
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A model-based approach to language integration / Tomassetti, FEDERICO CESARE ARGENTINO; Vetro', Antonio;
Torchiano, Marco; Markus, Voelter; Bernd, Kolb. - STAMPA. - Modeling in Software Engineering (MiSE), 2013 5th
International Workshop on:(2013), pp. 76-81. (Intervento presentato al convegno 5th Int. Workshop on Modeling in
Software Engineering (MiSE 2013) tenutosi a San Francisco (USA) nel 18-19 May) [10.1109/MiSE.2013.6595300].

Original

A model-based approach to language integration

Publisher:

Published
DOI:10.1109/MiSE.2013.6595300

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2506234 since:

IEEE

A model-based approach to language integration
Federico Tomassetti∗, Antonio Vetro’∗, Marco Torchiano∗, Markus Voelter† and Bernd Kolb‡

∗Department of Computer Engineering and Control Automation
Politecnico di Torino, Torino, Italy

Email: [federico.tomassetti|antonio.vetro|marco.torchiano]@polito.it
†independent/itemis,

Email: voelter@acm.org,
‡itemis,

Email: kolb@itemis.de

Abstract—The interactions of several languages within a soft-
ware system pose a number of problems. There is several
anecdotal and empirical evidence supporting such concerns.
This paper presents a solution to achieve proper language
integration in the context of language workbenches and with
limited effort. A simple example is presented to show how cross-
language constraints can be addressed and the quality of the
support attainable, which covers error-checking and refactoring.
A research agenda is then presented, to support future work in
the area of language integration, taking advantage of modern
language workbenches features.

Index Terms—language interactions; language integration;
model driven development; projectional editors.

I. INTRODUCTION

Multi-language systems development represents one of the
crucial challenges in model software development [1]. In
fact nowadays not only the size of software systems makes
them complex, but also the large number of artifacts and
the coexistence of distinct though interacting languages. As
a matter of fact, the top 50 projects among the most active
ones indexed by the Ohloh OSS directory1 are composed, on
average, by 16 distinct languages, ranging from a minimum
of 3 (openSSH) to a maximum of 71 (Debian GNU/Linux).

The possibility of having different languages that interact
and cooperate to deliver software functionalities adds flexi-
bility and capabilities to software development. In fact the
limitations of a language can be compensated with the capa-
bilities offered by others. However, interaction of languages
without proper integration and tool support might be a source
for problems. As a matter of fact, we should consider that
current tools typically check only the consistency within a
set of artifacts written in the same language. For example,
editors check that the methods invoked by expression in Java
code actually exist in the codebase, either in the same file
or in another Java file. However, they are not able to control
whether a piece of XML code used for configuration refers to
a really existing Java class, because they are not aware of the
cross-language semantics.

Problems due to language interactions have been in some
cases addressed with ad-hoc solutions involving the devel-
opment of specific supporting tools or plugins for different

1http://www.ohloh.net/

development platforms. This is the case, for instance, of
the Spring tool suite which consists of a series of plugins
for Eclipse offering support for the cross-references between
Spring configuration files and Java code. Similar plugins are
also available to handle references between Android XML
configuration files and Java code.

However, in general verifying the consistency across the
language boundaries is not possible because tools are not
aware of the cross-language semantics.

These ad-hoc approaches are a symptom of the need for
assuring some level of consistency of the global system,
also across language boundaries. The major limit of those
approaches is that they address the problem of supporting
cross language references in an ad-hoc way, i.e. for a particular
relation involving a specific pair of neighbor languages, which
may result expensive and incomplete.

We advocate a mechanisms that offers tool support without
involving the creation of specific editors for any peculiar use
of a language, e.g. using XML for configuring a specific aspect
of a given framework.

This paper first shows the relevance of these issues (section
II), then provides some evidence concerning the problem
deriving from language interactions (section III). After that it
outlines a possible solution (section IV) and describes related
work (section V). Eventually research agenda is also provided
to guide future works on this topic (section VI).

