol. 13, pp. 473–498, October 2008.

[Online]. Available: http://dl.acm.org/citation.cfm?id=1416830.1416834

[48] N. E. Fenton and N. Ohlsson, “Quantitative analysis of faults and failures

in a complex software system,” IEEE Trans. Softw. Eng., vol. 26, pp. 797–814, August

2000. [Online]. Available: http://dl.acm.org/citation.cfm?id=630824.631250

[49] A. G. Koru and H. Liu, “An investigation of the effect of module size on

defect prediction using static measures,” SIGSOFT Softw. Eng. Notes, vol. 30, pp. 1–5,

May 2005. [Online]. Available: http://doi.acm.org/10.1145/1082983.1083172

[50] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim,

A. MacCormack, R. Nord, I. Ozkaya, R. Sangwan, C. Seaman, K. Sullivan, and

N. Zazworka, “Managing technical debt in software-reliant systems,” in Proceedings of the

FSE/SDP workshop on Future of software engineering research, ser. FoSER ’10. New

York, NY, USA: ACM, 2010, pp. 47–52. [Online]. Available: http://doi.acm.org/10.1145/-

1882362.1882373

[51] W. Cunningham, “The wycash portfolio management system,” SIGPLAN

OOPS Mess., vol. 4, no. 2, pp. 29–30, Dec. 1992. [Online]. Available: http://doi.acm.org/-

10.1145/157710.157715

211

[52] C. Izurieta, A. Vetro, N. Zazworka, Y. Cai, C. Seaman, and F. Shull,

“Organizing the technical debt landscape,” in Managing Technical Debt (MTD), 2012

Third International Workshop on, june 2012, pp. 23 –26.

[53] C. Seaman, Y. Guo, C. Izurieta, Y. Cai, N. Zazworka, F. Shull, and

A. Vetro, “Using technical debt data in decision making: Potential decision approaches,” in

Managing Technical Debt (MTD), 2012 Third International Workshop on, june 2012, pp.

45 –48.

[54] J. Schumacher, N. Zazworka, F. Shull, C. Seaman, and M. Shaw,

“Building empirical support for automated code smell detection,” in Proceedings of the

2010 ACM-IEEE International Symposium on Empirical Software Engineering and

Measurement, ser. ESEM ’10. New York, NY, USA: ACM, 2010, pp. 8:1–8:10. [Online].

Available: http://doi.acm.org/10.1145/1852786.1852797

[55] S. Wong, Y. Cai, M. Kim, and M. Dalton, “Detecting software modularity

violations,” in Proceedings of the 33rd International Conference on Software Engineering,

ser. ICSE ’11. New York, NY, USA: ACM, 2011, pp. 411–420. [Online]. Available:

http://doi.acm.org/10.1145/1985793.1985850

[56] C. Izurieta and J. M. Bieman, “How software designs decay: A pilot study

of pattern evolution,” in Proceedings of the First International Symposium on Empirical

Software Engineering and Measurement, ser. ESEM ’07. Washington, DC, USA: IEEE

Computer Society, 2007, pp. 449–451. [Online]. Available: http://dx.doi.org/10.1109/-

ESEM.2007.58

[57] S. Muthanna, K. Ponnambalam, K. Kontogiannis, and B. Stacey, “A

maintainability model for industrial software systems using design level metrics,” in

Proceedings of the Seventh Working Conference on Reverse Engineering (WCRE’00), ser.

WCRE ’00. Washington, DC, USA: IEEE Computer Society, 2000, pp. 248–. [Online].

Available: http://dl.acm.org/citation.cfm?id=832307.837117

[58] N. Fenton, M. Neil, W. Marsh, P. Hearty, D. Marquez, P. Krause, and

R. Mishra, “Predicting software defects in varying development lifecycles using bayesian

nets,” Inf. Softw. Technol., vol. 49, no. 1, pp. 32–43, Jan. 2007. [Online]. Available: http://-

dx.doi.org/10.1016/j.infsof.2006.09.001

212

[59] M. Riaz, E. Mendes, and E. Tempero, “A systematic review of software

maintainability prediction and metrics,” in Proceedings of the 2009 3rd International

Symposium on Empirical Software Engineering and Measurement, ser. ESEM ’09.

