
POLITECNICO DI TORINO

SCUOLA DI DOTTORATO

PhD in Mechatronics – XXV cycle

PhD dissertation

Plane-based 3D Mapping for
Structured Indoor Environment

Zehui Yuan

Supervisor Doctoral Course Coordinator

Prof. Basilio Bona Prof. Giancarlo Genta

February 2013

Acknowledgement

I wish to express my gratitude to the following people: Firstof all, I would like to

thank Prof. Basilio Bona for offering me the possibility to study in his great team

in a friendly atmosphere. The last three years at his lab werea great time and I

especially want to express my appreciation for giving me thesupport and guidance.

Secondly, I want to address special thanks to my colleagues,Dr. Luca Carlone,

Stefano Rosa and Vito Macchia for their advices and support.During the last three

years, their help was available at all times. Without their help, this work would not

be possible. I also wish to thank other colleagues in the lab who already left the

group for continuing their successful career.

Last but not least, I would like to thank all my friends and my family, especially

my parents for their love and constant support. They were always there for me, even

in the dark times of frustrations and failure, and hardshipsof my studies.

i

ii

Contents

1 Introduction 1

1.1 3D Mapping . 2

1.2 Goal and Contributions . 3

1.3 Thesis Outline . 5

2 State-of-the-art 7

2.1 Introduction . 7

2.2 Graph-based SLAM . 8

2.2.1 SLAM problem . 8

2.2.2 Graph-based SLAM . 9

2.3 State-of-the-art of SLAM Front-end12

2.3.1 Iterative Closest Point (ICP) 14

2.3.2 SAmple Consensus Initial Alignment (SAC-IA)15

2.4 State-of-the-art of SLAM Back-end 16

2.5 Summary . 18

3 Feature Extraction 21

3.1 Point Cloud Pre-processing . 22

3.2 Planar Surfaces Extraction . 23

3.2.1 Extraction Algorithms . 25

3.2.2 Planar surfaces extraction using RANSAC 28

3.2.3 Plane Clustering . 30

3.2.4 Plane Merging . 32

3.3 3D Corners . 33

3.3.1 Intersection Line between Two Planes 34

3.3.2 Corner Detection . 35

3.4 Summary . 36

4 SLAM Front-end 39

4.1 Introduction . 40

iii

4.2 Correspondence Problem . 41

4.3 Plane Matching . 42

4.3.1 Problem Statement . 42

4.3.2 Plane Feature Representation 43

4.3.3 Plane Matching Algorithm 45

4.4 Corner Matching . 51

4.5 Relative Transformation Estimation 53

4.6 Summary . 54

5 SLAM Back-end 55

5.1 Loop Closure Detection . 56

5.1.1 Related Work . 56

5.1.2 View Point Feature Histogram (VFH) 58

5.1.3 Loop Closure Detection using VFH 60

5.2 SLAM Back-end . 64

5.2.1 Problem Statement . 64

5.2.2 A Linear Pose-Graph Optimizer 65

5.3 Summary . 68

6 Experiments 71

6.1 Plane Matching Registration Experiments 73

6.2 3D Mapping Experiments . 74

6.2.1 Scenario 1: A Long Corridor 74

6.2.2 Scenario 2: A Hall . 79

6.2.3 Scenario 3: A Large Loop 79

6.3 Summary . 86

7 Conclusions and Outlook 89

7.1 Conclusions . 89

7.2 Future Work . 92

7.3 Publication . 92

iv

List of Figures

2.1 A presentation of pose-graph SLAM process. 10

2.2 The components of an edge connecting a pair of nodes. 11

3.1 An original point cloud of the DAUIN corridor 24

3.2 Point cloud filtering and reduction results 24

3.3 Two examples of plane detection result. 29

3.4 Plane clustering results of above Figure 3.3(b) and Figure 3.3(d) . . 31

3.5 Plane merging results of Figure 3.4 respectively. 33

3.6 Detected corners in 6 frames . 37

4.1 Representation of the projection of a vertical plane 44

4.2 Relationship of a door and a wall in indoor environment 47

4.3 An example of parsing result . 48

4.4 Representation of the projection of an orthogonal planein 2D space 52

5.1 An example of surface normals estimation for points lying on a 3D box. 59

5.2 The extended fast point feature histogram. 60

5.3 An example of VFH presentation of an obtained point cloud. 60

5.4 Examples of VFH representations for two corners detected in the frameFt. 63

6.1 The robot used for the experiments. 72

6.2 Registration using presented algorithms over selected10 pairwise frames 75

6.3 The real scenario of the corridor.76

6.4 Comparison of estimated trajectories. 77

6.5 Top view of 3D map obtained using odometry only. 77

6.6 Top view of the long corridor constructed using the plane-based SLAM. 78

6.7 The real appearance of the hall. 80

6.8 The estimated trajectories for the second experiment. 80

6.9 A 3D view of the obtained map using odometry only. 81

6.10 A 3D view of the built map using plane-based SLAM. 81

6.11 The configuration of the testing corridors. 83

v

6.12 The manual path of the robot. 83

6.13 The real appearance of corridors in the large loop environment. . . . 83

6.14 The obtained trajectories for the large loop experiment. 84

6.15 The estimated trajectory using plane-based SLAM but without loop closings. 84

6.16 The 3D map obtained using odometry only.85

6.17 The 3D map constructed using plane-based SLAM. 85

vi

List of Tables

6.1 Comparison of pairwise registration using different algorithms. . . . 76

vii

viii

Abstract

Three-dimensional (3D) mapping deals with the problem of building a map of

the unknown environments explored by a mobile robot. In contrast to 2D maps,

3D maps contain richer information of the visited places. Besides enabling robot

navigation in 3D, a 3D map of the robot surroundings could be of great importance

for higher-level robotic tasks, like scene interpretationand object interaction or ma-

nipulation, as well as for visualization purposes in general, which are required in

surveillance, urban search and rescue, surveying, and others.

Hence, the goal of this thesis is to develop a system which is capable of re-

constructing the surrounding environment of a mobile robotas a three-dimensional

map.

Microsoft Kinect camera [67] is a novel sensing sensor that captures dense depth

images along with RGB images at high frame rate. Recently, ithas dominated

the stage of 3D robotic sensing, as it is low-cost, low-power. For this work, it is

used as the exteroceptive sensor and obtains 3D point cloudsof the surrounding

environment. Meanwhile, the wheel odometry of the robot is used to initialize the

search for correspondences between different observations.

As a single 3D point cloud generated by the Microsoft Kinect sensor is com-

posed of many tens of thousands of data points, it is necessary to compress the

raw data to process them efficiently. The method chosen in this work is to use a

feature-based representation which simplifies the 3D mapping procedure.

The chosen features are planar surfaces and orthogonal corners, which is based

on the fact that indoor environments are designed such that walls, ground floors,

pillars, and other major parts of the building structures can be modeled as planar

surface patches, which are parallel or perpendicular to each other. While orthogonal

corners are presented as higher features which are more distinguishable in indoor

environment.

In this thesis, the main idea is to obtain spatial constraints between pairwise

frames by building correspondences between the extracted vertical plane features

and corner features. A plane matching algorithm is presented that maximizes the

similarity metric between a pair of planes within a search space to determine cor-

respondences between planes. The corner matching result isbased on the plane

matching results. The estimated spatial constraints form the edges of a pose graph,

referred to as graph-based SLAM front-end.

In order to build a map, however, a robot must be able to recognize places that it

has previously visited. Limitations in sensor processing problem, coupled with en-

vironmental ambiguity, make this difficult. In this thesis,we describe a loop closure

detection algorithm by compressing point clouds into viewpoint feature histograms,

inspired by their strong recognition ability. The estimated roto-translation between

detected loop frames is added to the graph representing thisnewly discovered con-

straint.

Due to the estimation errors, the estimated edges form a non-globally consistent

trajectory. With the aid of a linear pose graph optimizing algorithm, the most likely

configuration of the robot poses can be estimated given the edges of the graph,

referred to as SLAM back-end. Finally, the 3D map is retrieved by attaching each

acquired point cloud to the corresponding pose estimate. The approach is validated

through different experiments with a mobile robot in an indoor environment.

Keywords:

Mobile robot Mapping, 3D point cloud modeling, Structured Environment Map-

ping, Pose-graph SLAM, Plane Extraction, Plane matching, Microsoft Kinect

ii

Chapter 1

Introduction

Today robotic systems are widely used in the industry, in particular for tasks such

as welding, painting and packaging. All of these robot systems are in the form of

manipulators that carry out repetitive motions. For large scale transformations such

robotic systems are not particularly practical. Recent advances in mobile robotics

have allowed widespread use of the robot in several applications. For example,

a large number of mobile robots have been built for developing tasks in search,

rescue, and exploration to perform in dangerous area for human being. And another

potentially interesting area where mobile robots are used is the service sector. In this

case, the robots perform tasks in indoor environment autonomously that relieve the

human being, such as health care, cleaning and entertainment. The fact that robots

are rapidly evolving from factory work-horses to robot companions poses a great

challenge for the future of robots: they must be capable of coping with complex

tasks and working in dynamic environments.

Intelligent behavior and interaction with the outside environment for a mobile

robot requires understanding the geometry and structure ofthe environment, i.e.,

a representation of its surroundings that adequately resembles the spatial proper-

ties of the environment. Such representation of the surrounding scenario is called

a map. It appears to be the minimum amount of spatial abstraction required for an

autonomous mobile robot. Simultaneous Localization and Mapping (SLAM), orig-

inally introduces an environment while at the same time localizing the mobile robot

relative to the map under construction, given a sequence of measurements gathered

by its proprioceptive and exteroceptive sensors. From a mathematic point of view,

SLAM is difficult to solve since the mapping and robot poses estimating procedures

are generally dependent and can not be obtained separately.

Today in the mobile robotic research community, it is well agreed that SLAM is

an important requirement for intelligent mobile robots. Ithas attracted a conspicu-

ous attention from the robotics community for its vast application domain, and robot

1

mapping has predominantly been investigated in 2D. Now withthe availability of

new kinds of 3D sensors, e.g., laser sensors, stereo camera sensors and Microsoft

Kinect, 3D map is becoming popular and robots are increasingly operating in 3D

environment. Meanwhile, in contrast to a 2D grid map, 3D map contains a rich de-

scription of the environment and is able to provide more information for the robot.

There is hence an increasing amount of research on 3D mapping, especially on 3D

SLAM.

Typical 3D sensors can be categorized as: (1) laser range finders, is usually

mounted on a rotating platforms [87] having a large scanningtime of around a

minute. Laser range finder can attach the environment in a large field-of-view (FOV)

and obtain the environment information precisely. (2) time-of-flight (TOF) sensors

like the Swiss-range [16] and PMD [74]. Compared with laser range finder, it has

a much restricted FOV, but it is being able to provide severalscans per second.

(3) stereo cameras [5] [54]. They are inexpensive, and provide high information

bandwidth of the environment.

With the introduction of the Microsoft Kinect camera, a new sensor has ap-

peared on the market that provides both RGB images along withperpixel depth

information. It allows the capture of reasonably accurate mid-resolution depth and

appearance information at high data rates. Meanwhile, it islow-cost and low power.

Thus it is attractive for the research outside specialized computer vision groups and

has dominated the stage of 3D robotic sensing. In this regard, in this thesis, our

efforts are aimed to construct 3D maps of the structured indoor environments with

a robot only equipped with a 3D Kinect camera and wheel encoders.

1.1 3D Mapping

3D mapping is concerned with the problem of building a map of an unknown en-

vironment explored by a mobile robot. Most 3D mapping systems contain three

main components: (1) the spatial alignment of consecutive data frames; (2) the de-

tection of loop closures; (3) the globally consistent alignment of the complete data

sequence. The first two components obtain the pose changes between consecutive

data frames and arbitrary frames, which are modeled as edges(or constraints) be-

tween the related nodes in a graph (the pose graph). Each nodein a graph represents

a robot pose (or frame). This procedure is usually refereed to as as pose graph con-

struction (graph-based SLAM front-end). While the third one is the so called pose

graph optimization (graph-based SLAM back-end) to determine the most likely con-

figuration of the poses given the edges of the graph, hence obtaining an accurate es-

timate of the poses assumed by the robot. Then the 3D map is created by attaching

2

data sets gathered by its exteroceptive sensors to their corresponding poses into a

global coordinate frame.

In principle, a robot equipped with a 3D camera and wheel encoders would be

able to create a 3D dense map of the environment by attaching the point clouds to the

corresponding poses estimated from wheel odometry. However, this naive strategy

quickly becomes inaccurate, since wheel odometry suffer from error accumulation.

With typical odometry errors the pose estimate will be totally wrong after as little

as10 m of travel [7]. Scan-matching approaches were used successfully to address

the robot poses tracking problem. The idea is to align consecutive scans taken by

the external sensors from the robot at different locations and thereby estimate the

relative pose offset of the robot between two successive range sensor samples. The

most commonly used scan-matching algorithm is the point-to-point (P-P) iterative

closest point (ICP) and its variants. A recent dissertation[92] notes that “up to now,

all approaches successfully applied to 3D SLAM are based on the ICP algorithm.

Alignment between successive frames is a good method for tracking the robot

position over moderate distances. However, errors in alignment between a partic-

ular pair of frames, and noise and other kinds of errors, cause the estimation of

camera position to drift over time, leading to an consistentand inaccuracy map.

This is most noticeable when the camera follows a long path. The cumulative error

in frame alignment results in a map that has two representations of the same region

in different locations. This is known as the loop closure problem, which is criti-

cal for the poses global optimization, since the loop closing allows to reduce the

accumulated error.

In this thesis, we will follow the overall structure of recent 3D mapping tech-

niques, but we introduce a new approach that is different from the overall ap-

proaches found in the literature, as presented in the following section, while it differs

from existing approaches.

1.2 Goal and Contributions

As mentioned, the goal of this thesis is to build the 3D maps ofstructured 3D indoor

environments by developing a plane-based SLAM approach andvalidate it exper-

imentally. And a Microsoft Kinect is used to generate dense 3D models of indoor

environments. It is based on the fact that a major part of indoor environments can be

represented by sets of planar patches and orthogonal corners. Targeting the applica-

tion of mobile robots in 3D scenarios, special effort has been put in development of

proper 3D representations of the surrounding environment around the robot due to

the availability of 3D sensors. In contrast to occupancy grid maps, 3D maps include

3

more detailed information. For mobile robots, the knowledge of a map containing

a rich description of the environment is very helpful for navigation, surveying tasks

and manipulation, especially when the robot has to operate in 3D scenarios. Instead

of more accurate laser sensors, here the Microsoft Kinect isused as the exterocep-

tive sensor for 3D perception since it is low-cost, low-power and is able to acquire

color images and depth maps at full frame rate.

Major contributions of this thesis are:

1. A plane matching algorithm is presented to create constraints among the poses

assumed by the robot, i.e., SLAMfront-end. The planar segments is used as

the basic feature approximating underlying point clouds generated by Mi-

crosoft Kinect. Using the proposed matching algorithm, thegeometric con-

straints between extracted planes sets from pairwise frames are retrieved.

2. A corner matching algorithm is presented which is based onthe plane match-

ing result. Beside the plane segments, also orthogonal corners are dominant

features in indoor environments. Moreover, they are more robust and dis-

tinguishable since they can lock all degrees of freedom in space. Based on

this, all the corners in a frame are detected according to therelationship be-

tween the extracted planes. Combined with the plane matching results, the

correspondences between corners in consecutive frames aredetermined.

Based on the built corresponding relationship between planes and corners, the

relative roto-translation between the registered frames are estimated, which

form the edges of a pose graph.

3. A new loop closing detection technique is introduced in order to diminish the

accumulated error. This technique is built by combining a new 3D geometry

descriptor, View Point Histogram (VFH) presented in [78] and appearance

based features. The main idea here comes from the strong recognition ability

of VFH. In order to make the loop detection more robust and reliable, appear-

ance based feature, color histogram is used to compare the similarity of the

detected frames. When the pairwise frames are determined asa same area,

their relative roto-translation information is estimatedand added to the built

pose graph. The pose graph is then be feed to a pose graph optimizer to obtain

a globally and consistent trajectory of robot.

4

1.3 Thesis Outline

In the next Chapter, after presenting a brief background on the graph-based SLAM

foundation, the state-of-the-art is reviewed to give a picture of existing solution

to SLAM front-end and back-end respectively. Moreover, twokinds of popular

algorithms for SLAM front-end, iterative closest point (ICP) and sample consensus

initial alignment (SAC-IA) are briefly introduced, which will be used to compare

with the technique presented in this thesis.

In the ensuing chapters, the plane-based SLAM is presented which is based

on constructing the matching relationship between planar segments sets extracted

from 3D point clouds obtained from a Microsoft Kinect camera. Obviously, these

planes have to be extracted from the raw data, which will be dealt in Chapter 3.

Since the raw point clouds suffer from different noise and error sources. Therefore

pre-possessing procedure is performed firstly. Then the RANSAC plane model is

selected to extract planes which meeting our pre-determined criterion. Moreover,

in order to make the extracted planar segments accurate, plane refinement proce-

dures are followed. Afterward, orthogonal corners are detected based on the planes

extraction results.

Chapters 4 focus on the pose-graph SLAM front-end part. The plane matching

and corner matching algorithm is presented thoroughly, which consists in finding

correspondences between planar surface segments and orthogonal corners in the two

scans to be matched. After the correspondences have been decided on, the relative

rotation and translation that aligns the corresponding setof planes and corners will

be estimated. This gives the pose changes of the robot between the scans, which

form a pose graph.

Then in Chapter 5, loop closure detection is addressed using3D point clouds

and the pose graph optimization, refereed to as SLAM back-end, are discussed. It

starts with a brief and general review of existing approaches of loop closure detec-

tion algorithms. Then a loop closure detection algorithm based on viewpoint feature

histogram (VFH), is explained thoroughly. To obtain a globally consistent trajec-

tory, targeting to this work, a linear pose-graph optimization, proposed in [12] [11]

is selected to optimize the built pose-graph.

Finally Chapter 6 includes experimental results used to evaluate the developed

plane-based 3D mapping algorithm. The experiments are carried out in three dif-

ferent scenarios inside Dipartimento di Automatica e Informatica at Politecnico Di

Torino. Meanwhile, to estimate the performance of the planematching approach,

pairwise registration tests between several sets of successfully paired consecutive

frames are preformed firstly. And the registration results are compared to two pop-

5

ular registration algorithms ICP and SACIA.

The thesis ends with a short chapter on conclusions of this thesis, and sugges-

tions for future work and development.

6

Chapter 2

State-of-the-art

2.1 Introduction

3D mapping is the process of building a map of the environmentwhere the robots

operate. It is retrieved by attaching the sensor measurements into their correspond-

ing poses of the mobile robot. Thus a known robot pose is required for the 3D

mapping. In outdoor spaces, this is possible since Global Positioning System (GPS)

is available that provides an absolute position around the globe with centimeter

range precision in ideal conditions. However, in indoor environments, GPS signal

is disturbed or not available. In these cases, reliable mapping using GPS can not

be carried out. The acquisition of maps of indoor environment has been a major

research focus in the robotics community over the last decades.

Generally, in indoor environments, robot poses are provided by internal sensors

e.g., wheel encoders or IMUs. However, these sensors accumulate errors as the

mobile robot explores, therefore can only be used reliably over short distances; for

example, the pose estimated by wheel odometry will be totally wrong after as little

as 10 m of travel. Learning maps under pose uncertainty is often referred to as the

simultaneous localization and mapping (SLAM) problem. In the literature, a large

number of solutions to this problem is available.

The first method, building the basis of SLAM algorithms, was presented in [83],

establishing a statistical basis for describing geometricuncertainty and relation-

ships between features or landmarks. Based on it, several other working solutions

to the SLAM problem were described: presently the extended Kalman filter [14]

[62] based SLAM is the most frequently used approach. Other popular techniques

include information filters [23] [90] and particle filters [35] [38]. The SLAM is

modeled as an online state estimation where the system stateconsists of the current

robot position and the map. The map and robot poses are augmented and updated

7

by including newly arrived sensor measurements.

An intuitive way to address the SLAM problem is via the so-called graph-based

formulation, first proposed by Lu and Milios in 1997 [64]. Solving a graph-based

SLAM problem involves to construct a graph whose nodes represent robot poses or

landmarks and in which an edge between two nodes represent inter-nodal measure-

ments that constraints the connected poses. For instance, odometric measurements

are modeled as edges (or constraints) connecting consecutive nodes, while loop

closing edges connect arbitrary nodes pairs and model placerevisiting episodes.

Once such a graph is constructed, the critical problem is to find the configurations

of poses that maximize the likelihood of the inter-nodal measurements. This in-

volves solving a large error minimization problem. Thus, ingraph-based SLAM the

problem is decoupled in two tasks: constructing the graph from the sensor measure-

ment (graph construction), determining the most likely configuration of the poses

given the edges of the graph (graph optimization). The graph construction is usu-

ally called front-end and it is heavily sensor dependent, while the second part is

called back-end and relies on an abstract representation ofthe data which is sensor

agnostic [33].

In this Chapter, firstly a brief background on the graph-based SLAM foundation

is presented. Then state-of-the-art is reviewed to give a picture of existing solution

to SLAM front-end and back-end respectively. Moreover, twokinds of popular al-

gorithms for SLAM front-end, iterative closest point (ICP)and sample consensus

initial alignment (SAC-IA) are briefly introduced. In Chapter 6 they will be consid-

ered as standard algorithms to compare with the approach presented in this thesis.

2.2 Graph-based SLAM

2.2.1 SLAM problem

Assuming a robot is moving in an unknown environment, simultaneous localiza-

tion and mapping (SLAM) is concerned about building a map of the surrounding

environment and estimating the robot trajectory at the sametime. Due to the in-

herent noise of the sensor measurements, usually the SLAM problem is described

by means of probabilistic tools. The dominant scheme used inSLAM is the Bayes

filter. The Bayes filter extends Bayes rule to temporal estimation problems. It is a

recursive estimator for computing a sequence of posterior probability distributions

over quantities that can not be observed directly, such as a map.

