
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

An Empirical analysis of Open Source Software Defects data through Software Reliability Growth Models / Ullah, Najeeb;
Morisio, Maurizio. - (2013), pp. 460-466. (Intervento presentato al convegno IEEE Eurocon 2013 conference tenutosi a
Zagreb, Croatia nel 1-4 July 2013) [10.1109/EUROCON.2013.6625022].

Original

An Empirical analysis of Open Source Software Defects data through Software Reliability Growth
Models

Publisher:

Published
DOI:10.1109/EUROCON.2013.6625022

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2506322 since:

An Empirical analysis of Open Source Software Defects data through Software Reliability

Growth Models

Najeeb Ullah, Maurizio Morisio

Control and Computer Engineering Department, Politecnico Di Torino

10129, Torino, Italy

najeeb.ullah@polito.it, maurizio.morisio@polito.it

Abstract: — The purpose of this study is to analyze the reliability

growth of Open Source Software (OSS) using Software

Reliability Growth Models (SRGM). This study uses defects data

of twenty five different releases of five OSS projects. For each

release of the selected projects two types of datasets have been

created; datasets developed with respect to defect creation date

(created date DS) and datasets developed with respect to defect

updated date (updated date DS). These defects datasets are

modelled by eight SRGMs; Musa Okumoto, Inflection S-Shaped,

Goel Okumoto, Delayed S-Shaped, Logistic, Gompertz, Yamada

Exponential, and Generalized Goel Model. These models are

chosen due to their widespread use in the literature. The SRGMs

are fitted to both types of defects datasets of each project and the

their fitting and prediction capabilities are analysed in order to

study the OSS reliability growth with respect to defects creation

and defects updating time because defect analysis can be used as

a constructive reliability predictor. Results show that SRGMs

fitting capabilities and prediction qualities directly increase when

defects creation date is used for developing OSS defect datasets

to characterize the reliability growth of OSS. Hence OSS

reliability growth can be characterized with SRGM in a better

way if the defect creation date is taken instead of defects

updating (fixing) date while developing OSS defects datasets in

their reliability modelling.

Keywords— Software Reliability Growth Models, SRGM, Open

Source Software, Empirical Study, Software Reliability Models,

Open Source Defect Data

I. INTRODUCTION

Open Source Software is software whose source code is freely

accessible and changeable by the users, subject to constraints

expressed in a number of licensing modes. It implies a global

alliance for developing quality software with quick bug fixing

along with quick addition and change in the software features

on the end user’s requirements basis. That is why OSS is

fulfilling users’ requirements very precisely to their choices

and interests.

 In the recent year tendency toward adoption of open source

software and open source software components has swiftly

increased. According to Gartner’s report about 80% of the

software will use open source technology by 2012 [1].

According to netcarf survey more than 58% web servers are

using an open source web server, Apache [2]. The swift

increase in the taking on of the open source technology is due

to its freely availability, freedom of choice and affordability.

There are still fears and unsolved questions especially for

business people and project managers. Two common fears,

which have also been outlined by Ray Lane, former Oracle

executive in a keynote speaking in the open source conference

2004, are the lack of formal support and velocity of changes

[2]. All these fears and concerns can be traced back to the

quality and reliability of open source products.

Reliability is defined as the probability of failure free

operation of software for specified period of time in a

specified environment [3]. Reliability is one of the more

important characteristics of software quality when considered

for commercial use. Adoption of reliable open source products

for commercial use can be a real challenge. While open source

software products routinely provide information about product

activity rank, number of developers and the number of users

or downloads, this information does not convey information

about the quality of the open source product.

Software reliability growth models (SRGMs) are frequently

used in the literature for reliability characterization of

commercial software. SRGM assume that reliability grows

after a defect has been detected and fixed. However, results

regarding the applicability of SRGMs for reliability

characterization of OSS reported in the literature are not clear.

Here we characterize the reliability growth of OSS projects

using SRGMs in order to investigate whether or not OSS

reliability growths can be characterized through SRGM. If it

does then the same tests of product reliability can be applied.