Washington, DC, USA: IEEE Computer Society, 2009, pp. 367–377. [Online]. Available:

http://dx.doi.org/10.1109/ESEM.2009.5314233

[60] I. Gat and J. D. Heintz, “From assessment to reduction: how cutter

consortium helps rein in millions of dollars in technical debt,” in Proceedings of the 2nd

Workshop on Managing Technical Debt, ser. MTD ’11. New York, NY, USA: ACM, 2011,

pp. 24–26. [Online]. Available: http://doi.acm.org/10.1145/1985362.1985368

[61] A. Nugroho, J. Visser, and T. Kuipers, “An empirical model of technical

debt and interest,” in Proceedings of the 2nd Workshop on Managing Technical Debt, ser.

MTD ’11. New York, NY, USA: ACM, 2011, pp. 1–8. [Online]. Available: http://-

doi.acm.org/10.1145/1985362.1985364

[62] M. Fowler, Refactoring: Improving the Design of Existing Code. Boston,

MA, USA: Addison-Wesley, 1999.

[63] C. Izurieta and J. Bieman, “EnglishA multiple case study of design

pattern decay, grime, and rot in evolving software systems,” EnglishSoftware Quality

Journal, vol. I, pp. 1–35, 2012.

[64] Y.-G. Guéhéneuc and H. Albin-Amiot, “Using design patterns and

constraints to automate the detection and correction of inter-class design defects,” in

Proceedings of the 39th International Conference and Exhibition on Technology of Object-

Oriented Languages and Systems (TOOLS39), ser. TOOLS ’01. Washington, DC, USA:

IEEE Computer Society, 2001, pp. 296–. [Online]. Available: http://dl.acm.org/-

citation.cfm?id=882501.884740

[65] C. Izurieta and J. M. Bieman, “Testing consequences of grime buildup in

object oriented design patterns,” in Proceedings of the 2008 International Conference on

Software Testing, Verification, and Validation, ser. ICST ’08. Washington, DC, USA: IEEE

Computer Society, 2008, pp. 171–179. [Online]. Available: http://dx.doi.org/10.1109/-

ICST.2008.27

213

[66] W. J. Brown, R. C. Malveau, H. W. McCormick, III, and T. J. Mowbray,

AntiPatterns: refactoring software, architectures, and projects in crisis. New York, NY,

USA: John Wiley & Sons, Inc., 1998.

[67] M. Lanza, R. Marinescu, and S. Ducasse, Object-Oriented Metrics in

Practice. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005.

[68] R. Marinescu, “Detection strategies: Metrics-based rules for detecting

design flaws,” in Proceedings of the 20th IEEE International Conference on Software

Maintenance, ser. ICSM ’04. Washington, DC, USA: IEEE Computer Society, 2004, pp.

350–359. [Online]. Available: http://dl.acm.org/citation.cfm?id=1018431.1021443

[69] N. Zazworka, M. A. Shaw, F. Shull, and C. Seaman, “Investigating the

impact of design debt on software quality,” in Proceedings of the 2nd Workshop on

Managing Technical Debt, ser. MTD ’11. New York, NY, USA: ACM, 2011, pp. 17–23.

[Online]. Available: http://doi.acm.org/10.1145/1985362.1985366

[70] S. M. Olbrich, D. S. Cruzes, and D. I. K. Sjoberg, “Are all code smells

harmful? a study of god classes and brain classes in the evolution of three open source

systems,” in Proceedings of the 2010 IEEE International Conference on Software

Maintenance, ser. ICSM ’10. Washington, DC, USA: IEEE Computer Society, 2010, pp. 1–

10. [Online]. Available: http://dx.doi.org/10.1109/ICSM.2010.5609564

[71] J. L. Fleiss, Statistical Methods for Rates and Proportions, 2nd ed., ser.

Wiley series in probability and mathematical statistics. New York: John Wiley & Sons,

1981.

[72] K. El Emam and I. Wieczorek, “The repeatability of code defect

classifications,” in Software Reliability Engineering, 1998. Proceedings. The Ninth

International Symposium on, nov 1998, pp. 322 –333.

[73] H.-M. Park and H.-W. Jung, “Evaluating interrater agreement with

intraclass correlation coefficient in spice-based software process assessment,” in Quality

Software, 2003. Proceedings. Third International Conference on, nov. 2003, pp. 308 – 314.

