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Abstract

Three-dimensional (3D) mapping deals with the problem afdimg a map of
the unknown environments explored by a mobile robot. Inm@sttto 2D maps,
3D maps contain richer information of the visited placessiBes enabling robot
navigation in 3D, a 3D map of the robot surroundings couldftgreat importance
for higher-level robotic tasks, like scene interpreta@mal object interaction or ma-
nipulation, as well as for visualization purposes in gehevaich are required in
surveillance, urban search and rescue, surveying, andsothe

Hence, the goal of this thesis is to develop a system whiclapalole of re-
constructing the surrounding environment of a mobile ra@soa three-dimensional
map.

Microsoft Kinect camer@?] is a novel sensing sensor taptuwes dense depth
images along with RGB images at high frame rate. Recentlyag dominated
the stage of 3D robotic sensing, as it is low-cost, low-powar this work, it is
used as the exteroceptive sensor and obtains 3D point clufuithe® surrounding
environment. Meanwhile, the wheel odometry of the robotsisduto initialize the
search for correspondences between different obsergation

As a single 3D point cloud generated by the Microsoft Kinesmsor is com-
posed of many tens of thousands of data points, it is negessatompress the
raw data to process them efficiently. The method chosen swbrk is to use a
feature-based representation which simplifies the 3D nmapmiocedure.

The chosen features are planar surfaces and orthogonarspwhich is based
on the fact that indoor environments are designed such thbs,vground floors,
pillars, and other major parts of the building structures ba modeled as planar
surface patches, which are parallel or perpendicular th eteer. While orthogonal
corners are presented as higher features which are monegdishable in indoor
environment.

In this thesis, the main idea is to obtain spatial constsalpgtween pairwise
frames by building correspondences between the extraeeital plane features
and corner features. A plane matching algorithm is presetiiat maximizes the
similarity metric between a pair of planes within a searchcgpto determine cor-
respondences between planes. The corner matching redqdsésl on the plane
matching results. The estimated spatial constraints fberetiges of a pose graph,
referred to as graph-based SLAM front-end.



In order to build a map, however, a robot must be able to razegiaces that it
has previously visited. Limitations in sensor processirgpfem, coupled with en-
vironmental ambiguity, make this difficult. In this thesige describe a loop closure
detection algorithm by compressing point clouds into viewmpfeature histograms,
inspired by their strong recognition ability. The estinthteto-translation between
detected loop frames is added to the graph representingehity discovered con-
straint.

Due to the estimation errors, the estimated edges form aylodrally consistent
trajectory. With the aid of a linear pose graph optimizingosithm, the most likely
configuration of the robot poses can be estimated given thesedf the graph,
referred to as SLAM back-end. Finally, the 3D map is retriklag attaching each
acquired point cloud to the corresponding pose estimate.approach is validated
through different experiments with a mobile robot in an iadenvironment.

Keywords:
Mobile robot Mapping, 3D point cloud modeling, Structured/Eonment Map-
ping, Pose-graph SLAM, Plane Extraction, Plane matchingrddoft Kinect



Chapter 1
Introduction

Today robotic systems are widely used in the industry, iti@aar for tasks such
as welding, painting and packaging. All of these robot gystare in the form of
manipulators that carry out repetitive motions. For larg@e transformations such
robotic systems are not particularly practical. Recentades in mobile robotics
have allowed widespread use of the robot in several apmitat For example,
a large number of mobile robots have been built for develppasks in search,
rescue, and exploration to perform in dangerous area foahuring. And another
potentially interesting area where mobile robots are us#tk service sector. In this
case, the robots perform tasks in indoor environment amosly that relieve the
human being, such as health care, cleaning and entertainiitenfact that robots
are rapidly evolving from factory work-horses to robot canns poses a great
challenge for the future of robots: they must be capable pfrgpwith complex
tasks and working in dynamic environments.

Intelligent behavior and interaction with the outside eorment for a mobile
robot requires understanding the geometry and structutkeoénvironment, i.e.,
a representation of its surroundings that adequately felesnthe spatial proper-
ties of the environment. Such representation of the sudiognscenario is called
amap It appears to be the minimum amount of spatial abstraceguired for an
autonomous mobile robot. Simultaneous Localization angpitag (SLAM), orig-
inally introduces an environment while at the same timelioicey the mobile robot
relative to the map under construction, given a sequencesaarements gathered
by its proprioceptive and exteroceptive sensors. From aenadtic point of view,
SLAM is difficult to solve since the mapping and robot posésesing procedures
are generally dependent and can not be obtained separately.

Today in the mobile robotic research community, it is wellesgl that SLAM is
an important requirement for intelligent mobile robotshdis attracted a conspicu-
ous attention from the robotics community for its vast aggdion domain, and robot
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mapping has predominantly been investigated in 2D. Now thghavailability of

new kinds of 3D sensors, e.g., laser sensors, stereo casresars and Microsoft
Kinect, 3D map is becoming popular and robots are incre§simgerating in 3D

environment. Meanwhile, in contrast to a 2D grid map, 3D mamains a rich de-
scription of the environment and is able to provide morermiation for the robot.
There is hence an increasing amount of research on 3D mamspgcially on 3D
SLAM.

Typical 3D sensors can be categorized as: (1) laser ranger$ing usually
mounted on a rotating pIatformEiS?] having a large scaniimg of around a
minute. Laser range finder can attach the environment iga fégld-of-view (FOV)
and obtain the environment information precisely. (2) tiofi¢light (TOF) sensors
like the Swiss-rangé;_LJLB] and PMD _[74]. Compared with laserge finder, it has
a much restricted FOV, but it is being able to provide sevecains per second.
(3) stereo camerag [ﬁﬁh]. They are inexpensive, and geokigh information
bandwidth of the environment.

With the introduction of the Microsoft Kinect camera, a neansor has ap-
peared on the market that provides both RGB images along peithixel depth
information. It allows the capture of reasonably accurai@-rasolution depth and
appearance information at high data rates. Meanwhilelotwscost and low power.
Thus it is attractive for the research outside specializadputer vision groups and
has dominated the stage of 3D robotic sensing. In this reganthis thesis, our
efforts are aimed to construct 3D maps of the structuredandavironments with
a robot only equipped with a 3D Kinect camera and wheel errsode

1.1 3D Mapping

3D mapping is concerned with the problem of building a maprotiaknown en-
vironment explored by a mobile robot. Most 3D mapping syst@wontain three
main components: (1) the spatial alignment of consecutia ftames; (2) the de-
tection of loop closures; (3) the globally consistent atigamt of the complete data
sequence. The first two components obtain the pose chantyesdmeconsecutive
data frames and arbitrary frames, which are modeled as €dgesnstraints) be-
tween the related nodes in a graph (the pose graph). Eachmadgaph represents
a robot pose (or frame). This procedure is usually refereed tas pose graph con-
struction (graph-based SLAM front-end). While the thirceas the so called pose
graph optimization (graph-based SLAM back-end) to deteerthie most likely con-
figuration of the poses given the edges of the graph, heneénofg an accurate es-
timate of the poses assumed by the robot. Then the 3D mapaitedrby attaching
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data sets gathered by its exteroceptive sensors to thegspmnding poses into a
global coordinate frame.

In principle, a robot equipped with a 3D camera and wheel éaxsowould be
able to create a 3D dense map of the environment by attadterqmpint clouds to the
corresponding poses estimated from wheel odometry. Hawtiie naive strategy
quickly becomes inaccurate, since wheel odometry suften ferror accumulation.
With typical odometry errors the pose estimate will be tgtalrong after as little
as10 m of travel [7]. Scan-matching approaches were used suodgss address
the robot poses tracking problem. The idea is to align cartsecscans taken by
the external sensors from the robot at different location$thereby estimate the
relative pose offset of the robot between two successivgeraensor samples. The
most commonly used scan-matching algorithm is the pougeint (P-P) iterative
closest point (ICP) and its variants. A recent dissertaé} notes that “up to now,
all approaches successfully applied to 3D SLAM are baseti®@hGP algorithm.

Alignment between successive frames is a good method fokitrg the robot
position over moderate distances. However, errors in alegrt between a partic-
ular pair of frames, and noise and other kinds of errors, edle estimation of
camera position to drift over time, leading to an consistemd inaccuracy map.
This is most noticeable when the camera follows a long patle. climulative error
in frame alignment results in a map that has two representtf the same region
in different locations. This is known as the loop closurebpeon, which is criti-
cal for the poses global optimization, since the loop clgstiows to reduce the
accumulated error.

In this thesis, we will follow the overall structure of re¢e8D mapping tech-
niques, but we introduce a new approach that is differennfthe overall ap-
proaches found in the literature, as presented in the faligwection, while it differs
from existing approaches.

1.2 Goal and Contributions

As mentioned, the goal of this thesis is to build the 3D mapstroictured 3D indoor
environments by developing a plane-based SLAM approachvalidiate it exper-

imentally. And a Microsoft Kinect is used to generate derBer®dels of indoor

environments. Itis based on the fact that a major part ofeandavironments can be
represented by sets of planar patches and orthogonal soifageting the applica-
tion of mobile robots in 3D scenarios, special effort hasgma in development of
proper 3D representations of the surrounding environmeeniral the robot due to
the availability of 3D sensors. In contrast to occupancyg graps, 3D maps include
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more detailed information. For mobile robots, the knowkeddia map containing

a rich description of the environment is very helpful for igation, surveying tasks

and manipulation, especially when the robot has to opené®iscenarios. Instead
of more accurate laser sensors, here the Microsoft Kinactes as the exterocep-
tive sensor for 3D perception since it is low-cost, low-poaed is able to acquire

color images and depth maps at full frame rate.

Major contributions of this thesis are:

1. Aplane matching algorithm is presented to create canssramong the poses
assumed by the robot, i.e., SLANbnt-end The planar segments is used as
the basic feature approximating underlying point cloudsegated by Mi-
crosoft Kinect. Using the proposed matching algorithm,gkemetric con-
straints between extracted planes sets from pairwise fameeretrieved.

2. A corner matching algorithm is presented which is baseitheplane match-
ing result. Beside the plane segments, also orthogonaécoare dominant
features in indoor environments. Moreover, they are mobeisband dis-
tinguishable since they can lock all degrees of freedom atsp Based on
this, all the corners in a frame are detected according toela¢ionship be-
tween the extracted planes. Combined with the plane majaleisults, the
correspondences between corners in consecutive framedsiarenined.

Based on the built corresponding relationship betweengsland corners, the
relative roto-translation between the registered franmeseatimated, which
form the edges of a pose graph.

3. A new loop closing detection technique is introduced oteoito diminish the
accumulated error. This technique is built by combiningwa 88® geometry
descriptor, View Point Histogram (VFH) presentedm [78Happearance
based features. The main idea here comes from the strongyriéoa ability
of VFH. In order to make the loop detection more robust andloé#, appear-
ance based feature, color histogram is used to comparertfiarsy of the
detected frames. When the pairwise frames are determinacsasie area,
their relative roto-translation information is estimagetl added to the built
pose graph. The pose graph is then be feed to a pose graphzgptionobtain
a globally and consistent trajectory of robot.
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1.3 Thesis Outline

In the next Chapter, after presenting a brief backgroundergtaph-based SLAM
foundation, the state-of-the-art is reviewed to give aysetof existing solution
to SLAM front-end and back-end respectively. Moreover, tinds of popular
algorithms for SLAM front-end, iterative closest point Band sample consensus
initial alignment (SAC-1A) are briefly introduced, which Wbe used to compare
with the technique presented in this thesis.

In the ensuing chapters, the plane-based SLAM is presentechvis based
on constructing the matching relationship between plaegments sets extracted
from 3D point clouds obtained from a Microsoft Kinect came@bviously, these
planes have to be extracted from the raw data, which will Etde Chapter 3.
Since the raw point clouds suffer from different noise arrdresources. Therefore
pre-possessing procedure is performed firstly. Then the 80 plane model is
selected to extract planes which meeting our pre-detedhgnigerion. Moreover,
in order to make the extracted planar segments accuratee pédinement proce-
dures are followed. Afterward, orthogonal corners areaetebased on the planes
extraction results.

Chapters 4 focus on the pose-graph SLAM front-end part. Taepmatching
and corner matching algorithm is presented thoroughlyciwisonsists in finding
correspondences between planar surface segments angaréhoorners in the two
scans to be matched. After the correspondences have bededleq, the relative
rotation and translation that aligns the corresponding&ptanes and corners will
be estimated. This gives the pose changes of the robot betiveescans, which
form a pose graph.

Then in Chapter 5, loop closure detection is addressed @&ngoint clouds
and the pose graph optimization, refereed to as SLAM badk-ame discussed. It
starts with a brief and general review of existing approaafdoop closure detec-
tion algorithms. Then a loop closure detection algorithiseokon viewpoint feature
histogram (VFH), is explained thoroughly. To obtain a glbpaonsistent trajec-
tory, targeting to this work, a linear pose-graph optini@aatproposed i Zf[]l]
is selected to optimize the built pose-graph.

Finally Chapter 6 includes experimental results used ttueta the developed
plane-based 3D mapping algorithm. The experiments aréedaout in three dif-
ferent scenarios inside Dipartimento di Automatica e Infatica at Politecnico Di
Torino. Meanwhile, to estimate the performance of the plaa¢ching approach,
pairwise registration tests between several sets of ssitilyspaired consecutive
frames are preformed firstly. And the registration resuéscmmpared to two pop-
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ular registration algorithms ICP and SACIA.
The thesis ends with a short chapter on conclusions of tesighand sugges-
tions for future work and development.



Chapter 2

State-of-the-art

2.1 Introduction

3D mapping is the process of building a map of the environmérare the robots
operate. It is retrieved by attaching the sensor measurtsrmgn their correspond-
ing poses of the mobile robot. Thus a known robot pose is requor the 3D

mapping. In outdoor spaces, this is possible since GlokstiBoning System (GPS)
is available that provides an absolute position around tbbegwith centimeter
range precision in ideal conditions. However, in indooriemvments, GPS signal
is disturbed or not available. In these cases, reliable mgppsing GPS can not
be carried out. The acquisition of maps of indoor environnies been a major
research focus in the robotics community over the last desad

Generally, in indoor environments, robot poses are pravimeinternal sensors
e.g., wheel encoders or IMUs. However, these sensors adatarerrors as the
mobile robot explores, therefore can only be used relialar short distances; for
example, the pose estimated by wheel odometry will be jotalbng after as little
as 10 m of travel. Learning maps under pose uncertainty enaéferred to as the
simultaneous localization and mapping (SLAM) problem.Ha literature, a large
number of solutions to this problem is available.

The first method, building the basis of SLAM algorithms, wassented irJE:%],
establishing a statistical basis for describing geometricertainty and relation-
ships between features or landmarks. Based on it, sevér@l working solutions
to the SLAM problem were described: presently the extendelinign filter ]
[@] based SLAM is the most frequently used approach. Otbpujar techniques
include information fiItersB?;]EO] and particle fiIterE]S[@]. The SLAM is
modeled as an online state estimation where the systencstagests of the current
robot position and the map. The map and robot poses are atgenand updated
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by including newly arrived sensor measurements.

An intuitive way to address the SLAM problem is via the solexdigraph-based
formulation, first proposed by Lu and Milios in 1964]. 8iolg a graph-based
SLAM problem involves to construct a graph whose nodes sgprierobot poses or
landmarks and in which an edge between two nodes represenrniodal measure-
ments that constraints the connected poses. For instathosetric measurements
are modeled as edges (or constraints) connecting congeaudes, while loop
closing edges connect arbitrary nodes pairs and model péadsiting episodes.
Once such a graph is constructed, the critical problem isitbthe configurations
of poses that maximize the likelihood of the inter-nodal suaments. This in-
volves solving a large error minimization problem. Thusyiaph-based SLAM the
problem is decoupled in two tasks: constructing the grapimfihe sensor measure-
ment @raph constructiopy determining the most likely configuration of the poses
given the edges of the grapgréph optimizatioph The graph construction is usu-
ally called front-end and it is heavily sensor dependentjesie second part is
called back-end and relies on an abstract representatithre afata which is sensor
agnostich].

In this Chapter, firstly a brief background on the graph-d&ieAM foundation
is presented. Then state-of-the-art is reviewed to givetu of existing solution
to SLAM front-end and back-end respectively. Moreover, &imals of popular al-
gorithms for SLAM front-end, iterative closest point (IC8)d sample consensus
initial alignment (SAC-1A) are briefly introduced. In Chapt they will be consid-
ered as standard algorithms to compare with the approaskemie in this thesis.

2.2 Graph-based SLAM

2.2.1 SLAM problem

Assuming a robot is moving in an unknown environment, siamgbus localiza-
tion and mapping (SLAM) is concerned about building a maphef$urrounding
environment and estimating the robot trajectory at the same. Due to the in-
herent noise of the sensor measurements, usually the SLAMgm is described
by means of probabilistic tools. The dominant scheme us&lLAM is the Bayes
filter. The Bayes filter extends Bayes rule to temporal edtongroblems. Itis a
recursive estimator for computing a sequence of posteraiygbility distributions
over guantities that can not be observed directly, such asm m

For the reason of explaining, the robot’s trajectory is dégd by the sequence
of random variables,., = {xi, xs, ..., X,}, wherex; is the robot’s pose at time
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When the robot is moving, it acquires a sequence of odometgsorements;.,, =

{uj, vy, ..., u,} and perceptions of the environment, = {z, zo, ..., z,}. Solv-

ing the full problem consists of estimating the posteriarhability of the robot’s
trajectoryx;., and the mapn of the environment given all the measurements plus
an initial positionx:

p(Xl;n,m|Zl;n,u1;n,X0) (21)

The initial positionx, that defines the position of the map can be chosen arbi-
trarily. By convention, it is usually set to be the origin bétglobal reference frame,
i.e.,xo=[0 0 0]".

To solve the SLAM problem, the robot needs to be endowed wiilets that
describe the effect of the control input and the observatitivat is, a state transition
model and an observation model, respectively.

The observation model describes the probability of makimglaservatiore;
when the vehicle location and landmark locations are knolwis assumed that,
once the vehicle location and map are defined, observatrensoaditionally inde-
pendent given the map and current vehicle state. Genettadlygbservation model
is described in the form

p(Z[x;, m). (2.2)

The motion model for the vehicle is described in terms of dphlity distribu-

tion on state transitions in the form

p(Xi|Xi—17 lll‘) (23)

Thatis, the state transition is assumed to be a Markov psaneghich the next state
x; depends only on the immediately proceeding skate and the applied control
u;, and is independent of both the observations and the map.

