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INTRODUCTION 

 

In this PhD thesis I’m going to explore some of the most important aspects of the catalytic 

combustion in microspaces. 

The main part of the work focuses on the results obtained from tests carried out at the 

Politecnico di Torino, regarding the catalytic microcombustion of lean mixtures of H2, CH4, 

and H2-CH4 in air on catalyzed honeycomb monoliths made of SiC and cordierite. 

A first research was carried out in order to evaluate how some promising catalysts could play 

in favor of an high methane conversion at low temperatures; for this purpose it’s been used an 

operating procedure that I would call “standard” 

A second deeper study involved a different procedure for carrying on tests so to analyze the 

cooling phase besides the heating one and comparing two different thermal conductivity 

monoliths to better understand the heat transfer phenomena. 

A third series of tests, just briefly showed in my thesis, were not performed directly by me 

but by some colleagues, since I was at the University of Delaware in the research group of 

Professor Vlachos during that period. Although, as the idea for testing a reactor with a heat 

recycle chamber was mine after to have found some examples in literature, I designed it, I 

convinced my supervisors to sponsor it and finally I installed and helped for the procedure to 

start up and shut off, and of course because results show to be really worth of attention, I 

chose to illustrated the most important aspects of it. 

A complementary part of the main topic of my research was carried out at the University of 

Delaware first and then, for a shorter period of time, at the Politecnico di Torino. It regarded a 

possible application of the catalytic microcombustion: coupling microcombustion with steam 

reforming in a structured reactor in order to have a thermally self-sustained process. Work 

has focused on the design of the reactor and realization of a prototype, fluid dynamics 

simulations, study of catalyst deposition and some preliminary tests, leaving for a future 

student the fun to carry on more coupled tests. 
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Chapter 1 

 

THEORY OF COMBUSTION IN 

MICROSPACES 

 

1.1 Introduction to microcombustion 

 

Combustion is an exothermic reaction which involves the oxidation of a fuel and the 

reduction of an oxidizing with heat production and electromagnetic radiation emission, often 

also in the visible spectrum, the well-known flame. It is characterized by a very rapid kinetics 

that at high temperatures can lead to release of large amounts of energy. The oxidation of 

various fuels, in fact, is one of the most important resources of energy used in daily 

consumption. Research on reaction mechanisms in large combustors began hundreds of years 

ago and fundamental properties are well known. 

Reducing the size of the combustor up to the order of the flame thickness, the mechanisms 

and characteristics cannot be explained just with theory of traditional combustion, but come 

into play other factors, which is discussed later: laminar regime of the gas flow, low residence 

times of the reactants, heat losses through the walls, cooling phenomena (thermal and radical 

quenching) and heat recirculation between the outlet and inlet gas. 

In Table 1.1 it’s showed a comparison between a conventional combustor for a gas turbine 

and a microcombustor for a gas microturbine. 
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Tab 1.1  Comparison between conventional combustor and microcombustor for gas microturbine [1] 

 

Design Criteria Conventional 

combustor 

Microcombustor 

Length 0.3 m 0.003 m 

Volum 6x10
-2

 m
3
 4x10

-8
 m

3
 

Section 0.2 m
2
 4x10

-5
 m

2
 

Inlet temperature 800 K 500 K 

Flow 55 kg s
-1

 2.0x10
-3

 kg s
-1

 

Average velocity of 

flow 

40-60 m s
-1

 6 m s
-1

 

Residence time 5-8 ms 0.5 ms 

Outlet temperature 1800 K 1500 K 

Volumetric heating 

velocity. 

3.8x10
4
 kW m

-3
 

atm
-1

 

3.3x10
5
 kW m

-3
 

atm
-1

 

 

 

Microcombustion takes place in reactors with diameters less than a millimeter, in which flows 

a mixture of fuel and oxidant that respectively is oxidized and reduced. To reduce the size of 

the device, the surface-to-volume ratio increases and because of this the interface phenomena 

that influence the reaction becomes more important, making the reaction less stable. 

However, thanks to the high power density of hydrocarbon fuels, there is great interest in the 

study of microcombustion as a source of energy. Scale reduction effects are important on the 

flow dynamics, on heat transfer and on chemical reactions. Gas flow is characterized by a low 

Reynolds number. The friction increase and the higher viscous pressure losses in the 

microchannels contribute to reduce the flow velocity. Thus, because of the characteristic 

diameter of about 500 m, the flow velocity of about 6.0 m s
-1

, the viscosity of the gas of 

about 1.0x10
-5

 N s m
-2

, Reynolds number is of the order of 300, also according to the 

temperature. Flow can only be in laminar regime. This excludes the turbulent mixing and 

increases the diffusion time. Furthermore, the residence time is low and comparable with the 

reaction time, but must be higher than the latter for not having an incomplete combustion, 

with low efficiency and flame instability [1,2]. The high surface-to-volume ratio increases the 

heat losses through the surface of the combustor and decreases the radical intermediates to the 

walls, which can cause cooling and extinction. The main problematic mechanisms at the 

interface are thermal quenching and radical quenching. The first occurs when the heat 

developed by the combustion cannot compensate for the heat lost to the outside. The walls act 
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as sinks of enthalpy, lowering the temperature and delaying the kinetics. This leads to a 

reduction of heat generated and the extinction of the flame. Radical quenching is caused, 

instead, by the presence of free radicals that are formed on the combustor walls. Free radicals 

are fundamental in the propagation of combustion stages, which ends when the active species 

recombine themselves to form stable compounds. However, the number of collisions between 

the radicals increases with the decreasing of the combustor size; those are thus destroyed, 

causing the flame cooling. From experiments carried out on microcombustion it was 

concluded that the two phenomena are temperature dependent: the thermal quenching acts at 

lower temperatures (250 °C), while the radical quenching plays a dominant role at higher 

temperatures (700 °C) [3]. To reduce the effects of these mechanisms is important to properly 

design the combustor and to choose the right materials: in particular an insulator which can 

maintain the mixture reaction at a temperature that can sustain combustion and prevent 

thermal quenching; material walls which can interfere with the radical extinction so that the 

reactions in the gas phase can proceed in a stable manner; flame in order to fill the entire 

space available at lower temperatures than the melting point of the walls [2]. A heat 

recirculation through the solid structure of the reactor is a possible solution to redistribute the 

heat energy inside the microcombustor and minimize losses to the outside. The study on 

models of computational fluid dynamics (CFD) has shown that the heat transferred upstream 

promotes the ignition of the cold mixture incoming. Thus, the thermal conductivity of the 

walls is essential to the flame stability as it represents a compromise between the recirculation 

and the heat losses [3]. Use of catalysts is one way to have a more complete and efficient 

microcombustion , as they reduce the cooling due to a lower temperature reaction and another 

way is the premixing of hydrocarbons (in this case methane) with hydrogen, which, thanks to 

its high reactivity, gets easier the start-up and stabilizes the catalytic oxidation. These issues 

are discussed later. 

 

1.2 Thermal combustion 

 

During the combustion of natural gas, multiple chemical reactions can happen. The products 

formed, following the laws that rule the thermodynamics phenomena, depend on many 

parameters such as: working pressure, temperature, concentration of the reagents. 

Carbon monoxide is formed either at very low temperatures or at an oxygen concentration 
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lower than the stoichiometric one, not permitting to perform a complete hydrocarbon 

oxidation. 

Main equilibrium reactions are:  

 

                      2
N  REDUCTIOCH  INCOMPLETE

4 4HO22 4   COCH       (equation 1.1) 

                                      O2ON   REDUCTICO
2

2 CCCO                                 (equation 1.2) 

                                          2
ATION   DISSOCICO

2 22 2 OCOCO                   (equation 1.3) 

                                      OHO 2
N  REDUCTIOCO

22
2   CHCO                    (equation 1.4) 

 

Chemical equilibriums show that carbon dioxide often remains in its dissociate form, in 

conditions of high temperature and high oxygen concentration. 

There are two highly probable ways that lead to nitrogen oxide formation, a radical way and a 

thermal way (Appendix 1). The radical mechanism [4] shows that oxidation starts from the 

reaction between the hydrocarbons radicals and nitrogen molecules in order to form radicals 

N*, following the reaction: 

                           (equation 1.5) 

The radicals, afterward having reacted with the atomic oxygen in the combustion flame, are 

quickly converted into carbon monoxide. 

The thermal mechanism, suggested by Zeldovitch, shows a series of reactions that lead to the 

nitrogen molecular oxidation [4]. In thermal combustion there is at the beginning production 

of some radicals in gas phase, afterward the reactions of oxidation proceed fast, as the flame 

temperature can easily reach 1500 °C, temperature that permits nitrogen oxide formation: 

                    NNOON 2                (equation 1.6) 

                   ONOON  2                    (equation 1.7) 
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                    HNOOHN                    (equation 1.8) 

                            

Each of the two mechanisms of formation cited respectively is preponderant in a certain 

temperature range; therefore there is a variation of the concentration of oxides of nitrogen as 

a function of temperature. 

Experimental results allow seeing a trend characterized by a low slope at low temperatures, 

conditions in which the radical mechanism is the main responsible for the formation of oxides 

of nitrogen. It also shows a sharp increase from the 1500 ° C, temperature that is sufficient 

because the thermal mechanism becomes predominant. 

Figure 1.1 shows this type of behavior. 

 

Fig 1.1 NOx concentration as a function of temperature [4] 

 

Thermal combustion, since it is a series of homogeneous reactions, is an operation difficult to 

control. Furthermore, the composition of the mixture supplied must fall within certain limits: 

a concentration of fuel that is too high can lead to exceeding the limits of flammability, while 

mixtures with low ratios fuel-to-oxygen may lead to unstable flames, to the point that it 

becomes required stabilization, in order to comply with the standards concerning emissions. 
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1.3 Catalytic combustion 

 

Catalytic combustion can be defined as a process in which a compound - the fuel - and the 

oxygen present in the air - the comburent - react at the surface of a catalyst leading to 

complete oxidation of the compound. 

Catalysts are substances participating in the mechanism of a reaction and may affect the 

kinetics, since they act by making possible a reaction mechanism different from that which 

would occur in their absence. Generally the reaction mechanism takes place in several stages 

with lower energy of activation; therefore, the reaction runs more quickly. 

A characteristic of the catalysts is the selectivity that is evident in case of parallel or 

consecutive reactions. A selective catalyst only accelerates the reaction desired in order to 

obtain only the desired product before forming the byproducts. Another important parameter 

is the activity, which is the ability to make reactions occur faster. Generally high activity is 

associated with a low selectivity. In heterogeneous catalysis reagents, catalysts and products 

are present in different phases. The catalyst is not uniformly distributed in the place where 

reaction occurs, the reaction takes place only on the surface of the catalyst, and therefore, the 

specific surface will be of considerable importance. In order to increase the specific surface 

area for a more active catalyst, catalyst could either have a smaller size or a higher porosity of 

the granule, so that the reaction can take place within the granule itself. 

Mechanisms involved in the catalytic combustion are complex and are influenced by: 

temperature, pressure and nature of the catalyst.  

The mechanisms known are: 

- Transport of reagents towards the surface of the catalyst. 

- Diffusion within the pores of the catalyst. 

- Adsorption of at least one of the reactants. 

- Reaction with the formation of an activated complex. 

- Desorption of the product or products. 

- Spread of products towards the outside. 

- Transport of products away from the catalyst surface. 

The overall velocity depends on that of the individual stages. If a stage is slower is said 

kinetically limiting, but in stationary conditions, all the other stages can be considered in 
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balance virtual. 

The adsorption is the phenomenon by which the components of a fluid phase establish bonds 

with a solid surface. The desorption is the inverse phenomenon.  

Depending on the size of the iterations in the absorption, we can identify: 

- Physical Adsorption: characterized by weak interactions. Occurs at temperatures lower 

than the critical one and is favored by high pressures and low temperatures. It begins 

with negligible activation energy, so it is not responsible for the catalysis. 

- Chemical adsorption: bonds are very strong and very similar to the bonds themselves. 

The chemical adsorption is responsible for the catalysis; among other features, it doesn’t 

affect the entire catalytic surface, but only a few points called active centers; it is often a 

phenomenon that is activated, therefore it is required the absorbed to have a certain 

energy of activation. 

It is highly specific, so it requires specific catalysts. The interaction with the surface may be 

able to dissociate the chemical bonds of the absorbed, so the chemical absorbed can be 

associative or dissociative. The surface chemical reaction starts between the reactants, of 

which at least one is adsorbed on the catalyst. The mechanisms by which takes place the 

reaction may be very different, depending on the type of reaction. Generally, the absorbed-

surface bond is likely to weaken or even break some bonds with the reagent. To have a high 

activity, 'absorption must be enough strong to weaken the bonds that have to be broken 

during the reaction, but not too much as not to hinder the desorption of products. Catalysts 

may be a single substance, but more often they are complex compounds. In many cases, there 

is a support on which the active component is deposited in various ways; there may also be 

promoters and inhibitors. Furthermore, different temperature ranges are possible in which 

different considerations can be applied [5]. 
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Fig.1.2 Reaction velocity behavior in catalytic combustion [5] 

 

In the range of the lowest temperature (zone A), the chemical kinetics controls the speed of 

combustion, as it is very important in this region the specific activity of the catalyst. With the 

increasing of the velocity reaction, as the reaction is exothermic, the conversion grows and 

quickly leads to an asymptotic value, after which the accumulation of heat involves the 

deactivation of combustion (zone B). At this point, the overall velocity will be limited by the 

transport of air and fuel to the surface of the catalyst (zone C). 

At higher temperatures it is possible that the homogeneous combustion assume a more 

important role (Zone D). In this case, the catalyst may accelerate the reaction by formation of 

radicals. 

 

1.4 Thermal vs radical combustion 

 

In a free flame burner the flame temperature rises easily to 1500-2000 ° C, at which 

temperature there is production of NOX up to 100-200 ppm. 

The flame is stable due to the high ratio fuel-to-air mixture but if the mixture is too rich there 

is danger of explosion. 

Among the advantages of the catalytic combustion, there are: 

- A good adaptability to fluctuations in temperature and composition of the mixture. 
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- Stable combustion at low concentrations of fuel. 

- Advantage described above implies a safety increased. 

- If temperature is lower than 1500 °C (NOX formation temperature) there is a minor 

formation of these compounds; decreasing the amount of fuel available for the 

homogeneous reaction can also proportionally reduce the amount of radicals product, that 

are responsible for NOX formation in both the mechanisms  [6]. 

- All gaseous organic compounds or gasifiable compounds can be catalytically burned over 

a wide air / fuel ratio. Stable combustion can be achieved even with low concentrations, 

hence a preference for the catalytic combustion in order to control emissions. The ability 

to operate outside of the explosion limit ensures the process to be the safest. 

- The usage of a catalyst can lead to an energy recovery and thus, in addition to manage a 

more efficient use, a better temperature distribution can be achieved in the reactor. 

A common feature of all cases of catalytic combustion is the activation of oxygen and fuel 

molecules on the surface of the catalyst, after which a complete combustion can be performed 

at lower temperatures than those imposed by flame burners. Catalytic combustors can also be 

easier managed than thermal one, since, in theory, by use of an external cooling they can 

operate at any temperature between the one of ignition and the one of adiabatic flame.  

Catalytic combustion also leads to disadvantages or complications: 

- The presence of a catalyst in the combustion chamber poses a technical complication, as it 

influences the properties of the materials used and introduces a process variable in the 

most. 

- The deactivation caused by aging, and the poisoning of the catalyst limit the duration and 

cause a progressive fall in the level of performance. 

- Poisoning can occur by localized chemisorption or masking the active spots of the 

catalyst. 

- In poisoning for localized chemisorption, the poison (eg. S) leads to deactivation of the 

catalyst after being chemisorbed over active sites; instead when the poisoning is 

consequence of catalytic principle masking, the poison is chemisorbed on the carrier by 

promoting the formation of compounds that cover the active spots [12]. 

Examples of poisoning of the catalysts are shown in Figures 1.3 and 1.4. 
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Fig. 1.3 Poisoning for localized chemisorption  

 

Fig.1.4 Poisoning because of catalytic principle masking  

 

To the problem of poisoning must be added the possible sintering of the carrier (catalyst 

support) that occurs when some pores occlude and make the catalyst inaccessible (eg Pt, Pd, 

etc.), see Figure 1.5. 
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Fig.1.5 Sintering of the carrier  

 

Furthermore, the possible sintering of the active principle also decreases the performance of 

the catalyst. In this case, there is a sharp decrease of active sites available; this situation is 

illustrated in Figure 1.6, having as example the Pt. 

 

 

Fig. 1.6 Sintering of active site  
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1.5 Methane combustion 

 

Methane is a light hydrocarbon; it is an alkane formed by a carbon atom and 4 hydrogen 

atoms, whose empirical formula is CH4. It is in gas state at room conditions because of its 

low molecular weight and it is the main fraction of natural gas. The molecular arrangement in 

space is tetrahedral, with the carbon atom at the center and the 4 hydrogen atoms at the 

vertices. Thanks to the regularity of the structure, with strong bonds between the hydrogen 

atoms and the carbon one, shows a high chemical stability. The energy released by the 

breaking of these bonds is the highest of all hydrocarbons (about 36 MJ m
-3

). Methane is, in 

fact, an excellent fuel. It has a lower flammable limit (LFL) of 5% and an upper limit (UFL) 

of 15% at 20 ° C and 1 bar in air. The auto-ignition temperature in air is approximately 538 

°C. The main properties are reported in Table 1.2. All values  are in normal conditions (25 

°C, 1 atm). 

