
04 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Stochastic Optimization of Service Provision with Selfish Users / Altarelli, Fabrizio; Braunstein, Alfredo; Chiasserini,
Carla Fabiana; Dall'Asta, Luca; Giaccone, Paolo; Leonardi, Emilio; Zecchina, Riccardo. - STAMPA. - (2013), pp. 1415-
1419. (Intervento presentato al convegno IEEE ICC'13 NETSTAT tenutosi a Budapest (Hungary) nel June 2013)
[10.1109/ICCW.2013.6649459].

Original

Stochastic Optimization of Service Provision with Selfish Users

Publisher:

Published
DOI:10.1109/ICCW.2013.6649459

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2506220 since:

IEEE - INST ELECTRICAL ELECTRONICS ENGINEERS INC

Stochastic Optimization of Service Provision
with Selfish Users

F. Altarelli∗, A. Braunstein∗, C.F. Chiasserini†, L. Dall’Asta∗, P. Giaccone†, E. Leonardi†, R. Zecchina∗.
∗ Department of Applied Sciences and Technology, Politecnico di Torino, Torino, Italy – {firstname.lastname}@polito.it
† Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy – {lastname}@tlc.polito.it

Abstract—We develop a computationally efficient technique to
solve a fairly general distributed service provision problem with
selfish users and imperfect information. In particular, in a context
in which the service capacity of the existing infrastructure can
be partially adapted to the user load by activating just some of
the service units, we aim at finding the configuration of active
service units that achieves the best trade-off between maintenance
(e.g. energetic) costs for the provider and user satisfaction. The
core of our technique resides in the implementation of a belief-
propagation (BP) algorithm to evaluate the cost configurations.
Numerical results confirm the effectiveness of our approach.

I. INTRODUCTION

1 Mathematical models of the distributed service provision
problem has been studied thoroughly in computer science
under the name of selfish load balancing [1] and congestion
games [2, 3]. Most results apply concepts borrowed from
Game Theory and concern worst-case analysis, in particular
the computation of the so-called “price of anarchy”, i.e.
the ratio between the cost of the worst Nash Equilibrium
(NE) and the optimal social cost [4]. Several works also
address algorithmic issues, such as the question of designing
distributed dynamics that converge to NEs, their convergence
time [5], or computational complexity [6]. In many practical
problems, service providers should be more interested in the
average-case scenario, in particular in the average cost of
service/resource allocations determined by the selfish behavior
of users. In order to be able to compare the expected cost of
different service allocations, a service provider is called to
the arduous computational task of evaluating an average over
the possibly huge number of different NEs that are obtained
as result of the allocation. In addition, service providers do
not always have perfect information about the user behavior –
a fact that is usually modeled by including some stochastic
parameter into the problem [7, 8, 9, 10]. In the presence
of stochasticity, algorithms based on Monte Carlo methods
are extremely inefficient already for moderately large problem
sizes, whereas recent works [11] have shown that much better
results can be obtained using message-passing algorithms
inspired by statistical physics methods.

In our formulation, we assume that the total service capacity
of the existing infrastructure can be adapted in part, by
activating some of the service units. Our goal is to find the
configuration of active server units that achieves the best
trade-off between maintenance costs for the provider and user
satisfaction. For the sake of example, we assume maintenance

1The research leading to these results has been funded by the European
Union Seventh Framework Programme under the FET project “STAMINA”.

costs expressed in terms of energy costs to keep the service
unit active. For any given configuration of service units and
users, we propose to use a belief-propagation (BP) algorithm to
evaluate the cost of every service configuration. Moreover, we
put forward an approximate method, also based on BP, which
allows to perform the average over the stochastic parameters
within the same message-passing algorithm used to average
over the NEs. The information obtained is then used to
optimize the service units allocation. This can be done easily
either exhaustively or by means of decimation methods.

II. SYSTEM MODEL

The service provision system is represented by a bipar-
tite graph G = (U ,S, E), in which U = {1, . . . , U} and
S = {1, . . . , S} are the sets of nodes, users and service
units, respectively, and E is the set of indirect edges (u, s)
connecting elements u ∈ U and s ∈ S . In general the graph
is not complete, i.e., users cannot connect to any service unit.
In addition, every service unit s has an operational energy
cost, rs. Thus, in certain time periods, it may be convenient
to keep active only part of the existing service units (xs = 1)
and deactivate the others (xs = 0).