2.2.2 Graph-based SLAM

A large variety of SLAM approaches are available in the radsotommunity. For
instance, Kalman Filter, Particle Filters and Graph-be&S8EeAM. Recently graph-
based SLAM has attracted a conspicuous attention from thetics community,
since it highlights a spatial structure and is well suitedescribe filtering processes
of SLAM.

In graph-based SLAM, the poses of the robot are modeled bgsiwda graph
and labeled with their positions in the environm [E][6$patial constraints
between poses that result from observatian®r from odometry measurements
u; are encoded in the edges between the nodes. In more detgitaph-based
SLAM algorithm constructs a graph out of the raw sensor nreasents. Figure 2.1
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illustrates a presentation of pose-graph SLAM process.ryjErede in the graph
stands for a robot pose at which a sensor measurement waeegcgund each edge
between two nodes encodes the spatial information arisomg the alignment of the
connected measurements and can be regarded as a spatiediodbnslating these
two poses. An edge between two nodes consists in a prolyatisitribution over
the relative locations of the two poses, conditioned torthneitual measurements.

\
\ \
\ %
N i
N
\ @ -

Figure 2.1: Every node stands for a robot pose. Adjacentiade connected
by edges that represent inter-nodal measurements. Thes edgedivided into
two classes: (1) edges between consecutive poses, obtaimatbmetry or scan-
matching; (2) edges between non-consecutive poses,@fisim multiple observa-
tions of the same part of the environment.

Generally, the observation mode(lz; | x;, m) is a multi-modal distribution,
which means that a single observatwnmight result in multiple potential edges
connecting different poses in the graph and the graph corigaeeds itself to
be described as a probability distribution. To avoid the potation complexity
introduced by multi-modality, usually, the estimate istriesed to the most likely
topology, i.e., determining the most likely constraintiéisg from an observation.
This decision depends on the probability distribution oWer robot poses. This
problem is known as data association and is usually addtégsthe SLAM front-
end.

As mentioned before, a graph-based SLAM is typically conedrwith two
problems. The first one is the SLAM front-end, discussed abdivdirectly deals
with the sensor data and interprets the sensor data to ettieaspatial constraints.
While the second problem is to correct the poses of the rabobtain a globally
consistent map or trajectory given the estimated conssaifihis part of the ap-
proach is often referred to as the optimizer or the SLAM bew#-
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Let us callx;., = {xi,Xs,...,X,}, Wherex; describes the pose of nodel et
z;; be the true (unknown) relative transformation between nicated nodej. The
log likelihood];; of a measuremens; is therefore

lij o [zij — 2ij] " Qijlzi; — 2] (2.4)

wherez;; and();; represent respectively the mean and the information mafra
constraint relating the parametersandx;.

Define a vector error functios(x;, x;, z;;) that measures the difference between
the expected observatiar; and the real observatioy; gathered by the robot, i.e.,

For simplicity of notation, we will encode the measurementhe indices of the
error function:

e(xi,xj, Zij) = el-j(xl-,xj) = el-j (26)

Figure[2.2 presents the error functions and the quantitiesplay a role in
defining an edge of the graph.

Figure 2.2: The components of an edge connecting the rpdad nodex;. z;; is
the real measurement presented in the local reference amg while z;; is the
expected measurement that makes the data sampdesix; perfectly overlapped.
The errore;; depends on the displacement between the expected and tinecea
surement. An edge is fully characterized by its error fuorct;; together with the
information matrix of the measurement that accounts faunisertainty.

The goal of a maximum likelihood approach is to find the cormigjon x* of
the nodes that maximizes the log likelihoB¢x) of all the observations

i,j)€e
(4,7 F,
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wheres is the graph edge set, containing the unordered node (@ajnssuch that a
relative pose measurement exists betweand;j. Thus, SLAM seeks to solve the
following problem:

x* = arg min F(x) (2.8)

X

2.3 State-of-the-art of SLAM Front-end

Scan-matching approaches were used successfully to éstineerelative poses be-
tween consecutive scans by aligning the data samples takidre lexternal sensors
from the mobile robot at different problem.

The most commonly used scan-matching algorithm is the gonpbint (P-P)
iterative closest point (ICP), presentedmw [4], which wedirectly with the points
and hence does not assume any specific structure in the emerd. Since the
introduction of basic ICP, a large number of variants havenbageveloped. For
instance, point-to-plane (P-L) version of ICB[[lS].slead of point-to-point
distance cost function, irlng__Lbi]IhS], the distance betwegoomt and a planar ap-
proximation of the surface at the corresponding point distameasures was used.
If there is a good initial position estimate and a relativiely noise, ICP method
with the point-to-plane metric has a fast convergence re@wever, when those
conditions can not be guaranteed, the point-to-plane I@roise to fail ].

In order to reduce the search space of the ICP algorithm téhative closest
compatible (ICCP) algorithm was proposed lin![30]. In the RC@lgorithm, the
distance minimization is performed only between the pafrpants considered
compatible on the basis of their viewpoint invariant atités (curvature, color, nor-
mal vector, etc.). Another method, called ICP using invarfaature (ICPIF), was
presented inEZ]; it chooses the nearest neighbor comelgnees by a distance
metric that represents a scaled sum of the potential andréedistances. These
two algorithms falls into the category of feature-based. Il@fPariant features can
be points, lines and other shapes and objects etc. Compditedraditional ICP,
feature-based ICP converges to the goal value in fewettibesg thus the compu-
tation time is reduced.

Feature-based methods are commonly used for registratiotisual SLAM
. Most approaches rely on the extraction and matching ofsgpaD visual fea-
tures from the camera images. Visual feature points havadkantage of being
more informative which simplifies data association. Scal@iiant feature trans-
form (SIFT), introduced irJEZ] has been shown as one of tis¢-keown keypoint
descriptor. Its invariance to image translation, scalind partial invariance to ro-
tation, illumination changes and affine or 3D projection kesgthem suitable for
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mobile robot localization and map building. In stereo systethese landmarks are
localized and robot ego-motion is estimated by least-&guarinimization of the
matched landmarks. Feature viewpoint variation and omnhuare taken into ac-
count by maintaining a view direction for each landmark. &xments showed that
these visual landmarks are robustly matched, robot posstimated and a consis-
tent 3D map is built.

A drawback of SIFT is the high dimensionality of the desa@iptesulting in an
increase of computation time. A recent approach, named peed&d-Up Robust
Features (SURFﬂ[Z], reduces the computation time and aseethe robustness.
These are achieved by using a very basic approximatiopagssuming second order
Gaussian derivatives with box filters, and describing aithstion of Haar-wavelet
responses within the interest point neighborhood. Theraxeats show that SURF
can be computed more efficiently and yields a lower dimeradif@ature descriptor,
so that the matching procedure is faster. m [69], Muataal. proposed the use
of SURF to improve the appearance-based localization anqgbimg methods that
perform image retrieval in large data sets. In their expentathey compared SURF
algorithm with SIFT using omnidirectional images. The expents showed that
the use of SURF offers the best compromise between efficiandyaccuracy, and
performs always the best or being much faster in case ofaimdcuracy.

The SIFT and SURF methods described above, mainly focuseoB@hpoints.
Recently others 3D feature descriptors have been presentedNormal Aligned
Radial Feature (NARF) descriptdj%], and Fast Point Reatlistogram (FPFH)
fz€].

In indoor SLAM, 2D lines and 3D planar surfaces are popul@&duss match-
ing features, since the common indoor environment is madbyumany planar
surfaces. Compared to points, 2D lines and 3D surfaces are distinguishable.
Plane features can be automatically extracted from pomidd with surface grow-
ing methods or RANSAC plane model, while line features angallg extracted
from the intersection of plane features.

Hornet al. [@] presented early work on using 3D data for robot navaygtex-
tracting vertical planar features to correct the vehiclegaa 2D. Bauer |1] proposed
a method for the coarse alignment of 3D point clouds usingaeted 3D planes that
they both are visible in each scan, which leads to reduce uh&er of unknown
transform parameters from six to three. The remained unkricansformation are
calculated by an orthogonal rectification process and alsi2Ip image matching
process. InEZ], surfaces are extracted from range imalgesned by a rotating
laser range finder (LRF) and registered together. A localut®determines the
correspondences and computes transformations, an a ghashlle detects loop-
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closure and distributes uncertainty using an elastic graph

Other previous approaches using plane features includelParoup’s work
[E][ﬂ]. In ], planar features are extracted at eaclotqgimse. These planar
features are matched against the features which were spéanriposes to find cor-
respondences. A new algorithm, called Minimally Uncertisliaximal Consensus
(MUMC) for determining the unknown plane correspondengembximizing ge-
ometric consistency by minimizing the uncertainty volumeonfiguration space.
This technique does not make use of any odometry, which esabto associate
planes in successive scans more efficient than typical RADI&&hniques. The
authors then computed the least squares rotation andatemsivhich bring the as-
sociated planes into alignment. The rotation and tramsiatre used to build a pose
graph which is optimized.

In [@], the line and plane features were used together. Th®as introduced
a framework to integrate point, line and plane featuresttegeand, comparing the
integrated method with algorithms that use such featungarately, they found that
the integrated method is much more stable than the other[@/]nan automated
feature-based registration algorithm which searchesspanding pairwise lines
and planes in 3D point cloud was presented. Then the retstraas embedded in
a pose-graph implementation for SLAM. Kohlhegpal. ﬁm[@] [Iﬂ] proposed
3D environment mapping approaches using planar featurd4aiati’s dissertation
[@], a hierarchy of geometrical features, adapted to indoaditions was devel-
oped. Besides the line and plane features, it also includesgonal corners and
cuboids as higher level landmarks which are then constluctecapture certain
joint configurations of the base features. Its main idea @btain joint associations
for planar patches which would be much more robust than iddally established
bindings.

2.3.1 Iterative Closest Point (ICP)

Iterative closest point (ICP) algorithm is the most popurteethod for registering
geometric 3D point clouds in a common coordinate system. gida of ICP is to
find the rigid homogeneous transformatibnconsisting in rotatiorR and transla-
tion t, that best aligns a cloud of scene poiRiswith the point cloudP, presenting
the same scene in other views.

The alignment process consists in minimizing an error rmé&@sed on the dis-
tance between pairs of corresponding points. Usually, tdidian distance be-
tween corresponding points is adopted as the error metriceagh iteration, the
algorithm computes correspondences by finding closestigptimnough the given
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initial estimation, and finding the best translation andation that minimizes an
error metric based on the distance between them. As medtiapeve, an initial
estimate is required. In fact, a good initial estimationgsential to avoid running
into a local minimum position for ICP registration methdakt means the overlap-
ping region of registered point clouds should be large. Atgm[l is a pseudo-code
description of the ICP algorithm for estimating of the aligrigid transformation
between point clou@®; and point cloudP,..

Algorithm 1 T =transEstimationICPP,, P,.)

Input: Point cloudsP; andP, with overlapping region.
An initial estimationT’, which transformP, to the reference frame @,
The pre-defined maximum number of ICP iteratido)s
The allowed maximum difference between two transformatmatricesAd;,
Output: optimum transformatiol’ = [R t]

1. Select reference points 7, then obtain reference points 8t = {p, ;. p,,, . - . ,thq}
2.fori=1to N, do
3. forj=1toN,do

4 ﬁl,z’ = Tiflpl,j

5 Pry; = argmin(|[p,, — py;l3) Pk €Prk=12,...N,
6. > find the closest point gb, ; in P,

7. end for

8. T;=argmin(3) [|Tp,; — p,yll3)

9. > get a new optimum transformation

10. If (||T; — T'i-1||]2 <= Ad;) then

11. > check the difference between these two transformatiottlis &nough
12. break;

13. endif

14. i+ i+ 1

15. end for

16. T < T; > write to the output

2.3.2 SAmple Consensus Initial Alignment (SAC-IA)

SAmple Consensus Initial Alignment (SAC-IA) for registaat of 3D point clouds
was introduced by Ruset al. [76]. The key element in this algorithm is a new rep-
resentation, Fast Point Feature Histogram (FPFH), foratget point cloud. FPFH
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is a variant descriptor of Point Feature Histogram (PIE} [@] by reordering the
order set. It uses a histogram to describe the local georastynd a poinp for
3D point cloud datasets.

The SAC-IA algorithm works by applying the following schesne

1. select sample points from the source point cloud.

2. given a sample point of the source point cloud, insteagarfching its match-
ing points directly, the algorithm finds a list of points irettarget point clouds
whose FPFH features are similar to the sample point’'s. Aoangoint in the
obtained list is considered as the sample point’s corredgace.

3. compute the rigid transformation defined by the samplietp@ind their corre-
spondences and compute an error metric, defined by the Hogsefunction,
for the point cloud that computes the quality of the transiation.

These three steps are repeated, and the transformatiqréldiaiced the best er-
ror metric is stored and used to roughly align the partialvgieFinally, a non-linear
local optimization is applied to get the final transform fesusing a Levenberg-
Marquardt algorithm.

From the above description it can be known that, differen€C, SAC-IA with
FPFH does not need an initial alignment of the data samplbss,Tit is a global
registration method.

2.4 State-of-the-art of SLAM Back-end

During the past few years, SLAM based on filtering technigassEKF, particle
filters and information filters, were popular. Recently weeéhabserved a change
of paradigms in the SLAM literature. The focus of SLAM res#mhas shifted to
optimization-based approaches that have been found to be effeient, accurate
and stable than solutions based on filtering algorithms. Almer of optimiza-
tion based SLAM back-ends are readily available to the SLA&Kearchers as open
source libraries: TreeMaﬁbS], TORéZ%G], iSAI[i49] and yeecently Sparse
Pose Adjustmen@?], HOG-Mam:M], iISAMR [48], anéiag]60].

The first paper that proposed an efficient solution to the SWAM problem
was @]. The authors explained a technique they calledsisbent pose estima-
tion” and applied it to indoor SLAM using laser range findeffie seminal paper
represents the SLAM problem using a graph structure.

However, it took several years to make this formulation papdue to the com-
parably high complexity of solving the error minimizatioroplem using standard

16



techniques. In 2004, Konolig@SS] developed the idea &rthe pointed out that
the sparse structure is inherent to the full SLAM problem praposed a precon-
ditioned gradient technique to solve it. GraphSLAJm [89] posed a scheme to
reduce the number of variables involved in the SLAM problegncbllapsing the
constraints between robot poses and landmarks into pasesetations. Then a
similar approach was presented[26].

Another alternative view to the back-end problem is coméngethe spring-
mass model in physics. In this view, the nodes are regardedasses and the
constraints as springs connected to the masses. The sdlutle mapping problem
is computed using an iterative technique, in which the diveyatem is allowed to
‘relax’ into the lowest energy state. Relaxation techngjusich as Gauss-Seidel
have been presented for obtaining the global optimum coraigun of the poses.
An early work to use relaxation for the mapping problem waspnted in Howard
etal ]. Subsequently a Gauss-Seidel relaxation wasoygepin ] to minimize
the error in the network of constraints. Then a variant of $3a8eidel relaxation,
named multi-level relaxation (MLR) that applies the rel@xa at different levels of
resolution, was introduced by Freseal [27].

Recently, Olsoret al. [E], introduced a stochastic gradient descent approach to
further increase efficiency and solve pose graphs despge Iaitial errors. Later,
Grisettiet al. [@], extended this approach, by applying a tree-basedpziaiza-
tion, towards non-flat environments with their system cAlf©RO.

Popular solutions for the back-end problem that minimibescost function by
the given constraints are iterative approaches. They candoessed either by cor-
recting all poses all at once or updating parts of the netivamementally. Recently,
in [IB], the authors noted that it is possible to compute auite linear approx-
imation of the optimum solution under the assumption thatrélative orientation
and translation are independent. In the following, depamdin the techniques used,
the optimization approaches are classified into two groups.

Nonlinear Optimization approaches

Nonlinear least squares optimization was used in an apprealted /'SAM [IE]

and its recent incremental enhancements IS [49] and iSA@. Another
strand of nonlinear approaches that explicitly exploiessparse structure inherent
in the SLAM problem was opened by sparse pose adjustr@nt [BG@hsidering
that, due to the involved rotations, SLAM cannot be coryentbdeled using flat,
Euclidean spaces, HOG-MAIEI?A] proposed a manifold apgrdhat proved to
outperform the simpler methods operating in EuclideanespHerzberget al. [@]

and Wagnetret al. ] developed that manifold approach further and extended
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it to general sensor fusion and calibration problems. Comlhe insights and
learned lessons from HOG-MAN and sparse pose alignmenpubkcly available
system do @] can be seen as the state-of-the-art approach to samige-tcale
SLAM problems containing several (up to 10k) variables gspdandmarks) and
constraints (observations, loop closings) in a matter obsds on standard hard-
ware.

Kimmerleet al. [@] demonstrated the versatility of théagframework by ex-
tending the state space and adding system parameters ttatahange over time.
In their first experiments, the wheel diameters of a robotewestimated together
with the trajectory and the map, leading to simultaneoutbiatlon, localization,
and mapping.

Linear Approximations and Closed-Form Solutions

The most recent development in optimization-based SLAMliagar approxima-
tions of the SLAM problem that lead to closed-form soluti&][ﬂ]. Such tech-
niques do not require an initial guess and can be solved inglesstep instead of
iteratively. The general idea is to separate the estimatfarientation and loca-
tion. The reason for this approach is that an iterative smius necessary mainly
due to the nonlinearities introduced by the orientationseBtimating both quanti-
ties separately, the problem can be divided into two lineablems. And the work
is extended tolﬂ:%], where the hypothesis on the structureezEsurement covari-
ance is relaxed. Experiments on real and simulated datesefismed the validity
of the algorithm. The comparison between this algorithnhwther state-of-the-art
algorithms, for instance, Gauss Newtohp gTORO, showed that it has an accuracy
which is comparable to other approaches, while it is fagtarther advances may
be expected in this area in the future.

2.5 Summary

Graph-based SLAM has recently emerged as a well assessg¢epgtfor the 3D
mapping problem. In the context of graph-based SLAM, it¢gfly focus on two
problems. The first one is to identify the constraints basedensor data, often
referred to as the SLAM front-end. The second one is to cothecposes of the
robot to obtain a consistent map of the environment givenctirestraints, often
referred to as the SLAM back-end.

In this Chapter, a brief theory background of graph-basedNblwas intro-
duced. Afterwards, we presented a review of the two probleintise graph-based
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SLAM, front-end and back-end respectively.
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Chapter 3
Feature Extraction

As mention before, 3D mapping were successfully addresgeddn-matching ap-
proaches. The scan-matching can be implemented in the samkeds the raw
data points obtained from the Microsoft Kinect. Single peimay be treated as
orientation-less features which are less certain and isiagluishable, resulting to
a big uncertainty during the matching process. While thetrorad disadvantages
can be compensated by matching a large amount of pointsXéongle using ICP
algorithm), this increases the computation time. Thus, eerafficient alternative is
to use features which are less frequent, but more informatertain and unique. As
a result the whole scan-matching procedure will run moreiefitly. Meanwhile, it
will form a conceptual point of view, providing a more compabstract and struc-
turally informative representations which greatly entetine robot interaction with
humans.