 

 

 

Tab 1.2  Methane properties  [13] 

 
Property Values 

Melting temperature (°C) -182 

Boiling temperature (°C) -161.6 

Density (kg m
-3 

[gas]) 0.717 

Dynamic viscosity (Pa.s) 0.000011 

Combustion enthalpy (kJ kg
-1

) 5326 

Thermal conductivity (W m
-1

 K
-1

) 0.035 

Specific heat (kJ kg
-1

 K
-1

) 2.26 

 

Methane combustion follows the reaction: 

OHCOOCH 2224 22       (ΔH
0
298 = -803 kJ mol-1)             (equation 1.9) 

Natural gas is the fuel that is oxidized and oxygen is the combustive agent that is reduced. 
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Because of the high cost of pure oxygen, it is economical to work with air, then the reaction is 

the following: 

  7.52N 252.72 222224  OHCONOCH                      (equation 1.10) 

The presence of nitrogen in air causes the formation of NOx, pollutants produced by 

oxidation of nitrogen. Combustion fumes are composed primarily of carbon dioxide and 

water vapor. There may be a percentage of carbon monoxide and unburnt methane if working 

in conditions called rich conditions [7]. CO is formed from partial combustion of CH4, with a 

much lower ΔH: 

  223 224 OHCOO/CH   (ΔH
0
298 = -36 kJ mol-1)          (equation 1.11) 

It is primarily a problem of afterburning because the CO2 oxidation is a 10 times slower 

reaction compared to the production of carbon monoxide from methane. It is toxic because, if 

breathed, it can react with the hemoglobin in the blood giving an irreversible complex, the 

carboxyhemoglobin (COHb), which inhibits the absorption of oxygen. To obtain only carbon 

dioxide, there is to wait until the reaction is complete according to the formula:  

 22 22 COOCO    (ΔH
0
298 = -284 kJ mol-1)                 (equation 1.12) 

Only one carbon atom per molecule of methane reduces carbon dioxide emissions and then 

also the impact of this greenhouse gas on the environment. 

Because of the chemical inertia of methane, its combustion requires high activation energy. 

For this reason, catalysts based on noble metals are normally used, as they are excellent for 

oxidations, and they help to shift the reaction towards a complete combustion. 

 

1.6 Hydrogen combustion 

 

Hydrogen is the lightest chemical element and widely abundant in the universe. In normal 

conditions it is colorless, odorless and highly flammable. It has got a lower flammable limit 

(LFL) of 4% and an upper flammability limit (UFL) of 75% in air at atmospheric pressure 

and 25 ° C. The auto-ignition temperature in air is approximately 500 °C. The main properties 

of hydrogen are shown in Tab.1.3. All values are in normal conditions (25 °C, 1 atm). 
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Tab 1.3 Hydrogen properties [14] 

Properties Values 

Melting temperature (°C) -259.14 

Boiling temperature (°C) -252.87 

Density (kg m
-3

) 0.08988 

Dinamic viscosity (Pa s) 0.000009 

Combustion enthalpy (kJ kg
-1

) 144000 

Thermal conductivity (W m
-1

 K
-1

) 0.0182 

Specific heat (kJ kg
-1

 K
-1

) 14.31 

 

Its high chemical reactivity makes it an excellent fuel capable of producing up to 120 MJ kg
-1

 

according to the reaction: 

(l)2)(2)(2 OH2/1  gg OH  (ΔH
0
298 = - 287 kJ mol-1)               (equation 1.13) 

Hydrogen is the fuel, oxygen is the combustive agent and the product is pure water. 

The following reaction is in case of air using: 

 

22222 3.76NO2H76.32  NOH                                (equation 1.14) 

The energy per unit mass produced by the combustion of hydrogen gas is about 3 times 

higher than that of gasoline. Hydrogen represents an alternative fuel of great interest. It is 

considered a renewable energy source because it can be produced from water and the only 

product of combustion is water. This would be a solution to problems related to greenhouse 

gas emissions and exhaustible resources. In addition, with the use of catalysts (nickel, 

palladium and platinum) the combustion can take place at much lower temperatures (about 

100-200 °C). 

However, the production of hydrogen is very expensive compared to conventional fuels. 

Since there are no natural resources, must be produced through specific chemical reactions. 

The most common method of producing hydrogen is steam reforming of natural gas. At 

temperatures of about 1000 ° C, the steam reacts with methane to form syngas (CO and H2). 

Other hydrogen can be recovered at lower temperatures involving the CO product. This 

process has the advantage of being the least expensive, but it does require fossil fuels to 
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provide the energy required for the reactions and it releases a large quantity of CO2 in the 

atmosphere. Hydrogen can also be produced through the electrolysis of water. Using solar 

energy or wind power to provide the electricity needed, it is a completely renewable and non-

polluting energy resource. Anyway, the energy consumed with this method is higher than the 

one product by hydrogen. Another problem is the difficulty in transporting and storage of this 

gas extremely volatile. Because of the low molecular weight, in fact, the storage of 

reasonable amount of gas is possible only operating at 700 bar pressure. 

Nowadays, hydrogen cannot be considered a natural source of energy, but an energy carrier. 

Its use is not economically acceptable yet and also for this reason it is not the used as the only 

fuel in microcombustors. 

 

1.7 Combustion of methane/hydrogen mixtures 

 

The use of methane and hydrogen mixtures for feeding a microreactor can help to solve 

problems related to the instability of combustion: it can decrease the temperature required for 

starting the combustion, it can stabilize the catalytic combustion without the need for a 

further pre-heating, it can ease mechanisms related to the activation and cooling [3]. 

Nowadays, in fact, mixtures CH4/H2 have become of great interest because the high reactivity 

of hydrogen can facilitate the ignition of the combustion and / or stabilize the catalytic 

reactions. 

Working with lean mixtures is also a way to reduce unwanted by-products. They decrease the 

amount of CO in the fumes and with the decreasing of the combustion temperature also NOx 

emissions are reduced, resulting from thermal mechanisms. The addition of low percentages 

of H2 leads to a widening of operating limits in lean conditions. The strong attention to 

environmental problems, in fact, has pushed towards the use of lean mixtures methane/air in 

which the excess of air behaves as a thermal flywheel maintaining the lowest temperatures; at 

the same time the flammability limits are narrower and the flame extinction can incur. For 

this reason the presence of hydrogen is essential in order to work in lean conditions without 

instability during methane combustion. 

It has been demonstrated, in fact, that the presence of hydrogen can significantly increase the 

concentration of OH • radicals, with a consequent improvement of the oxidation of CH4 under 

conditions which would, otherwise, turning off of the combustion [8]. 
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So, thanks to the higher flame velocity, the wider flammability limits and the potential effects 

on the chemistry of the flame, mixtures of hydrogen with conventional hydrocarbon fuels 

represent an interesting promise for improving the stability of combustion in lean conditions 

and limiting the CO emissions, or at least extend the field of low emissions of CO in more 

dilute mixtures [7]. In economic terms, moreover, there is no more need for a separate 

transport of the two gases, but the diluted mixture can be handled without huge problems. 

A new fuel called Hythane, is becoming a viable alternative for powering natural gas 

vehicles (CNG). It is a mixture from 5 to 20% of H2 in CH4, which shows clear advantages in 

the reduction of emissions of CO2, CO and NOx. Increasing the percentage of hydrogen, 

therefore, the harmful byproducts concentration decreases and the calorific value of the 

mixture compared to CNG engines increases. Hythane can be easily integrated into existing 

infrastructures working with natural gas but also exploited quickly and easily in portable 

applications [3]. 

 

1.8 Applications of microcombustion 

 

In recent decades there has been a considerable increase in the use of electronic devices that 

require a portable power source. Direct energy conversion systems with no moving parts have 

great potential as renewable and efficient energetic source for portable applications. These 

systems include micro fuel cells and microreactors combined with thermoelectric 

applications, photovoltaic and thermoelectric [9]. In particular, microcombustors fed by 

hydrocarbons are receiving particular attention as substitutes to batteries. 

Low energy density of conventional batteries forces limitations in the design of the systems. 

Moreover, the majority of them are not rechargeable and they are made of materials difficult 

to recycle and harmful to the environment. The catalytic microcombustion of 

methane/hydrogen mixtures offers a possible alternative to traditional batteries. The energy 

density of hydrocarbons is greater than the battery one (about 40 MJ kg
-1

 compared to 0.5 MJ 

kg
-1

 lithium-ion battery) and these systems based on combustion can be easily recharged by 

simply adding fuel [10].  

The coupling of a microreactor with thermoelectric modules allows a heat conversion from 

chemical energy into electrical energy. 

 A thermoelectric device operates according to the Seebeck effect. 
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In 1821 Tomas Seebeck, a German physicist, discovered that when there was a temperature 

difference (ΔT) between two ends of a metal bar, a voltage existed between the two ends also. 

This is called the Seebeck effect. The voltage is produced when there is a temperature 

difference across two different metals or semiconductors. This means that these metals can be 

used to complete a circuit as shown below. 

When a temperature gradient is imposed across the Thermo-Electric (TE) material, a flow of 

charge carriers (electrons for n-type, and vacancies for p-type semi-conductors) is 

established, and an electrical voltage is generated to drive an external load. Different 

commercial TE materials have preferred temperature intervals of operation within which they 

provide their optimal performance. 

The fabrication of TE modules for power generation implies an appropriate shaping of the n- 

and p-type elements to be assembled together, and the realization of low-resistance and stable 

electrical contacts: both low-temperature and high-temperature contacts have to be made, 

according to the two sides of the TE element. Hence, the TE elements are produced by slicing 

wafers from the ingots and then dicing the wafers into individual elements. A barrier material, 

for instance, nickel, is usually applied to the sides of the thermo-elements to prevent copper 

(present in the conductor material) from diffusing into the TE materials [12]. 

 

From figure 1.7, the voltage can be calculated through an equation shown below. 

dTTSTSV A

T

T
B   ))()((

2

1                                                          (equation 1.15) 

Where SA and SB are the Seebeck coefficients of the metals A and B respectively, and T1 and 

T2 are the temperatures of the two junctions. 

The dependence of SA and SB by the temperature is often negligible, then for simple 

calculations it has 

V = (SB - SA) (T2 - T1) =  S  T                                       (equation 1.16) 

A thermoelectric device performs an internal resistance Rint that, coupled with a series of 

resistances of the circuit Rload, gives a total current generated, according to Ohm's law 

 

I = V / (Rint - Rload)                                                              (equation 1.17) 
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and therefore the power generated is given by 

Pload Rload = [ S  T / (Rint - Rload)] 2                            (equation 1.18) 

 

Fig 1.7 Diagram of circuit that uses the Seebeck effect [15] 

 

The electric power can be generated by providing heat on one side and removing heat from 

the other. Since the power available is proportional to the square of the difference of 

temperature, it is necessary to maximize the difference in temperature between the two faces. 

However, the thermoelectric devices have maximum temperatures of the order of 200-300 °C 

due to both the melting and degradation of the materials, as well as migration of the doping in 

semiconductor components [11]. Even for these reasons a key objective in the study of 

microcombustion is to minimize the temperature at which reactions take place. 
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Chapter 2 

 

SOLUTION COMBUSTION SYNTHESIS – A 

WAY TO PREPARE MICROBURNERS 

 

Solution Combustion Synthesis (SCS) is a very interesting technique considering its simple 

adaptability for in situ catalysts deposition on structured supports, as a ceramic or metallic 

monoliths, foam, tissues, mattresses, etc., as outcome of engineering industrialized or semi-

industrialized process. In fact, once prepared, the precursors solution can be deposited onto 

the structured supports by infusion, immersion or spraying [1,2] . The catalytic layer strictly 

anchored to the support can be easily obtained by placing the infused/immersed/sprayed 

support into an oven to start up the exothermic synthesis reactions. A series of continuous 

conveyor belts, oven and infusion spaying nozzles can be, in fact, designed to realize a 

continuous industrial process. In view of the speediness of in situ SCS method for structured 

catalyst preparation and of its relatively low cost, in terms of starting materials and energetic 

expense, such a technique is a very promising and cost-effective alternative to more 

traditional process for catalytic system preparation proposed in the recent past, as deep 

coating or wash-coating.  

SCS is a preparation method that allows obtaining catalysts in both ceramic and metal matrix 

with high porosity and with high degree of purity. Synthesizing virtually any oxide powered 

via SCS involves a relatively simple procedure. As first step, an aqueous solution containing 

suitable metal salts and an organic molecule that can properly work as fuel in redox mixture 

must be prepared [1,2]. 

When brought to temperature in the range of 300-600 °C, the solution reaches ebullition, 

become dry and in a matter of minutes the mixture ignites, thus setting off a highly 

exothermic, self-sustaining and fast chemical reaction, that result in a dry, usually crystalline, 
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fine powered. Generally nitrates are chosen as metals precursors: not only they are 

fundamental for the method, the NO
-
3 groups being the oxidizing agents, their high solubility 

in water allows a sufficiently high solution concentration. Urea seems to be most convenient 

fuel to be employed, given that is cheap and readily available commercially; therefore, it has 

received most of the attention. The organic fuels are a source of C and H, which on metal ions 

facilitating homogeneous mixing of the cations in solution. The exothermicity of the redox 

reaction allows reaching peak temperatures that vary from 700 to 1550 °C. Depending upon 

the fuel used, the nature of combustion differs from flaming to non-flaming type. 

In Fig 2.1 are shown some SCS stages. 

 

 

Fig. 2.1  Pictures taken during SCS reaction [1] 

 

In Fig.2.2 the final product of synthesis via SCS: a very porous and highly pure solid, that can 

be ground to obtain a powder. 
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Fig.2.2 Final product of synthesis via SCS [1] 
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Chapter 3 

 

 

EXPERIMENTAL PART 1 –  

Combustion of CH4/H2/air lean mixtures in 

micromonoliths 

 

3.1 Aim of the work 

 

The aim of the present work deals with the investigation of new type of catalysts, lined on 

SiC monoliths, f o r  t he  C H 4 /H2/air lean mixtures ox ida t ion . The ca t a l yt i c  

m on ol i t h s  we r e  specifically designed to be inserted in a thermoelectric micro-device, 

for portable or remote power generation [15]. Anyway, the coupling of the micro-

combustor with the thermoelectric device is out of the scope of the present study. The 

catalyzed monoliths were tested into a lab-microreactor designed to provide a favorable 

environment for microscale combustion of CH4/H2/air lean mixtures to reach high power 

density (up to 20 MWth m
-3

). In particular, the following catalysts: 2% Pd/(5% NiCrO4), 

hereafter named Pd/N, 2% Pd/(5% CeO22ZrO2), hereafter named Pd/CZ, 2% Pd/(5% 

LaMnO32ZrO2), hereafter named Pd/LZ, and 2% Pt/(5% Al2O3), hereafter named Pt/A, 

were directly deposited on SiC monoliths via in situ Solution Combustion Synthesis (SCS). 

The carriers’ % weights refer to the SiC monolith’s weight, and the Pd/Pt % to the carrier’s 

weight. 

The catalysts were selected in line with earlier investigations. Pd/N catalysts of various 

Pd:N ratios were  previously studied for micro-combustion of CH4/H2/air lean mixtures [1]: 

the best one was deeply studied in the present work to better understand its performance and 
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used as term of comparison with the other developed catalysts. Pd/CZ catalyst was selected 

because previously studied as catalysts for CH4/air combustion [2]; moreover, the CZ system 

is a very promising catalyst thanks to the good capability of CeO2 in changing rapidly its 

oxidation number from Ce
3+

 to Ce
4+

 state, with a consequent O2 fast release from its lattice to 

the nearby species [3], helping thus the oxidation phenomena. With the aim to enlarge the 

knowledge on the catalytic combustion of CH4/H2 mixtures, also Pd/LZ catalyst was 

chosen since previously investigated as catalytic material for CH4/air combustion [4,5]; 

moreover, the catalytic activity of perovskite LaMnO3  towards combustion reactions is 

well-known in literature [6-7]. 

 

3.2 Catalyst preparation, support and characterization 

 

The SCS technique was used to prepare the catalysts investigated in the present study. SCS 

allows the production of advanced porous ceramic or metallic materials, like nanostructured 

catalysts [4,8]. Homogeneous aqueous solutions containing the metal-nitrate compounds as 

oxidizers (Aldrich, 99% purity) and urea (for the preparation of NiCrO4 and Al2O3) or glycine 

(for the preparation of CeO2·ZrO2 and LaMnO3·ZrO2) as fuel, dosed in stoichiometric ratio, 

were used. The ceramic monolith supports made of SiC (6x6x22 mm, 16 channels, from CTI, 

France) were dipped into the solutions and then placed into an oven at 600 °C [1]. The thin 

solution covering the internal surfaces of the monolith channels was rapidly brought to its 

boiling point. The main reaction took place, and the desired catalyst was developed onto the 

surface of the SiC support. The Pd-based monoliths were prepared via one-shot SCS by 

adding the right amount of Pd(NO3)2 to the precursors’ solutions. The overall deposited Pd 

amount corresponded to 0.1% of the monolith’s weight. Instead, the Pt-based structured 

catalyst was prepared by first coating with the Al2O3 carrier by SCS the internal monolith 

surfaces, then by adding Pt via drop incipient wetness impregnation starting from a solution 

of H2PtCl6.6H2O. The overall deposited Pt amount corresponded to 0.1% of the monolith’s 

weight. Finally, the monoliths were calcined in an oven at 600 °C for about 1 h with still air 

[1]. 