The first ingredient of the model is the rational behavior of
the users. In many problems, such as selfish load balancing
[1], this is introduced by assuming that the quality of service
received by a user, when selecting a service unit, depends on
the load of the unit at the time of service, defining a correlation
between users’ utilities. Here, we simplify the model assuming
that users’ satisfaction in selecting a service unit does not
depend on the state of the service unit itself (provided it is
available). Each edge (u, s) has a weight, wus ∈ R, that
represents the satisfaction obtained by user u when selecting
service unit s. However, users’ decisions are not independent,
as there is a limitation to the number of individuals that can
be served at the same time by the same service unit. The
weight in the opposite direction, wsu ∈ R+, is the workload
sustained by the service unit s when providing the service
to user u. If we assume that each service unit s can sustain a
maximum load cs, the sum of the workloads wsu of all users u
selecting unit s should not exceed cs. This set of hard capacity
constraints introduces an indirect competition between users.
More precisely, suppose that user u considers service unit s
to be the most preferable one (i.e., wus ≥ wus′ ∀s′ 6= s), but
adding the workload wsu of u to the total load already faced
by unit s, it would exceed cs. Then we say that service unit
s is saturated for user u and the latter has to access another
of the service units accessible to her. She will thus turn to the
unit with the second best weight. If this one is available, user

u will make use of it, otherwise she will try the third one on
her list and so on. Note that multiple connections from the
same user to many service units are not allowed.

The second ingredient is stochasticity. We imagine that in
any realistic situation the activity of the users could follow
very complex temporal patterns. Users could leave the system
and come back, using different service units depending on their
preference and the current availability. The stochastic nature of
the problem is summarized into a set of stochastic parameters
{tu}u∈U . With probability P (tu = 0), the user u is absent
from the service system and tu = 0, whereas with probability
P (tu = 1), she is present and tu = 1. For the moment, we
can assume that the actual realization tu, ∀u ∈ U , is known.

Given the bipartite graph, the configuration of active service
units {xs}s∈S and the set of parameters {tu}u∈U , every
user tries to maximize her own utility using the best service
unit available (i.e., among those that are not saturated or
inactive). Such a system model can represent several dif-
ferent application scenarios. For example, we can represent
videoconferencing, including several Multipoint Control Units
(MCUs) or a heterogeneous wireless access network, where
points of access, possibly using different technologies, are
available (e.g., 3G/LTE, WiFi, WiMax) to the users. In this
scenarios, indeed, it would be convenient to switch off service
units when underloaded.

III. PROBLEM DEFINITION

The system outlined above poses the following service
provision problem: at any given time period, which service
units should be activated by a central controller, so as to max-
imize the users’ satisfaction and minimize the system energy
consumption? Since the decision of the central controller has
to account for the rational behavior of the users, we address
the optimization problem as follows.

First, we consider a system configuration, where the active
service units are given, and model the users’ association
process as a game. The players of the game are the users
that have to select a service unit among the active ones. We
solve the game so that, for each user pattern, {tu}u∈U , the
corresponding NE strategy profiles can be identified; note that,
given {tu}u∈U , there may exist multiple NEs. Then, in order
to evaluate the performance of the system configuration, we
define an objective function, which accounts for the energy
cost of the active units and for the users’ satisfaction. Since,
for a given {tu}u∈U , different NEs are reached depending on
the order of arrival of the users, we average the objective
function first over all NEs corresponding to {tu}u∈U , and
then over all possible realizations of the users arrival process.
Finally, we use the obtained result as an indication of the
system configuration performance, and we select the system
configuration that optimizes such an index.

Let us now detail the procedure outlined above. We denote
the tagged system configuration by x, and define Su as the set
of service units that can be selected by user u ∈ U . Also, let
Us be the set of users that can select service unit s ∈ S and
let Us,u be the set of nodes v ∈ Us \ u with s ∈ Su.

In the game, the action of the generic user (player) u
consists in choosing one of the service units connected to her,
e.g., zu = s with s ∈ Su. The payoff is wus ≥ 0 if unit s

is active and not saturated otherwise it is −∞. If no unit is
chosen, zu = ∅ and the payoff is −ω, being ω a penalty value.
More precisely:
πu(zu, {zv}v∈Us,u |tu = 1) =

=



−ω, if zu = ∅
wus, if zu = s, and

wsu +
∑

v∈Us,u δ(zv, s)wsv ≤ csxs
−∞, if zu = s, and

wsu +
∑

v∈Us,u δ(zv, s)wsv > csxs

(1)

If instead user u is absent, zu = ∅ is the only possible value
and we set

πu(zu, {zv}v∈Us,u |tu = 0) =

{
0, if zu = ∅
−∞, otherwise.