II. PREVALENCE OF LANGUAGE INTERACTIONS

Some of the authors of this paper recently conducted an
investigation on language interactions. They carried on a case
study [2] on the Hadoop project, to understand the magnitude
of the phenomenon and identify possible implications. We
started our investigation observing the commits in the version
repository of Hadoop, driven by the following approximation:
if a commit concerns files of different languages we assume
that those files are related. For instance, considering a commit
that fixes a bug and contains an HTML file and a CSS file:
probably both files were changed in order to fix the bug.

We called cross language commits (CLC) those commits
containing files of different languages. In particular we define
Cross Language Ratio (CLR) as the ratio of CLC among
all commits. In addition to the project CLR, we tried to

TABLE I
MOST INTERACTING LANGUAGES IN A SAMPLE OF FIVE APACHE

PROJECTS

File Extension Hadoop Derby Forrest Harmony

All 53% 64% 66% 77%

C 96% - - 91%

sh 87% 92% 71% 74%

properties 72% 91% 77% 91%

XML 71% 88% 72% 94%

java 59% 62% 64% 77%

xsl 84% 100% 82% 99%

HTML 100% 87% 91% 99%

understand which were the most interacting languages by
measuring the CLR for each language, that is computed
considering only the commits involving that language.

The rationale of computing this metric is to get a proxy
of the level of interaction of files written in a given language.
Assuming the bi-univocal correspondence language-extension,
with this proxy it is possible to understand for each extension
whether the majority of its files interact with files of other
extensions.

In the Hadoop repository we observed CLR=53%. i.e. 53 out
100 commits in the repository were cross language. Further
analyses (not yet published) on three more Apache projects
(Derby, Forrest, Harmony) confirmed the initial observation:
they show CLR respectively 64%, 66% and 77%.

Focusing on the specific languages we showed that the most
interacting languages (among the ones with more files) of the
Hadoop projects were C, sh, XML, Java and, considering also
non programming languages, .properties files. CLR ranged
from 59% (Java) to 96%(C) and even 100%(HTML, but with
a lower number of files than C). Table I shows the CLR
computed for common extensions in Hadoop and in three more
projects, Derby, Forrest and Harmony: with the exclusion of
C and sh, we observe very similar or higher CLR in the other
projects. For Derby the most interacting extension is xsl, in
Forrest is HTML while in Harmony both xsl and HTML.

These figures confirm the observation that the different
languages used in software projects are not sealed off from
each other, but they interact. In the next section we will discuss
the problematic implications of such interactions, providing
both anecdotal and empirical evidence.

III. PROBLEMS GIVEN BY LANGUAGE INTERACTIONS

Combining different languages inside one system can lead
to possible inconsistencies across the language boundaries.

In order to prove that interacting languages can be a source
of problems in software projects, we are going to briefly
provide and discuss examples of well-known cases (III-A),
and to summarize the empirical evidence found in the previous
work and in followup analyses (III-B).

A. Anectodal evidence

In the literature, as well as in every developer’s experience,
there are several common examples of language interactions
and related problems. Here we report a few specimens.

a) Web applications: Web applications are developed
using a plethora of languages. A typical web application uses
a general purpose language for server-side processing, SQL
to access the database, some template language (e.g., JSP or
Facelets2) to generate the pages, HTML in the form of entire
pages or snippets to be combined, Javascript for client-side
elaborations, and CSS to control the appearance of the page.

All these languages cooperate to produce a working soft-
ware system. References between artifacts written in different
languages are therefore very common. Let us consider an
HTML tag (e.g. <input>), with a specific class or an id.
It can be referred to by:
• Javascript: for example, a function written in Javascript

could verify the correctness of the input inserted by the user,
if the tag is a field, or it can be used to react to some event
generated by the user,

• Server side language: it could need to process the result
of a submit including the value of that tag, if it is a field,

• Template language: it could need to generate javascript
which refers to that particular id, or a css configuring that
particular class,

• CSS: a CSS rule can be written to customize the appear-
ance of a tag with that id or class.
A simple typing error in the name of the class or the id

of the tag would be unnoticed by CSS (the rule will just not
apply to the element), Javascript would tend to fail silently
while it could cause a run-time failure on the server side.

b) XML configuration of Java applications: Java appli-
cations rely frequently on configuration written in XML files,
for example to configure Dependency Injection3 or a Web
Application framework4.