[74] J. Cohen, Statistical power analysis for the behavioral sciences : Jacob

Cohen., 2nd ed. Lawrence Erlbaum, Jan. 1988. [Online]. Available: http://-

www.worldcat.org/isbn/0805802835

214

[75] J. Evans, Straightforward statistics for the behavioral sciences.

Brooks/Cole Pub. Co., 1996. [Online]. Available: http://books.google.com/-

books?id=8Ca2AAAAIAAJ

[76] J. R. Landis and G. G. Koch, “The Measurement of Observer Agreement

for Categorical Data,” Biometrics, vol. 33, no. 1, pp. 159–174, Mar. 1977.

[77] D. G. Altman, Practical Statistics for Medical Research (Statistics texts),

1st ed. Chapman & Hall/CRC, Nov. 1990. [Online]. Available: http://www.worldcat.org/-

isbn/0412276305

[78] M. D’Ambros, A. Bacchelli, and M. Lanza, “On the impact of design

flaws on software defects,” in Quality Software (QSIC), 2010 10th International

Conference on, july 2010, pp. 23 –31.

[79] C. B. Seaman and Y. Guo, “Measuring and monitoring technical debt,”

Advances in Computers, vol. 82, pp. 25–46, 2011.

[80] Y. Guo, C. Seaman, N. Zazworka, and F. Shull, “Domain-specific

tailoring of code smells: an empirical study,” in Software Engineering, 2010 ACM/IEEE

32nd International Conference on, vol. 2, may 2010, pp. 167 –170.

[81] N. Zazworka and C. Ackermann, “Codevizard: a tool to aid the analysis

of software evolution,” in Proceedings of the 2010 ACM-IEEE International Symposium on

Empirical Software Engineering and Measurement, ser. ESEM ’10. New York, NY, USA:

ACM, 2010, pp. 63:1–63:1. [Online]. Available: http://doi.acm.org/10.1145/-

1852786.1852865

[82] N. Zazworka, C. Seaman, and F. Shull, “Prioritizing design debt

investment opportunities,” in Proceedings of the 2nd Workshop on Managing Technical

Debt, ser. MTD ’11. New York, NY, USA: ACM, 2011, pp. 39–42. [Online]. Available:

http://doi.acm.org/10.1145/1985362.1985372

[83] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,

G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner,

J. Staschulat, and P. Stenström, “The worst-case execution-time problem – overview of

methods and survey of tools,” ACM Trans. Embed. Comput. Syst., vol. 7, pp. 36:1–36:53,

May 2008.

215

[84] T. Harmon and R. Klefstad, “A survey of worst-case execution time

analysis for real-time java,” Parallel and Distributed Processing Symposium, International,

vol. 0, p. 232, 2007.

[85] G. Bernat, A. Burns, and A. Wellings, “Portable worst-case execution

time analysis using java byte code,” in In Proc. 12th Euromicro International Conference

on Real-Time Systems, 2000, pp. 81–88.

[86] E. Y.-S. Hu, G. Bernat, and A. Wellings, “Addressing dynamic

dispatching issues in wcet analysis for object-oriented hard real-time systems,” Object-

Oriented Real-Time Distributed Computing, IEEE International Symposium on, vol. 0, p.

0109, 2002.

[87] I. Bate, G. Bernat, G. Murphy, and P. Puschner, “Low-level analysis of a

portable java byte code wcet analysis framework,” Real-Time Computing Systems and

Applications, International Workshop on, vol. 0, p. 39, 2000.

[88] I. Bate, G. Bernat, and P. Puschner, “Java virtual-machine support for

portable worst-case execution-time analysis,” in In Proc. 5th IEEE Intl. Symp. on Object-

Oriented Real-Time Distributed Computing, 2002, pp. 83–90.

[89] D. S. Hardin, “Real-Time Objects on the Bare Metal: An Efficient

Hardware Realization of the JavaTM Virtual Machine,” Object-Oriented Real-Time

Distributed Computing, IEEE International Symposium on, vol. 0, pp. 0053+, 2001.

[90] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. F. Sweeney, “A survey

of adaptive optimization in virtual machines,” Proceedings of the IEEE, vol. 93, no. 2, pp.

449–466, Feb. 2005.