Note that, at every perturbation in the system, e.g. due to the
departure of a user, a player may decide to connect to another
service unit than the currently selected one, if she can increase
her payoff.

It is useful to represent the NE conditions in terms of best-
response relations: a strategy profile z∗ = (z∗1 , . . . , z

∗
N) is a

pure NE if and only if, for each user u, z∗u is the best response
to the actions of the others, i.e.,

z∗u = arg max
zu

πu(zu, {z∗v}v∈Us,u |tu), ∀u ∈ U .

In principle, the weight given to each NE should depend on
specific details of the dynamics of the users (e.g. on the order
of arrival of the users and on the order according to which
users unilaterally deviate from the current strategy profile if
they find it convenient). Unfortunately these details are largely
unknown in any realistic setup. It is thus worth considering
a simplifying hypothesis in which all the NEs are weighted
uniformly and the complex user dynamics is summarized in
the average over the realizations of the stochastic parameters
t. In general we do not know which users are actually present
in the system, but we assume to know the probability pu that
user u is present, ∀u ∈ U .

The problem consists in optimizing the trade-off between
the system energy cost and the expected users’ satisfaction,
i.e. in finding the configuration of active service units {xs}
which maximizes the following objective function:

F(x) = Et

[〈∑
u∈U

πu(zu, {zv}v∈Us,u |tu)

〉]
− α

∑
s

rsxs

where 〈· · · 〉 represents the average over the values of z ∈
NASH(x, t) that satisfy the NE conditions (which depend
implicitly on x and t). The objective function is composed
of two contrasting terms: a first contribution that measures the
overall quality of the service, and a second term that quantifies
the total cost of active service units (alternatively, the service
provider’s revenue could depend explicitly on the perceived
quality of the service). The parameter α is used to set the
relative importance of the two objectives.

We can finally formulate the optimization goal of the central
controller which is, given G = (U ,S, E), the vector of unit
capacities c, the payoff matrix W, the vector of presence
probabilities t, and the parameter α, to find a minimizing x∗

such that F (x∗) = minx F (x). In conclusion, the vector x∗

represents the system configuration that corresponds to the
best tradeoff between the system energy cost and the user
satisfaction.

IV. PROBLEM SOLUTION

The NE conditions define a set of local hard constraints
on the individual actions, such that finding a pure NE can be
translated into finding a solution of a Constraint-Satisfaction
Problem (CSP).

Using the node variables {zu}u∈U , we can formulate the
associate CSP over a factor graph with many small loops even
when the original graph had none, which is not appropriate to
develop a solution algorithm based on message passing [12]. In
the following we switch to an equivalent representation, using
edge variables, that is much more convenient for message
passing applications.

A. CSP Representation Using Edge Variables
The actions of the users can be described using three-states

variables yus defined on the undirected edges (u, s) ∈ E (see
Figure 1)

yus =


−1, if s is inactive or saturated for u
0, if s is available but not used by u
1, if s is used by u

(2)

where “saturated for u” refers to the case in which if u
connects to s, the latter violates the capacity constraint, while
“available” refers to the case where s is active and able to
accommodate user u. The NEs are the configurations taken by
the variables {yus} that satisfy the following set of constraints.
First, users cannot have access to more than one service
unit at the same time:

∑
s∈Su 1 [yus = 1] ≤ tu (∀u ∈ U).

Second, the capacity of each service unit cannot be exceeded:∑
u 1 [yus = 1]wsu ≤ csxs (∀u ∈ Us, s ∈ S). And third,

users try to use the best service unit available: {yus =
1, yus′ = 0} ⇒ {wus ≥ wus′} ∀(s, s′ ∈ Su, u ∈ U).

The stochastic optimization problem consists in finding the
configuration of active service units x such that it maximizes
the objective function

F(x) = Et

〈 ∑
(u,s)∈E

1[yus=1]wus

〉− α∑
s

rsxs. (3)

The most difficult part of this optimization problem is that
of performing the average over the NEs in the presence of
stochasticity, that is the essential step to be able to evaluate
the average costs and benefits from activating/deactivating
different service units. Once this is done, the optimization
step over the {xs} becomes trivial and it can be done either
exhaustively or by means of decimation methods. In the next
section we describe an approximate method to perform the
average over the NEs and the stochastic parameters in a
computationally efficient way.

