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Abstract: — The purpose of this study is to analyze the reliability 

growth of Open Source Software (OSS) using Software 

Reliability Growth Models (SRGM). This study uses defects data 

of twenty five different releases of five OSS projects. For each 

release of the selected projects two types of datasets have been 

created; datasets developed with respect to defect creation date 

(created date DS) and datasets developed with respect to defect 

updated date (updated date DS).  These defects datasets are 

modelled by eight SRGMs; Musa Okumoto, Inflection S-Shaped, 

Goel Okumoto, Delayed S-Shaped, Logistic, Gompertz, Yamada 

Exponential, and Generalized Goel Model.  These models are 

chosen due to their widespread use in the literature. The SRGMs 

are fitted to both types of defects datasets of each project and the 

their fitting and prediction capabilities are analysed in order to 

study the OSS reliability growth with respect to defects creation 

and defects updating time because defect analysis can be used as 

a constructive reliability predictor. Results show that SRGMs 

fitting capabilities and prediction qualities directly increase when 

defects creation date is used for developing OSS defect datasets 

to characterize the reliability growth of OSS.  Hence OSS 

reliability growth can be characterized with SRGM in a better 

way if the defect creation date is taken instead of defects 

updating (fixing) date while developing OSS defects datasets in 

their reliability modelling. 

 

Keywords— Software Reliability Growth Models, SRGM, Open 

Source Software, Empirical Study, Software Reliability Models, 

Open Source Defect Data 

I. INTRODUCTION 

Open Source Software is software whose source code is freely 

accessible and changeable by the users, subject to constraints 

expressed in a number of licensing modes.   It implies a global 

alliance for developing quality software with quick bug fixing 

along with quick addition and change in the software features 

on the end user’s requirements basis. That is why OSS is 

fulfilling users’ requirements very precisely to their choices 

and interests.   

     

 In the recent year tendency toward adoption of open source 

software and open source software components has swiftly 

increased.  According to Gartner’s report about 80% of the 

software will use open source technology by 2012 [1].  

According to netcarf survey more than 58% web servers are 

using an open source web server, Apache [2].  The swift 

increase in the taking on of the open source technology is due 

to its freely availability, freedom of choice and affordability. 

There are still fears and unsolved questions especially for 

business people and project managers. Two common fears, 

which have also been outlined by Ray Lane, former Oracle 

executive in a keynote speaking in the open source conference 

2004, are the lack of formal support and velocity of changes 

[2]. All these fears and concerns can be traced back to the 

quality and reliability of open source products. 

 

Reliability is defined as the probability of failure free 

operation of software for specified period of time in a 

specified environment [3]. Reliability is one of the more 

important characteristics of software quality when considered 

for commercial use. Adoption of reliable open source products 

for commercial use can be a real challenge. While open source 

software products routinely provide information about product 

activity rank, number of developers and the number of users 

or downloads, this information does not convey information 

about the quality of the open source product. 

 

Software reliability growth models (SRGMs) are frequently 

used in the literature for reliability characterization of 

commercial software. SRGM assume that reliability grows 

after a defect has been detected and fixed. However, results 

regarding the applicability of SRGMs for reliability 

characterization of OSS reported in the literature are not clear.   

  

Here we characterize the reliability growth of OSS projects 

using SRGMs in order to investigate whether or not OSS 

reliability growths can be characterized through SRGM. If it 

does then the same tests of product reliability can be applied. 

If not, then new tests and models for analysing OSS reliability 

must be developed.  In OSS projects defects detection and 

fixing time for a defect is quite different from each other. We 

also analyse the OSS reliability growth with respect to defects 

detection time and defects fixing time because defect analysis 

can be used as a constructive reliability predictor and 

measuring defect growth is a good empirical way of 

evaluating software quality [4].   

 

We first provide a quick refresher on reliability modelling and 

describe common models used to measure software reliability 

in section 2. In section 3 we describe literature review. Then 

we describe the research questions and methodology that is 

used for this study in section 4.  Section 5 describes data 

collection. In section 6 we describe the results and discuss the 

reliability growth for selected projects.  Section 7 describes 

threats to validity of the study. Section 8 gives discussion on 

our findings and concludes the paper.  