If not, then new tests and models for analysing OSS reliability

must be developed. In OSS projects defects detection and

fixing time for a defect is quite different from each other. We

also analyse the OSS reliability growth with respect to defects

detection time and defects fixing time because defect analysis

can be used as a constructive reliability predictor and

measuring defect growth is a good empirical way of

evaluating software quality [4].

We first provide a quick refresher on reliability modelling and

describe common models used to measure software reliability

in section 2. In section 3 we describe literature review. Then

we describe the research questions and methodology that is

used for this study in section 4. Section 5 describes data

collection. In section 6 we describe the results and discuss the

reliability growth for selected projects. Section 7 describes

threats to validity of the study. Section 8 gives discussion on

our findings and concludes the paper.

 Table 1: Summary of SRGM used in this study
Model Name Type Mean Value Function, m (t)

Musa-Okumoto [15] Concave
Inflection S-Shaped [16] S-Shaped ,

Goel-Okumoto [16] Concave
Delayed S-Shaped [16] S-Shaped
Generalized Goel [16] Concave
Gompertz [16] S-Shaped

Logistic [16] S-Shaped

Yamada Exponential [17] Concave

II. SOFTWARE RELIABILITY GROWTH MODEL

 Software reliability modelling (SRM) has long been used as

the most important and successful predictor of software

quality when it hits the market. Reliability model is a

mathematical expression that specifies general form of failure

occurrence as a function of fault introduction, fault removal

and operational environment [3]. Software Reliability Models

(SRM) can both assess and predict reliability. In reliability

assessment SRM are fitted to the collected failure data using

statistical techniques (e.g. Linear Regression, Non Linear

regression) based on the nature of collected data. In reliability

prediction, the total number of expected future failures is

forecasted on the basis of fitted SRM. Both assessment and

prediction need good data, which implies accuracy i.e. data is

accurately recorded at the time the failures occurred and

pertinence i.e. data relates to an environment that resembles to

the environment for which the forecast is performed [3]. For

reliability modelling, software systems are tested in an

environment that resembles to the operational environment.

When a failure (i.e. an unexpected and incorrect behaviour of

the system) occurs during testing, it is counted with a time tag.

Cumulative failures are counted with corresponding

cumulative time. SRM is fitted to the collected data and the

fitted models are then used to predict the total number of

expected defects (i.e. fault on the execution of which failure

occur) in the software.

Hence, typically reliability modelling is composed of 5

steps: keeping a log of past failures, plotting the failures,

determining a curve (i.e. Model) that best fits the observations,

measuring how accurate the curve model is and then using the

best fitted model predicting the future reliability in terms of

predicting total number of expected defects in the software

system.

 The widely used SRM are Software Reliability Growth

Models (SRGM). They assume that reliability grows after a

defect has been detected and fixed. SRGM can be applied to

guide the test board in their decision of whether to stop or

continue the testing. These models are grouped into concave

and S-Shaped models on the basis of assumption about failure

occurrence pattern. The S-Shaped models assume that the

occurrence pattern of cumulative number of failures is S-

Shaped: initially the testers are not familiar with the product,

then they become more familiar and hence there is a slow

increase in fault removing. As the testers’ skills improve the

rate of uncovering defects increases quickly and then levels

off as the residual errors become more difficult to remove. In

the concave shaped models the increase in failure intensity

reaches a peak before a decrease in failure pattern is observed.

Therefore the concave models indicate that the failure

intensity is expected to decrease exponentially after a peak

was reached.

SRGMs measure and model the failure process itself. Because

of this, they include a time component, which is

characteristically based on recording times ti of successive

failures i (i ≥1). Time may be recorded as execution time or

calendar time. These models are fitted to the collected

cumulative defects with respect to cumulative collected time.

These fitted models then use to predict future behavior of the

software. These models focus on the failure history of

software. The failure history is affected by a number of

factors, including the environment within which the software

is executed and how it is executed. A general assumption of

these models is that software must be executed according to

its operational profile; that is, test inputs are selected

according to the probability of their occurrence during actual

operation of the software in a given environment [5]. There

are many detailed descriptions of SRGM ([6], [7], [5], [8], [9],

[10], [11]) with many studies and applications of the models

in various contexts ([12], [13], [14]). Models differ based on

their assumptions about the software and its execution

environment.