[91] M. H. . D. A. Wolfe, Nonparametric Statistical Methods. New York: John

Wiley & Sons, 1973.

[92] I. H. Kazi, H. H. Chen, B. Stanley, and D. J. Lilja, “Techniques for

obtaining high performance in java programs,” ACM Comput. Surv., vol. 32, pp. 213–240,

September 2000. [Online]. Available: http://doi.acm.org/10.1145/367701.367714

[93] B. R. Rau, “Levels of representation of programs and the architecture of

universal host machines,” SIGMICRO Newsl., vol. 9, pp. 67–79, November 1978. [Online].

Available: http://portal.acm.org/citation.cfm?id=1014198.804311

216

[94] J. Lau, M. Arnold, M. Hind, and B. Calder, “Online performance

auditing: using hot optimizations without getting burned,” SIGPLAN Not., vol. 41, pp. 239–

251, June 2006. [Online]. Available: http://doi.acm.org/10.1145/1133255.1134010

[95] M. Fowler, Patterns of Enterprise Application Architecture. Boston, MA,

USA: Addison-Wesley Longman Publishing Co., Inc., 2002.

[96] G. E. P. Box, J. S. Hunter, and W. G. Hunter, Statistics for

Experimenters: Design, Innovation, and Discovery, 2nd ed. Wiley-Interscience, 2005.

[97] L. Sachs, Applied Statistics–A Handbook of Techniques, S. S.

in Statistics, Ed. Springer-Verlag, 1984.

[98] Y. Fujita, M. Murata, and H. Miyahara, “Analysis of web server

performancetoward modeling and performance evaluation of web systems,” in Proceedings

of IEEE SICON, 1998.

[99] Z. Liu, N. Niclausse, and C. Jalpa-Villanueva, “Traffic model and

performance evaluation of web servers,” Perform. Eval., vol. 46, no. 2-3, pp. 77–100, Oct.

2001. [Online]. Available: http://dx.doi.org/10.1016/S0166-5316(01)00046-3

[100] I. M. Chakravarti, J. Roy, and R. G. Laha, EnglishHandbook of methods

of applied statistics. Wiley New York, 1967.

[101] M. A. Stephens, “Edf statistics for goodness of fit and some

comparisons,” Journal of the American Statistical Association, vol. 69, no. 347, pp. 730–

737, 1974. [Online]. Available: http://dx.doi.org/10.2307/2286009

[102] A. I. Shawky and R. A. Bakoban, “Modified goodness-of-fit tests for the

exponentiated gamma distribution with unknown shape parameter,” 2009. [Online].

Available: http://interstat.statjournals.net/

[103] M. H. . D. A. Wolfe, Nonparametric Statistical Methods. New York: John

Wiley & Sons, 1973.

[104] K. Strassburger and F. Bretz, “Compatible simultaneous lower confidence

bounds for the holm procedure and other bonferroni-based closed tests,” Statistics in

Medicine, vol. 27, pp. 4914–4927, 2008.

[105] R. B. Miller, “Response time in man-computer conversational

transactions,” in Proceedings of the December 9-11, 1968, fall joint computer conference,

217

part I, ser. AFIPS ’68 (Fall, part I). New York, NY, USA: ACM, 1968, pp. 267–277.

[Online]. Available: http://doi.acm.org/10.1145/1476589.1476628

[106] S. K. Card, G. G. Robertson, and J. D. Mackinlay, “The information

visualizer, an information workspace,” in Proceedings of the SIGCHI conference on

Human factors in computing systems: Reaching through technology, ser. CHI ’91. New

York, NY, USA: ACM, 1991, pp. 181–186. [Online]. Available: http://doi.acm.org/-

10.1145/108844.108874

[107] J. Nielsen, Usability Engineering. San Francisco, California: Morgan

Kaufmann Publishers, October 1994.

[108] F. F. Nah, “A study on tolerable waiting time: how long are web users

willing to wait?” Behaviour & Information Technology, vol. 23, no. 3, pp. 153–163,

2004. [Online]. Available: http://dx.doi.org/10.1080/01449290410001669914

[109] T. A. Proebsting, G. Townsend, P. Bridges, J. H. Hartman, T. Newsham,

and S. A. Watterson, “Toba: Java for applications - a way ahead of time (wat) compiler,” in

In Proceedings of the 3rd Conference on Object-Oriented Technologies and Systems, 1997,

pp. 41–53.