Therefore, obtaining abstractions over raw sensory dat@kes is an important
capability of a mobile robot and a key issue for 3D registratiDepending on the
working environment of the mobile robot and obtained sendata samples, differ-
ent features are implemented. In this work, the indoor emvirents are considered.
As we all know, in indoor environments, several structutles dioors, walls, tables,
ground floor, etc., can be modeled as planar surface patathés) are parallel or
perpendicular to each other. Therefore, planar patchesleen found to be a good
feature for 3D visual SLAM, while also being a quite good es@ntation for the
final 3D map. Fortunately, with the availability of Microsd€inect 3D sensor, a
dense 3D point cloud along with a color image, represenhiegstirrounding envi-
ronment of robot, is achievable at high frequency. In latexcpssing steps, plane
features will be used to gather higher level features fameging the robot poses
and representing the 3D map of the robot’s environment. Algpation of several
orthogonal planar surface segments may form a room, a coraidd so on. The
main disadvantage of a feature-based approach is thatdiegesn the feature type
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used and feature accuracy, a big effort has to be summonedén  extract this
feature in a robust way and accurately. This is especiatficdit with noisy sensor
data containing irregularities and outliers.

Orthogonal corners are another kind of quite reasonablieetidor representa-
tion of the structured indoor environment. Compared witdmgl features, orthog-
onal corner feature is more distinguishable and robustndbdes the relationship
between its component planes. In our work, it is also userhtikithe robot poses.
In this Chapter, extraction of planar patches and orthogooraers are discussed
as features, and the extraction procedure is described.

3.1 Point Cloud Pre-processing

For the convenience of explanation, we will refer to a cditet of 3D points as

a point cloud structur@. Point clouds provide discrete, but meaningful represen-
tations of the surrounding world. Without any loss of gefigrathe {x;, y;, z; }
coordinates of any poin; € P are given with respect to a fixed coordinate system,
usually having its origin at the sensing device used to aedbe data. In our work,

a Microsoft Kinect is used as the sensing device. This mdwigach poinp, rep-
resents the distance on the three defined coordinate axesfrguisition viewpoint

to the surface that includes the sampled points.

The dense point clouds acquired by Microsoft Kinect areyargl suffer from
different error sources, especially discretization éffé depth measurements and
the fact that the cameras are calibrated for a certain raBgeh effects cause con-
siderable measurement errors in far range. Though the sbér&inect’s official
distance limit is 3.5 meters, actually Kinect acquires Heptages of points being
farther than this distance but there is a decrease of the'slaacuracy. In addition,
for each frame, the Kinect acquires a point cloud vg®f200 (640 x 480) points,
corresponding to the dimension of the acquired depth imégerder to enhance
the quality of each dense point cloud, meanwhile to keepvkeadl processing time
reasonable, four kinds of fast filtering methods are usedddiiythe data.

1. Pass through filter: A major disadvantage of the Kinecterans the increas-
ing depth discretization error for large distances. Theeeaalot of points
whose depth are out of the operational depth range, evdmefurthe points
whose depth are out of a determined threshold are consittelednoisy and
shaky. Meanwhile, in order to reduce computation time, thiats which are
out of interested area can be removed. For this reason, fsetipaugh filter
is being used here to cut off the points are out of a pre-deteithreshold.
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2. Statistical outlier removal: For eliminating sparselieus which caused by
measurement errors, a statistical outlier removal filtersisd. It is based on
the computation of the distribution of point to its neighdadistances in the
input dataset. For each poipt compute the mean distance from it to all its
k neighbors. By assuming that the resulted distance disibilbis Gaussian
with a mean and a standard deviation, all points whose mesanties are
outside an interval; + « - 04 defined by the global distances meanand
standard deviatiom,; can be considered as outliers and trimmed from the
dataset. The parameteicontrols the width of the interval and acts as a band-
stop filter cut-off parameter.

3. Voxelgrid filter: Voxelgrid filter is used for point reduch, so to reduce com-
putational time and memory usage. Moreover, duplicatetpaian be re-
moved through downsampling. It works as follows: the densiatpcloud
is divided into a set of tiny 3D boxes (voxels) with a deterednwvidth in
space, i.e., voxelgrid filter. Then, in each 3D tiny box, b# points present
will be approximated with their centroid. The dimension okel decides the
number of these so-called reduced points. In our reportydbkel with 2 cm
dimension is used to downsample the point clouds.

4. MLS-resampling: Moving least square (MLS) algorithmssially used to re-
construct the surface and remove the data irregularitiesshware caused by
small distance measurement errors and are very hard to eeosivg statis-
tical outlier removal filter. It provides a reconstruct sué for a given set of
points by interpolating high order polynomials betweengteounding local
neighbors. Smoothing and resampling a noisy point clounallto obtain
more accurate estimation of surface normals and curvatwt@sh are very
important to further point cloud processing, such as segimgand cluster-
ing. Also for a smoothed and resampled point cloud, it is easlaccurate to
segment and cluster the points which belong to a plane ushidSAC plane
estimator, which will be discussed later.

Figure[3.2 presents the filtering results of a scene pointd, which is shown in
Figure[3.1.
3.2 Planar Surfaces Extraction

As mentioned before, for indoor environments, planar se@gaand orthogonal cor-
ners are quite good choices for presenting the main strestun this context, the
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Figure 3.1: An original point cloud of the DAUIN corridor

(a) point cloud after pass through fil- (b) point cloud after
tering

voxelgrid
downsampling

(c) point cloud after outlier remov- (d) point cloud after MLS resam-
ing pling

Figure 3.2: Point cloud filtering and reduction results
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planar surfaces are used as the basic features to build étielselationships be-
tween robot poses and the presentation of the environmeawbot. Thus planar
surfaces extraction is the first step in trying to make someseseut of sensory raw
dense point clouds. This section describes the extracfipfaaoes and orthogonal
corners from 3D point clouds acquired by Microsoft Kinect.

In this work, we only consider roughly vertical and horizalntlanes.The mo-
tivation for this choice comes from the fact that in most iodengineered envi-
ronments, major structures, like walls, windows, cupbsaid., can be represented
by sets of planes which are either parallel or perpendid¢alaach other. Actually,
ignoring other planes (arbitrary oriented or non-orthagpnot only does not lead
to loss of valuable information during 3D mapping, but alsmdps robustness on
the robot orientation and filter out many dynamic objects.

In mathematics, a planar segment is composed of an infirateepdescribed in
general by the following equation:

Az +By+Cz+D =0 (3.2)

where A, B, C, D are the plane parameters aqdy, z) the coordinates of a 3D
point lying in the plane. AndA, B, C') forms the normal vecto# of this plane.
Since actually three parameters are enough to specify & pfeR?, the normal
vector is usually normalized, i.g#7| = 1. The constraint of unit length of normal
removes the extra fourth degree of freedom and leaves tlee thittee. This nota-
tion has the advantage of having normal vector handy whiskerg useful for the
following procedures. Thus it will be used to represent tkteaeted plane.

3.2.1 Extraction Algorithms

Two different approaches are widely used for extractingataegments from point
clouds. One is based on RANSAC plane model, and another g usgion-
growing approach. In the following, these two general atpars are introduced
and compared. Combined to the situation in our work, a slatabe will be se-
lected for the planar surfaces extraction.

RANSAC

RANdom SAmple Consensus (RANSA&ZS] is a method to rolgugth model
into a set of data points that may contain even a large nunfloerticers. It randomly
selects a minimal set of data points for estimating the mpdedmeters. From the
random samples, it chooses the one that is best supportdtelpomplete set of

25



points. As of its general formulation, RANSAC can be easgpléd to fit any kind
of geometric shape primitive.

Algorithm[2 is a pseudo-code description of the RANSAC alhon for seg-
menting a single plane from a point cloud. It is mentionedliekly as it forms
the first part of the whole procedure of planar surfaces etitna presented below.
For a predefined number of iterations, the segmentation performance of a plane
defined by three randomly chosen vertiggs p, andp, is evaluated by counting
the number of pointsVp lying within a predefined orthogonal distance The
plane with the highest number of supporting poiitg is output as the best planar
segmentP found.

The quality of the resulting segmentation directly depeadghe predefined
distance threshold. and the chosen number of iteratiaNg. The chance to find a
correct segmentation increases by augmenting the numbirationsN;. How-
ever, the higherV;, the slower the algorithm. Hence, a trade-off in speed has to
be taken into account to realize good segmentation restlitts.complexity of the
RANSAC algorithm can be expressed@§N; - N,)).

Letp, € [0, 1] be the probability that a randomly chosen data item is paat of
good model ang; € [0, 1] be the probability that the algorithm terminates without
finding a good segmentatiom, andp; are related by, = (1 — p)* ). Here,
N, = 3 as three data items are necessary in order to describe a planee,

log (py)
M=o (1- ) .
Unfortunatelyp,; andp, are generally not known a priori and change from scene to
scene. Therefore an empirical analysis is necessary.

Note that the plane found by this algorithm is not necessaritonnected re-
gion, which is caused by the planar segmentation defini&art from Eﬁ], which
examplifies the shortcomings of this definition. For exampléong corridor wall
interrupted by doorways or windows could be representeddiggle mathematical
plane consisting of several planar patches. Thereforegosessing is necessary
to offset these shortcomings and to make the extracted pkgp@oximate estimate
of the true surface geometry.

Region-Growing

A region-growing algorithm starts from single entities ofiaput range like points
or planar patches and grows these into larger regions byingetigem with match-

ing neighbors. When a certain stopping criteria is reacbeq, if the approximation
error of a planar region exceeds a tolerance threshold ytvamg process ends. An
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Algorithm 2 P=planarExtracRansg@;)

P={p;,ps,--- ,pr} input point cloud composed a¥, 3D points

Np number of points within the environment of the currently dedl plane
Ny found maximum number points in the defined environment opthae
N; predefined number of RANSAC iterations

d  orthogonal distance to plane

7, maximum allowed distance for supporting points

(A, B,C) unitnormal of plane

P outputlargest found plane

1: Ny <0

2:for i =1to N;do

3:  randomly select 3 differemt,, p,, p; of the input point cloud®

4. (A, B,C,D) < detectPlanép,, p,,p;), > planeP: Ax;+ By, +Cz +D =0
5 for j =1to N, do

6: d «+ distanceToPlang;, P)

7 if d <, then

8 Ng < Ng+1

9: endif

10:  endfor

11: if No > Ny, then > get plane with maximum number of supporting points
12: Ny = N¢

13: P <« P> write to the largest plan®

14. endif

15:end for
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example of a region-growing algorithm for planar surfacetdtion is inEb]. The
algorithm starts by randomly selecting a paintof the input point cloud® and its
closest neighbap,. A candidate poinp, is added to the set of planar pointsf the
minimal distance from) to p, is less than a threshold The pointp, is accepted
if, when added ta), the average residual is less than a thresh@ldd the distance
between the optimal plane apdis less than a threshotd

According to the above description of region-growing aitjon, we can know
that the selection of seed points is a key issue. Howeveonaatic selection of
good seed points is very difficult to achieve. It is a welléséd topic, but it has yet
to be solved. Based on this issue, in this work, RANSAC-baggmtoach is chosen
to extract the existing planes from the filtered point clouds

3.2.2 Planar surfaces extraction using RANSAC

Given a 3D point cloudP; acquired at time of the indoor environment, after point
filtering and downsampling processes, the well known RANSA&he model is
used to segment out all the horizontal and vertical surfagel as floors, doors, pil-
lars and walls that are present within it. RANSAC is iteralyvexecuted to extract
the largest plane from the full point clod® until a pre-defined ending condition is
met. For each iteration of the RANSAC algorithm, the planthwhe largest num-
ber of inliers is filtered from the full point cloud and retexh For the convenience
of presentation, the extracted plane is denoteft,aswheret is the index of point
cloud sample, andlis the index of extracted plane in point clogl

For the purpose of our work, only planes that are roughlyzomtal and ver-
tical are considered. Thus the extracted plane is testetéyetative relationship
between its normal vectat and thez, axis of robot reference frame, which points
upward. Here it should be mentioned that acquired pointddare referenced to
the Kinect camera’s reference framig. Therefore it is necessary to transform the
point clouds fromR,, to R,. The transform matrix can be computed by the rela-
tive relationship between robot and Kinect reference fratmeour work, all the
point clouds are transformed to the robot reference frameanwhe pre-processing
procedure is finished.

The horizontal and vertical surfaces are categorized hy tékationships with
Z., as illustrated by the following equations:

P, = {Py:|i" 7] < cos(g — o)} (3.3)
P, = {P,:|i" 7| > cos(¢)} (3.4)

whereP, is a vertical planep, is a horizontal plane, anglis the maximum accept-
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able deviation. If the extracted plaig; is far from being horizontal or vertical,
all the inliers supporting this plane is removed from the lehrurrent point cloud,
and then RANSAC is executed again to find the next largestepl&dhile if it is
nearly vertical or horizontal, a distance-based clusteisrperformed on its points
to find large contiguous regions of points within the pland discard clusters that
are too small, as will be discussed explicitly below. Themghpporting points are
removed from the point cloud. The same procedure is appiezdtively until no
plane with sufficient number of points can be found. A thrédlod 1000 was used
for this work. This procedure ensures that most of the atyjitorientated planes
are filtered out. Actually, ignoring these kind of planes aply will not lead to a
valuable information loss, but it will filter out many usedgdanes, and simplify the
following task to a certain extent.

Compared with other methods that classify the points befaig a same plane
according to their normal vector, the RANSAC is very fastsino reprocessing is
required to estimate the normal vector at each point. Fi@idlustrates the plane
extraction result using RANSAC in two frames.

(a) Point cloudP, before plane detection (b) Plane detection result of point clo@®

(c) Point cloudP, before plane detection (d) Plane detection result of point clo@®j

Figure 3.3: Two examples of plane detection result. Col@sawandomly selected
for the planes.
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3.2.3 Plane Clustering

RANSAC robust plane estimator is used successfully to firdniain horizontal
and vertical planes in a scene. However, apparent from El@i;, the plane inliers
are fitted to the same mathematical plane but actually oniffexeht sides of the
environment, or belong to different physical planes. Thidue to the fact that they
lie on the same mathematical plane defined by the RANSAC ighgor Depending
on which planar model is randomly created first, the poinightibelong to one of
multiple planes. Obviously, the extracted plane does rt#atethe real geometry
structure of the scenario and it is not accurate. In ordeoteesthese problems,
a distance-based clustering step is performed on extraptéeeds. Generally, this
clustering step serves two purposes: to remove individoialp or small clusters of
points that fit to the plane but are not part of a large contigugurface (e.g., a door
frame leaning out from the surrounding wall), and to seganatltiple surfaces that
are coplanar but are in different locations, such as twcetaht the same height.
Each cluster with a sufficient number of points (a threshéB0® was used for this
work) is saved and will be used for mapping purposes.

The essence of segment and cluster is to group the pointsheittame proper-
ties (e.g. normal, curvature, color) together based on engmeasure. In order to
achieve the goal, what we need to do is to find a suitable meaguch can find an
object point cluster and differentiate it from another paiuster at the same time.
Usually the measure is the Euclidean or Mahalanobis distaretrics. In our work,
the former is used.

For an unorganized point cloud, a cluster is defined as follows:

LetO; = {p; € P} be adistinct point cluster fro®; = {p; € P} if

min||p; — ijQ > d. (3.5)

whered, is a maximum distance threshold. When distance betweend petnts
O, and another set of points; is larger than this threshold, they are assigned to
two different clusters. So the distance threshold is imgrdrtwhich determines the
final clustering result is good or not.

A basic algorithm for cluster can be described as follows:

1. for the input point cloud datasét, create a kd-tree representation. The kd-
tree representation is the most used method to find closedis®ince it is
fast to process.

2. set up an empty list of clustefs and a queu® of the points that need to be
checked.
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3. then for every poinp, € P, perform the following steps:

e addp; to the current queu@,
e for every pointp, € Q do,

- search its neighborhood points $2t in a given method, such as
k-nearest method or radius method,;

- for every neighbop!? € PF, check if the point has already been
processed, and if not add it to;

- when the list of all points iR has been processed, a@do the list
of clustersC, and rese to an empty list.

The algorithm terminates when all the poimtse P have been processed and are
now part of the list of point clustels.

Given a segment plane, using the cluster algorithm to deteether all the
plane points belong to a same object. If the points belongueral clusters, as men-
tioned before, check each cluster’'s supporting points rermbhen only the clus-
ters which meet the rules are accepted and saved, othetwiglde removed.This
technique can make sure that surfaces with relatively feypasting points such as
surfaces that were scanned from far away, will not be dedecte

Figure.[3.4 presents the plane clustering results of theeaptane detection
results shown in Figure_3.3. From the Fig{ire 3}4(a), it camlgerved that the
pink points in the right side of Figufe 3.3[b) are removedpdhe yellow points in
the bottom part of the right wall in the Figure 3.3(d) are rlastered into the floor
surface. At the same time, it should be noted that the smadket on the utmost
right side are deleted since it has few supporting pointstaratea is too small.

(a) plane clustering result of (b) plane clustering result of point
point cloudP, cloudp,

Figure 3.4: Plane clustering results of above Figure 3.&(ol) Figure 3.3(dl)
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3.2.4 Plane Merging

As discussed above, a clustering step is performed to depawatiple coplanar
surfaces such that the points grouped into a plane belongsgepmetric plane.
Indeed in some cases the points in a same plane are splitanéoas pieces, i.e.,
over-segmentation, which means that the number of outpogplsegments is larger
than the number of segments existing in the physical redlitys is mainly caused
by noise, occlusion or simply observing different partshaf same plane apart from
each other. From Figufe 3.4, it can be observed that the balt& are split into two
or three pieces, respectively.

To compensate for over-segmentation effect, when two glareeapproximately
aligned, i.e., they have approximately equal plane coatds and are overlapped
or near each other, it is desirable to merge them into a Igvigere in order to
improve the correct matching ratio.

Given a set of planes; extracted from point clou®;, a basic method compar-
ing all planar segments among themselves has been implechdtdr a pair of two
plane clusters’, ; and P, ;, if the following equations:

7t - 71| = cos(dm) (3.6)
\dyi — dij| < Ady, (3.7)
d(P,;, P,;) < Adp (3.8)

are satisfied, they are considered to be coincident and ngepgocedure is imple-
mented, where Eq[(3.6) and Ef._(3.7) are presented to deemvhether plane
clustersP, ; and P, ; are coplanar, while Eq.(3.8) is to check whether they are-ove
lapped or near each other. Ang,, Ad,,, Adp are pre-defined maximum acceptable
parameters.