For the reason of explaining, the robot’s trajectory is described by the sequence

of random variablesx1:n = {x1,x2, . . . ,xn}, wherexi is the robot’s pose at timei.

8

When the robot is moving, it acquires a sequence of odometry measurementsu1:n =

{u1,u2, . . . ,un} and perceptions of the environmentz1:n = {z1, z2, . . . , zn}. Solv-

ing the full problem consists of estimating the posterior probability of the robot’s

trajectoryx1:n and the mapm of the environment given all the measurements plus

an initial positionx0:

p(x1:n,m|z1:n,u1:n,x0) (2.1)

The initial positionx0 that defines the position of the mapm can be chosen arbi-

trarily. By convention, it is usually set to be the origin of the global reference frame,

i.e.,x0 = [0 0 0]⊤.

To solve the SLAM problem, the robot needs to be endowed with models that

describe the effect of the control input and the observations, that is, a state transition

model and an observation model, respectively.

The observation model describes the probability of making an observationzi
when the vehicle location and landmark locations are known.It is assumed that,

once the vehicle location and map are defined, observations are conditionally inde-

pendent given the map and current vehicle state. Generally,the observation model

is described in the form

p(zi|xi,m). (2.2)

The motion model for the vehicle is described in terms of a probability distribu-

tion on state transitions in the form

p(xi|xi−1,ui) (2.3)

That is, the state transition is assumed to be a Markov process in which the next state

xi depends only on the immediately proceeding statexi−1 and the applied control

ui, and is independent of both the observations and the map.

2.2.2 Graph-based SLAM

A large variety of SLAM approaches are available in the robotics community. For

instance, Kalman Filter, Particle Filters and Graph-basedSLAM. Recently graph-

based SLAM has attracted a conspicuous attention from the robotics community,

since it highlights a spatial structure and is well suited todescribe filtering processes

of SLAM.

In graph-based SLAM, the poses of the robot are modeled by nodes in a graph

and labeled with their positions in the environment [55][64]. Spatial constraints

between poses that result from observationszi or from odometry measurements

ui are encoded in the edges between the nodes. In more details, agraph-based

SLAM algorithm constructs a graph out of the raw sensor measurements. Figure 2.1

9

illustrates a presentation of pose-graph SLAM process. Every node in the graph

stands for a robot pose at which a sensor measurement was acquired, and each edge

between two nodes encodes the spatial information arising from the alignment of the

connected measurements and can be regarded as a spatial constraint relating these

two poses. An edge between two nodes consists in a probability distribution over

the relative locations of the two poses, conditioned to their mutual measurements.

Figure 2.1: Every node stands for a robot pose. Adjacent nodes are connected

by edges that represent inter-nodal measurements. The edges are divided into

two classes: (1) edges between consecutive poses, obtainedby odometry or scan-

matching; (2) edges between non-consecutive poses, arising from multiple observa-

tions of the same part of the environment.

Generally, the observation modelp(zi | xi,m) is a multi-modal distribution,

which means that a single observationzi might result in multiple potential edges

connecting different poses in the graph and the graph connectivity needs itself to

be described as a probability distribution. To avoid the computation complexity

introduced by multi-modality, usually, the estimate is restricted to the most likely

topology, i.e., determining the most likely constraint resulting from an observation.

This decision depends on the probability distribution overthe robot poses. This

problem is known as data association and is usually addressed by the SLAM front-

end.

As mentioned before, a graph-based SLAM is typically concerned with two

problems. The first one is the SLAM front-end, discussed above. It directly deals

with the sensor data and interprets the sensor data to extract the spatial constraints.

While the second problem is to correct the poses of the robot to obtain a globally

consistent map or trajectory given the estimated constraints. This part of the ap-

proach is often referred to as the optimizer or the SLAM back-end.

10

Let us callx1:n = {x1,x2, . . . ,xn}, wherexi describes the pose of nodei. Let

ẑij be the true (unknown) relative transformation between nodei and nodej. The

log likelihoodlij of a measurementzij is therefore

lij ∝ [zij − ẑij]
⊤Ωij [zij − ẑij] (2.4)

wherezij andΩij represent respectively the mean and the information matrixof a

constraint relating the parametersxj andxi.

Define a vector error functione(xi,xj, zij) that measures the difference between

the expected observation̂zij and the real observationzij gathered by the robot, i.e.,

e(xi,xj, zij) = zij − ẑij (2.5)

For simplicity of notation, we will encode the measurement in the indices of the

error function:

e(xi,xj , zij) = eij(xi,xj) = eij (2.6)

Figure 2.2 presents the error functions and the quantities that play a role in

defining an edge of the graph.

Figure 2.2: The components of an edge connecting the nodexi and nodexj. zij is

the real measurement presented in the local reference frameof xi, while ẑij is the

expected measurement that makes the data samplesxi andxj perfectly overlapped.

The erroreij depends on the displacement between the expected and the real mea-

surement. An edge is fully characterized by its error functioneij together with the

information matrix of the measurement that accounts for itsuncertainty.

The goal of a maximum likelihood approach is to find the configurationx∗ of

the nodes that maximizes the log likelihoodF(x) of all the observations

F(x) =
∑

(i,j)∈ε

e⊤ijΩijeij
︸ ︷︷ ︸

Fij

(2.7)

11

whereε is the graph edge set, containing the unordered node pairs(i, j) such that a

relative pose measurement exists betweeni andj. Thus, SLAM seeks to solve the

following problem:

x∗ = argmin
x

F(x) (2.8)

2.3 State-of-the-art of SLAM Front-end

Scan-matching approaches were used successfully to estimate the relative poses be-

tween consecutive scans by aligning the data samples taken by the external sensors

from the mobile robot at different problem.

The most commonly used scan-matching algorithm is the point-to-point (P-P)

iterative closest point (ICP), presented in [4], which works directly with the points

and hence does not assume any specific structure in the environment. Since the

introduction of basic ICP, a large number of variants have been developed. For

instance, point-to-plane (P-L) version of ICP [94][15]. Instead of point-to-point

distance cost function, in [94][15], the distance between apoint and a planar ap-

proximation of the surface at the corresponding point distance measures was used.

If there is a good initial position estimate and a relativelylow noise, ICP method

with the point-to-plane metric has a fast convergence rate.However, when those

conditions can not be guaranteed, the point-to-plane ICP isprone to fail [29].

In order to reduce the search space of the ICP algorithm, the iterative closest

compatible (ICCP) algorithm was proposed in [30]. In the ICCP algorithm, the

distance minimization is performed only between the pairs of points considered

compatible on the basis of their viewpoint invariant attributes (curvature, color, nor-

mal vector, etc.). Another method, called ICP using invariant feature (ICPIF), was

presented in [82]; it chooses the nearest neighbor correspondences by a distance

metric that represents a scaled sum of the potential and feature distances. These

two algorithms falls into the category of feature-based ICP. Invariant features can

be points, lines and other shapes and objects etc. Compared with traditional ICP,

feature-based ICP converges to the goal value in fewer iterations, thus the compu-

tation time is reduced.

Feature-based methods are commonly used for registration in visual SLAM

. Most approaches rely on the extraction and matching of sparse 2D visual fea-

tures from the camera images. Visual feature points have theadvantage of being

more informative which simplifies data association. Scale invariant feature trans-

form (SIFT), introduced in [63] has been shown as one of the best-known keypoint

descriptor. Its invariance to image translation, scaling and partial invariance to ro-

tation, illumination changes and affine or 3D projection, makes them suitable for

12

mobile robot localization and map building. In stereo systems, these landmarks are

localized and robot ego-motion is estimated by least-squares minimization of the

matched landmarks. Feature viewpoint variation and occlusion are taken into ac-

count by maintaining a view direction for each landmark. Experiments showed that

these visual landmarks are robustly matched, robot pose is estimated and a consis-

tent 3D map is built.

A drawback of SIFT is the high dimensionality of the descriptor, resulting in an

increase of computation time. A recent approach, named the Speeded-Up Robust

Features (SURF) [2], reduces the computation time and increases the robustness.

These are achieved by using a very basic approximation, i.e., assuming second order

Gaussian derivatives with box filters, and describing a distribution of Haar-wavelet

responses within the interest point neighborhood. The experiments show that SURF

can be computed more efficiently and yields a lower dimensional feature descriptor,

so that the matching procedure is faster. In [69], Muriloet al. proposed the use

of SURF to improve the appearance-based localization and mapping methods that

perform image retrieval in large data sets. In their experiments they compared SURF

algorithm with SIFT using omnidirectional images. The experiments showed that

the use of SURF offers the best compromise between efficiencyand accuracy, and

performs always the best or being much faster in case of similar accuracy.

The SIFT and SURF methods described above, mainly focus on the 2D points.

Recently others 3D feature descriptors have been presented, e.g., Normal Aligned

Radial Feature (NARF) descriptor [86], and Fast Point Feature Histogram (FPFH)

[76].

In indoor SLAM, 2D lines and 3D planar surfaces are popular used as match-

ing features, since the common indoor environment is made upby many planar

surfaces. Compared to points, 2D lines and 3D surfaces are more distinguishable.

Plane features can be automatically extracted from point clouds with surface grow-

ing methods or RANSAC plane model, while line features are usually extracted

from the intersection of plane features.

Hornet al. [45] presented early work on using 3D data for robot navigation, ex-

tracting vertical planar features to correct the vehicle pose in 2D. Bauer [1] proposed

a method for the coarse alignment of 3D point clouds using extracted 3D planes that

they both are visible in each scan, which leads to reduce the number of unknown

transform parameters from six to three. The remained unknown transformation are

calculated by an orthogonal rectification process and a simple 2D image matching

process. In [52], surfaces are extracted from range images obtained by a rotating

laser range finder (LRF) and registered together. A local module determines the

correspondences and computes transformations, an a globalmodule detects loop-

13

closure and distributes uncertainty using an elastic graph.

Other previous approaches using plane features include Pathak group’s work

[72][71]. In [72], planar features are extracted at each robot pose. These planar

features are matched against the features which were seen inprior poses to find cor-

respondences. A new algorithm, called Minimally UncertainMaximal Consensus

(MUMC) for determining the unknown plane correspondences by maximizing ge-

ometric consistency by minimizing the uncertainty volume in configuration space.

This technique does not make use of any odometry, which enables it to associate

planes in successive scans more efficient than typical RANSAC techniques. The

authors then computed the least squares rotation and translation which bring the as-

sociated planes into alignment. The rotation and translation are used to build a pose

graph which is optimized.

In [47], the line and plane features were used together. The authors introduced

a framework to integrate point, line and plane features together, and, comparing the

integrated method with algorithms that use such features separately, they found that

the integrated method is much more stable than the others. In[84], an automated

feature-based registration algorithm which searches corresponding pairwise lines

and planes in 3D point cloud was presented. Then the registration was embedded in

a pose-graph implementation for SLAM. Kohlheppet al. [51] [52] [24] proposed

3D environment mapping approaches using planar features. In Harati’s dissertation

[40], a hierarchy of geometrical features, adapted to indoor conditions was devel-

oped. Besides the line and plane features, it also includes orthogonal corners and

cuboids as higher level landmarks which are then constructed to capture certain

joint configurations of the base features. Its main idea is toobtain joint associations

for planar patches which would be much more robust than individually established

bindings.

2.3.1 Iterative Closest Point (ICP)

Iterative closest point (ICP) algorithm is the most popularmethod for registering

geometric 3D point clouds in a common coordinate system. Thegoal of ICP is to

find the rigid homogeneous transformationT , consisting in rotationR and transla-

tion t, that best aligns a cloud of scene pointsPl with the point cloudPr presenting

the same scene in other views.

The alignment process consists in minimizing an error metric based on the dis-

tance between pairs of corresponding points. Usually, the Euclidian distance be-

tween corresponding points is adopted as the error metric. At each iteration, the

algorithm computes correspondences by finding closest points through the given

14

initial estimation, and finding the best translation and rotation that minimizes an

error metric based on the distance between them. As mentioned above, an initial

estimate is required. In fact, a good initial estimation is essential to avoid running

into a local minimum position for ICP registration method, that means the overlap-

ping region of registered point clouds should be large. Algorithm 1 is a pseudo-code

description of the ICP algorithm for estimating of the aligning rigid transformation

between point cloudPl and point cloudPr.

Algorithm 1 T =transEstimationICP(Pl,Pr)

Input : Point cloudsPl andPr with overlapping region.

An initial estimationT 0 which transformPl to the reference frame ofPr

The pre-defined maximum number of ICP iterationsNt

The allowed maximum difference between two transformationmatrices∆dt
Output : optimum transformationT = [R t]

1. Select reference points inPl, then obtain reference points setQl = {pl,1,pl,2, . . . ,pl,Nq
}

2. for i = 1 toNt do

3. for j = 1 toNq do

4. p̂l,i = T i−1pl,j

5. pr,kj = argmin(||pr,k − p̂l,j||22) pr,k ∈ Pr, k = 1, 2, . . .Nr

6. � find the closest point of̂pl,j in Pr

7. end for

8. T i = argmin(
∑Nq

j=1 ||Tpl,j − pr,kj||22)
9. � get a new optimum transformation

10. If (||T i − T i−1||2 <= ∆dt) then

11. � check the difference between these two transformation is little enough

12. break;

13. end if

14. i← i+ 1

15. end for

16. T ← T i � write to the output

2.3.2 SAmple Consensus Initial Alignment (SAC-IA)

SAmple Consensus Initial Alignment (SAC-IA) for registration of 3D point clouds

was introduced by Rusuet al. [76]. The key element in this algorithm is a new rep-

resentation, Fast Point Feature Histogram (FPFH), for the target point cloud. FPFH

15

is a variant descriptor of Point Feature Histogram (PFH) [77] [80] by reordering the

order set. It uses a histogram to describe the local geometryaround a pointp for

3D point cloud datasets.

The SAC-IA algorithm works by applying the following schemes:

1. select sample points from the source point cloud.

2. given a sample point of the source point cloud, instead of searching its match-

ing points directly, the algorithm finds a list of points in the target point clouds

whose FPFH features are similar to the sample point’s. A random point in the

obtained list is considered as the sample point’s correspondence.

3. compute the rigid transformation defined by the sample points and their corre-

spondences and compute an error metric, defined by the Huber loss function,

for the point cloud that computes the quality of the transformation.

These three steps are repeated, and the transformation thatproduced the best er-

ror metric is stored and used to roughly align the partial views. Finally, a non-linear

local optimization is applied to get the final transform result, using a Levenberg-

Marquardt algorithm.

From the above description it can be known that, different toICP, SAC-IA with

FPFH does not need an initial alignment of the data samples. Thus, it is a global

registration method.

2.4 State-of-the-art of SLAM Back-end

During the past few years, SLAM based on filtering techniques, as EKF, particle

filters and information filters, were popular. Recently we have observed a change

of paradigms in the SLAM literature. The focus of SLAM research has shifted to

optimization-based approaches that have been found to be more efficient, accurate

and stable than solutions based on filtering algorithms. A number of optimiza-

tion based SLAM back-ends are readily available to the SLAM researchers as open

source libraries: TreeMap [28], TORO [36], iSAM [49] and very recently Sparse

Pose Adjustment [57], HOG-Man [34], iSAM2 [48], and g2o [60].

The first paper that proposed an efficient solution to the fullSLAM problem

was [64]. The authors explained a technique they called “consistent pose estima-

tion” and applied it to indoor SLAM using laser range finders.The seminal paper

represents the SLAM problem using a graph structure.

However, it took several years to make this formulation popular due to the com-

parably high complexity of solving the error minimization problem using standard

16

techniques. In 2004, Konolige [53] developed the idea further. He pointed out that

the sparse structure is inherent to the full SLAM problem andproposed a precon-

ditioned gradient technique to solve it. GraphSLAM [89] proposed a scheme to

reduce the number of variables involved in the SLAM problem by collapsing the

constraints between robot poses and landmarks into pose-pose relations. Then a

similar approach was presented in [26].

Another alternative view to the back-end problem is considering the spring-

mass model in physics. In this view, the nodes are regarded asmasses and the

constraints as springs connected to the masses. The solution to the mapping problem

is computed using an iterative technique, in which the overall system is allowed to

‘relax’ into the lowest energy state. Relaxation techniques, such as Gauss-Seidel

have been presented for obtaining the global optimum configuration of the poses.

An early work to use relaxation for the mapping problem was presented in Howard

et al [46]. Subsequently a Gauss-Seidel relaxation was proposed in [20] to minimize

the error in the network of constraints. Then a variant of Gauss-Seidel relaxation,

named multi-level relaxation (MLR) that applies the relaxation at different levels of

resolution, was introduced by Freseet al.[27].

Recently, Olsonet al. [70], introduced a stochastic gradient descent approach to

further increase efficiency and solve pose graphs despite large initial errors. Later,

Grisettiet al. [37], extended this approach, by applying a tree-based parameteriza-

tion, towards non-flat environments with their system called TORO.

Popular solutions for the back-end problem that minimizes the cost function by

the given constraints are iterative approaches. They can beprocessed either by cor-

recting all poses all at once or updating parts of the networkincrementally. Recently,

in [12], the authors noted that it is possible to compute an accurate linear approx-

imation of the optimum solution under the assumption that the relative orientation

and translation are independent. In the following, depending on the techniques used,

the optimization approaches are classified into two groups.

Nonlinear Optimization approaches

Nonlinear least squares optimization was used in an approach called
√

SAM [19]

and its recent incremental enhancements iSAM [49] and iSAM2[48]. Another

strand of nonlinear approaches that explicitly exploits the sparse structure inherent

in the SLAM problem was opened by sparse pose adjustment [57]. Considering

that, due to the involved rotations, SLAM cannot be correctly modeled using flat,

Euclidean spaces, HOG-MAN [34] proposed a manifold approach that proved to

outperform the simpler methods operating in Euclidean space. Herzberget al. [43]

and Wagneret al. [91] developed that manifold approach further and extended

17

it to general sensor fusion and calibration problems. Combing the insights and

learned lessons from HOG-MAN and sparse pose alignment, thepublicly available

system g2o [60] can be seen as the state-of-the-art approach to solve large-scale

SLAM problems containing several (up to 10k) variables (poses, landmarks) and

constraints (observations, loop closings) in a matter of seconds on standard hard-

ware.

Kümmerleet al. [59] demonstrated the versatility of the g2o framework by ex-

tending the state space and adding system parameters that might change over time.

In their first experiments, the wheel diameters of a robot were estimated together

with the trajectory and the map, leading to simultaneous calibration, localization,

and mapping.

Linear Approximations and Closed-Form Solutions

The most recent development in optimization-based SLAM arelinear approxima-

tions of the SLAM problem that lead to closed-form solutions[12][11]. Such tech-

niques do not require an initial guess and can be solved in a single step instead of

iteratively. The general idea is to separate the estimationof orientation and loca-

tion. The reason for this approach is that an iterative solution is necessary mainly

due to the nonlinearities introduced by the orientations. By estimating both quanti-

ties separately, the problem can be divided into two linear problems. And the work

is extended to [13], where the hypothesis on the structure ofmeasurement covari-

ance is relaxed. Experiments on real and simulated datasetsconfirmed the validity

of the algorithm. The comparison between this algorithm with other state-of-the-art

algorithms, for instance, Gauss Newton, g2o, TORO, showed that it has an accuracy

which is comparable to other approaches, while it is faster.Further advances may

be expected in this area in the future.

2.5 Summary

Graph-based SLAM has recently emerged as a well assessed strategy for the 3D

mapping problem. In the context of graph-based SLAM, it typically focus on two

problems. The first one is to identify the constraints based on sensor data, often

referred to as the SLAM front-end. The second one is to correct the poses of the

robot to obtain a consistent map of the environment given theconstraints, often

referred to as the SLAM back-end.

In this Chapter, a brief theory background of graph-based SLAM was intro-

duced. Afterwards, we presented a review of the two problemsof the graph-based

18

SLAM, front-end and back-end respectively.

19

20

Chapter 3

Feature Extraction

As mention before, 3D mapping were successfully addressed by scan-matching ap-

proaches. The scan-matching can be implemented in the same level as the raw

data points obtained from the Microsoft Kinect. Single points may be treated as

orientation-less features which are less certain and less distinguishable, resulting to

a big uncertainty during the matching process. While the mentioned disadvantages

can be compensated by matching a large amount of points (for example using ICP

algorithm), this increases the computation time. Thus, a more efficient alternative is

to use features which are less frequent, but more informative, certain and unique. As

a result the whole scan-matching procedure will run more efficiently. Meanwhile, it

will form a conceptual point of view, providing a more compact, abstract and struc-

turally informative representations which greatly enhance the robot interaction with

humans.

Therefore, obtaining abstractions over raw sensory data samples is an important

capability of a mobile robot and a key issue for 3D registration. Depending on the

working environment of the mobile robot and obtained sensory data samples, differ-

ent features are implemented. In this work, the indoor environments are considered.

As we all know, in indoor environments, several structures like doors, walls, tables,

ground floor, etc., can be modeled as planar surface patches,which are parallel or

perpendicular to each other. Therefore, planar patches have been found to be a good

feature for 3D visual SLAM, while also being a quite good representation for the

final 3D map. Fortunately, with the availability of Microsoft Kinect 3D sensor, a

dense 3D point cloud along with a color image, representing the surrounding envi-

ronment of robot, is achievable at high frequency. In later processing steps, plane

features will be used to gather higher level features for estimating the robot poses

and representing the 3D map of the robot’s environment. A combination of several

orthogonal planar surface segments may form a room, a corridor and so on. The

main disadvantage of a feature-based approach is that depending on the feature type

21

used and feature accuracy, a big effort has to be summoned in order to extract this

feature in a robust way and accurately. This is especially difficult with noisy sensor

data containing irregularities and outliers.

Orthogonal corners are another kind of quite reasonable choices for representa-

tion of the structured indoor environment. Compared with planar features, orthog-

onal corner feature is more distinguishable and robust. It encodes the relationship

between its component planes. In our work, it is also used to track the robot poses.

In this Chapter, extraction of planar patches and orthogonal corners are discussed

as features, and the extraction procedure is described.