The structured support was chosen according to the characteristics that allow a suitable and 

functional use. It was important it to possess a good thermal resistance to avoid a possible 

degradation during the combustion. A good mechanical resistance was also important to 
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avoid breakage during the installation, and a low density. Besides, it was also relevant the 

chemical compatibility with the catalyst and with gases used and the resistance to thermal 

shock. The latter depends on the combination of high thermal conductivity and low 

coefficient of thermal expansion. 

The as-prepared monoliths were then characterized by scanning electron microscopy (SEM 

FEI QUANTA INSPECT LV 30 kV) and field emission scanning electron microscopy 

(FESEM ZEISS Supra 40), to verify the morphology and the homogeneity of the catalytic 

layer deposited on the walls of the monolith channels and to check the atomic percentage of 

the components. 

The surface area of all monoliths was determined by N2 adsorption at the liquid nitrogen 

temperature using the Micrometrics ASAP 2010 M.  The surface area was determined 

according to the Brunauer–Emmett–Teller theory; the samples were degassed in vacuum for 

at least 4 h at 250 °C before analysis. 

SEM and FESEM analysis of the as-prepared monoliths highlighted a quite porous 

catalyst layer onto the internal walls of the monoliths channels. Figures 3.1 and 3.2 show 

SEM images of monoliths Pd/CZ and Pd/N, respectively; Figures 3.3 and 3.4 show FESEM 

images of the catalytic layer on monoliths Pd/LZ and Pt/A, respectively. 

 

 

Fig. 3.1  SEM micrographs of SiC monolith lined with Pd/CZ: microchannel and catalytic layer  
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Fig. 3.2  SEM micrographs of SiC monolith lined with Pd/N: microchannel and catalytic layer 

Such a  porous structure, particularly evident on samples Pd/LZ (also at nanometric scale) 

and Pd/N, is typical when SCS technique is adopted for catalytic material development 

[1,4,8]. During SCS, in fact, the decomposition of reacting precursors generated a large 

amount of gaseous products in a very short time, leading thus to a spongy morphology of 

the synthesized layer [4,8]. The average thickness of the catalytic layer varied from 

approx 10 to 50 μm, with a preferential accumulation on the channels corners, especially 

for the Pd/N and Pd/CZ monoliths. FESEM analysis (Figures 3.3 and 3.4), allowed to 

better emphasize the structure of the catalytic layer: in particular, on Pt/A monolith, Pt 

clusters homogeneously distributed alongside the carrier were visible, with dimensions 

variable from 10 to 100 nm. 

The catalyst deposition over the bare monoliths induced an increase of the BET specific 

surface areas, as expected. The calculated BET values were 2.9 m
2
 g

-1
 for Pd/N monolith, 

12.2 m
2
 g

-1
 for Pd/CZ, 13.7 m

2
g

-1
 for Pd/LZ and 14.5 m

2
 g

-1
 for Pt/A one, respectively, 

compared to the 0.2 m
2
 g

-1
 of the bare monolith. 

 

 

Fig. 3.3  FESEM micrographs of the catalytic layer on Pd/LZ monolith.  
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Fig. 3.4  FESEM micrographs of the catalytic layer on Pt/A monolith: Pt particles are enlightened. 

3.3 Microreactor test rig 

 

The catalytic activity of the as prepared structured catalysts towards CH4 combustion, H2 

combustion and CH4/H2 lean mixtures combustion was tested in a microreactor test rig [1], as 

shown in Fig. 3.5. 

 

 

Fig. 3.5  Sketch of the microreactor placed into the oven and picture of the monolith wrapped 

by a vermiculite layer 

 

 

Each monolith was inserted into a quartz tube (i.d. 10 mm, length 700 mm), wrapped with a 

vermiculite layer to obtain the external seal; the quartz tube was heated in a horizontal split-

tube furnace with 500 mm heating length (Carbolite, PID temperature regulated), Fig.3.6.  
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Fig.3.6 Front view of the furnace 

 

The furnace was internally formed by a cylindrical shell of refractory ceramic (alumina) in 

which were housed the electric resistances able to reach 1200 °C. The shell was divided into 

two parts that were possible to be locked with a hook to minimize thermal losses to the 

outside. The ceramic shell was hollowed out at the ends to let the quartz tube to be positioned 

(length 700 mm, diameter 10 mm) which conveys the flammable mixture in the reactor where 

combustion occurred and directed the fumes to the outside. The low thermal conductivity (1.3 

W m
-1

 K
-1

 at room temperature) of the quartz wall decreased the heat loss and allowed the 

formation of a more robust flame [9]. In addition, its transparency was good for direct 

observation. The tube had the function to accommodate the high specific surface monolith, on 

which combustion occurred. Hence the transparency of the tube also let the monolith to be 

placed correctly at the center of the oven. 

 

3.4 Description of the tests 

 

For each test, the temperature of the oven was increased from room temperature to 200 °C 

with a temperature rate of 5 °C min
-1

, then from 200 to 800 °C the temperature rate was 

increased to 10 °C min
-1

. Two K-type thermocouples were inserted along the quartz tube, one 

millimeter upstream and downstream the monolith cross surfaces, to monitor the inlet and 

outlet temperatures. The reactor outlet–inlet temperature difference was always less than 10 
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°C. The monoliths were first tested towards CH4 combustion by feeding a mixture of 5% vol. 

CH4 in air (λ = 2), overall power density 7.6 MWth.m
-3

, GHSV of 16,000 h
-1

 based on the 

monolith empty volume. Then, they were tested towards H2 combustion by feeding a mixture 

of 17% vol. H2 in air (λ = 2), with the same overall power density and GHSV. Further tests 

were made on the same monoliths by feeding three different CH4/H2 lean mixtures at 

increased H2 concentration, maintaining the same values for λ, the overall power density and 

GHSV: Mix 1 with a CH4/H2 molar ratio of 75%/25%; Mix 2 with a CH4/H2 molar ratio of 

50%/50%; Mix 3 with a CH4/H2 molar ratio of 25%/75%. Air, CH4 and H2 flowing from 

cylinders were independently regulated by mass flow controllers (Bronkhorst), premixed, and 

fed to the microreactor (total flow rate: 200 Nml min
-1

). The on-line continuous analysis of 

the gaseous reaction products was performed (after H2O removal through a condenser) by 

non-dispersive infrared absorption (NDIR Uras 14 for CH4/CO/CO2, ABB Company) and a 

thermal conductivity analyzer (Caldos 17 for H2, ABB Company), thus allowing to evaluate 

CH4 and H2 conversions. Each test was repeated twice to strengthen the obtained results. The 

temperatures where 50% conversion of CH4 or H2 occurred, CH4-T50 or H2-T50, respectively, 

were considered as an index of the monoliths catalytic activity. The homogeneous 

combustion reactions related to pure CH4 or H2  and to the three reactive mixtures were also 

evaluated by using a bare SiC monolith and also quartz tube reactor without any monolith 

inside (blank reactor condition); the feeding conditions were the same used during the tests of 

the catalyzed monoliths. 

In Figure 3.7, the scheme of the plant. 
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Fig. 3.7  Scheme of the plant 

 

3.5 Evaluation of the catalytic activity towards CH4-H2 combustion in lean mixture 

 

The first step to evaluate the catalytic activity of the as-prepared monoliths was carried out 

in the lab test-rig, feeding only CH4 in lean mixture; the performance of the various 

catalyzed monoliths was compared with that of the bare one. As reported in Fig. 3.8, the 

Pt/A monolith showed the best performance, lowering the CH4-T50 from 777 to 617 °C 

and the CH4-T100, from 780 to 716 °C, compared to the bare monolith counterpart (SiC).The 

CH4-T100 of all the Pd-based catalyzed monoliths resulted slightly higher compared to the 

base SiC monolith. Followed Pd/CZ with CH4-T50 of 650 °C, Pd/N with CH4-T50 of 678 °C 

and Pd/LZ with CH4- T50 of 743 °C. Moreover, as concerns the CO emissions (Fig. 3.8, 

dotted lines) during CH4 combustion tests, the bare monoliths presented a very high peak 

between CH4-T90 and CH4-T100 (approx 2.4% in volume). Instead, all the catalytic monoliths 

were able to lower this peak concentration with the following rank: in particular, Pt/A and 

Pd/CZ exhibited very low CO emissions (approx 100 and 300 ppmv, respectively), whereas 

Pd/N presented a limited peak (approx 900 ppmv) and Pd/LZ, which showed the worse 

performance towards CH4 combustion, presented a quite high peak (approx 1.1%), when CH4 

was almost reacted. 

The second step regarded the evaluation of the catalytic activity of the as-prepared 

monoliths towards H2 combustion in lean mixture. 

The results are reported in Fig. 3.9: all the catalytic monoliths were able to sensibly 

reduce the H2 combustion compared to the one in the bare monolith (H2-T50: 660 °C; H2-

T100: 690 °C). In particular, Pt/A was the best one: practically at room temperature H2 was 

completely burnt (H2-T50: 39 °C; H2-T100: 40 °C). The other monoliths behave as follow: 

Pt/A < Pd/N (H2-T50: 141 °C; H2-T100: 160 °C) < Pd/CZ (H2-T50: 177 °C; H2-T100: 204 °C) < 

Pd/LZ (H2-T50: 201 °C; H2-T100: 216 °C). 
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Fig. 3.8  CH4 conversion (solid lines) and CO emissions (dotted lines) vs. T for the as-prepared catalytic 

monoliths and the bare one (a: SiC; b: Pd/N; c: Pd/CZ; d: Pd/LZ; e: Pt/A).  
 

 

Fig. 3.9  H2 conversion vs. T for the as-prepared catalytic monoliths and the bare one (a: SiC; b: Pd/N; c: 

Pd/CZ; d: Pd/LZ; e: Pt/A).  

 

 

Thanks to these very interesting performances, all the catalyzed monoliths were used for 

further investigations on combustion of CH4/H2 lean mixtures. A comparison of the CH4 

and H2 conversion curves vs. T for all the catalyzed monoliths, the bare one included, is 

shown in Fig. 3.10, where the curves are displayed per tested Mix (Fig. 3.10.A for Mix 1 - 

CH4/H2 molar ratio of 75/25; Fig. 3.10.B for Mix 2 - CH4/H2 molar ratio of 50/50; Fig. 

3.10.C for Mix 3 - CH4/H2 molar ratio of 25/75). Fig. 3.11, instead, shows the same 

conversion curves displayed per tested monolith (Fig. 3.11.A for Pd/N; Fig. 3.11.B for 

Pd/CZ; Fig. 3.11.C for Pd/LZ; Fig. 3.11.D for Pt/A). 
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On average, by observing Fig. 3.10, it is worth noting that the presence of a catalyst on the 

SiC monolith allowed reducing the CH4-T50 and CH4-T100 compared to the bare 

counterpart, for all the tested Mix. Moreover, the higher the H2 concentration, the lower the 

CH4–T50 (see Fig.3.10.C with Mix 3): the addition of H2 in  the reactive mixture seemed 

to favor the CH4 combustion. Considering the homogeneous CH4 combustion reaction 

occurring when the various mixtures were tested, the performances obtained with the bare 

monolith and the blank reactor (no monolith inside) were practically the same (curves 

denoted with solid black lines and the letter “a” in Figures 3.10.A/B/C). It is worth noting 

that an H2 enrichment was favorable to CH4 combustion also without the presence of a 

catalytic layer on the monolith walls: the related CH4-T50 and CH4-T100 were, in fact, 

slightly decreased increasing the H2 concentration in the feedstock (CH4-T50 Mix 1/2/3: 

777/736/718 °C; CH4-T100 Mix 1/2/3: 800/790/780 °C). This seems to be a clear sign that 

there was a contribution of the homogeneous reaction in the combustion of CH4 when H2 

was added as fuel. Concerning the CO emissions, these were quite high for the bare 

monolith, anyway lower compared to the test with CH4 alone and decreasing by increasing 

the H2 concentration in the mixtures: 2.31% for Mix 1, 2.23% for Mix 2, 0.78% for Mix 3, 

respectively, see Fig. 8. The CO emissions of the catalytic monoliths, lower compared to 

the test with CH4 alone, were still reduced by increasing the H2 concentration in the 

mixture, with the same trend observed for the bare monolith; the highest CO emission 

peak, 0.21%, belonged to Pd/LZ when tested with Mix 1, see Fig. 3.10.A, whereas the peak 

concentrations were below 50 ppmv for the Pt/A monolith. Indeed, considering the H2 

combustion in the tested Mix 1/2/3, the performance of the monoliths was different. 

Comparing to the bare one, all the catalytic monoliths reduced the H2-T50, whereas the H2-

T100 was practically decreased only for monoliths Pt/A and Pd/N (see also Fig. 3.11.A and 

3.11.D). In particular, for Mix 1 and Mix 2, i.e., when the H2 concentration in the mixture 

was lower or lower than that of CH4 (Fig. 3.10.A and 3.10.B), the H2 combustion started at 

very low temperature (very low H2-T10 and H2-T50, a sign of good reactivity), but the 

combustion rate was slowed down during the tests: the conversion curves slope became, 

in fact, less steep and the H2-T100 of Mix 1 and 2 raised compared to the H2-T100 of pure 

H2. Especially for Pd/CZ and Pd/LZ (Fig. 3.11.B and 3.11.C), the H2-T100 raised up to the 

same value of the CH4-T100. 

The combustion in confined space where walls are present is mainly affected by 

quenching and blowout [10]. Flames are quenched because of two primary mechanisms, 
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namely thermal and radical quenching [11-12]. Thermal quenching occurs when sufficient 

heat is removed through the walls, the combustion, thus, cannot be self-sustained. Radical 

quenching occurs via adsorption of radicals on the burner walls and subsequent 

recombination. In case of H2/air mixtures, OH•, H• and HO2• radicals are present [13]: 

the most relevant reactions in the formation/destruction of these radicals are the chain 

radical formation, the chain radical propagation, the chain radical ramification and the 

chain radical termination. These latter, leading to the formation of stable species, can occur 

via homogeneous or heterogeneous process (when they impact the burner walls) [12]In case 

of CH4/air mixtures, OH• radicals play the most relevant role in the combustion light-off in 

the gas phase: these radicals, in fact, chemically activate the CH4 molecules by abstracting 

H• radicals from them, thus producing CH3• via the reaction: CH4 + OH• → CH3• + H2O 

[12]. By adding H2 to CH4, a changing in the OH• formation mechanism occurs: in 

particular, by increasing H2, OH• radicals are produced more and more significantly 

through the reaction HO2• + H• → 2OH•, which starts from HO2• radical, an intermediate 

product of low temperature H2 combustion [13]. Such a reaction is also known in literature 

to give a higher OH• concentration in the early flame [14]. More specifically, the presence 

of H2 in the fuel improves system performances in converting CH4, because determines 

an increase in the production of OH• radicals at a temperature relatively low thus allowing 

HC combustion in the gas phase at a lower thermal level [13]. The increased OH• 

concentration when H2 is added to CH4 was experimentally demonstrated also on a swirl 

flame [15]. 

In addition to flame quenching, blowout can occur when the burner exit velocity exceeds 

the flame burning velocity [12]. In this mechanism, the reaction shifts downstream until it 

exits the micro-burner. A stable flame in micro-burners can be achieved through appropriate 

surface modification to limit radical loss, i.e., through catalyst deposition (a catalytic layer 

could help the combustion process at the micro-burner walls, which are well-knows to 

influence the formation of reactive radicals), and increasing insulation to limit heat losses. 