 



   Table 1: Summary of SRGM used in this study 
Model Name Type Mean Value Function, m (t) 

Musa-Okumoto [15] Concave  
Inflection S-Shaped [16] S-Shaped  ,   

Goel-Okumoto [16] Concave  
Delayed S-Shaped [16] S-Shaped  
Generalized Goel [16] Concave  
Gompertz [16] S-Shaped  

Logistic [16] S-Shaped 

 
Yamada Exponential [17] Concave 

 
 

 

 

II. SOFTWARE RELIABILITY GROWTH MODEL 

  Software reliability modelling (SRM) has long been used as 

the most important and successful predictor of software 

quality when it hits the market. Reliability model is a 

mathematical expression that specifies general form of failure 

occurrence as a function of fault introduction, fault removal 

and operational environment [3]. Software Reliability Models 

(SRM) can both assess and predict reliability. In reliability 

assessment SRM are fitted to the collected failure data using 

statistical techniques (e.g. Linear Regression, Non Linear 

regression) based on the nature of collected data. In reliability 

prediction, the total number of expected future failures is 

forecasted on the basis of fitted SRM. Both assessment and 

prediction need good data, which implies accuracy i.e. data is 

accurately recorded at the time the failures occurred and 

pertinence i.e. data relates to an environment that resembles to 

the environment for which the forecast is performed [3].  For 

reliability modelling, software systems are tested in an 

environment that resembles to the operational environment. 

When a failure (i.e. an unexpected and incorrect behaviour of 

the system) occurs during testing, it is counted with a time tag. 

Cumulative failures are counted with corresponding 

cumulative time. SRM is fitted to the collected data and the 

fitted models are then used to predict the total number of 

expected defects (i.e. fault on the execution of which failure 

occur) in the software.  

 

Hence, typically reliability modelling is composed of 5 

steps: keeping a log of past failures, plotting the failures, 

determining a curve (i.e. Model) that best fits the observations, 

measuring how accurate the curve model is and then using the 

best fitted model predicting the future reliability in terms of 

predicting total number of expected defects in the software 

system.  

 

 The widely used SRM are Software Reliability Growth 

Models (SRGM). They assume that reliability grows after a 

defect has been detected and fixed. SRGM can be applied to 

guide the test board in their decision of whether to stop or 

continue the testing. These models are grouped into concave 

and S-Shaped models on the basis of assumption about failure 

occurrence pattern.  The S-Shaped models assume that the 

occurrence pattern of cumulative number of failures is S-

Shaped: initially the testers are not familiar with the product, 

then they become more familiar and hence there is a slow 

increase in fault removing. As the testers’ skills improve the 

rate of uncovering defects increases quickly and then levels 

off as the residual errors become more difficult to remove. In 

the concave shaped models the increase in failure intensity 

reaches a peak before a decrease in failure pattern is observed. 

Therefore the concave models indicate that the failure 

intensity is expected to decrease exponentially after a peak 

was reached. 

 

SRGMs measure and model the failure process itself. Because 

of this, they include a time component, which is 

characteristically based on recording times ti of successive 

failures i (i ≥1). Time may be recorded as execution time or 

calendar time. These models are fitted to the collected 

cumulative defects with respect to cumulative collected time. 

These fitted models then use to predict future behavior of the 

software.  These models focus on the failure history of 

software. The failure history is affected by a number of 

factors, including the environment within which the software 

is executed and how it is executed. A general assumption of 

these models is that software must be executed according to 

its operational profile; that is, test inputs are selected 

according to the probability of their occurrence during actual 

operation of the software in a given environment [5]. There 

are many detailed descriptions of SRGM ([6], [7], [5], [8], [9], 

[10], [11]) with many studies and applications of the models 

in various contexts ([12], [13], [14]). Models differ based on 

their assumptions about the software and its execution 

environment. 