B. Average over NEs with Stochastic Parameters
In general one should first average over the pure NEs

at fixed realization t = {tu} of the stochastic parameters
and then perform the average over the distribution P (t) =∏

i P (ti) of the latter. The double average is extremely costly

yua

Hu

Hs

xs

tuνu(tu)

ν̂u(tu) µ̂
u→s(yus)

µ
s→u(yus)

Fu

Fig. 1. Factor graph representation of Eqs. (6)-(9) involving the four types of
messages. The use of edge variables {yus} highly simplifies the representation
and allows to get rid of small loops. The other two types of variable nodes are
blue and empty nodes, corresponding respectively to the stochastic parameters
{tu} and the service provider’s variables {xs}. Square nodes {Hu} and
{Hs} are standard factor nodes containing the capacity constraints and the
best-response conditions.

at a computational level. The message passing approach allows
one to perform these two steps together although at the cost
of introducing an approximation in the computation.

For an observable O(y,x, t), the average over NEs is

O(x) =
∑
y,t

P (y, t|x)O(y,x, t)

=
∑
y

∑
t

P (t)P (y|t,x)O(y,x, t)

=
∑
y

∑
t

P (t)
1 [y ∈ NASH(x, t)]

Z(x, t)
O(y,x, t) (4)

in which Z(x, t) =
∑

y 1[y ∈ NASH(x, t)]. The numerator
can be easily expressed in terms of the local constraints for
the edge variables {yus}. If we call Is({yvs}v∈Us |xs) the
hard constraint defined on node s ∈ S and Iu({yus}s∈Su |tu)
that defined on u ∈ U , we have 1 [y ∈ NASH(x, t)] =∏

u Iu({yus}s∈Su |tu)
∏

s Is({yvs}v∈Us |xs). The main diffi-
culty of performing the quenched average is due to the pres-
ence of the normalization factor Z(x, t) at the denominator
of (4). A mean-field approximation, based on the factorization
ansatz Z (x, t) =

∏
u Zu (x, tu), can be used to transform our

quenched average into an easily computable annealed one. In
this approximation we get

logP (y, t|x) =
∑
u

logP (tu)−
∑
u

logZu (tu)

+
∑
u

log Iu ({yus}s∈Su |tu) +
∑
s

log Is ({yus}u∈Us |xs) .

(5)

The factor graph associated to the problem is shown
in Figure 1. In addition to the usual terms Hu =
log Iu ({yus}s∈Su |tu) and Hs = log Is ({yus}u∈Us |xs), corre-
sponding to hard constraints, it also contains energetic terms
logZu (x, tu) on the nodes u ∈ U . The energetic terms are
unknown but can be computed implicitly introducing a new
set of messages {νu (tu)}u∈U and {ν̂u (tu)}u∈U that must
be adjusted in order to have the correct probability marginal
P (tu) on each variable node tu. On such a factor graph, it is
possible to derive the set of message passing equations (6–9)
by means of which the observable O(x) can be approximately
evaluated. The proportionality symbol means that the marginal
probabilities need to be correctly normalized. A complete
description of the method will be presented elsewhere [13].

µ̂u→s (yus) ∝
∑
tu

νu(tu)
∑

{yus′},s′∈Su\s
Iu(yus, {yus′}|tu)

∏
s′∈Su\s

µs′→u(yus′) (6)

µs→u (yus) ∝
∑

{yvs},v∈Us,u
Is(yus, {yvs}|xs)

∏
v∈Us,u

µ̂v→s(yvs) (7)

ν̂u (tu) ∝
∑

{yus},s∈Su
Iu ({yus, s ∈ Su}|tu)

∏
s∈Su

µs→u (yus) (8)

νu (tu) ∝ P (tu) ν̂−1u (tu) . (9)

TABLE I
SCENARIOS CONSIDERED IN THE SIMULATIONS

Scenario S1 S2 S3
Number of instances 1842 91 1
Number of users for each instance Nu 12 300 1000
Number of service units Ns 4, 8, 12 30, 60, 90 50
Connectivity of users ku 2, 3, 4 3, 5, 8 5
Capacity of service units cs 5, 8, 11 5, 10, 15 20
Maximum weight wmax 10 10 15
Penalty for a disconnected user ω 10 10 5

V. NUMERICAL RESULTS ON RANDOM GRAPHS

In this section, we present some numerical results obtained
by our algorithm on random graphs generated with the fol-
lowing procedure. Both the users and the service units are
placed at random in the unit square of the two-dimensional
euclidean space. For each user u, only the k nearest service
units are assumed to be accessible, and, for each of these,
the workload is wsu =

⌈
γ d(u, s)2

⌉
, i.e., an integer propor-

tional to the square of the distance between s and u (the
proportionality constant γ is such that the maximum weight
is equal to a specified value wmax). Recall that the payoff for
a disconnected user is −ω (see (1)), whereas for connected
users is wus = wmax−wsu. Finally, the presence probabilities
pu = P[tu = 1] are extracted uniformly in (0, 1]. We have
considered four scenarios, whose parameters are reported in
Table I; the ranges for all these parameters are such that the
instances are non trivial.