Under the investigated conditions, the observed increase in reactivity of the mixture when 

CH4 was enriched with H2, independent of the type of catalyst lined on the monolith, could 

be explained by an increase in the OH• reactive radicals. Moreover, CH4/H2 mixtures 

burned also in the gas phase, thanks to the contribution of the homogeneous combustion 

reactions. Surely, the catalysts remain certainly determinant in oxidizing CO to CO2 

improving thus the combustion efficiency. 
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Fig. 3.10  CH4 conversion (solid lines), H2 conversion (broken lines) and CO emissions (dotted lines) vs. T for 

the three gas mixtures (A: Mix 1 CH4/H2 molar ratio 75/25; B: Mix 2 CH4/H2 molar ratio 50/50; C: Mix 3 

CH4/H2 molar ratio 25/75) on all the tested monoliths (a: SiC; b: Pd/N; c: Pd/CZ; d: Pd/LZ; e: Pt/A).  
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Fig. 3.11  CH4 conversion (solid lines), H2 conversion (broken lines) and CO emissions (dotted lines) vs. T for 

each catalytic monolith (A: Pd/N; B: Pd/CZ; C: Pd/LZ; D: Pt/A) as a function of the fed reactive  mixture (a: 

CH4 alone; b: Mix 1 CH4/H2 molar ratio 75/25; c: Mix 2 CH4/H2 molar ratio 50/50; d: Mix 3 CH4/H2 molar ratio 

25/75; e: H2 alone). 
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3.6 Conclusions 

 

The combustion of gaseous HC fuels in a small confined space could represent an 

alternative way to produce thermal and electrical energy. The combustion of CH4 and its 

lean mixtures with H2 on catalytic monoliths was studied and optimized. 2% Pd/(5% 

NiCrO4), 2% Pd/(5% CeO2ZrO2), 2% Pd/(5% LaMnO3ZrO2) and 2% Pt/(5% Al2O3) 

catalysts, suitably developed, were deposited on SiC monoliths via in situ SCS and tested in 

a lab-scale microreactor by feeding only CH4, only H2, and three lean CH4/H2 mixtures with 

increased content of H2 and constant thermal power density of 7.6 MWth m
-3. Monolith Pt/A 

was very appropriate for the combustion of only CH4 or H2, but its performance worsen when 

H2 was added to the reactive mixture. On the contrary, the Pd-based catalysts were most 

suitable for the combustion of the CH4/H2 lean mixtures, with the best behaviour shown by 

Pd/N followed by Pd/CZ. Monolith Pd/LZ, instead, showed the worse performance, both in 

terms of CH4 combustion only and of the various mixtures; moreover, it displayed quite high 

CO emissions, not compatible with the environmental issues. In particular, the catalytic 

reactivity towards CH4 combustion of the Pd- based raised by increasing the H2 content in 

the reactive mixture. The observed enhancement in reactivity of the mixture when the CH4 

fuel was enriched with H2 could be explained by an increase of the OH• radicals in the gas 

mixture. 
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Chapter 4 

 

EXPERIMENTAL PART 2 - Effects of the thermal 

conductivity of the monoliths on the combustion of 

CH4/H2/air lean mixtures in microspace 

 

4.1 Aim of the work 

 

The present work deals with the investigation on the performance of catalyst 2% Pd over 

5% LaMnO3·ZrO2, (herein after called PLZ), lined on silicon carbide (herein after called 

SC) or cordierite (hereinafter called CD) monoliths, for the CH4/H2/air lean mixtures 

oxidation. The catalytic monoliths were specifically designed to be inserted in a 

thermoelectric micro-device, for portable or remote power generation [22]. Anyway, the 

coupling of the microcombustor with the thermoelectric device is out of the scope of the 

present study. The catalyzed monoliths were tested into a lab-microreactor designed to 

provide a favorable environment for microscale combustion of CH4/H2/air lean mixtures to 

reach high power density (up to 20 MWth m–3). PLZ catalyst was directly lined on the 

different monoliths via in situ Solution Combustion Synthesis (SCS). The carriers’ % 

weights refer to the bare monolith’s weight, and the Pd % to the carrier’s weight (LZ). 

The catalyst was selected in line with earlier investigations on micro-combustion of 

CH4/H2/air lean mixtures [1–2]. The two different kinds of monoliths were considered 

taking into account their very different thermal conductivities properties, namely 3 and 250 

W m
–1

 K
–1

 at room temperature for CD and SC, respectively [3], to understand the effect of 

the heat recirculation phenomenon on the micro-combustor performance. 
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The main goal of the catalytic combustion tests was to select the best settings to achieve 

stable combustion conditions at the lowest possible temperature, i.e., full CH4 conversion 

with the minimum H2 concentration in the reactive mixture, accompanied by the lowest 

possible CO concentration. 

 

4.2 Catalyst preparation, support and characterization 

 

The in situ one-shot SCS technique was used to prepare the coated monoliths investigated 

in the present  study. Homogeneous aqueous solutions containing the metal-nitrate of Pd, 

La and ZrO as oxidizers (Aldrich, 99% purity) and glycine as fuel, dosed in stoichiometric 

ratio, were used. The ceramic monolith supports made respectively of SC (7.2 mm x 7.2 

mm x 23 mm, 16 channels of width 1.49 mm, wall thickness of 0.25 mm, from 

Ceramiques Techniques et Industrielles S.A., France) or CD (7.4 mm x 7.4 mm x 24 mm, 

16 channels of width 1.3 mm, wall thickness of 0.44 mm, from Chauger Honeycomb 

Ceramics Co. Ltd., Taiwan) were dipped into the solutions and then placed into an oven at 

600 °C [1]. The thin solution film covering the internal surfaces of the monolith channels 

was rapidly brought to its boiling point. The main reaction took place, and the desired 

catalyst was developed onto the surface of the supports. The monoliths were then calcined 

in oven at 800 °C for about 1 h with still air [1]. 

The a s -prepared monoliths were characterized by field emission scanning electron 

microscopy (FESEM ZEISS Supra 40), to verify the morphology and the homogeneity of 

the catalytic layer deposited on the walls of the monolith channels and to check the 

atomic percentage of the components. 

FESEM analysis of the as-prepared monoliths, cut on purpose for longitudinal and cross 

sections to check the inside of the channels, highlighted a quite porous catalyst layer onto 

the internal channel walls. Figure 4.1 shows FESEM images of CD monolith cross sections 

covered by a layer of PLZ catalyst. The deposition of the catalytic layer on the monolith 

wall was not properly homogeneous (see two different channels with different catalytic 

coverage); an accumulation on the channel’s corner is evident in some channels. On 

average, the thickness of the catalytic layer was of 20–30 μm, with an increase up to 80–

100 μm on some channels corners. Such a lack of homogeneity could be explained 

considering that during the deposition via in situ SCS technique, the decomposition of 
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reacting precursors generated a large amount of gaseous products in a very short time, 

leading thus to a distribution of the catalytic material and to a quite spongy morphology 

of the synthesized layer, as pointed out by the details on the catalytic layer in Figure 4.1. 

Anyway, via EDX analysis it was possible to verify that the catalyst was lined on all the 

walls, by assuring thus a complete covering of the cordierite support. Very similar results 

were obtained with the SC monolith [21]. 

 

 

Fig.4.1 FESEM micrographs of CD monolith lined with PLZ: microchannels and details of the catalytic 

layer.  

 

4.3 Microreactor test rig and description of the tests 

 

The catalytic activity of the as prepared structured catalysts towards CH4 combustion, H2 

combustion and CH4/H2 lean mixtures combustion was tested in a microreactor test rig that 

was described in chapter 3.2 [1,14]. Each monolith was inserted into a quartz tube (I.D. 11 

mm, length 700 mm), wrapped with a vermiculite layer to obtain the external seal; the quartz 

tube was heated in a horizontal split-tube furnace with 500 mm heating length (Carbolite, 

PID temperature regulated). For each test, the temperature of the oven was increased from 

room temperature to 200 °C with a temperature rate of 5 °C min
–1

, then from 200 to 900 °C 

the temperature rate was increased to 10 °C min
–1

; when the total combustion was reached, 

the oven was switched off and system was monitored during the cooling-down phase, up to 

the extinction of the combustion. Two K-type thermocouples were inserted along the 
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quartz tube, one millimeter upstream and downstream the monolith cross surfaces, to 

monitor the inlet and outlet temperatures. 

The monoliths were first tested towards CH4 combustion by feeding a mixture of 5% vol. 

CH4 in air (λ = 2), overall power density 7.6 MWth m
–3

, GHSV of 16,000 h
–1

 based on 

the monolith empty volume. Then, they were tested towards H2 combustion by feeding a 

mixture of 17% vol. H2 in air (λ = 2), with the same overall power density and GHSV. 

Further tests were made on the same monoliths by feeding various different CH4/H2 lean 

mixtures at increased H2 concentration, maintaining the same values for λ, the overall power 

density and GHSV (max CH4/H2 molar ratio of 98%/2%; min CH4/H2 molar ratio of 

25%/75%). Finally, each monolith was tested again by feeding only the CH4/air mixture, to 

check any decay of the original catalytic activity after many hours of testing. 

Air, CH4 and H2 flowing from cylinders were independently regulated by mass flow 

controllers (Bronkhorst), premixed and fed to the microreactor (total flow rate: 200 Nml 

min
–1

). The on-line continuous analysis of the gaseous reaction products was performed (after 

H2O removal through  a condenser) by non-dispersive infrared absorption (NDIR Uras 14 

for CH4/CO/CO2, ABB Company) and a thermal conductivity analyzer (Caldos 17 for H2, 

ABB Company), thus allowing to evaluate CH4 and H2 conversions. Each test was repeated 

al least twice to strengthen  the obta ined  resul ts . The temperatures, where 10, 50% and 

100% conversion of CH4 or H2 occurred, CH4-T10, CH4-T50, CH4-T100 or H2-T10, H2-T50, 

H2-T100, respectively, were considered as an index of the monoliths’ catalytic activity. The 

homogeneous combustion reactions related to pure CH4 or H2 and to all the reactive mixtures 

were also evaluated by using first the quartz tube reactor without any monolith inside 

(blank reactor condition), then the bare SC or CD monoliths and also the SC monolith 

where the internal microchannels were mechanically removed (i.e., only the external walls of 

the monoliths remained, forming thus a unique channel of square section 6.7 mm x 6.7 

mm, herein after called square SC duct); the feeding conditions were the same used during 

the tests with the coated monoliths. 

 

4.4 Tests with CH4/air reactive mixture 

 

The first tests were carried out over the various monoliths with the CH4/air mixture. The 

homogeneous reaction was investigated first on the empty quartz reactor, without any 
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monolith inside (blank test), and subsequently by filling the reactor with the not-lined 

square SC duct: practically, only the external walls were present, for an overall length of 22 

mm. The results, in term of CH4 conversion and CO emissions are reported in Figure 4.2 

(black plots for the quartz tube; pink plots for the SC duct). The differences between the 

two tests were not very significant, despite the very different thermal conductivity of the 

two materials (1.3 W m
–1

 K
–1

 at room temperature for quartz and 250 W m
–1

 K
–1

 at room 

temperature for SiC; the latter decreases up to 65 W m
–1

 K
–1

 at approx. 800 °C [3]). But, a 

very interesting hysteresis behavior was noticed when the oven was switched off: in both 

cases the methane combustion curves moved to slightly lower temperatures. The methane 

combustion remained stable (i.e., complete) for approx. 50 °C before to extinguish very fast 

(see Table 1). Contemporarily, also the CO emission peaks, which were quite high during 

the temperature increase (2.57 % vol. for quartz and 2.21 % vol. for SC duct), shifted 

towards lower temperatures and decreased of intensity during the cooling phase (1.38 % 

vol. for quartz and 1.14 % vol. for SC duct). In both cases, the CO peaks were reached at a 

temperature slightly below the temperature of CH4 complete combustion (approx. at the 

corresponding CH4-T90 in both tests, during the temperature increase and decrease, see Table 

4.1). 

 

 

Fig. 4.2 CH4 conversion and CO emissions vs. Tin for the homogeneous reaction within the quartz  

tube (blank test), the not-coated square SC duct (monolith without channels), the bare and 

coated SC and CD monoliths; CH4/air mixture (7.6 MWth m
–3

, GHSV 16,000 h
–1

).  
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Table 4.1 Characteristic temperatures, CO peak values and CH4  combustion extinction conditions referred to 

tests showed in Figure 4.2.  

 

 

 

CH4/air combustion tests were then performed on non-coated and coated silicon carbide 

(bare or coated SC, respectively) and cordierite (bare or coated CD, respectively) 

monoliths, with internal channels. The results are also shown in Figure 4.2; the obtained 

numerical values in terms of CH4-T10/CH4-T50/CH4-T100, maximum CO values reached and 

extinction conditions are reported in Table 4.1. It is worth noting that the presence of the 

internal channels changed completely the conversion curve shape during the cooling phase, 

compared to the quartz tube or the SC duct tests. On average, also with the oven switched 

off, the methane combustion remained stable and continued till to the complete extinction at 

less than 400 °C, thanks to the presence of the channels inside the monoliths, for all 

monoliths, both the bare and coated ones. In parallel, also CO emissions were reduced and 

shifted to lower temperature in the cooling phase. In particular, during the heating phase 

the CO peak was always reached at a temperature close to CH4-T90 (i.e., before the 

complete methane combustion), whereas during the cooling phase, the CO concentration 

decreased to zero, then increased again from a temperature almost corresponding to the 

one where the CH4 conversion curves started to slightly go down (see Table 4.1 and Figure 

4.2). It was as if the CO peak belonging to the cooling phase was trod and shifted towards 
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lower temperatures. 

Some other differences were visible depending of the thermal conductivity of the 

monoliths: Considering only the bare monoliths, CD behaved slightly better compared to 

SC during the heating phase, reaching CH4-T100 at slightly lower temperature (approx. 10 

°C less, see Table 4.1) and with a lower CO peak (1.88% compared 2.16%, see Table 1). 

On the contrary, in the cooling phase the performances were inverted, with SC monolith able 

to maintain the complete CH4 combustion till to 600 °C, respect to the 667 °C of the CD 

one; anyway, the CO peaks were almost the same. This is in agreement with the finding of 

Kaisare and Vlachos [15], which demonstrated that with a microchannel width of 600-1200 

μm (as in the present case) higher wall conductivity values were more favorable to maintain 

stable oxidation in a micro-combustion environment. The best performance, both in terms of  

stable CH4 combustion and low CO peak, belonged to the coated SC monolith: It was able 

to maintain a stable combustion above 588 °C, with a maximum CO peak of 0.38% at 

the extinction temperature of 338 °C (temperature at which the  CH4 combustion quickly 

became extinct), during the cooling phase of the test. The coated CD monolith extinguished 

the combustion at a temperature close to that of the catalytic SC, 366 °C, but it 

maintained stable the CH4 combustion only till to a temperature of 720 °C (see Table 4.1). 

Figure  4.3 shows the inlet and outlet temperatures versus time for the homogeneous and 

heterogeneous tests performed with the various SC and CD monoliths. The combustion 

light off (attainment of the CH4-T10 temperature) occurred in a shorter time for the CD 

monoliths (less than 1 h from the beginning of the test), whereas for the SC ones it 

happened after approx. 1.5 h. It is worth noting that for the SC duct (without internal 

channels) or for the sole quartz tube (blank test), Tin and Tout were the same for the entire 

lifespan of the test, whereas for the channeled monoliths, during the cooling phase, 

independently of the presence of the catalyst, Tout was above Tin when the methane 

conversion was characterized by high values, and this situation was maintained up to the 

extinction of the combustion. The presence of the catalyst on the monoliths seemed to play 

different roles, depending on the monolith materials: Observing the results from SC 

monoliths, the coated one behaved better compared to its bare counterpart, with CH4 

combustion maintained stable at 100% up to 588 °C, and with a lower CO peak (see Table 

1). On CD monoliths, instead, the bare one behaved slightly better compared to the 

coated counterpart, with CH4 combustion maintained stable at 100% up to 667 °C (see 

Table 4.1). 
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Moreover, from Figure 4.3 it is possible to notice a Tout step increase for all the SC and CD 

monoliths, more evident for the SC ones, in particular for the bare one (see inserts in Figure 

4.3), just before the combustion reached its completeness (i.e., during the heating phase). Such 

a step temperature increase was always recorded when the CH4 combustion reached approx. its 

CH4-T90, indicating that starting from that moment a stable ignition occurred: the heat 

generated by the reaction was definitely larger than the heat losses through the monolith walls 

and the measured outlet temperature increased abruptly. This led to an increased surface 

reaction rate generating even more heat, resulting in a self-acceleration of the reaction rate for 

the increased kinetics [16]. Then, the system stabilized itself in a new high reactive state where 

the heat generation was again perfectly balanced by the heat losses, increased due to the higher 

driving force, and the reaction rate was mass-transport controlled. Thus, the temperature 

increase drove the combustion reaction from the kinetic control regime into the external mass 

transfer control one. The reaction was, therefore, kept in the so-called upper steady state 

(corresponding to the external mass transfer control regime). 

The minimal temperature at which stable ignition of very fast reaction (like gaseous fuel 

oxidation) is possible is known as the ― critical temperature of ignition - CTI [16]. The 

presence of the steady-state multiplicity was experimentally verified. For the four 

monoliths, the methane conversion was maintained stable with time on stream for a longer 

time compared to the duct SC or the quartz tube (see Figure 4.3: the reaction lasted for at 

least 1 h compared to few minutes of the reaction lifespan in the duct SC or in the 

quartz tube). Additionally, the higher thermal conductivity of the SC monoliths allowed 

maintaining a stable combustion for longer time compared to the CD ones (up to 1.2 h 

respect to approx. 1 h). 

Before reaching the stable ignition phase, no significant mass and heat transport 

limitations existed, since the conversion was low and the reaction rate was therefore 

determined by the surface kinetics. When the reaction occurred in the upper steady state, a 

decrease of the oven temperature below CTI did not lead to extinction. The reaction 

continued up with high methane conversion (anyway not lower than 90%) till Tout steeply 

decreased becoming equal to Tin.  The beginning of Tout step decrease, called critical 

temperature of extinction CTE, showed the reaction shifting back to the kinetic control 

regime. 

The multiplicity of the steady-state occurred: a typical hysteresis phenomenon was present, 

which allowed maintaining the methane combustion reaction up to very low temperatures 
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(less than 400 °C, see Figure 3) during the cooling phase of the combustion tests. Very 

similar ignition/extinction hysteresis curves were recorded also by other research groups 

during linear heating/cooling tests for CO oxidation in honeycombs covered with Pt/Al2O3 

[17–18]. 