In this research, we will plot defects data of OSS projects

using eight SRGM models and examine the reliability growth

in order to analyze the reliability pattern of OSSs. This study

used eight SRGM, selected because they are the most

representative in their category. Table 1 reports their name

and reference and, for each of them:

 m (t) = mean value function (MVF) that represents

the cumulative number of failures through time t

Each model has a different combination of parameters in

the MVF:

 a = expected total number of defects in the code

 b = shape factor, i.e. the rates at which failure rate

decreases

 c = expected number of residual faults in software at

end of system test

III. LITERATURE REVIEW

Different studies are available in the literature about the

applicability of software reliability models for OSS, with

unclear results. Syed Mohammad et al. [18] examined the

defect discovery rate of two OSS products with software

developed in-house using 2 SRGM. They observed that the

two OSS products have a different profile of defect discovery.

Ying Zhou et al [19] analysed bug tracking data of 6 OSS

projects. They observed that along their developmental cycle,

OSS projects exhibit similar reliability growth pattern with

that of closed source projects. They proposed the general

Weibull distribution to model the failure occurrence pattern of

OSS projects. Bruno Rossi et al [20] analysed the failure

occurrence pattern of 3 OSS products applying SRGM. They

proposed that the best model for OSS is the Weibull

distribution. Cobra Rahmani et al. [21] compared the fitting

and prediction capabilities of 3 models using failure data of 5

OSS projects. They observed Shneidewind model is the best

while Weibull is the worst one. Fengzhong et al [22]

examined the bug reports of 6 OSS projects. They modelled

the bug reports using nonparametric techniques. They

suggested that Generalized Additive (GA) models and

exponential smoothing approaches are suitable for reliability

characterization of OSS projects.

Hence in a generalized way empirical validation of

software reliability models for OSS projects is needed, in

order to make clear the applicability of software reliability

models for OSS projects.

IV. GOALS, RESEARCH QUESTIONS AND METRICS

The existing body of the literature on reliability

characterization of OSS through SRGMs is limited. Further,

the results regarding the applicability of SRGMs for reliability

characterization of OSS reported in the literature are not clear.

That is why the first goal of this study is to empirically

investigate whether or not OSS reliability growths can be

characterized through SRGM. Secondly in OSS projects

defects detection and fixing time for a defect is quite different

from each other, which may affect the reliability growth. This

difference in defect detecting and fixing time may be a reason

of unclear results reported in literature regarding the

applicability of SRGM for reliability characterization of OSS.

We therefore empirically analyse the reliability growth of

OSS with respect to defect detecting time versus defect fixing

time through SRGM.

To achieve the goals, our study focuses on these research

questions, which are presented in detail:

R.Q1: Are SRGM models’ fitting capabilities affected by

defect detection and fixing time?

Or, in operational terms, the OSS defect occurrence trend

can be represented by SRGM in a similar way such like OSS

defect fixing trend? Models are fitted to the defects datasets

collected with respect to defect detection date (DD DS) and to

the defects datasets collected with respect to defect fixing date

(DF DS), and their R
2
 are analysed and compared by adopting

visual analysis and statistical hypothesis testing. Model fitting

is required to estimate the parameters of the models and

produce a prediction of failures. Fitting can be done using

Linear or Non Linear Regression (NLR). In linear regression,

a line is determined that fit to data, while NLR is a general

technique to fit a curve through data. The parameters are

estimated by minimizing the sum of the squares of the

distances between data points and the regression curve. We

will use NLR fitting due to the nature of data.

NLR is an iterative process that starts with initial estimated

values for each parameter. The iterative algorithm then

gradually adjusts these until to converge on the best fit so that

the adjustments make virtually no difference in the sum-of-

squares. A model’s parameters do not converge to best fit if

the model cannot describe the data. On consequence the

model cannot fit to the data. We use a commercial program

for curve fitting of the models to the collected defect datasets.

In case of convergence of the curve fitting we use goodness of

fit (GOF) test, R
2
 [23] to determine how well curve fit to the

data. It is defined as:

 In the expression k represents the size of the data set, m(ti)

represents predicted cumulative failures, mi represents actual

cumulative failures at time ti and n represents number of data

points in the dataset. R
2
 takes a value between 0 and 1,

inclusive. The closer the R
2
 value is to one, the better the fit.

