Energy Aware Self-Adaptation in Mobile Systems

Original

Availability:
This version is available at: 11583/2506348 since:

Publisher:

Published
DOI:

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
Energy Aware Self-Adaptation in Mobile Systems

Luca Ardito
Department of Control and Computer Engineering
Politecnico di Torino, Italy
luca.ardito@polito.it

Abstract—The increasing proliferation of mobile handsets, and the migration of the information access paradigm to mobile platforms, leads researchers to study the energy consumption of this class of devices. The literature still lacks metrics and tools that allow software developers to easily measure and optimize the energy efficiency of their code. Energy efficiency can definitely improve user experience increasing battery life. This paper aims to describe a technique to adapt the execution of a mobile application, based on the actual energy consumption of the device, without using external equipment.


I. RESEARCH PROBLEM AND MOTIVATION
Worldwide mobile device sales will reach 821 Million units in 2012 and will rise to 1.2 Billion in 2013 [1]. Inevitably the paradigm for accessing information and Internet services is increasingly migrating to mobiles. Despite the improvements in terms of hardware, the main issue that affects these handsets is their limited battery life. The computational capabilities of these devices are growing rapidly, while their size is decreasing and they are increasingly becoming part of our daily life by providing us a wide range of functions. However, the use of these tools significantly affects the energy consumption of the portable device and the advances in the development of battery technologies cannot keep pace with this rapid growth of energy demand. The applications, or apps, typically available on various marketplaces, focus on content, usability, and originality, to gain the maximum number of users. On the other hand, developers typically do not consider how much energy their app will consume because hardware is responsible for energy consumption. When developers include ads in their application to obtain revenues, they do not take into account the negative implications of this choice in terms of energy efficiency [2]. Even if software does not consume energy directly, it has a direct influence on the energy consumption of the underlying hardware. As a matter of fact, applications and operating systems indicate how the information is processed and consequently drive the hardware behaviour. In recent works, we set up and published some lab experiments [3][4][5] to understand the impact of software in energy consumption. Results showed software applications could actually increment the energy consumption of a device from 10% up to 85% but these values depend on the specific device and context in which the experiment is conducted. The main issue is the lack of metrics and tools that allow software developers to easily measure and optimize [6] the energy efficiency of their code.

II. BACKGROUND AND RELATED WORK
Energy profiling of mobile devices is an active research field, especially as regards mobile phones and embedded devices. The concept of energy-awareness is based on a complete knowledge on how and where energy is consumed by a device. From a software engineering point of view, most contributions are devoted to developing frameworks and tools for energy metering and profiling to understand, design, and implement better mobile applications. Balasubramanian et al. in [7] described a power consumption model based on regression. This solution needs a training stage and it logs different device subsystems’ power consumption (such as CPU, Wi-Fi, etc.) using Android Wakelock drivers. This kind of techniques does not require external equipment to build the energy consumption model but it is crucial to reduce the overhead needed to build the model [8]. Murmura et al. in [9] dealt with the issue of “tail energy overhead”; this phenomenon leaves the hardware in a state of high-energy consumption for a period of time after the end of the transmission. Pathak et al. in [10] and [11] analyzed the issue of energy bugs defined as “An error in the system that causes an unexpected amount of high-energy consumption by the system as a whole”. These authors also proposed taxonomy of energy bugs in the context of smartphones and proposed a systematic framework called “EDB” to diagnose “ebugs” on smartphones. Qian et al in [12] studied resource usage with a cross-layer interaction starting from user input and application behaviour to HTTP transport and radio usage. This methodology is composed of two phases: the online data collection and the offline analysis of previously gathered data. The outputs are the total energy used, the event that used it, and the percentage of the total used. Other methods, such as the one proposed by Abogharaf et al. in [13], use an external measurement unit to collect energy usage data. This kind of approach obtains more precise data than the other methods described before but, on the other hand, can only be used for lab purposes. As regards software self-adaptation driven by energy information in a mobile environment, there is not much literature on the topic. Peddersen and Parameswaran in [14] dealt with the problem but in the field of embedded systems. The combination of power consumption data and self-adaptation in mobile systems is missing in all these approaches.

III. APPROACH AND UNIQUENESS
The objective and uniqueness of my research is to define a technique for mobile applications, which exploits self-adaptation driven by real-time energy consumption data, to increment battery life. The requirement is that energy
consumption data should be collected from the Hardware Layer up to the Application Layer in real time (e.g. by built-in power meters) as shown in FIGURE I.