 

In this research, we will plot defects data of OSS projects 

using eight SRGM models and examine the reliability growth 

in order to analyze the reliability pattern of OSSs. This study 

used eight SRGM, selected because they are the most 

representative in their category. Table 1 reports their name 

and reference and, for each of them: 

 

 m (t) = mean value function (MVF) that represents 

the cumulative number of failures through time t 

 

Each model has a different combination of parameters in 

the MVF: 

 

 a = expected total number of defects in the code 

 b = shape factor, i.e. the rates at which failure rate 

decreases 

 c = expected number of residual faults in software at 

end of system test 

 



III. LITERATURE REVIEW 

Different studies are available in the literature about the 

applicability of software reliability models for OSS, with 

unclear results. Syed Mohammad et al. [18] examined the 

defect discovery rate of two OSS products with software 

developed in-house using 2 SRGM. They observed that the 

two OSS products have a different profile of defect discovery.  

Ying Zhou et al [19] analysed bug tracking data of 6 OSS 

projects. They observed that along their developmental cycle, 

OSS projects exhibit similar reliability growth pattern with 

that of closed source projects. They proposed the general 

Weibull distribution to model the failure occurrence pattern of 

OSS projects. Bruno Rossi et al [20] analysed the failure 

occurrence pattern of 3 OSS products applying SRGM. They 

proposed that the best model for OSS is the Weibull 

distribution. Cobra Rahmani et al. [21] compared the fitting 

and prediction capabilities of 3 models using failure data of 5 

OSS projects. They observed Shneidewind model is the best 

while Weibull is the worst one. Fengzhong et al [22] 

examined the bug reports of 6 OSS projects. They modelled 

the bug reports using nonparametric techniques. They 

suggested that Generalized Additive (GA) models and 

exponential smoothing approaches are suitable for reliability 

characterization of OSS projects.   

 

Hence in a generalized way empirical validation of 

software reliability models for OSS projects is needed, in 

order to make clear the applicability of software reliability 

models for OSS projects.   

 

IV. GOALS, RESEARCH QUESTIONS AND METRICS 

The existing body of the literature on reliability 

characterization of OSS through SRGMs is limited. Further, 

the results regarding the applicability of SRGMs for reliability 

characterization of OSS reported in the literature are not clear. 

That is why the first goal of this study is to empirically 

investigate whether or not OSS reliability growths can be 

characterized through SRGM. Secondly in OSS projects 

defects detection and fixing time for a defect is quite different 

from each other, which may affect the reliability growth. This 

difference in defect detecting and fixing time may be a reason 

of unclear results reported in literature regarding the 

applicability of SRGM for reliability characterization of OSS. 

We therefore empirically analyse the reliability growth of 

OSS with respect to defect detecting time versus defect fixing 

time through SRGM.  

 

To achieve the goals, our study focuses on these research 

questions, which are presented in detail: 

 

R.Q1: Are SRGM models’ fitting capabilities affected by 

defect detection and fixing time? 

Or, in operational terms, the OSS defect occurrence trend 

can be represented by SRGM in a similar way such like OSS 

defect fixing trend? Models are fitted to the defects datasets 

collected with respect to defect detection date (DD DS) and to 

the defects datasets collected with respect to defect fixing date 

(DF DS), and their R
2
 are analysed and compared by adopting 

visual analysis and statistical hypothesis testing. Model fitting 

is required to estimate the parameters of the models and 

produce a prediction of failures. Fitting can be done using 

Linear or Non Linear Regression (NLR). In linear regression, 

a line is determined that fit to data, while NLR is a general 

technique to fit a curve through data. The parameters are 

estimated by minimizing the sum of the squares of the 

distances between data points and the regression curve. We 

will use NLR fitting due to the nature of data. 

NLR is an iterative process that starts with initial estimated 

values for each parameter. The iterative algorithm then 

gradually adjusts these until to converge on the best fit so that 

the adjustments make virtually no difference in the sum-of-

squares. A model’s parameters do not converge to best fit if 

the model cannot describe the data. On consequence the 

model cannot fit to the data.  We use a commercial program 

for curve fitting of the models to the collected defect datasets.  

In case of convergence of the curve fitting we use goodness of 

fit (GOF) test, R
2
 [23] to determine how well curve fit to the 

data. It is defined as: 

 

             

 
  In the expression k represents the size of the data set, m(ti) 

represents predicted cumulative failures, mi represents actual 

cumulative failures at time ti and n represents number of data 

points in the dataset. R
2
 takes a value between 0 and 1, 

inclusive.  The closer the R
2
 value is to one, the better the fit. 