The R
2
-value is used for its simplicity and is motivated by the

work of Gaudoin, O. et al [24], who evaluated the power of

several statistical tests for GOF for a variety of reliability

models. Their evaluation showed that this measure was as

least as powerful as the other GOF tests analysed.

 For the purpose of visual representation, we use box plots:

as they allow for an immediate comparison. We consider a

good fit when R
2
 > 0.90 because the model fit might be

considered good having R
2

= 0.90. This threshold categorizes

the models as good and bad in term of fitting capability. We

also do hypothesis testing on the R
2
 of fitted models in order

to determine statistical significant difference in models fitting

values for both types of datasets. Therefore we formulate null

and alternative hypothesis as follows.

H00: The SRGM models’ fitting capabilities for OSS are

not affected with defect detecting and fixing time (i.e.

R
2
 of models fitted to DD DS is not different from R

2

of models fitted to DF DS).

H0a: The SRGM models’ fitting capabilities for OSS are

affected with defect detecting and fixing time (i.e. R
2

of models fitted to DD DS is better than R
2
 of models

fitted to DF DS).

 According to the recommendations in [25] we use the

Mann-Whitney test in order to evaluate practical differences

in models’ fitting capabilities for both types of datasets. The

assumption to select was the not normal distribution of

datasets comprising of R
2
 values of fitted models. In the

statistical testing, the significance level is checked by the

given p-value. For rejecting or accepting the null hypothesis,

we used the significance value α=5%.

R.Q2: Are SRGM models’ predictive qualities affected by

defect detection and fixing time?

Or in operational terms, the models prediction accuracy and

correctness do not change with respect to defect detection and

fixing time. We use the partial failure history (i.e. first portion

of the collected defect datasets are used for model fitting and

remaining portion of the datasets are used for prediction) of

the products to accomplish the prediction as [26]. The first

two thirds data points of the each datasets following [27], is

used to estimate the parameters. These estimated values of the

parameters are then applied to the entire time span for which

failure data is collected in each dataset in order to compare the

prediction qualities of the models for both types of defect

datasets.

Prediction capability can be evaluated under two points of

view, accuracy and correctness. Accuracy deals with the

difference between estimated and actual over a time period.

Correctness deals with the difference between predicted and

actual at a specific point in time (e.g. release date). A model

can be accurate but not correct and vice versa. For this reason

we use the Theil’s Statistic (TS) for accuracy and Predicted

Relative Error (PRE) for correctness.

1) The Theil’s statistic (TS) is the average deviation

percentage over all data points. The closer Theil’s

statistic is to zero, the better the prediction accuracy

of the model. It is defined as [28]:

2) Predicted Relative Error is a ratio between the error

difference (actual versus predicted) and the predicted

number of defects at the time point of failures

prediction (e.g. release time).

Similar to models fitting (i.e. R
2
), models prediction

accuracy and correctness are visually represented through

boxplots. We consider a prediction as good if TS is below

10% and PRE is within the range [-10%, +10%] of total

number of actual defects because 10% range might be

acceptable. These thresholds of TS and PRE categorize the

models as good and bad in term of prediction accuracy and

correctness. We also do hypothesis testing on the TS and PRE

of fitted models in order to determine statistical significant

difference in models prediction qualities for both types of

datasets. Therefore we formulate null and alternative

hypotheses as follows.

H10: The SRGM models’ prediction qualities for OSS are

not affected with defect detecting and fixing time (i.e.

TS and PRE of models prediction for DD DS is not

different from TS and PRE of models prediction for

DF DS).

H1a: The SRGM models’ prediction qualities for OSS are

affected with defect detecting and fixing time (i.e. TS

and PRE of models prediction for DD DS is better

than TS and PRE of models prediction for DF DS).

Similar to methodology adopted for RQ1, we use the

Mann-Whitney test in order to evaluate practical differences

in models’ prediction qualities for both types of datasets. The

assumption to select was the not normal distribution of

datasets comprising of TS and PRE values of fitted models. In

the statistical testing, the significance level is checked by the

given p-value. For rejecting or accepting the null hypothesis,

we used the significance value α=5%.