3.1 Point Cloud Pre-processing

For the convenience of explanation, we will refer to a collection of 3D points as

a point cloud structureP. Point clouds provide discrete, but meaningful represen-

tations of the surrounding world. Without any loss of generality, the {xi, yi, zi}
coordinates of any pointpi ∈ P are given with respect to a fixed coordinate system,

usually having its origin at the sensing device used to acquire the data. In our work,

a Microsoft Kinect is used as the sensing device. This means that each pointpi rep-

resents the distance on the three defined coordinate axes from acquisition viewpoint

to the surface that includes the sampled points.

The dense point clouds acquired by Microsoft Kinect are noisy and suffer from

different error sources, especially discretization effects in depth measurements and

the fact that the cameras are calibrated for a certain range.Both effects cause con-

siderable measurement errors in far range. Though the Microsoft Kinect’s official

distance limit is 3.5 meters, actually Kinect acquires depth images of points being

farther than this distance but there is a decrease of the cloud’s accuracy. In addition,

for each frame, the Kinect acquires a point cloud with307200 (640 × 480) points,

corresponding to the dimension of the acquired depth image.In order to enhance

the quality of each dense point cloud, meanwhile to keep the overall processing time

reasonable, four kinds of fast filtering methods are used to modify the data.

1. Pass through filter: A major disadvantage of the Kinect camera is the increas-

ing depth discretization error for large distances. There are a lot of points

whose depth are out of the operational depth range, even further. The points

whose depth are out of a determined threshold are consideredto be noisy and

shaky. Meanwhile, in order to reduce computation time, the points which are

out of interested area can be removed. For this reason, the pass through filter

is being used here to cut off the points are out of a pre-determined threshold.

22

2. Statistical outlier removal: For eliminating sparse outliers which caused by

measurement errors, a statistical outlier removal filter isused. It is based on

the computation of the distribution of point to its neighbors distances in the

input dataset. For each pointp, compute the mean distance from it to all its

k neighbors. By assuming that the resulted distance distribution is Gaussian

with a mean and a standard deviation, all points whose mean distances are

outside an intervalµd ± α · σd defined by the global distances meanµd and

standard deviationσd can be considered as outliers and trimmed from the

dataset. The parameterα controls the width of the interval and acts as a band-

stop filter cut-off parameter.

3. Voxelgrid filter: Voxelgrid filter is used for point reduction, so to reduce com-

putational time and memory usage. Moreover, duplicate points can be re-

moved through downsampling. It works as follows: the dense point cloud

is divided into a set of tiny 3D boxes (voxels) with a determined width in

space, i.e., voxelgrid filter. Then, in each 3D tiny box, all the points present

will be approximated with their centroid. The dimension of voxel decides the

number of these so-called reduced points. In our report, thevoxel with 2 cm

dimension is used to downsample the point clouds.

4. MLS-resampling: Moving least square (MLS) algorithm is usually used to re-

construct the surface and remove the data irregularities, which are caused by

small distance measurement errors and are very hard to remove using statis-

tical outlier removal filter. It provides a reconstruct surface for a given set of

points by interpolating high order polynomials between thesurrounding local

neighbors. Smoothing and resampling a noisy point cloud allows to obtain

more accurate estimation of surface normals and curvatures, which are very

important to further point cloud processing, such as segmenting and cluster-

ing. Also for a smoothed and resampled point cloud, it is easyand accurate to

segment and cluster the points which belong to a plane using RANSAC plane

estimator, which will be discussed later.

Figure 3.2 presents the filtering results of a scene point cloudP, which is shown in

Figure 3.1.

3.2 Planar Surfaces Extraction

As mentioned before, for indoor environments, planar surfaces and orthogonal cor-

ners are quite good choices for presenting the main structures. In this context, the

23

Figure 3.1: An original point cloud of the DAUIN corridor

(a) point cloud after pass through fil-

tering

(b) point cloud after voxelgrid

downsampling

(c) point cloud after outlier remov-

ing

(d) point cloud after MLS resam-

pling

Figure 3.2: Point cloud filtering and reduction results

24

planar surfaces are used as the basic features to build the spatial relationships be-

tween robot poses and the presentation of the environment ofrobot. Thus planar

surfaces extraction is the first step in trying to make some sense out of sensory raw

dense point clouds. This section describes the extraction of planes and orthogonal

corners from 3D point clouds acquired by Microsoft Kinect.

In this work, we only consider roughly vertical and horizontal planes.The mo-

tivation for this choice comes from the fact that in most indoor engineered envi-

ronments, major structures, like walls, windows, cupboards etc., can be represented

by sets of planes which are either parallel or perpendicularto each other. Actually,

ignoring other planes (arbitrary oriented or non-orthogonal) not only does not lead

to loss of valuable information during 3D mapping, but also brings robustness on

the robot orientation and filter out many dynamic objects.

In mathematics, a planar segment is composed of an infinite plane described in

general by the following equation:

Ax+By + Cz +D = 0 (3.1)

whereA,B,C,D are the plane parameters and(x, y, z) the coordinates of a 3D

point lying in the plane. And(A,B,C) forms the normal vector~n of this plane.

Since actually three parameters are enough to specify a plane in R
3, the normal

vector is usually normalized, i.e.,|~n| = 1. The constraint of unit length of normal

removes the extra fourth degree of freedom and leaves the other three. This nota-

tion has the advantage of having normal vector handy which isvery useful for the

following procedures. Thus it will be used to represent the extracted plane.

3.2.1 Extraction Algorithms

Two different approaches are widely used for extracting planar segments from point

clouds. One is based on RANSAC plane model, and another is using region-

growing approach. In the following, these two general algorithms are introduced

and compared. Combined to the situation in our work, a suitable one will be se-

lected for the planar surfaces extraction.

RANSAC

RANdom SAmple Consensus (RANSAC) [25] is a method to robustly fit a model

into a set of data points that may contain even a large number of outliers. It randomly

selects a minimal set of data points for estimating the modelparameters. From the

random samples, it chooses the one that is best supported by the complete set of

25

points. As of its general formulation, RANSAC can be easily applied to fit any kind

of geometric shape primitive.

Algorithm 2 is a pseudo-code description of the RANSAC algorithm for seg-

menting a single plane from a point cloud. It is mentioned explicitly as it forms

the first part of the whole procedure of planar surfaces extraction presented below.

For a predefined number of iterationsNI , the segmentation performance of a plane

defined by three randomly chosen verticesp1, p2 andp3 is evaluated by counting

the number of pointsNP lying within a predefined orthogonal distanceτr. The

plane with the highest number of supporting pointsNM is output as the best planar

segmentP found.

The quality of the resulting segmentation directly dependson the predefined

distance thresholdτr and the chosen number of iterationsNI . The chance to find a

correct segmentation increases by augmenting the number ofiterationsNI . How-

ever, the higherNI , the slower the algorithm. Hence, a trade-off in speed has to

be taken into account to realize good segmentation results.The complexity of the

RANSAC algorithm can be expressed asO(NI ·Np).

Let pg ∈ [0, 1] be the probability that a randomly chosen data item is part ofa

good model andpf ∈ [0, 1] be the probability that the algorithm terminates without

finding a good segmentation.pg andpf are related bypf = (1 − pNM
g)NI . Here,

NM = 3 as three data items are necessary in order to describe a plane. Hence,

NI =
log (pf)

log (1− p3g)
(3.2)

Unfortunately,pf andpg are generally not known a priori and change from scene to

scene. Therefore an empirical analysis is necessary.

Note that the plane found by this algorithm is not necessarily a connected re-

gion, which is caused by the planar segmentation definition taken from [31], which

examplifies the shortcomings of this definition. For example, a long corridor wall

interrupted by doorways or windows could be represented by asingle mathematical

plane consisting of several planar patches. Therefore post-processing is necessary

to offset these shortcomings and to make the extracted planes approximate estimate

of the true surface geometry.

Region-Growing

A region-growing algorithm starts from single entities of an input range like points

or planar patches and grows these into larger regions by merging them with match-

ing neighbors. When a certain stopping criteria is reached,e.g., if the approximation

error of a planar region exceeds a tolerance threshold, the growing process ends. An

26

Algorithm 2 P=planarExtracRansac(Pt)

P = {p1,p2, . . . ,pNp
} input point cloud composed ofNp 3D points

NP number of points within the environment of the currently defined plane

NM found maximum number points in the defined environment of theplane

NI predefined number of RANSAC iterations

d orthogonal distance to plane

τr maximum allowed distance for supporting points

(A,B,C) unit normal of plane

P outputlargest found plane

1: NM ← 0

2: for i = 1 toNI do

3: randomly select 3 differentp1,p2,p3 of the input point cloudP
4: (A,B,C,D)← detectPlane(p1,p2,p3), � planeP : Axi + Byi + Czi +D = 0

5: for j = 1 toNp do

6: d← distanceToPlane(pj, P)

7: if d ≤ τr then

8: NC ← NC + 1

9: endif

10: endfor

11: if NC > NM then � get plane with maximum number of supporting points

12: NM = NC

13: P̂ ← P � write to the largest planêP

14: end if

15:end for

27

example of a region-growing algorithm for planar surfaces detection is in [39]. The

algorithm starts by randomly selecting a pointp1 of the input point cloudP and its

closest neighborp2. A candidate pointpi is added to the set of planar pointsψ if the

minimal distance fromψ to pi is less than a thresholdδ. The pointpi is accepted

if, when added toψ, the average residual is less than a thresholdǫ and the distance

between the optimal plane andpi is less than a thresholdγ.

According to the above description of region-growing algorithm, we can know

that the selection of seed points is a key issue. However, automatic selection of

good seed points is very difficult to achieve. It is a well-studied topic, but it has yet

to be solved. Based on this issue, in this work, RANSAC-basedapproach is chosen

to extract the existing planes from the filtered point clouds.

3.2.2 Planar surfaces extraction using RANSAC

Given a 3D point cloudPt acquired at timet of the indoor environment, after point

filtering and downsampling processes, the well known RANSACplane model is

used to segment out all the horizontal and vertical surfacessuch as floors, doors, pil-

lars and walls that are present within it. RANSAC is iteratively executed to extract

the largest plane from the full point cloudPt until a pre-defined ending condition is

met. For each iteration of the RANSAC algorithm, the plane with the largest num-

ber of inliers is filtered from the full point cloud and returned. For the convenience

of presentation, the extracted plane is denoted asPt,i, wheret is the index of point

cloud sample, andi is the index of extracted plane in point cloudPt.

For the purpose of our work, only planes that are roughly horizontal and ver-

tical are considered. Thus the extracted plane is tested by the relative relationship

between its normal vector~n and the~zr axis of robot reference frame, which points

upward. Here it should be mentioned that acquired point clouds are referenced to

the Kinect camera’s reference frameRk. Therefore it is necessary to transform the

point clouds fromRk to Rr. The transform matrix can be computed by the rela-

tive relationship between robot and Kinect reference frame. In our work, all the

point clouds are transformed to the robot reference frame when the pre-processing

procedure is finished.

The horizontal and vertical surfaces are categorized by their relationships with

~zr, as illustrated by the following equations:

Pv = {Pt,i : |~nT ·~zr| < cos (
π

2
− φ)} (3.3)

Ph = {Pt,i : |~nT ·~zr| > cos (φ)} (3.4)

wherePv is a vertical plane,Ph is a horizontal plane, andφ is the maximum accept-

28

able deviation. If the extracted planePt,i is far from being horizontal or vertical,

all the inliers supporting this plane is removed from the whole current point cloud,

and then RANSAC is executed again to find the next largest plane. While if it is

nearly vertical or horizontal, a distance-based clustering is performed on its points

to find large contiguous regions of points within the plane and discard clusters that

are too small, as will be discussed explicitly below. Then the supporting points are

removed from the point cloud. The same procedure is applied iteratively until no

plane with sufficient number of points can be found. A threshold of 1000 was used

for this work. This procedure ensures that most of the arbitrary orientated planes

are filtered out. Actually, ignoring these kind of planes notonly will not lead to a

valuable information loss, but it will filter out many useless planes, and simplify the

following task to a certain extent.

Compared with other methods that classify the points belonging to a same plane

according to their normal vector, the RANSAC is very fast since no reprocessing is

required to estimate the normal vector at each point. Figure3.3 illustrates the plane

extraction result using RANSAC in two frames.

(a) Point cloudPa before plane detection (b) Plane detection result of point cloudPa

(c) Point cloudPb before plane detection (d) Plane detection result of point cloudPb

Figure 3.3: Two examples of plane detection result. Colors were randomly selected

for the planes.

29

3.2.3 Plane Clustering

RANSAC robust plane estimator is used successfully to find the main horizontal

and vertical planes in a scene. However, apparent from Figure 3.3, the plane inliers

are fitted to the same mathematical plane but actually on the different sides of the

environment, or belong to different physical planes. This is due to the fact that they

lie on the same mathematical plane defined by the RANSAC algorithm. Depending

on which planar model is randomly created first, the points might belong to one of

multiple planes. Obviously, the extracted plane does not reflect the real geometry

structure of the scenario and it is not accurate. In order to solve these problems,

a distance-based clustering step is performed on extractedplanes. Generally, this

clustering step serves two purposes: to remove individual points or small clusters of

points that fit to the plane but are not part of a large contiguous surface (e.g., a door

frame leaning out from the surrounding wall), and to separate multiple surfaces that

are coplanar but are in different locations, such as two tables at the same height.

Each cluster with a sufficient number of points (a threshold of 500 was used for this

work) is saved and will be used for mapping purposes.

The essence of segment and cluster is to group the points withthe same proper-

ties (e.g. normal, curvature, color) together based on a given measure. In order to

achieve the goal, what we need to do is to find a suitable measure which can find an

object point cluster and differentiate it from another point cluster at the same time.

Usually the measure is the Euclidean or Mahalanobis distance metrics. In our work,

the former is used.

For an unorganized point cloudP, a cluster is defined as follows:

LetOi = {pi ∈ P} be a distinct point cluster fromOj = {pj ∈ P} if

min‖pi − pj‖2 ≥ dc (3.5)

wheredc is a maximum distance threshold. When distance between a setof points

Oi and another set of pointsOj is larger than this threshold, they are assigned to

two different clusters. So the distance threshold is important, which determines the

final clustering result is good or not.

A basic algorithm for cluster can be described as follows:

1. for the input point cloud datasetP, create a kd-tree representation. The kd-

tree representation is the most used method to find closest points since it is

fast to process.

2. set up an empty list of clustersC, and a queueQ of the points that need to be

checked.

30

3. then for every pointpi ∈ P, perform the following steps:

• addpi to the current queueQ,

• for every pointpi ∈ Q do,

- search its neighborhood points setPk
i in a given method, such as

k-nearest method or radius method;

- for every neighborpk
i ∈ Pk

i , check if the point has already been

processed, and if not add it toQ;

- when the list of all points inQ has been processed, addQ to the list

of clustersC, and resetQ to an empty list.

The algorithm terminates when all the pointspi ∈ P have been processed and are

now part of the list of point clustersC.
Given a segment plane, using the cluster algorithm to detectwhether all the

plane points belong to a same object. If the points belong to several clusters, as men-

tioned before, check each cluster’s supporting points number. Then only the clus-

ters which meet the rules are accepted and saved, otherwise it will be removed.This

technique can make sure that surfaces with relatively few supporting points such as

surfaces that were scanned from far away, will not be detected.

Figure. 3.4 presents the plane clustering results of the above plane detection

results shown in Figure 3.3. From the Figure 3.4(a), it can beobserved that the

pink points in the right side of Figure 3.3(b) are removed, also the yellow points in

the bottom part of the right wall in the Figure 3.3(d) are not clustered into the floor

surface. At the same time, it should be noted that the small cluster on the utmost

right side are deleted since it has few supporting points andits area is too small.

(a) plane clustering result of

point cloudPa

(b) plane clustering result of point

cloudPb

Figure 3.4: Plane clustering results of above Figure 3.3(b)and Figure 3.3(d)

31

3.2.4 Plane Merging

As discussed above, a clustering step is performed to separate multiple coplanar

surfaces such that the points grouped into a plane belongs toa geometric plane.

Indeed in some cases the points in a same plane are split into several pieces, i.e.,

over-segmentation, which means that the number of output planar segments is larger

than the number of segments existing in the physical reality. This is mainly caused

by noise, occlusion or simply observing different parts of the same plane apart from

each other. From Figure 3.4, it can be observed that the back walls are split into two

or three pieces, respectively.

To compensate for over-segmentation effect, when two planes are approximately

aligned, i.e., they have approximately equal plane coordinates, and are overlapped

or near each other, it is desirable to merge them into a largerplane in order to

improve the correct matching ratio.

Given a set of planesPt extracted from point cloudPt, a basic method compar-

ing all planar segments among themselves has been implemented. For a pair of two

plane clustersPt,i andPt,j, if the following equations:

|~nt,i · ~nt,j | ≥ cos(φm) (3.6)

|dt,i − dt,j | ≤ ∆dm (3.7)

d(Pt,j, Pt,j) ≤ ∆dP (3.8)

are satisfied, they are considered to be coincident and merging procedure is imple-

mented, where Eq. (3.6) and Eq. (3.7) are presented to determine whether plane

clustersPt,i andPt,j are coplanar, while Eq. (3.8) is to check whether they are over-

lapped or near each other. Andφm,∆dm,∆dP are pre-defined maximum acceptable

parameters.

Here the overlap is evaluated by finding the neighboring points in a given radius

rm using kd-tree. In order to reduce the computing time, their polygon boundary

points are used instead of the entire plane cluster points. For each point, if there are

sufficient number of neighbor points in another plane, the point is considered to be

near to another plane. If a proper part of points are near to another plane, we assume

that these two planes are overlapping or near each other.

After all the planes are refined, small planar surfaces are ignored. This is done

by thresholding the patch surface area. For the experiment considered in this thesis,

surfaces smaller than 0.25 m2 are ignored. This technique ensures that surfaces

with relatively small area such as surfaces that were scanned from far away will not

be detected. In addition, the mathematical parameter of themerged segment will

be renewed using RANSAC. Then the refined planes are stored invertical planes

32

setP v
t or horizontal planes setP h

t according to their classification determined by

Eq. (3.4).

Figure 3.5 presents the refined planes, where the planes in a same physical plane

are merged together and there is no small planar patches.

(a) Plane merging result of

point cloudPa

(b) Plane merging result of point cloud

Pb

Figure 3.5: Plane merging results of Figure 3.4 respectively.

3.3 3D Corners

Toward more robust data association, in this thesis we are interested in understand-

ing how the extracted planes relate with each other, and constructing higher level

features based on them. For instance, three orthogonal planes defines a corner,

which is more robust and distinguishable in indoor environment. Moreover, a sin-

gle corner is enough to lock all degrees of freedom in space, since we can asso-

ciate to a corner both an orientation and a position, while a plane only constraints

a distance and an orientation. The idea of grouping basic features to form higher

features, which are more distinguishable and less frequent, is fairy general. In our

work, three orthogonal planar surfaces defines a 3D orthogonal corner feature. This

is glued to the geometrical structures in indoor environment. In long run, corner

features can enrich the 3D map with information which help the robot understand

its surrounding space.

Although the idea of grouping three planes using 3D corners is fairly general, in

our work, we only consider three orthogonal planes, which are common in indoor

environment. Usually, an orthogonal corner is constructedby two walls and the floor

or the roof. Given a set of three planes{Pt,i, Pt,j, Pt,k}, a cornerCt,i is constructed

if all of the following conditions are met.

1. Every two planes among the set of three planes, are perpendicular to each

33

other,i.e.

~n⊤

i · ~nj ≃ 0 (3.9)

~n⊤

i · ~nk ≃ 0 (3.10)

~n⊤

j · ~nk ≃ 0 (3.11)

2. The intersection pointpijk lies approximately inside the boundary of its par-

ent planesPt,i, Pt,j andPt,k or its distance to the nearest boundary point is

smaller than a predefined valueδc.

Mathematically, this can be expressed as equation

d(pijk,Bt,i) ≤ δc (3.12)

d(pijk,Bt,j) ≤ δc (3.13)

d(pijk,Bt,k) ≤ δc (3.14)

whereBt,i, Bt,j,Bt,k are the boundary points set of the planePt,i,Pt,j and

Pt,k, respectively.

Each corner is represented by its position in spacepC , three normal vectors,~n1,

~n2, and~n3, corresponding to its parent planes which denote its orientation. And its

position is determined by the intersection lines formed by its parent planes. Thus,

to get the position information of orthogonal corners, firstly the intersection line of

two meeting vertical planes are detected, then its intersection point with the third

horizontal plane is considered as the position of detected corner.

3.3.1 Intersection Line between Two Planes

In order to get the intersection line of two orthogonal planes, we follow the tech-

nique in [58]. The line of two planes intersection is normally represented as a point

on the linep = (x, y, z) and a direction vector~n = (nx, ny, nz) emanating from

this point. While the direction vector~n, can be computed as the cross product of the

two normal vectors of its parent planes. The point on the line, p, can legitimately be

any point on the line. Mathematically it does not matter whatthe point is, as long

as its on the line. Here we define the point is the point that is closest to the origin

po, which will give a canonical representation of the line.

According to plane extraction section, the extracted planemodel can be pre-

sented asAx + By + Cz + D = 0,where normal vector is~n = (A,B,C). Given

two planes with normal vectors~n1 = (A1, B1, C1) and~n2 = (A2, B2, C2), and

points on the two planesp1 = (x1, y1, z1) andp2 = (x2, y2, z2). The direction

34

vector of the intersection line is the cross product of the two normal vectors, i.e.,

~n = ~n1 × ~n2.

Then we will compute the point on the linep. Since the pointp must be on both

planes, so we have two constraints:

(p− p1) · ~n1 = 0 (3.15)

(p− p2) · ~n2 = 0 (3.16)

The pointp should also be as close as possible to the origin pointpo = (xo, yo, zo),

and the distances between two points is expected to be minimized. The distance is

‖p− po‖2 = (x− xo)2 + (y − yo)2 + (z − zo)2 (3.17)

This is a problem which can be solved with Lagrange multipliers, with one

objective function (3.17) and two constraints Eq. (3.4) andEq. (3.15) and (3.16).