After the implementation phase, further studies are needed to verify the energy overhead required by this technique. The methodological approach I adopt for the validation of this technique is that of empirical software engineering [15][16], performing experiments and case studies.

IV. RESULTS

In preliminary work [17] we designed a first prototype of energy-aware application called *gLCB*. In detail *gLCB* is a Context-Aware application, which retrieves context information (such as geographical location, Wi-Fi hotspots, Bluetooth devices, etc.) from an Android OS based smartphone and sends the collected data to a server for further processing. *gLCB* has four main user profiles called VERY LOW, LOW, NORMAL, and HIGH. Each user profile differs from the others in their different configurations, which cause a variation of data retrieving process and upload ratio. Selecting different user profiles affects the energy behaviour of the application. *gLCB* also has another user profile called AUTO. The AUTO profile selects the best profile from VERY LOW, LOW, NORMAL, HIGH, on the basis of the current battery level and fixed thresholds. Experimental results show that *gLCB* obtained the best trade-off between numbers of server uploads and battery lifetime with the policies computed automatically by the device as shown in TABLE I. Although the information about the remaining battery is poor, the empirical results show good self-adaptation behaviour driven by energy information applied to our prototype.

![FIGURE I ENERGY CONSUMPTION DATA FLOW](image)

Once energy consumption data is available at runtime, it is possible to apply different self-adaptation techniques such as: Conditional Operation, Function Selection, Control Flow Adaptation, etc. as described by Pedersen and Parameswaran in [14]. The technique I am proposing in this paper works as follows: the Operating System Layer manages the overall energy consumption data coming from the Hardware Layer by means of Smart Power Management module called SPM. SPM divides the overall energy consumption data based on current usage of running applications, and sends this data to each application. SPM also imposes constraints and target thresholds based on different user profiles. When necessary, SPM notifies the apps exceeding the threshold. The notifications are intended as asynchronous messages sent by the Operating System (such as Android Intents) so that every application can receive them. If an application can manage the notifications sent by SPM, it will modify its behaviour exploiting self-adaptation techniques. The notified applications will finally find the best trade-off between energy consumption and features provided to the user. The data, on which the self-adaptation is performed, is the instant energy consumption of the peripherals that compose the device. This mechanism can be better explained with an example: when a self-adapting application APP1 starts, it sends an asynchronous message to SPM to subscribe to future notifications from SPM. Based on the user profile defined by the user, SPM will send the application the energy constraints in a string format through a notification, e.g., "Resource: GPS, Max Power: 380mW, Max Time over power limit: 60sec". If APP1 crosses both the thresholds, SPM will send a warning message: "Warning, Resource: GPS, Limit: 380mW, Measured: 440mW". This warning triggers APP1 self-adaptation. If the desired result is not reached after a predefined number of iterations, or if an application has not subscribed to receive notifications, SPM will notify the user about the energy issue, and he/she can choose whether to ignore the message or kill one of the proposed applications.

V. CONTRIBUTIONS

Managing energy consumption data in real-time by and exploiting it to drive self-adaptation in mobile applications is the main contribution of this research. This technique will enable mobile developers to be more aware of the energy efficiency of their code. Moreover it will improve the battery life of mobile phones providing a better user experience.

TABLE I. EXPERIMENTAL RESULTS

<table>
<thead>
<tr>
<th>PROFILE</th>
<th>UPDATE PER HOUR</th>
<th>MEAN BATTERY DURATION</th>
<th>DIFF FROM VERY LOW MEAN BATTERY LEVEL [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>VERY LOW</td>
<td>1,25</td>
<td>13h 8min 8 sec</td>
<td>-</td>
</tr>
<tr>
<td>LOW</td>
<td>1,32</td>
<td>12h 7min 35 sec</td>
<td>7,67%</td>
</tr>
<tr>
<td>NORMAL</td>
<td>6,35</td>
<td>9h 13min 6 sec</td>
<td>28,44%</td>
</tr>
<tr>
<td>HIGH</td>
<td>8,48</td>
<td>7h 55min 55 sec</td>
<td>30,05%</td>
</tr>
<tr>
<td>AUTO</td>
<td>7,54</td>
<td>11h 41min 33 sec</td>
<td>4,55%</td>
</tr>
</tbody>
</table>

REFERENCES