V. DATA COLLECTION

In OSS projects defects detection and fixing time for a defect

is quite different from each other. The goal of the study is to

analyse the reliability growth of OSS with respect to defect

detection time versus defect fixing time. We identified five

notable and active open source projects from apache.org

(https://issues.apache.org/). These projects are C++ Standard

Library, JUDDI, HTTP Server, XML Beans, and Enterprise

Social Messaging Environment (ESME). The Apache C++

Standard Library provides a free implementation of the

ISO/IEC 14882 international standard for C++ that enables

source code portability and consistent behaviour of programs

across all major hardware implementations, operating systems,

and compilers, open source and commercial alike. JUDDI is

an open source Java implementation of the Universal

Description, Discovery, and Integration (UDDI v3)

specification for (Web) Services. The Apache HTTP Server is

an open-source HTTP server for modern operating systems

including UNIX, Microsoft Windows, Mac OS/X and

Netware. XML Beans is a tool that allows you to access the

full power of XML in a Java friendly way. ESME (Enterprise

Social Messaging Environment) is a secure and highly

scalable micro sharing and micro messaging platform that

allows people to discover and meet one another and get

controlled access to other sources of information, all in a

business process context. All these projects are considered

stable in production. The 66%, 95%, 68%, 64% and 82% of

the reported issues in these projects respectively, have been

fixed and closed. We collected defect data of the selected

projects from apache.org using JIRA. JIRA is a commercial

issue tracker. Issues can be bugs, feature requests,

improvements, or tasks. JIRA track bugs and tasks, link issues

to related source code, plan agile development, monitor

activity, report on project status.

For each release of the selected projects we have collected all

the issues reported at our date of observation. For each project,

we have considered all the major releases until October 2012.

We were able to get eight (8) versions for C++ Standard

Library, seven (7) versions for JUDDI, two (2) versions for

HTTP Server, five (5) versions for XML Beans and three (3)

versions for ESME. Hence defects data of 25 different

releases of 5 projects were collected. Table 2 lists the

Table2: Selected Projects Details

Project Version Release Date

C++ Standard Library V4.1.2 18/07/2005

V4.1.3 30/01/2006

V4.1.4 03/07/2006

V4.2.0 29/10/2007

V4.2.1 01/05/2008

V4.2.2 30/06/2008

V4.2.3 01/09/2008

V5.0.0 31/05/2009

JUDDI V2.0 02/08/2009

V3.0 26/10/2009

V3.0.1 01/02/2010

V3.0.2 17/05/2010

V3.0.3 22/07/2010

V3.0.4 06/11/2010

V3.1.0 27/06/2011

HTTP Server V3.1.4 13/02/2005

V3.2.7 13/02/2006

XMLBeans V2.0 30/06/2005

V2.1 16/11/2005

V2.2 23/03/2006

V2.3 01/06/2007

V2.4 08/07/2008

ESME V1.1 09/10/2010

V1.2 14/03/2011

V1.3 29/08/2011

information of the projects along with the selected releases

and their time windows for each release.

The tracking software records all the information regarding

each issue, such as issue type, status, created date, updated

date, affected version. After a deep inspection of the

repositories and of their documentation, we have decided to

focus on those issues that were declared “bug” or “defect”

excluding “enhancement,” “feature-request,” “task” or “patch”.

For the same reason, we have considered only those issues

that were reported as closed or resolved after the release date

of each version. Further, we excluded issues closed before the

release date. These issues are typically found in the candidate

(or testing) releases of projects. We filtered all the issues in

order to collect only issues that have declared “defect” or

“bug” as in [20, 22]. For the filtration of the collected issue

from the online repository we used the aforementioned

attributes. After refining the data we grouped the defects into

cumulative defects by week.

We developed two types of datasets for each release of each

project. In first type of datasets (i.e. created date DS) we

grouped the defects into cumulative defects by weeks with

respect to created date of the defects while in second type of

dataset (i.e. updated date DS) we grouped the defects into

cumulative defects by weeks with respect to updated date of

the defects. We divided the entire time span of each release

into weeks and then counted detected defects in each week.