The functionw containing the constraints and objective function is

w = ‖p− po‖2 + λ(p− p1) · ~n1 + µ(p− ~p2) · ~n2

= (x− xo)2 + (y − yo)2 + (z − zo)2 +
λxn1x + λyn1y + λzn1z − λp1 · ~n1 +

µxn2x + µyn2y + µzn2z − µp2 · ~n2 (3.18)

whereλ andµ are the two Lagrange multipliers. Then we get the Lagrange multi-

pliers by computing the partial derivatives and setting them to zero. And the final

equations in matrix form are

2 0 0 n1x n1x

0 2 0 n1y n1y

0 0 2 n1z n1z

n1x n1y n1z 0 0

n1x n1y n1z 0 0

x

y

z

λ

µ

=

2xo

2yo

2zo

p1 · ~n1

p2 · ~n2

(3.19)

Solving this matrix equation, we can get the unknown vector(x, y, z, λ, µ), so

we can get the pointp on the line closest topo.

3.3.2 Corner Detection

A corner is constructed by three sets of planes in different directions. Here the 3D

right angle corner, which are intersections of three orthogonal planes, are only con-

sidered to be used as high level features for registration and robot localization. Since

in our case, the experimental environment is an indoor environment, and because

35

the accuracy limitation of the Kinect, the points which are very far away from the

Kinect with distance along~zr axis exceeding a threshold are filtered, most of the

corners are constructed by two vertical walls and floor. Based on this, we assume

the floor plane is infinite. Actually, only part of the floor canbe detected by Kinect.

From the above section, the line of two vertical walls can be obtained. So cor-

ners’ position information will be determined by the intersection point of the ob-

tained intersection line and floor plane. In the following Figure 3.6, the detected

corners in six frames are shown, and the white lines are the normal vectors of con-

structing planes.

3.4 Summary

In this Chapter, we have presented the planar surfaces features extraction and 3D

corners features detection from raw point clouds, leading to more efficient SLAM

while at the same time more compact and structurally informative representations of

final 3D map which greatly enhance the robot interaction withits environment. The

popular RANSAC plane model is used for extracting the largest plane from the raw

point clouds. The reported experiments in the context of plane extraction showed the

effectiveness and robustness of RANSAC plane model extraction. While since the

detected largest plane by RANSAC plane is extracted from a mathematical view, it is

possible that points in a same mathematical plane but belongto different geometric

object, e.g., two tables at a same height. As mentioned before, the quality of plane

segments extracted affects the plane correspondences matching step and the pose

registration step. After that, the extracted planes are refined by a distance-based

clustering step and a merging step. It should be mentioned that only the roughly

vertical planes are saved and delivered to the plane matching part, which will be

discussed in next chapter. In addition, the raw point cloudsare pre-possessed by

several filters to remove noisy points and decrease the computing time.

Meanwhile 3D corners are detected based on the extracted planes. Here only the

orthogonal corners, which are common in most of indoor environments, are consid-

ered, i.e., three intersecting planes which are perpendicular to each other form a 3D

corner. 3D orthogonal corners are more distinguishable andthey represent higher

features since they encode the relationship between planes. The use of 3D corners

improves the accuracy and robustness of data association. The experiment results

shows that 3D corners in the obtained point clouds can be detected effectively.

36

Figure 3.6: Detected corners in 6 frames

37

38

Chapter 4

SLAM Front-end

In Chapter 3 the obtained point clouds are processed, in which planes and orthogo-

nal corners features are extracted, providing the necessary material for implementa-

tion of a full SLAM loop. As mentioned before, graph-based SLAM is divided into

two problems: 1) extracts spatial relations between individual observations. This is

referred as the SLAM front-end. 2) optimizes the poses of these observations in a

so-called pose graph and with respect to a non-linear error function. This is referred

to as the SLAM back-end. In this Chapter, we focus on the front-end part, and

two major contributions of this thesis are explained: estimating the pose changes by

aligning the corresponding sets of planar surface segmentsand orthogonal corners,

while the corresponding relationship between planes and orthogonal corners in two

scans is determined by a plane matching algorithm and a corner matching algorithm

respectively.

First a brief introduction to the SLAM front-end problem is presented. Then

correspondence problem is introduced, which is one of the most critical problems

in feature-based SLAM. It is the problem of finding features in scans taken from

different locations that correspond to the same physical entity. In our case, planes

and orthogonal corners are considered as the features to be matched. Since the

experimental environment is flat almost everywhere with theexception of several

small ramps, it is believed that it is suitable to only consider vertical planes in the

matching procedure.

How to recognize corresponding planes in different frames robustly is difficult,

since wrong matches will result in a big divergence in the trajectory of robot. In

this Chapter, a new plane matching algorithm is presented and explained in detail.

In order to validate the correctness and robustness of the presented plane matching

algorithm, in Chapter 6 pose registration experiments are carried out by using the

presented algorithm, ICP and SACIA respectively, where ICPand SACIA are used

as baseline algorithms for registration. This Chapter endswith a brief summary

39

which highlights the important points in few sentences.

4.1 Introduction

In our work, the robot, only equipped with a Microsoft Kinectand wheel encoders,

moves in planar indoor environments. The Microsoft Kinect is used for collecting

3D point clouds of the explored environment, while the wheelencoders provides an

initial estimation of the displacement between two consecutive scans.

For denoting frames and relative transforms, let us callPj thej-th point cloud

and theFj associated frame from which the point cloud was observed. Ifthe robot,

more precisely, the sensor mounted on the robot, moves from frameFj to frame

Fk, i.e., it undergoes a rotation byRj
k and a translation bytjk between framesFj

andFk. Usually,Fj andFk are successive frames, but they may be nonsuccessive,

for example during loop closing. The front-end seeks to determine the most likely

transformations{Rj
k, t

j
k}, i.e., constraints between poses from an observation, and

then to construct a pose graph that are the basis for the optimization approaches.

Suppose two Cartesian coordinatespj andpk of the same physical point ob-

served from the two framesFj andFk respectively, they are related by

pj = R
j
kpk + t

j
k (4.1)

For odometric edges(i, j) the framesFi andFj correspond to successive poses

assumed by the robot, while for a loop closing, they are non-successive.

Eq. (4.1) is only about point transformation, such as point-to-point (P-P) ICP.

It works with the points directly and hence does not assume specific structure in

the environment. However, this algorithm is computationally expensive and slow

for large point clouds of the order of104-106 points. Meanwhile, it suffers from

premature convergence to local minima, especially when theoverlap between view

samples is not large.

If the environment where robot explores has some structures, e.g., in indoor en-

vironments, main structures, like doors, walls, tables floors, etc., are made up of

many planar surface patches, which are parallel or perpendicular to each other, then

scan-matching based on plane segments offers many advantage in terms of compu-

tational efficiency and an increase in data association robustness. Furthermore, a

map based on plane segments requires few storage memory and is easy to visualize.

Thus in this thesis, planar surface-patches are utilized asthe basic features in

the front-end part. Our approach falls into the category of estimating relative poses

based on the correspondences between large 3D surface-patches extracted from two

registered scans.

40

4.2 Correspondence Problem

Using extracted features to solve geometric estimation problems induces a data-

association problem, also known as the correspondence problem. It is considered as

one of the most critical problem [88] of SLAM. It is a problem of finding features

in scans taken from different locations that correspond to the same physical entity.

The higher and the differentiability of used features, the better is the obtained data

association performance. Additionally, computational complexity can be further

reduced if features are distinguishable, even partly, by restricting the search space

to similar candidates. Abstraction levels range from geometric features like points,

lines or planes to semantically more significant features combining laser and vision

information for high distinctiveness [61].

Different approaches to correspondence problem is classified into two main cat-

egories in [93]: discrete matching and iterative alignment. The first one covers

the approaches that explore the discrete search space of potential correspondences,

while the second category are about the approaches that posecorrespondence de-

termination as the problem of searching for the alignment which lines up current

observation with the previous one, or the built map. This work is aimed at finding a

reasonably fast and accurate matching algorithm to determine correspondences be-

tween planar surfaces extracted in consecutive views, and then estimate the relative

roto-translation between these two views. As already mentioned, the use of more

distinctive features helps to improve the performance of correspondence problem.

Orthogonal corners constructed by three planes are considered as higher level fea-

tures. The establishment of correspondences between corners are discussed too.

Statistical decision is commonly used to measure the difference between dif-

ferent features [81]. In loose words, this means a metric is needed to compare

different features quantitatively, taking into account uncertainty information. The

Mahalanobis distance [66]dM is such a metric and is defined as follows:

dM(V x) =

√

(V x − µ)TC−1(V x − µ) (4.2)

dM is the Mahalanobis distance of a random vectorV x to a multivariate normal

distribution with meanµ and covariance matrixC. It can also be defined as a dis-

similarity measure between two random vectorsV x andV y of the same distribution

with covariance matrixCM = Cx +Cy, yielding

dM(V x,V y) =

√

(V x − V y)
T
C−1

M (V x − V y) (4.3)

If V x andV y are randomly chosen,dM(V x,V y)
2 is aχ2-variable withr degrees

of freedom.

41

To test whether a current observed featureV x matches a previous observed

featureV x, with Nx being the number of components ofV x or the degrees of

freedom, theχ2-hypothesis test can be carried out by evaluatingdM(V x,V y)
2. The

obtained differencedM(V x,V y)
2 between them shows in probability how much

they can be matched to an identical feature.

The above discussion of correspondence problem is in a probabilistic frame-

work. In practice, not all hypothetical matchings worth to be further considered.

Usually the obtaineddM(V x,V y)
2 is compared with a predetermined threshold,

picked fromχ2 tables with corresponding degrees of freedom and required confi-

dence, to check compatibility of the paired features. If thepairing is less probable

than the threshold, it is rejected as a potential hypothesis. Otherwise the features

are accepted as a pair of corresponding features.

4.3 Plane Matching

In this work, planar segments are used as the basic features in a 3D SLAM frame-

work. The features extraction from raw point clouds obtained by a Microsoft Kinect

is described in Chapter 3.

Consider a robot frameFt, corresponding to the pose of the robot at timet

and an indexed setP v
t of vertical planar patches extracted from the point cloudPt

associated with the robot frameFt. We identify the robot frame with three axis:

~zr (already introduced in Chapter 3), which is perpendicular to the plane in which

the robot moves,~xr heading towards the direction of motion of the robot, and~yr

completing the term.

Based on the assumption that the robot is moving on a plane, the robot poses

x1:T are presented as 2D transformations inSE (2). Thus, in this context we only

consider the extracted vertical or nearly vertical planes.The motivation for this

choice is twofold: first, since we are addressing the planar case, horizontal planes

do not provide ”strong” constraints on the robot pose; moreover, in an indoor en-

vironment large planar patches are most likely to be walls, doors or other vertical

surfaces.

4.3.1 Problem Statement

Given two sets of vertical planes which are extracted from two successive views of

a 3D Microsoft Kinect sensor rigidly mounted on a mobile robot, in this section,

the goal of the plane matching algorithm is to find correspondences between these

current observed planes features and the features observedpreviously, i.e., answer

42

the question of “which plane is which”. From these corresponding planes, we would

like to estimate the change in position and orientation of the robot between the

measurement samples.

Generally the overlap between these two frames is unknown. For instance, for

two consecutive framesFt andFt−1, some planes go out of the view while some

new planes come into view which were not previously visible.Thus how to robustly

detect that plane featurePt,i in current frameFt is the same physical plane patch as

planePt−1,j in previous frameFt−1, is a difficult task.

In [24], a comprehensive discussion on finding correspondences between two

sets of planar or quadratic patches using attribute-graphsis presented. In it, simi-

larity metrics are formulated based on several attributes like shape-factor, area ra-

tio, curvature-histogram, inter-surface relations etc.,and a bounded tree search was

performed to give a set of correspondences which maximized the metric. The re-

sult is refined using an evolutionary algorithm, which meansthe computing-time is

high. Here apart from planar patches, orthogonal corners are used, which will be

discussed latter. The plane matching algorithm is described which maximize the

overall geometric and appearance consistency within a search-space to determine

potential correspondences between planes. The search-space is pruned using cri-

teria such as size-similarity, agreement with odometry, and appearance-similarity.

Then, based on the fact that, the relative rotation between the pairwise registered

scans is unique, which means the relative rotations estimated by all the potential

corresponding pairs should be same, or much close to each other. Thus a consistent

test is applied to discard the wrong potential correspondences according to their

similarity indices defined in this work, then the set of resolved correspondences is

obtained.

In the following, the plane matching algorithm will be explained thoroughly.

4.3.2 Plane Feature Representation

As mentioned above, only the extracted vertical or roughly vertical planes are used

to build the correspondences between two successive views.In principle, it is suit-

able to project the vertical planes onto the~xr~yr-plane and use their projections, i.e.,

2D lines, to represent these vertical planes. Therefore, a vertical plane represented

asAx + By + Cz + D = 0 will be a line represented asAx + By + D = 0 in

2D space. Before delving into the representation used for the vertical planar seg-

ments in 2D space, a survey of line models used in the literature is presented in the

following.

In mathematics, infinite lines in 2D Cartesian space are generally represented

43

as:

Alx+Bly + Cl = 0 (4.4)

whereAl, Bl andCl are parameters.

While the polar form is another common way to represent the line:

x cosα + y sinα− r = 0 or equivalently ρcos(θl − α)− r = 0 (4.5)

whereα andr are the line parameters:−π ≤ α ≤ π is the angle between positive~x

axis and line normal, andr ≥ 0 is the distance of origin to the line. The parameterρ

equals
√

x2 + y2 andθl is computed asθl = arctan y

x
. The polar form is preferable

since it only uses two parameters that is the minimum number required to represent

a line.

In order to present the relationship between the robot and extracted vertical

plane-sets better, a different 2D line presentation is introduce here. We parametrize

the 2D lines in terms of distanced from the robot and the relative angleθp ∈
(−π,+π] (both expressed in the robot frame). The orientationθp of the projected

plane is defined to be the angle between~yr axis and the projection line, see Fig-

ure 4.1. The projection line is oriented in clockwise direction such that the robot

is always on the right-hand side of the plane. The advantage is that the robot can

distinguish from which side a plane is observed, and can distinguish the parallel

planes in a same scenario, therefore perform more reliable associations. Thus, in

the following, a vertical planePv in 2D space is represented by a couple of param-

eters(θp, d), whereθp ∈ (−π,+π] andd ≥ 0. Actually the cased = 0 is unlikely

to occur in practice in the robot frame. Since we assume that the origins of robot

frame and sensor frame are located at a same point,d has the same value in the

sensor frame.

Pd

p
q

R
rx

ry

Figure 4.1: Representation of the projection of a vertical plane

44

4.3.3 Plane Matching Algorithm

For the convenience of explanation, we consider two robot frames:k-th robot frame

denoted asFk from which an indexed vertical plane-setP v
k is observed, and another

frameFt from which the indexed plane-setP v
t is observed. Note that a vertical

plane is presented using parameters(θp, d), as described before. ThusP v
k is an

ordered set of plane parameters defined as

P v
k , {Pk,i(θ

p
i , di), i = 1, 2 . . .Nk} (4.6)

wherek is the index of point cloud sample, andi is the index of extracted plane in

each point cloud sample. Our goal is to establish correspondences between planes

in P v
t and planes inP v

k , i.e., which pair(Pt,i, Pk,j) represent the same physical

location. These two frames are typically successive for normal registration, but

they may also be nonsuccessive, for example if a loop is closed. For simplicity, in

this section we only consider the case of plane-sets acquired at consecutive frames,

i.e., we consider the casek = t − 1(t ≥ 1). And the loop closure detection will be

discussed in Chapter 5.

Given a query planePt,i, the ith plane in frameFt, there areNt−1 + 1 possi-

ble correspondences, if we also include the case planePt,i is not present in previ-

ous frameFt−1. We can naı̈vely try all of these correspondences, discard wrong

matches by using different tests and choose the planePt−1,j with the maximum

overall consistency as the potential correspondence of planePt,i. If the query plane

Pt,i, corresponds to planePt−1,j in frameFt−1, it will be denoted asPt,i ↔ Pt−1,j ,

abbreviatedi↔ j.

The use of different tests is important in order to discard most of the false

correspondences, which are unavoidable in practice. For each planePt,i, (i =

1, 2, · · ·Nt) in Ft, the following tests are applied one by one to select candidate

correspondences for query planePt,i: (1) odometric rotation agreement test; (2)

odoemtric translation agreement test; (3) appearance similarity test; (4) size sim-

ilarity test. A similarity measure is defined to evaluate howgood is the selected

correspondences.

Odometry rotation agreement test

Since odometry is available, we can use it to choose, among the candidate matches,

the ones that meet the rotation agreement with the odometry values. That is based

on the assumption that the odometry relative rotation erroris bounded in successive

frames. To compare the planePt,i with Pt−1,j, they have to be transformed into a

common reference frame. Since odometry information is given, we can compute

45

the odometric rotation matrixRt−1
t according to the relative rotation between frame

Ft−1 andFt. The query planePt,i is transformed into its previous reference frame

Ft−1, and its rotation parameter̂θpi in reference frameFt−1 is obtained. The two

sets of parameters in two frames are related by

~nt−1,i = Rt−1
t ~nt,i (4.7)

where~nt,i is normal parameter of query planePt,i, provided by the plane extraction

procedure. While~nt−1,i is its corresponding normal parameter in frameFt−1. Then

its renewed 3D normal parameter is transformed to the definedorientationθ̂pi in 2D

space according to the technique presented in above section.

Now, we look for all planes inP v
t−1 satisfying

‖θ̂pi − θpj‖ ≤ ∆θt (4.8)

whereθpj is the orientation of thej-th planePt−1,j in P v
t−1 and∆θt is a fixed thresh-

old. If the orientationθpj of plane is roughly equal tôθpi , (expressed in frameFt−1),

i.e., Eq. (4.8) is satisfied, thej-th plane ofP v
t−1 is selected as a candidate match for

the i-th plane in the setP v
t , then we add it to the candidate subsetPw while others

are rejected as matches do not agree with the odometry rotation.

Odometry Translation Agreement

After test 1 (odometry rotation agreement test), a subset ofcandidate planesPw

corresponding to the query planePt,i is obtained. Similar to the previous test, an es-

timate of the translationtt−1
t is given according to odometry. We can use it to elimi-

nate potential correspondences pairings fromPw which cause a gross disagreement

with the odometry values, and keep the correspondences pairings which meet the

agreement with the odometry values for the further test. More formally, given a

potential correspondencePt,i ↔ Pt−1,j, the parameter of distance can be used to

select the planes fromPw which are close to query planePt,i. Mathematically, if

planePt−1,j satisfies the following inequality:

‖d̂i − dj‖ ≤ ∆dt (4.9)

whered̂i anddj are distances of planêPt,i (expressed in frameFt−1) andPt−1,j to

the origin in 2D space respectively, and∆dt is the pre-defined threshold describing

how close two planes are required to be, the potential correspondence is considered

to pass the odometry translation test, and the planePt−1,j is added to the subsetP t,

while others are rejected.

46

Texture-based Test

In indoor environment, it is normal that there might be more than one planes

with very similar(θp, d) values. For instance, when a door is closed, it is parallel

to the wall, and usually the door is ahead of the wall by few centimeters, as shown

in Figure 4.2. Usually the displacement is less than 10 cm. They are so close

that it is inevitable that the parallel door and wall in different frames are wrongly

considered as corresponding planes. Disambiguating amongthem is usually not

necessary for relative pose estimation if there are not planes perpendicular to these

planes, i.e., they do not form a corner with other planes. However, if they are part

of a corner, as shown in Figure 4.2, a wrong match between planes will produce

as a result that two cornersCt,i andCt−1,j in different frames will be matched to

be a same physical corner. The estimated transformation according to this pair

of corresponding corners will induce a big error in translation value. In such a

case, color feature is considered to be a good option to disambiguate the plane

correspondences after implementing the orientation and distance agreement test,

since usually the color of the door is different from its surrounding wall’s, or the

door may have some fancy textures in its dominant planar shape. Meanwhile, the

use of color consistent test will make the correspondences finding more reliable.

Figure 4.2: Relationship of a door and a wall in indoor environment

For each point cloudP, besides the points Cartesian coordinate information

(xi, yi, zi), it also contains color information associated with every single point.

In our case, the color information is presented with RGB color model. Its RGB

imageI can be obtained by parsing the original point cloudP according to a certain

transformation,

p = F (p) (4.10)

wherep is a pixel in imageI, andp denotes a point inP. In this thesis we follow

the technique implemented in Point Cloud Library (PCL) [79].

Figure 4.3 shows an example of parsing result. Apparently, the parsing result is

quite good and the parsed image can describe the scanned environment accurately.

Given a pair of matchingPt,i ↔ Pt−1,j from setP t, their 2D images{It,i, It−1,j}
will be obtained according to Eq.(4.10). To describe each plane image’s informa-

tion, color histogram is considered. It is one of the frequently used color descriptors

47

(a) Original point cloudPa (b) 2D imageIa of Pa

Figure 4.3: An example of parsing result

that characterizes the color distribution in an image, and it is a flexible construct

that can be built from images in various color spaces, whether RGB, HSV or any

other color space of any dimension. Here we build the histograms in RGB space.

To compareIt,i andIt−1,j so to check the appearance consistency of potential

matching pairPt,i ↔ Pt−1,j, the common correlation measure in OpenCV [9] is

used to estimate their similarity. Given two color histogramsHi andHj, the corre-

lation measure is shown in the following equation

dc(Hi, Hj) =

∑

I(Hi(I)− H̄i)(Hj(I)− H̄j)
√∑

I(Hi(I)− H̄i)2(Hj(I)− H̄j)2
(4.11)

whereHi(I) are the bin values of histogramHi, H̄ = 1
N

∑

IHI , andN is the total

number of histogram bins. From Eq. (4.11), we can get conclusion that a high score

represents a better match than a low score. A perfect match is1 and a maximal

mismatch is -1.

For imagesIt,i andIt−1,j , the histograms of three different channels are build

and compared respectively, i.e., three correlation value,drc, d
g
c anddbc will be ob-

tained. And their product value, i.e.,drc × dgc × dbc is considered as the parameter to

check the color consistency of candidate matchingPt,i ↔ Pt−1,j . If the correlation

value is larger than a fixed valueCt, it will be chosen as one of the corresponding

plane of query planePt,i, then added to the setP c, otherwise it will be rejected.