 

 

 
 

Fig.4. 3 Tin  and Tout  and CH4  conversion vs. reaction time for the homogeneous (bare 

monoliths)  and heterogeneous (coated monoliths) reactions within the SC and CD 

monoliths (SC duct: without internal channels; quartz: blank test); CH4/air mixture (7.6 

MWth  m
–3

, GHSV 16,000 h
–1

). In the inserts: Enlargement of the temperature profiles for 

the bare SC and the coated CD. 
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4.5 Tests with H2/air reactive mixture 

 

Homogeneous and heterogeneous reactions towards H2 combustion were studied on bare 

and coated SC and CD channeled monoliths with the H2/air reactive mixture (same power 

density and gas hourly space velocity GHSV used for the CH4/air combustion tests above 

described). As done previously, also the bare SC monolith without internal channel (the 

SC duct) was tested towards H2 combustion. The main obtained results are reported in 

Figure 4.4 and summarized in Table 4.2. When testing both the bare monoliths, or the sole 

quartz tube, it was impossible to complete the tests with the cooling phase, because in all 

cases (SC or CD monolith, SC duct) when the oven was switched off, the H2 homogeneous 

combustion shifted upstream the monolith, towards the feeding system (this was clearly 

visible through the reactor quartz wall). For safety reasons these tests were stopped and 

consequently no curves related to the cooling phase were recorded in Figure 4.4. On the 

contrary, the presence of the catalyst lined on both SC and CD monoliths allowed 

stabilizing the heterogeneous combustion and lowering the temperature at which H2 was 

completely burnt: Around 200 °C compared to the approx. 700 °C of the homogeneous 

reaction (see Table 4.2). Also for the H2/air tests the same hysteresis phenomenon was 

observed for both the coated monoliths. By observing the temperatures profiles versus the 

time on stream, reported in Figure 4.5, it is worth noting that when the H2-T90 was reached, 

there was a sustained increase of the heat released, which lead to an increase of the Tin 

compared to the Tout. Such a critical point determined the passage to the upper steady state 

of the oxidation reaction, controlled by the external mass transfer regime, which leaded to 

the hysteresis phenomenon during the cooling phase. This was an inverse situation 

compared to the CH4/air mixture tests, where in the cooling phase the Tout was always higher 

than the Tin. Practically, when burning H2, thanks to its higher reactivity compared to CH4, 

the front flame was faster than the gas speed, and then the reaction shifted upstream the 

burner. The higher H2 reactivity seemed to prevail on the different monolith’s thermal 

conductivity, whereas on CH4/air mixture tests, the role of the support thermal conductivity 

played a bigger role in stabilizing CH4 combustion. 

 

 

 



53 
 

 

 

 

 

Fig. 4.4 H2  conversion vs. Tin  for the homogeneous and heterogeneous reactions within the bare 

and  coated monoliths (SC: silicon carbide; CD: cordierite; both with internal  channels);  the  

quartz  tube  (blank  test)  and  the  SC  duct  added  for comparison; H2/air mixture (7.6 MWth  

m
–3

, GHSV 16,000 h
–1

).  
 

 

Fig. 4.5 Tin   and  Tout   and  H2   conversion  vs.  reaction  time  for  the  homogeneous  and 

heterogeneous reactions within the various monoliths (coated SC monolith; bare and coated CD monoliths); 
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H2/air mixture (7.6 MWth m
–3

, GHSV 16,000 h
–1

).  

 

 

 

 

Table 2.2 Characteristic temperatures and H2  combustion extinction conditions referred to tests showed 

in Figure 4.4.  
 

 Oven switched on 
 

(heating phase) 

Oven switched off 
 

(cooling phase) T100  up 

to [°C] (combustion 

extinction) 

T10 

 
[°C] 

T50 

 
[°C] 

T100 

 
[°C] 

Blank test 574 682 712 - 

Duct SC 301 527 706 - 

Bare SC 450 571 705 - 

Coated SC 148 184 210 200 

 
(90.2% @ 51 °C) 

Bare CD 208 384 678 - 

Coated CD 134 164 193 135 

 
(95.3% @ 66 C°) 

 

4.6 Tests with CH4/H2/air reactive mixtures 

 

Various CH4/H2 mixtures were tested in heating and cooling phases on both monoliths, by 

studying both the homogenous and heterogeneous reactions. For the performed tests, as for 

all the previous ones, the global power density and GHSV were maintained constant at 7.6 

MWth m
–3

 and 16,000 h
–1

, respectively. The relative percentages of methane and hydrogen 

were mutually varied (maintaining the sum of the two fuels equal to 100%) in order to 

always assure a constant power density. Many different CH4/H2 mixtures were tested, from 

98/2 to 25/75; anyway, in the following figures, only two or three mixtures were 

reported, those significant to understand the phenomena that took place, so avoiding too 

complex drawings. Figures 4.6 and 4.7 report the results related to the tests on the bare SC 

monolith, in terms of CH4 and H2 conversions, CO and CO2 emissions (Fig. 4.6) and Tin 
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and Tout profiles (Fig. 4.7) for the CH4/H2 mixtures 65/35, 70/30 and 92/8. Mainly two 

results can be pointed out: when the hydrogen concentration in the gaseous fuel mixture 

was particularly high, more than 35%, no hysteresis phenomenon during the cooling phase 

was recorded on both CH4 and H2 conversions (see Figure 4.6, CH4/H2 mix 65/35). The 

same behavior was, in fact, recorded for the following CH4/H2 mixtures 50/50 and 25/75, 

not reported for sake of simplicity. The combustion reactions were  always in  kinetic 

controlled regime. When instead, the H2 concentration was equal or below 30% (see 

Figure 4.6 for the CH4/H2 mixtures 70/30 and 92/8, respectively), thanks to the 

establishment of the hysteresis phenomenon, both methane and hydrogen conversions were 

maintained stable during the cooling phase up to temperatures below 200 °C. Moreover, the 

lower the hydrogen concentration, the longer the lifespan of the reaction (see methane 

conversion versus time in Figure 4.7) and the lower the overall amount of produced CO (see 

CO emissions versus Tin in Figure 4.6). The same behavior was recorded also by testing 

the CH4/H2 mixtures 75/25, 84/16, 94/6, 96/4 and 98/2 (not reported for sake of simplicity). 

The hydrogen concentration in the mixture played a role in varying the both CTI and CTE, 

the values of the CO peaks, and the stability of the methane combustion (i.e., a complete CH4 

conversion). 

By observing the Tin and Tout profiles in Figure 4.7, for all the three tested mixtures a Tout 

step increase was noticed at around the corresponding CH4-T90, similarly to the temperature 

profiles reported in Figure 4.3. However, only for the 70/30 mix (see enlarged insert in 

Figure 7), and those with lower hydrogen fraction, such a Tout step increase led to a shift in 

the mass transfer controlled reaction, i.e. the recorded Tout was higher to the corresponding 

Tin up to the reaction extinction. In particular, the maximum ΔT (Tout – Tin) was reached 

just before the extinction (see Figure 4.7 and Table 4.3): for the mix 70/30 the ΔTmax was 

137 °C and for the mix 92/8 ΔTmax was 193 °C. In case of the mix 70/30, during the 

cooling phase the methane combustion remained stable at 100% till approx. 168 °C, and 

then the reaction extinguished at approx 88 °C (see Figure 4.6). The corresponding CO 

profile presented a maximum peak equal to 2.11% at 790 °C during the heating phase. 

During the cooling phase there was a first peak equal to 0.48% at 688 °C, which became 

extinct at 655 °C  and started to grow again few degrees below, at 642 °C, following a 

ramp-like trend up to a maximum value of 0.53% at 86 °C (see Figure 4 .6). When the 

hydrogen concentration was reduced up to 8% (mix 92/8), the methane combustion 

remained stable at 100% till approx. 400 ° C, and the reaction extinguished at around 162 °C. 
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During the heating phase the maximum CO peak was 1.04% at 860 °C; during the cooling 

phase only the ramp-like CO increase was present with a final value of 0.42% at 165 °C. 

The CO peaks formed during the cooling phases were always of lower values compared to 

the ones of the heating phases. Most probably, the higher heat quantity released by the 

system when it was in the upper steady state allowed better stabilizing the combustion 

reaction by limiting the CO formation. 

By considering instead the coated SC monolith, whose results are reported in Figure 8 for 

the mix 92/8 and 98/2, the hysteresis phenomenon was noticed only at very low hydrogen 

concentration, in particular only for the mixtures 96/4 (not reported) and 98/2. For all the 

other tested mixtures instead, namely 25/75, 50/50, 65/30, 70/30, 75/25, and 84/16 (not 

reported for sake of simplicity), the methane combustion was practically not affected by 

the presence of hydrogen and reached the completeness at temperatures slightly lower 

compared to the same tests performed with the bare SC monolith, approx. 750 °C (see 

Figure 4.6). The only noticeable difference, compared to the behavior of the bare SC 

monolith, was that the presence of the catalyst improved the light-off of the hydrogen at 

very low H2-T10 and H2-T50 during the heating phase of the tests. In case of the tests on the 

coated SC monolith, the methane combustion reaction moved to the external mass transfer 

control regime in the upper steady-state only at a lower hydrogen concentration in the 

mixture, compared to the tests on the bare SC monolith. On the coated SC monolith a 

hydrogen concentration of only 2% was sufficient to sensibly increase the stability of the 

methane combustion reducing the temperature of its complete conversion during the cooling 

phase. With the bare SC monolith hydrogen concentration required to stabilize CH4 

combustion to low temperatures grew up to approx. 30%. 

By examining the temperature profiles, not reported here, in all the experiments carried 

out with a hydrogen concentration higher than 4%, Tout and Tin were always almost 

coincident; only starting with the mix 92/8, it was possible to observe a step increase for 

Tout (always at the achievement of CH4-T90), followed by a  sensible difference between 

Tout and Tin. In particular, for the mix 98/2 the ΔTmax was 115 °C (see Table 4 . 3) at the 

extinction of the methane combustion. For this mixture, the methane combustion 

became more stable (its conversion remained at 100% till approx. 500 °C), up to the 

extinction at around 320 °C. The maximum CO peak was 1.34% @ 825 °C during the 

heating phase, and the ramp-like final value was 0.41% @ 317 °C during the cooling phase 

(see Figure 4.8 and Table 4.3). 
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Very similar results were obtained on the combustion tests performed on the bare and 

coated CD monoliths, but with different hydrogen concentrations necessary to stabilize the 

methane combustion. On the bare CD monolith the following CH4/H2 mixtures were tested: 

25/75, 50/50, 70/30, 75/25, 84/16, 92/8 and 94/6. The most representative results, belonging 

to tests 70/30 and 84/16, are shown in Figure 4 .9 as CH and H conversion, CO and CO2 

emissions versus Tin. The same behavior of the bare SC was observed: at high concentration 

(25% and more), the hydrogen presence did not help the methane combustion and 

practically no hysteresis phenomenon was recorded. On the contrary, for hydrogen 

concentration equal or lower than 16%, the hysteresis concerning the methane conversion 

was quite evident. The temperature range of stable methane combustion did not vary so 

much with hydrogen concentration. The establishment of an external mass transfer control 

regime was evident also through Tin and Tout curves, not reported here: Only for mixtures 

with hydrogen concentration below 16% Tout resulted higher than Tin when complete 

methane combustion was reached. In particular, ΔTmax was equal to 87 °C (see Table 

4 . 3) for the 84/16 mix and increased by decreasing the hydrogen concentration (ΔTmax 

was equal to 119 °C (see Table 4.3) for the 92/8 mix). It is worth noting that the recorded 

ΔTmax for the bare CD monoliths were smaller compared ΔTmax values recorded for the 

bare SC monoliths. This was certainly due to the different thermal conductivities of the 

monoliths. A higher thermal conductivity (of the SC support) allowed enlarging the 

temperature range of the stable methane combustion (on average, the time on stream of 

the SC monoliths was longer, especially with low hydrogen concentration in the reactive 

mixture) [19]. 

The presence of the catalyst on the CD monolith allowed reducing the hydrogen 

concentration to obtain stable methane combustion at relatively low temperature during the 

cooling phase. The main obtained results are reported in Figure 4 . 10 for two CH4/H2 

tested mixtures (87/13 and 92/8), reported as examples. Combustion tests were carried 

also with other mixtures (25/75, 50/50, 70/30, 75/25, and 94/6), not reported for sake of 

simplicity. Up to a hydrogen concentration of 13% (or more), methane combustion 

reached its completeness at relatively high temperature, between 700 and 830 °C. The 

presence of the catalyst apparently only allowed reducing the CO emission peaks. Only 

for hydrogen concentration below 8%, the methane combustion reached the upper steady 

state, with predominant external mass transfer control. Here the hysteresis cycle was 

evident: ΔTmax equal to 127 °C (see Table 4 .3) for the 92/8 mix, with the typical presence 
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of Tout step increase at approx. the CH4-T90. 

 

 

 

Fig.4. 6 CH
4 and H

2 conversion, CO and CO
2 emissions vs. Tin for the homogeneous reactions on 

bare SC monolith; various CH4/H2/air mixtures (7.6 MWth  m
–3

, GHSV 16,000 h
–1

).  
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Fig. 4.7 Tin and Tout and CH4  conversion vs. reaction time for the homogeneous reactions on bare SC 

monolith; various CH4/H2/air mixtures (7.6 MWth m
–3

, GHSV 16,000 h
–1

).  
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Table 4.3 Characteristic Tstep, ΔTmax and CO peak or CO ramp values referred to the tests showed in 

Figures 4.7–4.10, and to other relevant tests. 

 Oven switched on (heating 
phase) 

Oven switched off (cooling phase) 

Tstep at 
[°C] [min] 

CO peak at 

[%] [°C] 

ΔTmax at 

(Tout-Tin)

 [mi

n] 
[°C] 

CO peak at 

[%] [°C] 

CO ramp at 

[%] [°C] 

Bare SC 

65/35 782 71 2.46 774 - - 2.12 677 - - 

70/30 796 48 2.11 790 137 129 
(440–303) 

0.48 688 0.53 86 

92/8 863 21 1.04 860 193 195 
(361–168) 

- - 0.42 165 

Coated SC 

70/30 803 152 0.46 793 - - 0.12 703  

92/8 817 116 1.69 823 - - 0.53 728 - - 

98/2 830 65 1.34 825 115 143 
(435–320) 

- - 0.41 317 

Bare CD 

70/30 - - 2.61 772 - - 2.2 683 - - 

84/16 798 48 2.15 792 87 144 
(339–252) 

0.31 701 0.49 199 

92/8 805 54 2.13 799 109 136 
(280–171) 

0.25 713 0.52 180 

Coated CD 

70/30 - - 0.82 804 - - 0.32 688 - - 

87/13 823 79 1.97 806 12 124 
(416–404) 

0.84 711 - - 

92/8 830 81 1.94 814 12 127 
(520–393) 

0.15 716 0.47 168 
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Fig. 4.8 CH4  and H2  conversion, CO and CO2  emissions vs. Tin  for the heterogeneous reactions on  

coated SC monolith; various CH4/H2/air mixtures (7.6 MWth  m
–3

, GHSV 16,000 h
–1

).  
 

 

Fig. 4.9 CH4   and H2   conversion, CO and CO2   emissions vs. Tin  for the homogeneous reactions on  

bare CD monolith; various CH4/H2/air mixtures (7.6 MWth  m
–3

, GHSV 16,000 h
–1

).  
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Fig. 4.10 CH4  and H2 conversion, CO and CO2  emissions vs Tin  for the heterogeneous reactions on 

coated CD monolith for various CH4/H2/air mixtures (7.6 MWth m
–3

, GHSV 16,000 h
–1

).  

 

4.7 Discussion 

Experimental tests on microcombustion of various CH4/H2 mixtures were performed on bare 

and coated silicon carbide (SC) and cordierite (CD) monoliths in order to assess the impact on 

the microreactor start-up and steady-state conditions for the complete methane combustion. 

The main aim of the tests was to determine the best conditions to reach stable methane 

combustion for the longest possible time by adding the minimum possible hydrogen 

concentration, and assuring the lowest possible CO emissions. The obtained results are shown 

in Figures 4.2 to 4.10 and summarized in Tables 1 to 3. 

 

4.8 Effects of the wall thermal conductivity 

 

Basically, reactors with low wall thermal conductivity (CD monoliths) exhibited shorter 

ignition times, compared to the higher thermal conductivity ones (SC monoliths) due to the 

formation of spatially localized hot spots that promoted catalytic ignition. Practically, CD 

monoliths reached the light-off and the complete combustion in faster time, compared to the 

SC one, despite the same heating temperature ramp. However, SC supports assured longer 

time on stream operations, i.e. methane combustion remained stable for more  time 
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compared to the CD monoliths, even at very low temperature. This is evident also from the 

experimental data reported in Table 3. The obtained results are in agreement with simulation 

results recently obtained by Karagiannidis and Mantzaras [19]. The more favorable start-up 

times for CD monoliths can be mainly attributed to its lower thermal conductivity. Before 

ignition, in fact, axial heat conduction in the solid is less pronounced (due to its lower thermal 

conductivity). Heat  generated on  the surface cannot move away from the reaction front 

located near the channel outlet at a fast enough rate; this leads to the formation of a spatially 

confined reaction zone (with a more pronounced hot spot formation at the reactor 

downstream), which in turn promotes faster fuel consumption and leads to faster ignition. 

Such faster ignition can be also attributed to the higher heat accumulated in the CD monolith 

compared to the SC one [19]. 