These configuration files are used to achieve flexibility in
the application. They commonly drive the instantiation and
binding of classes, therefore they contain references to Java
classes, expressed as string corresponding to the name of the
class referred. The referred classes are expected to be present
in the system, to extend a particular class, and to implement a
given interface or possess some methods: for example a getter
or setter for a particular property. When these conditions are
not met the system can incur in a run-time error. There could
be more complex constraints between the different elements
referred, for example if a class is referred in some point, it
should be initialized in another section of the file.

c) C and the preprocessor: Most of the files written in C
(as well as files written in Objective-C or C++) host directives
which are interpreted by the preprocessor and are expressed in
its own peculiar language, which operates at the token level.
The preprocessor directives constitute a language per se that

2http://facelets.java.net/
3See for example Spring, http://www.springsource.org/ .
4See for example Apache Struts, http://struts.apache.org/ .

could be used also in different contexts, i.e. outside C files.
The interactions between these two languages – C and the
language of the preprocessor – are source of different types
of errors, which can be difficult to find and are detected only
under particular configurations [3]. In this case a language is
embedded into the other. This is not the only case, consider
for example the usage of SQL in different host languages.

For example a macro could obfuscate a C type or a C
identifier, it could assume a value which makes the compilation
fails or it can cause more subtle errors. Consider the example
presented in Listing 1: here a function-like macro is used to
calculate the square of a given number. It works as expected
when it receives a number literal, but when it receives an
expression having side-effects (like a++), it calculates the
incorrect result.
#ifdef INLINE
#define square(x) ((x)*(x))
#else
#define square _square
#endif

int foo(int a){
return square(a++);

}

Listing 1. An example of problematic language interaction between C and
the preprocessor

It is worth noting that while the preprocessor is frequently
associated with C, it is completely unaware of the C semantics
(except for the concept of comments and literals, which should
be recognized to correctly identify preprocessor directives).

Typically the references across language boundaries are
implemented by using a common identifier. Other possible
ways of combining languages are described by Völter [4] (at
least for DSLs).

Unfortunately tools supporting any language are unaware of
the type, the characteristics or even the existence of elements
with that particular identifier among artifacts written in an-
other language. Therefore the coherence of the whole system
depends on human code inspections or verifications at run-
time, when a failure, if noticed, can start an investigation of
the problem.

This happens because the rules controlling language interac-
tions are not explicitly formalized. Moreover typically modern
IDEs support different languages through independent editors,
which are hosted on a common platform (e.g., Eclipse). What
is missing is a shared meta-model, permitting to express
cross language concerns, and an environment supporting the
expression of these concepts, and the enforcement of this
constraints. Language workbenches offer that.

B. Empirical evidence: side effects of languages interaction

In the previous preliminary work mentioned in Section I [2],
some of the authors of this paper have examined the role of
language interactions on defect proneness. Starting from the
definition of CLR (i.e., the ratio of cross language commits
in all commits), they classified modules of Hadoop in Cross
Language Modules (CLM), i.e. files with CLR ≥ 50%, and
Intra Language Modules (ILM), i.e. files with CLR < 50%.

Considering the five most interacting extensions in Hadoop,
the authors observed that three extensions (XML, Properties
and C) had CLM with statistically significant higher defect
proneness, while two extensions (Java and sh) exhibit the
opposite relation. Breaking down the analysis on specific pairs
of extensions, we observed that:

• four extension pairs had CLM more defect prone then
ILM (C-Java, C-XML, Properties-C, sh-C);

• five extension pairs had ILM more defect prone then
CLM (C-Properties, C-sh, Java-XML, Properties-XML,
XML-Java);

• one extension pair had exactly same defect proneness
(Properties-Java).

Subsequent analyses on Forrest and Harmony projects re-
vealed that Java (in Forrest), cpp and XML (in Harmony) were
the languages whose Cross Language Modules were more
defect prone than Intra Language Modules.

Although these observations do not provide univocal an-
swers, they support the theory that particular interactions
between languages could be problematic. We will discuss in
the next section our proposed solution.