Size Similarity Test

In the Appearance similarity Test, color feature is used to distinguish planar patches

with very close values(θp, d) but different colors. However, in some cases, planar

patches not only have close values(θp, d), but also similar colors. For instance, a

pillar with its neighboring wall. In such a case, one way to distinguish these planes

is to consider whether their size are similar, since usuallythe pillar is smaller than

the wall. A size similarity test is presented as Eq. (4.12), which is based on the area

48

ratio of assumed corresponding planes.

min(Si, Sj)

max(Si, Sj)
≥ rt (4.12)

whereSi andSj denotes the area of planePt,i andPt−1,j respectively. If the ratio

of their area exceeds a pre-defined threshold, planePt−1,j is accepted as potential

corresponding plane of query planePt,i and added to setP s otherwise it will be

discard.

Similarity Measure

After the four tests presented before, the setP s may contain non-unique planes, i.e.,

more than one planes in previous frameFt−1 may be mapped to the query plane

Pt,i. We assume in each plane-setP v, there are no two plane features belonging

to a same geometric plane, as a result of the application of plane clustering and

merging. Thus, if we do not consider the case that a query planePt,i is not present

in the previous frameFt−1, only one plane can be mapped to the query planePt,i,

i.e., the correspondence is unique.

To solve the uniqueness problem and evaluate the similaritybetween each pair of

candidate matching planes, a similarity metric is defined byevaluating the goodness

or reliability of the assumed correspondences. Three factors are used in measuring

the similarity between two selected potential corresponding planes. First, their “ex-

tent” of agreement with the odometry rotation and translation tests. Moreover, the

area factor is considered. The overall similarity of a pair of candidate corresponding

planes ie expressed as the weighted sum of different factorsas shown in equation:

Is(i, j) = ks ×min(Si, Sj) + ko ×
1

|θ̂pi − θpj |
+ kd ×

1

|d̂i − dj|
(4.13)

whereks, ko, kd are three coefficients weighting the importance of corresponding

planes areas, orientation and distance agreement with odometry constraint, which is

similar to the measure metric proposed in [41].

Contrary to many works in the literature, here there would beno attempt to

decide the weighting coefficients from statistical point ofview. They are simply

chosen according to the empirical knowledge about the odometry error, and the

distribution of planes area. Considering the fact that a matching between two large

planes is more reliable than a matching constructed by a pairof small ones, and the

odometry error is big, in our work,ks × min(Si, Sj) is defined to contribute more

for the final similarity factor.

In this case, for each pair of candidate matching, a similarity notion is asso-

ciated with it. Thus a set of corresponding planes can be denoted by {Pt,i ↔

49

Pt−1,j , Is(i, j)}. The uniqueness problem is solved by sorting all{Pt,i ↔ Pt−1,j, Is(i, j)}
in increasing order ofIs then the pairing with the highest similar factor is automat-

ically chosen and other candidate correspondences are rejected.

According to the experiments, we have found the above four tests to be much

more effective to choose correct correspondences in consecutive frames, and most

of the wrong matches are discarded. However, due to the existence of noise in point

clouds, and large odometry errors, wrong matches are inevitable, which will cause

a big divergence in the map.

To discard the wrong matches, further steps are necessary. In [22], the well-

know RANSAC approach, which is famous for coping with noisy data and outliers,

is used to discard the wrong matches. Its principle works as RANSAC, i.e., ran-

domly select three matched feature pairs, which is the minimal number to compute

a rigid transformation. According to the determined transformation, the pairs, which

the pairwise Eucliden distance do not match, are consideredas outliers and rejected,

while other pairs are considered as inliers. Then the numberof inliers is counted.

These steps are executed iteratively and the transformation with most inliers is kept.

However, RANSAC algorithm is suitable for the cases with a large number of fea-

ture pairs. In our work, in two successive frames, most of thetimes there are few

pairs of corresponding planes found, therefore RANSAC could not be used here.

In order to further ward off the possibility of wrong matches, an plane match-

ing consistency test is presented based on the assumption that the motion of robot

between two measurement samples is rigid. Therefore, in principle the relative ro-

tations estimated by different pairs of matching planes should be same.

Plane Matching Consistency Test

After the above four tests, the plane features in current frameFt are divided into two

categories: (1) successfully paired features. (2) planes that could not be matched

to any plane feature in previous frameFt−1. The latter ones are considered as

previously invisible, and labeled as new features.

Assuming a listL of corresponding pairs, along with their similarity measures

{Pt,i ↔ Pt−1,j , Is(i, j)}, i = 1 . . .Nt, j = 1 . . . Nt−1 are obtained. Obviously, the

size of listNL is not larger thanNt andNt−1, i.e.,NL ≤ min(Nt, Nt−1).

Given a pair of corresponding planesPt,i ↔ Pt−1,j , we are able to estimate the

relative robot rotationθt−1
t between framesFt andFt−1, since planePt,i and plane

Pt−1,j represent a same physical plane.θt−1
t is computed as:

θi,j = θ
p
i − θpj (4.14)

Note that the time indicest and t − 1 have been omitted for clarity. Thus a list

50

Lθ of relative rotations{θi,j} will be obtained. Its size equals to the size ofL. In

a rigid motion, the relative rotation angles should be same,i.e., their differences

are expected to be close to 0. Thus their differences are considered to check the

consistency between determined correspondences inL.

For every two relative rotations inLθ, their absolute differenceδθ is computed.

SinceNL rotations are obtained, there areNL·NL−1
2

differences between them. Then

we can get the maximum one. If the maximum difference is closeto 0, or less

than a fixed thresholdδθt, all the relative rotations are considered as valid, i.e., all

the correspondences are correct. Otherwise wrong matches are assumed to exist.

According to the similarity definition, a larger similaritymeans the associated cor-

responding pair is more reliable. Based on this, the worst match indicated by the

minimum similarity index is discarded. The same step is executed repeatedly un-

til the maximum difference between relative rotations is less than the pre-defined

thresholdδθt. The remained correspondences construct the final correspondence

set:

Ω⋆ , {Pt−1,i ↔ Pt,j, Is(i, j)} (4.15)

The setΩ⋆ may still contain non-unique correspondences, i.e., some planes in frame

Ft−1 may be mapped to more than one plane in current frameFt. For instance,

Pt−1,j is matched with more than one other plane inFt. The uniqueness problem

is solved by sorting their similarity measuresIs. The pair with maximum similarity

index is retained while other pairs are rejected. The fixed corresponding planes are

labeled with a common index.

4.4 Corner Matching

The arrangement information between single features, coded as relations among

features or their configuration, is an important aspect in correspondence problem,

which may greatly help toward a solution. That means try to find matches not only

based on the observed features, but also according to their organization. This is

especially useful when features lack distinctive properties. Geometric constraints

root in the fact that features are not isolated landmarks rather they are related by the

structure of the scene.

In fact, arrangement information links individual features together. Therefore, it

provides a larger context than a single feature. On the otherhand, this larger context

may be introduced as a new higher level (in the sense of abstraction) feature which

is then much more unique and distinctive comparing to its elements. For instance,

joining three intersecting planes together to form an orthogonal corner, which is

51

discussed in this thesis. Or even non-geometrical cases such as clustering SIFT

features into templates which are then classified into objects.

A single orthogonal corner constructed by three intersecting planes is enough

to lock all degrees of freedom in space, since it is a point feature and encodes the

orientations of its parent planes. Therefore, complete poses tracking or localization

is possible using corner features. In [51], in order to estimate the translation, the

authors resort back to point features, which is identical features, which is essentially

the same as ICP.

On the assumption that the floor is flat, the robot poses are presented in 2D

transformations inSE (2). Thus it is possible to project the orthogonal corners into

~xr~yr-plane in robot reference frame and use their projections topresent them. In

this case, the values along~zr of all the corners are set to 0, and a corner can be

thought as constructed by two vertical planes, shown in Figure 4.4. In Figure 4.4,

a cornerCk,i is constructed by two intersecting vertical planesPk,i andPk,j, where

k is the index of robot reference frameFk, i is the index of extracted features in

frameFk and (x, y) presents its position in 2D. Additionally, the orientationin-

formation of its parent planes is inherited to it. Thus the cornerCk,i is presented

asCk,i(xi, yi, θ
p
x, θ

p
y), where(xi, yi) defines its position, while(θpx, θ

p
y) encodes its

orientation information.

rx

ry

, (,)k iC x y

,k iP ,k jP

Figure 4.4: Representation of the projection of an orthogonal plane in 2D space

As for the problem of plane matching, corner matching consists in finding which

corners represent the same physical corner and labelling them with a common in-

dex. Generally, as mentioned before, higher features as theorthogonal corners here,

are used to initiate the search for correspondences and the result of their bindings

are inherited to lower level features, i.e., corners are expected to be matched first,

then their parent planes are associated. However, in our work, the matching process

starts from plane matching problem which are the basis features, and corners corre-

spondences are based on the plane matching results. The motivation for this choice

52

is twofold: (1) in the experiments of this thesis, less corners are observed than what

is expected. For instance, in a long corridor environment, only four corners can be

detected on the end sides of the corridor, while more planar patches are observed.

(2) the plane matching is robust, most of the false correspondences are discard by

using different tests presented before and all the determined correspondences are

accepted as true. Actually, in practise, false correspondences are unavoidable.

Since all detected corners are made by intersecting planes,corner matching can

be built on the basis of plane correspondences results. Thatmeans that corners

which are constructed by the same planes are considered to bethe same phys-

ical corner, i.e., given two cornersCt,i andCt−1,j , which constructed by plane-

sets{Pt,i1, Pt,i2} and{Pt−1,j1, Pt−1,j2} respectively, ifPt,i1 ↔ Pt−1,j1 andPt,i2 ↔
Pt−1,j2, then we haveCt,i ↔ Ct−1,j.

4.5 Relative Transformation Estimation

After plane matching and corner matching procedures, the corresponding planes

and corners between framesFk andFt are determined. Given a pair of matching

planesPt,i in frameFt andPt−1,j in frameFt−1, denoted by a common index, the

relative rotationθr between framesFt andFt−1 is computed as:

θr = θ
p
j − θpi (4.16)

whereθpj andθpi are orientations of planePt−1,j andPt,i respectively.
For a pair of matching cornersCt,i andCt−1,j , not only the relative rotationRt−1

t

but also the translationtt−1
t can be estimated, since a corner fixes the position and

orientation information at the same time. The two corners are related by

xj

yj

1

 =

cos θr − sin θr 0

sin θr cos θr 0

0 0 1

xi

yi

1

+

∆x

∆y

0

 (4.17)

where(xj , yj) and(xi, yi) are the position information of matching cornersCt−1,j

andCt,i respectively,(∆x,∆y) are the relative translationtt−1
t , andθr is the relative

rotation, as estimated by Eq.(4.16). Then the transformation matrixtt−1
t is obtained

as

∆x

∆y

0

 =

xj

yj

1

−

cos θr − sin θr 0

sin θr cos θr 0

0 0 1

xi

yi

1

 (4.18)

According to Eq.(4.16) and Eq.(4.18), the pairwise transformations between robot

poses can be computed and form the edges of a pose graph, that we have called the

front-end part in SLAM.

53

4.6 Summary

In this Chapter, based on large planar surfaces and 3D orthogonal corners extracted

from point clouds, a plane matching algorithm was presentedfor finding the plane

correspondences, as well as orthogonal corners between consecutive frames.

On the assumption that the robot is operating in the plane, only vertical planar

surfaces are considered in this Chapter. Thus it is possibleto project them onto the

~xr~yr-plane and use their projections, i.e., 2D lines to represent the planes. Different

to the normal representations of line, we parameterized a line using two parameters

(θp, d) to represent its relationship with the robot better, which are considered as the

geometric information of planes.

The plane matching algorithm is performed by maximizing thesimilarity met-

ric between a pair of planes within a search space to determine correspondences

between planes. The search space is pruned using the followed criteria: odometric

rotation agreement test, odometric translation agreementtest, appearance similarity

test, and size similarity test. To further discard wrong matches, a plane matching

consistent test is given based on the fact that the estimatedrelative rotations by us-

ing different determined correspondences should be same, since the robot is rigidly

moved between two poses. The determined plane correspondences are extended to

the corner matching procedure. Based on the determined correspondences, the pose

changes in orientation and position are estimated, formingedges between consecu-

tive nodes in a pose graph. The formed pose graph is feed to a pose graph optimizer

algorithm (SLAM back-end) to obtain a consistent and globaltrajectory of robot,

which will be discussed in next Chapter.

54

Chapter 5

SLAM Back-end

Alignment between successive frames is a good method for tracking the robot tra-

jectory over moderate distances. However, errors in alignment between particular

pairs of frames, are unavoidable in practice. Moreover, noise in the obtained 3D

point cloud, cause the estimation of robot poses to drift over time, leading to a di-

vergence in the final map. This is more noticeable when the robot moves a long

path. The drifting errors are accumulating as the robot moves, resulting a not glob-

ally consistent trajectory of robot. To create a globally consistent trajectory, a well

assessed strategy is the so called pose graph optimization,referred as SLAM back-

end. The objective of SLAM back-end is to estimate the robot’s poses that maximize

the likelihood of obtained constraints.

Global optimization is especially beneficial in case of a loop closure, i.e., when

a robot drives in a loop and goes back to its starting location, since the loop closing

edges in the graph allow to reduce the accumulated error. Loop closure is espe-

cially important in robotic mapping applications. It can beaddressed as a place

recognition problem. Without the ability to recognize the previously visited places,

the position uncertainty of the robot increases without bound due to the continuous

accumulation of dead-reckoning error and causes two representations of the same

region in different locations. Place recognitions serve asconstraints on the motion

of the robot, allowing a correction of its dead-reckoning errors.

Loop closing is difficult for some reasons. For instance, thesame location can

look very different depending on which direction the exteroceptive sensor is point-

ing towards, or the environment changes caused by dynamic objects, such as moving

humans or chairs. In recent years, loop closure detection has received considerable

attention. Approaches to loop closure detection in 2D have broadly been presented,

especially using 2D images [56] [18] [68] [73]. On the other hand, 3D point clouds

have not been widely used for loop closure detection.

In this Chapter, loop closure detection is addressed using 3D point clouds and

55

the pose graph optimization are discussed. First a conceptual review about loop clo-

sure detection is presented to give a picture of existing solutions in general. Then

we introduce a descriptor for 3D point cloud: viewpoint feature histogram (VFH) as

described in [78] briefly, which will be used in our loop closure detection algorithm.

Then the presented loop closure detection algorithm is explained thoroughly. After

a brief discussion to the SLAM back-end problem, a linear pose graph optimiza-

tion used in this work is introduced . Conclusions are presented at the end of this

Chapter.

5.1 Loop Closure Detection

Loop closure detection can be seen as a place recognition problm. It consists of

recognizing that the robot has returned to a previously visited location, i.e., deter-

mining that whether or not the current point cloud is similarto a previous one. Loop

closure detection allows to refine the estimated map and robot trajectory, since the

point clouds from a same location must be aligned with each other.

When the robot arrives at a previously visited location, i.e., forms a loop, the

current point cloudPt, should resemble a point cloudPk acquired previously, i.e.,

t− k > 1. A comparison is performed between point cloudsPt andPk in order to

determine whether or not a loop closure has occurred.

In this thesis, a loop closure detection based on a novel descriptor for 3D point

cloud, named viewpoint feature histogram (VFH) and color histogram is presented.

It is inspired by the strong recognition ability of VFH, while the usage of color

histogram feature is to test the recognition further so to make loop closure detection

more reliable.

VFH is a novel descriptor for representing a surface patch bya statistical his-

togram describing its geometry and viewpoint information.In contrast to 3D point

clouds, it reduces the dimension of data and requires less memory. Therefore, work-

ing on features is easier than working with full point cloudsand it is not computa-

tionally expensive.

5.1.1 Related Work

A large part of the related loop detection literature is focused on data from camera

images and range data, in both 2D and 3D.

Laser sensors are widely used in SLAM. For example, in [38] [8], raw laser

scans are used for relative pose estimation. Recently, a 2D loop closure detection

algorithm introduced in [32] shows a good performance. It uses AdaBoost to create

56

a strong classifier composed from 20 weak classifiers, each ofwhich describes a

global feature of a 2D laser scan. The two most important weakclassifiers are

reported to be the area enclosed by the complete 2D scan and the area when the

scan points with maximum range have been removed.

In [75], laser range scans are fused with images to form descriptors of the ob-

jects used as landmarks. The laser scans are used to detect regions of interest in the

images through polynomial fitting of laser scan segments, while the landmarks are

represented using visual features. Another example of loopclosure detection algo-

rithm, using both visual cues and laser data, is presented in[44]. Shape descriptors

such as angle histograms and entropy are used to describe andmatch the laser scans.

A loop closure is only accepted if both visual and spatial comparisons meet a match

metric.

Work on vision-based loop closure detection have been presented in [17] [18].

A bag-of-words approach is presented, where scenes are represented as a collection

of “visual words” (local visual features) drawn from a “dictionary” of available

features. The appearance descriptor is a binary vector indicating the presence or

absence of all words in the dictionary and it is used within a probabilistic framework

together with a generative model of the observations. Another vision based loop

closure detection approach is introduced in [10], where SURF features are extracted

from images and classified as words using Tree-of-Words. A spatial constraint is

imposed by checking nearest neighbors for each word in the images. In contrast to

offline as in [10], a similar approach using visual words which is built online, for

monocular SLAM is presented in [21].

Recently, methods for loop closure detection for 3D point clouds are introduced,

which are similar to our case. In [65], a method based on the Normal Distribu-

tion Transform (NDT) [6] is presented. The NDT acts as a localdescriptor of the

point cloud. After discretizing space into bins, or cubes, the points in each bin are

described as either linear, planar or spherical by comparing the size of the covari-

ance matrix eigenvalues. Invariance to rotation is achieved after scans have been

aligned according to the dominant planar surface orientation. Another method for

loop closure detection from 3D range data is presented in [85]. The point cloud is

transformed into a range image, from which features are extracted by computing the

second derivative of the depth values in the range image. TheEuclidean distance is

used to compare the quality of match between pairwise features. Candidate trans-

formations are calculated by matching features, and a scoreis assigned to evaluate

how well the two scans are aligned. Rotation invariance is achieved by orienting

image patches along the world~z axis. According to the authors this does not restrict

the performance of the method as long as the robot moves on a flat surface.

57

5.1.2 View Point Feature Histogram (VFH)

Surface Normals

Given a 3D pointpq, a local feature representation that captures the geometryof

the underlying sampled aroundpq can be estimated by using its neighboring points

Pk. Surface normals, that describe its orientation in a coordinate system, are impor-

tant properties of a surface. They are heavily used in many area such as computer

graphics to determine a surface’s orientation toward a light source for flat shading

and other visual effects.

Many different normal estimation methods have been presented, and a compar-

ison is presented in [50]. The simplest method is based on thefirst order plane

fitting as proposed by [3]. The normal to a point on the surfaceis approximately

determined by the normal of a plane tangent to the surface. Inturn it becomes a

least-square plane fitting estimation based on its neighboring points setPk.

We assume that the tangent plane is presented as a pointp̄ and a normal vector

~n, and the distance from a pointpi ∈ Pk to the plane is defined asdi = (pi− p̄) ·~n.

The value of̄p and~n are computed in a least-square sense so thatdi = 0. The point

p̄ is computed as the centroid ofpi ∈ Pk, shown as:

p̄ =
1

k

k∑

i=1

pi (5.1)

wherek is the number of point neighbors inPk. The normal~n is estimated by

analyzing the eigenvalues and eigenvectors of the covariance matrixC ∈ R
3×3 of

Pk, expressed as:

C =
1

k

k∑

i=1

(pi − p̄)(pi − p̄)T , C~vj = λj~vj , j ∈ {0, 1, 2} (5.2)

λj is thej-th eigenvalue of the covariance matrix, and~vj the correspondingj-th

eigenvector.

C is symmetric and positive semi-definite, and its eigenvalues are real numbers

λj ∈ R. The eigenvectors~vj form an orthogonal frame, corresponding to the prin-

cipal components ofP k. If 0 ≤ λ0 ≤ λ1 ≤ λ2, the eigenvector~v0 corresponding

to the smallest eigenvalueλ0 is therefore the approximation of+~n = {nx, ny, nz}
or −~n. According to the above description, the estimated normal is dependent on

the size of neighborhoodP k. So the choice ofk is important in order to suitably

estimate the normal.

Figure 5.1 presents an example of surface normal estimationfor points lying

on a small box. As shown, the resultant surface normals can suitably describe the

geometric feature of the surface surrounding the detected points.

58

Figure 5.1: An example of surface normals estimation for points lying on a 3D box.

The white arrows show the direction of estimated normals.

Viewpoint Feature Histogram

Viewpoint feature histogram (VFH) is an extension of fast point feature histogram

(FPFH) [76]. It combines FPFH with viewpoint component so toinherit the strong

recognition ability of FPFH, meanwhile encode the relationship between the view-

point and surface normals on the query point cloud or object.

As its name implies, a point feature histogram representation (PFH) presented in

[80], is a statistic histogram which encodes the relationships between every pair of

points and their normals on a surface patch. Given a pair of 3Dpoints(pi,pj), their

estimated surface normals are~ni and~nj, respectively. The relationship between the

normals is defined as the angular deviations{α, β, γ}, which are estimated as:

α = ~v · ~nj (5.3)

β = ~u · pj − pi

d
(5.4)

γ = arctan(~w · ~nj , ~u · ~nj) (5.5)

where~u,~v, ~w represent a Darboux frame coordinate system chosen atpi, andd is

the Euclidean distance between pointspi andpj . Then the point feature histogram

captures all the sets ofα, β, γ between all pairs of(pi,pj), i, j = 1, 2, · · · , n on a

surface patch and bins the results in a histogram. The bottompart of Figure 5.2 [78]

presents the definition of the Darboux frame and a graphical representation of the

three angular features between pairwise points.

If pj is only defined ask-nearest neighbor points ofpi so that the computation

time will be reduced, shown by subset of points in Figure 5.2 the obtained histogram

will be a fast point feature histogram.