Here the overlap is evaluated by finding the neighboringtsoma given radius
r,, using kd-tree. In order to reduce the computing time, thelygon boundary
points are used instead of the entire plane cluster pointse&ch point, if there are
sufficient number of neighbor points in another plane, thetgse considered to be
near to another plane. If a proper part of points are neardthanplane, we assume
that these two planes are overlapping or near each other.

After all the planes are refined, small planar surfaces areregl. This is done
by thresholding the patch surface area. For the experinoersidered in this thesis,
surfaces smaller than 0.25%mare ignored. This technique ensures that surfaces
with relatively small area such as surfaces that were schinam far away will not
be detected. In addition, the mathematical parameter ofmtiged segment will
be renewed using RANSAC. Then the refined planes are storeektical planes
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set P¥ or horizontal planes s&® according to their classification determined by
Ea. (3.9).

Figure[3.b presents the refined planes, where the planesimeshysical plane
are merged together and there is no small planar patches.

(&) Plane merging result of (b) Plane merging result of point cloud
point cloudP, Py

Figure 3.5: Plane merging results of Figlrel 3.4 respegtivel

3.3 3D Corners

Toward more robust data association, in this thesis we éeegisted in understand-
ing how the extracted planes relate with each other, andticantiig higher level
features based on them. For instance, three orthogonatpldefines a corner,
which is more robust and distinguishable in indoor envirentn Moreover, a sin-
gle corner is enough to lock all degrees of freedom in spanegsve can asso-
ciate to a corner both an orientation and a position, whiléaagoonly constraints
a distance and an orientation. The idea of grouping bastariemto form higher
features, which are more distinguishable and less freqisefdiry general. In our
work, three orthogonal planar surfaces defines a 3D orthelgammner feature. This
is glued to the geometrical structures in indoor environtmém long run, corner
features can enrich the 3D map with information which helprbbot understand
its surrounding space.

Although the idea of grouping three planes using 3D correfaily general, in
our work, we only consider three orthogonal planes, whiehcammon in indoor
environment. Usually, an orthogonal corner is construbteidvo walls and the floor
or the roof. Given a set of three plangB, ;, P, ;, P, }, a cornerC, ; is constructed
if all of the following conditions are met.

1. Every two planes among the set of three planes, are pegodardto each
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other,i.e.

i) ity =0 (3.9)
] 7l ~0 (3.10)
i~ 0 (3.11)

2. The intersection point,;, lies approximately inside the boundary of its par-
ent planes?, ;, P,; and P, or its distance to the nearest boundary point is
smaller than a predefined valtie

Mathematically, this can be expressed as equation

d(pyji, Bii) < 0. (3.12)
d(pyji; Bij) < dc (3.13)
d(Pyjp, Bex) < de (3.14)

where B, ;, B, ;,B,; are the boundary points set of the plaRg,F,; and
P, ., respectively.

Each corner is represented by its position in sgacethree normal vectors;,
7o, andris, corresponding to its parent planes which denote its atent. And its
position is determined by the intersection lines formedtbyparent planes. Thus,
to get the position information of orthogonal corners, firtiie intersection line of
two meeting vertical planes are detected, then its intésepoint with the third
horizontal plane is considered as the position of detecteukt.

3.3.1 Intersection Line between Two Planes

In order to get the intersection line of two orthogonal p&nse follow the tech-
nique in @3]. The line of two planes intersection is normaéipresented as a point
on the linep = (z,y, z) and a direction vectoff = (n,,n,,n.) emanating from
this point. While the direction vectat, can be computed as the cross product of the
two normal vectors of its parent planes. The point on the jinean legitimately be
any point on the line. Mathematically it does not matter wthatpoint is, as long
as its on the line. Here we define the point is the point thakasest to the origin
p,, which will give a canonical representation of the line.

According to plane extraction section, the extracted plaoglel can be pre-
sented asiz + By + C'z + D = 0,where normal vector i = (A, B, (). Given
two planes with normal vectors, = (A, By,C}) andiy, = (As, By, (), and
points on the two planep;, = (z1,v1,21) andp, = (2,2, 22). The direction
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vector of the intersection line is the cross product of the twrmal vectors, i.e.,
n =1 X Na.

Then we will compute the point on the lipe Since the poinp must be on both
planes, so we have two constraints:

(p—py) 71 =0 (3.15)

(p—py)-7Tlg =0 (3.16)

The pointp should also be as close as possible to the origin ggint (x,, y,, o),
and the distances between two points is expected to be nz@imirhe distance is

Ip = poll* = (2 = 20)* + (y = 90)” + (2 — 2,)° (3.17)

This is a problem which can be solved with Lagrange multipliavith one

objective function [(3.17) and two constraints Hqg.13.4) &ad (3.15) and(3.16).

The functionw containing the constraints and objective function is

w = |p—p,I>+AXp —p)) -7+ pp — p2) - 7z
= (2= 2,)" + (Y = 40)* + (2 — 20)° +
AZNg + AYnay + Azng, — Apy -1 +
HT N2 + 1Yoy + (12N, — Py * To (3.18)

where) andp are the two Lagrange multipliers. Then we get the Lagrangé-nu
pliers by computing the partial derivatives and settingrthiie zero. And the final
equations in matrix form are

2 0 0 ni N T 21,
0 2 0 niy ny Y 2y,
0 0 2 nu ne. z | = 22, (3.19)
Ny Ny Nz 0 0 A Py - T
| Mz iy i 00 0 |\ Py - 12

Solving this matrix equation, we can get the unknown vettoy, z, A, 1), SO
we can get the point on the line closest tp,,.

3.3.2 Corner Detection

A corner is constructed by three sets of planes in differaetctdons. Here the 3D
right angle corner, which are intersections of three ortimad) planes, are only con-
sidered to be used as high level features for registratidmavot localization. Since
in our case, the experimental environment is an indoor enwiient, and because
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the accuracy limitation of the Kinect, the points which aeswfar away from the
Kinect with distance along, axis exceeding a threshold are filtered, most of the
corners are constructed by two vertical walls and floor. Basethis, we assume
the floor plane is infinite. Actually, only part of the floor cha detected by Kinect.

From the above section, the line of two vertical walls can b&imed. So cor-
ners’ position information will be determined by the integon point of the ob-
tained intersection line and floor plane. In the following#ie[3.6, the detected
corners in six frames are shown, and the white lines are thealosectors of con-
structing planes.

3.4 Summary

In this Chapter, we have presented the planar surfacesésatutraction and 3D
corners features detection from raw point clouds, leadngore efficient SLAM
while at the same time more compact and structurally infoirre@epresentations of
final 3D map which greatly enhance the robot interaction walenvironment. The
popular RANSAC plane model is used for extracting the largkse from the raw
point clouds. The reported experiments in the context afgkxtraction showed the
effectiveness and robustness of RANSAC plane model exdractVhile since the
detected largest plane by RANSAC plane is extracted fromthenaatical view, itis
possible that points in a same mathematical plane but bétodidferent geometric
object, e.g., two tables at a same height. As mentioned &efoe quality of plane
segments extracted affects the plane correspondencekingastep and the pose
registration step. After that, the extracted planes areedfby a distance-based
clustering step and a merging step. It should be mentionatdothly the roughly
vertical planes are saved and delivered to the plane matgart, which will be
discussed in next chapter. In addition, the raw point clear@spre-possessed by
several filters to remove noisy points and decrease the cimgpgime.

Meanwhile 3D corners are detected based on the extracteeglblere only the
orthogonal corners, which are common in most of indoor @mnrents, are consid-
ered, i.e., three intersecting planes which are perpeladituneach other form a 3D
corner. 3D orthogonal corners are more distinguishabletlaeyl represent higher
features since they encode the relationship between pldiesuse of 3D corners
improves the accuracy and robustness of data associatlmmeXperiment results
shows that 3D corners in the obtained point clouds can beeteffectively.
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Figure 3.6: Detected corners in 6 frames
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Chapter 4

SLAM Front-end

In Chapter 3 the obtained point clouds are processed, inhydlames and orthogo-
nal corners features are extracted, providing the negessaterial for implementa-
tion of a full SLAM loop. As mentioned before, graph-based$Lis divided into
two problems: 1) extracts spatial relations between inldial observations. This is
referred as the SLAM front-end. 2) optimizes the poses cdehwbservations in a
so-called pose graph and with respect to a non-linear exnmtion. This is referred
to as the SLAM back-end. In this Chapter, we focus on the fesrt part, and
two major contributions of this thesis are explained: eating the pose changes by
aligning the corresponding sets of planar surface segnaeit®rthogonal corners,
while the corresponding relationship between planes atmbgonal corners in two
scans is determined by a plane matching algorithm and aicoraehing algorithm
respectively.

First a brief introduction to the SLAM front-end problem isepented. Then
correspondence problem is introduced, which is one of thst erdtical problems
in feature-based SLAM. It is the problem of finding featunescans taken from
different locations that correspond to the same physiditlyerin our case, planes
and orthogonal corners are considered as the features tcatohen. Since the
experimental environment is flat almost everywhere withakeeption of several
small ramps, it is believed that it is suitable to only coesidertical planes in the
matching procedure.

How to recognize corresponding planes in different franodsistly is difficult,
since wrong matches will result in a big divergence in thgstitmry of robot. In
this Chapter, a new plane matching algorithm is presentddeaplained in detail.
In order to validate the correctness and robustness of #septed plane matching
algorithm, in Chapter 6 pose registration experiments arged out by using the
presented algorithm, ICP and SACIA respectively, where 468 SACIA are used
as baseline algorithms for registration. This Chapter emitts a brief summary
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which highlights the important points in few sentences.

4.1 Introduction

In our work, the robot, only equipped with a Microsoft Kinectd wheel encoders,
moves in planar indoor environments. The Microsoft Kinsatsed for collecting
3D point clouds of the explored environment, while the wiegeloders provides an
initial estimation of the displacement between two congeescans.
For denoting frames and relative transforms, let us®althe j-th point cloud
and theF; associated frame from which the point cloud was observetielfobot,
more precisely, the sensor mounted on the robot, moves framef7; to frame
Fi, i.e., it undergoes a rotation b, and a translation by, between frames;
andF;. Usually, F; and F;, are successive frames, but they may be nonsuccessive,
for example during loop closing. The front-end seeks tordeitee the most likely
transformationg R}, ¢/}, i.e., constraints between poses from an observation, and
then to construct a pose graph that are the basis for the iaption approaches.
Suppose two Cartesian coordinaggsand p, of the same physical point ob-
served from the two frames; and.F;, respectively, they are related by

p; = Rip,+1t] (4.1)

For odometric edgesi, j) the framesF; and F; correspond to successive poses
assumed by the robot, while for a loop closing, they are natesssive.

Eq. (4.1) is only about point transformation, such as pwrpoint (P-P) ICP.
It works with the points directly and hence does not assuneeip structure in
the environment. However, this algorithm is computatignekpensive and slow
for large point clouds of the order afH*-10° points. Meanwhile, it suffers from
premature convergence to local minima, especially wheveeap between view
samples is not large.

If the environment where robot explores has some structargs in indoor en-
vironments, main structures, like doors, walls, tablesrfipetc., are made up of
many planar surface patches, which are parallel or perpeladito each other, then
scan-matching based on plane segments offers many adeantssgms of compu-
tational efficiency and an increase in data associationstoless. Furthermore, a
map based on plane segments requires few storage memoryeasyito visualize.

Thus in this thesis, planar surface-patches are utilizetth@$asic features in
the front-end part. Our approach falls into the categorystih@ating relative poses
based on the correspondences between large 3D surfadeepatdracted from two
registered scans.
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4.2 Correspondence Problem

Using extracted features to solve geometric estimatioblpros induces a data-
association problem, also known as the correspondencéepmoli is considered as
one of the most critical problerJ(:[b8] of SLAM. It is a problerhfonding features
in scans taken from different locations that correspondhéosame physical entity.
The higher and the differentiability of used features, thtdy is the obtained data
association performance. Additionally, computationainptexity can be further
reduced if features are distinguishable, even partly, byricting the search space
to similar candidates. Abstraction levels range from gaom&atures like points,
lines or planes to semantically more significant featureshtning laser and vision
information for high distinctiveness [61].

Different approaches to correspondence problem is cledsifto two main cat-
egories in |[[93]: discrete matching and iterative alignmenhe first one covers
the approaches that explore the discrete search spaceenttipbtorrespondences,
while the second category are about the approaches thatposspondence de-
termination as the problem of searching for the alignmeritiwkines up current
observation with the previous one, or the built map. Thiskwerlimed at finding a
reasonably fast and accurate matching algorithm to detercorrespondences be-
tween planar surfaces extracted in consecutive views harddstimate the relative
roto-translation between these two views. As already rmaetl, the use of more
distinctive features helps to improve the performance ofespondence problem.
Orthogonal corners constructed by three planes are copsids higher level fea-
tures. The establishment of correspondences betweenrs@egediscussed too.

Statistical decision is commonly used to measure the éifflez between dif-
ferent features@l]. In loose words, this means a metricelsded to compare
different features quantitatively, taking into accountertainty information. The
Mahalanobis distance [64],, is such a metric and is defined as follows:

(V) = (Ve = )€V, — ) (4.2)

dys 1S the Mahalanobis distance of a random vedtor to a multivariate normal
distribution with mean: and covariance matrig’'. It can also be defined as a dis-
similarity measure between two random vectérsandV , of the same distribution
with covariance matribC'y, = C, + C,, yielding

dy(V,,V,) = \/ (V.- V) 'C (V. -V, (4.3)

If V, andV, are randomly chosem,,(V ., Vy)2 is ay2-variable withr degrees
of freedom.
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To test whether a current observed featlife matches a previous observed
featureV,, with IV, being the number of components ®f, or the degrees of
freedom, they?-hypothesis test can be carried out by evaluatingV’ ., Vy)2. The
obtained differencel,,(V ., V',)* between them shows in probability how much
they can be matched to an identical feature.

The above discussion of correspondence problem is in a pildtie frame-
work. In practice, not all hypothetical matchings worth ® flarther considered.
Usually the obtained,,(V,, Vy)2 is compared with a predetermined threshold,
picked fromy? tables with corresponding degrees of freedom and requwati-c
dence, to check compatibility of the paired features. Ifph&ing is less probable
than the threshold, it is rejected as a potential hypoth&3therwise the features
are accepted as a pair of corresponding features.

4.3 Plane Matching

In this work, planar segments are used as the basic featuee8D SLAM frame-
work. The features extraction from raw point clouds obtdibg a Microsoft Kinect
is described in Chapter 3.

Consider a robot framé;, corresponding to the pose of the robot at titne
and an indexed s&t’ of vertical planar patches extracted from the point clétd
associated with the robot frani&. We identify the robot frame with three axis:
z. (already introduced in Chapter 3), which is perpendicwahe plane in which
the robot movesg, heading towards the direction of motion of the robot, &nd
completing the term.

Based on the assumption that the robot is moving on a plareotiot poses
x 1.7 are presented as 2D transformations$i(2). Thus, in this context we only
consider the extracted vertical or nearly vertical plan€se motivation for this
choice is twofold: first, since we are addressing the planaechorizontal planes
do not provide "strong” constraints on the robot pose; meeean an indoor en-
vironment large planar patches are most likely to be waltersl or other vertical
surfaces.

4.3.1 Problem Statement

Given two sets of vertical planes which are extracted from $wccessive views of
a 3D Microsoft Kinect sensor rigidly mounted on a mobile rpbo this section,
the goal of the plane matching algorithm is to find corresgmees between these
current observed planes features and the features obgaesdusly, i.e., answer
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the question of “which plane is which”. From these correspog planes, we would
like to estimate the change in position and orientation ef tbbot between the
measurement samples.

Generally the overlap between these two frames is unknowninStance, for
two consecutive frameg&; and.F,_;, some planes go out of the view while some
new planes come into view which were not previously visifileus how to robustly
detect that plane featurg ; in current frameF; is the same physical plane patch as
planeP,_, ; in previous frameF,_,, is a difficult task.

In [24], a comprehensive discussion on finding correspoceleibetween two
sets of planar or quadratic patches using attribute-greppesented. In it, simi-
larity metrics are formulated based on several attribukesdhape-factor, area ra-
tio, curvature-histogram, inter-surface relations etnd a bounded tree search was
performed to give a set of correspondences which maximizedhrtetric. The re-
sult is refined using an evolutionary algorithm, which melr@scomputing-time is
high. Here apart from planar patches, orthogonal cornersised, which will be
discussed latter. The plane matching algorithm is desgnfdgich maximize the
overall geometric and appearance consistency within alsegrace to determine
potential correspondences between planes. The searcl-sppruned using cri-
teria such as size-similarity, agreement with odometryg, @ppearance-similarity.
Then, based on the fact that, the relative rotation betwieermpairwise registered
scans is unique, which means the relative rotations estunlay all the potential
corresponding pairs should be same, or much close to eaeh dttus a consistent
test is applied to discard the wrong potential correspooeieraccording to their
similarity indices defined in this work, then the set of regal correspondences is
obtained.

In the following, the plane matching algorithm will be exjpled thoroughly.

4.3.2 Plane Feature Representation

As mentioned above, only the extracted vertical or rouglelyival planes are used
to build the correspondences between two successive viaysinciple, it is suit-
able to project the vertical planes onto thg/,.-plane and use their projections, i.e.,
2D lines, to represent these vertical planes. Thereforeyiecal plane represented
asAz + By + Cz + D = 0 will be a line represented a$z + By + D = 0 in
2D space. Before delving into the representation used ®wémtical planar seg-
ments in 2D space, a survey of line models used in the litexasypresented in the
following.

In mathematics, infinite lines in 2D Cartesian space are rgdyeepresented
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as:
Aix+By+C; =0 (4.4)

whereA;, B, andC; are parameters.
While the polar form is another common way to represent tie i

recosa+ysina —r =0 or equivalently  pcos(¢; —a) —r =0 (4.5)

wherea andr are the line parameters:m < a < 7 Is the angle between positixe
axis and line normal, and> 0 is the distance of origin to the line. The parameter
equals\/xQTy2 andd; is computed a8, = arctan £. The polar form is preferable
since it only uses two parameters that is the minimum nundggrired to represent
aline.