The R
2
-value is used for its simplicity and is motivated by the 

work of Gaudoin, O. et al [24], who evaluated the power of 

several statistical tests for GOF for a variety of reliability 

models. Their evaluation showed that this measure was as 

least as powerful as the other GOF tests analysed.  

   For the purpose of visual representation, we use box plots: 

as they allow for an immediate comparison. We consider a 

good fit when R
2
 > 0.90 because the model fit might be 

considered good having R
2 

= 0.90. This threshold categorizes 

the models as good and bad in term of fitting capability. We 

also do hypothesis testing on the R
2
 of fitted models in order 

to determine statistical significant difference in models fitting 

values for both types of datasets. Therefore we formulate null 

and alternative hypothesis as follows. 

 

H00: The SRGM models’ fitting capabilities for OSS are 

not affected with defect detecting and fixing time (i.e. 

R
2
 of models fitted to DD DS is not different from R

2
 

of models fitted to DF DS). 

 

H0a: The SRGM models’ fitting capabilities for OSS are 

affected with defect detecting and fixing time (i.e. R
2
 

of models fitted to DD DS is better than R
2
 of models 

fitted to DF DS). 

 

    According to the recommendations in [25] we use the 

Mann-Whitney test in order to evaluate practical differences 

in models’ fitting capabilities for both types of datasets. The 

assumption to select was the not normal distribution of 

datasets comprising of R
2
 values of fitted models. In the 

statistical testing, the significance level is checked by the 



given p-value. For rejecting or accepting the null hypothesis, 

we used the significance value α=5%. 

 

R.Q2: Are SRGM models’ predictive qualities affected by 

defect detection and fixing time? 

Or in operational terms, the models prediction accuracy and 

correctness do not change with respect to defect detection and 

fixing time. We use the partial failure history (i.e. first portion 

of the collected defect datasets are used for model fitting and 

remaining portion of the datasets are used for prediction) of 

the products to accomplish the prediction as [26]. The first 

two thirds data points of the each datasets following [27], is 

used to estimate the parameters.  These estimated values of the 

parameters are then applied to the entire time span for which 

failure data is collected in each dataset in order to compare the 

prediction qualities of the models for both types of defect 

datasets.  

 

Prediction capability can be evaluated under two points of 

view, accuracy and correctness. Accuracy deals with the 

difference between estimated and actual over a time period. 

Correctness deals with the difference between predicted and 

actual at a specific point in time (e.g. release date).  A model 

can be accurate but not correct and vice versa. For this reason 

we use the Theil’s Statistic (TS) for accuracy and Predicted 

Relative Error (PRE) for correctness. 

 

1) The Theil’s statistic (TS) is the average deviation 

percentage over all data points.  The closer Theil’s 

statistic is to zero, the better the prediction accuracy 

of the model.  It is defined as [28]: 

 

 
 

2) Predicted Relative Error is a ratio between the error 

difference (actual versus predicted) and the predicted 

number of defects at the time point of failures 

prediction (e.g. release time). 

 

 

 
 

 

Similar to models fitting (i.e. R
2
), models prediction 

accuracy and correctness are visually represented through 

boxplots. We consider a prediction as good if TS is below 

10% and PRE is within the range [-10%, +10%] of total 

number of actual defects because 10% range might be 

acceptable. These thresholds of TS and PRE categorize the 

models as good and bad in term of prediction accuracy and 

correctness. We also do hypothesis testing on the TS and PRE 

of fitted models in order to determine statistical significant 

difference in models prediction qualities for both types of 

datasets. Therefore we formulate null and alternative 

hypotheses as follows. 

 

H10: The SRGM models’ prediction qualities for OSS are 

not affected with defect detecting and fixing time (i.e. 

TS and PRE of models prediction for DD DS is not 

different from TS and PRE of models prediction for 

DF DS). 

 

H1a: The SRGM models’ prediction qualities for OSS are 

affected with defect detecting and fixing time (i.e. TS 

and PRE of models prediction for DD DS is better 

than TS and PRE of models prediction for DF DS). 