The viewpoint component is built by collecting a histogram of the angles that

translating the central viewpoint direction to each of the normals on the patch sur-

face. Similar to PFH, it measures the relative pan, tilt and yaw angles between the

viewpoint direction at the central point and each of the normals.

59

Figure 5.2: The extended fast point feature histogram collects the statistics of the

relative angles between the surface normals at each point tothe surface normal at the

centroid of the object. The bottom left part of the figure describes the three angular

feature for an example pair of points, while the top right part shows a surface patch

which the points lying in.

Figure 5.3 shows an example of VFH presentation for a point cloud. Notice

that in Figure 5.3 the VFH is divided into four sub-histograms, where the first sub-

histogram presents the viewpoint component, while the other three correspond to

the FPFH component.

Figure 5.3: An example of VFH presentation of an obtained point cloud.

5.1.3 Loop Closure Detection using VFH

Our loop closure detection algorithm uses the same principle used in other ap-

proaches: detect the loop closure by comparing the pairwisepoint clouds. In or-

der to reduce the computation time, we define keyframes, which are a subset of the

overall aligned frames. Moreover, the use of keyframes can keep the graph rela-

tively sparse.

60

In [42], the keyframes are defined based on visual overlaps. Given a frame,

when it fails to match against the previous keyframes, it is determined as a new

keyframe. In this work, the frames in which 3D orthogonal corners are detected

are defined as keyframes, since the point clouds containing 3D orthogonal corners

encodes more geometry information and are more distinguishable. Moreover, the

rigid transformation between the determined loop closing frames, can be estimated

by the identical corners in both frames, which is similar to the registration using

corner matching discussed in Chapter 4. And the point cloudsassociated with them

are defined as key point clouds.

Each time a keyframe is found, we attempt to compare it with each previous

keyframe and detect whether or not a loop closure has occurred. A loop closure is

determined if the detected frames meet the predefined geometrical consistent and

color-appearance consistent conditions. Then the pose change between these two

frames are estimated, and added to the graph.

Thus, the whole loop closure detection algorithm consists in the following two

steps:

1. detecting whether or not a loop closure has occurred via comparing features

of pairwise point clouds.

2. finding the corresponding corners which present an identical geometrical cor-

ner, which is used to estimate the rigid transformation between two frames.

The two steps are separately explained below.

Loop Closure Determination

A current frameFt, associated with point cloudPt, is labeled as a keyframe if one

or more corners are detected inPt, Assuming all the previous keyframes are saved

in setF t = {Fk, 0 < k < t−1}, and their corresponding VFH features form the set

V t = {Vk, 0 < k < t − 1}, while their color-appearance histograms are presented

asH t = {Hk, 0 < k < t − 1}. Our approach detects loop closures by matching

current frame against the previously collected frames. To facilitate the comparison

of two framesFt andFk, the both features are considered. The approach consists

in the following two steps:

1. select the frames that meet the geometric consistent testby comparing their

VFH features. The underlying idea here is that point clouds acquired at the

same location will have similar VFH feature valuesVt andVk.

61

2. select the final frame that has the largest color appearance consistency. The

underlying idea here is that point clouds acquired at the same location should

have similar color information.

In the first step, the algorithm searches for a subset of corresponding VFH for

the geometric persistent feature histogram of the query VFH. In order to quantify the

different between two VFH featuresVt andVk, we compute the Chi-square distance

dV between them. The Chi-square distance is defined as:

d2V =
1

2

∑

i

(Vt,i − Vk,i)2
Vt,i + Vk,i

(5.6)

whereVt,i andVk,i present thei-th bin value ofVt andVk respectively.

To select the frames which have similar VFH features with thecurrent one effi-

ciently, a kd-tree is created in the VFH feature histograms space, and for each query

VFH Vt, a K-nearest neighbor search in the previous VFH set. TheK frames, saved

in setFK , with most similar VFH features are returned with sorted Chi-square

distance in increasing order. To discard wrong matches, a pre-defined maximum

threshold∆dv is used further to choose potential candidate frames forFt, i.e., for

every frameFk ∈ FK , if its associated Chi-square distance is less than∆dv, it is

added to the potential candidate setF c, expressed as:

F c = {Fk | dv(Vk, Vt) ≤ ∆dv,Fk ∈ FK} (5.7)

In the second phase of the approach, the final resolved frame is selected by using

color appearance feature fromF c. Similar to the discussion in Chapter 4, here the

correlation between color histograms in RGB space is used again to measure the

similarity between the detected frames (or point clouds). If the point clouds are

obtained at same location, their color appearances are similar, thus the correlation

should be close to 1. The use of color histogram is not only to choose the final

matching frame, but also make the loop closure detection more reliable. In this case,

the frame inF c with the largest color covariance, greater than a fixed minimum

threshold∆Hc, is determined to be the final frame resembling to the query frame

Ft. It will be denoted asFt ↔ Fk. While if no frame passes the two persistent

tests, it means that the robot has moved to a new location. Actually, if the size of

F c is 0, the second step is not needed.

Corner Matching

Defining the frames, in which 3D orthogonal corners are detected as keyframes, has

the advantage that we can make use of the included corners to estimate the rigid

62

roto-translation between the determined loop closures, since corners can lock all

the degrees inSE(2). Thus we do not need to resort back to other registration

approaches, like point-to-point ICP.

We consider a pair of frames presenting a same scene,Ft from which the in-

dexed corner-setCt is observed, andFk from which the indexed corner-setCk is

observed. In order to keep the notation consistent, we assumek < t. Here the goal

is to estimate the relative transformationRk
t , t

k
t , resolved in local reference frame

Fk, by using corner-setsCt andCk.

To estimate the transformation by using corners, first we have to find the cor-

respondences, presenting the same physical corner, between two corner-sets. A

matching algorithm has to be applied to find the correct correspondences between

corner-setsCt andCk. This is similar to the corner matching problem discussed in

Chapter 4, but it is more challenging. In Chapter 4, the odometry information is

used to find the potential candidates and discard wrong matches. However, since

with the typical odometry errors the pose estimate will be totally wrong after a long

distance, the odometry information can not be used here.

The corners in a same frame look different depending on theirrelative relation-

ship with respect to the direction the scanner is pointing towards. As presented

before, VFH feature encodes the geometrical structure and viewpoint information

in the meanwhile. Therefore, for two corners in a same frame,in principle, their

corresponding VFHs will be different. Figure 5.4(a) and Figure 5.4(b) show the

VFH features of two corners in a same frame, respectively. Itcan be seen that Fig-

ure 5.4(a) is quite different from Figure 5.4(b), satisfying the expected. Based on

this, here we reuse the VFH feature again to find the similar corners in the detected

two loop closing frames.

(a) VFH of cornerCt,i (b) VFH of cornerCt,j

Figure 5.4: Examples of VFH representations for two cornersdetected in the frame

Ft.

Similar to above, the corners with the most similar VFH features, i.e., the lowest

Chi-square distance, are determined as corresponding corners. In our case, gener-

63

ally, there is only one or two corners detected in a frame, thus VFH feature is enough

to determine the correct corner correspondences and color feature is not used here.

The experimental results validates the presented approach, and VFH feature can

find the correct corner correspondences. The experimental results will be reported

in Chapter 6.

5.2 SLAM Back-end

In graph-based SLAM, the poses of the robot are modeled by nodes in a graph and

labeled with their position in the environment. Spatial constraints between poses

that estimated from scan-matching or provided from odometry measurements are

encoded in the edges between the nodes. Each node in the graphrepresents a robot

position and a measurement acquired at that position. In Chapter 4, a plane match-

ing approach was presented to construct spatial constraints between consecutive

poses from sensor data. While in the above section in this Chapter, a loop clo-

sure detection algorithm combining VFH feature and color histogram feature, was

introduced, which allows the robot has the ability to recognize previously-visited

places and estimate the transformations between the two poses. They mainly focus

on extracting the constraints from sensor data and is often referred to as the SLAM

front-end. In contrast to that, the SLAM back-end aims at correcting a pose graph

given all constraints.

The goal of SLAM back-end is to find the best poses configuration given the

constraints. A number of optimization algorithms based on SLAM back-ends are

readily available as open source libraries. For instance, g2o [56], TORO [37], MTK

[91]. Choosing a suitable optimizer is important to obtain aconsistent and accu-

rate trajectory of the robot. Targeting to our work, a linearapproximation for the

pose graph configuration proposed in [13] [12] is selected tooptimize the built pose

graph.

5.2.1 Problem Statement

Given the built pose-graph from SLAM front-end, the objective of SLAM back-end

is to find the configuration of the robot poses that best satisfies the constraints. Let

us call the robot posesx = {x1,x2, . . . ,xn}, wherexi describes the pose of nodei.

xi is in the formxi = [pi
T θi]

T ∈ SE(2), wherepi ∈ R
2 is the Cartesian position

of thei-th pose, andθi is its orientation.

The virtual relative pose between the nodei and nodej is assumed as̃ξij. Note

that ξ̃ij is expressed in local reference frame ofFi, and it makes the observation

64

acquired fromi maximally overlap with the observation acquired fromj. However,

the relative pose measurement between the two nodes are affected by noise, i.e.,

ξij = ξ̃ij + ǫ, whereǫij ∈ R
3 is a zero mean Gaussian noise, i.e.,ǫij ∼ N (0, Cij),

Cij is 3 by 3 covariance matrix.

The pose graph built in front-end procedure is indicated asG(x, ε), whereε is

the graph edges, containing the unordered node pairs(i, j) such that a relative pose

measurement exists betweeni and j. Once the relative pose measurements and

the corresponding uncertainty are given, the robot is required to estimate its pose

configurationx in a given global reference frame. Usually the initial pose of the

robot is set to be the origin of the global reference frame, i.e.,x0 = [0, 0, 0]⊤.

The goal of SLAM back-end is to determine the configuration ofthe robot poses

x∗ that minimizes the negative likelihood of all the observation. Generally it is

expressed as:

f(x) =
∑

(i,j)∈ε

e(xi,xj , ξij)
⊤Ωije(xi,xj, ξij) (5.8)

wheree(xi,xj , ξij) is a function that computes the difference between the expected

observatioñξij and the real observationξij gathered by the robot,Ω represents the

information matrix of the virtual measurementξ̃ij between posesxi andxj . Since

the measurement noise is assumed as Gaussian noise, the likelihood function (5.8)

is equivalent to minimize the sum of the weighted residual errors:

f(x) =
∑

(i,j)∈ε

(ξ̃ij − ξij)⊤C−1
ij (ξ̃ij − ξij) (5.9)

HereΩij = C−1
ij . The full SLAM problem is hence formulated as a minimization

of the nonlinear non-convex function (5.9), i.e., the optimal configuration isx∗ =

argmin f(x) [12].

5.2.2 A Linear Pose-Graph Optimizer

A linear pose graph optimizing algorithm has been recently presented in [12]. The

work is extended in [13] relaxing the hypothesis that measurement covariance matri-

ces have a block diagonal structure. Under the assumption that the relative position

and the relative orientation are independent, the full SLAMproblem is approxi-

mated to be a closed-form solutions. The approaches need no initial guess for opti-

mization and can be solved in a single step instead of iteratively. Its general idea is

to separate the estimation of orientation and position. By estimating both quantities

separately, the optimizing problem is divided into two linear problems.

Each relative pose measurement consistsξij two components: relative position

and relative orientation. Thus each measurementξij is rewritten asξij = [∆l
ij , δij]

⊤,

65

where∆l
ij corresponds to the relative position, whileδij presents the relative orien-

tation where the superscriptl denotes that the relative position vector is expressed

in a local frame. The relative rotation measurementδij is regularized by adding a

suitable multiple of2π, i.e.,{δij} = δij + 2kijπ, wherekij is called regularization

term. Thus the cost function (5.9) can be rewritten as

f(x) =
∑

(i,j)∈ε

[

R⊤
i (ρj − ρi)−∆l

ij

(θj − θi)− δij

]⊤

C−1
ij

[

R⊤
i (ρj − ρi)−∆l

ij

(θj − θi)− δij

]

(5.10)

whereRi ∈ R
2 is a planar rotation matrix of angleθi. The relative position in-

formation and the relative orientation measurements are assumed independent, i.e.

Cij = diag(C∆l
ij
, Cδij). Under this assumption the cost functionf(x) becomes:

f(x) =
∑

(i,j)∈ε

[
R⊤

i (ρj − ρi)−∆l
ij

]⊤ C−1
∆l

ij

[
R⊤

i (ρj − ρi)−∆l
ij

]

+
∑

(i,j)∈ε

[(θj − θi)− δij]⊤ C−1
δij

[(θj − θi)− δij]
(5.11)

To put the previous formulation in a more compact form, the relative position

measurements are stacked in the vector∆ =
[
(∆l

1)
⊤, (∆l

2)
⊤ . . . , (∆l

m)
⊤
]⊤

, while

all the relative orientation measurements are in the vectorδ = [δ1, δ2, . . . , δm]
⊤. Ac-

cordingly, the information matrixΩij , (i, j) ∈ ε is reorganized into a large matrix.

Then the cost function (5.11) can be written as:

f(x) =(A⊤

2 ρ− R∆l)⊤(RC∆lR⊤)−1(A⊤

2 ρ−R∆l)+

(A⊤θ − δ)C−1
δ (A⊤θ − δ)

(5.12)

where:

• A is the reduced incidence matrix of graphG;

• A2 = A⊗ I2 is an expanded version ofA;

• R = R(θ) ∈ R
2m,2m is a block diagonal matrix, whose nonzero entries are in

positions(2k−1, 2k−1), (2k−1, 2k), (2k, 2k−1), (2k, 2k), k = 1, . . . , m,

such that, if thek-th measurement correspond to the relative pose betweeni

andj, then thek-th diagonal block ofR is a planar rotation matrix of an angle

θi.

The minimization of the cost function (5.12) is equivalent to find the solution

satisfying the following two constraints:

{ A⊤
2 ρ = R(θ)∆l

A⊤θ = δ
(5.13)

66

In principle, the cost function (5.12) will be zero when a solution exactly satisfies the

constraints presented in (5.13). Otherwise, a minimum residual errors is searched

with the constraints (5.13).

Notice that the seconde constraints, including the relative orientation measure-

ment, is linear in the unknown variableθ. An obtained resultθ provides an estimate

of the relative measurement for the first equation in (5.13).Thus the whole opti-

mization procedure is divided into three phases:

1. consider the second constraint, solving the following linear estimation prob-

lem

A⊤θ = δ (5.14)

from which the suboptimal orientation estimateθ̂ and its covariance matrix

can be obtained. The Eq. (5.14) is a standard linear estimation problem. Ac-

cording to the linear estimation theory, the optimalθ̂ and the corresponding

covariance are:

θ̂ = (AC−1
∆ A⊤)−1AC−1

∆ θ Cθ̂ = AC−1
∆ A⊤ (5.15)

respectively.

Therefore, usinĝθ as the actual nodes’ orientation, an estimate for the position

ρ̂ is obtained, expressed as:

ρ̂ =
[

A2(R̂C∆lR̂⊤)−1A⊤

2

]

A2(R̂C∆lR̂⊤)−1R̂∆l (5.16)

whereR̂ = R(θ̂). It is important to note that the first equation in (5.14) also

constraints the orientations of the robot, thus the estimate x̂ = [ρ̂⊤ θ̂⊤]⊤ is a

suboptimal solution and needs to be corrected later.

2. estimate the relative position measurements in the global reference frame:

z =

[

R̂ 02m×n

0⊤
2m×n In

][

∆l

θ̂

]

=

[

g1(∆
l, θ)

g2(θ)

]

θ=θ̂

(5.17)

compute the corresponding uncertainty:

Cz = H

[

C∆l 02m×n

0⊤
2m×n Cθ̂

][

ρ

θ

]

H⊤ (5.18)

whereH is the Jacobian of the transformation in (5.17):

H =

∂g1

∂∆l

∂g1

∂θ
∂g2

∂∆l

∂g2

∂θ

 =

[

R̂ J

02m×n In

]

(5.19)

67

In this phase,z is the estimate of the relative position measurements in the

global reference frame, and it is formed as:z = [(∆g)⊤ θ̂⊤]⊤ where∆g =

R̂δl is the vector containing the relative node position expressed in the abso-

lute reference frameF0.

3. As mentioned before, the estimatedx̂ constitutes a suboptimal solution. Thus

in the last phase, it is corrected, leading to get the minimumof the cost func-

tion, i.e.,

θ∗ = θ̂ + θ̃, ρ∗ = ρ̂+ ρ̃ (5.20)

in which θ̃ andθ̃ are first-order correction terms.

Given z in (5.17) andCz in (5.18), it is able to solve the linear estimation

problem in the unknownx = [ρ⊤ θ⊤]⊤, shown as:

z =

[

A⊤
2 02m×n

0⊤
2m×n In

][

ρ

θ

]

= B⊤x (5.21)

from which the solutionx = [(ρ∗)⊤ (θ∗)⊤]⊤ and the corresponding uncer-

tainty can be retrieved. The optimized poses is obtained as:

x∗ =

[

ρ∗

θ∗

]

= (BC−1
z B⊤)−1BC−1

z z (5.22)

5.3 Summary

This Chapter presented the SLAM back-end algorithms, whichis used to find a con-

figuration of the robot’s poses that is maximally consistentwith the measurement.

Loop closing is a form of place recognition that is central tothe task of map

building: it prevents the unbounded growth of dead-reckoning error. In this Chap-

ter, we described a loop closure detection algorithm from 3Dpoint clouds by com-

paring VFH descriptors and color histograms. Compared to 3Dpoint clouds, VFH

descriptors compress the input point clouds’ geometry information into meaning-

ful statistic histograms while keeping the viewpoint component, thus it reduces the

dimension and store space of the data.

For avoiding expensive computation cost, the frames in which orthogonal cor-

ners are detected are defined as keyframes, since orthogonalcorners fix the position

and orientation at the same time. Similar to many other approaches, the problem is

solved via comparing the features of pairwise views. Each time when a keyframe is

detected, we attempt to detect a loop closure with each previous keyframes. A clo-

sure is detected if enough geometrically and color appearance consistent between

68

pairwise frames matching. If so, VFH feature is used again tofind the correspond-

ing corners between the two frames, and the estimated roto-translation is added to

the graph representing this newly discovered constraint.

Most of the optimization require the availability of an initial guess for nonlinear

optimization. In order to get a global solution, a sufficiently accurate initial guess

is needed. In this work, instead, a linear approximation forthe pose graph opti-

mization has been applied that does not require any initial guess, and was shown

to be accurate in practise. In this Chapter, its theoreticalbackground was briefly

introduced.

The next Chapter presents the real 3D mapping results.

69

70

Chapter 6

Experiments

Some exemplary experiments results are presented in this Chapter in order to eval-

uate the performance of the proposed plane-based 3D mappingalgorithm. The ex-

periments have been carried out with a Pioneer P3DX wheeled robot, shown in Fig-

ure 6.1 , inside Dipartimento di Automatica e Informatica atPolitecnico di Torino.

The robot is only equipped with wheel encoders, a laser rangefinder (SICK LMS-

200), and a Microsoft Kinect sensor, where the laser range finder is only used for

obstacle avoidance, while the wheel encoders and the Microsoft Kinect sensor are

used for this work. The wheel encoders can provide initial odometry information

about the robot poses, and the Microsoft Kinect sensor is used to collect 3D point

clouds of the environment. Notice that the Microsoft Kinectcamera is mounted on

the top of the robot, parallel to the ground floor, at an angle of 45◦ around the ver-

tical. This allows the Microsoft Kinect to sense the surrounding walls, doors etc.,

better.

During the different experiments, instead of moving in a stop-and-go manner to

collect the data when the robot stands still, the robot movescontinuously, since the

Microsoft Kinect camera is able to provide both color imagesand dense depth maps

at full video frame rate. When the robot passes through a door, or enter into a new

space, the robot is manually guided through with slow speed such that observation

samples remain proper.

Since the test environment is flat everywhere with the exception of some small

ramps, it is believed that it is suitable to represent the robot’s poses inSE(2), i.e.,

xi = [x, y, θ], wherexi is the robots pose at timei. The map is presented in 3D

constructed by attaching each acquired point cloud to its corresponding estimated

robot pose. In the sections below, after a simple test for theplane matching registra-

tion, three 3D mapping experimental results are given, and the performance of the

plane-based mapping algorithm is analyzed in a qualitativeway by comparing their

reconstructed 3D map with the real scenarios, respectively.

71

Figure 6.1: The robot used for the experiments is a differential-drive mobile robot

equipped with a multitude of sensors: wheel encoders, a SickLMS-200 laser range

scanners and a Microsoft Kinect camera. As mentioned earlier in the text, only the

wheel encoders and the Microsoft Kinect camera are used for this work. The laser

scanner is only used for obstacle avoidance. For each frame,the Microsoft Kinect

camera obtains 307,200 (640 × 480) 3D points, corresponding to the dimension of

the acquired image.

72

In this thesis, Point Cloud Library (PCL) [79] is used for point cloud processing,

while OpenCV Library [9] is used for histogram processing. During the experiment,

in order to make the plane matching procedure more reliable,planes with an area

smaller than 0.25 m2 and with a number of supporting points smaller than 500 are

filtered out.

6.1 Plane Matching Registration Experiments

As mentioned before, to robustly build correspondences between plane-sets in two

consecutive frames, is a difficult task. In Chapter 4, a planematching algorithm

was presented for finding the plane correspondences, as wellas orthogonal corners

between consecutive frames. Based on the determined correspondences, the pose

changes in orientation and position are estimated, formingedges between consecu-

tive nodes in a pose graph.

Here in order to estimate the performance of the plane matching approach, reg-

istration tests between ten sets of successfully paired consecutive frames were pre-

formed. For each set of paired frames, the relative roto-translation information are

computed based on the correspondences between the featuresdetected in these two

frames. Therefore we were able to test the plane matching algorithm by regis-

tering pairwise frames together and evaluating the registration results. Since the

relative roto-translation between two frames is unknown, it is difficult to evaluate

the registration in quantitative way. Here the results of the pairwise registrations are

manually inspected, as in [71].