[110] G. Muller, F. Bellard, and C. Consel, “Harissa: a flexible and efficient

java environment mixing bytecode and compiled code,” in In Proceedings of the 3rd

Conference on Object-Oriented Technologies and Systems. Usenix, 1996, pp. 1–20.

[111] C.-H. A. Hsieh, J. C. Gyllenhaal, and W.-m. W. Hwu, “Java bytecode to

native code translation: the caffeine prototype and preliminary results,” in Proceedings of

the 29th annual ACM/IEEE international symposium on Microarchitecture, ser. MICRO

29. Washington, DC, USA: IEEE Computer Society, 1996, pp. 90–99. [Online]. Available:

http://portal.acm.org/citation.cfm?id=243846.243864

[112] M. Weiss, F. Ferrière, B. Delsart, C. Fabre, F. Hirsch, E. Johnson,

V. Joloboff, F. Roy, F. Siebert, and X. Spengler, “Turboj, a java bytecode-to-native

compiler,” in Languages, Compilers, and Tools for Embedded Systems, ser. Lecture Notes

in Computer Science, F. Mueller and A. Bestavros, Eds. Springer Berlin Heidelberg, 1998,

vol. 1474, pp. 119–130. [Online]. Available: http://dx.doi.org/10.1007/BFb0057785

218

[113] J. Aycock, “A brief history of just-in-time,” ACM Comput. Surv., vol. 35,

no. 2, pp. 97–113, 2003.

[114] G. J. Hansen, “Adaptive systems for the dynamic run-time optimization

of programs.” Ph.D. dissertation, Carnegie Mellon University Pittsburgh, PA, Pittsburgh,

PA, USA, 1974, aAI7420364.

[115] U. Hölzle and D. Ungar, “Reconciling responsiveness with performance

in pure object-oriented languages,” ACM Trans. Program. Lang. Syst., vol. 18, pp. 355–

400, July 1996. [Online]. Available: http://doi.acm.org/10.1145/233561.233562

[116] C. Chambers and D. Ungar, “Making pure object-oriented languages

practical,” SIGPLAN Not., vol. 26, pp. 1–15, November 1991. [Online]. Available: http://-

doi.acm.org/10.1145/118014.117955

[117] M. Paleczny, C. Vick, and C. Click, “The java hotspot(tm) server

compiler,” in In USENIX Java Virtual Machine Research and Technology Symposium,

2001, pp. 1–12.

[118] M. D. Smith, “Overcoming the challenges to feedback-directed

optimization (keynote talk),” SIGPLAN Not., vol. 35, pp. 1–11, January 2000. [Online].

Available: http://doi.acm.org/10.1145/351403.351408

[119] M. K. Chen and K. Olukotun, “The jrpm system for dynamically

parallelizing java programs,” SIGARCH Comput. Archit. News, vol. 31, pp. 434–446, May

2003. [Online]. Available: http://doi.acm.org/10.1145/871656.859668

[120] J. E. Moreira, S. P. Midkiff, M. Gupta, P. Wu, G. Almasi, and P. Artigas,

“Ninja: Java for high performance numerical computing,” Sci. Program., vol. 10, pp. 19–

33, January 2002. [Online]. Available: http://portal.acm.org/-

citation.cfm?id=1239945.1239951

[121] S. Uhrig, “The many java core processor (manjac),” in HPCS, 2010, p.

188.

[122] M. Schoeberl, “A time predictable java processor,” in In Proceedings of

the Design, Automation and Test in Europe Conference (DATE 2006, 2006, pp. 800–805.

219

[123] ——, “A java processor architecture for embedded real-time systems,” J.

Syst. Archit., vol. 54, no. 1-2, pp. 265–286, Jan. 2008. [Online]. Available: http://-

dx.doi.org/10.1016/j.sysarc.2007.06.001

[124] Y. Tan, L. W. Yiu, C. Yau, R. Li, and A. S. Fong, “A java processor with

hardware-support object-oriented instructions,” Microprocessors and Microsystems,

vol. 30, no. 8, pp. 469–479, 2006.