 

Similar to methodology adopted for RQ1, we use the 

Mann-Whitney test in order to evaluate practical differences 

in models’ prediction qualities for both types of datasets. The 

assumption to select was the not normal distribution of 

datasets comprising of TS and PRE values of fitted models. In 

the statistical testing, the significance level is checked by the 

given p-value. For rejecting or accepting the null hypothesis, 

we used the significance value α=5%. 

 

V. DATA COLLECTION                

In OSS projects defects detection and fixing time for a defect 

is quite different from each other. The goal of the study is to 

analyse the reliability growth of OSS with respect to defect 

detection time versus defect fixing time.  We identified five 

notable and active open source projects from apache.org 

(https://issues.apache.org/). These projects are C++ Standard 

Library, JUDDI, HTTP Server, XML Beans, and Enterprise 

Social Messaging Environment (ESME). The Apache C++ 

Standard Library provides a free implementation of the 

ISO/IEC 14882 international standard for C++ that enables 

source code portability and consistent behaviour of programs 

across all major hardware implementations, operating systems, 

and compilers, open source and commercial alike. JUDDI is 

an open source Java implementation of the Universal 

Description, Discovery, and Integration (UDDI v3) 

specification for (Web) Services. The Apache HTTP Server is 

an open-source HTTP server for modern operating systems 

including UNIX, Microsoft Windows, Mac OS/X and 

Netware.  XML Beans is a tool that allows you to access the 

full power of XML in a Java friendly way. ESME (Enterprise 

Social Messaging Environment) is a secure and highly 

scalable micro sharing and micro messaging platform that 

allows people to discover and meet one another and get 

controlled access to other sources of information, all in a 

business process context. All these projects are considered 

stable in production. The 66%, 95%, 68%, 64% and 82% of 

the reported issues in these projects respectively, have been 

fixed and closed.  We collected defect data of the selected 

projects from apache.org using JIRA. JIRA is a commercial 

issue tracker. Issues can be bugs, feature requests, 

improvements, or tasks. JIRA track bugs and tasks, link issues 

to related source code, plan agile development, monitor 

activity, report on project status. 

 
For each release of the selected projects we have collected all 

the issues reported at our date of observation. For each project, 

we have considered all the major releases until October 2012. 

We were able to get eight (8) versions for C++ Standard 

Library, seven (7) versions for JUDDI, two (2) versions for 

HTTP Server, five (5) versions for XML Beans and three (3) 

versions for ESME.  Hence defects data of 25 different 

releases of 5 projects were collected. Table 2 lists the 



Table2:  Selected Projects Details 

Project Version Release Date 

C++ Standard Library V4.1.2 18/07/2005 

V4.1.3 30/01/2006 

V4.1.4 03/07/2006 

V4.2.0 29/10/2007 

V4.2.1 01/05/2008 

V4.2.2 30/06/2008 

V4.2.3 01/09/2008 

V5.0.0 31/05/2009 

JUDDI V2.0 02/08/2009 

V3.0 26/10/2009 

V3.0.1 01/02/2010 

V3.0.2 17/05/2010 

V3.0.3 22/07/2010 

V3.0.4 06/11/2010 

V3.1.0 27/06/2011 

HTTP Server V3.1.4 13/02/2005 

V3.2.7 13/02/2006 

XMLBeans V2.0 30/06/2005 

V2.1 16/11/2005 

V2.2 23/03/2006 

V2.3 01/06/2007 

V2.4 08/07/2008 

ESME V1.1 09/10/2010 

V1.2 14/03/2011 

V1.3 29/08/2011 

 

 

information of the projects along with the selected releases 

and their time windows for each release.  
 
The tracking software records all the information regarding 

each issue, such as issue type, status, created date, updated 

date, affected version. After a deep inspection of the 

repositories and of their documentation, we have decided to 

focus on those issues that were declared “bug” or “defect” 

excluding “enhancement,” “feature-request,” “task” or “patch”. 

For the same reason, we have considered only those issues 

that were reported as closed or resolved after the release date 

of each version. Further, we excluded issues closed before the 

release date. These issues are typically found in the candidate 

(or testing) releases of projects. We filtered all the issues in 

order to collect only issues that have declared “defect” or 

“bug” as in [20, 22]. For the filtration of the collected issue 

from the online repository we used the aforementioned 

attributes. After refining the data we grouped the defects into 

cumulative defects by week. 