Meanwhile, a comparison with two baseline registration algorithms was pre-

formed. The standard ICP algorithm was used as one of the reference implemen-

tations, while the SAmple Consensus Initial Alignment (SAC-IA) with FPFH pro-

vided a second point of comparison. In Chapter 2, their basictheories were intro-

duced briefly.

The performance of the discussed registration algorithms over all 10 test pair-

wise frames is summarized in Figure 6.2 and Table 6.1. Noticethat no corners are

included in Figure 6.2, in the first five frame sets. Therefore, for these frame sets,

only the relative orientation information could be estimated. Their registration re-

sults are evaluated by checking whether or not the detected corresponding surfaces

are parallel. If the corresponding surfaces are parallel, the registration is considered

as successful. Otherwise it is labeled as failed. While for the last five frame sets,

corresponding corners are detected. Thus, both relative orientation and position in-

formation could be estimated. A registration is judged to have failed only if there

are severe displacements between the two supposedly registered frames.

73

From Figure 6.2, it can be seen that for all the registration results using plane

matching registration method, there are not obvious misalignment. And all the reg-

istration results are labeled as successful in Table 6.1.

The performance of the base-line ICP algorithm is very good on scan pairs sets

{F21,F22}, {F10,F11}, {F82,F83} and{F200,F201}, but extremely poor on frames

{F143,F144}, even worse than the odometry. While for the pairwise frame sets

{F1,F2}, {F105,F106} and {F141,F142}, there is no obvious improvement with

respect to the odometry ones. This occurs when moderate or big pose changes

happening between two successive views. Two factors are subject to the failure

results: (1) large overlap but few features in the frames, which represents a typical

failure case for ICP; (2) bad initial guesses from odometry information. ICP is

known to perform better if a good initial guess is given, especially for the rotation.

When a bad pose is given as the initial guess for the iteration, generally, the outcome

is not improved. On the contrary, it worsens the outcomes. The registration between

frames{F143,F144} is an example of this behavior.

The second reference approach SAC-IA with FPFH features didnot deliver

promising results for all the registration results. With respect to ICP, the big er-

ror in odometry in frame sets{F143,F144} is modified, and corresponding corners

are overlapped totally. Also for the frames set{F10,F11}, the registration results

improved significantly. However, there are still small misalignments in the regis-

tration of sets{F1,F2} and{F105,F106}. Especially for the registration of frames

{F249,F250}, SACIA performs worst. Note that according to the theory of SACIA,

it performs better when the scans have more features. While for pairwise scans

{F249,F250}, only one plane points are in one scan, and their geometry features are

similar. It is difficult to find a good transformation betweenestimated features.

Compared with ICP and SAC-IA, results showed that the proposed plan match-

ing algorithm performs better over all with no gross misalignment for all the test

sets.

6.2 3D Mapping Experiments

In this section, three experiments are reported to evaluatethe 3D mapping using

plane-based SLAM algorithm, presented in this thesis.

6.2.1 Scenario 1: A Long Corridor

The DAUIN laboratory floor is used as the testing zone. Actually it consists of a

long, narrow corridor with office rooms on both sides. The corridor is divided into

74

(a) pairF1 andF2 (b) pairF105 andF106

(c) pairF21 andF22 (d) pairF141 andF142

(e) pairF249 andF250 (f) pairF0 andF1 and 1

(g) pairF10 andF11 (h) pairF82 andF83

(i) pairF200 andF201 (j) pairF143 andF144

Figure 6.2: Registration using presented algorithms over selected 10 pairwise

frames. The lower left: registration results using odometry; the lower right : regis-

tration results by ICP: upper left: registration results bySACIA; upper right: plane-

matching registration

75

pair ICP SAC-IA Plane Matching

(F1,F2) × × √

(F21,F22)
√ √ √

(F105,F106) × × √

(F141,F142) × √ √

(F249,F250)
√ × √

(F0,F1)
√ √ √

(F10,F11)
√ √ √

(F82,F83)
√ √ √

(F143,F144)
√ × √

(F200,F201) × √ √

Table 6.1: Comparison of pairwise registration using different algorithms, i.e., ICP,

SAC-IA and plane matching registration

two parts by a door on a small hallway connecting two parts of the building. For

reason of convenience, we call the two parts of the testing corridor left and right part

of the corridor respectively. Figure 6.3 shows different parts of the real scenario. In

order to see if the robot may recognize the same places visited previously, in this

experiment, a looped trajectory is required. In our experiment the robot started

from the left side of the corridor going along the corridor upto the right side, then it

returned to the starting location, in order to form a loop closing. The robot traveled

autonomously using a simple obstacle avoidance algorithm.During the run the

robot captured 258 point clouds and covered an area of 35 m×4 m.

(a) Left part of the corridor (b) Right part of the corridor

Figure 6.3: The real scenario of the corridor.

Figure 6.4 shows a comparison between the robot trajectory estimated by odom-

76

−20 −10 0 10 20 30
−35

−30

−25

−20

−15

−10

−5

0

5

x[m]

y[
m

]

Plane−based
Odometry

Figure 6.4: Comparison of estimated trajectories. The red line presents the recorded

trajectory by the robot odometry, while the blue one shows the optimized trajectory

(obtained with the proposed plane-based approach). The starting position is set to

(0, 0). Apparently, the drifting error accumulates resulting in acurved odometry

trajectory. Meanwhile, according to odometry trajectory,the robot did not go back

to its starting position, which is not true. Therefore, a bigdivergence happens.

While the estimated trajectory using presented approach ismuch more consistent.

Figure 6.5: Top view of 3D map obtained using odometry only. Note that the ob-

tained map presents a seriously curved corridor, corresponding to the odometry tra-

jectory shown in Figure 6.4. Obviously, it does not match thereal scenario.

77

Figure 6.6: Top view of the long corridor experiment reconstructed using the pre-

sented plane-based SLAM. Note that it is more consistent andits shape is much

close to the real scenario.

etry only and by our plane-based SLAM algorithm. In this figure, the blue line

shows the obtained robot trajectory using plane-based SLAM, against the odometry

measured path which is plotted in red. Apparently, as shown from Figure 6.4, the

trajectory provided by wheel odometry is not consistent, asthe robot does not return

to its starting position.

The 3D maps are constructed by attaching each acquired pointcloud to its as-

sociated robot pose. Figure 6.5 shows the 3D map obtained by registering the point

clouds just using the robot odometry. Corruption of the map is clearly observable

through the deviation of corridor toward one side as the robot continues its explo-

rations. Unbounded odometry drift is the reason of this deviation. Consequently,

at the end the robot is totally lost by an error of approximately 35 m from the true

position.

In contrast, in Figure 6.6 the map obtained by the plane-based SLAM algorithm

seems consistent with regard to the real scenario. It can be seen that the shape and

orientation of the constructed map is precisely matching the real scenario. The re-

sulted 3D map clearly represents the main structures of the corridor. Walls and doors

are correctly mapped compared to those in reality. This is ofcourse theoretically

expected, since using plane matching procedure, there is noerror on orientation.

Notice that at the right end of the constructed corridor, small pieces of the corridor

are missed. That is because the robot just passes by the scenes only once in this

experiment, and the detected planes with areas less than a pre-defined threshold or

with few supporting points, are ignored.

78

6.2.2 Scenario 2: A Hall

To test the presented plane-based SLAM approach further, the second experiment

was carried out in a closed small hall, in the third floor of theDAUIN building.

The environment is similar to a typical office environment including walls, doors,

and also glass windows, tables, chairs, boxes and other dynamic objects. Figure 6.7

shows the real appearance of the close hall.

The robot explored around the inner surrounding walls once such that it was

able to capture the structure and shape of the environment completely. At the end,

the robot returned to its starting point to form a loop, covering a total distance about

30 m. 189 3D point clouds were taken when the robot was moving continuously,

one approximatively every 0.2 meters.

Similar to the previous experiment, the estimated trajectories are shown as well

as the obtained 3D maps. Figure 6.8 presents the odometry trajectory and the op-

timized trajectory using plane-based SLAM algorithm, and their corresponding 3D

maps are shown in Figure 6.9 and Figure 6.10, respectively.

As expected, the robot accumulates an error when it is moving, leading to an

inconsistent map of the environment, shown in Figure 6.9. Itis easy to observe

that at first, the odometry is still good in this experiment since during this part, the

robot mainly made a forward motion (the robot started from the upper right part of

the hall). While after a big turn, the accumulated error is easily visible as in the

reconstructed map.

Figure 6.10 shows the reconstruction of the environment using plane-based SLAM

method. In comparison to Figure 6.9, the remaining accumulated error seems to be

negligible. The reconstructed map seems consistent and itsmain structure precisely

matches the real scenario. Note that some alignment errors are still present and

some details are missing. This is mainly due to the fact that few corners are de-

tected because of the lacking of big supporting planes, since the environment is

more cluttered with respect to the one in the previous experiment. However, the fact

that corresponding planes remain parallel shows that the rotation was accurately

estimated.

6.2.3 Scenario 3: A Large Loop

In the next experiment, the algorithm is challenged againsta large loop to evaluate

the performance of presented plane-based SLAM further. Theexperiment is done

in the ground floor of the main building of Politecnico di Torino. The experimental

zone approximately consists in three main corridors in two directions. Classrooms

and laboratories are along the both sides of the corridors. For the convenience of

79

(a) Left part of the hall (b) Right part of the hall

Figure 6.7: The real appearance of the hall.

−7 −6 −5 −4 −3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

x[m]

y[
m

]

Plane−based SLAM
Odometry

Figure 6.8: The estimated trajectories for the second experiment. As before, the

starting position of robot is set to be(0, 0). The red one presents the odoemtry path

which is not globally consistent. While the blue path shows the obtained trajectory

using plane-based SLAM.

80

Figure 6.9: A 3D view of the obtained map using odometry only.The drifting error

and inconsistency are easily observable. Specially the walls at the right part of the

resulting map are same regions, while they are presented in different locations.

Figure 6.10: A 3D view of the built map using plane-based SLAM. Apparently, it

closely presents the main structures of the real scenario, even though some small

misalignment are still present.

81

explanation, the corridors are labeled as A, B, and C respectively, and their config-

uration is shown in Figure 6.11. The corridors are perpendicular or parallel to each

other. It is important to note that Figure 6.11 only approximately presents the rela-

tive relationship between the corridors, but not the groundtruth of the environment.

The real appearance of these three corridors are shown in Figure 6.13, respectively.

During the experiment, most of the time the robot explored automatically. While

in order to scan the environment totally or to form local loops, when the robot was

arriving at the intersection area of two corridors, the robot was manually guided to

enter into the expected corridor. Meanwhile, in order to make sure that successfully

paired features can be detected, the robot was manually moved through at a low

speed, since when the robot moves into a new room, the number of newly observed

features will be relative high, whereas most of the old features go out of the view.

The robot started moving along the corridor A, and turned left to travel into cor-

ridor B. After exploring in corridor B, the robot returned tocorridor A and formed

the first local loop. To capture the structure of corridor C, the robot explored corri-

dor A and B again, then entered into the corridor C. After exploring it some time,

the robot returned back to corridor A. At the end, the robot stopped at the middle

part of the corridor B. A manual path of the robot is describedin Figure 6.12.

The robot traveled a total distance of roughly 180 m and collected 651 sensor

samples, covering an area about 15m×20m.

As described before, during this test, two local loops, 1-2-3-4-5-1, 1-2-3-6-7-

8-4-5-1 presented in red line and magenta line in 6.12 respectively, and one global

loop 1-2-3-4-5-1-2-3-6-7-8-4-5-1-2 are formed. Actuallythe local loop closings are

helpful to reduce the accumulated error, especially when the robot traveled a long

distance. That is theoretically expected, since when the robot returns back into a

known environment, it relocalizes itself, allowing to reduce the accumulated error.

The estimated trajectories using odometry trajectory onlyand plane-based SLAM,

is presented in Figure 6.14. And their corresponding constructed maps are shown

in Figure 6.16 and Figure 6.17, respectively. Since in this experiment, the robot

traveled longer than the first two experiments, the odometrydrift is much larger at

the end as expected. Actually before the robot performs the first local loop, the

robot was totally lost as it can be seen from the red plotted path, shown in Fig-

ure 6.14. Therefore, its corresponding map is quite messed up. As apparent from

the Figure 6.16, the odometry map is totally corrupted and the main structures of

the corridors can not be observed.

To show the effectiveness of the proposed loop closure detection using VFH,

discussed in Chapter 5, the robot trajectory is estimated using plane-based SLAM

but without loop closings, shown in Figure 6.15. In Figure 6.15, each blue dash

82

−10 0 10 20 30 40 50 60 70
−10

0

10

20

30

40

50

60

A

B

C

Figure 6.11: The configuration of the testing corridors. Thecorridors are perpen-

dicular or parallel to each other, and labeled as A, B and C respectively.

0 20 40 60

−10

0

10

20

30

40

50

60

2

6

8

1

45

3

7

Figure 6.12: The manual path of the robot. The robot starts moving from position

1. After exploring the three corridors, it stops at position2. During its exploration,

besides a global loop, two local loops are formed, presentedin red and magenta

lines respectively.

(a) Corridor A (b) Corridor B (c) Corridor C

Figure 6.13: The real appearance of corridors in the large loop environment.

83

−10 −5 0 5 10 15 20
−5

0

5

10

15

20

X[m]

Y
[m

]

Odometry

Plane−based SLAM

Figure 6.14: The obtained trajectories for the large loop experiment. As depicted in

above two experiments, the red path are obtained by the wheelodometry. Obviously,

the robot is totally lost and the trajectory is quite messed up. While the blue one

shows the optimized trajectory using plane-based SLAM. As it can be seen, it seems

consistent. Its overall shape is similar to the configuration of the experimental three

corridors, shown in Figure 6.11.

−6 −4 −2 0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

16

x[m]

y[
m

]

Figure 6.15: The estimated trajectory using plane-based SLAM approach but with-

out loop closings. The detected loop closures in this experiment are shown in blue

dash lines. Each blue line connected the detected loop closure frames together. The

loop closures are obtained using the loop closure detectionalgorithm based on VFH

discussed in Chapter 5.

84

Figure 6.16: The 3D map obtained using odometry only. Obviously, it is a mess.

The structures of the experimental corridors are totally corrupted.

Figure 6.17: The 3D map constructed using plane-based SLAM.Its shape and ori-

entation is much close to the real scenario. It clearly presents the main structures,

e.g., walls, doors, pillars etc.

85

line presents a detected loop closure and it connects the related two non-successive

poses together. By comparing the estimated trajectory without loop closings, plotted

in red in Figure 6.15, with the optimized trajectory with loop closings, the blue path

in Figure 6.14, it can be observed that the remained drifted error in Figure 6.15, is

almost eliminated in Figure 6.14, as seen from its corresponding 3D map, shown in

Figure 6.17.

As it can be seen in Figure 6.17, the obtained 3D map closely matches the real

experimental scenarios, especially from the orientation point of view. Note that the

detected walls, doors and pillars are correctly mapped through the environment. In

general the estimated features are well overlapped. This isof course theoretically

expected, since using the plane matching registration, which correct the orientation

error by finding the corresponding features in consecutive frames. While for the

frames concluding the same corner features, the relative poses error in both orienta-

tion and position can be corrected fully. Meanwhile the use of loop closures allows

the accumulated error is diminished.

However, it is also evident in the resulting map in Figure 6.17 that at the left

side of corridor A, some orientation error remains and the walls on two sides are

not parallel. The main reason for this is that the corridor A is not a closed corridor.

When the robot turned, no features could not be detected. Therefore the frames can-

not be matched to the prior ones. In this work, if a frame can not be matched, it will

be connected to the prior node in the pose graph using the odometry information.

However, as we all known, when the robot turns a big angle, theerror of relative

pose changes is high. Therefore, the orientation error between these frames could

not be corrected totally.

We also notice that there are some misalignments between scans of some sur-

faces that were detected in multiple frames, indicating a relative error between the

poses in the graph from which the point clouds were taken. Forinstance, at the

beginning part of corridor C, the surfaces are not overlapped very well. That is

mainly due to the fact that few corners are detected during because of the noise and

occlusion in the point clouds. Another reason for this is thedominance of window

glass on one wall of the corridor C. Such big windows are mostly invisible to the

Kinect sensor, and even worse than that, it brings points with high noise, from the

structures inside the office, which is along the corridor C.

6.3 Summary

This Chapter presented the experimental validation of the 3D mapping algorithm

presented above.

86

At first, to test the robustness and correctness of the presented plane matching

algorithm, experiments for registering pairwise scans were presented. By compar-

ing it to the standard ICP and SACIA global alignment, the presented algorithm is

shown to be more robust and accurate.

Then to evaluate the performance of the presented plane-based SLAM algo-

rithm, three experiments were carried out in the third floor of DAUIN and the main

building of Politecnico Di Torino. The reconstructed 3D maps of the experimental

environments are consistent and close to the real scenarios, especially from the ori-

entation point of view, which prove the presented algorithmis able to construct the

explored environments in a consistent manner.

87

88

Chapter 7

Conclusions and Outlook

7.1 Conclusions

This short Chapter provides a brief outlook on the issues discussed in the thesis and

highlights major conclusions and future directions of research regarding the major

concerns of this work.

The goal of this thesis was to build the 3D maps for structured3D indoor en-

vironments by developing a complete plane-based SLAM approach and validate

it experimentally. This firstly required to find 3D sensors suitable for a mobile

robot. Typically, laser range finders and depth cameras wereused for 3D SLAM

approaches in order to acquire dense point clouds. Recently, Microsoft Kinect has

dominated the stage of 3D robotic sensing, as a low-cost, low-power sensor, that

is able to acquire color and depth images at high frame rate. In our case, instead

of expensive laser sensors, a Microsoft Kinect was employedas the exteroceptive

sensor. For each frame, it is able to delivering dense 3D datacomposed of 307,200

points. Robot odometry was also used to initialize the search for correspondences

between observations between consecutive frames.

Map building requires a known pose. It can be decomposed intothree basic

pieces, each of them are critical to building a globally consistent map successfully.

The first is estimating the spatial constraint between consecutive frames, which is

addressed as scan-matching problem. The second challenge is loop closing: recog-

nizing when a robot has revisited a place it has been previously. Each loop closure

represents a constraint on the trajectory of the robot. During the above two steps,

the estimated spatial constraints are encoded in the edges between different nodes

in a pose graph, whose nodes represent robot poses. Once sucha pose graph is con-

structed, one seeks to find a configuration of the nodes that ismaximally consistent

with the measurements. This involves solving a large error minimization problem

89

and is referred as the third step of 3D mapping. The first two steps consists of pose

graph construction, called SLAM front-end. While the thirdstep is referred to be

SLAM back-end.

It was discussed that abstracting raw point clouds into geometrical features leads

to more efficient SLAM while at the same time more compact and structurally infor-

mative representations are obtained which greatly enhanceinteraction of the robot

with its environment. Therefore, feature based SLAM was selected. In this thesis,

the mobile robot was working in an indoor environment. Basedon the fact that in

indoor environments, several structures like doors, walls, tables, ground floor, etc.,

can be modeled as planar surface patches, which are parallelor perpendicular to

each other. Therefore, planar patches have been found to be agood feature for 3D

visual SLAM, while also being a quite good representation for the final 3D map. In

addition, orthogonal corners, constructed by three intersecting perpendicular planes,

are more distinguishable and considered higher features.

To extract the planar surfaces and 3D orthogonal corners from the raw sensor

data robustly and accurately. The popular RANSAC plane model was iteratively

executed to find planar surfaces in the scene, returning the plane with the most

inliers from the 3D point cloud. In order to ensure that the obtained planar surfaces

present the real geometry of the environment precisely, a distance-based clustering

procedure and merging procedure were applied to refine the plane extraction results.

This is of vital importance in mapping, since the followed data association is directly

dependent on the accuracy of the extracted features. Based on the extracted planes,

a 3D corner was formed by three intersecting planes, which are perpendicular to

each other. The experiment results shows that the planes and3D corners in the

sensor data can be detected effectively.

The main original contribution of this work consists of finding correspondences

between planar surfaces, as well as 3D orthogonal corners inthe consecutive frames.

After the correspondences have been decided on, the relative rotation and transla-

tion that aligns the corresponding set of features are computed. The estimated roto-

translation encodes the pose changes of the robot between the related frames, which

is then added to a pose graph. To robustly determine corresponding planes in differ-

ent frames robustly is difficult, since wrong matches will result in a big divergence

in the trajectory of robot. In Chapter 4, a plane matching algorithm was presented

for determining the unknown plane correspondences by maximizing the similarity

metric between a pair of planes within a search space. The search space is pruned

using the followed criteria: odometric rotation agreementtest, odometric transla-

tion agreement test, texture similarity test, and size similarity test. To discard more

wrong matches, a plane matching consistent test is given to determine the resolved

90

correspondences. Then the determined plane correspondences were extended to the

corner matching procedure.

Loop closing is a form of place recognition that is central tothe task of map

building. A successful loop closing allows to eliminate theaccumulated drifting er-

ror when the robot moves, and prevents re-mapping of the samelocation in a wrong

metric location. In this work, a loop closure detection algorithm from 3D point

clouds by comparing their VFH descriptors and color histograms. Compared to 3D

point clouds, VFH descriptors compress the input point clouds geometry informa-

tion into meaningful statistic histograms while keeping the viewpoint component,

thus it reduces the dimension and store space of the data. To reduce the computation

time, we defined the frame in which corners are included as keyframes. Each time a

keyframe is found, we compare its VFH feature and color histogram with the previ-

ous keyframes. A closure is detected if enough geometrically and color appearance

consistent between pairwise frames matching. Then the relative roto-translation be-

tween the related pairwise frames were estimated by the corresponding corners in

these frames, where the corner correspondences are determined using VFH feature

again. As it can seen, this approach uses only the appearanceof 3D point clouds to

detect loops and requires no pose information.

The pairwise transformations between sensor poses, form the edges of a pose

graph, which is referred to as SLAM front-end. However, due to the estimation

errors, the edges form no globally consistent trajectory. To create a globally consis-

tent trajectory, a linear approximation was used to optimize the obtained pose graph.