[125] K. Hoste, A. Georges, and L. Eeckhout, “Automated just-in-time

compiler tuning,” in Proceedings of the 8th annual IEEE/ACM international symposium on

Code generation and optimization, ser. CGO ’10. New York, NY, USA: ACM, 2010, pp.

62–72. [Online]. Available: http://doi.acm.org/10.1145/1772954.1772965

[126] X. Liu, “Exploiting object-based parallelism on multi-core multi-

processor clusters,” in Proceedings of the Eighth International Conference on Parallel and

Distributed Computing, Applications and Technologies, ser. PDCAT ’07. Washington, DC,

USA: IEEE Computer Society, 2007, pp. 259–266. [Online]. Available: http://dx.doi.org/-

10.1109/PDCAT.2007.40

[127] B. W. Kernighan and R. Pike, The Practice of Programming. Addison-

Wesley, 1999.

[128] J. Shirazi, Java Performance Tuning, 2nd ed. Sebastopol, CA, USA:

O’Reilly & Associates, Inc., 2002.

[129] S. Wilson and J. Kesselman, Java Platform Performance: Strategies and

Tactics. Boston, MA: Addison-Wesley, 2000.

[130] J. L. Bentley, Writing Efficient Programs, ser. Software Series.

Englewood Cliffs, N.J.: Prentice-Hall, 1982.

[131] “Java anti-patterns,” 2010. [Online]. Available: http://www.odi.ch/prog/-

design/newbies.php

[132] G. McCluskey, “Thirty ways to improve the performance of your javaâ„¢

programs,” 1999. [Online]. Available: ftp://ftp.glenmccl.com/pub/free/jperf.pdf

[133] P. Sestoft, 2005. [Online]. Available: www.dina.dk/~sestoft/papers/-

performance.pdf

220

[134] A. Vetro’, M. Torchiano, and M. Morisio, “Quantitative assessment of the

impact of automatic static analysis issues on time efficiency,” 2011. [Online]. Available:

http://www.infq.it/doku.php/infq2011/papers

[135] K. Tian, Y. Jiang, E. Z. Zhang, and X. Shen, “An input-centric paradigm

for program dynamic optimizations,” SIGPLAN Not., vol. 45, pp. 125–139, October 2010.

[Online]. Available: http://doi.acm.org/10.1145/1932682.1869471

[136] D. Wampler, T. Clark, N. Ford, and B. Goetz, “Multiparadigm

programming in industry: A discussion with neal ford and brian goetz,” Software, IEEE,

vol. 27, no. 5, pp. 61 –64, sept.-oct. 2010.

[137] M. Fowler, Domain Specific Languages, 1st ed. Addison-Wesley

Professional, 2010.

[138] M. Eysholdt and H. Behrens, “Xtext: implement your language faster than

the quick and dirty way,” in Proceedings of the ACM international conference companion

on Object oriented programming systems languages and applications companion, ser.

SPLASH ’10. New York, NY, USA: ACM, 2010, pp. 307–309. [Online]. Available: http://-

doi.acm.org/10.1145/1869542.1869625

[139] F. Seehusen and K. Stølen, “An evaluation of the graphical modeling

framework (gmf) based on the development of the coras tool,” in Proceedings of the 4th

international conference on Theory and practice of model transformations, ser. ICMT’11.

Berlin, Heidelberg: Springer-Verlag, 2011, pp. 152–166. [Online]. Available: http://-

dl.acm.org/citation.cfm?id=2022007.2022018

[140] C. Simonyi, M. Christerson, and S. Clifford, “Intentional software,”

SIGPLAN Not., vol. 41, no. 10, pp. 451–464, Oct. 2006. [Online]. Available: http://-

doi.acm.org/10.1145/1167515.1167511

[141] M. Volter, “From programming to modeling - and back again,” Software,

IEEE, vol. 28, no. 6, pp. 20 –25, nov.-dec. 2011.

[142] S. Dmitriev, “Language Oriented Programming: The Next Programming

Paradigm,” onBoard, vol. I, pp. 1–14, November 2004.

[143] M. Völter and E. Visser, “Language extension and composition with

language workbenches,” in Proceedings of the ACM international conference companion

221

on Object oriented programming systems languages and applications companion, ser.