In order to present the relationship between the robot amcheed vertical
plane-sets better, a different 2D line presentation i®thice here. We parametrize
the 2D lines in terms of distancé from the robot and the relative anghe <
(—m, +7] (both expressed in the robot frame). The orientationf the projected
plane is defined to be the angle betwgeraxis and the projection line, see Fig-
ure[4.1. The projection line is oriented in clockwise dir@ctsuch that the robot
is always on the right-hand side of the plane. The advansgeat the robot can
distinguish from which side a plane is observed, and canndisish the parallel
planes in a same scenario, therefore perform more reliasieceations. Thus, in
the following, a vertical plané’, in 2D space is represented by a couple of param-
eters(6?, d), where¢? € (—m, +x] andd > 0. Actually the casel = 0 is unlikely
to occur in practice in the robot frame. Since we assume kigaotigins of robot
frame and sensor frame are located at a same poinds the same value in the
sensor frame.

Y

b

ep

Figure 4.1: Representation of the projection of a verti¢ahe
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4.3.3 Plane Matching Algorithm

For the convenience of explanation, we consider two rolamhés:k-th robot frame
denoted as-;, from which an indexed vertical plane-s@} is observed, and another
frame F; from which the indexed plane-sé}’ is observed. Note that a vertical
plane is presented using paramet@#s d), as described before. Thug’ is an
ordered set of plane parameters defined as

P2 {Pi(00,dy),i =1,2... Ny} (4.6)

wherek is the index of point cloud sample, ands the index of extracted plane in
each point cloud sample. Our goal is to establish correspaes between planes
in P and planes inP?, i.e., which pair(FP,;, P ;) represent the same physical
location. These two frames are typically successive fomabiregistration, but
they may also be nonsuccessive, for example if a loop is dloSer simplicity, in
this section we only consider the case of plane-sets achatreonsecutive frames,
i.e., we consider the cage=t — 1(¢ > 1). And the loop closure detection will be
discussed in Chapter 5.

Given a query plané, ;, theith plane in frameF;, there areN,_; + 1 possi-
ble correspondences, if we also include the case plané not present in previ-
ous frameF;_ ;. We can naively try all of these correspondences, discaothgv
matches by using different tests and choose the pRne; with the maximum
overall consistency as the potential correspondence oegtg . If the query plane
P,;, corresponds to plang_, ; in frameF;_,, it will be denoted as’,; <+ P,_1 ;,
abbreviated « j.

The use of different tests is important in order to discarcsimad the false
correspondences, which are unavoidable in practice. Fdn panepP,;, (i =
1,2,---N;) in F;, the following tests are applied one by one to select catelida
correspondences for query plafg;: (1) odometric rotation agreement test; (2)
odoemtric translation agreement test; (3) appearancdasityitest; (4) size sim-
ilarity test. A similarity measure is defined to evaluate hgwod is the selected
correspondences.

Odometry rotation agreement test

Since odometry is available, we can use it to choose, amangathdidate matches,
the ones that meet the rotation agreement with the odomalnes. That is based
on the assumption that the odometry relative rotation esrbounded in successive
frames. To compare the pla#g; with P,_, ;, they have to be transformed into a
common reference frame. Since odometry information isrgivee can compute
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the odometric rotation matriR! ' according to the relative rotation between frame
Fi—1 andF;. The query plané’, ; is transformed into its previous reference frame
F;_1, and its rotation parametéf in reference framéF,_; is obtained. The two
sets of parameters in two frames are related by

Tip—1,; = Riilﬁt,i (4.7)

whereri; ; is normal parameter of query plag;, provided by the plane extraction
procedure. Whilei,_, ; is its corresponding normal parameter in frafe;. Then
its renewed 3D normal parameter is transformed to the deiriedtations” in 2D
space according to the technique presented in above section

Now, we look for all planes i ; satisfying

167 — 67| < AG, (4.8)

whered? is the orientation of thg-th planel; , ; in P, andAd, is a fixed thresh-
old. If the orientatior?’ of plane is roughly equal 6/, (expressed in framg; ),
i.e., Eq.[(4.8) is satisfied, theth plane ofP} ; is selected as a candidate match for
thei-th plane in the seP, then we add it to the candidate subs¥t while others
are rejected as matches do not agree with the odometryatati

Odometry Translation Agreement

After test 1 (odometry rotation agreement test), a subsetntlidate plane#"
corresponding to the query plaig; is obtained. Similar to the previous test, an es-
timate of the translatiot{ ' is given according to odometry. We can use it to elimi-
nate potential correspondences pairings fi@thwhich cause a gross disagreement
with the odometry values, and keep the correspondencesgmivhich meet the
agreement with the odometry values for the further test. dMormally, given a
potential correspondend®; < P,_ ;, the parameter of distance can be used to
select the planes frol®* which are close to query plang ;. Mathematically, if
planeP,_, ; satisfies the following inequality:

ld; — dj|| < Ad, (4.9)

whered; andd, are distances of planét,i (expressed in framé;_,) andP,_, ; to
the origin in 2D space respectively, aid, is the pre-defined threshold describing
how close two planes are required to be, the potential qooresence is considered
to pass the odometry translation test, and the pRane; is added to the subsé¥,
while others are rejected.
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Texture-based Test

In indoor environment, it is normal that there might be mdrant one planes
with very similar (67, d) values. For instance, when a door is closed, it is parallel
to the wall, and usually the door is ahead of the wall by fewticegters, as shown
in Figure[4.2. Usually the displacement is less than 10 cmeyTdre so close
that it is inevitable that the parallel door and wall in difat frames are wrongly
considered as corresponding planes. Disambiguating arti@mg is usually not
necessary for relative pose estimation if there are notgslgerpendicular to these
planes, i.e., they do not form a corner with other planes. ¢l@w if they are part
of a corner, as shown in Figute 4.2, a wrong match betweereplaiil produce
as a result that two cornefs, ; andC;_, ; in different frames will be matched to
be a same physical corner. The estimated transformatioor@iog to this pair
of corresponding corners will induce a big error in transkatvalue. In such a
case, color feature is considered to be a good option to tispate the plane
correspondences after implementing the orientation astamite agreement test,
since usually the color of the door is different from its sumding wall's, or the
door may have some fancy textures in its dominant planareshifeanwhile, the
use of color consistent test will make the correspondenndsfy more reliable.

Door
A L
Wall d
- B

Wall

Figure 4.2: Relationship of a door and a wall in indoor enviment

For each point cloudP, besides the points Cartesian coordinate information
(x:,yi, 2;), it @also contains color information associated with evengke point.
In our case, the color information is presented with RGB cotodel. Its RGB
imagel can be obtained by parsing the original point cl@udccording to a certain
transformation,

p=F(p) (4.10)
wherep is a pixel in imagel, andp denotes a point ifP. In this thesis we follow
the technique implemented in Point Cloud Library (Pdﬂ [79]

Figure[4.B shows an example of parsing result. Appareigyparsing result is
quite good and the parsed image can describe the scannedrenent accurately.

Given a pair of matching; ; <+ P,_, ; from setP?, their 2D imageg/;;, I:—1 ;}
will be obtained according to E@.(4]10). To describe eaam@limage’s informa-
tion, color histogram is considered. It is one of the fredlyamsed color descriptors
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(a) Original point cloudP,, (b) 2D imagel, of P,

Figure 4.3: An example of parsing result

that characterizes the color distribution in an image, ansl a flexible construct
that can be built from images in various color spaces, whd®@&B, HSV or any
other color space of any dimension. Here we build the histogrin RGB space.

To comparel,; and[,_; ; so to check the appearance consistency of potential
matching pairP,;, < P, , the common correlation measure in Open [9] is
used to estimate their similarity. Given two color histagsa?; and ;, the corre-
lation measure is shown in the following equation

o ) — a0 — )LD — ) @i

V2o (Hi(I) — Hy)*(H,(I) — H;)?
whereH;(I) are the bin values of histograff;, 7 = >, H;, andN is the total
number of histogram bins. From EQ.(4.11), we can get coraiutat a high score
represents a better match than a low score. A perfect mattrared a maximal
mismatch is -1.

For imagesl;; andI;_, j, the histograms of three different channels are build
and compared respectively, i.e., three correlation valfied? and d® will be ob-
tained. And their product value, i.el;, x d? x d is considered as the parameter to
check the color consistency of candidate matchihg« P,_, ;. If the correlation
value is larger than a fixed valu@, it will be chosen as one of the corresponding
plane of query plané’, ;, then added to the sét°, otherwise it will be rejected.

Size Similarity Test

In the Appearance similarity Test, color feature is usedsbtrtguish planar patches
with very close value$t?, d) but different colors. However, in some cases, planar
patches not only have close valu@s, d), but also similar colors. For instance, a
pillar with its neighboring wall. In such a case, one way tstidiguish these planes
is to consider whether their size are similar, since usubkypillar is smaller than
the wall. A size similarity test is presented as Eq. (4.12)icl is based on the area
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ratio of assumed corresponding planes.
min(Si, SJ)
max(.S;, S;)

whereS; and.S; denotes the area of plai#¢; and F,_, ; respectively. If the ratio

of their area exceeds a pre-defined threshold, plane; is accepted as potential

corresponding plane of query plag; and added to seP® otherwise it will be
discard.

> 7y (4.12)

Similarity Measure

After the four tests presented before, the/3emay contain non-unique planes, i.e.,
more than one planes in previous frathge ; may be mapped to the query plane
P, ;. We assume in each plane-g&t, there are no two plane features belonging
to a same geometric plane, as a result of the applicationawfeptiustering and
merging. Thus, if we do not consider the case that a queryegfanis not present
in the previous framér,_,, only one plane can be mapped to the query pléne
i.e., the correspondence is unique.

To solve the uniqueness problem and evaluate the similzgttyeen each pair of
candidate matching planes, a similarity metric is definee\mjuating the goodness
or reliability of the assumed correspondences. Threefaei® used in measuring
the similarity between two selected potential correspog@ilanes. First, their “ex-
tent” of agreement with the odometry rotation and trangtatests. Moreover, the
area factor is considered. The overall similarity of a patandidate corresponding
planes ie expressed as the weighted sum of different faasoshown in equation:

I,(i,7) = ks x min(S;, S;) + k, X }’%eﬂ + kg X ﬁ (4.13)
wherek,, k,, k, are three coefficients weighting the importance of corredpw
planes areas, orientation and distance agreement withetdpoonstraint, which is
similar to the measure metric proposed [41].

Contrary to many works in the literature, here there wouldhbeattempt to
decide the weighting coefficients from statistical pointvadw. They are simply
chosen according to the empirical knowledge about the ottgneeror, and the
distribution of planes area. Considering the fact that aclmag between two large
planes is more reliable than a matching constructed by aopamall ones, and the
odometry error is big, in our workk, x min(S;,.S;) is defined to contribute more
for the final similarity factor.

In this case, for each pair of candidate matching, a sinylarotion is asso-

ciated with it. Thus a set of corresponding planes can betddnoy {P,; <
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P,y ;,14(i,7)}. The uniqueness problem is solved by sorting &l; <+ P, ;, I5(4,j)}
in increasing order of; then the pairing with the highest similar factor is automat-
ically chosen and other candidate correspondences actaeje

According to the experiments, we have found the above fais ti® be much
more effective to choose correct correspondences in catigedrames, and most
of the wrong matches are discarded. However, due to theeexistof noise in point
clouds, and large odometry errors, wrong matches are atgeitwhich will cause
a big divergence in the map.

To discard the wrong matches, further steps are necessmri@], the well-
know RANSAC approach, which is famous for coping with noisyadand outliers,
is used to discard the wrong matches. Its principle works &8FAC, i.e., ran-
domly select three matched feature pairs, which is the nahimmmber to compute
arigid transformation. According to the determined transfation, the pairs, which
the pairwise Eucliden distance do not match, are consideredtliers and rejected,
while other pairs are considered as inliers. Then the nurobgiers is counted.
These steps are executed iteratively and the transformattb most inliers is kept.
However, RANSAC algorithm is suitable for the cases withrgéanumber of fea-
ture pairs. In our work, in two successive frames, most oftithes there are few
pairs of corresponding planes found, therefore RANSACa ool be used here.

In order to further ward off the possibility of wrong matches plane match-
ing consistency test is presented based on the assumpébthémotion of robot
between two measurement samples is rigid. Therefore, ntipte the relative ro-
tations estimated by different pairs of matching planesikhbe same.

Plane Matching Consistency Test

After the above four tests, the plane features in curremé@; are divided into two
categories: (1) successfully paired features. (2) plahasdould not be matched
to any plane feature in previous frardé_,. The latter ones are considered as
previously invisible, and labeled as new features.

Assuming a listC of corresponding pairs, along with their similarity meassur
{P; < P1;,1s(i,j)},i =1...Ny,j = 1...N,_; are obtained. Obviously, the
size of list/V is not larger thanV, andN;_1, i.e., N, < min(Ny, Ny_1).

Given a pair of corresponding planés; <> F,_, ;, we are able to estimate the
relative robot rotatior! ' between frameg,; andF,_,, since planeP;; and plane
P, ; represent a same physical plafig.! is computed as:

Note that the time indicesand¢ — 1 have been omitted for clarity. Thus a list
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Ly of relative rotationg6; ;} will be obtained. Its size equals to the sizef In
a rigid motion, the relative rotation angles should be saree, their differences
are expected to be close to 0. Thus their differences aradmyes to check the
consistency between determined correspondencés in

For every two relative rotations iy, their absolute differenc& is computed.
Since N, rotations are obtained, there aﬁéé% differences between them. Then
we can get the maximum one. If the maximum difference is ctose, or less
than a fixed thresholdd,, all the relative rotations are considered as valid, ile., a
the correspondences are correct. Otherwise wrong matchesaumed to exist.
According to the similarity definition, a larger similaritgeans the associated cor-
responding pair is more reliable. Based on this, the worstimadicated by the
minimum similarity index is discarded. The same step is etext repeatedly un-
til the maximum difference between relative rotations ssléhan the pre-defined
thresholddd;. The remained correspondences construct the final comdspoe
set:

o £ {Ptflvi e Ptvj’ [S<Z,j)} (415)

The set2* may still contain non-unique correspondences, i.e., sdareep in frame
Fi—1 may be mapped to more than one plane in current fréineFor instance,
P,_, ; is matched with more than one other planefin The uniqueness problem
is solved by sorting their similarity measurgs The pair with maximum similarity
index is retained while other pairs are rejected. The fixedesponding planes are
labeled with a common index.

4.4 Corner Matching

The arrangement information between single features, caderelations among
features or their configuration, is an important aspect mespondence problem,
which may greatly help toward a solution. That means try td firatches not only

based on the observed features, but also according to tlggniaation. This is

especially useful when features lack distinctive propsrtiGeometric constraints
root in the fact that features are not isolated landmarkeerahey are related by the
structure of the scene.

In fact, arrangement information links individual featsitegether. Therefore, it
provides a larger context than a single feature. On the tidued, this larger context
may be introduced as a new higher level (in the sense of alisinafeature which
is then much more unique and distinctive comparing to itmel&s. For instance,
joining three intersecting planes together to form an aytmal corner, which is
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discussed in this thesis. Or even non-geometrical casésasiclustering SIFT
features into templates which are then classified into edjec

A single orthogonal corner constructed by three interagagtlanes is enough
to lock all degrees of freedom in space, since it is a poirtufesand encodes the
orientations of its parent planes. Therefore, completeptsicking or localization
is possible using corner features. m[Sl], in order to estarthe translation, the
authors resort back to point features, which is identicatifees, which is essentially
the same as ICP.

On the assumption that the floor is flat, the robot poses argepted in 2D
transformations irffE/(2). Thus it is possible to project the orthogonal corners into
Z,y--plane in robot reference frame and use their projectionmésent them. In
this case, the values along) of all the corners are set to 0, and a corner can be
thought as constructed by two vertical planes, shown inreigd. In Figuré 414,

a cornerCy,; is constructed by two intersecting vertical plaitg¢s and P, ;, where

k is the index of robot reference fran¥e,, ¢ is the index of extracted features in
frame F;, and (x,y) presents its position in 2D. Additionally, the orientation
formation of its parent planes is inherited to it. Thus theneoC), ; is presented
asCyi(zi, yi, 0%, 00), where(z;, y;) defines its position, whilgd?, 07) encodes its

)y
orientation information.

Figure 4.4: Representation of the projection of an orthadjptane in 2D space

As for the problem of plane matching, corner matching casgnsfinding which
corners represent the same physical corner and labellerg thith a common in-
dex. Generally, as mentioned before, higher features awthegonal corners here,
are used to initiate the search for correspondences an@shbé of their bindings
are inherited to lower level features, i.e., corners areeetqul to be matched first,
then their parent planes are associated. However, in oW, Wa matching process
starts from plane matching problem which are the basis fegtand corners corre-
spondences are based on the plane matching results. Thetiwotifor this choice
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is twofold: (1) in the experiments of this thesis, less cosrage observed than what
is expected. For instance, in a long corridor environmemly tur corners can be
detected on the end sides of the corridor, while more plaatohes are observed.
(2) the plane matching is robust, most of the false corredpoces are discard by
using different tests presented before and all the detexincorrespondences are
accepted as true. Actually, in practise, false corresporeteare unavoidable.

Since all detected corners are made by intersecting plaogsgr matching can
be built on the basis of plane correspondences results. mbans that corners
which are constructed by the same planes are considered tloebgsame phys-
ical corner, i.e., given two cornels,; and C;_, j, which constructed by plane-
sets{ P, 1, P2} and{P,_1 j1, P,_1 o} respectively, ifP, ;1 < P11 and P, ;5 <
P,_1 jo, then we have’, ; <+ Cy_q ;.

4.5 Relative Transformation Estimation

After plane matching and corner matching procedures, tiheesponding planes
and corners between framgs and 7, are determined. Given a pair of matching
planesF, ; in frameF; and P,_, ; in frame F,_,, denoted by a common index, the
relative rotatiord, between frame&; and.F;_; is computed as:

0, =67 — 67 (4.16)

wheref? and¢; are orientations of plang;_; ; and P, ; respectively.

For a pair of matching cornefs, ; andC,_, ;, not only the relative rotatio!i.’]ﬁ‘1
but also the translatiot{ ' can be estimated, since a corner fixes the position and
orientation information at the same time. The two corneesralated by

xj cosf, —sinf, 0 ; Ax
y; | = | sin6. cosf. 0O yvi |+ Ay (4.17)
1 0 0 1 1 0

where(z;,y;) and(z;,y;) are the position information of matching cornérs ; ;
andC; ; respectively(Ax, Ay) are the relative translatiay !, andd, is the relative
rotation, as estimated by Eq.(4116). Then the transfoonatiatrixt! ' is obtained

Az x; cosf, —sinf, 0 T;
Ay | =\ vy; | = | sinf. cosb, 0 Yi (4.18)
0 1 0 0 1 1

According to Eq[(4.16) and E@.(4]18), the pairwise tramsfitions between robot
poses can be computed and form the edges of a pose graphgethate called the
front-end part in SLAM.
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4.6 Summary

In this Chapter, based on large planar surfaces and 3D atabgorners extracted
from point clouds, a plane matching algorithm was presefdetinding the plane
correspondences, as well as orthogonal corners betweseadive frames.