For each release in first type of dataset we counted defects for

each week with respect to created date (after this will call

created date DS) and in second type of dataset we counted

defects for each week with respect to updated date (after this

will call updated date DS). In this way we developed 25

created date DS and 25 updated date DS for total of 25

selected releases of the five OSS projects. The complete

datasets are available online
1
.

VI. RESULTS

A: Models Fitting Results: (RQ1)

In Figure 1 we report the boxplots of R
2
 (i.e. Goodness of

Fit values) per model for both types of datasets of each release

of the selected projects. For RQ1, observing the box plots in

Figure 1 it appears that there is clear difference. Medians of

all the models are above the threshold in case of created date

DS and all the models have also narrow boxplot (always better

than 0.9, the threshold depicted as a red horizontal line) but

some outliers. On contrary in case of updated date DS the

boxplots of R
2
values show clear variation. It is clear from the

Figure 1 that models fitting capabilities increase in case of

created date DS. Hence it is suggested that for the reliability

characterization of OSS through SRGMs defects created date

should be considered.

We also test the hypothesis H00 with Mann-Whitney test

for differences. The test reports a p-value = 0.0006344 which

is below the threshold, α. Therefore, we reject the null

hypothesis, indicating that there is significant difference of

models fitting between the defects created and updated date

DS, which is also visually represented through boxplots in

Figure 1.

In summary:

 All the models have very good fit (better than 0.9),

but with outliers in the case of created date DS

while in updated date DS only the median of

Inflection, Logistic, Gompertz and Generalized are

above the threshold.

 There is practical significant difference in models

fitting capabilities when defects created date is

used in developing OSS defects datasets for the

reliability characterization.

B. Models Prediction Results: (RQ2)

In order to analyse the models prediction qualities we used

the first two-third data points of the data sets to train the

model, and predicted the last third. The choice of two-third

data points was motivated with the wood’s suggestion for

model stability [14]. We analyse the models prediction

qualities in terms of prediction accuracy and correctness.

Accuracy

 Figure 2 reports the TS values for all datasets of both types.

The red line represents the 0.1 threshold, usually considered

indicator of good accuracy.

 In created date DS, all the models have very good prediction

accuracy and have narrow boxplot (always the medians lie on

the threshold 0.1, the threshold depicted as a red horizontal

line). In updated date DS all the models have not good

prediction accuracy and the boxplots show the variations in

their prediction accuracy. It is clear from the Figure 2 that

models prediction accuracy increase in case of created date

1
 http://softeng.polito.it/najeeb/DataSets/OSSDS.pdf

http://softeng.polito.it/najeeb/DataSets/OSSDS.pdf

DS. Hence it is suggested that for the reliability

characterization of OSS through SRGMs defects created date

should be considered.

 We test the hypothesis H10 with Mann-Whitney test for

differences. The test reports a p-value < 2.2e-16 for TS values

of both types of datasets, which is below the threshold, α.

Therefore, we reject the null hypothesis, indicating that there

is significant difference of models prediction qualities in term

of prediction accuracy between the defects created and

updated date DS, which is also visually represented through

boxplots in Figure 2.

In summary:

 In created date DS all models are close to the

threshold while in updated date DS all other

models have variations.

 There is practical significant difference in models

prediction accuracy when defects created date is

used in developing OSS defects dataset for the

reliability characterization.

 Correctness

 Correctness results are shown in the boxplots of Figure 3.

The red lines represent the range ±10% of total number of

actual defects.

 In created date DS all models have narrow boxplots and

their medians lie within the range ±10% of selected threshold.

On contrary in updated date DS all the models tend to

underestimate the actual number of defects. Only inflection

S-Shaped has median lies in the selected range. It is clear from

the Figure 3 that models prediction correctness increase in

case of created date DS. Hence it is suggested that for the

reliability characterization of OSS through SRGMs defects

created date should be considered.

 We test the hypothesis H10 with Mann-Whitney test for

differences. The test reports a p-value = 9.709e-05 for PRE

values of both types of datasets, which is below the threshold,

α. Therefore, we reject the null hypothesis, indicating that

there is significant difference of models prediction qualities in

term of prediction correctness between the defects created and

updated date DS, which is also visually represented through

boxplots in Figure 3.