Recently, a three-dimensional CFD simulation work on the role of the cross-sectional 

geometry on the thermal behavior of catalytic micro-combustors [20] demonstrated that for 

geometries having corners, the heat accumulated at the corners allows ignition to start near 

the corners and then to spread in the circumferential and axial directions. The heat production 

at ignition leaded to a three-dimensional perturbation of the flow field with the generation of a 

bulk rotational motion: at ignition, these vortices generate a locally increase of the gas 

residence time. Such a three-dimensional recirculation zone arising at ignition continuously 

feed the fuel to the wall increasing the mass transfer and then sustaining the catalytic reaction. 

This could explain the step temperature increase recorded during most of our experimental 

tests, when reaching the ignition temperature. 

 

4.9 Effects of the hydrogen in the feedstock 

 

The presence of the hydrogen in the mixture, assisting methane combustion, plays different 

roles depending on the presence or not of the catalyst lined on the monoliths surfaces. 

Basically, a not excessive hydrogen concentration allows reducing the methane ignition 

temperature and, moreover, leads to expand the stability of the steady state operation (thanks 

to the establishment of a hysteresis phenomenon, which carries the methane combustion in an 

upper steady state condition, where the external mass and heat transfer control regime is 

prevailing). If the catalyst is lined on the monoliths, the hydrogen concentration necessary to 

reach stable methane combustion resulted to be reduced; and, moreover, the reduction was 

more pronounced for higher values of the monolith thermal conductivity. 
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4.10 Effects on CO emissions 

 

Concerning the CO emissions when the methane combustion was in the upper steady-state 

during the tests, it was possible to notice (mainly from Figure 4.6: Mix 70/30 and 92/8; 

Figure 4.8: Mix 98/2; Figure 4.9: Mix 84/16; Figure 10: Mix 92/8) that in all these cases 

during the cooling phase,  despite methane conversion was still 100%, CO emissions slowly 

raised up following a ramp-like trend and contemporarily CO2 emissions slowly decreased. 

Most probably, the overall heat released by the reactions was not sufficient to completely 

burn methane following the methane total oxidation (involving 2 oxygen molecules per 

methane molecule), but following the partial oxidation of methane to CO and H2O (involving 

only 
3
/2 oxygen molecules per molecule of methane) up to the extinction of the reaction. 

Furthermore, the presence of the catalyst helped in limiting the overall CO emissions. The 

maximum CO concentration reached was between 0.49% and 0.52% for the bare SC and CD 

monoliths, respectively, and between 0.41% and 0.47% for the coated SC and CD monoliths, 

respectively. Once more, the higher thermal conductivity of the SC monolith and the presence 

of the catalyst lined on its surface seemed to better stabilize the methane combustion and 

enlarging its stability map. 

 

4.11 Conclusions 

 

The present work deals with the investigation on the performance of catalyst 2% Pd/ 5% 

LaMnO3·ZrO2 (PLZ), lined on silicon carbide (SC, with thermal conductivity of 250 W m
–1

 

K
–1

) or cordierite (CD, with thermal conductivity of 3 W m
–1

 K
–1

) monoliths, for the 

CH4/H2/air lean mixtures oxidation. The bare and coated monoliths were tested into a lab- 

microreactor designed to provide a favorable environment for microscale combustion of 

CH4/H2/air lean mixtures to reach high power density (7.6 MWth m
–3

; GHSV 16,000 h
–1

). 

Various CH4/H2 mixtures were tested in heating and cooling phases on the various monoliths, 

by studying both the homogenous and heterogeneous reactions. The relative percentages of 

methane and hydrogen were mutually varied (maintaining the sum of the two fuels equal to 
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100%), in order to always assure a constant power density. The air was always fed with  

equal to 2. The main aim of the catalytic combustion tests was to select the best settings to 

achieve at the minimum temperature full CH4 conversion with the minimum H2 concentration 

in the reactive mixture, accompanied by the lowest possible CO concentration. 

Depending on the thermal conductivity of the tested monoliths, the existence of a steady-state 

multiplicity was verified, mainly when the hydrogen concentration was quite low. Basically, 

microburners with low wall thermal conductivity (CD monoliths) exhibited shorter ignition 

times compared to the higher thermal conductivity ones (SC monoliths) due to the formation 

of spatially localized hot spots that promoted catalytic ignition. At the same time, the CD 

material required shorter times to reach steady-state. But SC materials assured longer time on 

stream operations. The presence of the catalyst lined on both monoliths allowed reaching 

lower CO emissions. The best results belonged to the catalytic SiC monolith, with a low 

hydrogen concentration in the fed mixtures. 

 

4.12 Note 

 

At the end of the work previously described and discussed, more tests using the same reactor 

have been performed on the same bare SiC monolith, analyzing during the heating and the 

cooling phases the combustion behavior due to: 

1) increasing of heat produced by combustion of CH4/H2 in mixture with air, from the 

former 6 Wth to 15 Wth and  

2) injection of H2 in different moments of the test. 

These are the main conclusions: 

1) increasing of heat produced by combustion of CH4/H2 in mixture with air, from 6 Wth 

to 15 Wth (2.5 the standard feeding flow) 
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Fig. 4.11 Increased of heat produced to 2.5 the standard  

 

After increasing the thermal flow produced from 6 Wth to 15 Wth, CH4 is able to maintain 100% 

conversion for lower values during the cooling phase, almost without producing CO; 

2) injection of H2 during test: starting from a mixture 84%CH4-16%H2 and 15 Wth 

produced, more H2 has been injected at 700 °C during the cool phase, for a total of 

32% H2 in the mixture and 17 Wth produced.  
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Fig. 4.12. Extra H2 injection during the test 

 

Result: 100% CH4 conversion is able to be maintained at the room temperature during the cool 

phase, without any emission of CO. 
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Chapter 5 

 

COMBUSTOR WITH RECIRCULATION OF 

EXHAUST GASES 

 

5.1 Introduction and Set-up  

 

The main idea of a reactor with a recirculation of the hot fumes was to provide a pre-heating 

of the reagents in order to obtain a lower “light-off” temperature compared to the one of the 

old reactors without pre-heating chamber, limiting the thermal loss towards the environment. 

The effect of this recirculation may result in a phenomenon called in literature as an "excess 

of enthalpy" [1], which could allow an increase of the flame temperature, moving it closer to 

the ideal adiabatic temperature. 

The design of the reactor is shown in Figure 5.1 – New Reactor Design. The layout of the 

equipment is shown in Figure 5.2 - Reactor Configurations and Figure 5.3 - Experimental 

Set-Up. The upper diagram in Figure 5.2 - Reactor Configurations shows the flow of material 

and heat in the reactor with recirculation of exhaust gases, while the lower shows the same 

for the reactor without recirculation. Figure 5.3 - Experimental Set-Up shows the setup of 

equipment including gas analyzer, non-dispersive infrared absorption (NDIR Uras 14 for 

CH4/CO/CO2, ABB Company) and a thermal conductivity analyzer (Caldos 17 for H2, ABB 

Company), and data acquisition.  

The flow of the inlet gases is controlled by Bronkhorst High-Tech BV series mass flow 

meters complete with control valves, to accurately control the flowrate and composition of 

gas feed. The gases are mixed prior to entering the oven by a static mixer which also acts as a 

flame arrest.  

The reactor is contained in an oven which increases in temperature by 10 °C per minute 



71 
 

during the heating phase of the experiment. The reactor contains 3 K-Type thermocouples for 

the most recent experiments with exhaust gas recirculation, with 4 thermocouples placed into 

the oven itself. The thermocouples are placed at the inlet and at the exit of the monolith. In 

the previous work without heat recirculation the thermocouple present in the middle of the 

monolith was absent. Care was taken during the selection of thermocouple as the work by 

Zhang et al[2] highlighted the danger of selecting the wrong thermocouple. In that instance 

the thermocouple used catalysed the combustion reaction and therefore affected the results. 

The exhaust gases from the reactor then flow to the gas analyzer to obtain the composition. 

As can be seen from Figure 5.3 - Experimental Set-Up the gas analyzer and thermocouple 

information is sent to a laptop containing acquisition software.  

 

 

Fig. 5.1  New Reactor Design 
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Fig.5.2 Reactor Configurations 

 

 

 

Fig. 5.3  Experimental Set-Up 
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5.2 Experimental procedure  

 

Once verified the flows by a flowmeter “Agilent Technologies ADM2000 Universal Gas 

Flowmeter”, the fuel/air mixture was then passed through the reactor with the oven turned off 

until the gas analyzer had stabilized and was reading a constant composition. The oven was 

then configured to increase in temperature by 10 °C per minute until a maximum temperature 

of 850 °C. The data acquisition was then turned on followed by the oven. Once the 

temperature inside the reactor had reached 850 °C the oven was then switched off. The data 

acquisition was maintained until the temperature measured by the thermocouple inside the 

reactor was at most 250 °C and there was no evidence of combustion. Once both of these 

conditions had been met the flow of fuel was stopped at both mass flow controller and source. 

The flow of air was then increased to increase the rate of cooling.  

 

 

5.3 Experiments  

 

Reactor without recirculation is referred as configuration 1. The monolith was positioned in 

the middle of the oven and a variety of fuel mixtures were used to investigate the effect of 

hydrogen addition to ignition and extinction of methane combustion in micro tubes.  

Configuration 2: reactor with recirculation and with the monolith positioned in the middle of 

the oven, as in configuration 1. The exact same flow rates and compositions as the previous 

set of experiments were used for accuracy.  

The next set of experiments was performed with the monolith moved further downstream as 

this increased the feed pre-heating time and area. This was expected to move the combustion 

into a more adiabatic zone, potentially increasing the range of self-sustained combustion 

(auto thermal operation). The monolith position was set so that the end of the monolith was 

flush to the end of the inner quartz tube, hereafter referred to as configuration 3. See Figure 

5.2 - Reactor Configurations.  
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5.3.1 Standard flow 

 

92%Methane, 8%Hydrogen (by mol)  

 Configuration 1 vs Configuration 2  

The following graphs show the conversion of Methane and the Conversion of Hydrogen vs 

inlet temperatures for the two configurations; 

 

 

Fig. 5.4 Methane conversion vs inlet temperature. configuration 1 vs 2 
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Fig.5.5 Hydrogen conversion vs inlet temperature. configuration 1 vs 2 
 
 
 

 

It can be seen that for both hydrogen and methane the ignition temperatures are higher in 

configuration 1 while the extinction temperature appears to be lower. However these results 

are possibly slightly misleading. The difference between configuration 1 and 2 is the addition 

of a recirculation loop for hot exhaust gases. The recirculation loop acts in a similar manner 

to double glazed windows, causing both heating and cooling phases to take longer due to the 

reduced overall heat transfer coefficient. This also leads to a more uniform heat distribution 

through the reactor. The more uniform temperature distribution could potentially explain why 

the mixture ignites at a lower inlet temperature in configuration 2 during the heating phase. It 

is thought that the monolith will be at a temperature close to the inlet temperature. In 

configuration 1 although the inlet temperature is higher than in configuration 2 the monolith 

may actually be at a similar temperature due to the higher heat capacity of the monolith and 

the less uniform temperature distribution. This could potentially explain the difference in 

ignition temperatures. The following graphs of methane and hydrogen concentration vs time 

illustrate this point.  
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Fig. 5.6  Methane Conversion vs inlet temperature. Configuration 2 vs 3 

 

 

Fig. 5.7  Hydrogen Conversion vs inlet temperature. 8mol% hydrogen. Configuration 2 vs 3 

 

 

Configuration 3 exhibits no auto thermal behavior for this mixture. This result was 
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unexpected as the new position was selected in order to move the combustion into a more 

adiabatic region. A possible explanation of this behavior could be the not formation of a 

flame at the outlet of the monolith, essential for the start of the hysteresis. 

 

5.3.2 Increased flow  

 

This set of experiments had a flowrate 2.5 times the standard one. That is the power output 

was calculated to be 15 thermal Watt at stp.  

 

 

 

 

Fig. 5.8  Methane Conversion vs inlet temperature. 2.5X flow. Configuration 1 vs 2 
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Fig. 5.9  Methane Conversion vs inlet temperature. 2.5X flow. Configuration 2 vs 3 

 

 

The results from these experiments clearly show that configuration 2 is the most stable for 

auto thermal operation. The ignition temperature is significantly lower than that for 

configuration 1while the extinction temperature is also lower than the values obtained for 

both configurations 1 and 3. Configurations 2 and 3 show ignition temperatures that are very 

similar but as was mentioned configuration 3 extinguishes at a higher temperature. The 

extinction of configuration 3 also seems to be less immediate than that of configuration 2 and 

exhibits signs that the extinction is similar to that witnessed using 100% methane with the 

lower flowrate. Not only does configuration 2 operate at lower temperatures than 

configuration 1 but the conversion of methane is at 100% for far longer as is shown below.  

 

5.4 Conclusions  

 

The results from this project indicate that the effect of recirculation of exhaust gases increases 

the length of time of auto thermal operation for some fuel air mixtures with respect to the 

reactor without exhaust gas recirculation. However the upper limit of hydrogen which can be 

used to sustain the homogenous reaction has decreased with respect to configuration 1. The 

results from these experiments indicate that configuration 1 can, at the lower flowrate, 
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maintain combustion at lower temperatures than configuration 2 due to the higher upper 

hydrogen concentration limit. This is an interesting result and the upper hydrogen 

concentration limit should be found for configuration 2 in order to have a clearer picture of 

the operating envelope and also to determine the minimum operating temperature. The results 

from the increased flowrate experiments clearly show that configuration 2 is the optimum. 

Configuration 2 demonstrates both the lowest ignition and extinction temperatures while also 

the longest auto thermal operation time. Therefore one conclusion from this project is that the 

addition of exhaust gas recirculation reduces the heat loss from the reactor and therefore the 

effect of thermal quenching with respect to configuration 1.  

Unfortunately due to unforeseen flame/wall interactions no conclusions can be drawn about 

the effect of monolith position inside the reactor.  

The results of this project agree with those found in literature that addition of hydrogen 

enhances the region of stable auto thermal operation when using methane in micro 

combustors up to certain hydrogen content. This upper hydrogen content limit was seen to be 

affected both by reactor configuration and monolith position: for example, hysteresis in 

configuration 1 and not in configuration 2 and 3 when 25% H2/CH4, hysteresis in both 

configuration 1 and 2 but not in configuration 3 when 8% H2/CH4 in mixture. 
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Chapter 6 

 

COUPLING CATALYTIC COMBUSTION WITH 

STEAM REFORMING IN STRUCTURED 

MICROREACTOR 

 

6.1 Introduction 

 

The idea is to couple a combustion reaction with a steam reforming one for the production of 

hydrogen within the same reactor. In this way it is possible to exploit the heat of combustion 

to sustain the reaction of steam reforming. The reactor studied in this research belongs to the 

class of micro reactors. These have become increasingly important in application areas such 

as testing of new catalysts, power generation for portable devices and production of certain 

chemical substances. In the industrial field they may replace the normal large reactors in 

numerous fields. [1] Their main advantages are: 

- Less clutter, especially in length (tubular reactors); 

- Radial profiles of temperature and lower velocity (best heat transfer and lower hot 

spots formations); 

- Increased safety in the event of an explosion or of released of chemicals (due to lower 

volumes contained within the micro reactors); 

- Reduced size of the equipment (better efficiency and lower costs). 
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The reduced size of a micro reactor strongly limits the amount of product available for each 

channel. To meet the needs of large-scale production, must be carried out a scale-out of the 

process in a single channel for stacks of greater dimensions. 

The scale-out can be done in various ways: in literature can be found in publications such 

experiments that have been made on a single micro reactor stack, considering then 

representative of the behavior of larger units (cheap but unreliable method). In other cases it 

resorts to the computer simulation of micro reactors with a limited number of channels, this to 

reduce the computation time. In general, calculation models use boundary conditions that 

follow regular laws. In this way it is possible to simulate stacks indefinite (unlimited) 

avoiding too complex calculations. 

To be able to apply these models on an industrial scale, the designers assume that all the 

channels contained in a single stack behave in a similar manner. It is therefore plausible, 

under this condition, thinking that production increases linearly with the number of channels 

present in the stack. 

A typical linear trend is illustrated in Figure 6.1, for the steam reforming of methane and 

methanol. [1] 

It’s been also reported the number of necessary channels (on the ordinate) for the different 

applications, which requires constantly more power [1]. 

 

Fig 6.1 Linear model of scale-out for steam reforming of methane and methanol [1] 

 

As already previously mentioned, the model of linear scale-out presents great applicative 

limits: it does not take into account, in fact, the physical phenomena at the borders of the 
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stack, which jeopardizes the hypothesis of similarity of the individual channels. Few studies 

have been conducted so far in this regard. However, it is likely that the boundary conditions 

of domain influence in a far from negligible the scale-out of the micro reactor. 

 

6.2 Scale-out of a coupled combustion/steam reforming microreactor 

 

It was analyzed [1], using computational methods, the effects of the scale-out of a stack of 

micro reactor for the combustion/steam reforming of methane. 

The stack is considered to be formed by parallel channels in which catalytic combustion is 

alternate to steam reforming; the number of channels was varied from three to seven. 

 

Fig. 6.2 Microreactor scale out strategy [1] 

 

For smaller stacks, heat loss in the outer layers brings the temperature to fall until the 

extinction of the combustion in the channels closest to the walls happens. As a result the 

combustion in the most internal channels is not able to provide the energy needed to support 

the entire stack, and the combustion can consequently extinguish (thermal coupling between 

external and internal channels). Only with a higher number of channels it is possible to avoid 

this phenomenon.  
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Another important parameter for the thermal coupling is the conductivity of the walls: the 

best stability occurs in the presence of walls of high thermal conductivity. In this way the heat 

coming from the channels of internal combustion is able to maintain a sufficient temperature 

in the external channels. 