SPLASH ’10. New York, NY, USA: ACM, 2010, pp. 301–304. [Online]. Available: http://-

doi.acm.org/10.1145/1869542.1869623

[144] R.-H. Pfeiffer and A. Wasowski, “Taming the confusion of languages,” in

ECMFA, 2011, pp. 312–328.

[145] G. Procaccianti, A. Vetro, L. Ardito, and M. Morisio, “Profiling power

consumption on desktop computer systems,” in Proceedings of the First international

conference on Information and communication on technology for the fight against global

warming, ser. ICT-GLOW’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 110–123.

[Online]. Available: http://dl.acm.org/citation.cfm?id=2035539.2035554

[146] A. Vetro’, M. Morisio, L. Ardito, and G. Procaccianti, “Monitoring it

power consumption in a research center: Seven facts,” in Proceedings of ENERGY 2011,

The First International Conference on Smart Grids, Green Communications and IT

Energy-aware Technologies, 2011, pp. 64–69. [Online]. Available: http://porto.polito.it/-

2388254/

[147] F. Khomh, M. Penta, Y. Guéhéneuc, and G. Antoniol, “An exploratory

study of the impact of antipatterns on class change-and fault-proneness,” Empirical

Software Engineering, vol. I, pp. 1–33, 2012.

[148] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded

software: a first step towards software power minimization,” Very Large Scale Integration

(VLSI) Systems, IEEE Transactions on, vol. 2, no. 4, pp. 437–445, 1994.

[149] H. Mehta, R. Owens, M. Irwin, R. Chen, and D. Ghosh, “Techniques for

low energy software,” in Proceedings of the 1997 international symposium on Low power

electronics and design. ACM, 1997, pp. 72–75.

[150] T. Šimunic, L. Benini, G. De Micheli, and M. Hans, “Source code

optimization and profiling of energy consumption in embedded systems,” in Proceedings of

the 13th international symposium on System synthesis. ÍEEE Computer Society, 2000, pp.

193–198.

222

[151] K.-D. Lange, “Identifying shades of green: The specpower benchmarks,”

Computer, vol. 42, no. 3, pp. 95–97, Mar. 2009. [Online]. Available: http://dx.doi.org/-

10.1109/MC.2009.84

[152] R. Jain, D. Molnar, and Z. Ramzan, “Towards understanding algorithmic

factors affecting energy consumption: switching complexity, randomness, and preliminary

experiments,” in Proceedings of the 2005 joint workshop on Foundations of mobile

computing. ACM, 2005, pp. 70–79.

[153] N. Potlapally, S. Ravi, A. Raghunathan, and N. Jha, “A study of the

energy consumption characteristics of cryptographic algorithms and security protocols,”

Mobile Computing, IEEE Transactions on, vol. 5, no. 2, pp. 128–143, 2006.

[154] C. Bunse, H. Hopfner, E. Mansour, and S. Roychoudhury, “Exploring the

energy consumption of data sorting algorithms in embedded and mobile environments,” in

Mobile Data Management: Systems, Services and Middleware, 2009. MDM’09. Tenth

International Conference on. IEEE, 2009, pp. 600–607.

	EMPIRICAL ASSESSMENT OF THEIMPACT OF USINGAUTOMATIC STATIC ANALYSIS ONSOFTWARE QUALITY
	ACKNOWLEDGEMENTS
	ABSTRACT
	Contents
	List of Tables
	List of Figures
	1. INTRODUCTION
	1.1. AUTOMATIC STATIC ANALYSIS
	1.2. SOFTWARE QUALITY AND ASA
	1.3. APPROACH
	1.4. STRUCTURE OF THE THESIS

	2 FUNCTIONAL SUITABILITY ANDRELIABILITY
	2.1. DEFINITIONS
	2.2. AUTOMATIC STATIC ANALYSIS AND DEFECTS
	FIRST RESEARCH STREAM: LOOKING AT SINGLE ASA ISSUES TO FIND DEFECTS
	SECOND RESEARCH STREAM: USING ASA ISSUES TO PREDICT MODULES WITHMORE DEFECTS
	CONTRIBUTION TO THE STATE OF THE ART

	2.3. ASSESSING THE PRECISION OF FINDBUGS BYMINING JAVA PROJECTS DEVELOPED AT A UNIVERSITY:FIRST CASE STUDY
	CONTEXT
	EXPERIMENT DESIGN
	RESULTS
	DISCUSSION
	THREATS TO VALIDITY
	CONCLUSIONS