On the assumption that the robot is operating in the planig,\amtical planar
surfaces are considered in this Chapter. Thus it is possilgeoject them onto the
Z,y--plane and use their projections, i.e., 2D lines to repretheplanes. Different
to the normal representations of line, we parameterizegeausing two parameters
(67, d) to represent its relationship with the robot better, whieha@nsidered as the
geometric information of planes.

The plane matching algorithm is performed by maximizingghmeilarity met-
ric between a pair of planes within a search space to deteroomrespondences
between planes. The search space is pruned using the fdlicwteria: odometric
rotation agreement test, odometric translation agreetestitappearance similarity
test, and size similarity test. To further discard wrongcahas, a plane matching
consistent test is given based on the fact that the estimel&til/e rotations by us-
ing different determined correspondences should be sanue, the robot is rigidly
moved between two poses. The determined plane correspoeslare extended to
the corner matching procedure. Based on the determineespmndences, the pose
changes in orientation and position are estimated, forradggs between consecu-
tive nodes in a pose graph. The formed pose graph is feed tseagpaph optimizer
algorithm (SLAM back-end) to obtain a consistent and gldbajectory of robot,
which will be discussed in next Chapter.
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Chapter 5

SLAM Back-end

Alignment between successive frames is a good method fckitg the robot tra-

jectory over moderate distances. However, errors in algrirbetween particular
pairs of frames, are unavoidable in practice. Moreoversen@i the obtained 3D
point cloud, cause the estimation of robot poses to drift tivee, leading to a di-

vergence in the final map. This is more noticeable when thetroloves a long

path. The drifting errors are accumulating as the robot mosulting a not glob-
ally consistent trajectory of robot. To create a globallpsistent trajectory, a well
assessed strategy is the so called pose graph optimizedferred as SLAM back-

end. The objective of SLAM back-end is to estimate the raqmd'ses that maximize
the likelihood of obtained constraints.

Global optimization is especially beneficial in case of glatosure, i.e., when
a robot drives in a loop and goes back to its starting locasorce the loop closing
edges in the graph allow to reduce the accumulated errorp kctasure is espe-
cially important in robotic mapping applications. It can dédressed as a place
recognition problem. Without the ability to recognize thre\pously visited places,
the position uncertainty of the robot increases withoutrfebdue to the continuous
accumulation of dead-reckoning error and causes two reptasons of the same
region in different locations. Place recognitions serve@sstraints on the motion
of the robot, allowing a correction of its dead-reckoninges.

Loop closing is difficult for some reasons. For instance,dfmme location can
look very different depending on which direction the extenotive sensor is point-
ing towards, or the environment changes caused by dynanactsbsuch as moving
humans or chairs. In recent years, loop closure detectismdteived considerable
attention. Approaches to loop closure detection in 2D hawadly been presented,
especially using 2D imageazaléﬂ&ﬂm]. On the othant, 3D point clouds
have not been widely used for loop closure detection.

In this Chapter, loop closure detection is addressed udihg@nt clouds and
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the pose graph optimization are discussed. First a conalaitiew about loop clo-
sure detection is presented to give a picture of existingt&ols in general. Then
we introduce a descriptor for 3D point cloud: viewpoint feathistogram (VFH) as
described inBS] briefly, which will be used in our loop closuletection algorithm.
Then the presented loop closure detection algorithm isaex@dl thoroughly. After
a brief discussion to the SLAM back-end problem, a linearepgsph optimiza-
tion used in this work is introduced . Conclusions are preseat the end of this
Chapter.

5.1 Loop Closure Detection

Loop closure detection can be seen as a place recognitidanprdt consists of
recognizing that the robot has returned to a previouslyedsiocation, i.e., deter-
mining that whether or not the current point cloud is simitaa previous one. Loop
closure detection allows to refine the estimated map and todgectory, since the
point clouds from a same location must be aligned with ealsrot

When the robot arrives at a previously visited location, f@ms a loop, the
current point cloudP;, should resemble a point clod®, acquired previously, i.e.,
t — k > 1. A comparison is performed between point clo®sandP;, in order to
determine whether or not a loop closure has occurred.

In this thesis, a loop closure detection based on a noveligescfor 3D point
cloud, named viewpoint feature histogram (VFH) and colstdgram is presented.
It is inspired by the strong recognition ability of VFH, whithe usage of color
histogram feature is to test the recognition further so t&eraop closure detection
more reliable.

VFH is a novel descriptor for representing a surface patch Btatistical his-
togram describing its geometry and viewpoint informatibncontrast to 3D point
clouds, it reduces the dimension of data and requires lessomye Therefore, work-
ing on features is easier than working with full point clowatal it is not computa-
tionally expensive.

5.1.1 Related Work

A large part of the related loop detection literature is femlion data from camera
images and range data, in both 2D and 3D.

Laser sensors are widely used in SLAM. For exampleﬁ [Elﬁ] &w laser
scans are used for relative pose estimation. Recently, @@pdlosure detection
algorithm introduced ir{EZ] shows a good performance. ésusdaBoost to create
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a strong classifier composed from 20 weak classifiers, eagrhmh describes a
global feature of a 2D laser scan. The two most important weagsifiers are
reported to be the area enclosed by the complete 2D scan arate¢h when the
scan points with maximum range have been removed.

In [IE], laser range scans are fused with images to form geecs of the ob-
jects used as landmarks. The laser scans are used to dgieosref interest in the
images through polynomial fitting of laser scan segmentdevihe landmarks are
represented using visual features. Another example of ¢bagure detection algo-
rithm, using both visual cues and laser data, is present@]n Shape descriptors
such as angle histograms and entropy are used to descrilpesdcitl the laser scans.
A loop closure is only accepted if both visual and spatial parisons meet a match
metric.

Work on vision-based loop closure detection have been preden EV] Eé].
A bag-of-words approach is presented, where scenes aesegyied as a collection
of “visual words” (local visual features) drawn from a “dmary” of available
features. The appearance descriptor is a binary vectotatidg the presence or
absence of all words in the dictionary and it is used withinabpbilistic framework
together with a generative model of the observations. Agrotision based loop
closure detection approach is introducem [10], where Bif#atures are extracted
from images and classified as words using Tree-of-Words. aliapconstraint is
imposed by checking nearest neighbors for each word in thgés In contrast to
offline as in Eb], a similar approach using visual words whig built online, for
monocular SLAM is presented in [21].

Recently, methods for loop closure detection for 3D poiatds are introduced,
which are similar to our case. IEGS], a method based on thenldbDistribu-
tion Transform (NDT) ﬂs] is presented. The NDT acts as a laEscriptor of the
point cloud. After discretizing space into bins, or cubéeg, points in each bin are
described as either linear, planar or spherical by comgaha size of the covari-
ance matrix eigenvalues. Invariance to rotation is acliefter scans have been
aligned according to the dominant planar surface oriesmatAnother method for
loop closure detection from 3D range data is present@_h [B% point cloud is
transformed into a range image, from which features ar@aetad by computing the
second derivative of the depth values in the range imageElilcBdean distance is
used to compare the quality of match between pairwise featuCandidate trans-
formations are calculated by matching features, and a ss@ssigned to evaluate
how well the two scans are aligned. Rotation invariance sexed by orienting
image patches along the woddxis. According to the authors this does not restrict
the performance of the method as long as the robot moves onsaifface.
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5.1.2 View Point Feature Histogram (VFH)
Surface Normals

Given a 3D pointp,, a local feature representation that captures the georoétry
the underlying sampled aroung can be estimated by using its neighboring points
P*. Surface normals, that describe its orientation in a coatei system, are impor-
tant properties of a surface. They are heavily used in maeg smch as computer
graphics to determine a surface’s orientation toward & kglurce for flat shading
and other visual effects.

Many different normal estimation methods have been pregeand a compar-
ison is presented in_[50]. The simplest method is based ofiirteorder plane
fitting as proposed by [3]. The normal to a point on the suriacpproximately
determined by the normal of a plane tangent to the surfaceurmit becomes a
least-square plane fitting estimation based on its neighdy@oints sefP”.

We assume that the tangent plane is presented as agpaimt a normal vector
i, and the distance from a poipt € P* to the plane is defined @ = (p, — p) - 7.
The value ofp andri are computed in a least-square sense safthat0. The point
p is computed as the centroid pf € P*, shown as:

k
1
*:_E A 5.1

wherek is the number of point neighbors iB*. The normali is estimated by
analyzing the eigenvalues and eigenvectors of the covaiamatrixC € R3*? of
P*, expressed as:

C —

| =

k
d (pi-p)p,—D)". C¥=\¥,  je{0,1,2} (5.2)
=1

A, is the j-th eigenvalue of the covariance matrix, afdthe corresponding-th
eigenvector.

C' is symmetric and positive semi-definite, and its eigenvahre real numbers
A; € R. The eigenvectorg; form an orthogonal frame, corresponding to the prin-
cipal components oP*. If 0 < Ay < \; < )\, the eigenvectof;, corresponding
to the smallest eigenvalug is therefore the approximation efri = {n,,n,,n.}
or —7i. According to the above description, the estimated norsxdependent on
the size of neighborhoof&”. So the choice of: is important in order to suitably
estimate the normal.

Figure[5.1 presents an example of surface normal estimétiopoints lying
on a small box. As shown, the resultant surface normals cisab$yidescribe the
geometric feature of the surface surrounding the deteaigdy
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Figure 5.1: An example of surface normals estimation fonfzdlying on a 3D box.
The white arrows show the direction of estimated normals.

Viewpoint Feature Histogram

Viewpoint feature histogram (VFH) is an extension of fasinpéeature histogram
(FPFH) [76]. It combines FPFH with viewpoint component santaerit the strong
recognition ability of FPFH, meanwhile encode the relaglup between the view-
point and surface normals on the query point cloud or object.

As its name implies, a point feature histogram represemtgdBFH) presented in
[80Q], is a statistic histogram which encodes the relatigrshetween every pair of
points and their normals on a surface patch. Given a pair gfd@bts(p;, p;), their
estimated surface normals atgandsi;, respectively. The relationship between the
normals is defined as the angular deviati¢as/, v}, which are estimated as:

a = V-1, (5.3)
_ H-L;pi (5.4)
= arctan(w - 7;,u- 1) (5.5)

wheret, v, w represent a Darboux frame coordinate system chospp andd is
the Euclidean distance between poipfandp;. Then the point feature histogram
captures all the sets of, 3,y between all pairs ofp;, p;),i,j = 1,2,--- ,nona
surface patch and bins the results in a histogram. The bgitohof Figuré 5.2 [78]
presents the definition of the Darboux frame and a graphggaksentation of the
three angular features between pairwise points.

If p; is only defined ag-nearest neighbor points pf so that the computation
time will be reduced, shown by subset of points in Fiquré Bextbtained histogram
will be a fast point feature histogram.

The viewpoint component is built by collecting a histograhthe angles that
translating the central viewpoint direction to each of tlkenmals on the patch sur-
face. Similar to PFH, it measures the relative pan, tilt aad yngles between the
viewpoint direction at the central point and each of the radsm
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W=U=v

Figure 5.2: The extended fast point feature histogram cisllthe statistics of the
relative angles between the surface normals at each pdhe surface normal at the
centroid of the object. The bottom left part of the figure diss the three angular
feature for an example pair of points, while the top right gaiows a surface patch
which the points lying in.

Figure[5.8 shows an example of VFH presentation for a poimid:l Notice
that in Figurd 5.8 the VFH is divided into four sub-histogegmwhere the first sub-
histogram presents the viewpoint component, while therdatiree correspond to
the FPFH component.

) M U\ N_,J
100. 200. 300.

0.00
0.00

400.

Figure 5.3: An example of VFH presentation of an obtaineepdbud.

5.1.3 Loop Closure Detection using VFH

Our loop closure detection algorithm uses the same priaaiged in other ap-
proaches: detect the loop closure by comparing the pairpoesa clouds. In or-
der to reduce the computation time, we define keyframes,iwdme a subset of the
overall aligned frames. Moreover, the use of keyframes &@pkhe graph rela-
tively sparse.
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In [@], the keyframes are defined based on visual overlagsen& frame,
when it fails to match against the previous keyframes, itegetnined as a new
keyframe. In this work, the frames in which 3D orthogonalnsos are detected
are defined as keyframes, since the point clouds contairingrhogonal corners
encodes more geometry information and are more distingblsh Moreover, the
rigid transformation between the determined loop closmagies, can be estimated
by the identical corners in both frames, which is similarhie tegistration using
corner matching discussed in Chapter 4. And the point clagdeciated with them
are defined as key point clouds.

Each time a keyframe is found, we attempt to compare it withgaevious
keyframe and detect whether or not a loop closure has octufréoop closure is
determined if the detected frames meet the predefined gdoaletonsistent and
color-appearance consistent conditions. Then the posgyehaetween these two
frames are estimated, and added to the graph.

Thus, the whole loop closure detection algorithm consistié following two
steps:

1. detecting whether or not a loop closure has occurred igening features
of pairwise point clouds.

2. finding the corresponding corners which present an idainjieometrical cor-
ner, which is used to estimate the rigid transformation ketwtwo frames.

The two steps are separately explained below.

Loop Closure Determination

A current frameF,;, associated with point cloug,, is labeled as a keyframe if one

or more corners are detected/y, Assuming all the previous keyframes are saved
insetF, = {F,0 < k < t—1}, and their corresponding VFH features form the set
V, ={V,,0 < k <t — 1}, while their color-appearance histograms are presented
asH,; = {H;,0 < k <t — 1}. Our approach detects loop closures by matching
current frame against the previously collected frames.atdifate the comparison

of two framesF; and.F;, the both features are considered. The approach consists
in the following two steps:

1. select the frames that meet the geometric consistenbyestmparing their
VFH features. The underlying idea here is that point cloudpiaed at the
same location will have similar VFH feature valuésandV/,.
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2. select the final frame that has the largest color appearemtsistency. The
underlying idea here is that point clouds acquired at theedaoation should
have similar color information.

In the first step, the algorithm searches for a subset of sporeding VFH for
the geometric persistent feature histogram of the query \irbirder to quantify the
different between two VFH featurés andV;,, we compute the Chi-square distance
dy between them. The Chi-square distance is defined as:

1 (Vii = Viei)?
 —— ~— 56
V2 Z Vii+ Vi (5:6)

whereV, ; andV}; present the-th bin value ofl; andV,, respectively.

To select the frames which have similar VFH features withcingent one effi-
ciently, a kd-tree is created in the VFH feature histograpags, and for each query
VFH V,, a K-nearest neighbor search in the previous VFH set. H limmes, saved
in set F'i, with most similar VFH features are returned with sorted-Siuiare
distance in increasing order. To discard wrong matchesealefined maximum
thresholdAd, is used further to choose potential candidate framesior.e., for
every frameF, € F', if its associated Chi-square distance is less thdp, it is
added to the potential candidate #&t expressed as:

F.={F.|d,(Vi,V}) < Ad,, Fr € Fic} (5.7)

In the second phase of the approach, the final resolved frassddcted by using
color appearance feature frof).. Similar to the discussion in Chapter 4, here the
correlation between color histograms in RGB space is usathdg measure the
similarity between the detected frames (or point cloud$)the point clouds are
obtained at same location, their color appearances aréasiitius the correlation
should be close to 1. The use of color histogram is not onlyhtmose the final
matching frame, but also make the loop closure detectioremadiable. In this case,
the frame inF'. with the largest color covariance, greater than a fixed nmumm
thresholdAH., is determined to be the final frame resembling to the quemér
F:. It will be denoted asF; < F,. While if no frame passes the two persistent
tests, it means that the robot has moved to a new locatioruafgt if the size of
F'.is 0, the second step is not needed.

Corner Matching

Defining the frames, in which 3D orthogonal corners are deteas keyframes, has
the advantage that we can make use of the included cornestitoa¢e the rigid
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roto-translation between the determined loop closuregescorners can lock all
the degrees it £(2). Thus we do not need to resort back to other registration
approaches, like point-to-point ICP.

We consider a pair of frames presenting a same scEnfpm which the in-
dexed corner-sef’; is observed, andr, from which the indexed corner-sét, is
observed. In order to keep the notation consistent, we assumt. Here the goal
is to estimate the relative transformatid}, t*, resolved in local reference frame
Fr, by using corner-sets; andC.

To estimate the transformation by using corners, first weehavind the cor-
respondences, presenting the same physical corner, bretweecorner-sets. A
matching algorithm has to be applied to find the correct apowadences between
corner-sets’; andC'.. This is similar to the corner matching problem discussed in
Chapter 4, but it is more challenging. In Chapter 4, the odgmaformation is
used to find the potential candidates and discard wrong restcHowever, since
with the typical odometry errors the pose estimate will ialtp wrong after a long
distance, the odometry information can not be used here.

The corners in a same frame look different depending on thkitive relation-
ship with respect to the direction the scanner is pointingaras. As presented
before, VFH feature encodes the geometrical structure @&wipoint information
in the meanwhile. Therefore, for two corners in a same frameyinciple, their
corresponding VFHs will be different. Figufe 5.4(a) andUf&f5.4(b) show the
VFH features of two corners in a same frame, respectivebartbe seen that Fig-
ure[5.4(@) is quite different from Figufe 5.4(b), satistyihe expected. Based on
this, here we reuse the VFH feature again to find the similarers in the detected
two loop closing frames.

300
250

200

000
vo0 200,

A )

(a) VFH of cornerC} ; (b) VFH of cornerCy ;

g

Figure 5.4: Examples of VFH representations for two cordetected in the frame
Fi.

Similar to above, the corners with the most similar VFH feesui.e., the lowest
Chi-square distance, are determined as correspondingrsorin our case, gener-
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ally, there is only one or two corners detected in a frames tHeH feature is enough
to determine the correct corner correspondences and @ature is not used here.
The experimental results validates the presented appra@achVFH feature can

find the correct corner correspondences. The experimesdalts will be reported

in Chapter 6.

5.2 SLAM Back-end

In graph-based SLAM, the poses of the robot are modeled bgsimda graph and
labeled with their position in the environment. Spatial stoaints between poses
that estimated from scan-matching or provided from odoyneteasurements are
encoded in the edges between the nodes. Each node in thergpmpkents a robot
position and a measurement acquired at that position. Iipt€hd, a plane match-
ing approach was presented to construct spatial constrbettiveen consecutive
poses from sensor data. While in the above section in thipt€haa loop clo-
sure detection algorithm combining VFH feature and colstdgram feature, was
introduced, which allows the robot has the ability to redagrpreviously-visited
places and estimate the transformations between the tvespdsey mainly focus
on extracting the constraints from sensor data and is oftienred to as the SLAM
front-end. In contrast to that, the SLAM back-end aims atexiing a pose graph
given all constraints.