Then the 3D map of the environment is constructed by attaching each acquired point

cloud to the corresponding pose estimate.

The plane-based SLAM approach was evaluated in three different scenarios.

Among them, two experiments were carried out in the third floor of DAUIN, Politec-

nico di Torino, and the third one was performed in the main building of Politecnico

di Torino. The experiments were carried out with a differential-drive mobile robot

of our lab equipped with a Microsoft Kinect and a SICK laser sensor, as described

before. The experiment results showed that the system was able to reconstruct all

test environments in an consistent way. The reconstructed 3D maps were close to

the real scenarios and were able to present the structures ofthe test environment

precisely. Meanwhile, we evaluated the plane matching pairwise registration, and

compared it with the standard ICP and SACIA with FPFH. The experiment results

showed that the overall performance of plane matching registration was better than

the ICP and SACIA.

91

7.2 Future Work

Despite the encouraging experiment results presented in this thesis, there are still

different aspects that could be improved. In the future, thefollowing issues are

going to be considered.

1. The first issue concerns to improve the discernibility of the planar features

used with the goal to simplify plane matching algorithm at the same time

improve the robustness of the plane matching.

2. During the experiments, we noticed that when the robot enters into a new

area, or the robot rotates a big angle, more new features comeinto the view,

while few old features remain. Therefore, it is difficult to find corresponding

features such that the relative pose change error could not be corrected for

these related frames. An alternative solution for this is touse two Microsoft

Kinect cameras to capture the environment of different views.

3. It is of foremost interest for plane-based mapping to concentrated on the ex-

traction of a few, large planes per frame that give high confidence correspon-

dences so to estimate the relative orientation and positioninformation for

related frames. To make use the reconstructed 3D map, especially in path

planning and navigation, it is better to represent the 3D maps with surface

patches, especially compared to point clouds, since large planar patches with

polygon boundaries are very well suited for computational geometry algo-

rithms employed in path planning and navigation.

4. The algorithm presented in this thesis is limited in the structured indoor en-

vironment. It is hence of interest to consider higher order surfaces, e.g.,

quadrics, as representations for large surface patches in other environment.

7.3 Publication

• L. Carlone, J. Yin, S. Rosa, and Z. Yuan, Graph optimization with unstruc-

tured covariance: fast, accurate, linear approximation, in Proc. of the Int.

Conf. on Simulation, Modeling, and Programming for Autonomous Robots,

2012.

92

Bibliography

[1] J. Bauer, K. Karner, A. Klaus, and R. Perko. Robust range image registration

using a common plane. InProceedings of 2004 WSCG, 2004.

[2] H. Bay and A. Ess. SURF: Speeded up robust features.Computer Vision and

Image Understanding (CVIU), 110(3):346–359, 2008.

[3] J. Berkmann and T. Caelli. Computation of surface geometry and segmen-

tation using covariance techniques.IEEE Transactions on Pattern Analysis

Machine Intelligence, 16(11):1114–1116, 1994.

[4] P. J. Besl and N. D. Mckay. A method for registration of 3-Dshapes.IEEE

Transactions on Pattern Analysis and Machine Intelligence, 14(2):239–256,

1992.

[5] P. Biber, H. Andreasson, T. Duckett, and A. Schilling. 3dmodeling of indoor

environments by a mobile robot with a laser scanner and panoramic camera. In

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), Sendai, Japan, 2004.

[6] P. Biber and W. Strasser. The normal distribution transform: a new approach

to laser scan matching. InProceedings of the IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), pages 2743C–2748, Las

Vegas, USA, 2003.

[7] J. Borenstein and L. Feng. Measurement and correction ofsystematic odome-

try errors in mobile Robots.IEEE Transactions on Robotics and Automation,

12(5):869–880, 1996.

[8] M. C. Bosse and R. Zlot. Map matching and data associationfor large-scale

two-dimensional laser scan-based SLAM.International Journal of Robotics

Research, 27(6):667–691, 2008.

[9] G. Bradski. The OpenCV Library.Dr.Dobb’s Journal of Software Tools, 2000.

93

[10] J. Callmer, K. Granström, J. I. Nieto, and F. T. Ramos. Tree of words for visual

loop closure detection in urban SLAM. InProceedings of the Australian Con-

ference on Robotics and Automation (ACRA), Canberra, Australia, December

2008.

[11] L. Carlone, R. Aragues, J. A. Castellanos, and B. Bona. Afirst-order solu-

tion to simultaneous localization and mapping with graphical models. InPro-

ceedings of the IEEE International Conference on Robotics and Automation

(ICRA), pages 1764–1771, 2011.

[12] L. Carlone, R. Aragues, J. A. Castellanos, and B. Bona. Alinear approxi-

mation for graph-based simultaneous localization and mapping. In Proc. of

Robotics: Science and Systems, 2011.

[13] L. Carlone, J. Yin, S. Rosa, and Z. Yuan. Graph optimization with unstruc-

tured covariance: fast, accurate, linear approximation. In Proceeding of the

International Conference on Simulation, Modeling, and Programming for Au-

tonomous Robots, 2012.

[14] J. A. Castellanos, J. M. M. Montiel, J. Neira, and J. D. Tardos. The spmap: A

probabilistic framework for simultaneous localization and map building.IEEE

Transactions on Robotics and Automation, 15, 1999.

[15] Y. Chen and G. Medioni. Object modelling by registration of multiple range

images.Image Vision Computing, 10(3):144–155, 1992.

[16] M. V. C. S. . Z. S. CSEM, The SwissRanger.

http://www.swissranger.ch, 2006.

[17] M. Cummins and P. Newman. Fab-map: Probabilistic localization and map-

ping in the space of appearance.The International Journal of Robotics Re-

search, 27(6):647–665, 2008.

[18] M. Cummins and P. Newman. Highly scalable appearance-only SLAM-FAB-

MAP 2.0. In Proceedings of Robotics: Science and Systems (RSS), Seattle,

USA, June 2009.

[19] F. Dellaert and M. Kaess. Square root SAM: simultaneouslocalization and

mapping via square root information smoothing.International Journal of

Robotics Research, 25(12):1181–1203, 2006.

[20] T. Duckett, S. Marsland, and J. Shapiro. Fast, on-line learning of globally

consistent maps.Autonomous Robots, 12(3):287–300, 2002.

94

http://www.swissranger.ch

[21] E. Eade and T. Drummond. Unified loop closing and recovery for real time

monocular slam. InProceedings of the British Machine Vision Conference,

Leeds, United Kingdom, September 2008.

[22] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Burgard. An

evaluation of the RGB-D SLAM system. InProceedings of the IEEE Interna-

tional Conference on Robotics and Automation (ICRA), 2012.

[23] R. Eustice, H. Singh, and J. Leonard. Exactly sparse delayed-state filters. In

Proceedings of the IEEE International Conference on Robotics and Automa-

tion (ICRA), pages 2428–2435, Barcelona, Spain, 2005.

[24] D. Fischer and P. Kohlhepp. 3d geometry reconstructionfrom multiple seg-

mented surface descriptions using neuro-fuzzy similaritymeasures.Journal

of Intelligent and Robotic Systems, 29(4):389–431, 2000.

[25] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for

model fitting with applications to image analysis and automated cartography.

Communications of the ACM, 24(6):381–395, 1981.

[26] J. Folkesson and H. Christensen. Graphical SLAM - a self-correcting map. In

Proceedings of the IEEE International Conference on Robotics and Automa-

tion (ICRA), New Orleans, LA, USA, 2004.

[27] U. Frese, P. Larsson, and T. Duckett. A multilevel relaxation algorithm

for simultaneous localisation and mapping.IEEE Transactions on Robotics,

21(2):196–207, 2005.

[28] U. Frese and L. Schröder. Closing a million-landmarksloop. InProceedings

of IEEE International Conference on Intelligent Robots andSystems (IROS),

pages 5032–5039, 2006.

[29] N. Gelfand, L. Ikemoto, S. Rusinkiewicz, and M. Levoy. Geometrically stable

sampling for the ICP algorithm. InFourth International Conference on 3D

Digital Imaging and Modeling (3DIM), pages 260–270, 2003.

[30] G. Godin, D. Laurendeau, and R. Bergevin. A method for the registration of

attributed range images. InProceedings of Third International Conference on

3D Digital Imaging and Modeling, 179–186, 2001.

[31] R. C. Gonzalez and R. E. Woods.Digital image processing. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 2rd edition,2001.

95

[32] K. Granström, J. Callmer, F. Ramos, and J. Nieto. Learning to detect loop

closure from range data. InProceedings of the IEEE International Conference

on Robotics and Automation (ICRA), pages 15–22, 2009.

[33] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard. A tutorial on Graph-

based SLAM.IEEE Transactions on Intelligent Transportation Systems Mag-

azine, 2(4):31–43, 2010.

[34] G. Grisetti, R. Kummerle, C. Stachniss, and C. Hertzberg. Hierarchical op-

timization on manifolds for online 2d and 3d mapping. InProceedings of

IEEE International Conference on Robotics and Automation (ICRA), pages

273–278, 2010.

[35] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for grid map-

ping with rao-blackwellized particle filters.IEEE Transactions on Robotics,

23(1):34–46, 2007.

[36] G. Grisetti, C. Stachniss, and W. Burgard. Non-linear constraint network op-

timization for efficient map learning.IEEE Transactions on Intelligent Trans-

portation Systems, 10(3):428–439, 2009.

[37] G. Grisetti, C. Stachniss, and W. Burgard. Non-linear constraint network op-

timization for efficient map learning.IEEE Transactions on Intelligent Trans-

portation Systems, 10(3):428–439, 2009.

[38] D. H”ahnel, W. Burgard, D. Fox, and S. Thrun. An efficientFastSLAM algo-

rithm for generating maps of large-scale cyclic environments from raw laser

range measurements. InProceedings of the IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), pages 206–211, Las Vegas,

NV, USA, 2003.

[39] D. Hähnel, W. Burgard, and S. Thrun. Learning compact 3d models of indoor

and outdoor environments with a mobile robot.Robotics and Autonomous

Systems, 44(1):15–27, 2003.

[40] A. Harati. Simultaneous Localization and Mapping for Structured Indoor En-

vironments. PhD thesis, Eidgenössische Technische Hochschule Zürich, 2008.

[41] A. Harati and R. Siegwart. Orthogonal 3D-SLAM for indoor environments

using right angle corners. InProceedings of the 3rd European Conf. Mobile

Robotics (ECMR’07), 2007.

96

[42] P. Henry, M. Krainin1, E. Herbst, X. Ren, and D. Fox. RGB-D mapping: Using

depth cameras for dense 3D modeling of indoor environments.In Proceedings

of the International Symposium on Experimental Robotics (ISER), 2010.

[43] C. Hertzberg, R. Wagner, U. Frese, and L. Schröder. Integrating generic sensor

fusion algorithms with sound state representations through encapsulation of

manifolds.Information Fusion, 14(1):57–77, 2011.

[44] K. Ho and P. Newman. Combining visual and spatial appearance for loop clo-

sure detection in SLAM. InProceedings of European Conference on Mobile

Robots, Ancona, Italy, September 2005.

[45] J. Horn and G. Schmidt. Continuous localization of a mobile robot based on

3D-laser-range-data, predicted sensor images, and dead-reckoning. Robotics

and Autonomous Systems, 14(2–3):99–118, 1995.

[46] A. Howard, M. Mataric, and G. Sukhatme. Relaxation on a mesh: a formalism

for generalized localization. pages 1055–1060, 2001.

[47] J. Jaw and T. Chuang. Registration of LIDAR point cloudsby means of 3D

line features.Journal of the Chinese Institute of Engineers, 2007.

[48] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard,and F. Dellaert.

iSAM2: incremental smoothing and mapping with relinearization and incre-

mental variable reordering. InProceedings of the IEEE International Confer-

ence on Robotics and Automation (ICRA), 2011.

[49] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: incremental smoothing

and mapping.IEEE Transactions on Robotics, 24(6):1365–1378, 2008.

[50] K. Klasing, D. Althoff, D. Wollherr, and M. Buss. Comparison of surface nor-

mal estimation methods for range sensing application. InProceedings of the

IEEE International Conference on Robotics and Automation (ICRA), Kobe,

Japan, 2009.

[51] P. Kohlhepp, G. Bretthauer, M. Walther, and R. Dillmann. Using orthogonal

surface directions for autonomous 3d-exploration of indoor environments. In

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pages 3086–3092, 2006.

[52] P. Kohlhepp, P. Pozzo, M. Walther, and R. Dillmann. Sequential 3D-SLAM

for mobile action planning. InProceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2004.

97

[53] K. Konolige. Large-scale map-making. InProceedings of the 19th national

conference on Artifical intelligence (AAAI), pages 457–463, San Jose, CA,

2004.

[54] K. Konolige and M. Agrawal. FrameSLAM: from bundle adjustment to real-

time visual mapping.IEEE Transactions on Robotics, 24(5):1066–1077, Oc-

tober 2008.

[55] K. Konolige, J. Bowman, J. D. Chen, P. Mihelich, M. Calonder, V. Lepetit, and

P. Fua. View-based maps.International Journal of Robotics Research (IJRR),

29(8):941–957, 2010.

[56] K. Konolige, J. Bowman, J. D. Chen, P. Mihelich, M. Calonder, V. Lepetit, and

P. Fua. View-based maps.The International Journal of Robotics Research,

29(8):941–957, 2010.

[57] K. Konolige, G. Grisetti, R. Kümmerle, W. Burgard, B. Limketkai, and R. Vin-

cent. Efficient sparse pose adjustment for 2D mapping. InProceedings of the

IEEE/RSJ Internation Conference on Intelligent Robots andSystems (IROS),

2010.

[58] J. Krumm. Intersection of two planes. Technical report, Microsoft Research,

Redmond, WA, USA.

[59] R. Kümmerle, G. Grisetti, and W. Burgard. Simultaneous calibration, local-

ization, and mapping. InProceedings of the IEEE/RSJ Internation Conference

on Intelligent Robots and Systems (IROS), pages 3716–3721, 2011.

[60] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. g2o: A

general framework for graph optimization. InProceedings of the IEEE Inter-

national Conference on Robotics and Automation (ICRA), Shanghai, China,

2011.

[61] P. Lamon, A. Tapus, E. Glauser, and N. Tomatis. Environmental modeling with

fingerprint sequences for topological global localization. In Proceedings of

the IEEE International Conference on Intelligent Robots and Systems (IROS),

pages 3781–3786, 2003.

[62] J. Leonard and H. Durrant-Whyte. Mobile robot localization by tracking ge-

ometric beacons.IEEE Transactions on Robotics and Automation, 7(3):376–

382, 1991.

98

[63] D. G. Lowe. Distinctive image features from scale-invariant keypoints.Inter-

national Journal of Computer Vision, 60(2):91–110, 2004.

[64] F. Lu and E. Milios. Globally consistent range scan alignment for environment

mapping.Autonomous Robotics, 4:333–349, 1997.

[65] M. Magnusson, H. Andreasson, A. Nüchter, and A. J. Lilienthal. Automatic

appearance-based loop detection from 3D laser data using the normal distri-

butions transform.Journal of Field Robotics, 26(11–12):892–914, 2009.

[66] P. C. Mahalanobis. On the generalised distance in statistics. InProceedings

National Institute of Science, India, volume 2, pages 49–55, 1936.

[67] Microsoft. http://www.xbox.com/en-US/kinect, 2010.

[68] M. J. Milford and G. F. Wyeth. Mapping a suburb with a single camera us-

ing a biologically inspired SLAM system.IEEE Transactions on Robotics,

24(5):1038–1053, 2008.

[69] A. Murillo, J. Guerrero, and C. Sagues. SURF features for efficient robot local-

ization with omnidirectional images. InProc. IEEE International Conference

on Robotics and Automation (ICRA), pages 3901–3907, 2007.

[70] E. Olson, J. Leonard, and S. Teller. Fast iterative optimization of pose graphs

with poor initial estimates. InProceedings of the IEEE International Confer-

ence on Robotics and Automation (ICRA), pages 2262–2269, 2006.

[71] K. Pathak, A. Birk, N. Vaskevicius, M. Pfingsthorn, S. Schwertfeger, and

J. Poppinga. Online three-dimensional slam by registration of large planar

surface segments and closed-form pose-graph relaxation.Journal of Field

Robotics, 27(1):52–84, 2010.

[72] K. Pathak, A. Birk, N. Vaskevicius, and J. Poppinga. Fast registration based

on noisy planes with unknown correspondences for 3D mapping. IEEE Trans-

actions on Robotics, 26(3):424–441, 2010.

[73] R. Paul and P. Newman. FAB-MAP 3D: topological mapping with spatial and

visual appearance. InProceedings of the IEEE International Conference on

Robotics and Automation (ICRA), pages 2649–2656, 2010.

[74] P. T. PhotonIC (R) PMD 3k S.http://www.pmdtec.com, 2010.

99

http://www.xbox.com/en-US/kinect
http://www.pmdtec.com

[75] F. Ramos, J. Nieto, and H. Durrant-Whyte. Recognising and modelling land-

marks to close loops in outdoor SLAM. InProceedings of the IEEE Inter-

national Conference on Robotics and Automation (ICRA), pages 2036–2041,

2007.

[76] R. B. Rusu, N. Blodow, and M. Beetz. Fast point feature histograms (FPFH)

for 3D registration. InProceedings of the 2009 IEEE International Conference

on Robotics and Automation(ICRA), 2009.

[77] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz. Aligning point

cloud views using persistent feature histograms. InProceedings of the 21st

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

2008.

[78] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu. Fast 3D recognition and pose

using the viewpoint feature histogram. InProceeding of the International

Conference on Intelligent Robots and Systems (IROS), 2010.

[79] R. B. Rusu and S. Cousins. 3D is here: Point Cloud Library(PCL). In Pro-

ceedings of the IEEE International Conference on Robotics and Automation

(ICRA), Shanghai, China, 2011.

[80] R. B. Rusu, Z. C. Marton, N. Blodow, and M. Beetz. Learning informative

point classes for the acquisition of object model maps. InProceedings of the

10th International Conference on Control, Automation, Robotics and Vision

(ICARCV), 2008.

[81] Y. B. Shalom and X. Li.Estimation and tracking: principles, techniques, and

software. Artech House, Boston, 1993.

[82] G. Sharp, S. Lee, and D. Wehe. ICP registration using invariant features.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(1):90–

102, 2002.

[83] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial relation-

ships in robotics. InAutonomous robot vehicles. Springer-Verlag New York,

1990.

[84] I. Stamos and M. Leordeanu. Automated feature-based range registration of

urban scenes of large scale. InProceedings of IEEE Computer Society Con-

ference on Computer Vision and Pattern Recognition, pages 555–561, 2003.

100

[85] B. Steder, G. Grisetti, and W. Burgard. Robust place recognition for 3D range

data based on point features. InProceedings of the IEEE International Con-

ference on Robotics and Automation (ICRA), pages 1400–1405, Alaska, USA,

2010.

[86] B. Steder, R. B. Rusu, K. Konolige, and W. Burgard. Pointfeature extraction

on 3D range scans taking into account object boundaries. InProceedings of

the IEEE International Conference on Robotics and Automation (ICRA), 2011.

[87] H. Surmann, A. Nuechter, and J. Hertzberg. An autonomous mobile robot

with a 3d laser range finder for 3D exploration and digitalization of indoor

environments.Robotics and Autonomous Systems, 45(3–4):181–198, 2003.

[88] S. Thrun. Robotic mapping: A survey. InExploring Artificial Intelligence in

the New Millenium. Morgan Kaufmann, 2002.

[89] S. Thrun and M. Montemerlo. The GraphSLAM algorithm with applications

to large-scale mapping of urban structures.International Journal on Robotics

Research, 25(5/6):403–430, 2005.

[90] S. Thrun, Y.Liu, D. Koller, A. Ng, Z. Ghahramani, and H. F. Durrant-Whyte.

Simultaneous localization and mapping with sparse extended information fil-

ters. International Journal of Robotic Research, pages 693–716, 2004.

[91] R. Wagner, O. Birbach, and U. Frese. Rapid development of manifold-based

graph optimization systems for multi-sensor calibration and SLAM. In Pro-

ceedings of the IEEE/RSJ International Conference on Intelligent Robots and

Systems(IROS), pages 3305–3312, 2011.

[92] J. Weingarten. Feature-based 3D SLAM. PhD thesis, EPFL,Lausanne,

Switzerland, 2006.

[93] D. Wolter. Spatial representation and reasoning for robot mapping-a shape-

based approach. PhD thesis, Bremen University, 2006.

[94] G. M. Y. Chen. Object modeling by registration of multiple range images.

In Robotics and Automation, 1991. Proceedings., 1991 IEEE International

Conference on (1991), pages 2724–2729, 1991.

101

	Introduction
	3D Mapping
	Goal and Contributions
	Thesis Outline

	State-of-the-art
	Introduction
	Graph-based SLAM
	SLAM problem
	Graph-based SLAM

	State-of-the-art of SLAM Front-end
	Iterative Closest Point (ICP)
	SAmple Consensus Initial Alignment (SAC-IA)

	State-of-the-art of SLAM Back-end
	Summary

	Feature Extraction
	Point Cloud Pre-processing
	Planar Surfaces Extraction
	Extraction Algorithms
	Planar surfaces extraction using RANSAC
	Plane Clustering
	Plane Merging

	3D Corners
	Intersection Line between Two Planes
	Corner Detection

	Summary

	SLAM Front-end
	Introduction
	Correspondence Problem
	Plane Matching
	Problem Statement
	Plane Feature Representation
	Plane Matching Algorithm

	Corner Matching
	Relative Transformation Estimation
	Summary

	SLAM Back-end
	Loop Closure Detection
	Related Work
	View Point Feature Histogram (VFH)
	Loop Closure Detection using VFH

	SLAM Back-end
	Problem Statement
	A Linear Pose-Graph Optimizer

	Summary

	Experiments
	Plane Matching Registration Experiments
	3D Mapping Experiments
	Scenario 1: A Long Corridor
	Scenario 2: A Hall
	Scenario 3: A Large Loop

	Summary

	Conclusions and Outlook
	Conclusions
	Future Work
	Publication