 

We developed two types of datasets for each release of each 

project. In first type of datasets (i.e. created date DS) we 

grouped the defects into cumulative defects by weeks with 

respect to created date of the defects while in second type of 

dataset (i.e. updated date DS) we grouped the defects into 

cumulative defects by weeks with respect to updated date of 

the defects. We divided the entire time span of each release 

into weeks and then counted detected defects in each week. 

For each release in first type of dataset we counted defects for 

each week with respect to created date (after this will call 

created date DS) and in second type of dataset we counted 

defects for each week with respect to updated date (after this 

will call updated date DS). In this way we developed 25 

created date DS and 25 updated date DS for total of 25 

selected releases of the five OSS projects. The complete 

datasets are available online
1
. 

VI. RESULTS  

A: Models Fitting Results: (RQ1) 

In Figure 1 we report the boxplots of R
2
 (i.e. Goodness of 

Fit values) per model for both types of datasets of each release 

of the selected projects.  For RQ1, observing the box plots in 

Figure 1 it appears that there is clear difference. Medians of 

all the models are above the threshold in case of created date 

DS and all the models have also narrow boxplot (always better 

than 0.9, the threshold depicted as a red horizontal line) but 

some outliers. On contrary in case of updated date DS the 

boxplots of R
2 
values show clear variation.  It is clear from the 

Figure 1 that models fitting capabilities increase in case of 

created date DS. Hence it is suggested that for the reliability 

characterization of OSS through SRGMs defects created date 

should be considered. 

We also test the hypothesis H00 with Mann-Whitney test 

for differences. The test reports a p-value = 0.0006344 which 

is below the threshold, α. Therefore, we reject the null 

hypothesis, indicating that there is significant difference of 

models fitting between the defects created and updated date 

DS, which is also visually represented through boxplots in 

Figure 1.  

In summary: 

  All the models have very good fit (better than 0.9), 

but with outliers in the case of created date DS 

while in updated date DS only the median of 

Inflection, Logistic, Gompertz and Generalized are 

above the threshold. 

 There is practical significant difference in models 

fitting capabilities when defects created date is 

used in developing OSS defects datasets for the 

reliability characterization. 

 

 

B. Models Prediction Results: (RQ2) 

In order to analyse the models prediction qualities we used 

the first two-third data points of the data sets to train the 

model, and predicted the last third. The choice of two-third 

data points was motivated with the wood’s suggestion for 

model stability [14]. We analyse the models prediction 

qualities in terms of prediction accuracy and correctness.  

Accuracy 

   Figure 2 reports the TS values for all datasets of both types. 

The red line represents the 0.1 threshold, usually considered 

indicator of good accuracy.  

   In created date DS, all the models have very good prediction 

accuracy and have narrow boxplot (always the medians lie on 

the threshold 0.1, the threshold depicted as a red horizontal 

line).  In updated date DS all the models have not good 

prediction accuracy and the boxplots show the variations in 

their prediction accuracy. It is clear from the Figure 2 that 

models prediction accuracy increase in case of created date 

                                                 
1
 http://softeng.polito.it/najeeb/DataSets/OSSDS.pdf 

http://softeng.polito.it/najeeb/DataSets/OSSDS.pdf


DS. Hence it is suggested that for the reliability 

characterization of OSS through SRGMs defects created date 

should be considered. 

  We test the hypothesis H10 with Mann-Whitney test for 

differences. The test reports a p-value < 2.2e-16 for TS values 

of both types of datasets, which is below the threshold, α. 

Therefore, we reject the null hypothesis, indicating that there 

is significant difference of models prediction qualities in term 

of prediction accuracy between the defects created and 

updated date DS, which is also visually represented through 

boxplots in Figure 2. 

 

 

In summary: 

 

 

 In created date DS all models are close to the 

threshold while in updated date DS all other 

models have variations. 

 There is practical significant difference in models 

prediction accuracy when defects created date is 

used in developing OSS defects dataset for the 

reliability characterization. 

 

 Correctness 

   Correctness results are shown in the boxplots of Figure 3. 

The red lines represent the range ±10% of total number of 

actual defects. 

   In created date DS all models have narrow boxplots and 

their medians lie within the range ±10% of selected threshold. 