The goal of SLAM back-end is to find the best poses configunagiven the
constraints. A number of optimization algorithms based bA back-ends are
readily available as open source libraries. For instan?cm@], TORO EV], MTK

]. Choosing a suitable optimizer is important to obtaiooasistent and accu-
rate trajectory of the robot. Targeting to our work, a linepproximation for the
pose graph configuration proposed [J@ [12] is selectaxptonize the built pose
graph.

5.2.1 Problem Statement

Given the built pose-graph from SLAM front-end, the objeetf SLAM back-end
is to find the configuration of the robot poses that best sasisfie constraints. Let
us call the robot poses= {x, xs, . .., X, }, wherex; describes the pose of node
x; is in the formx; = [p;? 6;]7 € SE(2), wherep; € R? is the Cartesian position
of thei-th pose, and); is its orientation.

The virtual relative pose between the nadmd nodej is assumed aéj. Note
that éij is expressed in local reference frame/&f and it makes the observation
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acquired fromi maximally overlap with the observation acquired frgnHowever,
the relative pose measurement between the two nodes actedfiiey noise, i.e.,
&; = &; + ¢, wheree;; € R? is a zero mean Gaussian noise, ieg..~ N (0,C;;),
C,; is 3 by 3 covariance matrix.

The pose graph built in front-end procedure is indicated @s <), wheree is
the graph edges, containing the unordered node pajissuch that a relative pose
measurement exists betweemand j. Once the relative pose measurements and
the corresponding uncertainty are given, the robot is requio estimate its pose
configurationx in a given global reference frame. Usually the initial po$¢he
robot is set to be the origin of the global reference franee,st, = [0,0,0]".

The goal of SLAM back-end is to determine the configuratiothefrobot poses
x* that minimizes the negative likelihood of all the obsermati Generally it is
expressed as:

f(x) = Z e(Xij’fz‘j)TQz‘je(Xi,Xj"fz‘j) (5.8)
(i,4)€e
wheree(x;, x;, &;;) is a function that computes the difference between the ¢ggec
observatioréj and the real observatiafy; gathered by the robof) represents the
information matrix of the virtual measuremef;t between poses; andx;. Since
the measurement noise is assumed as Gaussian noise, ti®bkeunction [5.8)
is equivalent to minimize the sum of the weighted residuadrsr

Foo) =D (& —&)C; (& — &) (5.9)
(i,4)€e
Here(;; = C;;'. The full SLAM problem is hence formulated as a minimization
of the nonlinear non-convex function (5.9), i.e., the ogimonfiguration isx* =

arg min f(x) [IB]

5.2.2 A Linear Pose-Graph Optimizer

A linear pose graph optimizing algorithm has been recentig@nted inﬂZ]. The
work is extended in [13] relaxing the hypothesis that mears@nt covariance matri-
ces have a block diagonal structure. Under the assumptabnhé relative position
and the relative orientation are independent, the full SLAMDblem is approxi-
mated to be a closed-form solutions. The approaches neettiad guess for opti-
mization and can be solved in a single step instead of iv@igtilts general idea is
to separate the estimation of orientation and position. #yreating both quantities
separately, the optimizing problem is divided into two an@roblems.

Each relative pose measurement congjstsvo components: relative position
and relative orientation. Thus each measurerggiis rewritten ast;; = [Al;, d;] T,
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whereAﬁj corresponds to the relative position, while presents the relative orien-
tation where the superscriptlenotes that the relative position vector is expressed
in a local frame. The relative rotation measuremgnts regularized by adding a
suitable multiple oRr, i.e., {6;;} = d;; + 2k;;m, wherek;; is called regularization
term. Thus the cost function (5.9) can be rewritten as

fx) =)

(i,5)€e

Rz‘T(Pj —pi) — Ai‘j
(0; — 0:) — 035

Rz‘T(Pj —pi) — Aéj
(0 — 0;) — 0

-1
1j

(5.10)

where R; € R? is a planar rotation matrix of angl. The relative position in-
formation and the relative orientation measurements aenasd independent, i.e.
Cij = diachéj,Cgij). Under this assumption the cost functiffx) becomes:

f6) =3[R (0 = p) = &) €4 [RT(ps = pi) = Al

(i,7)€e

+ ) [0, 0:) = 6,)" C.[(6; = 6:) — b5]

(i,7)€e

(5.11)

To put the previous formulation in a more compact form, tHatinee position
measurements are stacked in the vector= [(A}) T, (A})T..., (Aﬁn)T]T, while
all the relative orientation measurements are in the veéctofd,, ds, . . ., 6m]T. Ac-
cordingly, the information matrix2;;, (i, j) € ¢ is reorganized into a large matrix.
Then the cost functio (5.11) can be written as:

J() =(43p = RA)T(RCxRT)™H(A] p — RA')+ (5.12)
(ATO —6)C; 1 (AT0 — 6) -

where:
e Ais the reduced incidence matrix of gragh
e Ay, = A® I, is an expanded version off,

e R = R(0) € R*™*™ s a block diagonal matrix, whose nonzero entries are in
positions(2k — 1,2k — 1), (2k — 1, 2k), (2k, 2k — 1), (2k, 2k), k=1,...,m,
such that, if thet-th measurement correspond to the relative pose betiween
andy, then thek-th diagonal block of? is a planar rotation matrix of an angle
0;.

The minimization of the cost function (5112) is equivalemffind the solution
satisfying the following two constraints:

{ Agp = R(O)A!

5.13
ATo =6 ( )
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In principle, the cost function (5.12) will be zero when ag@n exactly satisfies the
constraints presented in (5113). Otherwise, a minimundeesierrors is searched
with the constraint§ (5.13).

Notice that the seconde constraints, including the redativentation measure-
ment, is linear in the unknown varialdde An obtained result provides an estimate
of the relative measurement for the first equationin (5.13)us the whole opti-
mization procedure is divided into three phases:

1. consider the second constraint, solving the followingdir estimation prob-
lem
AT =96 (5.14)

from which the suboptimal orientation estimatend its covariance matrix
can be obtained. The E{.(5]14) is a standard linear estmptoblem. Ac-
cording to the linear estimation theory, the optifiand the corresponding
covariance are:

0= (AC'AT)TACYY0  Cy= ACTAT (5.15)

respectively.
Therefore, using as the actual nodes’ orientation, an estimate for the positi
p Is obtained, expressed as:

p= [AQ(RCNRT)‘lA;] Ay(RCART) L RA! (5.16)

whereR = R(6). It is important to note that the first equation [n(3.14) also

constraints the orientations of the robot, thus the esémat [p" 0']" is a
suboptimal solution and needs to be corrected later.

2. estimate the relative position measurements in the giteberence frame:

~

R Ogen | | A Al g
i=| 2 Y| 9(AL6) (5.17)
02m><n In Q 92(8) 0—0

compute the corresponding uncertainty:

C.=H fN Oamsn || 2| gy (5.18)
02m><n Cé 9

whereH is the Jacobian of the transformation(in (8.17):

991 Og1 .
IAL 90 R J

H pr— = 5.19
% % 02m><n In ] ( )
OAl 00
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In this phase; is the estimate of the relative position measurements in the
global reference frame, and it is formed as= [(A9)T 47]T whereAs =

Ré' is the vector containing the relative node position expéss the abso-
lute reference framé&,.

. As mentioned before, the estimatedonstitutes a suboptimal solution. Thus
in the last phase, it is corrected, leading to get the miniméithe cost func-
tion, i.e.,

0 =0+6, p=p+p (5.20)

in which 8 and@ are first-order correction terms.

Given z in (517) andC, in (5.18), it is able to solve the linear estimation
problem in the unknows = [p" 6']", shown as:

Al Oopixn
p= | L2 T Pl - BTx (5.21)
02m><n ]n e

from which the solutionx = [(p*)" (6*)"]" and the corresponding uncer-
tainty can be retrieved. The optimized poses is obtained as:

X" = [g — (BC;'BT)'BC 2 (5.22)

5.3 Summary

This Chapter presented the SLAM back-end algorithms, wisialsed to find a con-
figuration of the robot’s poses that is maximally consisteitih the measurement.

Loop closing is a form of place recognition that is centratte task of map

building: it prevents the unbounded growth of dead-reckgrarror. In this Chap-
ter, we described a loop closure detection algorithm fronp8iht clouds by com-
paring VFH descriptors and color histograms. Compared t@@&ibt clouds, VFH
descriptors compress the input point clouds’ geometryrmédion into meaning-
ful statistic histograms while keeping the viewpoint coment, thus it reduces the
dimension and store space of the data.

For avoiding expensive computation cost, the frames in wbithogonal cor-

ners are detected are defined as keyframes, since orthagwnats fix the position
and orientation at the same time. Similar to many other agres, the problem is
solved via comparing the features of pairwise views. Eauole tivhen a keyframe is
detected, we attempt to detect a loop closure with eachqueweyframes. A clo-
sure is detected if enough geometrically and color appearaansistent between
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pairwise frames matching. If so, VFH feature is used agaiintbthe correspond-
ing corners between the two frames, and the estimated ratstation is added to
the graph representing this newly discovered constraint.

Most of the optimization require the availability of an ialtguess for nonlinear
optimization. In order to get a global solution, a sufficlgraccurate initial guess
is needed. In this work, instead, a linear approximationttier pose graph opti-
mization has been applied that does not require any initiakg, and was shown
to be accurate in practise. In this Chapter, its theorebeakground was briefly
introduced.

The next Chapter presents the real 3D mapping results.
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Chapter 6

Experiments

Some exemplary experiments results are presented in tlaigt@hin order to eval-
uate the performance of the proposed plane-based 3D magigiogthm. The ex-
periments have been carried out with a Pioneer P3DX wheelsat rshown in Fig-
ure[6.1 , inside Dipartimento di Automatica e Informaticdatitecnico di Torino.
The robot is only equipped with wheel encoders, a laser réinder (SICK LMS-
200), and a Microsoft Kinect sensor, where the laser rangkefirs only used for
obstacle avoidance, while the wheel encoders and the Miftrigect sensor are
used for this work. The wheel encoders can provide initiamdtry information
about the robot poses, and the Microsoft Kinect sensor id teseollect 3D point
clouds of the environment. Notice that the Microsoft Kineainera is mounted on
the top of the robot, parallel to the ground floor, at an angl¢56 around the ver-
tical. This allows the Microsoft Kinect to sense the surrmiag walls, doors etc.,
better.

During the different experiments, instead of moving in gpsémd-go manner to
collect the data when the robot stands still, the robot mowasinuously, since the
Microsoft Kinect camera is able to provide both color imaged dense depth maps
at full video frame rate. When the robot passes through a do@nter into a new
space, the robot is manually guided through with slow speet that observation
samples remain proper.

Since the test environment is flat everywhere with the exaemf some small
ramps, it is believed that it is suitable to represent the@tslposes inSE(2), i.e.,
x; = |z,y, 0], wherex; is the robots pose at time The map is presented in 3D
constructed by attaching each acquired point cloud to iteesponding estimated
robot pose. In the sections below, after a simple test fopliuee matching registra-
tion, three 3D mapping experimental results are given, bagerformance of the
plane-based mapping algorithm is analyzed in a qualitatese by comparing their
reconstructed 3D map with the real scenarios, respectively
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Figure 6.1: The robot used for the experiments is a difféaédtive mobile robot
equipped with a multitude of sensors: wheel encoders, al9t&-200 laser range
scanners and a Microsoft Kinect camera. As mentioned earlibe text, only the
wheel encoders and the Microsoft Kinect camera are usedhfomnork. The laser
scanner is only used for obstacle avoidance. For each fridm@éJlicrosoft Kinect
camera obtains 307,20040 x 480) 3D points, corresponding to the dimension of
the acquired image.
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In this thesis, Point Cloud Library (PCIM79] is used for poeloud processing,
while OpenCYV Library![9] is used for histogram processingiring the experiment,
in order to make the plane matching procedure more religidees with an area
smaller than 0.25 fand with a number of supporting points smaller than 500 are
filtered out.

6.1 Plane Matching Registration Experiments

As mentioned before, to robustly build correspondencesdsst plane-sets in two
consecutive frames, is a difficult task. In Chapter 4, a plaagching algorithm
was presented for finding the plane correspondences, aasveithogonal corners
between consecutive frames. Based on the determined pon@snces, the pose
changes in orientation and position are estimated, forrdyges between consecu-
tive nodes in a pose graph.

Here in order to estimate the performance of the plane nmegdmpproach, reg-
istration tests between ten sets of successfully pairedemnive frames were pre-
formed. For each set of paired frames, the relative rotastedion information are
computed based on the correspondences between the fedgteeted in these two
frames. Therefore we were able to test the plane matchinyitdgy by regis-
tering pairwise frames together and evaluating the registr results. Since the
relative roto-translation between two frames is unknowrs difficult to evaluate
the registration in quantitative way. Here the results efghirwise registrations are
manually inspected, as iﬂ?l].

Meanwhile, a comparison with two baseline registratioroatgms was pre-
formed. The standard ICP algorithm was used as one of theergfe implemen-
tations, while the SAmple Consensus Initial Alignment (SKG with FPFH pro-
vided a second point of comparison. In Chapter 2, their bhsiories were intro-
duced briefly.

The performance of the discussed registration algorithwes all 10 test pair-
wise frames is summarized in Figlrel6.2 and Tablé 6.1. Ndétaeno corners are
included in Figuré 612, in the first five frame sets. Thereféwethese frame sets,
only the relative orientation information could be estiatht Their registration re-
sults are evaluated by checking whether or not the detectedsponding surfaces
are parallel. If the corresponding surfaces are parafielrégistration is considered
as successful. Otherwise it is labeled as failed. Whilelierlast five frame sets,
corresponding corners are detected. Thus, both relatieatation and position in-
formation could be estimated. A registration is judged teehfailed only if there
are severe displacements between the two supposedlyeregistames.
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From Figurd 6.R, it can be seen that for all the registratesuits using plane
matching registration method, there are not obvious ngeaient. And all the reg-
istration results are labeled as successful in Table 6.1.

The performance of the base-line ICP algorithm is very gaodaan pairs sets
{Fa1, Foo }s { Fr0, Fi1}» { Fse, Fss } and{Fao0, F201 }, but extremely poor on frames
{Fi3, Fraa}, €ven worse than the odometry. While for the pairwise fraets s
{F1, F2}, {Fios, Fros} and {Fis, Fiaa}, there is no obvious improvement with
respect to the odometry ones. This occurs when moderateggpdsie changes
happening between two successive views. Two factors anedub the failure
results: (1) large overlap but few features in the framesclvrepresents a typical
failure case for ICP; (2) bad initial guesses from odometrfprimation. ICP is
known to perform better if a good initial guess is given, esgéy for the rotation.
When a bad pose is given as the initial guess for the iteragemerally, the outcome
is notimproved. On the contrary, it worsens the outcomes.régistration between
frames{ F,3, F144} is an example of this behavior.

The second reference approach SAC-IA with FPFH featuresnditddeliver
promising results for all the registration results. Witlspect to ICP, the big er-
ror in odometry in frame set§F143, F144} IS modified, and corresponding corners
are overlapped totally. Also for the frames $&f,, 711}, the registration results
improved significantly. However, there are still small nhiglaments in the regis-
tration of sets{ 71, 7>} and{Fios, Fio6}- Especially for the registration of frames
{Faa9, Fas0}, SACIA performs worst. Note that according to the theory ACHA,
it performs better when the scans have more features. Wilpdirwise scans
{Faa9, Fas0}, Only one plane points are in one scan, and their geometiyrisaare
similar. It is difficult to find a good transformation betweestimated features.

Compared with ICP and SAC-IA, results showed that the prepgdan match-
ing algorithm performs better over all with no gross misafigent for all the test
sets.

6.2 3D Mapping Experiments

In this section, three experiments are reported to evali@&D mapping using
plane-based SLAM algorithm, presented in this thesis.

6.2.1 Scenario 1: A Long Corridor

The DAUIN laboratory floor is used as the testing zone. Adyuidlconsists of a
long, narrow corridor with office rooms on both sides. Theidar is divided into
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(c) pairFs2; andFos (d) pairFi41 andFiys

(e) pairFas9 andFasg

(h) pair]:gg and]:gg

(i) pair F200 andFao1 () pair Fi43 and Fia4

Figure 6.2: Registration using presented algorithms oedecsed 10 pairwise
frames. The lower left: registration results using odogndtre lower right : regis-
tration results by ICP: upper left: registration resultsSACIA; upper right: plane-

matching registration
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pair ICP | SAC-IA | Plane Matching

(F1, F2) X X V
(For, F2) | i i
(Fros, Fos) | X X v
(Frar, Fraz) | X Vv Vv
(Faso, Foso) | v/ X v

(Fo, F1) | V v Vv
(F10, F11) | v i i
(Fs2, Fs3) | i i
(]‘—143, ]:144) \/ X \/
(Fao0, Foo1) | X v v

Table 6.1: Comparison of pairwise registration using défe algorithms, i.e., ICP,
SAC-IA and plane matching registration

two parts by a door on a small hallway connecting two part$efhuilding. For

reason of convenience, we call the two parts of the testingdoo left and right part

of the corridor respectively. Figute .3 shows differentpaf the real scenario. In
order to see if the robot may recognize the same placesdigiviously, in this

experiment, a looped trajectory is required. In our expentrthe robot started
from the left side of the corridor going along the corridortaghe right side, then it
returned to the starting location, in order to form a loogseig. The robot traveled
autonomously using a simple obstacle avoidance algoritbaring the run the

robot captured 258 point clouds and covered an area of:3% m.

(a) Left part of the corridor

(b) Right part of the corridor

Figure 6.3: The real scenario of the corridor.

Figure[6.4 shows a comparison between the robot trajecttipated by odom-
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Figure 6.4: Comparison of estimated trajectories. Theiredresents the recorded
trajectory by the robot odometry, while the blue one showsaptimized trajectory
(obtained with the proposed plane-based approach). Thehgtaosition is set to
(0,0). Apparently, the drifting error accumulates resulting icuaved odometry
trajectory. Meanwhile, according to odometry trajectoimg robot did not go back
to its starting position, which is not true. Therefore, a Higergence happens.
While the estimated trajectory using presented approactuch more consistent.