A. Comparison with exhaustive enumeration

As a first test of our message passing approach, in scenario
S1 we compared it to an exhaustive enumeration of the NEs
for fixed t, averaging the results over a sample of values of t.
More specifically, we considered (for a given configuration of
the service units x) the following two observables, in terms
of which one can compute the objective function we propose
to use for the greedy procedure:

W(x) = Et

〈 ∑
(u,s)∈E

1[yus=1]wsu

〉 (10)

which is the average (over the realization of t and over the
NEs) of the sum of the workloads wsu for the users that are

present and connected to some service unit, and

N (x) = Et

[〈∑
u∈U

∏
s∈∂u

1[yus=−1]

〉]
(11)

which is the average (again, over the realization of t and over
the NEs) of the number of disconnected users. We compare
the value obtained by our algorithm for W(x) with

W̄(x) =
1

|T |
∑
t∈T

W (x, t) (12)

where T is a random sample of realizations of t extracted from
P (t) (and |T | is the size of the sample) and where W (x, t)
is the average over the NEs (for fixed x and t) of the sum of
the workloads for connected users, which is computed with an
exhaustive enumeration of the possible allocations y. A similar
comparison is done for N (x). Of course, in this scenario the
number of users is limited since the exhaustive enumeration
is possible only if the size of the instance is very small.

Scatter plots A and B in Fig. 2 compare our algorithm
with the exhaustive enumeration under scenario S1. As the
sample size S = |T | increases, the data points tend to
collapse onto the diagonal, i.e., as the accuracy of the sampling
procedure improves, the results obtained by sampling tend to
those obtained with the message passing algorithm, except for
a small number of “outliers” (less than one percent of the
instances). This confirms that, even on very small instances,
the two hypotheses on which our method is based, namely
the decorrelation assumption of the cavity method and the
factorization hypothesis for the partition function Z(t), are
a good approximation.

B. Comparison with explicit sampling
In the next scenario S2, we compare the results obtained by

our algorithm with those obtained by computing the average
over the NEs (for fixed t) with BP, and then averaging over t
with an explicit sampling. This allows us to test, on larger in-
stances, the factorization assumption for the partition function
Z(t). Note that our algorithm requires only one convergence
of the message passing procedure to perform both averages.
The explicit sampling, instead, requires S convergences of a
message passing, which is (almost) as complex as ours; thus,
it is roughly slower by a factor S. This limits the number of
instances that we have been able to analyze to less than 100.

Again, scatter plots C and D of Fig. 2 show that, as the
sample size S increases, the data points tend to collapse

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

E
x
h
a
u
st

iv
e
 N

E
 s

e
a
rc

h
 w

it
h

sa
m

p
lin

g
 o

f
u
se

r
p
re

se
n
ce

Proposed algorithm

A) Average total weight of connections

S = 10
S = 30
S = 100
S = 300
S = 1000

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.5 1 1.5 2 2.5 3 3.5

E
x
h
a
u
st

iv
e
 N

E
 s

e
a
rc

h
 w

it
h

sa
m

p
lin

g
 o

f
u
se

r
p
re

se
n
ce

Proposed algorithm

B) Average number of users unable to connect

S = 10
S = 30
S = 100
S = 300
S = 1000

 100

 150

 200

 250

 300

 350

 400

 450

 100 150 200 250 300 350 400 450

B
P
 s

ta
ti

st
ic

s
o
f

N
E
 w

it
h

sa
m

p
lin

g
 o

f
u
se

r
p
re

se
n
ce

Proposed algorithm

C) Average total weight of connections

S = 10
S = 30
S = 100
S = 300
S = 1000

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80

B
P
 s

ta
ti

st
ic

s
o
f

N
E
 w

it
h

sa
m

p
lin

g
 o

f
u
se

r
p
re

se
n
ce

Proposed algorithm

D) Average number of users unable to connect

S = 10
S = 30
S = 100
S = 300
S = 1000

Fig. 2. Comparison between the values of W(x) (plots A and C for scenario S1 and S2, respectively) and N (x) (plots B and D for scenarios S1 and S2,
respectively), as computed by our message passing algorithm (“Mirror”) and by either exhaustive enumeration of the NEs (plots A and B) or BP sampling
of the NEs (for fixed t) with explicit sampling over t (plots C and D). Each data point corresponds to one instance and one sample size S (corresponding
to the different symbols/colors).

onto the diagonal, with the exception of a few cases for the
estimation of W(x).