IV. LANGUAGE INTEGRATION IN LANGUAGE
WORKBENCHES

Herein we present a preliminary approach to obtain seam-
less language integration with full tool support in the context
of language workbenches. Our reference implementation uses
the Jetbrains MetaProgramming System5 (MPS) but it is not
limited to it: it could be implemented also for the Eclipse
Modeling Platform [5] or other Language workbenches (e.g.,
Spoofax [6]) as long as the Language Workbench considered
supports the languages of interest.

MPS is a projectional editor: it means that the abstract infor-
mation underlying the model is persisted, instead of a textual
representation. There are many benefits with this choice, but
a very important one is that no parsing is necessary. In this
way languages can be freely evolved and combined without
the risk of obtaining an ambiguous grammar. The models are
then projected, hence they are represented in a form suitable
for understanding and editing by the user. Different artifacts
can be later generated from the models: for example compiled
java classes or the concrete XML files to be distributed within
the compiled system.

We chose MPS for the completeness of the tool and because
some of the authors acquired experience with this environment
in the context of the Mbeddr project6. Moreover MPS is
distributed with language plugins which permit to to operate
with Java and XML out of the box.

For the sake of simplicity and because of space constraints,
we will present our approach using a working example of
language interactions involving the most common pattern:
references across two different languages.

5http://www.jetbrains.com/mps/
6http://mbeddr.com

Fig. 1. Editing the XML configuration file without any extension.

Fig. 2. The XML file generated.

Let’s consider a simple logging framework which obtains
the configuration from an XML file. The configuration file
specifies for each class the level of verbosity of the associated
instance of the logger. This mechanism is for example used
by Log4J7.

We start by creating some Java classes and an XML model
for the configuration of the framework. Both Java classes and
the XML model are edited inside MPS.

MPS is capable, without any extension, of editing an XML
model and inserting the name of the Java class we want to
configure as simple text, as shown in Figure 1. The XML file
generated is shown in Figure 2.

This system is brittle: if the user inserts a typo, or the
referred class is deleted, renamed or moved to another package
the system will incur in an error which the IDE is not able
to detect. Moreover the user has to type long class names
(including the name of the package, to be univocal), which is
both error-prone and time consuming.

Our approach consists in creating particular elements to
hold references from one language inside artefacts of other
languages. In this case we created a particular element which
permit to represent at the appropriate semantic level a ref-
erence to a Java class inside an XML document. Using
the terminology of MPS, we created a new Concept named
JavaClassRefAsXmlContent. This concept:
• extends XmlContent (which represents the content of XML
tags). In this way it is possible to insert instances of Java-
ClassRefAsXmlContent in all the places where instances of
XmlContent are allowed,

• has a reference to the Concept ClassConcept (which rep-
resents Java classes). We named this reference “class”,

• has specific scoping rules for the reference “class”,
• when generation is invoked, has its instances substituted
by the full name of the referred class. The full name is
obtained concatenating the name of the package containing
the class with the name of the class itself.
The implementation of this mechanism required only a few

minutes.
MPS provides automatically autocompletion for the new

Concept, considering the scoping rules we specified. The result

7http://logging.apache.org/log4j/

Fig. 3. The system showing autocompletion.

Fig. 4. The system showing a broken reference.

obtained is visible in Figure 3. This mechanism in addition to
offer autocompletion out of the box (therefore saving the user
from writing long names, an error-prone activity), guarantees
automatically consistency: renaming or moving a class the
reference is automatically updated and the correct value is
inserted during the generation phase. If the class is deleted the
reference is recognized to be broken and the editor presents
an error message, as shown in Figure 4. It is possible also to
navigate the reference, hence from the XML file it is possible
to click on the name of the referred Java class and open in in
the editor.

This simple implementation offers a description of the level
of language integration which is possible to achieve inside
language workbenches with a very small effort.

While the simple example we presented dealt with refer-
ences, all the other kinds of cross-language constraints can be
specified (and enforced) inside a Language Workbench.

Other mechanisms like the use of annotations of the use of
custom persistence are also possible: they are not discussed in
this article but they represent a future work.