	2.4. ASSESSING THE PRECISION OF FINDBUGS BYMINING JAVA PROJECTS DEVELOPED AT A UNIVERSITY:SECOND CASE STUDY
	EXPERIMENT DESIGN
	DATA COLLECTION
	THREATS TO VALIDITY
	RESULTS
	VALIDATION OF GOOD DEFECT PREDICTOR ISSUES
	VALIDATION OF BAD DEFECTS PREDICTOR ISSUES
	EXTERNAL VALIDATION: LUCENE PROJECT
	DISCUSSION ON RESULTS: ANSWER TO RQ1.

	2.5. COMPARISON WITH PREVIOUS AND RELATED WORK
	2.6. AN INDUCTIVE STUDY AS A CONTRIBUTION TO THESECOND RESEARCH STREAM
	STUDY CONTEXT
	MAPPING BETWEEN ASA ISSUES, DEFECTS, FILES, AND COMPONENTS
	STUDY EXECUTION
	RESULTS
	DISCUSSION
	THREATS TO VALIDITY

	2.7. CONCLUSIONS

	3 MAINTAINABILITY
	3.1. DEFINITIONS
	3.2. COMPARING FOUR APPROACHES FOR TECHNICALDEBT IDENTIFICATION: ANALYSIS ON HADOOP PROJECT
	RELATED WORK
	GOALS AND RESEARCH QUESTIONS
	CASE STUDY
	TD IDENTIFICATION TECHNIQUES SELECTED
	DATA COLLECTION
	ANALYSIS METHODOLOGY

	RESULTS
	THREATS TO VALIDITY

	3.3. A CASE STUDY OF EFFECTIVELY IDENTIFYINGTECHNICAL DEBT
	BACKGROUND AND RELATED WORK
	CONTEXT OF THE STUDY
	GOAL AND RESEARCH QUESTIONS
	PROCEDURE AND DATA COLLECTION
	RESULTS
	DISCUSSION
	THREATS TO VALIDITY
	CONCLUSIONS AND CONTRIBUTIONS

	4 PERFORMANCE EFFICIENCY
	4.1. DEFINITIONS
	4.2. QUANTITATIVE ASSESSMENT OF THE IMPACT OFAUTOMATIC STATIC ANALYSIS ISSUES ON TIMEEFFICIENCY: A PILOT STUDY
	GOAL DEFINITION
	EXPERIMENT PLANNING
	VARIABLE SELECTION AND HYPOTHESES FORMULATION
	INSTRUMENTATION AND EXPERIMENT DESIGN
	ANALYSIS METHODOLOGY
	VALIDITY EVALUATION
	ANALYSIS AND INTERPRETATION
	DISCUSSION

	4.3. EXECUTION TIME EFFICIENCY IMPROVEMENT BYMEANS OF CODE ISSUE REFACTORING: A CONTROLLEDINDUSTRIAL EXPERIMENT
	GOAL AND RESEARCH QUESTION
	CONTEXT DESCRIPTION
	DETECTED ISSUES AND SELECTION

	EXPERIMENT PLANNING
	RESULTS
	RELATED WORK

	4.4. CONCLUSIONS

	5 FUTURE RESEARCH CHALLENGES
	5.1. LANGUAGE INTERACTION AND QUALITY ISSUES:AN EXPLORATORY STUDY
	DEFINITIONS
	GOALS, RESEARCH QUESTIONS AND METRICS
	CASE STUDY
	RESULTS AND DISCUSSION
	THREATS TO VALIDITY
	CONCLUSIONS AND FUTURE WORK

	5.2. DEFINITION, IMPLEMENTATION AND VALIDATION OFENERGY CODE SMELLS
	GREEN CODE SMELLS: BACKGROUND AND DEFINITION
	VALIDATION OF ENERGY CODE SMELLS
	POTENTIAL ENERGY CODE SMELLS SELECTION
	EXPERIMENT SETUP
	RESULTS
	DISCUSSION
	THREATS TO VALIDITY
	RELATED WORK
	CONCLUSIONS

	6 SUMMARY AND CONCLUSIONS
	7 BIBLIOGRAPHY