In summary:

 On created date DS all the models provide good

accuracy and prediction while for updated date DS

all the models behave inversely.

 There is practical significant difference in models

prediction accuracy when defects created date is used

in developing OSS defects dataset for the reliability

characterization.

VII. THREATS TO VALIDITY

We recognize a first conclusion threat is the choice of

threshold is not grounded in the literature. However we

provided boxplots to show to the readers that certain models

got good fitting\prediction performances in several datasets.

Although the high number of datasets used (50) might make

our findings generalizable, we strongly suggest the reader to

define her own thresholds for fitting, accuracy and correctness

of predictions and re elaborate the results according to those

thresholds, using the boxplot provided. We notice another

conclusion threat in the choice of not performing cross

validation in prediction. However we grounded our choice in

the literature.

The number of release and the time windows of the

observations are different in the five OSS. This was due to

 Figure 1: Box Plots of fitting (R2) values

 Figure 2: Box Plots of Prediction Accuracy (TS) values

 Figure 3: Box Plots of Prediction Correctness (PRE) values

some time constraints and the availability of the data in the

repositories. As we do not compare the five OSS, but we

rather want to understand whether there is a pattern of

reliability in each OSS, this difference is not crucial.

We used open on-line repository to collect data of five

different projects. We intensively cleaned the data we

collected to limit the bias associated with the open nature of

these repositories.

VIII. DISCUSSION AND CONCLUSION

We have attempted to derive general conclusion about the

reliability growth of OSS applying eight different SRGM

models to a wide range of OSS defects datasets. We evaluate

the reliability growth pattern of OSS using SRGMs. The

performance of models differs between created date and

updated date datasets. The results show a huge difference

between failures occurrence patterns of created date DS and

updated date DS, which indicates a clear cut difference in the

reliability growth of the OSS with respect to defect creating

date and defect fixing date. From the results of this study it is

suggested that for reliability characterization of OSS defects

created date should be considered because the reliability of

OSS directly increases with defects created date. The results

also show that SRGM can be used for the reliability

characterization OSS and their fitting capabilities and

prediction qualities directly related to defects creating date

instead of defects updating/fixing date. This study makes the

unclear results reported in the literature regarding the

applicability of SRGMs for OSS reliability characterization,

clearer.

In our previous studies [29, 30] we have observed different

behaviour of the best models for OSS as compared to CSS

(Closed Source Software). The best performer models were

Musa Okumoto and Inflection for industrial datasets, while

Gompertz and Inflection were the best for OSS datasets. We

therefore deeply investigate the models fitting and prediction

results focusing on this observation. We observed that all the

S-Shaped models fitting and prediction qualities for OSS is

better than concave shaped that is why Musa is best former for

CSS but not for OSS because of its concave nature. While

Gompertz and Inflection belong to S-Shaped category and as

such it indicates an initial learning phase in which the

community of end-users and reviewers of the open source

project does not react promptly to new release. So because of

this S-Shaped nature Inflection S-Shaped and Gompertz

outperformed for OSS than Musa Okumoto Model.

These results of this study show that SRGM models can

characterize the OSS reliability growth. For reliability

modelling of OSS the defect creating date should be used for

developing defect data sets of OSS in order to characterize

their reliability growth through software reliability models.

REFERENCES:

 [1] Najeeb ullah, Maurizio Morisio, “An Empirical Study of Open Source

Software Reliability Models”, Proceedings of International conference on
computational intelligence and computing research, 2011.

[2] Farber D. Six barriers to open source adoption, ZDNet Tech Update,

March, 2004 [WWW document].

[3] IEEE Std 1633-2008 IEEE Recommended Practice in Software Reliability.

[4] David, N. C. (2002) Managing Software Quality with Defects, In
Proceedings of the 26th International Computer Software and Applications

Conference on Prolonging Software Life: Redevelopment IEEE Computer

Society.
[5] Lyu, M. (ed.): 1996, Handbook of Software Reliability Engineering. New

York: McGraw-Hill.

[6] Goel, A. L., and Okumoto, K. 1979. “A time dependent error detection
model for software reliability and other performance measures”, IEEE

Transactions on Reliability 28(3): 206–211.