It was found that stacks with moderate wall thermal conductivities (23 W m
-1

 K
-1

) are less 

stable in the presence of heat loss than those with more-conductive walls (100 W m
-1

 K
-1

) 

under some operating conditions [1]. Low temperatures in the outermost combustion channel, 

because of edge heat loss, cause combustion in this channel to cease. 

In one more computational study concerning micro reactors [2], some parameters were 

modified in order to increase the stability of the reactor. It has been considered a stack 

containing nine channels arranged as in Figure 6.3. 

 

Fig. 6.3 Schematic of the 9 channels microreactor [2] 

 

Tab. 6.1 Summary of stability improvement options [2] 
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Fig. 6.4  Improved stability, cases A-F [2] 

 

The A-F cases are related to the increase of net power input. The flows (AD) and the 

temperatures (EF) were so modified. The improvement of the stability is better when 
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reducing the flow to the steam reforming channels (D), rather than by increasing the flow to 

the combustion channels (AC). The temperature effect improves even more the stability of 

the reactor, as it is extremely important to prevent the stopping of the combustion, especially 

in the outermost channels.  

In all cases studied, the improvement is more evident for a monolith which presents higher 

thermal conductivity of the walls (SiC or low-alloy steel), while things are worse for walls 

with moderate lower conductivity (stainless steel). 

 

 

 

 

 

Tab 6.2  Change of parameters, cases G-M [2] 
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Fig 6.5  Improved stability, cases G-M [2] 

 

The case G regards the use of materials with the lowest thermal conductivity (quartz and 

silicates). Stability does not improve and it also introduces a problem related to the fragility 

of these materials. The H-I cases are about the change of the channels size (respectively an 

increase and a decrease). In both cases it isn’t shown a significant increase of the stability of 

the reactor. In addition it was found that the conversion is adversely affected, leading to an 

overall decrease in performance. The J-K cases show that an increase of the charge of the 

catalyst improves significantly the stability; the main problem is high price to do it due to the 

use of noble metals. The L-M cases concern the use of hydrogen as fuel, instead of methane, 

in the starting phase. Stability is much higher in M, because the flow of hydrogen is much 

greater than in the L case. Hydrogen is a fuel more reactive than methane, but it increases the 

formation of hot spots, it is also noted that the overall performance has a decline. Even in 

these cases, in general, the greatest increase in stability occurs in the presence of walls with 

high thermal conductivity. 
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Chapter 7 

 

THEORY OF THE STEAM REFORMING 

PROCESS 

 

7.1 Introduction 

 

The process of steam reforming of hydrocarbons, developed in 1924 (Rostrup-Nilsen, 1984), 

is the main industrial method for the production of synthesis gas, or syngas, which is a 

mixture of CO and H2. 

The United States produce 9 million tons of hydrogen per year with this technology. World 

production of ammonia from hydrogen by steam reforming was 109 million tons in 2004 [1]. 

Hydrogen in the synthesis gas is a key element for refinery processes, such as hydrotreating 

and hydrocraking. It is also used in petrochemical processes such as methanol synthesis, 

ammonia synthesis and Fisher-Tropsch process. The hydrogen request has grown 

continuously in recent years because of the need to reduce the sulfur in fuels. In this way, the 

production of hydrogen has become important both in economic and in social terms, as it is 

placed in connection with the quality of life (reduction of pollutant emissions). The basic 

steam reforming reaction for a generic hydrocarbon can be written as:  

22 n)H(m/2nCO  OnHHC mn                                                (equation 7.1) 

Steam reforming of methane is based on three equilibrium reactions, two strongly 

endothermic reforming reactions (1) and (2), and the water-gas shift reaction moderately 

exothermic (3). 

224 3HCO OHCH             [ΔH = +206 kJ mol
-1

]                          (equation 7.2) 
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OH4CO2 2224  OHCH     [ΔH = +165 kJ mol
-1

]                          (equation 7.3) 

222 HCO  OHCO          [ΔH = -41 kJ mol
-1

]                             (equation 7.4) 

 

CO2 is produced not only through the reaction number (eq.7.4), but also by the number 

(eq.7.3). Due to the behavior of the endothermic steam reforming is necessary to work at high 

temperatures. Besides, as it is a reaction with an increase in the number of gaseous moles it is 

preferable to work at low pressure. 

Since steam reforming and water-gas shift reactions are respectively endothermic and 

exothermic, they are normally carried out in two different phases. Usually these reactions 

take place over a catalyst of Ni at about 500 °C. Since all the reactions written above are in 

equilibrium, the off-flow gas is a mixture of CO, H2, CO2 and non-converted reagents (CH4 

and steam). The ratio of these substances in the output flow is governed by temperature and 

pressure of the reactor, composition of the inlet gas and the steam-to-carbon ratio (S/C). In 

Fig 7.1, it is shown a generic example of a steam reforming conversion vs operating 

temperature with a S/C ratio 2:1. 

 

 

Fig.7.1 Conversion vs temperature with S/C 2:1 [2] 

 

In Fig 7.2 it is shown CH4 conversion vs temperature, pressure and S/C. 
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Fig 7.2 Methane conversion vs temperature, pressure and S/C ratio.[2] 

 

It is clearly visible as at high temperatures (>900 °C) the pressure and S/C are irrelevant. If 

one operates at temperatures between 600-900 °C, is necessary to work at low pressure (about 

1 bar) and S/C enough high. Usually values of S/C >3 are not used in order to contain the 

dilution of the exit gas. Formation of coke could result for S/C<3 and it could damage the 

catalyst (fouling). 

The WGS reaction is a chemical process in which CO reacts with steam in order to obtain 

hydrogen and CO2, according to the reaction (eq.7.4). 

WGS is often used as a purification process that follows a steam reforming reaction of 

methane or other hydrocarbons. It is important when it is necessary to produce hydrogen of 

high purity, in order to use in applications such as Fuel Cells for example, for which the CO 

is a poison. 

The process takes place in two stages, one at a higher temperature (HTWGS: 350-450 ° C) 

with metal-based catalysts and the second one at a lower temperature (200-250 ° C LTWGS) 
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with a copper-zinc catalyst. 

Since the reaction is slightly exothermic, it is thermodynamically favored at low 

temperatures; its kinetics instead is increased at high temperatures. Under adiabatic 

conditions, the conversion in a single stage is thermodynamically limited, but significant 

improvements can be achieved when the reaction takes place in several stages with  

intermediate cooling [3]. 

 

7.2  Preferential CO Oxidation 

 

The preferential oxidation of CO (CO-PROX) is a reaction that occurs on a heterogeneous 

catalyst and over a ceramic support. The catalytic agents are metals such as platinum and 

palladium supported on a carrier (alumina, ceria, etc...). 

22 CO2/1  OCO                                                               (equation 7.5) 

The reaction is the subject of research for FCs (Fuel Cells) design, since it is preferable to 

have very low concentrations of CO (less than 10 ppm for fuel cells of type PEMFC). From 

the reaction between CO and CO2 vapor is obtained. 

The reaction of CO-PROX operates in a range of 150-200 °C, with a noble metal as catalyst, 

which ensures the complete conversion of oxygen and increases the selectivity of 33% 

towards the carbon monoxide. At the end of the reaction, it is necessary to cool the flow of 

CO2 and H2 up to about 80 ° C, before in case sending it to the anode compartment of a fuel 

cell [4].  

 

7.3 CO selective methanation 

 

The selective methanation of CO (CO-SMET) is a process that can be alternative to the 

preferential oxidation or it can be integrated with it. It is a method still not widespread, due to 

the limitations imposed by the lack of suitable catalysts, which are able to provide the 

sufficient conversion and selectivity towards CO. Recently, attention has been placed on 

catalysts based on ruthenium (Ru) supported on alumina, ceria, titania and zirconia, which 

appear to be effective in taking the CO to acceptable levels for a good PEMFCs working (<50 

ppmv). 
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The methanation reaction is as follows: 

OHCH3 242  HCO                                                                       (equation 7.6) 

It is carried out at temperatures between 200 - 350 °C, and if it was able to reach the yields of 

the preferential oxidation, it may be a viable alternative to the latter. This method, in fact, 

offers two key benefits: even if H2 is consumed, the gas that leaves the process of 

methanation does not suffer energy losses, as the heat of combustion is recovered through the 

formation of methane (in CO-PROX there are huge loses of energy following the formation 

of CO2, that cannot further to be oxidized); it is also not necessary to introduce additional 

reagents (in the CO-PROX there is need to add air for oxidation). 
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Chapter 8 

 

MULTIPLATE MICROCHANNELS REACTOR 

DESCRIPTION 

 

8.1 Introduction 

 

The microreactor studied in this work follows the design criteria showed in the paper 

“Optimal Design for Flow Uniformity in Microchannel Reactors”, by J. M. Commenge et al., 

[1]. 

It is constituted by a stack of microstructured plates (Ehrfeld et al., 1997.) [2], as shown in 

Figure 8.1 (left-hand side). The parallel channels and distribution chambers for each plate are 

engraved in metal flat sheet and holes are drilled from side to side in each of the four corners 

of the sheets to allow the flow of fluid perpendicularly through the stack. The trajectory of the 

flow through a plate in the stack is shown in Figure 8.1 (right-hand side). 

Placing the tubes of inlet and outlet at lateral positions in the corners of the plate, as shown in 

Figure 8.1 (left-hand side), alternating stack of plates can be assembled symmetrically to 

allow two distinct fluid veins to flow through the reactor, with a vein dedicated to the reaction 

fluid and the other to the heat exchange fluid. Placing the openings of the tube in the corners, 

concurrent or countercurrent flow can be done, a configuration that is not possible with 

central tube positions.   
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Fig.8.1 Microstructured plate with (1) inlet tube, (2)inlet chamber, (3)channels, (4) outlet chambers and (5) 

outlet tube [1] 

 

8.2 Simplified plate geometry 

 

For a plate with Nc channels, the chambers are divided into Nc zones as indicated in Figure 

8.2.  

 

Fig.8.2 Description of chamber zones with corresponding channels ranging from 1 to Nc. [1] 

 

Each zone is oriented perpendicularly to a bisecting line whose origin is situated in the inlet 

or outlet tube associated with the corresponding chamber. The zones are equally spaced along 

the chamber geometry, each with an identical zone length Le. Since the position of each zone 

varies along the chamber geometry, the width Wi of each zone i varies depending on its 

position. For all geometries studied in this work, the inlet and outlet chambers are 
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symmetrical, leading to an identical zone construction for both chambers of a given plate. 

Once the widths Wi of these Nc zones are known, the approximate model is constructed 

according to the principle presented in Figure 8.3. Each zone-channel pair is considered as a 

portion of a duct with a rectangular cross section along which the pressure drop can be 

calculated easily with standard hydraulic formulas. The resulting simplified geometry 

corresponds to a resistive network of ducts of uniform thickness, but with lengths and widths 

that vary as a function of the position of each duct in the structure. 

 

Fig.8.3 Channels of a plate with the different parameters and variables involved in the approximate model for 

velocity distribution. [1] 

 

 

For the approximate model, based on isothermal incompressible creeping flow in rectangular 

ducts, only geometric parameters appear in the equation system governing the fluid 

distribution between the channels of a microstructured plate. These geometric parameters are 

the Nc dimensionless chamber-zone widths Wiq, the ratio Lq of channel length to chamber 

zone length, the ratio Wcq of channel width to fluid vein thickness, and the number of 

channels Nc. 

The chambers of inlet and outlet have been designed in a way to ensure a flow that is the 

most equally distributed into the 10 channels. 
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Fig 8.4  Graph to use for designing a uniform flow distribution reactor [1] 

 

Having all the basic parameters, the "pressure drop parameter" can be found and W 
+
1 can be 

calculated. Following the "line 10" in the chart and it can be found the corresponding value of 

W 
+
 Nc. Known the latter value, it is possible to define the shape of the inlet/outlet chamber 

necessary to have equally distributed flow distributed in the channels. 

 

 

 

Fig.8.5 Explication of critical dimensions to guarantee an equal flow distribution into 10  channels.  
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The reactor is so composed of: 

- a chamber for combustion and a chamber for steam reforming, both composed of ten 

channels 

- a stainless steel support for the reaction chambers, equipped with an inlet and an 

outlet on both sides and with a thick of 0.5 cm 

- two sheets of stainless steel 0.5 cm thick, equipped with a housing for graphite gasket, 

which close the reactor 

 

The overall thickness of the reactor is 1.5 cm. 

In Figure 8.6, 8.7 and 8.8 the design realized with all the geometric characteristics and in 

Fig.8.9 some pictures of the reactor realized at the Machine Shop of the Chemical 

Engineering Department at the University of Delaware. 

 

 

 

 

Fig.8.6 Reactor: design of microplate  
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Fig. 8.7  Design of the reactor: middle plate  

 

 

 

 
Fig.8.8 Design of the reactor: upper=lower plate  
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Fig 8.9  Microplate reactor pictures 
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Chapter 9 

 

MULTIPLATE MICROCHANNELS REACTOR: 

FLUID DYNAMICS SIMULATIONS 

 

9.1 Introduction 

 

For the analysis of fluid dynamics has been used a software called COMSOL, in order to 

validate the theoretical passages. 

A simple approach for studying the flow distribution in parallel structures involves 

calculation of the pressure variation and fluid velocity in the distribution system and inside 

the channels. 

The simulation has been performed with varying mesh grids in order to test the influence of 

meshing on the computed results. 

 

 

Fig 9.1. Finite-volume calculations of the pressure field in the inlet chamber of a plate with 10 channels. [1] 
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9.2 Study of flow velocity and pressure profile in the reactor 

 

As it can be seen from Figures 9.1a and 9.1b, velocity profiles do not show substantial 

differences passing from one channel to another. The velocity values  in a same section are 

identical to each other, and this situation does not change if we move to a different section. 

Simulations with different flow velocities entering in the inlet chamber were run in order to 

analyze the average velocity flow running through each channel. In Figure 9.2 it is compared, 

at 0.15 m/s, 0.5 m/s, 1 m/s and 1.5 m/s of flow velocity entering in the inlet chamber, the 

distribution of velocity per channel, expecting a same flow velocity distribution per each 

channel. 

 

Pressure values also show similarity as shown in Figure 9.3 a and 9.3 b. 

 

 

 

Fig9.1a Velocity profile in 10 channels, 3 sections. Velocity at inlet = 0.15 m/s 
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Fig.9.1b  Velocity profile at 50 planes. Velocity at inlet = 0.15 m/s 

 

 

 

Fig.9.2 Velocity per each channel at different velocity in reactor chamber inlet 
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Fig.9.3a pressure profile in each channel at an axial distance of 25mm 

 

Fig9.3b Pressure profile along the reactor (relative Pa), inlet chamber pressure:5.65 Pa 
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Study of fluid dynamics, for each channel and at the inlet and outlet chamber, shows that the 

reactor has been designed properly as it’s been proved a substantial equal distribution of the 

flow in each channel. 
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Chapter 10 

 

MULTIPLATE MICROCHANNELS REACTOR: 

CATALYST DEPOSITION 

 

10.1 Washcoating 

 

Catalysts used and way of coating the stainless steel channels followed the indications and the 

procedure reported in the paper of Peela et al.  

According to this article, a washcoating technique followed by incipient wetness 

impregnation has been used. 

Microchannels were first of all cleaned from impurities by sonication at 33 kHz in acetone for 

60 minutes. 

The channels were coated with slurry made of two solutions: 

    a) γ –alumina slurry; 

   b)  PVA solution8% wt.  

The binder used was colloidal alumina (20 wt.% aluminum oxide in water; average particle 

size = 0.05 mm; Alfa Aesar, U.S.A.).  

In order to have a γ –alumina slurry with D90 < 3microns, the average particle size of the as-

received γ -alumina (Grace, U.S.A.) was reduced by wet milling in a ball mill (Pulverisette 6, 

Fritsch, Germany). For milling, a 30 wt.% aqueous slurry of alumina was prepared and the 

pH was adjusted to around 3 by adding concentrated nitric acid, to avoid gelation. The milled 

slurry was then mixed with the required amount of binder and the pH adjusted to the desired 

value by adding HNO3. After adding all the required components, the slurry was stirred for 2 

h. 

a) γ-alumina slurry 
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4.664 g of γ-alumina powder were placed in a beaker containing 14.836 g of distilled water. 

Subsequently 0.5 ml of nitric acid was added; 

b) PVA solution 8% wt 

2 g of polyvinyl alcohol were slowly pour in 23 g of water during which the solution was 

placed in a flask and heated in a water bath in a vessel containing water at 90 ° C. It was 

waited an hour while the solution was kept under continue stirring via an armature.  

 

10.2 Final slurry preparation and Incipient Wetness Impregnation 

 

The two previously prepared solutions were mixed. It was very slowly added 5 g of PVA 

solution in 12 g of γ-alumina slurry, stirring constantly, until the mixture was very viscous. 

Hence 3 g of colloidal alumina were added to the mixture. The preparation thus obtained was 

deposited on a michochannel plate, forming a film of constant thickness.  

The deposition was done following a five-step procedure: (i) filling of the microchannels with 

the primer dispersion, (ii) wiping off any excess dispersion from the area other than the 

microchannels of the plate, (iii) drying of the substrate at room temperature for 3 hand then at 

120 8C for 8 h, (iv) scraping the primer deposited outside the channels, and (v) calcination at 

600 8C for 5 h with a ramp rate of 2 °C min
-1

. 