V. RELATED WORK

In the literature for language integration it is possible
to identify two main threads: (i) approaches applicable to
language families which permit to have a strong control on
the definition of the languages and (ii) approaches with more
general applicability.

A. Approaches working on family of languages

Upon observing that the the amalgam of languages used in
a single web application project are typically poorly integrated
[7], Groenewegen et al. propose the adoption of an unique lan-
guage to model all the different concerns of web applications:
WebDSL. They discuss the integration of an access control
policy inside WebDSL. They propose to express these policies
separately and then weave them inside WebDSL. In this way
WebDSL remains unaware of the access control policies, while
the language used to describe access control policies is created
embedding knowledge of WebDSL. From this prospective we
could consider this language as being part of the "family"
of WebDSL. The approach of creating family of DSLs with
built-in language integration is common (another example is
Epsilon [8]). Language integration across languages of the
same family, built with this particular goal in mind, is easier,

w.r.t. integration among two languages not created specifically
to be integrated.

Barja et al. [9] present a system based on the integration
of a logic query language with an imperative programming
language in the context of an object-oriented data model. They
first discuss various possible approaches for the integration of
the two languages and the implementation of one of them.
Also in case the languages were already developed with the
goal of language integration, they therefore constitute a family
of DSLs.

Tolvanen et al. [10] describe their experience in integrating
Domain Specific Modeling (DSM) languages. They do not
consider integration with general purpose languages because
they intend to take advantage from the fact that companies
have full control of the individual DSM languages developed
for internal used and how they can be integrated. This is funda-
mentally different from the general case of having to integrate
arbitrary languages, without the possibility of modifying their
definition. They discuss the case of integration based on string
matching and the possibility of direct reference. They consider
the possibility to combine both approaches. The second one
relies on the particular technology used to realize the DSM,
the MetaEdit+ system8.

B. General approaches

Mayer et Schroeder [11] name the problems of references
across artifacts written in different languages as “semantic
cross-language links”. Being these links out of scope of
the individual programming language, they are ignored by
most language-specific tools and are often checked only
at runtime. They propose to express explicitly constraints
for these links and present three possible approaches to do
that: at the source code level, using language-specific meta-
models, and using language-spanning meta-models. Of these
approaches they chose the second, while we advocate the
third, which permits to reuse a common API and, in the
case of language workbench, is already available without the
necessity of developing it. Their approach is named XLL and
it permits to automatically identify semantic cross-language
links, correct or broken, and support the user in the activities of
program understanding, analysis and refactoring. XLL requires
to develop for each language considered:

• a meta-model specific for each language considered. The
meta-model should contain all the information needed to
individuate possible link instances, i.e. it should not neces-
sarily represent the entire language.

• a mechanism to list the artifacts of the languages and
instantiate for each of them a model pertaining to the
language specific meta-model,

• an adapter to locate bindings to the refactoring capabilities
of the IDE where the implementation of the approach is
realized.

8MetaEdit+ Workbench 4.5 SR1 User’s Guide,
http://www.metacase.com/support/45/manuals/

The approach requires then to describe possible type of
links, describing for each link the nature of the element
involved in the link.

Using information obtained from models of the artifacts and
description of the types of links, the system is able to calculate
successful and unsuccessful links. Continuous recalculation of
the state of links is performed in background. The authors
present a protypal implementation for the Eclipse platform
and discuss two kinds of relations. The main advantage of this
approach, is the possibility to be implemented as a plugin for
the IDE of choice. On the other hand this approach requires
a considerable effort to develop language specific adapters,
and it is limited in refactoring capabilities. The authors state
that their mechanism of refactoring: i) could fail under certain
condition, ii) it is limited by the availability of refactoring
bindings in the IDE of choice (which the authors report to
be available for Java and in some form for Ruby, on the
platform considered for the implementation), and iii) consider
only the rename refactoring. Moreover it is not able to capture
manual name changing which are not performed through
explicit refactorings. Navigability seems to be limited to the
artifict, not to the specific element involved in the link, which
our approach permits. Both ours and their approaches support
program analysis, but while their require the development of
language specific artifacts, our require almost a null effort and
provide a far better tool support in respect to navigability and
refactoring.