Figure 6.5: Top view of 3D map obtained using odometry onlpteNthat the ob-
tained map presents a seriously curved corridor, correipgrio the odometry tra-
jectory shown in Figure_6l4. Obviously, it does not matchréed scenario.
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Figure 6.6: Top view of the long corridor experiment recomsted using the pre-
sented plane-based SLAM. Note that it is more consistentitanshape is much
close to the real scenario.

etry only and by our plane-based SLAM algorithm. In this feguthe blue line

shows the obtained robot trajectory using plane-based SlLagdinst the odometry
measured path which is plotted in red. Apparently, as shoam fFigure 6.4, the

trajectory provided by wheel odometry is not consistenthasobot does not return
to its starting position.

The 3D maps are constructed by attaching each acquired goird to its as-
sociated robot pose. Figure 5.5 shows the 3D map obtaineeljistering the point
clouds just using the robot odometry. Corruption of the nggpléarly observable
through the deviation of corridor toward one side as the raebatinues its explo-
rations. Unbounded odometry drift is the reason of this aewn. Consequently,
at the end the robot is totally lost by an error of approxirya®® m from the true
position.

In contrast, in Figure 616 the map obtained by the planeeb&&&M algorithm
seems consistent with regard to the real scenario. It caedrethat the shape and
orientation of the constructed map is precisely matchimgréal scenario. The re-
sulted 3D map clearly represents the main structures ofahiglor. Walls and doors
are correctly mapped compared to those in reality. This isoofse theoretically
expected, since using plane matching procedure, there &rpo on orientation.
Notice that at the right end of the constructed corridor, lspiaces of the corridor
are missed. That is because the robot just passes by thessmelgeonce in this
experiment, and the detected planes with areas less thadepned threshold or
with few supporting points, are ignored.
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6.2.2 Scenario 2: A Hall

To test the presented plane-based SLAM approach furthesdbond experiment
was carried out in a closed small hall, in the third floor of D®UIN building.
The environment is similar to a typical office environmertluding walls, doors,
and also glass windows, tables, chairs, boxes and othendgmdbjects. Figure 617
shows the real appearance of the close hall.

The robot explored around the inner surrounding walls onwh ghat it was
able to capture the structure and shape of the environmempletely. At the end,
the robot returned to its starting point to form a loop, cavga total distance about
30 m. 189 3D point clouds were taken when the robot was movamgreuously,
one approximatively every 0.2 meters.

Similar to the previous experiment, the estimated trajgetaare shown as well
as the obtained 3D maps. Figlrel6.8 presents the odomegygttey and the op-
timized trajectory using plane-based SLAM algorithm, ameirtcorresponding 3D
maps are shown in Figure 6.9 and Figure 5.10, respectively.

As expected, the robot accumulates an error when it is moWagling to an
inconsistent map of the environment, shown in Fiduré 6.9s Hasy to observe
that at first, the odometry is still good in this experimemicg during this part, the
robot mainly made a forward motion (the robot started fromupper right part of
the hall). While after a big turn, the accumulated error isilgavisible as in the
reconstructed map.

Figure[6.10 shows the reconstruction of the environmenigysiane-based SLAM
method. In comparison to Figure .9, the remaining accuredlerror seems to be
negligible. The reconstructed map seems consistent anhitsstructure precisely
matches the real scenario. Note that some alignment errerstidl present and
some details are missing. This is mainly due to the fact tbat dorners are de-
tected because of the lacking of big supporting planes.esihe environment is
more cluttered with respect to the one in the previous erpent. However, the fact
that corresponding planes remain parallel shows that tta#ioo was accurately
estimated.

6.2.3 Scenario 3: A Large Loop

In the next experiment, the algorithm is challenged againatge loop to evaluate
the performance of presented plane-based SLAM further. ekperiment is done
in the ground floor of the main building of Politecnico di Tooi The experimental
zone approximately consists in three main corridors in tweations. Classrooms
and laboratories are along the both sides of the corridoos.tHe convenience of
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(a) Left part of the hall (b) Right part of the hall

Figure 6.7: The real appearance of the hall.

— Plane-based SLAM
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Figure 6.8: The estimated trajectories for the second @xget. As before, the
starting position of robot is set to @, 0). The red one presents the odoemtry path
which is not globally consistent. While the blue path showesabtained trajectory
using plane-based SLAM.
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Figure 6.9: A 3D view of the obtained map using odometry omlye drifting error
and inconsistency are easily observable. Specially thisaathe right part of the
resulting map are same regions, while they are presentatfenetht locations.

Figure 6.10: A 3D view of the built map using plane-based SLAMparently, it
closely presents the main structures of the real scenarem #gnough some small
misalignment are still present.
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explanation, the corridors are labeled as A, B, and C respégtand their config-

uration is shown in Figurle 6.111. The corridors are perpeandicor parallel to each
other. It is important to note that Figure 6.11 only approadely presents the rela-
tive relationship between the corridors, but not the grauwath of the environment.
The real appearance of these three corridors are shownndfigI3, respectively.

During the experiment, most of the time the robot exploredatically. While
in order to scan the environment totally or to form local lspwhen the robot was
arriving at the intersection area of two corridors, the talas manually guided to
enter into the expected corridor. Meanwhile, in order to ensikre that successfully
paired features can be detected, the robot was manuallydrtbveugh at a low
speed, since when the robot moves into a new room, the nurhbewty observed
features will be relative high, whereas most of the old fesggo out of the view.

The robot started moving along the corridor A, and turnetktefravel into cor-
ridor B. After exploring in corridor B, the robot returnedc¢orridor A and formed
the first local loop. To capture the structure of corridort& tobot explored corri-
dor A and B again, then entered into the corridor C. After expg it some time,
the robot returned back to corridor A. At the end, the robopped at the middle
part of the corridor B. A manual path of the robot is descrilveligure[6.1D.

The robot traveled a total distance of roughly 180 m and ctdlg 651 sensor
samples, covering an area about 2520m.

As described before, during this test, two local loops, 3-42-5-1, 1-2-3-6-7-
8-4-5-1 presented in red line and magenta ling in16.12 réispdg and one global
loop 1-2-3-4-5-1-2-3-6-7-8-4-5-1-2 are formed. Actudhe local loop closings are
helpful to reduce the accumulated error, especially wherrdbot traveled a long
distance. That is theoretically expected, since when thetreeturns back into a
known environment, it relocalizes itself, allowing to reguthe accumulated error.

The estimated trajectories using odometry trajectory antyplane-based SLAM,
is presented in Figurfle 6.14. And their corresponding cangtd maps are shown
in Figure[6.16 and Figure 6.117, respectively. Since in tiijzeeiment, the robot
traveled longer than the first two experiments, the odonhifyis much larger at
the end as expected. Actually before the robot performs teelical loop, the
robot was totally lost as it can be seen from the red plottat, hown in Fig-
ure[6.14. Therefore, its corresponding map is quite mesped\s apparent from
the Figurd 6.16, the odometry map is totally corrupted amdntiain structures of
the corridors can not be observed.

To show the effectiveness of the proposed loop closure tieteasing VFH,
discussed in Chapter 5, the robot trajectory is estimatedjygdane-based SLAM
but without loop closings, shown in Figure 6115. In Figlr&%.each blue dash
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Figure 6.11: The configuration of the testing corridors. Theidors are perpen-
dicular or parallel to each other, and labeled as A, B and peas/ely.
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Figure 6.12: The manual path of the robot. The robot startgmgdrom position
1. After exploring the three corridors, it stops at positibrDuring its exploration,
besides a global loop, two local loops are formed, presemteédd and magenta
lines respectively.

(a) Corridor A (b) Corridor B (c) Corridor C

Figure 6.13: The real appearance of corridors in the large émvironment.
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Figure 6.14: The obtained trajectories for the large logpeeixment. As depicted in
above two experiments, the red path are obtained by the wheeatetry. Obviously,
the robot is totally lost and the trajectory is quite messpd While the blue one
shows the optimized trajectory using plane-based SLAM1 Aan be seen, it seems
consistent. Its overall shape is similar to the configuratibthe experimental three

corridors, shown in Figule 6.11.
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Figure 6.15: The estimated trajectory using plane-baseVBapproach but with-
out loop closings. The detected loop closures in this erpant are shown in blue
dash lines. Each blue line connected the detected loopreléisumes together. The
loop closures are obtained using the loop closure deteatgmrithm based on VFH
discussed in Chapter 5.

84



Figure 6.16: The 3D map obtained using odometry only. Olshigut is a mess.
The structures of the experimental corridors are totallyugued.

Figure 6.17: The 3D map constructed using plane-based SuU&Mhape and ori-
entation is much close to the real scenario. It clearly prisséhe main structures,
e.g., walls, doors, pillars etc.
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line presents a detected loop closure and it connects thedeiwo non-successive
poses together. By comparing the estimated trajectoryowrtttoop closings, plotted
in red in Figuré 6.15, with the optimized trajectory with fpdosings, the blue path
in Figure[6.14, it can be observed that the remained driftest @ Figure[6.15, is
almost eliminated in Figufe 6.114, as seen from its corredimgi83D map, shown in
Figurel6.1V.

As it can be seen in Figute 6]17, the obtained 3D map closetghma the real
experimental scenarios, especially from the orientatmntpf view. Note that the
detected walls, doors and pillars are correctly mappeditiirahe environment. In
general the estimated features are well overlapped. Thukdsurse theoretically
expected, since using the plane matching registratiorgiwtorrect the orientation
error by finding the corresponding features in consecutiamés. While for the
frames concluding the same corner features, the relatsesp@error in both orienta-
tion and position can be corrected fully. Meanwhile the udeap closures allows
the accumulated error is diminished.

However, it is also evident in the resulting map in FigureZetiat at the left
side of corridor A, some orientation error remains and théswan two sides are
not parallel. The main reason for this is that the corridos Aot a closed corridor.
When the robot turned, no features could not be detectedefidre the frames can-
not be matched to the prior ones. In this work, if a frame carbeanatched, it will
be connected to the prior node in the pose graph using the etdpmformation.
However, as we all known, when the robot turns a big angleether of relative
pose changes is high. Therefore, the orientation errordmvwhese frames could
not be corrected totally.

We also notice that there are some misalignments betwea&s s¢aome sur-
faces that were detected in multiple frames, indicatingative error between the
poses in the graph from which the point clouds were taken. irigiance, at the
beginning part of corridor C, the surfaces are not overldpgey well. That is
mainly due to the fact that few corners are detected duricgusee of the noise and
occlusion in the point clouds. Another reason for this isdbeinance of window
glass on one wall of the corridor C. Such big windows are ryastlisible to the
Kinect sensor, and even worse than that, it brings points kiggh noise, from the
structures inside the office, which is along the corridor C.

6.3 Summary

This Chapter presented the experimental validation of erapping algorithm
presented above.
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At first, to test the robustness and correctness of the preg@ane matching
algorithm, experiments for registering pairwise scansawgesented. By compar-
ing it to the standard ICP and SACIA global alignment, thespreged algorithm is
shown to be more robust and accurate.

Then to evaluate the performance of the presented plarestfBisAM algo-
rithm, three experiments were carried out in the third floddDAUIN and the main
building of Politecnico Di Torino. The reconstructed 3D mayp the experimental
environments are consistent and close to the real scenasipscially from the ori-
entation point of view, which prove the presented algoriterable to construct the
explored environments in a consistent manner.
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Chapter 7

Conclusions and Outlook

7.1 Conclusions

This short Chapter provides a brief outlook on the issuesudised in the thesis and
highlights major conclusions and future directions of egsh regarding the major
concerns of this work.

The goal of this thesis was to build the 3D maps for struct@®dndoor en-
vironments by developing a complete plane-based SLAM agtrand validate
it experimentally. This firstly required to find 3D sensorstainle for a mobile
robot. Typically, laser range finders and depth cameras wsed for 3D SLAM
approaches in order to acquire dense point clouds. Reg¢#fitlyosoft Kinect has
dominated the stage of 3D robotic sensing, as a low-costplower sensor, that
is able to acquire color and depth images at high frame rat@ut case, instead
of expensive laser sensors, a Microsoft Kinect was emplagetihe exteroceptive
sensor. For each frame, it is able to delivering dense 3Datatgposed of 307,200
points. Robot odometry was also used to initialize the $etoccorrespondences
between observations between consecutive frames.

Map building requires a known pose. It can be decomposedtimee basic
pieces, each of them are critical to building a globally ¢stesmit map successfully.
The first is estimating the spatial constraint between cartse frames, which is
addressed as scan-matching problem. The second chalklogpiclosing: recog-
nizing when a robot has revisited a place it has been prelyiodach loop closure
represents a constraint on the trajectory of the robot. riguttie above two steps,
the estimated spatial constraints are encoded in the edgesdn different nodes
in a pose graph, whose nodes represent robot poses. Oncea gosé graph is con-
structed, one seeks to find a configuration of the nodes tinadxsmally consistent
with the measurements. This involves solving a large errimimmzation problem
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and is referred as the third step of 3D mapping. The first twpsstonsists of pose
graph construction, called SLAM front-end. While the thatep is referred to be
SLAM back-end.

It was discussed that abstracting raw point clouds into getncal features leads
to more efficient SLAM while at the same time more compact anctturally infor-
mative representations are obtained which greatly enhiabeeaction of the robot
with its environment. Therefore, feature based SLAM waedel. In this thesis,
the mobile robot was working in an indoor environment. Basedhe fact that in
indoor environments, several structures like doors, wtdlsles, ground floor, etc.,
can be modeled as planar surface patches, which are pamaljperpendicular to
each other. Therefore, planar patches have been found tgbedafeature for 3D
visual SLAM, while also being a quite good representatiartfie final 3D map. In
addition, orthogonal corners, constructed by three ietginsg perpendicular planes,
are more distinguishable and considered higher features.

To extract the planar surfaces and 3D orthogonal corners the raw sensor
data robustly and accurately. The popular RANSAC plane iineds iteratively
executed to find planar surfaces in the scene, returning ltivee with the most
inliers from the 3D point cloud. In order to ensure that theaoted planar surfaces
present the real geometry of the environment preciselystamie-based clustering
procedure and merging procedure were applied to refine #me @xtraction results.
This is of vital importance in mapping, since the followedadassociation is directly
dependent on the accuracy of the extracted features. Basib@ extracted planes,
a 3D corner was formed by three intersecting planes, whiehparpendicular to
each other. The experiment results shows that the planeS@arabrners in the
sensor data can be detected effectively.

The main original contribution of this work consists of findicorrespondences
between planar surfaces, as well as 3D orthogonal corn#ére sonsecutive frames.
After the correspondences have been decided on, the eelatiation and transla-
tion that aligns the corresponding set of features are coaapThe estimated roto-
translation encodes the pose changes of the robot betweegldéited frames, which
is then added to a pose graph. To robustly determine comegppplanes in differ-
ent frames robustly is difficult, since wrong matches widluk in a big divergence
in the trajectory of robot. In Chapter 4, a plane matchingatm was presented
for determining the unknown plane correspondences by maxigithe similarity
metric between a pair of planes within a search space. Thielsspace is pruned
using the followed criteria: odometric rotation agreemist, odometric transla-
tion agreement test, texture similarity test, and sizelanity test. To discard more
wrong matches, a plane matching consistent test is giveateymine the resolved
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correspondences. Then the determined plane correspasierce extended to the
corner matching procedure.

Loop closing is a form of place recognition that is centrathe task of map
building. A successful loop closing allows to eliminate #eeumulated drifting er-
ror when the robot moves, and prevents re-mapping of the Earagon in a wrong
metric location. In this work, a loop closure detection aithon from 3D point
clouds by comparing their VFH descriptors and color histogs. Compared to 3D
point clouds, VFH descriptors compress the input point déogeometry informa-
tion into meaningful statistic histograms while keeping thewpoint component,
thus it reduces the dimension and store space of the datadlioe the computation
time, we defined the frame in which corners are included aB&eyes. Each time a
keyframe is found, we compare its VFH feature and color gisto with the previ-
ous keyframes. A closure is detected if enough geometyiealtl color appearance
consistent between pairwise frames matching. Then thevelato-translation be-
tween the related pairwise frames were estimated by thesonding corners in
these frames, where the corner correspondences are detdrosing VFH feature
again. As it can seen, this approach uses only the appeas&BBepoint clouds to
detect loops and requires no pose information.

The pairwise transformations between sensor poses, famnedges of a pose
graph, which is referred to as SLAM front-end. However, doi¢hte estimation
errors, the edges form no globally consistent trajectonycréate a globally consis-
tent trajectory, a linear approximation was used to optathe obtained pose graph.
Then the 3D map of the environment is constructed by attgaach acquired point
cloud to the corresponding pose estimate.

The plane-based SLAM approach was evaluated in three @liffescenarios.
Among them, two experiments were carried out in the thirdfeid®AUIN, Politec-
nico di Torino, and the third one was performed in the mairndaug of Politecnico
di Torino. The experiments were carried out with a differ@ndrive mobile robot
of our lab equipped with a Microsoft Kinect and a SICK lasers®, as described
before. The experiment results showed that the system wagsabeconstruct all
test environments in an consistent way. The reconstrudeth&ps were close to
the real scenarios and were able to present the structurbe dést environment
precisely. Meanwhile, we evaluated the plane matchingniser registration, and
compared it with the standard ICP and SACIA with FPFH. Theegexpent results
showed that the overall performance of plane matching tragiisn was better than
the ICP and SACIA.
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7.2 Future Work

Despite the encouraging experiment results presentedsnheésis, there are still
different aspects that could be improved. In the future,ftll®ewing issues are
going to be considered.

1. The first issue concerns to improve the discernibilityre planar features
used with the goal to simplify plane matching algorithm a game time
improve the robustness of the plane matching.

2. During the experiments, we noticed that when the robagrennto a new
area, or the robot rotates a big angle, more new features oumthe view,
while few old features remain. Therefore, it is difficult tadicorresponding
features such that the relative pose change error couldencbtyected for
these related frames. An alternative solution for this isge two Microsoft
Kinect cameras to capture the environment of different giew

3. Itis of foremost interest for plane-based mapping to eatrated on the ex-
traction of a few, large planes per frame that give high cemioé correspon-
dences so to estimate the relative orientation and positfmmmation for
related frames. To make use the reconstructed 3D map, afipeni path
planning and navigation, it is better to represent the 3D snaith surface
patches, especially compared to point clouds, since ldeg@ppatches with
polygon boundaries are very well suited for computatioredrgetry algo-
rithms employed in path planning and navigation.

4. The algorithm presented in this thesis is limited in thhacttured indoor en-
vironment. It is hence of interest to consider higher ordefeses, e.g.,
guadrics, as representations for large surface patcheken environment.

7.3 Publication

e L. Carlone, J. Yin, S. Rosa, and Z. Yuan, Graph optimizatidth wnstruc-
tured covariance: fast, accurate, linear approximatinrRroc. of the Int.
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