 

Final composition (in% w / w):   γ-Al2O3 14%;  PVA 2%; CA 3% 

 

A micropipette was used in order to deposit 5%Pt w/w (Al2O3) from tetraammine platinum 

(II) nitrate uniformly in the channels. 

The synthesized catalyst was dried at 120 °C for 10 h and then calcined at 290 °C for 2 h. 
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Chapter 11 

 

MULTIPLATE MICROCHANNELS REACTOR: 

COUPLING EXOTHERMIC AND ENDOTHERMIC 

REACTIONS 

 

11.1 Steam reforming side 

 

Reagents used in this side are methane and superheated steam, in accordance with the 

endothermic reaction (eq.7.2). 

Although, it is not normally used a stoichiometric quantity of carbon to steam during the running 

of the tests in order to avoid the formation of coke which would lead to a fouling of the catalyst 

(coking ), and a  decrease of performance.  

Theoretical next calculations want to consider the typically used steam-to-carbon ratio S/C = 4.  

The reactor can be seen as a heat exchanger, in which the reactions occur from both 

compartments, and it should be calculated the energy demand of the steam reforming side. Once 

known the thermal power needed to sustain the endothermic reaction, it is possible to calculate 

the amount of fuel (methane in air) to be introduced into the combustion side. In our case, flow 

rate is controlled by mass-flow controllers, automatically controlled by computers. To adjust the 

flow, it is necessary to introduce flow values in "ml/min". One of the problems is the inability to 

set the mass flow to the terminal. Working with gas streams and managing the flow in volume, 

the mass is subject to variations far from negligible when the temperature changes (unknown a 
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priori). Not knowing the inlet temperature of the gas, it’s been made a calculation of the density 

vs temperature variations. In this way, once known the actual operation temperature, it could be 

possible to find the corresponding density. To know the gas density is essential to calculate the 

flow in mass, starting from the volume flow set for the mass-flow. Through the molecular weight 

then, it is possible to determine the molar flow rate. Note the conversion of the reaction, just 

multiply the molar flow rate of the compounds reacted to the ΔH of reaction, it is possible to 

obtain the thermal power required by the steam reformer. 

Graph 11.1 shows the trend of the volume flow rate of water required for the steam reforming, to 

be set to the mass-flow controller, vs the reactor operating temperature and vs different amount 

of methane flow sent to the steam reforming. The ratio steam-to-carbon (S/C), as mentioned 

earlier, is equal to 4. 

 

 

 

Fig. 11.1 water flow rate for the steam reforming 

 

To calculate the ΔH of reaction it has been used the following formula [1]: 

 

                                          (equation 11.1) 
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                     (equation 11.2) 

                                      (equation 11.3) 

 

The graph 11.2 shows the trend of the ΔCp as the temperature changes. It can be seen that the 

ΔCp is not a monotonous trend. At first, in fact, presents a growth; above 750 K, instead, it tends 

to decrease with the increasing of temperature because the cp of methane, which is subtracted to 

the cp of the products, grows much faster than the latter. Above 1200 K, the ΔCp even becomes 

negative, which means that the specific heat of the products mixture is less than the gas mixture 

specific heat entering the reactor. 

 

 

Fig. 11.2 Evolution of cp with temperature 
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Fig. 11.3 Evolution of the temperature vs ΔH of reaction 

 

ΔH of reaction follows the trend of the ΔCp since, as can be seen from the formula, they have a 

linear relationship. This gives a heat of reaction with a maximum at about 750-800 K. To 

calculate the necessary heat to be supplied to the steam reforming reaction, the ΔH of reaction 

should be multiply for the flow of the reagents in input. In graph 11.4 it is shown the trend for 

the heat required to sustain the reaction, changing temperature and flow rate of methane. 

 

 

Fig. 11.4  Heat required by the reaction vs reaction temperature and methane flow 
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As expected, at constant temperature, the heat required increases with the increase of the flow 

rate of methane. At the same methane flow rate sent to the reactor, instead, the heat necessary to 

sustain the reaction decreases as the reaction temperature increases. 

 

11.2 Combustion side 

 

The combustion reaction has to provide the heat necessary to sustain the steam reforming 

reaction. It is necessary to know the heat that reaction must provide to the steam reforming side. 

As can be seen from the formula (eq.11.4), once knows the contribution of heat necessary to 

sustain the steam reformer, it is possible to calculate the flow rate of methane that combustion 

has to supply [1] 

As a first approximation, all the heat produced by the combustion is transferred to the steam 

reformer. It is assumed the reactor to be sufficiently isolated from the thermal point of view so 

that thermal losses are negligible. 

 

                                 (equation 11.4) 

 



113 
 

               

Fig. 4.6 CH4 flow vs heat required for lambda=1 

 

11.3 References 

 

[1] Hayes, R. E. (Robert E.), R. E. Hayes S. T. Kolaczkowski, Catalytic Combustion, CRC 

PressINC, (1997) 
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Chapter 12 

 

MULTIPLATE MICROCHANNELS REACTOR: 

PRELIMINARY TESTS 

 

12.1 Plant description 

 

As previously described, the reactor is constituted by two sides: one for the combustion (reaction 

between methane and air), the other for the steam reforming (reaction between methane and 

steam). Flow rates are modulated by mass flow controllers controlled by Labview. Gases are at 

room temperature and the combustion is achieved inside the reactor which is gradually heated by 

some electrical resistances of the furnace, which is thermally insulated from the external 

environment. The outlet flow of burnt gases (carbon dioxide and water vapor) was sent to an 

ABB analyzer which had to provide information on the composition of the outlet flow. 

Methane for the steam reforming was taken from the same cylinder of the combustion but sent to 

a different mass flow controller. The water was taken from a tank at 4 bar pressure and heated by 

an electric heater wire wrapped around the feed tube. In this way the water is completely 

vaporized to obtain a superheated steam. Even in this case, the flows are mixed before entering 

the reactor with a static mixer, which acts as flame breaker in case of flashback, for safety 

reasons. The reacted gases (carbon monoxide and hydrogen) were sent to a second ABB 

analyzer, which measured the composition of the flow. 

 

The control equipment consisted of: 



115 
 

- two analyzers which provided indications of compositions: 

- steam reforming analyzer: made of a non-dispersive infrared absorption (NDIR Uras 14 

for CH4/CO/CO2, ABB Company) and a thermal conductivity analyzer (Caldos 17 for H2, 

ABB Company); 

- combustion analyzer: ABB analyzer equipped with detectors MAGNOS 106 for O2, and 

Uras 14 for CO, CO2, NO, N2O and CH4; 

- four mass flow controllers Bronkhorst, El-flow model; 

- four K-type thermocouples positioned one on each side of the reactor surface, one in the 

outlet steam reforming flow and one inside the furnace; 

- a horizontal split-tube furnace with 500 mm heating length (Carbolite, PID temperature 

regulated). 

 

In Figure 12.1, 12.2: particulars of the plant. In Figure 12.3: particular of the combustion 

chamber of the reactor. In Figure 12.4: diagram of the pilot plant. 

 

 

Fig.12.1 Picture of the reactor placed in the furnace 
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Fig.12.2 Picture of the reactor completely insulated 
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Fig.12.3 Combustion chamber after to have performed tens of tests 

 

Fig.12.4 Diagram of the pilot plant 

 

12.2 Combustion 

 

First tests at the Politecnico di Torino were performed in order to verify the activity of the 

catalyst over the microplates, after the very first tests fact-finding at the University of Delaware. 

Tests were carried out on both sides of the reactor: right side (rs), left side (ls), and then 

compared. 

Combustion flow composition: 

- AIR 200 Nml min
-1

 

- METHANE 11 Nml min
-1

 

The percentage of methane in air was 5%, a value equal to the lower flammability limit of 

methane (at room temperature). 

Tests started heating the reactor using oven heat resistances, from room temperature (about 20 ° 
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C) up to 900 °C by setting a rising ramp of 10 °C min
-1

. 

Below are the graphs of the conversion of CH4, CO2 and CO: 

 

 

Fig.12.5 Conversion of methane on both sides of the reactor during a combustion reaction 

 

 

Fig.12.6 CO2 production on both sides of the reactor during a combustion reaction 
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Fig.12.7 CO production on both sides of the reactor during a combustion reaction 

 

Results showed the catalyst on the right side to be more active, as the temperature detected by 

the thermocouples showed that methane was converted at temperatures lower than the left side. 

As the temperature increases the difference between the two sides was lower. This was due to the 

lower activity of the catalyst at high temperature: in these conditions, in fact, the kinetics of the 

reaction was influenced more by the high temperature than the catalytic activity. In practice, the 

reaction was more homogeneous (gas phase reaction) than catalytic. 

The catalyst still maintained is utility in limiting the formation of CO though, which was almost 

completely oxidized and transformed into CO2. 

 

12.3 Steam reforming  

 

Second typology of tests carried out was steam reforming. Tests were carried out by supplying 

heat to the reaction via electrical resistances placed in the oven, in which the reactor was housed. 

This was done to evaluate the conversion of the steam reforming reaction not in autothermal 
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conditions. The experiment was conducted on both sides of the reactor with the same 

specifications: 

 

- WATER 20 g hour
-1

 

- METHANE 14 Nml min
-1

 

 

The S/C ratio was 40 because of the lack of a mass flow controller capable of providing a lower 

flow rate. Test started by heating the oven from room temperature (20 °C) up to 750 °C by 

setting a ramp of 10 °C min
-1

. At a temperature of 750 °C the analyzer was stabilize, after which 

the temperature was brought to 900 °C with a ramp of 10 °C min
-1

 and was let the analyzer to re-

stabilize. 

 

Below are the graphs of conversion of CH4, and H2, CO2, CO production: 

 

 

 

Fig.12.8 Conversion of methane on both sides of the reactor during a steam reforming reaction 
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Fig.12.9 H2 production on both sides of the reactor during a steam reforming reaction 

 

 

Fig.12.10 CO2 production on both sides of the reactor during a steam reforming reaction 
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Fig.12.11 CO production on both sides of the reactor during a steam reforming reaction 

 

 

Results show that one side of the reactor worked better than the other, as well as happened for 

combustion. On the right side, both the production of hydrogen and the methane conversion at 

900 °C was higher than the same on the left side. As the temperature increased, the difference in 

behavior between the two sides was shrinking. This was due to the lower activity of the catalyst 

at higher temperatures: the kinetics of the reaction, in fact, is predominant; the reaction tends to 

become a homogeneous reaction and not more catalytic. Aim of the tests was to compare steam 

reforming performance at various temperatures, in order to estimate the amount of heat necessary 

for carrying on the reaction which must be supplied by the combustion side, the amount of 

hydrogen produced and the conversion of methane. 

From these tests it appears how the most performing side, at 900 °C, can produce 68% of 

hydrogen with a 73% conversion of methane: therefore, this side was chosen for running the 

steam reforming reaction during the coupled test, while the other side was chosen for the 

catalytic combustion reaction.  
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12.4 Coupled preliminary test 

 

The percentage of methane in air has been changed compared to the previous tests. It was chosen 

a 7% of methane in air, inside the flammability limit of methane (5-14%), in order to have a 

reaction able to sustain combustion without heat provided by the furnace. 

Test was performed with a S/C of 4/1 in steam reforming side, with 45 Nml/min of CH4 and 10 

ml/hr of water 

Before starting the test, the flows provided by the mass flow controllers were checked with a 

flowmeter ““Agilent Technologies ADM2000 Universal Gas Flowmeter”, to indeed assure the 

requested values. Furthermore the reactor was insulated with vermiculite from 3M Italia S.p.A. 

and aerogel from Aspen Aerogels so that the biggest amount of heat developed by the 

combustion side could be available for the steam reforming side. 

Test was carried out in two phases: heating and switching off the oven. In first phase the oven 

was heated up to 900 °C to start the combustion reaction, sending air and methane. Once reached 

the desired temperature, the electric resistances of the oven were turned off. 

 In a second phase, with the oven turned off, in the steam reforming side the nitrogen flow was 

replaced with methane and water to start the reaction. 

It was controlled the temperature on the reactor combustion surfaces, combustion and steam 

reforming sides, besides the temperature inside the furnace. 

It was not possible to read reliable temperatures of the outlet gases because thermocouples could 

not be inserted into the reaction chambers. 

Particularly it was controlled the temperature above the combustion surface, trying to maintain it 

at around 1000 °C and having 100% methane conversion, by the increasing of the heat produced 

on combustion during the cooling of the oven. For this reason, starting from 50 Wth produced 

when oven was 900 °C (91 Nml/min CH4, 1.5 lambda), 4 peaks are visible in Figure 12.12 (plot 

of the concentrations of the steam reforming products and CH4 conversion) and in Figure 12.13 

(plot of the temperatures read during reaction), corresponding to each of the Wth being reached 

in the combustion side:  150 Wth, 227 Wth, 295 Wth, 350 Wth, and without CO emissions. 

H2 concentration decreased, as well as CH4 conversion, when furnace temperature decreased 

because of heat dissipation in the environment, even though the reactor temperature on the 

surfaces was always higher than 1000 °C. H2 concentration was found stable at around 10% 
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when the heat lost from the furnace was stabilize, and oven temperature was at around 450 C. 

This behavior could be explained by the simulations explained in chapter 6, where only multiple 

stacks of combustion/steam reforming chambers could perform an optimal autothermal reaction. 

The extremely lower H2 production in steam reforming coupled test, compared to the single tests 

described in chapter 12.3, could be explained by an extremely high amount of tests performed 

and so a in a very lower activity of the catalyst and also, as an extremely high amount of water 

vapor was used for several tests before replacing the water controller, a peeling of part of the 

catalyst from the microplates. 

 

 

Fig.12.12 Steam reforming products concentrations and CH4 conversion 
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Fig.12.13 Reactor and furnace temperatures 

Further tests showed the importance of finding a way to completely store the heat produced in 

the reactor, avoiding heating lost, and following the conclusions of the simulations in chapter 6. 

Tests were performed providing 50 Wth from combustion side (91 Nml/min CH4, 1.5 lambda), 

and managing the steam reforming reaction using furnace heat when H2 production started to 

decrease. The latter happened, as shown in figures above, even if the temperature of the steam 

reforming surface of the reactor was higher than 900 °C, because of the heating lost due to the 

gap between environment temperature-reactor temperature. 

 In Fig.12.14 and 12.15 it is showed how H2 production and hence CH4 conversion in steam 

reforming side is inner connected more to the heat provided by the furnace, in which the reactor 

can be considered as an adiabatic system without heating lost, than just from the temperature 

observed on the reactor surfaces and so provided by the combustion side of the reactor, that even 

if higher than 900 °C, cannot sustain a complete steam reforming reaction without an external 

extra-heat. 

 

 

 

 

Fig.12.14 Steam reforming products concentrations and CH4 conversion, furnace heat managed 
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Fig.12.13 Reactor and furnace temperatures, furnace heat managed 

 

12.5 Conclusions 

 

The idea was to realize an autothermal steam reforming reaction. 

This was made by coupling a combustion reaction (exothermic), which provided the heat 

necessary, with a steam reforming reaction (endothermic). 

The total reagents chosen for the two reactions were methane (used both as fuel and as a reactant 

for the steam reforming), air and steam (produced by heating water). 

The main advantage of this system: producing enough energy, for example, to power auxiliary 

transportation of vehicles, reducing consumption and pollutant emissions; at the same time, 

because of the overall limited dimensions, reducing the risk of explosion if compared to the 

hydrogen “on board " storage. 

The development was a stainless steel reactor consisting of two plates with microchannels, 

containing the catalyst (Pt/AlO3), in which the reactions took place. These plates were placed in 

indirect contact, separated by a middle plate made of stainless steel, so to conduct the heat from 

the combustion side to the steam reforming, and also to avoid the mixing of the fluids. The 

sealing of both sides were ensured by two ceramic gaskets, suitable to withstand high 

temperatures. 

The sizing was performed first theoretically assuming a S / C = 4 (Steam to Carbon), and taking 
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into account the maximum flow rates that could be set to the mass flow controllers. It was then 

calculated the theoretical thermal power necessary to sustain the steam reforming process, and 

then calculated the flow of methane and air to be sent to the combustor, to obtain an autothermal 

reforming. 

The catalyst used was chosen because of its catalytic activity for both types of reaction. 

Once it was determined the best side for the steam reforming, it was decided to experiment the 

coupled reactions. After having reached 900 °C in oven, with complete methane combustion, 

oven heat was no more provided: combustion was able to be sustained because of a mixture of 

7% CH4 in air (inside the flammability limit) and reagents for the steam reforming were sent in a 

steam/carbon 4:1 replacing nitrogen flow. 

Results just show how it could be possible to work and produce good quality data on coupling 

combustion and steam reforming reactions in this reactor. 

Although, a better way to analyze steam reforming products concentration, when an extremely 

high methane does not react, should be found as the ABB analyzer is not completely reliable for 

these kind of high percent. It could be possible using a GC instead of the ABB analyzer in case 

of new tests with high CH4 not reacted, or of course improving methane conversion choosing a 

better catalyst for steam reforming, composing a reactor with multiple plates, trying to run flows 

in either concurrent or countercurrent and certainly to find the best insulator for avoiding heating 

lost from the reactor to the environment. 

 

 