Pfeiffer realized a system called TexMo [12] which permits
to express references between artifacts written in different
languages, but not to express other kind of constraints. It
is realized as an Eclipse plugin and it is intended to be
used instead of the original editors provided inside Eclipse. It
uses a syntactic universal representation of all the languages
supported. I.e., for each language has to be provided an adapter
generating models (instances of the universal metamodel) from
the concrete artifacts (e.g., java or xml files). Our approach
do not require to recreate editors but instead permit to simply
enrich the industrial-strength editors already available in MPS.
It does not resoirt on a limited universal metamodel, but
instead use the MPS representation of the language, which
permits to consider every aspect of the language.

Pfeiffer et al. [13] used TexMo in a controlled experiments
with 22 subjects to demonstrate the effects of tool support for
cross-language references. They provided to the subjects two
different instances of TexMo: one with the support for cross-
language references enabled and one with it disabled. Results
show a significative improvemente in the ability to correctly
locate the source of errors (which could be unnoticed or lead to
run-time failure, when such tools support is not available). An
important result is in the different way errors are located: while
developers having tool-support for cross-language references
locate correctly the source of errors (i.e., the broken reference),
other developers barely find the effect of error, but are not able
to understand the reason of the error, at least not in the short
time allotted for each task (10 minutes).

VI. CONCLUSIONS AND RESEARCH AGENDA

Almost every non trivial system is developed using a set
of languages. While using the proper language for each task
helps the productivity, the side effect is to incur in problematic
language interactions which can lead to inconsistency and
errors which are not recognized at development time and cause
errors during the execution.

We are convinced that Language workbenches offer a solu-
tion to these problems, making possible to specify and enforce
constraints. Tools can be built with a minimal effort, which
provide a complete support and help developing consistent
systems.

While this approach seems very promising there are differ-
ent aspects which require more work. Therefore we would like
to conclude this paper presenting a list of aspects which we
think deserve further investigation.

Empirical assessment of the problems related to lan-
guage interactions: to the best of our knowledge, we are
not aware of any empirical study considering the effects of
languages interactions, with the exclusion of a work [2] from
some of the authors of this paper. The metrics provided in that
preliminary study however need further validation: in breadth
– more projects should be analyzed – and in depth – careful
analysis of the detected interaction–. Probably better proxies
to measure the level of interaction of a languages are needed.
In addition to that, a more qualitative analysis on the projects
already analyzed might offer both a validation of the metrics
and the creation of a first catalog of the most frequent problems
when languages interact. Finally, we believe it is important to
keep on studying the effects on defect proneness caused by
languages interactions, and to extend the investigation on the
on the effect on productivity and code maintainability;

Categorize language interaction mechanisms: in the lit-
erature only cross references implemented through common
identifiers are discusses. Other possible interactions are not
described at all. An ontology of the kinds of interactions
would be a relevant contribution. A good starting point would
be the categorisation of language modularisation for DSLs as
presented by Völter [4].

Techniques to express cross language constraints: while
the simple example we showed in section IV permits to
understand the potential of using Language workbenches for
language integration, complete approaches have to be devel-
oped and validated in practice, possibly in different domains
and on projects of different sizes;

Queries involving multiple languages: a more mature
language integration would permit to query the system un-
der development, for example about all the references to a
particular element, including cross-language references. The
possibilities of global queries as opposed to single-language
queries have yet to be explored,

Custom persistency: the example we presented was based
on the editing of XML and Java models, stored in the MPS
proprietary format. One of the recent features of MPS is the
possibility to use custom format for persistency (the same

feature is present as well in other language workbenches).
It would be possible therefore to edit XML files in MPS,
while storing them as XML files, instead of using the MPS
persistency format. We believe that the diverse persistency
mechanisms should be investigated and assessed.

ACKNOWLEDGMENTS

We would like to thank the DAAD that partially financed this work.
Mbeddr has been supported by the German BMBF, FKZ 01/S11014.

REFERENCES

[1] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer, R. Hirschfeld,
and M. Jazayeri, “Challenges in software evolution,” in Principles of
Software Evolution, Eighth International Workshop on, sept. 2005, pp.
13 – 22.