On contrary in updated date DS all the models tend to 

underestimate the actual number of defects.  Only inflection 

S-Shaped has median lies in the selected range. It is clear from 

the Figure 3 that models prediction correctness increase in 

case of created date DS. Hence it is suggested that for the 

reliability characterization of OSS through SRGMs defects 

created date should be considered. 

  We test the hypothesis H10 with Mann-Whitney test for 

differences. The test reports a p-value = 9.709e-05 for PRE 

values of both types of datasets, which is below the threshold, 

α. Therefore, we reject the null hypothesis, indicating that 

there is significant difference of models prediction qualities in 

term of prediction correctness between the defects created and 

updated date DS, which is also visually represented through 

boxplots in Figure 3. 

 

In summary: 

 

 On created date DS all the models provide good 

accuracy and prediction while for updated date DS 

all the models behave inversely.  

 There is practical significant difference in models 

prediction accuracy when defects created date is used 

in developing OSS defects dataset for the reliability 

characterization. 

VII. THREATS TO VALIDITY 

We recognize a first conclusion threat is the choice of 

threshold is not grounded in the literature. However we 

provided boxplots to show to the readers that certain models 

got good fitting\prediction performances in several datasets. 

Although the high number of datasets used (50) might make 

our findings generalizable, we strongly suggest the reader to 

define her own thresholds for fitting, accuracy and correctness 

of predictions and re elaborate the results according to those 

thresholds, using the boxplot provided. We notice another 

conclusion threat in the choice of not performing cross 

validation in prediction. However we grounded our choice in 

the literature. 

 

The number of release and the time windows of the 

observations are different in the five OSS. This was due to 

 
           Figure 1: Box Plots of fitting (R2) values  

 
       Figure 2: Box Plots of Prediction Accuracy (TS) values 

 
          Figure 3: Box Plots of Prediction Correctness (PRE) values 



some time constraints and the availability of the data in the 

repositories. As we do not compare the five OSS, but we 

rather want to understand whether there is a pattern of 

reliability in each OSS, this difference is not crucial. 

 

We used open on-line repository to collect data of five 

different projects. We intensively cleaned the data we 

collected to limit the bias associated with the open nature of 

these repositories. 

 

VIII. DISCUSSION AND CONCLUSION 

We have attempted to derive general conclusion about the 

reliability growth of OSS applying eight different SRGM 

models to a wide range of OSS defects datasets. We evaluate 

the reliability growth pattern of OSS using SRGMs. The 

performance of models differs between created date and 

updated date datasets. The results show a huge difference 

between failures occurrence patterns of created date DS and 

updated date DS, which indicates a clear cut difference in the 

reliability growth of the OSS with respect to defect creating 

date and defect fixing date.  From the results of this study it is 

suggested that for reliability characterization of OSS defects 

created date should be considered because the reliability of 

OSS directly increases with defects created date. The results 

also show that SRGM can be used for the reliability 

characterization OSS and their fitting capabilities and 

prediction qualities directly related to defects creating date 

instead of defects updating/fixing date. This study makes the 

unclear results reported in the literature regarding the 

applicability of SRGMs for OSS reliability characterization, 

clearer. 

 

In our previous studies [29, 30] we have observed different 

behaviour of the best models for OSS as compared to CSS 

(Closed Source Software).  The best performer models were 

Musa Okumoto and Inflection for industrial datasets, while 

Gompertz and Inflection were the best for OSS datasets. We 

therefore deeply investigate the models fitting and prediction 

results focusing on this observation.  We observed that all the 

S-Shaped models fitting and prediction qualities for OSS is 

better than concave shaped that is why Musa is best former for 

CSS but not for OSS because of its concave nature.  While 

Gompertz and Inflection belong to S-Shaped category and as 

such it indicates an initial learning phase in which the 

community of end-users and reviewers of the open source 

project does not react promptly to new release. So because of 

this S-Shaped nature Inflection S-Shaped and Gompertz 

outperformed for OSS than Musa Okumoto Model.  

 

These results of this study show that SRGM models can 

characterize the OSS reliability growth.  For reliability 

modelling of OSS the defect creating date should be used for 

developing defect data sets of OSS in order to characterize 

their reliability growth through software reliability models. 
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