[7] Kececioglu, D. 1991. Reliability Engineering Handbook, Vol. 2,
Englewood Cliffs, NJ: Prentice-Hall.

[8] Musa, J., Iannino, A., and Okumoto, K. 1987. Software Reliability:

Measurement, Prediction, Application. New York: McGraw-Hill.
[9] Trachtenberg, M. 1990, “A general theory of software-reliability

modeling”, IEEE Transactions on Reliability 39(1): 92–96.

[10] Yamada, S., Ohba, M., and Osaki, S. 1983. “S-shaped reliability growth
modeling for software error detection”, IEEE Transactions on Reliability

32(5): 475–478.

[11] Yamada, S., Ohtera, H., and Narihisa, H. 1986. Software reliability

growth models with testing effort. IEEE Transactions on Reliability 35(1):

19–23.

[12] Musa, J., and Ackerman, A. 1989, Quantifying software validation:
When to stop testing. IEEE Software. 19–27.

[13] Wood, A. 1996, Predicting software reliability. IEEE Computer 29(11):

69–78.
[14] Wood, A. 1997. Software reliability growth models: Assumptions vs.

reality. Proceedings of the International Symposium on Software Reliability
Engineering 23(11): 136–141.

[15] J. D. Musa and K. Okumoto, “A logarithmic Poisson execution time

model for software reliability measurement,” in Conf. Proc. 7th International
Conf. on Softw. Engineering, 1983, pp. 230–237.

[16] C. Y. Huang, M. R. Lyu, and S. Y. Kuo, “A unified scheme of some non-

homogenous Poisson process models for software reliability estimation,”
IEEE Trans. Softw. Engineering, vol. 29, no. 3, pp. 261–269, March 2003.

[17] Yamada, S., Ohtera, H., and Narihisa, H. 1986. Software reliability

growth models with testing effort. IEEE Transactions on Reliability 35(1):

19–23.

[18] Syed-Mohamad et al, “Reliability Growth of Open Source Software

Using Defect Analysis”, International Conference on Computer Science and
Software Engineering, 2008.

[19] Ying Zhou et al, “Open source software reliability model: an empirical

approach”, ACM SIGSOFT Software Engineering Notes, 2005
[20] Bruno Rossi et al, “Modelling Failures Occurrences of Open Source

Software with Reliability Growth”, journal of Open Source Software: New

Horizons, page 268-280, 2010.
[21] Cobra Rahmani et al, “A Comparative Analysis of Open Source Software

Reliability”, Journal of Software, page 1384-1394, 2010.

[22] Fenhzong et al, “Analyzing and Modeling Open Source Software Bug
Report Data”, 19th Australian Conference on Software Engineering.

[23] K. C. Chiu, Y. S. Huang, and T. Z. Lee, “A study of software reliability

growth from the perspective of learning effects,” Reliability Engineering and
System Safety, pp. 1410–1421, 2008.

[24] O. Gaudoin et al, “A simple goodness-of- fit test for the power law

process based on the Duane plot”, IEEE Transactions on Reliability.

[25] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A.

Wesslen, Experimentation in software engineering: an introduction. Norwell,

Massachusetts. USA: Kluwer Academic Publishers, 2000.
[26] Cobra Rahmani et al, “A Comparative Analysis of Open Source Software

Reliability”, Journal of Software, page 1384-1394, 2010.

[27] Carina Andersson , “A replicated empirical study of a selection method
for software reliability growth models”, journal of Empirical Software

Engineering, pages 161-182, year 2006.

[28] P. L. Li, J. Herbsleb, and M. Shaw, “Forecasting field defect rates using a
combined time-based and metrics-based approach: a case study of

OpenBSD,” in Proceedings of the 16th IEEE International Symposium on

Softw. Reliability Engineering, Chicago, IL, 2005, pp. 193–202.
[29] Najeeb Ullah, Maurizio Morisio, Antonio Vetro, “A Comparative

Analysis of Software Reliability Growth Models using defect data of closed

and open source software”, proceedings of SEW-35, 2012.
[30] Najeeb Ullah, Maurizio Morisio, “An Empirical Study of reliability

growth of open versus closed source software through software reliability

growth models”, proceedings of APSEC 2012.