[2] A. Vetro’, F. Tomassetti, M. Torchiano, and M. Morisio, “Language
interaction and quality issues: an exploratory study,” in Proceedings
of the ACM-IEEE international symposium on Empirical software
engineering and measurement, ser. ESEM ’12. New York, NY, USA:
ACM, 2012, pp. 319–322. [Online]. Available: http://doi.acm.org/10.
1145/2372251.2372309

[3] K. Nie and L. Zhang, “On the relationship between preprocessor-based
software variability and software defects,” in High-Assurance Systems
Engineering (HASE), 13th Int. Symp. on, 2011, pp. 178 –179.

[4] M. Völter, “Language and ide development, modularization and com-
position with mps,” in Generative and Transformational Techniques in
Software Engineering II, International Summer School, GTTSE 2011,
ser. LNCS. Springer, 2011.

[5] F. Budinsky, S. A. Brodsky, and E. Merks, Eclipse Modeling Framework.
Pearson Education, 2003.

[6] L. C. Kats and E. Visser, “The spoofax language workbench,” in
Proceedings of the ACM international conference companion on Object
oriented programming systems languages and applications companion,
ser. SPLASH ’10. New York, NY, USA: ACM, 2010, pp. 237–238.
[Online]. Available: http://doi.acm.org/10.1145/1869542.1869592

[7] D. Groenewegen and E. Visser, “Declarative access control for webdsl:
Combining language integration and separation of concerns,” in Web
Engineering, 2008. ICWE ’08. Eighth International Conference on, july
2008, pp. 175 –188.

[8] D. S. Kolovos, R. F. Paige, and F. A. C. Polack, “The epsilon object
language (eol),” in Proceedings of the Second European conference on
Model Driven Architecture: foundations and Applications, ser. ECMDA-
FA’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 128–142.

[9] M. L. Barja, N. W. Paton, A. A. A. Fernandes, M. H. Williams,
and A. Dinn, “An effective deductive object-oriented database through
language integration,” in Proceedings of the 20th International
Conference on Very Large Data Bases, ser. VLDB ’94. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1994, pp. 463–474.
[Online]. Available: http://dl.acm.org/citation.cfm?id=645920.672969

[10] J.-P. Tolvanen and S. Kelly, “Integrating models with domain-specific
modeling languages,” in Proceedings of the 10th Workshop on
Domain-Specific Modeling, ser. DSM ’10. New York, NY, USA:
ACM, 2010, pp. 10:1–10:6. [Online]. Available: http://doi.acm.org/10.
1145/2060329.2060354

[11] P. Mayer and A. Schroeder, “Cross-language code analysis and refactor-
ing,” in Source Code Analysis and Manipulation (SCAM), 2012 IEEE
12th International Working Conference on, sept. 2012, pp. 94 –103.

[12] R.-H. Pfeiffer and A. Wasowski, “Texmo: a multi-language develop-
ment environment,” in Proceedings of the 8th European conference
on Modelling Foundations and Applications, ser. ECMFA’12. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 178–193.

[13] R.-H. Pfeiffer and A. Wasowski, “Cross-language support mechanisms
significantly aid software development,” in Model Driven Engineering
Languages and Systems, ser. Lecture Notes in Computer Science, R. B.
France, J. Kazmeier, R. Breu, and C. Atkinson, Eds. Springer Berlin
Heidelberg, 2012, vol. 7590, pp. 168–184.

http://doi.acm.org/10.1145/2372251.2372309
http://doi.acm.org/10.1145/2372251.2372309
http://doi.acm.org/10.1145/1869542.1869592
http://dl.acm.org/citation.cfm?id=645920.672969
http://doi.acm.org/10.1145/2060329.2060354
http://doi.acm.org/10.1145/2060329.2060354

	Introduction
	Prevalence of language interactions
	Problems given by language interactions
	Anectodal evidence
	Empirical evidence: side effects of languages interaction

	Language integration in language workbenches
	Related work
	Approaches working on family of languages
	General approaches

	Conclusions and research agenda
	References