C. Optimization results

Finally, in scenario S3 we provide an example of optimiza-
tion. We used our greedy decimation heuristic based on the
message passing algorithm for a single instance. The heuristic
we use to find the optimal allocation x is the following. We
start by computing the value of the objective function

O(x) = Et

〈 ∑
(u,s)∈E

1[yus=1]wus

〉 (13)

when all the service units are on (i.e. xs = 1 for each s).
Then, we compute the same objective function for all the
configurations obtained by switching off one service unit. We
actually switch off the service unit that corresponds to the
smallest drop in the objective function. The same procedure is
then iterated, computing the variations in the objective function
associated to switching off each of the service units that are
still on, and actually switching off the one that minimizes the
drop, until all the service units are off (or we decide to stop).

The results of this “greedy decimation” are shown in Fig. 3.
We observe that during the first 8 steps of the decimation
(i.e. as we switch off the first 8 service units) the value of
the objective function decreases very modestly (dropping by
0.18% overall), while for larger number of steps the drops are
much greater. We therefore decide to stop the decimation after
8 steps. This allows to switch-off 16% of the service units (i.e.
to save 16% of the electric power) without affecting at all the
service level.

VI. CONCLUSION

In this paper, we presented a novel computationally effi-
cient optimization approach for distributed resource allocation
problems under user behavior uncertainty. We propose a belief
propagation scheme to compute the costs of different service
configurations. This is obtained by averaging over all the
possible Nash equilibrium points associated to a given system
configuration.

 7000

 7050

 7100

 7150

 7200

 7250

 7300

 7350

 7400

 0 2 4 6 8 10 12

O
b
je

ct
iv

e

Service units incrementally switched off

Fig. 3. The results of the greedy decimation. The labels on the abscissa show
the number of service units being switched off at each step of the decimation.
The last five steps of the decimation are discarded from the solution.

REFERENCES

[1] B. Vocking. Selfish load balancing. In Algorithmic game theory.
Cambridge Univ. Press, N. Nisan et al. Eds. (2007).

[2] R. W. Rosenthal. A class of games possessing pure-strategy
Nash equilibria. Int. Journal of Game Theory, 2, 65-67 (1973)

[3] I. Milchtaich. Congestion games with player-specific payoff
function. Games and Economic Behavior, 13, 111-124 (1996).

[4] E. Koutsoupias and C. H. Papadimitriou. Worst-case equilibria.
Symp. on Theoretical Aspects of Computer Science (1999).

[5] E. Even-Dar, A. Kesselman, and Y. Mansour. Convergence
time to Nash equilibria. In Proc. 30th International Colloq. on
Automata, Languages and Programming, pp. 502-513 (2003).

[6] D. Fotakis, et al. The structure and complexity of Nash equi-
libria for a selfish routing game. 29th ICALP, 123-134 (2002).

[7] A. Goel and P. Indyk. Stochastic Load Balancing and Related
Problems. Symp. on Foundations of Computer Science (1999).

[8] J. Kleinberg, Y. Rabani, and E. Tardos. Allocating bandwidth
for bursty connections. Proc. 29th ACM Symposium on Theory
of Computing (1997).

[9] E. Nikolova and N. E. Stier-Moses. Stochastic selfish routing.
In SAGT (2011).

[10] S. Dye, L. Stougie, and A. Tomasgard. The stochastic single
resource service-provision problem. Naval Research Logistics
50(8), 869-887 (2003).

[11] F. Altarelli, A. Braunstein, A. Ramezanpour, and R. Zecchina,
Stochastic Matching Problem, Phys. Rev. Lett. 106 (2011)

[12] M. Mézard and A. Montanari Information, Physics and Com-
putation. Oxford graduate texts (2009).

[13] F. Altarelli, A. Braunstein, L. Dall’Asta and R. Zecchina, in
preparation (2013).

